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ABSTRACT

During an offshore installation procedure, a structure is lifted off the barge, lowered through the wave zone
and water column and eventually set down on the seabed. As the structure reaches the seafloor, water will
move out of the way, washing away soil underneath the structure. The resulting hydrodynamic pressure and
disturbed soil play a role in the structure’s set-down, motion behaviour and stability. It is expected that the
allowable set-down velocity, for which safe installation can be guaranteed, is related to the occurring hydro-
dynamic force and to the (allowable) soil deformation.

This thesis focuses on the hydrodynamic forces during the set-down that cause the soil deformation. The
objective of this thesis is to increase the understanding of how the set-down of structures on the seabed is in-
fluenced by the soil. To achieve this, a simplified dynamic model describing the lowering to and installation
onto the seabed of a structure is established. Throughout this study the structure has been simplified to a
disk.

The hydrodynamic force acting on the disk is similar to the method described in literature by Brennen. Bren-
nen’s flat plate analogy has been applied to derive a force acting on a closed disk (1D model) and one for an
open disk (2D model). Whereas the 1D model includes only horizontal fluid flow velocity, the 2D model also
takes vertical flow velocity through a central valve into account.

From the analysis on the behaviour of the hydrodynamic force it was observed that the hydrodynamic force
rises with increasing proximity to the seabed. This is explained by the dominance of an extra added mass
term in the derived function. Once the outside radius/height (R/z) ratio is bigger than 1, the force starts to
behave like a water cushion, complicating the structure’s set-down onto the seabed.

In the analysis of the closed 1D model, it was observed that the significant increase in the hydrodynamic
force reduces the structure’s velocity as it reaches the seabed. After landing onto the seabed, the structure,
connected in a kinematic manner with the soil, starts to settle. The results for the 2D model, including a valve
with vertical flow velocity, showed a smaller hydrodynamic force. The magnitude of the vertical flow velocity
is shown to depend on the valve radius and structure’s motion.

The sensitivity analysis reconfirmed that larger valves result in lower magnitudes of the hydrodynamic force,
corresponding to a smaller amount of soil disturbance. No significant difference in the vertical flow velocity
for different valve sizes was observed. The force’s sensitivity to phasing and frequency was emphasized by
the analysis for various crane tip heave motions. Larger heave motions correspond to a higher hydrodynamic
force engendering the highest amount of soil disturbance. The force varies considerably for different phases.
The influence of the structural mass and soil type is relatively small compared to the impact of the crane tip
heave motions and the valve size.

Further work includes additional research on the expression for the 2D hydrodynamic force and analyzing
the relation between the vertical and horizontal flow velocity. By including the skirts and adding length to
the disk, a more realistic analysis of the set-down of suction piles onto the seabed is obtained. By varying
the constant crane lowering velocity, optimizing the valve size and determining acceptable crane tip heave
motions, the optimum scenario for the set-down of a suction pile on the seabed can be acquired.
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GLOSSARY

CFD Computational Fluid Dynamics.

DCV Deepwater Construction Vessel.
DNV Det Norske Veritas.

DOF Degree of Freedom.
EOM Equation of Motion.

FBD Free Body Diagram.

FPSO Floating Production Storage and Offloading.
HMC Heerema Marine Contractors.
MPM Most Probable Maximum.

STTR Single Top Tension Riser.
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kcrane

Ca
Cp

D

F
Pﬁrag
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Sarpkaya-Beta number

Vertical acceleration

Vertical velocity

Initial deflection

Wave length

Contraction coefficient

Kinematic viscosity

Angular velocity

Natural frequency

Phase difference

Mass density of steel

Mass density of soil

Mass density of sea water

Damping ratio

Amplitude

Hydrodynamic mass coefficient or added mass
Added mass

Inner area of the suction pile
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Total area of vent valves
Hydrodynamic damping coefficient
Restoring spring coefficient
Non-dimensional added mass coefficient
Non-dimensional drag coefficient
Characteristic diameter

External force

Drag force

Hydrodynamic force

Finertia Inertia force

Fline

Tension force from crane wire
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radls
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X GLOSSARY
Fs0;1  Soil reaction force N
Fsupm Submerged weight N
G Elastic shear modulus kPa
g Gravitational acceleration, g =9.81 m/s®
H Wave height m
k Correction factor -
kerane Crane wire stiffness Nim
ksoi1  Soil stiffness Nim
KC Keulegan-Carpenter number -
L Length of structure m
M Structural mass kg
m Structural mass kg
N, Bearing capacity factor -
p Pressure at chosen point Pa
p(r,t) Hydrodynamic pressure at variable position and time Pa
Ppyq  Hydrodynamic pressure Pa
R Radius
R, Valve radius
Re Reynolds number -
Su Undrained shear strength kPa
T Oscillating flow period s
To Natural period S
u(r,t) Horizontal fluid flow velocity mls
Uy Flow velocity m/s
v Fluid flow speed at a point on the streamline m/s
v(t) Vertical fluid flow velocity mls
Ve Crane lowering velocity m/s
Vg Reference volume m3
z Vertical displacement m
20 Initial position suction pile m
Zcr Crane tip position m
Zs0i1  Soil displacement m
Suction pile position m
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INTRODUCTION

1.1. BACKGROUND

The world’s population is expected to increase with 1.5 billion people to nearly 8.8 billion people by 2035. This
population growth will generate a worldwide increasing energy demand [1]. Although the use of renewables
will rise significantly as seen in figure 1.1, fossil fuels will remain the dominant source of energy powering the
global economy.

Over the years, the exploitation of hydrocarbons has shifted from onshore production to shallow water pro-
duction into deep-water fields. These fields are often located in remote and harsh environments. With this
continuing trend [2], subsea engineering has taken a powerful role in the offshore industry resulting in more
complex engineering. Deeper water and harsher weather conditions complicate installation of subsea struc-
tures. More knowledge on subsea installations allows for more safe and efficient offshore operations.

Mtoe per annum

250
® Renew.*
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Nuclear
150 |y
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100
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0 ._-

1994-2014  2014-35

Figure 1.2: HMC'’s DCV Balder

Figure 1.1: Annual demand growth by fuel [1]

Within the offshore industry, Heerema Marine Contractors (HMC) is known for its semi-submersible crane
vessels that can install offshore structures up to 14,000 ton in deep water fields [3]. In 2015, HMC’s Deepwater
Construction Vessel (DCV) Balder, seen figure 1.2, installed the world’s largest and heaviest Floating Produc-
tion Storage and Offloading (FPSO) buoy (3,000 ton) in the US Gulf of Mexico. For the permanent mooring,
nine suction piles where installed in a water depth of 2,916 m: a world record.

With increasing water depths and number of subsea structure installations, the offshore industry has grown
in complexity and size over the past years and will most likely continue to do so.
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One of HMC'’s current projects is the Kaombo project, located offshore Angola in Block 32. This project en-
compasses six fields with an oil prediction of about 600 Mb over a twenty year license period. These six fields
will be tied back to two FPSOs. At two locations, the Gengibre & Gindungo field, suction piles will be installed
to support the Single Top Tension Riser (STTR) at a water depth of 1,750 m. All the data used in this thesis
originates from HMC'’s Kaombo project.

1.2. PROBLEM DESCRIPTION

During a typical offshore installation procedure, a structure is lifted of the barge, lowered through the wave
zone and water column and eventually is set down on the seabed. The set-down of a subsea structure on
the seabed is governed by three critical parameters: the loads in the rigging, the set-down velocity and the
soil disturbance of the installed structure. The last two critical parameters are the focus of this thesis, so no
further elaboration on the first parameter is given.

The velocity with which a structure reaches the seabed is called the set-down velocity. The motion of the
structure near the seabed is dependent on both the crane lowering speed as well as the motion of the instal-
lation vessel. This velocity is important to know in order to guarantee safe installation.

As the structure reaches the seabed, water will move out of the way resulting in soil being washed away un-
derneath the structure. The resulting hydrodynamic pressure and possible soil deformation play a role in the
structure’s set-down, motion behaviour and stability. For suction piles, it is essential that the pile can pene-
trate into the soil without washing an excessive amount of soil away. Too much soil disturbance could reduce
the holding capacity and therefore the pile’s stability.

Generally accepted, e.g. Det Norske Veritas (DNV), there is a relation between the structure’s geometry, the
maximum velocity, the arising water pressure and the allowable soil deformation [4]. The DNV method in-
cludes a number of conservatisms and simplifications. Until now little is known about how the (non-linear)
deforming seabed and valve sizes affect the generated fluid flow, which exerts a resistance force on the low-
ered structure. Presumably, the maximum allowable set-down velocity, for which a safe installation can be
guaranteed, is related to an occurring hydrodynamic force and consequently to the (allowable) soil deforma-
tion. Better understanding of the relation between the water pressure and the set-down of a structure could
optimize the allowable set-down velocity. Consequently, this could increase the operability and workability
of the installation of subsea structures in deep water.

1.3. OBJECTIVE AND RESEARCH QUESTIONS

Based on the above problem description and the desire to gain more knowledge on the landing of a struc-
ture on a deforming seabed, possibly extending the installation weather window and/or optimizing the valve
sizing, the research objective of this thesis is:

To increase the understanding of how the set-down of structures on the seabed
is influenced by the soil.

The main objective is divided in the following sub-objectives and sub-questions:
1. What is the influence of the water pressure on the set down of suction piles near the seabed?

(a) How is the water pressure created?

(b) How much water pressure is there generated?

(c) What influences the water pressure near the seabed?

(d) What is the behaviour of water near the seabed?

(e) Can we reduce conservatism in the calculation of set-down velocity?

2. What influence does the soil have on the hydrodynamics near the seabed?

(a) How does the soil affect the water pressure generated?

(b) What is the impact of the soil type?

(c) What is the maximum allowed soil deformation?

(d) What effect does the soil deformation have on the set-down of the structures?
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1.4. APPROACH

To achieve the objective of this thesis, a simplified dynamic model will be constructed. The model will de-
scribe the system of a suction pile being lowered to and installed onto the seabed. The system can be divided
into a fluid, structural and soil part, respectively. Fluid, structure and soil are modelled as shown in figure 1.3.

Crane tip

e S

< F; >
hyd Seabed
$ $ % ksoii

The fluid flow close to the seabed is shown in figure 1.3 on the left. This fluid flow can be translated into a
hydrodynamic force, which acts on the structure. The hydrodynamic force for a closed disk with 1D fluid
flow is derived and used. Thereafter, the hydrodynamic force for a disk with a symmetric valve, including 2D
cylindrically symmetric flow, is deduced.

Figure 1.3: Modelling approach

The structure is modelled as a rigid body, representing a suction pile, and the soil is given as a linear spring.
This is illustrated in figure 1.3 on the right. Both a closed disk and a disk with a valve in the middle are
considered. The soil is modelled as a linear spring with certain spring stiffness. The spring stiffness is derived
from Kaombo data.

1.5. REPORT OUTLINE

Chapter 2 starts with general background information on suction piles and elaborates on how subsea struc-
tures are installed on the seabed. A literature study has been done in chapter 3, in which first elaboration on
the various calculation methods of the structure’s motion is given. Next, the hydrodynamics near the seabed
and the basics of soil mechanics are explained. In chapter 4, the derivation of the hydrodynamic force for
a closed (1D flow) and an open (2D flow) disk is given as the 1D and 2D model, respectively. These forces
have been implemented into a structural model in chapter 5 and the expectations concerning the set-down
procedure are also given here. The results for a base case situation for both models are discussed in chap-
ter 6. In chapter 7, a sensitivity analysis has been done, in which the influential parameters are illustrated.
Chapter 8 describes the verification of the hydrodynamic force with CFD results. Finally, conclusions and
recommendations are given in chapter 9.






GENERAL BACKGROUND

This chapter gives background information on suction piles and the installation of a subsea structure. First,
elaboration on suction piles and the use of a valve is given. Thereafter, the installation steps of subsea struc-
tures are explained. Especially the final step, the set-down, is relevant for this thesis. Therefore that step is
explained in more detail.

2.1. SUCTION PILES

A suction pile, seen in figure 2.1, is an open ended circular shaped tube with a closed top, which is embedded
in the soil. A suction pile can function as part of a mooring system or as a foundation for subsea structures,
e.g.manifolds and jackets.

Suction piles were first introduced in the offshore industry in 1980. However, only after further research and
development in the early 90’s, were they extensively used in mooring applications for floating production
units. Nowadays, suction piles are widely used in the offshore oil industry. The advantages of using a suction
pile as a preferred foundation are [5][6]:

* Cost effectiveness of the installation method

 Possible to install in deep and shallow water

* Reusability, i.e. installation may be reversed and repeated
* Extensive experience

* Removal is easy if planned for

* Environmental friendly, i.e. silent installation method

(a) Suction piles, with valves on the top plate (b) Butterfly valve

Figure 2.1: Suction piles & butterfly valve
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The key parameters that define the holding capacity of a suction pile are the geometry, length and the aspect
ratio or length/diameter (L/D) ratio. The aspect ratio for a typical suction pile ranges between one and five.
Different ratio’s are used for different soil types. In sand and hard clays, a low aspect ratio is sufficient, while
in soft clay higher ratio’s are necessary.[5]

When a suction pile is in close proximity with the seabed, the soil may wash away and a crater may form.
To minimize this, a vent valve is added to the top of the suction pile. This allows water to flow through the
pile as it moves up and down. There are several different types of valves used in practice, e.g. gate valves and
butterfly valves, seen in figure 2.1b. The diameter and number of valves are expected to have impact on the
size of the crater, that is the amount of soil washes away. Valves are generally expensive and thus decisions
concerning the use and amount of valves need to be carefully taken.

A suction pile is installed onto the seabed in two steps: first the pile penetrates the soil due to its self weight.
This penetration continues until the self weight and the soil resistance reach an equilibrium. Next, water is
pumped out of the pile through a vent valve, at the top of the pile, creating a pressure difference over the top
plate. Because of this pressure difference, the pile is pushed further into the soil until the required penetration
depth is reached [7]. In the next section, further elaboration on the installation of structure is given.

2.2. INSTALLATION OF STRUCTURES
The installation of subsea structures is a complex procedure. It can be divided into four phases [3]:

Lift off from the barge

Lowering through the wave zone
Lowering through the water column
Landing on the seabed

Ll

All phases must be considered to ensure a safe operation and the structural integrity of the structure. In this
section a short description of the installation steps and governing parameters is given. The final installation
step, the landing on the seabed, is the focus of this thesis and thus a more detailed explanation is given in

section 2.2.4.

1. 2. 3. -

Figure 2.2: Installation steps
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2.2.1. LIFT OFF FROM THE BARGE
In the first phase, a crane vessel lifts the suction pile from a barge moored alongside, step 1 in figure 2.2. To
prevent recontact between the lifted structure and the barge, the relative vertical motions need to be assessed.

The feasibility of the lift-off is determined by the following parameters [4] [8]:

* The hoisting speed of the crane
* The combined motion characteristics of barge and crane vessel
* The weather conditions, combined with the orientation of the installation vessels

To lift the structure of the barge, use is made of pre-heeling, crane pre-tensioning and ballasting [8]. Once a
pre-tension in the wire is given, the DCV is re-ballasted and the module comes loose from the barge.

2.2.2. LOWERING THROUGH THE WAVE ZONE

Once the structure is lifted off the barge, it is lowered through the wave zone, indicated as step 2 in figure
2.2. This means that the structure enters the water and eventually fully submerges. The critical aspects of
this phase are the possibility of slack rigging and the exceedance of crane capacity. During this operation the
structure is exposed to several environmental loads. These loads are non-linear and therefore it is difficult
to predict what their effect is on the structure’s motion. DNV gives a simplified method to conservatively
estimate the forces acting on the object. They can be found in the DNV standard on 'Modelling and Analysis
of Marine Operations’ [4].

2.2.3. LOWERING THROUGH THE WATER COLUMN

Next, the structure is lowered through the water column to the seabed, step 3 in figure 2.2. The resonance
period of the hoisting arrangement increases with increasing water depth. Therefore, resonance with the
crane tip heave period or wave period may occur. This may lead to excessive structural motions. In order
to avoid resonance, close investigation into the natural frequency of the system through the whole water
column is essential.

2.2.4. LANDING ON THE SEABED

In the last step, the structure is placed on the seabed, visualized as step 4 in figure 2.2. As the structure ap-
proaches the seabed, the water underneath moves sideways. As the clearance to the seabed decreases, the
area for water to escape reduces and therefore the hydrodynamic pressure rises. This pressure exerts a force
on the structure and on the soil: the hydrodynamic force. The soil interaction and the amount of water, which
may escape through the valves, influence the generated pressure. The hydrodynamic force increases as the
structure gets closer to the seabed and is expected to decelerate the suction pile and deform the soil.

During the landing on the seabed several challenges need to be dealt with. The heave motions of the struc-
ture, originating from motions of the installation vessel, can be large and therefore reduce the visibility and
complicate handling. A large heave velocity of the structure can result in excessive soil disturbance. If the soil
displacement is too high, the holding capacity reduces, compromising pile stability. Besides, the dynamic
loads during the landing can be high, resulting in possible slack rigging and exceedance of crane capacity.

Detailed analysis of the landing on the seabed is necessary to ensure that:

» Foundation failure does not occur;
* No structural damage occurs.

Similar to the lowering through the wave zone, the DNV standard [4] is used to provide a conservative ap-
proach of the loads on the structure.

STAGES OF LANDING

The landing of a suction pile on the seabed can be divided in four stages. Once the suction pile gets closer
to the seabed and the skirts start to penetrate, the force equilibrium changes. For each stage, a momentum
balance with corresponding forces can be determined. The four different phases and corresponding forces in
the vertical direction are schematically visualized in 2D in figures 2.3 and 2.4, respectively. In chapter 5, the
physical meaning of these forces is given.
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During the first stage seen on the left in figure 2.3, the suction pile is unaffected by the seabed. The forces
acting on the pile include the structure’s submerged weight Fypp,, the viscous drag force Fy;4g, the inertia
force Fjnertia and a resistance force coming from the line connected to the structure Fj;,.. At his point, the
resistance force from the water originating between the structure and the soil is (negligibly) small. .

Once the structure gets closer to the seabed, as is seen on the right in figure 2.3, the extra added mass or
hydrodynamic force Fy,4 starts to play a role. The presence of a solid boundary will cause a rise in added
mass. This is due to the increase in the fluid acceleration in the region between the fluid and the boundary.
This increase in added mass results in an upward hydrodynamic resistance force.

A

deg Fline Fdrag F!ine

Fsubm Finertia Fsubm Finerria

(AN N R 1

+— _—  —— —_—

Figure 2.3: Landing stages 1 & 2 of the installation process.
Left side: forces on structure, unaffected by the seabed. Right side: forces on structure, close to the seabed.

In stage three, seen on the left in figure 2.4, the skirts start to penetrate the soil, leading to a further reduction
of structure velocity and a maximum value for added mass. The only possibility for water to escape is through
the valves on top of the suction pile. There is also a possibility that the line becomes slack and thus the line
force would become zero.

Fd?'ﬁg Fiine

T e I i

thﬂ‘ Yy thd Fsoil Fsoir

? Foubm
Fskirt T TFskirt Fskirt T T Fskirt

Figure 2.4: Landing stages 3 & 4 of the installation process.
Left side: forces on structure, with penetrating skirts. Right side: forces on structure, for full installation.

In the final stage, the skirts of the suction pile are fully embedded and the hydrodynamic force is not present
anymore. The remaining forces are the soil reaction coming from the skirts and the foundation, and the sub-
merged weight.



LITERATURE STUDY

This chapter describes the literature research that is essential to achieve the main goal of this thesis. A study
on the structure’s motion, the hydrodynamics in close proximity to the seabed and on soil mechanics has
been conducted.

In the first section, the different ways of calculating the maximum set-down velocity is explained. Next, elab-
oration on the hydrodynamics of a structure close to the seabed is given. Finally, research was done on the
different soil types, their behaviour and at which moment they fail.

3.1. STRUCTURE’S MOTION

One of the important aspects to thoroughly analyse is the vertical motion of the lowered structure. To guar-
antee safe installation and to minimize the soil disturbance, often a maximum set-down velocity is set.

The vertical motion of a suction pile is described by a constant downward velocity plus an oscillatory heave
motion, which comes from the wave induced motion of the installation vessel. There are alternative ways to
calculate the maximum allowable vertical velocity. Since the velocity is dependent on e.g. structural dimen-
sions, weather conditions and soil conditions, the allowable velocity differs per situation. Next, elaboration
on two different applied approaches of calculating the maximum allowable set-down velocity is given.

3.1.1. SIMPLIFIED CALCULATION

This simplified method, often used within HMC, is based on Bernoulli’s principle. This law states that an
increase in fluid flow speed appears simultaneously with a decrease in pressure. The principle is named after
Daniel Bernoulli, who published it in his book "Hydrodynamica’ in 1738.

It is possible to apply Bernoulli’s principle to various types of fluid flow, leading to several forms of Bernoulli’s
equations. A common form, valid for incompressible fluid flow, is described as follows [9] :

1
—v2+ﬁ+gz= constant (3.1

2 Pw
Where

v : Fluid flow speed at a point on the streamline [/ ]
p : Pressure at chosen point [Pa]
pw : Mass density of sea water, p,, = 1025 [kg/m?3]
g : Gravitational acceleration, g = 9.81 [m/s?%]
z : Elevation of the point above the reference plane [m]

For the calculation of the maximum allowable set-down velocity, HMC uses a similar equation, taking soil
properties, valve dimensions and pressure losses into account. While the suction pile penetrates the soil, an
overpressure inside of the pile is created. In case the pressure inside the pile is higher than the soil strength, a
crater is expected until the depth with sufficient soil strength is reached. The allowed crater is dependent on
the design requirement and on what the client finds acceptable.
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Based on Bernoulli’s principle and taking e.g. structural dimensions and soil properties into account, the
maximum allowable set-down velocity for a certain soil strength can be described by [10]:

2N S, kg

(3.2)

In which:

N, : Bearing capacity factor [-]
S : Undrained shear strength [kPal
k : Correction factor [-]
1 : Contraction coefficient [-]
Ay : Inner area of the suction pile (m?]
A, : Total area of vent valves [m?]

The derivation of this equation basically consists of two parts; one related to the flow capacity of the vent
valve and one related to the soil strength.

In the first section, the ratio % together with the correction factor k and contraction coefficient y, determine
the maximum possible flow tvhrough a valve. Based on this, it can be stated that the maximum set-down
velocity is among others defined by the pile/valve dimensions and the pressure losses through the valve.
Appropriate choices concerning especially the size and amount of the valves is essential.

The part related to the soil strength concerns the pressure inside the pile. The soil conditions set a limit to
the maximum acceptable pressure inside the pile. The soil strength can no longer be guaranteed in case the
pressure surpasses the limiting pressure. The soil strength, determined by among others the undrained shear
strength S, is variable per location and depth. In figure 3.1, this can be seen in the Design Profile [11].

Su (kPa)

o5

15

Depth (m)

25

35

Figure 3.1: Design Profile from Kaombo soil data specification report

Within HMC, a Design Profile like in figure 3.1, is used to calculate what the corresponding soil disturbance
is for a structure lowered with a certain velocity. By means of equation 3.2, a value for the occurring water
pressure pushing on the seabed and the corresponding velocity can be calculated. Dividing the pressure by a
bearing capacity factor of 5.14, the corresponding shear strength can be found. Consequently, a vertical line
downward can be drawn from that specific S;, point until it intersects with the Design Profile. This point can
be translated into a crater depth, seen on the y-axis in figure 3.1.

This simplified method does not include how the soil (disturbance) and the occurring water cushion, located
between the structure and the seabed, affect the set-down velocity. Furthermore, this method considers worst
timing and the 20 minutes Most Probable Maximum (MPM) is used, corresponding to a conservative estima-
tion. This simplified method is used in chapter 6 to compare with two different methods, which are explained
in section 3.3.
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3.1.2, ITERATIVE CALCULATION

Based on a method described by R.D. Blevins in the 'Applied Fluid Dynamics Handbook’ [12] in 1984, DNV
established a method to iteratively determine the allowable set-down velocity of a suction pile [4].

In a time domain analysis, the structure’s velocity is determined, taking non-linear soil behaviour into ac-
count. In figures 3.2 and 3.3, the iteration procedure is illustrated in a flowchart. In appendix A, a stepwise
explanation of the whole procedure is given.

By going through this flowchart, the structure’s velocity can be calculated for each time step. The velocity cal-
culation in this iterative analysis procedure is based on the change in kinetic energy. One of the requirements
for using this analysis is the fact that the crane lowering velocity V; remains constant until the pile comes to
rest.

The procedure begins with a time domain part, where the initial input parameters are determined. These are
inserted into an iteration part (highlighted in figure 3.2), which solves for the change rate of the soil displace-
ment. Figure 3.3 zooms in on a specific section of this iteration part. The calculation of the rate of change of
soil displacement depends on the 'mode’ you are in, seen in figure 3.3. The mode indicates whether the soil
is in mobilisation phase or in unloading/reloading phase.

Once the iteration has been solved for the rate of change of soil displacement, the values are used to calculate
the new lowering velocity by means of time domain. Together with this new lowering velocity, the develop-
ment of the soil displacement is perceived and can be analyzed.

Compared to the simplified method described in section 3.1.1, the iteration method is expected to give a less
conservative estimation of the allowable set-down velocity. Still some conservatism is expected to be present
in this method. To investigate this, the results from the iteration method can be compared with the results
from the dynamic model, established in this thesis and explained in chapter 6.

In this thesis, the dynamic model is only analyzed for a disk, taking no skirts and thus actual suction pile into
consideration. Since, the iteration method describes the set-down of a suction pile, the comparison between
the DNV iteration analysis and the dynamic model is not made within the research of this thesis. It is highly
recommended to analyze the dynamic model for an actual suction pile and compare those results with both
the simplified method and DNV iteration method.
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Figure 3.2: Flowchart describing the DNV iteration analysis, part 1
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Figure 3.3: Flowchart describing the DNV iteration analysis, part 2
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3.2. HYDRODYNAMICS NEAR SEABED

During an offshore installation, external forces act on the submerged suction pile. These loads can be divided
into static and dynamic components. The static loading consists of the gravity- & hydrostatic loads, while the
dynamic part is compelled of the waves, currents and the structural motions of the suction pile.

In the event of an offshore installation operation, the environmental conditions are naturally defined by con-
stant currents in combination with (irregular) waves [9]. The installation vessel is constantly excited by these
waves. The induced motions of the installation vessel are passed on to the crane wire, which is connected to
pile. As explained in section 3.1, the pile’s velocity is composed of this static lowering speed and the heave os-
cillating motion induced by the waves. As the structure gets closer to the seabed, the hydrodynamic loading
on the structure will increase due to the increasing proximity.

In this section, elaboration on the physical meaning of the involved hydrodynamic forces is given. The hy-
drodynamic loading is composed of inertia, drag and diffraction forces. These forces depend on a range of
parameters, including the structure dimensions and wave characteristics. To describe the characteristics of
these force, traditional non-dimensional numbers have been established.

The Reynolds number measures the relative contribution

uoD
Re=" of the inertia and drag forces in constant flow.
KC = Mol The Keulegan-Carpenter number measures the relative
b contribution of inertia and drag forces in oscillating flow.
5 2 _ ge TheSarpkaya-Beta measures the relative contribution of
vT ~— KC

inertia and drag forces.

As Re is increased from zero, the flow changes tremendously. Low Reynolds numbers correspond to laminar
flow, which is characterized by a smooth and steady flow. Between 10% < Re < 10%, the transition from lami-
nar to turbulent flow takes place. Turbulent flow is identified by fluctuating and agitated flow [13].

In his book "Hydrodynamics for Offshore Structures’, Chakrabarti (1987) [14] defined regions, in which the
different types of hydrodynamic loads are applicable. Nowadays these different regions, illustrated in figure
3.4, are widely recognized and used by among others the offshore classification society DNV.

These regions are described by the characteristic diameter D, the wave height H and the wave length A, re-
spectively. This proves that the non-dimensional numbers depend on wave characteristics.

In the graph established by Chakrabarti, shown in figure 3.4, both axis dimensions are defined by a rate be-
tween structure’s diameter and wave dimensions. These determine the hydrodynamic loading type. Offshore
structures can be characterized as either large and small or slender structures. A slender structure implies that
its diameter is small to the wave length, thus D/A < 0.1-0.2. Large structures, having D/A > +1, correspond to
the diffraction wave force regimes, while small & slender structures match the drag & inertia dominated areas.

To determine the appropriate regime for suction piles from figure 3.4, a range of dimensional and environ-
mental conditions is considered. The range for the wave length is based on the deep water assumption

(=80,
1=D=10m
05<H=<25m
8=<T<16s
100 =1 <400m

Automatically, the ranges for H/D and nD/A, respectively result into:
0.05<H/D<25

0<nD/A1=<0.31
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Figure 3.4: Different wave force regimes (Chakrabarti, 1987)

Based on the assumed dimensional and environmental conditions and the ranges for H/D and nD/A, the
corresponding regime is highlighted in figure 3.4. The indicated area does not include diffraction. Since a
suction pile is typically recognized as a small and slender cylinder, this results was expected.

It can be concluded that the hydrodynamic loading on a suction pile is identified by drag and inertia forces.
This was also proven by J.R. Morison in 1950 [15]. To determine the magnitude and influence of these forces,
hydrodynamic coefficient need to be defined. In the next section, an explanation of the determination of
these coefficients is given.

3.2.1. HYDRODYNAMIC COEFFICIENTS

The hydrodynamic loading is composed of inertia and drag forces. These loadings depend on hydrodynamic
coefficients, which stem from the dimensions and geometries of the structure and various flow conditions.
These coefficients have to be tuned for specific situations. They can be based on measurements from full
scale testing, from model scale testing or from Computational Fluid Dynamics (CFD) analysis. Thorough
research on the behaviour of these coefficients for different shapes in various flow conditions has been per-
formed. As aresult, a general characteristic behaviour of hydrodynamic coefficients for changing dimension-
less and varying flow regimes has been established.

This section elaborates on the origin of added mass and drag and their corresponding hydrodynamic coeffi-
cients.

ADDED MASS COEFFICIENT
In fluid mechanics, the added mass is described as the mass of the extra volume a body displaces as it moves
through a fluid. The structure and the surrounding fluid can never be at the same physical location simul-
taneously. Therefore, the fluid is inevitably accelerated, creating this extra volume virtually attached to the
object. This virtual mass is incorporated into Newton’s second law (F = Ma), representing the inertia of the
system .

Finertia = (M + A33)Z 3.3)
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With:

M : Structural mass [kg]
Asz :Virtual added mass [kg]
% : Acceleration [m/s?]

According to the DNV guidelines, the heave added mass of
a two-dimensional flat circular disk can be described as the
equation given in equation 3.4. The component C4 represents
the non-dimensional added mass coefficient and the compo-

nent Vy the reference volume. t
2a
A3z = ppCa Vg (3.4

Where
Cp :2/7 -] Figure 3.5: Definition reference volume

Vg @ 4/31a3[m3)

For this simplified disk, the value for C4 of 2/ is determined independently from flow conditions. This value
is accepted and used by the DNV guidelines. For an actual suction pile, the added mass coefficient Cy, is
dependent on specific shape and characteristic dimensions relative to the flow conditions.

DRAG COEFFICIENT
The drag or fluid resistance is the force working opposite to the relative motion of a structure and can be
described as follows:

deg =0.5p,CpA;zlz| (3.5)

In which:

Cp : Non-dimensional drag coefficient [-]
A, : Reference area [m?]
Z :Vertical velocity [m/s]

The drag coefficient Cp is dependent on shape, flow type, structural motion and roughness. Also here, exten-
sive research has been done and many laboratory test have been conducted to determine realistic values for
Cp. Once the KC-number is known, the drag coefficient for a disk can be read from the graph shown in figure
3.6. The graph was published by Keulegan and Carpenter in their paper 'Forces on Cylinders and Plates in an
Oscillating Flow’ in 1958 [16].

Figure 3.6: Variation of drag coefficients for disks

Equation 3.4 is used to determine the added mass coefficient for a flat disk. From figure 3.6, a drag coefficient
of 10 is defined for a flat disk with a diameter of 5.5 m positioned in an oscillating flow with a period of 10 s.
These values are used to calculate the added mass and drag forces in chapter 5.
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3.3. SOIL MECHANICS

Offshore structures are installed onto the soil and therefore some basic understanding of soil mechanics is
necessary. Due to a number of the special properties that characterize soils, soil mechanics belongs to a
separate branch of engineering.

During the preparation phase of an offshore installation project, an extensive geotechnical survey on the soil
at the installation field is done. A soil data specification report is published in which a summary of the soil
conditions from the field development area is given. This information can be used for the design analysis of
the relevant offshore structures. This section describes the basic and relevant information on soil mechanics
necessary for this study:.

3.3.1. SOIL TYPES

Generally, soils can be categorized into various types. One of the most common ways to classify different
soil types is by means of grain size of the particles that form the soil [17]. These grain size particles are often
divided into four groups, given in figure 3.1.

Soil type Min Max

Clay 0.002 mm
Silt 0.002mm 0.063 mm
Sand 0.063mm 2 mm
Gravel 2 mm 63 mm

Table 3.1: Grain sizes

The behaviour of each type of soil is somewhat different. Nevertheless, for all soil types applies that their
behaviour is unpredictable, irregular and can be different at every location within an offshore field. Sand is
rather permeable and quite stiff, especially after the pre-loading phase. Clay is much softer and less perme-
able for water compared to sand. Water can flow freely through sand, where the grains are rounded and the
numerous pore spaces are large. In clay, on the other hand, the water moves much slower through the small
particles. The water functions to hold the grain particles together, which results in additional strength.

Next to the grain size classification, the properties stiffness and strength are also necessary to distinguish.
These can be determined from mechanical test, such as triaxial and direct simple shear tests [17] [18].

3.3.2. SOIL FAILURE

In order to assure safe offshore installation, it is necessary to make some predictions when the soil at the spe-
cific operational location fails.

In geotechnical engineering, the bearing capacity is said to be the capacity the soil has to support the forces
acting on the ground. Once the structure is landed on the seabed and starts to penetrate into the seabed, the
loads will be transferred to the soil. If these loads exceed the bearing capacity of the soil, the settlement or
cavity formation will increase further until a new equilibrium is found.

In figure 3.1 in section 3.1, an example of a Design Profile describing the undrained shear strength S,, was
given. The undrained shear strength, given in terms of lower/upper bound and best estimate, changes with
the depth of penetration. This clarifies the non-linear behaviour of the soil. As seen in figure 3.1, the soil will
fail directly for S, > 8 kPa.

Although modelling soil is rather complex, an attempt has been made to include soil in the structural model
in chapter 5. The soil is included as a spring behaving in a linear way. The expression for the soil reaction
force, used as input for the model, was derived from the API standard given in 'Geotechnical and Foundation
Design Consideration’[19].

1

(icx)

Fyoi1 = Zso0il (3.6)
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Where:

v : Poisson’s ratio of the soil, v = 0.5 [-]
G : Elastic shear modulus of the soil [kPal]
Zs0i1 - Soil displacement [m]

The elastic shear modulus G is defined in the soil data specification report for the Kaombo project as G = 80S,,
and G =200S,, for large and small strains, respectively. The value for the large strains is assumed. The shear
strength S, change over depth in the following way:

Su=1+1(z5041) (3.7

To include the soil as a linear spring, the z,;; is set equal to 1, and thus S,, = 2 is used leading to a linear
function for equation 3.6. The linear description for the soil is used in the structural model in chapter 5.

3.3.3. SOIL DISTURBANCE

Soil as a spring is too simplistic, alternatively the Design Profile from figure 3.1 can be used to calculate soil
displacement. This soil profile is used within HMC to calculate the estimated soil disturbance. In this method
the maximum hydrodynamic force is converted into a corresponding shear strength S,,. The graph in figure
3.1 can be used to give an estimation of the amount of soil that will displace. The maximum magnitude of the
hydrodynamic force can be converted into a corresponding S,, value in the following way:

Fnya _ Phya

P = g =
hyd A, u N,

(3.8)

For the bearing capacity value N, a value of 5.14 is taken. By using the S, and the Design Profile from figure
3.1, the estimated soil disturbance can be read from the graph.

An alternative and less conservative way to calculate the soil displacement resulting from the hydrodynamic
force is a method based on the conservation of energy. The soil is modelled as a 1 Degree of Freedom (DOF)

mass spring system with viscous damping, onto which a general disturbing force is acting: the hydrodynamic
force [20]. The situation is illustrated in figure 3.7.

l thd

B e i e
l Zgoi1(t)

'ICSOEI LJ Csoil

Figure 3.7: 1 DOF system with viscous damping under general disturbing force

The 1 DOF system with viscous damping under a general disturbing force can be explained by the equation of
motion given in equation 3.9 and can be rewritten into equation 3.10 [21]. The terms m, ¢ and k in expression
3.9 represent soil properties instead of structural characteristics.

MZsoil + CZsoil + kZsoil = Fya (1) (3.9)

; . 1
Zsoi1 +20woZsoi1 +wgzsoil = Ethd(t) (3.10)
With

wo : Natural period of soil, wg =1/ % [rad]s]
¢ : Damping ratio, { =0.7..1.3 [-]
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The natural period of the soil is calculated by the ratio between the soil stiffness and the mass of the soil. The
damping ratio is taken between the range of 0.7 - 1.3, which will result in a lower, median and upper bound
of soil. To describe the maximum soil displacement by means of the conservation of energy, equation 3.10
is integrated between the starting time fy and the collision time .,;. The collision time f.,; is the moment
at which the hydrodynamic force is maximum. This is just before the structure lands on the seabed. With
respect to the starting time #, the following requirement should hold:

(teor — t0) < To (3.11)

The natural period Ty is calculated by i—’; By taking that requirement into account, the integration is de-
scribed by the following equation:

Leol 1
f (Zsoil +2{woZsoi1 + a)gzsoil = Ethd(t) dt (3.12)
o

The energy balance in equation 3.12 is solved for the soil displacement at the time of collision: z,;;(f;0;)- The
full derivation has been done in Maple and is given in appendix B. The final expression for the soil displace-
ment at the time of collision is described by:

- (mwgzsoil(to) (teor — to) —4Mmwozse;1 (fo) + (thd(to) + thd(tcol)) (to— teol) — zmzsoil(to))
mwo (—wo fy + Woteop +4()

Zs0il(tcol) =
(3.13)

Based on the method of conservation of energy, expression 3.13 represents the maximum soil displacement
which results from the momentum of the hydrodynamic force. Compared to the Design Profile, this is a less
conservative method to estimate the maximum soil disturbance and thus expected to be more realistic. In
this method an average of the hydrodynamic force over a specific time period is taken instead of the maxi-
mum hydrodynamic force, which is used in the Design Profile. The results for the estimated soil disturbance
generated by this method are expected to be lower and thus less conservative compared to the Design Profile.

Both methods are used in chapter 6 to calculate the soil disturbance corresponding to the occurring hydro-
dynamic force.






HYDRODYNAMIC FORCE

As was seen in the different stages of landing in chapter 2, a hydrodynamic force occurs in close proximity
to the seabed and acts on the structure. This chapter discusses the fundamental derivation of this hydrody-
namic force, which will serve as an input for the structural model, described in chapter 5.

A short overview of the equation of motion and reference to the fundamental origin of the derivation of the
hydrodynamic force is given. The so-called '1D model’ in section 4.3 discusses the derivation of the funda-
mental equations needed to describe the hydrodynamic force for 1D fluid flow. In order to understand the
behaviour of the hydrodynamic force, an analysis has been done in section 4.3.2. The derivation of the 2D
fluid flow and the corresponding force is given as ’2D model’ in section 4.4. Section 4.4.2 gives an overview of
the assumptions made in derivation of the hydrodynamic force with 2D fluid flow.

4.1. EQUATION OF MOTION

As will be elaborated in chapter 5, the structural system for a disk can be described by the following equation
of motion:

Finertia+Fdrag=thd+Fline_ subm (4.1)

This chapter focusses on the derivation of the hydrodynamic force Fp,,4. This force, resulting from the water
pressure underneath the disk, acts on the structure opposite to direction the structure moves in. A detailed
explanation of the other forces is given in chapter 5.

4.2. BRENNEN’S FLAT PLATE ANALOGY

As the structure is lowered to the seabed, water is forced to move away to allow the structure to move down.
Since it is assumed that water is incompressible, the fluid will generate an upward resistance force acting on
the structure. This phenomenon is known as the 'cushioning effect. As the gap between the structure and
the boundary becomes very small, the water starts to behave like a water cushion. This water cushion results
into a resistance force acting on the structure and decelerates the system. This doesn't mean that the force
dissipates energy from the system, it only slows the system down

The presence of a solid boundary will cause an increase in this force, which basically results in extra added
mass. This is a result of the increase in the fluid accelerations in the area between the fluid and the boundary
(seabed). The total hydrodynamic force consists of the force caused by the proximity of the seabed and the
force coming from the added mass. Since this force is related to the position of the suction pile, its value
changes over time and thus location.

A description of the function for the hydrodynamic force acting on a flat plate close to a boundary was first
obtained by Brennen [22]. In his paper, Brennen explains a two dimensional problem of a flat plate lying on

21
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an ocean floor, which is lifted from the floor. This problem is comparable to the set-down of a suction pile,
however in opposite direction and in a cylindrical shape.

4.2.1. FLAT PLATE ON OCEAN FLOOR

In his model, Brennen considers a flat plate of width, 24, lying on the ocean floor. This plate is lifted away
from the floor by a vertically upward force F and rises to a uniform height h(#) above the floor at time ¢. Figure
4.1 illustrates the situation described by Brennen in his paper ’A review of added mass and fluid inertial forces’

[22].
F
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Figure 4.1: Brennen’s flat plate near the sea floor

By lifting the plate, the small separation distance generates a larger fluid inflow velocity than the vertical ve-
locity of the plate. It is necessary to mention that this approach is only applicable when the structure is in
close proximity with the seabed, a/h >> 1. As Brennen explains in his paper, the force can best be described
by making use of the fundamental principles of mass and momentum conservation, given by White [13].

The full derivation of the hydrodynamic force acting on a flat plate obtained by Brennen is given in appendix
C. For simplicity, only the three relevant equations derived by Brennen have been given here.
Function for the 1D horizontal fluid flow velocity [m/s]:

xdh
u(x, t) = —EE (42)

Function for the pressure distribution [Pa] underneath the plate:

B O, of2(dh\* 1d*h
P(X,t)—P|x:u+§(ﬂ -X )(ﬁ (E L de (4.3)
Function for the hydrodynamic force [ N] acting on the plate in close proximity with the seabed:
p-Zp (2 (A0 ) s
"3 \(n\ar) "ar ‘
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4.2.2. CYLINDRICAL MODEL
The situation of a hydrodynamic force acting on a disk is similar to the situation of Brennen. Therefore, the
Brennen’s flat plate analogy is applied and adjusted into a cylindrical model for three different situations:

R R R R, R, R
E | E H %]
u(r, t) u(r, t) u(r,t) i i u(r,t)
(a) Closed disk, 1D flow (b) Disk with valve, 1D flow
R Ry ‘|‘ R, R
L 2| L= |
u(rl t) V(t) u(rl t)
— .

(c) Disk with valve, 2D flow

Figure 4.2: Three situations for cylindrical model

These cases describe three different situations in which a disk approaches the seabed. The first situation, seen
in figure 4.2a, is directly derived from Brennen’s flat plate analogy, but for a disk with 1D fluid flow u(r, t). Fig-
ure 4.2b shows the situation where the hydrodynamic force only acts between the valve radius R, and the
outside radius R with 1D fluid flow. In this situation, a valve has been created with radius R,, however there is
no fluid going through the valve. The last situation, seen in figure 4.2c, describes a hydrodynamic force acting
between R, and R with horizontal fluid flow u(r, ) escaping underneath the disk and vertical fluid flow v(f)
through the valve.

As the situations in figure 4.2a and 4.2b are very similar, the derivation of the hydrodynamic force for both
cases is explained in the 1D model in section 4.3. The derivation for the hydrodynamic force with 2D fluid
flow for situation three is described as the 2D model in section 4.4. The force derivation for both models is
based on the derivation for the hydrodynamic force from Brennen’s flat plate. In both models, the suction
pile is simplified to a disk.

4.3.1D MODEL: CLOSED & OPEN DISK

As explained in section 4.2, the 1D model describes the landing of a closed and open disk on the seabed. In
this model, just like in the flat plate of Brennen, only 1D horizontal flow occurs. The 1D model is comparable
to Brennen’s model, however it has a cylindrical shape instead of rectangular and the disk moves downwards
instead of upwards. For the open disk a valve is applied between 0 and R,,. This model is assumed to estimate
the impact of a valve on the hydrodynamic force and the motions of the structure.

4.3.1. DERIVATION OF HYDRODYNAMIC FORCE

Lowering the structure increases the horizontal outflow of water. This generates a hydrodynamic fluid force,
which acts on the structure and the seabed. It can be derived in the same way as Brennen’s flat plate.

In this section, a brief derivation of this force for a closed and open disk is given. As this derivation is based
on Brennen, a more detailed stepwise description can be found in appendix C.

It should be emphasized that the disk is lowered in a perfectly vertical direction. Therefore the displacement
z(¢) is only a function of time ¢ and not of the horizontal position r.



24 4. HYDRODYNAMIC FORCE

u(r) u(r + Ar)
— —

| — —
p(r) p(r + Ar)

T Ar

Figure 4.3: Visualization of the flow elements, derived by White, in the gap with horizontal velocities u and pressures p at the elemental
boundaries of r and r + Ar. The conservation of mass and conservation of momentum both relate back to this figure, as the mass or
momentum both flow from r to r + Ar.

CONSERVATION OF MASS

The derivation of the hydrodynamic force is based on the fundamental principle of mass and momentum
conservation in accordance with literature on 'Fluid Mechanics’ from White [13]. The fluid flow between a
closed disk and the sea floor can be represented by a channel flow, see figure 4.3.

Consider a closed disk with radius R and height z(¢) from the seabed. Similar to Brennen’s situation seen in
figure 4.1, use is made of mass conservation from White, given as:

i[ff pdV +ffp(i2*i'z)dA:O (4.5)
otJlv A

The first term describes the change in mass over time and the second term the mass flow in and out of the
control volume. If a disk with outside radius R is examined along its position r, the mass change is obtained

in equation 4.6.
0 d o [0 d dz
— V== A = Ar— 4.6
silll v =5, pumranaz=pmrar gl 4

The mass flow integral is accounted to sign convention. As visualized in figure 4.3, the unit normal vector 7
is prescribed outward positive and therefore the velocities are positive in the x-direction. The mass flow is
defined as the difference between the mass flows in and out of the control volume, expressed in equation 4.7.
The quantity p Au represents the mass flow i1 [kg/s] passing through the 1D medium. To solve this equation,
use is made of the Taylor expansion '.

fpr(ﬁ* MdA=(pAu)our — (0AW);n 4.7)
ou ou
=p2nrz(u(r+Ar)—u(r)) = p2nrz ((u(r) + EAr) - u(r)) = anrzEAr (4.8)

When substituting equations 4.6 and 4.8 into the law for mass conservation, it describes the velocity gradient,
seen in equation 4.10.

dz ou

pnrArE +2nprzEAr =0 4.9
6_u = —i% (4.10)
or  2zdt '

1Taylor series: u(r +Ar) = u(r) + %Ar
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In order to find the expression describing the horizontal fluid flow velocity passing between the disk and
the seabed, it is necessary to integrate equation 4.10 with respect to its position r. This leaves us with an
expression for the horizontal fluid velocity for a closed disk, given as:

"ou " 1dz
—dr = -——d 4.11
o Or r fo 2z dt r ( )
u(r,t) =— r dz (4.12)
"7 2z dr )

Just like in Brennen’s model, the horizontal fluid velocity in the centre of the disk, ©(0, ), is zero. Since there
is no possibility for water to escape vertically, the vertical fluid flow v(0, t) is zero.

The fluid velocity is expected to have the highest magnitude on the outside of the disk and zero magnitude
right in the middle. To give function 4.12 a physical meaning, one could plot equation 4.12 for an imposed
motion. As this horizontal flow velocity is expected to behave in the same way as Brennen’s velocity, a similar
visualisation as in figure C.2 is expected. Here indeed it was observed that the flow velocity is maximum on
the outside and zero in the middle. It is presumed that the motion parameters play an important role in the
behaviour of the fluid underneath the disk.

CONSERVATION OF MOMENTUM
Similar to the mass conservation, the conservation of momentum from White[? ], and therefore the situation
shown in figure 4.3, holds. The fundamental equation for the momentum conservation is given here:

d
F=— udv +ff u-nudA 4.13
)3 arffvp” P (19

This equilibrium is also recognized as Newton’s second law of motion (F = ma). The terms on the right-hand
side of equation 4.13 represent the change in momentum over time and the momentum flux, respectively.
The }_ F expresses the sum of all the external forces acting on the free body. Since only the flow in horizontal
direction is considered, gravitational forces are neglected. The only external force comes from the pressure
at the boundary.

Using the change in volume dV = prrAr from equation 4.6, the change in momentum is expressed as:

o z(1)

2_[[[ udv = — nrArudz = nrArg(zu) (4.14)
ot vp B ot Jo p =P ot )

Similar to the mass flow in equation 4.7, the 1D momentum flux is defined as the difference between the inlet
and outlet flux. To solve for the momentum flux, the Taylor series * is applied again.

[] ptaxmaan=((pawa),, - (eawa, (@.15)
5 2 5 ou ou 2 2
=p2nrz((u(r+Ar)° - (u(r)”) = p2rarz|u +2u5Ar+ EAr —u (4.16)
=4mnpr a—uAr (4.17)
~dnprau— .

It is presumed that the mesh size of the system is very small, Ar << 1. Therefore, the term including (Ar)?
can be neglected.

Next, the external force coming from the pressure at the boundary is derived. The pressure at the boundaries,
seen in figure 4.3, is again calculated by means of the Taylor series and given in equation 4.19. As indicated in
figure 4.3, the pressure at the boundaries is acting inward, whereas the normal vector 7 is positive in outward

2
2Taylor series: (u(r+Ar))2 ~u? +2u‘3—'r4Ar + (%Ar}
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direction. Therefore it is consistently in opposite direction to the normal vector, hence the minus sign within
the integral.

ZF:f p(-i)dA (4.18)
A

op op
~2nrz(p(r)—pr+An)=2nrz|p-|p+ EAT :—anzEAr (4.19)

Consequently, the three terms to solve the conservation of (linear) momentum have been found and can be
substituted into equation 4.13. By reorganizing the equation, the momentum equilibrium can be written as
in equation 4.21.

—2nrzapAr— nrAr 9 (zu) +4n rzuauAr (4.20)
ar = T PTG Pretar '
1 Gp +2u6u + 19 (zu) = (4.21)
por or 2zot )

From expression 4.21, clearly the time ¢ and position r dependency on the horizontal fluid flow velocity u(r, £)
can be seen. By inserting equation 4.12 into this equation, the next step towards finding the hydrodynamic
force can be made.

PRESSURE CALCULATION
Before finding an expression for the pressure distributed underneath the plate, the horizontal flow velocity
u(r, t) is inserted into equation 4.21, illustrated in equations 4.22 and 4.23.

16p+2(_ r dz)(_ 1 dz)+ 190 (_rdz) 4.22)

o or 2zdt)\ 2zdt) 2zot\ 2dt '
1ap+ r (dz)z_ 1 dzz_o 4.23)
por 2z2\dt] 4zdt? '

The Veloc1ty ~ and acceleration 42 Il £ terms are clearly recognizable in equation 4.23. The velocity squared
term orlglnates from the composition of the flow velocity. Since the flow velocity in equation 4.12 is ac-
counted to both the plate’s velocity and the gap height, it gives rise to squared velocity term.

Subsequently, the pressure gradlent 5. from equation 4.23 is integrated over the width of the structure be-
tween r and R. Finally, the hydrodynamic pressure inside the gap between the disk and the seabed can be
expressed as in equation 4.26.

Rop r (dz\> 1 d?z
[ G35 () ‘a—dtz)f’”” .
P dz\* 1d’z
plr=r — p(r, t)——g(R —I‘) dt ZW (4.25)

(r t) | +£M( (dz) _&) (426)
PALO=Plr=r+ g™ dt) ~ dr '

The term p|,=r represents the pressure at the edges of the suction pile, at r = R. The assumption is made that
the pressure at the edges is equal to the ambient water pressure, thus p|,=r = 0. The ambient water pressure
is assumed to be uniform over the whole surface of the structure and thus is not included in the determina-
tion of the hydrodynamic force.

It is expected that the pressure on the outside of the disk is equal to zero and maximum in the middle under-
neath the disk. Again, this pressure distribution is assumed to be similar to Brennen’s flat plate. In appendix
C, a plot of the pressure distribution is given. The plot is in line with the expectation for the behaviour of the
pressure.
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FORCE CALCULATION

The final step in the derivation of the hydrodynamic force involves an integration of the pressure equation
over the surface of the disk. At this point, distinction is made between situation 1 and situation 2 from figure
4.2 by integrating the hydrodynamic pressure between different limits. The polar system representation is
used to obtain the force acting on a disk with a valve in close proximity to the seabed:

2n ;R
F=ff p(r, t)dA:f p(r,Hrdrd6 (4.27)
A o JRr,

The hydrodynamic force, imposed by the fluid, acting on a disk with a valve in close distance to the seabed
boundary is derived as follows:

F =27 RBM(E(%)Z_@) r (4.28)

hydl =22 |8 z z\dr dr? '
o7 (RZ-Rﬁ)Z(z(dz)Z_dzz) w.29)
hyd1 = 7P z z\dt dr? '

Expression 4.29 illustrates the hydrodynamic force, or added mass force, for an open disk. The force acts
as a resistance force on the structure with a valve at the top. When R, is set to zero, the function of the
hydrodynamic force for a closed disk is obtained:

a1 (4.30)

thdlclosed =

7 R4(2(dz)2 dzz)
16pz dr?

¥4

It can be observed that as the plate is lowered, the added mass for the closed disk starts at a small value of the
order pR® (when z is of the order R) and will rapidly increase with z to a value of the order pR;. Comparing
this expression with the one from Brennen in equation 4.4, it is observed that the velocity and acceleration
switched signs. This is correct, as Brennen considers the force to be in downward direction in his paper.

In his paper, Brennen gave the expression for the inertial force in absence of a solid, i.e. moving in free open
water. The equation for Brennen’s flat plate is given here (it is also given in appendix C):
2
,d°h

Ftree=—pma T (4.31)

Brennen illustrated it to emphasize the dominance of the presence of the boundary on the magnitude of the
force. The presence of the boundary results in an increase in the magnitude of the hydrodynamic force. Close
to the seabed, the hydrodynamic force is dominated by the solid boundary. This is expected to be seen in the
behaviour of the hydrodynamic force and also applies for the expression derived for the disk.

The function for the hydrodynamic force is used as one of the input components for the structural model,
which eventually is used to analyze the motion behaviour and set-down of the structure.
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4.3.2. BEHAVIOUR OF HYDRODYNAMIC FORCE

To better understand the behaviour of the hydrodynamic force from the 1D model, equations 4.29 and 4.30
are plotted for several imposed motions with a period T' =10 s, an outside radius R = 2.75 m and a valve radius
R,=1m:

1. z(t) =0.5s5in(wt) +2
2. z(t)=0.5sin(wt)—0.1t+2
3. z(t)=0.5sin(wt+m)—0.1t+2

The first motion describes the force in a free hanging situation. The second and third motions represent a
lowering situation in which the imposed motions differ in phase, ¢ = 0 and ¢ = 7, respectively.

Initially an oscillation with amplitude A = 0.5 m and period T = 10 s is imposed at a distance of 2 m to the
seabed (rigid underground). A constant lowering of 0.1 m/s is added to the motion. Whereas the first two
appointed oscillations start in an upward direction, the third motion begins with a downward movement.
This is intended to see if the hydrodynamic force is sensitive to phase difference. The results for the imposed
motion z(¢) = 0.5sin(wt) + 2, plotted for a time period of 10 s, are given in the figure 4.4 and figure 4.5.
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Figure 4.4: Motion behaviour with input z(¢) = 0.5sin(wt) +2

The displacement, velocity and acceleration are used to calculate the hydrodynamic force, seen in the figure
4.4. In figure 4.5, the force induced by the fluid inside the gap during one oscillation is illustrated for both
models. The total force, indicated with the blue line, is plotted together with the terms it is composed of.
The red line is the squared conservative velocity (%)2 term and the yellow line the linear acceleration %
term. In the graph, the first half of the period shows an overpressure and the second half an underpressure.
The structure’s acceleration works opposite to the acceleration term (yellow line), which contributes to the

hydrodynamic force.
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For this imposed motion, Fjy4 is dominated by the acceleration term. This is in line with the expectation
based on Brennen’s hydrodynamic force for moving in free open water (equation 4.31).

The difference between figures 4.5a and 4.5b is the magnitude of the total force. The force for the disk with a
valve is lower than the one without valve. This shows the first evidence that the presence of a valve results in
a lower resistance force.
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Figure 4.5: Hydrodynamic force with input z(¢) = 0.5sin(wt) +2

Figures 4.6a and 4.6b show the results for the hydrodynamic force for the disk without valve for the two low-
ering cases. The left graphs shows the results from the motion with an upward starting direction and the right
one the results for the motion beginning in downward direction. In both situations, the motion/force moves
towards a rigid boundary. This is reflected in the increasing value of the force, which is dominated by the

velocity term. The results for the disk with a valve showed the same development but for a lower magnitude.
They have been given in appendix G.
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Figure 4.6: Hydrodynamic force

What is interesting to see is the fact that a different phase in the input motion can lead to different behaviour
of the force. The change in phase is reflected in the time it takes for the force to increase significantly. For
both cases, still the clear dominance of the velocity term (red line) is seen in close proximity to the seabed.
From this analysis it became clear that the hydrodynamic force is sensitive to phasing.
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4.3.3. CONCLUSIONS

During the process of lowering, the structure is exposed to drag and inertia forces. Close to the seabed, the
inertia or added mass force increases. This increase originates from a force imposed by the fluid on the struc-
ture in close proximity to the seabed. Physically the hydrodynamic force represents a water cushion. This
water cushion works as a resistance force onto the structure and therefore decelerates the system. It is im-
portant to emphasize that this force does not dissipate energy from the system.

Recall equation 4.29 for the hydrodynamic force on disk with radius R, valve radius R, and at a height of z(#):

T
thdl =—p (4.32)

16 w (2 (dz)z dzz)

z\dt) dre
2

From this equation, a squared velocity term (%)2 and a single linear acceleration term % can clearly be

seen. The contribution of both terms to the total hydrodynamic force can be explained in the following way:

* The acceleration term is an open water added mass, which remains dominant as long as the distance
between the structure and the boundary (seabed) is large enough.

* The velocity term represents an extra added mass, rising with increasing proximity. The closer the
structure gets to the boundary, the bigger the effect of this extra term. This is a direct result of the
division the squared velocity (z)? term and that makes the velocity part a nonlinear conservative term.

The forces coming from velocity and acceleration terms are never in phase. This is because one term is
squared and the other is single. Whichever z is prescribed, the two parts of the force will never be in phase
and there will always be a sign switch. The fact that one term is quadratic and the other is not, makes the
force also frequency dependent.

The presence of the valve is reflected in the magnitude of the corresponding hydrodynamic force, which is
lower than for a disk without a valve. In this case this is also expected, as the area where the fluid can act on
is less compared to a completely closed disk.

Overall it can be stated that the hydrodynamic force for a disk with radius R and height z(#) rises with increas-
ing proximity to a solid boundary. From R/z >> 1, a clear increase in the force was observed. Just before the
structure hits the seabed, the force reaches its maximum. The fluid force is sensitive to phasing, frequency
and valve size. It is expected to also see this sensitivity in the results of the structural model, elaborated on in
chapter 6.
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4.4, 2D MODEL: DISK WITH ONE SYMMETRIC VALVE

The 2D model describes the situation of a disk with a symmetric valve in the middle, as was shown in figure
4.2c. The difference between this situation and the situation seen in figure 4.2b, is that 2D fluid flow is in-
cluded. In this case, the fluid can escape vertically through the valve or horizontally underneath the plate.
Just like the 1D model, the pile is simplified to a flat symmetric disk with outer radius R and valve radius R,,.

In the next section, an explanation of the derivation of the hydrodynamic force and assumptions is given.
Similar to Brennen’s derivation and the 1D model, the fundamental equations are used to derive the force.

4.4.1. DERIVATION OF HYDRODYNAMIC FORCE
Other than the 1D model, the derivation of the hydrodynamic force for the 2D model can be divided into two
sections: one related to the plate and one to the valve.

The situation of the 2D model is visualized in figure 4.7a. Since the disk and the valve are symmetric, only one
side of the disk is assumed. In this situation, water can escape horizontally, as u(r, £), and vertically through
the valve, as v(t). According to White, you can speak of a 2D fluid flow situation, since flow can escape in
r— & z—direction, respectively. Again it is assumed that the disk is lowered in a perfectly vertical direction,
resulting in a time dependent displacement z(t).

v(t) R,
T ) R, R
R
R, | 5 AR |
Bt 7 vy A 4
. A «— A0
Pz v H u(r, t)
i u(r, t) !
A zv v 1 v
! Lep T,V
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. . . (b) Disk with a valve, one side & simplified
(a) Disk with a valve, one side

Figure 4.7: One side of disk with one symmetric valve

As the derivation of the hydrodynamic force with 2D fluid flow becomes quite complex, a simplification has
been made. It is assumed that the valve part is rotated 90 ° to the left, illustrated in figure 4.7b. In this way,
the fluid flow in the system remains 1D, instead of the earlier 2D, but actual vertical fluid velocity is still
considered.

On the right side in figure 4.7b, fluid can escape horizontally through the time-changing opening between
the disk and the seabed. On the left side, flow can escape ‘vertically’ through a constant area described by
mR2. Whereas the height of the plate side changes with z(f) over time, the valve side has a constant height R,,.
This is due to the simplification made between figure 4.7a and figure 4.7b. It is assumed that the vertical fluid
velocity through the valve is constant over the position, therefore the vertical fluid velocity is only a function
of time, v(?).

Figure 4.8 illustrates the flow elements underneath the plate and in the valve. The elemental boundaries and
related u and p for the plate side are shown. The same can be visualized for the valve side for v and p.

Next, the derivation of the equations for mass and momentum conservation for the plate side and the valve
side are explained. With use of these equations, the hydrodynamic pressure and finally hydrodynamic force
can be derived. Due to complexity, the full derivation has been obtained by making use of the numerical
software Maple. The Maple code can be found in appendix E.

CONSERVATION OF MASS
Recall equation 4.5 describing the conservation of mass from White, including the change in mass over time
and the mass flow in and out of the control volume.

iﬁ pdV +ff plii* WdA=0 4.33)
otJ)Jv A
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Figure 4.8: Visualization of the fluid flow under the disk with horizontal flow velocity u and pressure p at the boundaries of r and r + Ar
at the plate side. In a similar way, this can be visualized for the valve side, with vertical velocity v and pressure p.

For both the plate side and the valve side an expression for the conservation of mass can be derived.

Plate side
Exact to model 1, the change in mass for the plate side is described by:

0 o WD dz
— V = — A = Ar— 4.34
Otfffvpd Otfo p(rrAr)dz=pnr rdt (4.34)

The mass can flow through the valve side or the plate side, resulting in two equations for the mass flow in and
out of the system. Since the fluid flow is assumed to be positive to the right, the mass flow going through the
valve is negative. Equations 4.35 and 4.36 describe the mass flow going to the plate side and the valve side,
respectively.

z(t)
ff p(ﬁ*i’z)dA:f p2rAr)udz=2npArzu (4.35)
A 0

Ry
ff p(ﬁ*ﬁ)dA:f —p(mAr)vdz = —-pr R, ATV (4.36)
A 0

From equations 4.35 and 4.36, it can be noticed that the mass flowing through the plate side is related to the
horizontal flow u(r, t) and the mass through the valve to the vertical flow v(#). Since the valve is assumed to
have a constant height, the equation for the mass flow was obtained by an integration to R, instead of z(t).

Subsequently equations 4.34, 4.35 and 4.36 can be substituted into the mass conservation law of equation

4.33. By rearranging and clearing the equilibrium, the expression for the horizontal fluid flow velocity u(r, )
is obtained in equation 4.38.

dz
pnrArE +2npArzu—pnR,Arv=0 (4.37)

R,v(r)—r42
u(r, 1) = % (4.38)

It can be noted that the horizontal fluid flow is time ¢ and position r dependent. Furthermore, the horizontal
flow is influenced by the time-dependent vertical fluid flow v(¢). In case no valve is present, i.e. R, =0, the
equation is simplified to u(r, ) = —5; %, which is exactly the same as the one derived for the 1D model in

equation 4.12, based on Brennen.
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Valve side
In the same manner, an equation for the vertical fluid flow velocity can be derived. The change in mass,
described by equation 4.39, is equal to zero as it is assumed that the vertical velocity v(t) is constant over the

position.
0 0 (B
&fffvpdV = &fo —-p(mR,Ar)dz=0 (4.39)

In this case, the mass can flow through the valve or through the medium at r = R, to the plate side. Again this
results in two equations for the mass flow, one related to the plate and one to the valve. To derive the mass
flow at the plate side, use is made of the horizontal fluid velocity at the position of r = R, u(R,, t). Also notice
that the mass flow related to the valve side is integrated over 'height’ R,.

z(t)
ff o (1 * ﬁ)dA:f p(2nRy) u(Ry,)dz =2npRyzu(Ry, t) (4.40)
A 0

Ry
fpr(ii*ﬁ)dA:fo —p(mRy) vdz=—pnR%v (4.41)

By inserting the derived equations 4.39, 4.40 and 4.41 into the mass conservation law, an expression for the
vertical fluid flow velocity v () is found.

2npRyzu(Ry, t) — anﬁ v=_0 (4.42)

2z
v(t) = R—u(R,,, 3] (4.43)

v

Because of the assumption made that the flow in the valve does not change over its position, the vertical fluid
flow velocity is only dependent on time ¢. As can be seen from equation 4.43, the vertical fluid velocity is
related to the time-changing z(#) and u(R,, t) terms and the valve size R,. In case there is no valve present,
R, =0, the vertical fluid velocity becomes zero. As expected, the vertical velocity is directly related to the
horizontal flow velocity u(r, t), presumable at position r = R,,.

CONSERVATION OF MOMENTUM

Recall equation 4.13 describing the law for momentum conservation. Again, it consists of the change in
momentum, the momentum flux and external forces, respectively. Similar to the conservation of mass, an
equation for the conservation of momentum for both sides can be derived.

d
F=— udv +ff u-niudA 4.44
)3 arffvp” P (449

Plate side

Using the change in volume dV = prrAr from equation 4.34, the change in momentum for the plate side can
be derived, seen in equation 4.45. Similar to the 1D model, use is made of the Taylor expansion in order to
derive the term describing the momentum flux, seen in equation 4.46.

0 o = 3

afffvpﬁdv = afo prrAr)udz= pnrAra (zw) (4.45)
Y ou ou

ffp(”'”)”dAZZ”Prz 2u——Ar|=4prrzu——Ar (4.46)
A or or

Likewise to the 1D model, the external force comes from the pressure acting at the boundary of the system.
In this case that boundary is at the right outside of the plate side. The force is acting inward, opposite to the
unit normal vector 7, seen in figure 4.8. Therefore the external force in equation 4.47 contains a minus sign.
By applying the Taylor series, a definition for the external pressure force is deduced.

ff p(-n)dA= —2nrza—pAr (4.47)
A or
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All the derived equations related to the momentum are substituted into equation 4.44 and by rearranging and
clearing, it is possible to describe the conservation of (linear) momentum between the plate and the seabed,
as follows:

nrAri(zu)+4 nrzua—uAr——anza—pAr (4.48)

p ot P or or '
16p+2u6u+ 1 0 (zu) = 0 (4.49)
p or or 2zot B .

From equation 4.49, the position r and time ¢ dependency on horizontal velocity u(r, t) clearly be seen. No-
tice that this expression is similar to the (linear) momentum derived in equation 4.21 for the 1D model.

Valve side

Similar to the plate side, a conservation of momentum for the valve can be derived. The volume change
dV = —pnR,Ar from the conservation of mass is used to derive the momentum change of equation 4.50. As
stated earlier, the vertical flow velocity is independent of position r. Therefore the momentum flux, seen in
equation 4.51, will be equal to zero. For the valve, the external force comes from the pressure working inward
to the system, described in equation 4.52.

P ) o (R , ov
affvpudv = afo -p(@RyAr)vdz = _P”RUAFE (4.50)
9
fpr(ﬁ-ﬁ) fidA = pnR? (2va—lr/Ar) -0 4.51)
9
fpr(—ﬁ) dA:—nRﬁa—’r’Ar (4.52)

Again, these equations are implemented into the momentum law from White, which results in a description
for the conservation of (linear) momentum in the valve:

ov op
—an%ArE = —nR,Z,EAr (4.53)
1op oadv
-——-—==0 4.54
p or 0t (4.54)

Equation 4.54 indicates that the vertical velocity is only dependent on time ¢. Now that the conservation of
mass and momentum for both sides have been derived, it is necessary to connect them. This is done through
an equilibrium between the conservation of momentum from both sides, explained in the next section.

EQUILIBRIUM BETWEEN EQUATIONS OF MOMENTUM CONSERVATION

To connect both parts of the system, it is assumed that the pressure gradient of both the plate and the valve
side need to be in equilibrium at position r = R,. Because of this assumption, the phenomenon that the
horizontal flow velocity is zero somewhere under the disk will not be valid anymore.

For the connection, the following equilibrium must hold:

or|  _9p
or Iplate  or

(4.55)

valve

When setting the position r equal to the valve radius R, the terms % describe the pressure gradientat r = R,
for both the plate and the valve side. The pressure gradients for the plate and the valve, respectively, can be
defined as:

o) _ (_Zua_”_ii(zu)) (4.56)
or plate_p or 2zt )
op ov
E valve _pE 457
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Before solving this equilibrium, the horizontal fluid flow velocity u(r, t) derived in equation 4.38 is inserted
into equation 4.56 at r = R,,. Due to complexity, this has been done in the numerical software program Maple
and the exact steps can be found in appendix E. Finally, this equilibrium was solved and rewritten into a first
order non-linear differential equation for v(t), as follows:

ov
Al— |+Bv(H))+C=0 (4.58)
ot
With the term A, B & C, respectively, as:
- 1_R — Ry dz R, 2 Ry
A= 4z B_z2 dt C:_z_z(%) +E(%Z)

Equation 4.58 was solved in Maple for the derivative of the vertical fluid flow velocity v(#) with respect to time.
This results in the vertical fluid flow acceleration as:

Ty
ot Z(Ry +42) (4.59)

This function is necessary in order to write the final equation for the hydrodynamic force as function of z, %,
a2 . .
d—; and v. In the next step, the hydrodynamic pressure acting under the plate was deduced.

PRESSURE CALCULATION

The function for the hydrodynamic pressure acting under the disk was derived through integration with re-
spect to the position r. It is assumed that the hydrodynamic pressure only acts on the disk, i.e. between R,
and R, meaning that r = R, and that only equation 4.49 is relevant. Like the 1D model, the magnitude of
the pressure is changing with the position underneath the plate. The equation for the pressure distribution,
derived in the same way as the 1D model, is too long and complex to display in this report, therefore only the
short expression is preserved.

fR apAr—fR (—Zuau— L 0 (zu))dr (4.60)
coor ) P er T2zae '
(r,t) = pl| +fR (—2u0u— 19 (zu))dr (4.61)
PInE=Plr=r™ | P or 2zt '
dz\? d%z dv
p(r,t)=C1(r,Z)(E) _CZ(r)Z)W_C3(rrz)v_c4(rrz)m (4-62)

Here pl,=g is the pressure at the edge of the disk, r = R. Again it can be assumed that the pressure at the
outside radius of the disk is equal to the ambient water pressure, i.e. p|,=g = 0. This pressure distribution is
only valid for R, < r = R and will be used to deduce the function for the hydrodynamic force. The pressure as
described in equation 4.62 is used to calculate the function for the hydrodynamic force.

FORCE CALCULATION

Comparable to the pressure distribution, the hydrodynamic force is presumed to only be exerting on the
plate, and is therefore ignored in the part of the valve. Like the 1D model, the pressure equation is integrated
over the surface of the disk. Use polar coordinates, equation 4.62 is integrated with respect to 27 and R. The
shortened notation obtained by Maple is given here. To make the expression readable, the terms proportional
to the velocity squared, the acceleration, the vertical flow velocity and the vertical flow acceleration have been
collected in Cs, Cg, C; and Cg, respectively. These terms still carry a dependency on the structure’s elevation
z(1).

2n ;R
Fnyaz = fo fR p(r,0)rdrd0 (4.63)
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R dz)? d*z dv
=2 ) —_— | - yR) 5 — ’ - ) &) 4.64
nfRV (Cl(r Z)(dt) Ca(r Z)dtZ C3(r, 2)v = Cy(r, Z)dt rdr (4.64)
=G (Z)(dz)Z—C (2) dzz—C (2)v-C (z)dv (4.65)
S ar) T ae e '

In order to use the force as input for the structural model, the hydrodynamic force Fjy42 should only consist

2
of the terms z, %, % and v. Hence the vertical flow acceleration of equation 4.59 was substituted into

equation 4.65. This changes the terms Cs, Cg, C7 and Cg into Cq, Cyg, C11, respectively.
Obtained through Maple, the short notation for the hydrodynamic force, imposed by the fluid, acting on a
disk with a symmetric valve in close proximity to the seabed, is given by:

2

dz\? d“z
Fryaz = Cq (2) (E) —Cyo(2) T Cn(@v (4.66)

Similar to the added mass force derived by Brennen, the velocity squared and acceleration term can clearly

be seen. Recall equation 4.29 expressing the hydrodynamic force F,,4; for an open disk in the 1D model:

7 (R-R2’(2(dz\* d?z
(4.67)

Fryar = — gz 4z
hydl = 760 dt] —ar

z
Both expressions look similar to each other. The difference is the extra term concerning the vertical fluid flow
velocity v in Fpyq2. It is expected that the function, including the vertical fluid velocity through the valve, is a
more realistic expression for the hydrodynamic force acting on the structure in close proximity of the seabed.

4.4.2. OVERVIEW ASSUMPTIONS
An overview of the assumptions made in order to derive the function for the hydrodynamic force with 2D
fluid flow is given here.

* The difference between the 1D and 2D model is the flow direction. In the 1D model, fluid flow can only
escape horizontally underneath the plate. The fluid behaviour is different for the 2D model, in which
the flow can either escape horizontally underneath the disk or vertically through the valve. Because of
the simplification made in figure 4.7b, the flow actually remains 1D and some of the mass flow in the
valve may have been lost/ignored.

* The vertical fluid flow velocity is taken only as function of time . The assumption has been made that
the flow through the valve is constant and independent along the position in the valve. In reality, the
flow in the valve is different for each position.

* Normally, there is a stagnation point underneath the disk, which is expected to change its position over
time. At this point, the fluid flow velocity is zero and thus maximum pressure occurs. For a structure
with a valve, two stagnation points, one left and one right of the valve, are expected. Due to the as-
sumption made in equation 4.55, it is predicted that the stagnation point has been fixed at r = R, and
therefore will not change over time.

* During the installation of a suction pile, vortices and turbulent flow occur underneath the structure.
These vortices and turbulences have been ignored in the derivation of the hydrodynamic force of equa-
tion 4.66.



4.4. 2D MODEL: DISK WITH ONE SYMMETRIC VALVE 37

4.4.3. CONCLUSIONS

Different to the 1D model, the hydrodynamic force from the 2D model includes both vertical fluid flow v(?)
and horizontal fluid flow u(r, ). Its origin and function is similar to the 1D model, which is described in sec-
tion 4.3.3.

Similar to the 1D model, a squared velocity (%)2 and a single linear acceleration term % can be recognized.
In this case a third term is present: one related to the vertical flow velocity v(t), indicating the presence of the
valve.

Originally, a function only consisting of z, %, % and known constants was expected. However, due to the
assumptions made in the derivation of the force, the term v(#) remained present in the final expression of
the hydrodynamic force. This makes it difficult to analyze the behaviour of the hydrodynamic force for an
imposed motion, like what was done for the 1D model, and therefore is not given for the 2D model. The de-
rived expressions for v(#) and u(r, t) are directly related to each other. Therefore it is complex to calculate the
steady state condition for an imposed motion. This is the reason why the system for the 2D model is initial-
ized before actual analysis is performed. This is described in chapter 6.

Since the force also represents an extra added mass force, the behaviour of the force is predicted to be com-
parable to the behaviour seen in the 1D model in section 4.3.2. The presence of the valve is expected to be
reflected in a lower magnitude of the hydrodynamic force. Like the 1D model, the hydrodynamic force is
phase and frequency dependent, which can be seen from the squared velocity and single acceleration term
in equation 4.66.

In the next chapter, the hydrodynamic force, defined as in equations 4.29 and 4.66, will be implemented into
the structural model. Furthermore, an overview of expectations for the results of the base case situation, de-
scribed in chapter 6, and for the results of the sensitivity analysis, explained in chapter 7, is given here.






STRUCTURAL MODEL

By implementing the hydrodynamic force from the 1D and 2D model into the structural model, the set-down
of a structure can be modelled and analyzed.

In this chapter the Equation of Motion (EOM) for the structure and the corresponding soil reaction is obtained
and elaboration on all components is given. A short list of the important input parameters for the base case
is provided. Also, an overview of expectations for the results of the base case situation and the sensitivity
analysis is presented.

5.1. EQUATION OF MOTION

Mlustrated in figure 1.3 on the right side, the system is divided into two situations; "above’ the seabed and
'settling’ on the seabed, referred to as phase 1 and phase 2, respectively. The EOMs are derived for a flat disk
and thus the force related to skirts is not included.

Phase 1 is separated into two coupled equations of motion, one related to the structure and one to the soil.
These need to be in equilibrium. The one related to the structure describes the forces acting on the structure.
The EOM specifying the soil defines the equilibrium between the hydrodynamic force pushing on the seabed
and the soil resistance. This means that there is an interaction between the structure and the displaced soil.
Phase 1 describes the EOM for both the structure and the soil.

It is not allowed for the structure to bounce, so a 'smooth’ landing is expected. Once the structure lands on
the seabed, the hydrodynamic force becomes zero and is replaced by the soil force. The soil starts to exerts a
force on the object. Once the structure’s submerged weight and the soil resistance force reach an equilibrium,
the module is settled on the seabed. This situation defines phase 2. Both the soil equilibrium of phase 1 and
the EOM for phase 2 is explained in the section referred as soil equilibrium.

5.1.1. STRUCTURAL EQUILIBRIUM
As described by Journée and Massie [23], the equation of motion for a rigid body moving vertically through a
fluid is given as:

(m+a)z+bz+cz=F (5.1)

In which

a : Hydrodynamic mass coefficient or added mass [kg]
b : Hydrodynamic damping coefficient [kg/s]
¢ : Restoring spring coefficient [kg/s?]
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The equation of motion can be segregated into four components. On the left-hand side of the equation, the
term including Z represents the inertial forces, the second term the damping forces and the last term the
restoring force, respectively. The term on the right-hand side describes the sum of all external forces acting
on the structure.

To describe the motion behaviour of the disk, a Free Body Diagram (FBD) is used to indicate the forces acting
on it. The forces acting on the structure need to be in equilibrium. From the FBD in figure 5.1, the equation
of motion for the structure during the landing phase is obtained (skirt force is not included).

Finertia+Fdrag:thd+Fline_Fsubm (5.2)

Where

Finertia : Inertia force [N]
Fyrqg : Dragforce [N]
Fpya : Hydrodynamic force acting on the structure [N]
Fjine : Tension force from crane wire [N]
Fsypm : Submerged weight [V]

When looking at this EOM, it is different than the equation used by Journée and Massie. In this resulting
equation, the external forces acting on the structure are Fjy4, Fjine and Fgypp. The hydrodynamic force
Fpya, caused by the proximity of the seabed, can behave like a suction or resistance force, as was described
in chapter 4. The spring or restoring force term cz is included in the upward directed tension force Fj;,,
coming from the crane wire. The structure is assumed to be fully submerged. This generates a force F,p;,
acting in downward direction. This was also seen in section 2.2.4 in figures 2.3 and 2.4.

Since the position of the disk, z(#), is time dependent, the inertia force Fiperriq, the drag force Fypqg, the
hydrodynamic force Fj,y4 and the line force Fj;y, are a function of time.

T h(t)
Crane tip
k= EA
iy
z(t)
Fline T
zat 0 E - i |
F, Fsubm .
hyd ZD dwp
Prya

eabed A e

Figure 5.1: Free body diagram of structural model
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As indicated in chapter 4, the hydrodynamic force is different for a disk with 1D or 2D fluid flow, represented
by equations 4.29 and 4.66. The other equations are identical for both the 1D model and 2D model. A short
elaboration on all the other forces is given next.

INERTIA FORCE
At the moment a structure starts to move in a fluid, a resistance or inertia force in opposite direction to the
structure is created. The magnitude of the inertia force is proportional to the structure’s acceleration and the
increase in added mass due to seabed proximity. In section 3.2, the added mass term was explained and the
inertia force was given as:

Finertia= (M + A33)Z (5.3)

DRAG FORCE
The viscous drag force results from the vertical motion of the structure and gives quadratic damping to the
system. Once the structure comes to rest, this force becomes zero. Referring back to section 3.2, the viscous
drag force can be calculated by:

Fdrag =0.50,CpArzlz| (5.4)

LINE FORCE

The structure is connected to a crane with a crane wire, which is positioned on an oscillating barge. The crane
lowers the structure to the seabed, which results in a tension force on the structure. The line force, originating
from the change in length between the crane tip z.; and the suction pile zp, is described by:

Fline = kline(zct - Zsp) (5.5)
F .
Fiine = kline((zo + subm._ Vet —Asin(wt + (,b)) - Z) (5.6)
line

In which:

kiine : Crane wire stiffness, kj;j. = EA/L [N/ m]
zo : Initial position suction pile [m]

% : Initial deflection suction pile [m]

: Crane wire velocity [m/s]

: Amplitude [m]

: Angular velocity, w = 27” [rad]/s]

< & = 5

: Phase difference [rad]

The structure starts at an initial position zy from the seabed, with an initial deflection of the crane wire,

represented by IZ‘I"_I"" . The crane wire is lowered with a certain constant lowering velocity V. The oscillating
ine

component, Asin(wt+¢), is aresult of the heave oscillation which the crane experiences. This heave motion

directly results from the vessel, on which the crane is positioned.

SUBMERGED WEIGHT
The difference between the weight in air of the structure and the weight of the displaced volume is the sub-
merged weight [4]. It is obtained by looking at the difference between the density of sea water p,, and of steel
ps. For a fully submerged structure, the force, independent of time, is calculated by:

Ps—Pw

Foypm = Mg—p 5.7)
s
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5.1.2. SOIL EQUILIBRIUM
PHASE 1
During the lowering of the structure, fluid is pushing onto the soil and thus an equilibrium between the fluid

and the soil must hold. The equation of motion can be derived using the hydrodynamic pressure distribution,
which is directly related to the hydrodynamic force acting on the structure.

Literature [17] tells us that the behaviour of soil is very unpredictable and irregular. Therefore soil is difficult to
precisely model. Initially, the soil is described as a linear spring with certain soil stiffness k,;;. In a next stage,
non-linear soil behaviour will be included, as was discussed in section 3.3. The following soil equilibrium
between the soil force Fy,;; and the hydrodynamic force Fyy,4 can be derived:

Fnya =Fsoit = PryaAr = Ksoi1Zs0il (5.8)

The pressure is distributed differently at each point along the disk. Since the soil reaction force is given as a
point force, the retroactive pressure is a point force too. The maximum hydrodynamic pressure Py, is taken.
This maximum pressure is multiplied with the reference area A,, which results in the hydrodynamic force
Fpya, seen in equation 5.8. The reference area A, is the area of the disk minus the area of the valve.

By searching for the equilibrium between the structure’s EOM in equation 5.2 and the soil’s EOM in equation
5.8 of phase 1, the structure’s motion behaviour and corresponding reaction forces before the set-down can
be determined.

PHASE 2
Once the structure lands on the seabed, the hydrodynamic force becomes zero and consequently is replaced

by the soil force. In phase 2, the structure is settled onto the seabed and finally comes to rest. For phase 2, the
EOM is changed into:

Finertia+Fdrag=Fsoil+Fline_Fsubm (5.9)

While the structure settles on the seabed, it reduces in velocity and finally the forces Fipertia, Farag and Fiine
decrease to zero. Once the soil force is equal to the submerged weight, the structure has fully come to rest
and is finally settled.

5.2. INPUT DATA BASE CASE

The input data comes from HMC’s Kaombo project. In table 5.1, the most relevant input data for the base
case situation for the 1D and 2D model can be found. A list of all the input data for the base case situation is
given in appendix F.

Input data Value
Structural mass M =222 ton
Structural Radius R=275m
Valve radius R,=0.75m
Period T=10s
Crane Amplitude A=0.5m

Crane lowering velocity V;=0.1m/s
Soil Soil stiffness Ksoi1 =3.52 MN/m

Table 5.1: Overview of most relevant input data
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5.3. VALIDATION

Before running and analyzing the whole system, i.e. the set-down of a structure, it is essential to check the
accuracy of the obtained equilibrium. The following simple checks were done as validation:

* Free fall test: kj;;.=0
* Free decaytest: V;=0,A=0
* Constant lowering test: A=0, V. >0

The results of all three tests for the 1D and 2D model are given in appendix G.

In a free fall test, there is no line attached to the structure (k;;;. = 0), so the structure experiences a free fall
towards the seabed in which the structure’s velocity and acceleration becomes zero eventually. This was in-
deed observed for both the 1D and 2D model. In a free decay test, the structure starts in an out of equilibrium
position without any crane tip heave motion. Eventually the structure needs to get back into equilibrium and
the velocity and acceleration need to become zero. In the constant lowering test, the structure is lowered
without heave oscillation and with a constant velocity (A =0, V; = 0.1 m/s) towards the seabed.

5.4. EXPECTATIONS

Based on the conducted literature research in chapter 3 and the insight gained on the hydrodynamic force in
chapter 4, the following expectations are made:

HYDRODYNAMIC FORCE

* The hydrodynamic force increases in close proximity with the seabed.

* The presence of a valve in the disk, resulting in 2D fluid flow, results in a lower hydrodynamic force
compared to a closed disk. This means that the results of the 1D model are expected to be higher
compared to the 2D model.

¢ Including a valve results in a lower horizontal fluid flow velocity and pressure underneath the disk. The
vertical fluid flow velocity going through the valve is expected to decrease in magnitude as the valve
radius reduces. For a valve size nearly as big as radius of the disk, the vertical flow velocity is expected
to have the same magnitude as the structure.

 The stagnation point for a closed disk is expected in the centre of the disk. For a disk with a valve, on
both sides of the valve a stagnation point is predicted.

* The size/number of valves will have an impact on the amount of soil displacement caused by the set-
down of the subsea structure.

SET-DOWN OF STRUCTURE

* Far away from the seabed (R/z « 1), the structure is unaffected by the hydrodynamic force. Once close
to the seabed, the increasing hydrodynamic force decelerates the structure, resulting in a decrease of
velocity and acceleration of the structure just before set-down.

* The crane tip heave motion affects the hydrodynamic force and therefore also the set-down of the struc-
ture. Due to this, weather conditions will affect the set-down as well. Crane tip heave motions caused by
a short period and a high amplitude can be critical for structure installation. In this study, the weather
conditions resulting in favourable crane tip heave motions are considered as a combination of a high
period and a low amplitude. In the base case, T = 10 s and A = 0.5 m are considered as favourable
weather conditions.

* Phasing will have a significant effect on the set-down of a subsea structure. Even in favourable weather
conditions, there are phases for which the structure reaches the seabed with a high impact instead of
having a smooth landing. This means that even with a high crane tip heave motion there is a phase for
which a smooth landing is possible..

* The structural mass will have a small influence on the hydrodynamic force. A lower structural mass is
expected to correspond to a slightly lower hydrodynamic force.

* The type of soil, among things characterized by the soil stiffness, will influence the set-down of the
subsea structure. The hydrodynamic force is expected to be higher for stiffer soils.
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SOIL DISTURBANCE

The hydrodynamic force or hydrodynamic pressure acts onto the soil, resulting in soil deformation. A
lower hydrodynamic force is expected to result in a lower soil disturbance.

In this thesis, the soil displacement is calculated with three methods: Bernoulli equation together with
Design Profile, maximum hydrodynamic force together with Design Profile and the a method based on
the conservation of energy.

The soil displacement calculated with Bernoulli equation is expected to be the most conservative.

The method based on the maximum magnitude of the hydrodynamic force is expected to be less con-
servative than the Bernoulli equation. Because the maximum force only acts for a short period of time,
the estimation is still not very realistic.

Calculating the soil displacement based on conservation of energy engenders the lowest estimation of
soil disturbance compared to the Bernoulli equation and maximum hydrodynamic force. The calcula-
tion based on the conservation of energy is expected to be the least conservative approach.

The results for the base case situation of this structural model for a closed disk and a disk with one symmetric
valve are discussed in chapter 6.



BASE CASE RESULTS

This chapter discusses the results for the base case situation for the 1D and 2D model. First the results of the
1D model of both the closed and open disk (R, = 0.75 m) are discussed. Next, the results of the 2D model are
analyzed and compared with the 1D model.

6.1. 1D MODEL: CLOSED & OPEN DISK

In this section, the results of the 1D model with the closed and open (R, = 0.75 m) disk are given and dis-
cussed.

6.1.1. INITIAL CONDITIONS

In the base case situation, a disk with a diameter of 5.5 m and a structural mass of 222 ton is positioned 2
meters above the sea floor. It is lowered towards the seabed with an initial velocity of 0.41 m/s. This velocity is
derived from the initial heave motion and the constant crane lowering velocity of 0.1 m/s. There is no initial
soil displacement. The timing of the set-down is difficult and is represented as the phase difference ¢ in the
line force. A slight change in phase can result in a different output. In this case, ¢ has been chosen to be 0
rad.

Input condition Value

Elevation z=2m
Velocity 2=-0.41m/s
Soil displacement  zz,;; =0 m
Phase difference ¢ =0rad

Table 6.1: 1D model: initial conditions

6.1.2. RESULTS BASE CASE

The structure’s motion behaviour, corresponding hydrodynamic force and soil force for the closed disk are
shown in figure 6.1. Figures 6.1a, 6.1b and 6.1c show the displacement, velocity and acceleration, respec-
tively, during the lowering and settling phase. The transition from the lowering into the settling phase can be
seen around 22 s. During the first phase, the hydrodynamic force acts on the structure, as seen in figure 6.1d.
During this phase, the soil and the hydrostatic pressure are in equilibrium.

Within 25 s, the structure has moved towards the soil and is slowed down as it gets closer to the seabed. Due
to the increase in proximity, the hydrodynamic force increases as is illustrated in figure 6.1d. As explained
earlier, the hydrodynamic force acts as a resistance force on the structure. Just before set-down, there is a
sudden increase in acceleration. This development is also reflected in the sudden decrease of velocity. As
expected, the soil has a noticeable impact on the hydrodynamic force and the structure’s motion.
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Figure 6.1: 1D model without valve: results base case, part 1

Figure 6.2 shows the horizontal fluid flow velocity u(r, ) and pressure distribution p(r, t) under the closed
disk. As the disk is assumed to be symmetric, for simplicity only one side is shown.

In figure 6.23, it is observed that the fluid velocity in the middle under the disk is zero and increases towards
the outside. The fluid velocity is always maximum at the outside of the disk, at R = 2.75 m. As the structure
gets closer to the seabed, similar to the hydrodynamic force u(r, ¢) increases.

In figure 6.2D, it can be seen that the maximum pressure occurs at the middle of the disk and it is zero at the
outside. This is expected as we assumed the outside pressure to be equal to the ambient pressure. The devel-
opment is opposite to u(r, t) and thus in line with the Bernoulli principle. Similar to u(r, ), p(r, f) rises as the
proximity to the seabed increases. The behaviour of the fluid is in line with what was predicted by Brennen.

At the moment the structure and soil get in contact and the hydrodynamic force becomes zero, the system
transitions to phase 2. This is seen after ~ 22 s in figure 6.1d. At that point, the soil force replaces the hydro-
dynamic force and the structure and soil will move together. They are connected in a kinematic way. When
the contact force, i.e. soil force, becomes zero, there is a chance that the soil and structure disconnect. This
is assumed to be a dynamic separation and can happen in case of e.g. unfavourable phasing. It would mean
that the structure would disconnect from the soil and would move away from the seabed again. As seen in
the figure 6.1, this does not happen in the base case situation.

While the structure settles on the seabed, the soil force rises, as is illustrated in figure 6.1d. After around 60 s,
the structure has settled, meaning that the soil fore is in equilibrium with the structure’s submerged weight.
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Figure 6.2: 1D model without valve: results base case, part 2

The same analysis has been done for the 1D model with a valve of 0.75 m in radius (27 % opening). The results
were similar, so for simplicity they are shown in appendix H.1.

The physical difference between both cases is the surface area where the hydrodynamic force acts on and
thus the magnitude of the force is expected to be generally lower for larger valves. A slightly lower force was
indeed observed for the disk with valve, seen in figure 6.3a. Figure 6.3b zooms in on both the hydrodynamic
force for the open and closed 1D model just before the set-down. The magnitude of the force for the disk with
27% opening is slightly lower compared to the closed disk. In the 1D model, a valve with R, = 0.75 m does not
have a significant impact on the structure’s motion behaviour.
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Figure 6.3: 1D model: hydrodynamic force

6.1.3. RESULTS SOIL DISTURBANCE

Three methods for calculating the soil displacement were discussed in section 3.3. Based on the base case
situation, the result calculated with the Bernoulli equation is constant for the 1D and 2D model: the maxi-
mum soil displacement is 0.61 m. The two other methods are differ for both models and are thus separately
discussed. Eventually, the results of all three methods are compared.

METHOD BASED ON DESIGN PROFILE

Equation 3.8 together with the Design Profile has been used to convert the maximum of the hydrodynamic
force into its corresponding soil disturbance. In figure 6.4, it is visualized that a closed disk, lowered with a
velocity of ~ 0.40 m/s, from an initial elevation of 2 m from the seabed, results in a maximum soil displace-
ment of ~ 0.50 m. This is a conservative estimation, since the maximum hydrodynamic force only acts for a
small duration.
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Figure 6.4: 1D model without valve: soil disturbance

Since the maximum magnitude of the hydrodynamic force for the open disk is comparable, similar results
were obtained for the open disk.

METHOD BASED ON CONSERVATION OF ENERGY

In a less conservative method, the soil disturbance is based on the conservation of energy. Equation 3.13 is
used to calculate the soil disturbance at time of collision for the closed and the open disk. For the damping
ratio, the values 0f 0.7, 1 and 1.3 have been taken as upper, median and lower bound, respectively. The values
have been given in the appendix H.
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Figure 6.5: Comparison of soil displacement between three methods

Figure 6.5 compares the soil displacements calculated with the Bernoulli equation, given in equation 3.2 with
the values based on the maximum hydrodynamic force and based on the conservation of energy. For this last
method, the values for { are used. As the Bernoulli formula is not valid for a closed disk, it is not compared in
the closed 1D model.

From figure 6.5 can be seen that the result of the Bernoulli equation is the hight and thus most conservative.
The results of the conservation of energy for both the open & closed 1D model are clearly less conservative.
For the Bernoulli equation, the soil disturbance of the open 1D model is 3 times as high compared to the
conservation of energy. The figure also indicates that the open 1D model results in lower estimations of the
soil displacement compared to the closed 1D model for the conservation of energy.
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6.2.2D MODEL: DISK WITH ONE SYMMETRIC VALVE

In this section, the results for the 2D model are given and discussed. The expression from equation 4.66 has
been used for the hydrodynamic force. The results are given for a disk with a valve with R, = 0.75 m.

6.2.1. INITIAL CONDITIONS & INITIALISATION

Again the structure starts at a position of 2 m above the seabed. The expression for the hydrodynamic force,
derived in section 4.4.1, includes the vertical fluid flow velocity v(f) going through the valve. It is expected
that v(¢) has an influence on the magnitude of the hydrodynamic force. The initial vertical fluid floe velocity
through the valve is difficult to obtain from calculations, because v(t) arises as a result of the structure’s
motion. Therefore the system is first initialized before actual lowering. The system is brought into a steady-
state before the constant crane lowering velocity is added to the system. This could give a shock to the system,
bringing the system out of equilibrium. The initialisation has been taken into account for the results of the
2D model. In the results, the first 80 s are added for the initialisation of the system and afterwards the crane
starts to lower with a constant velocity of 0.1 m/s. This is the reason why the plots start at 80 s.

6.2.2. RESULTS BASE CASE
Using the data from table 5.1, the following results for the base case for the 2D model, including v(#), were
generated. The results for the full run are given in appendix H.2.
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Figure 6.6: 2D model: results base case, part 1

As was seen in section 6.1.2, the results for the 1D model, with and without valve, were similar i.e. the valve
with R, = 0.75 m had little influence on the motion behaviour. From the expectations, the hydrodynamic
force in the 2D model is expected to be more realistic since the fluid velocity through the valve is included.

The results for the displacement, velocity and acceleration, given in figure 6.6, seem similar to the results for
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the 1D model. A different development and magnitude for the motion behaviour was predicted as the pres-
ence of the valve is expected to function as a pressure relief.

Figure 6.6d shows the results for the vertical fluid flow velocity. The v(¢) is assumed to be independent of the
position. This is reflected in the 2D graph, instead of 3D, in figure 6.6d. Once the crane starts lowering (at
80 s), fluid flows through the valve with velocities between ~ 0.12 and -0.26 m/s. Since the flow can move
through the valve, change in direction is expected. v(f) increases as the structure gets closer to the seabed.
This increase is expected, because the area under the disk for the fluid to escape horizontally becomes smaller
close to the seabed and water is forced through the valve.

The development of the hydrodynamic force and consequently the soil force is much like the 1D model, as
can be seen figure 6.7. In line with the expectations, a lower hydrodynamic force is observed for the 2D
model. The maximum magnitude for the hydrodynamic force is similar to the one in figure 6.1d. However,
the magnitude of the force before the set-down is lower for the 2D model. Figure 6.8 zooms in on all three
hydrodynamic forces. The force from the 2D model is lower compared to the forces from the 1D model.
Including v(¢) in the model indeed has an effect on the magnitude of the force. Before the set-down, the 2D
model with an opening of 27% has a lower resistance force. However as the proximity to the seabed increases,
the effect of the valve velocity is not significant anymore and the force results in a similar magnitude as for
the 1D model.
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Figure 6.7: 2D model: hydrodynamic force & soil force Figure 6.8: Comparison 1D & 2D hydrodynamic force, zoomed in

It is anticipated that v(#) results in a lower horizontal flow velocity u(r, t) and pressure distribution p(r, £).
They have been visualized in figure 6.9 for the 2D model.

Velocity u(r, t) is maximum on the outside and increases as the structure gets closer to the seabed. The veloc-
ity is lower than seen in the 1D model. The slope from the disk outside radius R towards the valve radius R,
is steeper compared to the one from the 1D model, indicating a quicker change in velocity. This is expected
to be due to the presence of the valve. u(r, f) is nearly zero at the valve radius, indicating that the stagnation
pointisatr = R,,.

Pressure p(r, t) is shown in figure 6.9b. Also here, the magnitude is lower compared to the one seen in figure
6.2b. Again zero pressure is observed on the outside and maximum at r = R, indicating that the stagnation
point occurs at r = R,,.

As explained in section 4.4.1, due to the assumption made regarding the connection between the valve and
plate side, the stagnation point was expected to be fixed on r = R,,. This is indeed observed for both u(r, t)
and p(r, t) in figure 6.9.
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Figure 6.9: 2D model: results base case, part 2

6.2.3. RESULTS SOIL DISTURBANCE
Again both methods are used to calculate the soil disturbance resulting from the 2D model.

METHOD BASED ON DESIGN PROFILE

A maximum soil disturbance of ~ 0.50 m is expected, when a 222 ton structure with an 27% opening and an
initial velocity of ~ 0.40 m/s is set down on the seabed. As the maximum hydrodynamic force of the 1D and
2D model were alike, this value was expected. and for simplicity the graph has been left out of this report.
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Figure 6.10: Comparison of soil displacement between three methods

METHOD BASED ON CONSERVATION OF ENERGY

Again the soil disturbance, corresponding to the impact of the hydrodynamic force in the 2D model, can
be calculated for different damping ratio’s and can be compared with the soil displacement based on the
Bernoulli equation and the maximum force. Figure 6.10 measures the results of the closed/open 1D model
and the open 2D model for all three calculation methods. As shown before, the results based on Bernoulli
clearly are the most conservative. The calculation based on conservation of energy is clearly the least conser-
vative. Based on the last two methods, the soil disturbance of the 2D model is lower compared to the closed
1D model and comparable to the open 1D model.

To make an estimation for the soil displacement in the preparation phase of an installation procedure, the
method based on the conservation of energy would result in a more realistic and less conservative estimation.
Due to this, it is likely that with this second method an increase in workability of a subsea installation could
be realized.
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6.3. CONCLUSIONS

Based on the base case results, the following is concluded about the impact the hydrodynamic force has on
the set-down of the structure .

1D MODEL: CLOSED DISK
* During the lowering of a disk to the seabed, water escapes horizontally generating a pressure distri-
bution acting underneath the structure. This pressure distribution is converted into a point force: the
hydrodynamic or added mass force. This force works as a resistance force on the structure.

¢ In line with the literature, far away from the seabed (R/z << 1) the hydrodynamic force does not affect
the structure’s motion behaviour.

¢ In close proximity to the seabed, the fluid particles accelerate, resulting in an increase in the fluid flow
velocity, pressure and hydrodynamic force.

* The stagnation point for a closed disk, indicated by zero fluid velocity and maximum pressure, is posi-
tioned right in the middle of the disk.

* The soil disturbance based on the Bernoulli equation is the most conservative. Based on the De-
sign Profile, the maximum hydrodynamic force results in a maximum soil disturbance of 0.50 m. The
method based on conservation of energy correspond to lower values, confirming it is less conservative.
Under these circumstance the soil will not fail and the structure can safely be installed.

1D MODEL: DISK WITH ONE SYMMETRIC VALVE
* For a disk with 27% opening, the hydrodynamic force in the set-down phase is slightly lower compared
to the closed disk. This is not reflected in the structure’s motion behaviour and soil displacement.

* This intermediate step confirms that including a valve, by means of vertical flow velocity, is expected to
result in a lower hydrodynamic force.

2D MODEL: DISK WITH ONE SYMMETRIC VALVE
* This model includes a disk with a symmetric valve with physical fluid flowing through it. The valve
functions as a pressure relief during the lowering of the structure and has an impact on the magnitude
of the hydrodynamic force. The vertical fluid flow velocity was assumed to be uniform in the valve.

¢ Like the 1D model, a lower horizontal fluid velocity and pressure under the disk occurs. The stagnation
point is recognized at r = R, and therefore fixed. This is expected considering the assumptions made
in chapter 4.

* Physically, the 2D model is more in line with reality than the 1D model. Including a valve in the model,
allows for more water to escape underneath the disk resulting in a lower hydrodynamic resistance force.
Initially, the force is indeed lower, but close the seabed the force rises significantly to a value similar to
the one for the 1D model. It is thought that this is related to the function derived for the vertical fluid
flow velocity in chapter 4. Possibly, too many assumption are made concerning the valve. This means
that the values for the hydrodynamic force, derived in this thesis, are possibly higher compared to the
actual ones.

* Compared to the 1D model, no significant change in the structure’s motion behaviour occurs.

* The results for the 2D model are comparable to the 1D model, resulting in a soil disturbance of 0.5 m
based on the Design Profile. The method based on the conservation of energy indicates values of lower
soil displacement compared to the 1D model. This method is less conservative and therefore more
realistic soil displacement estimations is made. In the preparation phase of an offshore installation
project, it is likely that by using this method an increase in workability is gained.

From these conclusions, general understanding is gained on how the set-down of structures on the seabed
was affected by the soil. As was seen in section 4.3.2, the hydrodynamic force is sensitive to different phases
and frequencies. This will have an effect on the set-down of structures and the related soil displacement.
Therefore, a sensitivity analysis has been performed, which is described in chapter 7.



SENSITIVITY ANALYSIS

The input data used to generate the results for the base case situation, described in chapter 6, were based on
favourable (weather) conditions corresponding to acceptable crane tip heave motions. It would be interesting
to evaluate the system for various structural properties, crane tip heave motions and soil properties.

This chapter describes the sensitivity analysis done for the 2D model. As the 2D model is expected to be more
realistic, the 1D model has not been included in this analysis. The influence of the structural properties,
in particular the size of valve and structural mass, have been analyzed. Thereafter, an analysis for variable
periods, amplitudes and phases has been conducted for several valve sizes. Finally, a variable soil stiffness
has been evaluated.

7.1. INPUT DATA

The variables for the period and amplitude are defined from the sea state given for HMC’s Kaombo project.
As it is hard to time a lowering installation, the analysis has been done for all phases. The soil stiffness has
been varied with a lower and upper bound stiffness, from the soil data specification report from the Kaombo
project. An overview of the base case values and variable values is given in table 7.1.

Input parameter Base case value Variable value
. Valve radius R,=0.75m 0:0.25:2.75

Structural properties

Structural mass M =222 ton 167, 229

Period T=10s 8,12, 14, 16
Weather conditions Amplitude A=05m 0.25,0.75,1, 1.25

Phase difference ¢ =0rad 0:0.06:2m
Soil properties Soil stiffness ksoi1 =3.52MN/m 1.76,7.04

Table 7.1: Overview of input data for the sensitivity analysis

7.2. STRUCTURAL PROPERTIES

This section describes the influence of the structural properties, i.e. the valve size and the structural mass, on
the set-down of structures onto the seabed.

7.2.1. VALVE SIZE

It is expected that a closed disk will behave differently than a disk with a valve. To investigate the valve influ-
ence, tests have been performed for various valve sizes. They have been labelled as a fraction of R: R, /R. The
results of some fractions are given here. The results of other fractions are given in appendix I.

53
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RIGID UNDERGROUND

Two simple tests for variable valve sizes on a rigid underground have been analyzed: the free fall test and the
constant lowering test. This section discusses the results of these tests.

Free fall test

Figures 7.1 and 7.2 illustrate the results for the free fall test. From figure 7.1a it can be seen that, the larger
the valve, the quicker the structure reaches the seabed. A disk with a large valve is expected to relief more
pressure, resulting in a lower hydrodynamic force and thus less resistance acts on the structure. In case of
the free fall test, a structure with a lower resistance reaches the seabed with a higher velocity, as was seen in
figure 7.1b.
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Figure 7.1: Free fall test, part 1

For larger valves, the structure will experience less cushioning before encountering the impact of landing on
the seabed. This results in a narrower and higher peak in hydrodynamic force, seen in figure 7.2a. Due to
the higher velocity for larger valves, the kinetic energy of the structure is also higher when hitting the seabed.
This is reflected in the structure acceleration in figure 7.1c. Thus, the impact force is higher when the kinetic
energy with respect to the disk is higher. As for the valve radius in figure 7.1d, it is seen that as R, goes to R,
the vertical flow velocity v(f) goes to the structure velocity (figure 7.1Db).

When zooming in on the hydrodynamic force, done in figure 7.2b, it can be observed the structure with the
largest valve corresponds to the lowest force. A lower force will result in a lower momentum (area under the
force) and thus lower soil disturbance is predicted.
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Figure 7.2: Free fall test, part 2

Figure 7.3 illustrates the horizontal fluid flow velocity u(r, t) close before the set-down for two extreme cases:
for a disk with a valve with R, = 0.5 m (18% opening) and R, = 2.5 m (91% opening), respectively. In line with
the expectation, u(r, t) for a structure with a large valve is lower than for a disk with a smaller valve. The same
development was seen for the pressure distribution and the plots are therefore given in appendix I.
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Figure 7.3: Free fall test

Constant lowering test

In the constant lowering test, similar behaviour in the magnitude of the hydrodynamic force for different
valve sizes was seen. In this test, the structure is lowered with a constant velocity. Again, the hydrodynamic
force suddenly rises, due to the occurrence of the rigid boundary, seen in figure 7.4a. Also for this test and
illustrated in figure 7.4b, a lower resistance force was observed for larger valves. This corresponds to a smaller
momentum and thus lower soil disturbance.

Since the structure is lowered with a constant velocity of 0.1 m/s, the results of the structure velocity in fig-
ure 7.4c are expected. During the lowering, the velocity is constant for all valve sizes and once the structure
reaches the seabed, the velocity quickly decreases to zero. The results for the vertical fluid velocity through
the valve show some unexpected results. The fluid velocity flowing through a valve with R, > 2 m is expected
to be nearly equal to the lowering velocity. This is not observed when comparing the results in figures 7.4c
and 7.4d. As described in section 6.2.1, the system is first initialized before actual lowering occurs. Bringing
the system into a steady oscillating state, does not apply for this constant lowering test as it would include
an unwanted oscillating motion when introducing the constant velocity. Therefore the system has not been
initialized, this is assumed to be related to the unexpected results.
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Figure 7.4: Constant lowering test

In this test, the results for the horizontal flow velocity and pressure for a large valve were also lower than for a
smaller valve. The results for the horizontal fluid flow velocity for R, = 0.5 m and R, = 2.5 m can be found in
appendix I. For simplicity, the pressure distribution corresponding to R, = 0.5 m and R, = 2.5 m been left out
of this report.

SOIL UNDERGROUND

In this section, the results of the base case situation for various valve sizes have been analyzed. For simplicity
the ratio for R, = 2.75 m has been left out of this analysis. The graphs have been plotted from the moment the
crane starts to lower at 80 s.

Similar to the results seenin 7.1a, increasing the valve radius has no significant effect on the motion behaviour
of the structure. Just before the set-down, the velocity for a disk with 91% opening is slightly higher compared
to smaller valves, see figure 7.5a. This, also seen in the results in section 7.2.1, is explained by the fact that a
disk with a larger valve experiences a lower hydrodynamic resistance force.

In figure 7.5b, the results for the vertical flow velocity v(¢) are given for various valve sizes. In line with the
expectations, large valves correspond to large vertical flow velocities. The change in magnitude of the vertical
flow velocity for decreasing valve size is smaller than expected. Decreasing the opening of the disk from 91%
to 55% results in a slide decrease in vertical flow velocity. The impact of decreasing the valve size on the
vertical velocity was expected to be higher. This is assumed to be due to the assumptions made regarding the
valve.
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Figure 7.5: Base case for various valve sizes

Figure 7.5c indicates a quick jump in the maximum magnitude of the hydrodynamic force for a disk with 73%
to 82% opening, respectively. While indeed structures with larger valves correspond to lower magnitudes
of the hydrodynamic force, this explicit jump is assumed to be a result of the cut-off point in the Matlab
simulation. When zooming in on the hydrodynamic force, done in figure 7.5d, also here a large valve results
in a lower resistance force. Based on the Design Profile for the soil, a soil displacement of 0.5 m for a R, =
0.5m and 0.3 m for a R, = 2.5 m, respectively, correspond to the maximum magnitude of these forces. As the
hydrodynamic force for structures with large valves is lower, so it its momentum. Based on the conservation
of energy, less soil displacement was seen for a lower momentum.

7.2.2. STRUCTURAL MASS

The values for the structural mass analysis come from the Kaombo project. The difference between the val-
ues, which are expected to be realistic, is not very large, but still the analysis gives some insight into the impact
of the structural mass. The maximum hydrodynamic forces for all phases were calculated, illustrated in figure
7.6. From this, the P90 value for the hydrodynamic force was calculated. P90 means 10% of the calculated
values exceed the P90 estimate. Considering the base case situation with different masses for all phases, the
following P90 values for the hydrodynamic force are found:

Mass M P90 Fjyq
167ton 542 kN
222ton  545kN
229ton 547 kN

Table 7.2: P90 values for hydrodynamic force for various structural masses
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The mass does not have a significant influence on the hydrodynamic force. A lower mass results in a slightly
lower P90 value. If more extreme values for the masses would have been used, the fact that a lower structural
mass will result in a slightly lower hydrodynamic force would have been emphasized even more.

In this case, it is more interesting to observe that phasing has a significant influence on the magnitude of the
hydrodynamic force. This is visualized in figure 7.6. With this graph the phases dependency of the hydrody-
namic force is clearly emphasized. This figure confirms that considering all phases in the preparation phase
of an offshore installation procedure is advised.
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Figure 7.6: Mass influence for all phases

7.3. CRANE TIP HEAVE MOTION

Offshore weather causes motions which are characterized by period, amplitude and phase difference. These
motion characteristics vary simultaneously. Consequently, the crane tip heave motion, affecting the motion
behaviour of the structure, also varies for different motion characteristics. Both the crane tip and the subsea
structure have a natural period. It is crucial that these do not get into resonance, because this could result in
large heave motions and affect the structural integrity and stability of a subsea structure.

Timing of the set-down is difficult, therefore the impact of different periods and amplitudes has been ana-
lyzed for all phases. Considering all phases, the P90 value’s of the hydrodynamic force have been obtained
and reported for different combinations of period and amplitude.
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Figure 7.7: Weather sensitivity analysis for closed disk
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Figure 7.7a shows a contour plot of the sensitivity results corresponding to a closed disk. As expected, the
combination of higher periods and lower amplitudes leads to lower crane tip heave motions and thus to
lower P90 values.

The P90 values can be converted into a corresponding soil disturbance using the Design Profile. In figure
7.7b, the estimated soil disturbance corresponding to T = 8 s and variable amplitudes is given. As predicted,
the combination of T =8 s & A = 1.25 m results in the highest soil displacement. These plots were also made
for the other periods, which showed the same trend and for simplicity have been left out of here.

In the sensitivity analysis on the influence of the valve, it was seen that the maximum hydrodynamic force
differs per valve size. Therefore, the same analysis has been performed for disks with valves with a radius of
R,=0.5m, R, =1.5mand R, = 2.5 m, respectively.

Figure 7.8a shows the contour plot of the P90 values for a disk with a valve of 0.5 m radius. The presence of
the valve engenders a lower pressure under the disk. This is reflected in the magnitude of the hydrodynamic
force. The P90 values are generally lower compared to the ones seen in figure 7.7a. Also the soil disturbance
based on the Design Profile, seen in figure 7.8b, is generally lower compared to the closed disk.
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Figure 7.8: Weather sensitivity analysis for disk with R, = 0.5m

Including a valve of R, = 0.5 m decreases the hydrodynamic force, especially for the combination of short
periods and high amplitudes. The results for R, = 1.5 m and R, = 2.5 m are given in appendix I. From those
plots, it was interesting to see that the P90 values corresponding to the R, = 1.5 m were not much lower com-
pared to the values for the R, = 0.5 m. For R, = 2.5 m, a significant decrease in hydrodynamic force and soil
disturbance was seen. It is thought that the soil will deform differently for a disk with such big valve (radius of
disk is R, =2.75 m). In such a case, it can be understood that the soil will move in upward direction through
the valve, which makes the Design Profile not valid anymore.

The conservative values for the estimated soil displacement based the maximum magnitude of the hydrody-
namic force, derived with the Design Profile, are again compared with the values derived by the method of
conservation of energy. For simplicity the results of the Bernoulli equation are left out of this comparison, as
they are the most conservative. In figure 7.9, the results of the closed disk and the disk with 0.5 m radius for {
=1, T =8 s and various amplitudes are compared with the ones based on the Design Profile.

The results of the second method are clearly lower compared to the more conservative method of the Design
Profile. Especially for the higher amplitudes the conservatism of the Design Profile is clearly visible. Based
on the second calculation method, the maximum soil disturbance generated in weather conditions with T =
8sand A =1.25 m for a disk with 18% opening is only + 0.18 m. This is more than half of what was estimated
with the Design Profile (0.42 m).
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Figure 7.9: Comparison of soil displacement between the two methods

Overall, the model does what is expected when varying weather conditions. A high heave motion results
in system with more energy, resulting in a bigger impact: more soil displacement. This analysis has been
conducted for a disk and therefore it is assumed that the results for a real suction pile will be somewhat
different.

7.4. SOIL PROPERTIES
As described in section 3.3, the behaviour for each soil type is different and each type deforms in a differ-
ent way. Like the structural mass, a P90 value for the maximum hydrodynamic force for all phases can be
calculated. Considering the base case situation for different soil stiffnesses, the following P90 values for the
hydrodynamic force are found:

Soil stiffness kso;; P90 Fpyq

1.76 MN/m 412 kN
3.52 MN/m 545 kN
7.04 MN/m 607 kN

Table 7.3: P90 values for various soil stiffnesses

Difference between the P90 values for different soil stiffnessess is noticed in table 7.3. The hydrodynamic
force increases for stiffer soil.

At real offshore locations, exact soil behaviour is difficult to predict. The results from table 7.3 might be
different with what is seen in reality, but it gives a good idea on how different soil types can affect the set-
down of a structure. As is observed here, it is predicted that the hydrodynamic force on soft soils will be lower
than for stiffer soils.
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7.5. CONCLUSIONS

Based on the sensitivity analysis, the following is concluded:

VALVE SIZE
* The size of the valve influences the hydrodynamic force. A disk with a large valve will relieves more
pressure and therefore the magnitude of the hydrodynamic force is lower compared to a closed disk
and/or a disk with a smaller valve. A lower maximum hydrodynamic force corresponds with a lower
estimated soil disturbance, seen in both the conservative Design Profile and the more realistic method
based on the momentum of the force. The effect of the valve is greater for larger valves. The valve size
is recognized as an influential parameter.

It must be stated that no significant change in the structure’s motion behaviour is observed when in-
creasing the valve size. This is expected to be a result of the assumptions made concerning the valve.

STRUCTURAL MASS
 The structural mass has a small influence on the magnitude of the hydrodynamic force. A lower struc-
tural mass results in a slightly lower hydrodynamic force. The structural mass does not apply as one of
the most influential parameters.

CRANE TIP HEAVE MOTION

* The crane tip heave motions are affected by and sensitive to weather conditions. This is directly re-
flected to the hydrodynamic force. The combination of a short period (T = 8 s) and high amplitude
(A =1.25 m), critical for a structure installation, results in the highest P90 value for the hydrodynamic
force. According to both methods uses to calculate the soil disturbance, this corresponds to the deepest
estimated soil disturbance. Increasing the valve size in the situation of the rough weather conditions
engenders a lower P90 value, corresponding to a generally lower hydrodynamic force and lower mo-
mentum.

* Even for extreme motions, there are phase differences for which the structure can be set down smoothly,
with minimal soil displacement. Timing the lowering operation to achieve this is subject to crane op-
erator skills. To account for the difficulty in timing, the P90 of all phases is considered.

SOIL PROPERTIES
* The analysis showed that the magnitude of the hydrodynamic force increases for stiffer soils. Horizontal
soil displacement, i.e. washing away of soil, is not included in the model.

Based on what was noticed from the sensitivity analysis, the size of the valve and the weather conditions can
be considered to have the biggest impact on the set-down of structures onto the seabed.






CFD VERIFICATION

CFD tests have been conducted to verify the analytical expression for the hydrodynamic force of the 1D
model, based on Brennen’s flat plate analogy. The results of the closed 1D model were compared with the
results from CFD tests.

For the verification an oscillating motion and lowering motion, for 7=10 s and R = 2.75 m, have been applied:

e z(t)=0.5s5in(wt) +1
e z(t)=0.5s8in(wt)—0.1t+2

As described by Brennen [22], the hydrodynamic force is an extra added mass term. Half of the drag and
inertia forces, representing the contribution of the hydrodynamics of the upper part of the disk, is included
in the plots for 1D model [24]. The part beneath the disk is corresponding to the derived hydrodynamic force.
The results of the CFD tests and the 1D model are given in figure 8.1.

CFD vs Brennen CFD vs Brennen
x 10* Oscillation x10° Lowering

Force [N]
Force [N]

= Brennen| - : :

0 5 10 15 20 0 5 10 15 20
Time [s] Time [s]
(a) Results oscillating motion (b) Results lowering motion

Figure 8.1: Validation of hydrodynamic force

Figure 8.1a shows the results for an oscillating motion at a position of 1 m from the seabed. The development
of both forces is in line, however the results from the 1D model are slightly lower. The difference could be
explained by different assumptions made concerning both methods. The occurrence of vorticity and turbu-
lence is not included in Brennen’s derivation. It seems that the hydrodynamic force from the 1D model is
slightly conservative compared to the one seen in the CFD tests.

In the results based on the oscillating motion, the impact of the hydrodynamic force close to the seabed is
not evidently visible. The results for the lowering motion, starting at a position of 2 m above the seabed, are
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shown in figure 8.1b. Again the development is comparable and the results based on Brennen are somewhat
lower. For this imposed motion, a clear increase in the hydrodynamic force is observed as the structure gets
closer to the seabed. Here the extra added mass term starts to become dominant. Apart from the assumptions
just discussed, a slight difference in phasing could result in somewhat different magnitudes of the hydrody-
namic force. That could be a reason why the results deviate somewhat. Overall the general development,
corresponding to a lowering motion, is in line with what was expected from the literature.

Although there is a slight difference seen between CFD and Brennen, the general behaviour of both forces
is in line. It can be stated that the analytical expression for the hydrodynamic force based on Brennen’s flat
plate analogy is verified by the conducted CFD tests.



CONCLUSIONS AND RECOMMENDATIONS

9.1. CONCLUSIONS

The objective of this research was to increase the understanding of how the set-down of structures on the
seabed is influenced by the soil. The most important conclusions are discussed in this chapter.

9.1.1. BASE CASE SITUATION

The set-down of a structure onto the seabed has been modelled in a dynamic system. This model describes
the system of a disk being lowered onto the seabed. The input for the hydrodynamic or added mass force
for a closed disk was derived from literature. The fundamental equations are described by the mass and
momentum conservation. They have been used to derive an expression for the hydrodynamic force for a disk
including a valve with fluid flowing through it. This expression has been used as input for the 2D model.

1D MODEL
The following conclusions are made with respect to the closed model:

 Far away from the seabed (R/z << 1), the structure is not influenced by the hydrodynamic force. Close
to the seabed, the hydrodynamic force is dominated by the solid boundary and therefore it increases
significantly once it gets in proximity with the seabed.

* As expected, the hydrodynamic force for a closed disk generally has a larger magnitude compared to a
disk with a valve (in this case no fluid flow is included).

* The closed disk has a clear stagnation point right in the middle underneath the disk. In line with the
Bernoulli equation, the horizontal fluid flow velocity is zero and the pressure maximum at that point.

2D MODEL
Regarding the 2D model, including the vertical fluid flow in the hydrodynamic force, the following is con-
cluded:

* The presence of an actual valve relieves pressure underneath the structure, producing a lower horizon-
tal flow velocity and pressure compared to the 1D model. In line with the expectation, a valve engenders
alower hydrodynamic force. A lower hydrodynamic force or momentum corresponds to lower amount
of soil disturbance.

* Compared to the 1D model, the same behaviour for the hydrodynamic force in close proximity with the
seabed is observed in the 2D model. Just before the set-down, an increase in the vertical and horizontal
fluid flow velocity, pressure and finally the hydrodynamic force occurs.

* Due to the assumptions made concerning the force derivation, the stagnation point has been fixed at
the valve radius. At this point, the pressure is maximum and the horizontal flow velocity zero.

* Two approaches have been used to make an estimation for the soil disturbance: one is based on the
maximum magnitude of the hydrodynamic force and one on the conservation of energy. This last
method, assumed to be more realistic and less conservative, resulted in lower soil displacement es-
timations. This confirmed the conservatism of this method.
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9.1.2. SENSITIVITY

To gain understanding on which parameters have impact on the set-down of structures onto the seabed, a
sensitivity analysis has been conducted. The 2D model has been analyzed for various structural properties,
crane tip heave motions and soil types. The following conclusions are drawn:

* A rough crane tip heave motion, caused by a short period and a high amplitude, results in a velocity
amplitude corresponding to the highest hydrodynamic forces. Under these circumstances the hydro-
dynamic force or its momentum engenders the highest amount of soil disturbance. A probabilistic
approach will remove conservatism with respect to an approach where worst phase is considered.

* The hydrodynamic force is sensitive to phasing. Even for weather conditions causing favourable crane
tip heave motions, the force varies considerably for different phases.

 Thesize of the valve has an impact on the hydrodynamic force. Larger valves result in lower magnitudes
of the hydrodynamic force, corresponding to a smaller amount of soil displacement. In the 2D model,
no significant change in the structure’s motion behaviour was observed when increasing the valve size.
In the assumptions made regarding the valve, possibly mass flow has been lost resulting in a lower
impact of the valve on the hydrodynamic force.

* The influence of the structural mass and the soil type is small compared to the impact of the crane
heave motions and the valve size.

9.2. RECOMMENDATIONS

The model designed in this study provides a first step into an analytical method for describing the set-down
operation of a subsea structure onto the seabed and how this operation is affected by the soil. An attempt
has been made in providing a realistic expression for the hydrodynamic force, including the occurrence of 2D
fluid flow. In order to use this equation for analysis purposes, additional research is necessary to obtain the
required accuracy and reliability. All the recommendations are presented in this section.

9.2.1. HYDRODYNAMIC FORCE
Additional research on the derivation of the hydrodynamic force including vertical flow is advised. The fol-
lowing aspects should be further analyzed/improved:

1. The derived expression for the hydrodynamic force is as function of the motion behaviour and the ver-
tical flow velocity. Similar to Brennen’s flat plate analogy, an expression as function of only motion be-
haviour initially was expected. Further research in defining a set of fundamental equations, generating
a hydrodynamic force independent of the valve velocity, is advised.

2. In the current model the stagnation point has been fixed. To make this stagnation point variable, an an
extra boundary in the derivation of the force is necessary. With this improved expression, two stagna-
tion points are expected to be seen: on both sides of the valve one.

3. In this thesis, the results of the fluid flow through the valve showed some unexpected behaviour. It is
likely that once the above two improvements have been accomplished, the results for the flow through
the valve will be more in line with the expectation made in the beginning of this thesis.

Before this model can actually be used in the preparation phase of an offshore installation project, further
validation is necessary. This can be done by conducting (more) extensive CFD tests and model test to validate
the derived expression for the hydrodynamic force.

IMPROVE HYDRODYNAMIC FORCE

An attempt has been made to improve the hydrodynamic force by taking an extra boundary equation into
account. This section discusses the extra boundary equation and the several approaches tried to improve the
hydrodynamic force.

In the derivation of the hydrodynamic force the stagnation point has been fixed at the valve radius, r = R,.
To make this point variable, an extra boundary condition has been derived. The extra boundary condition is
based on a global equilibrium, which must hold at the edges of the disk. Figure 9.1 illustrates the system with
the vertical velocity v(?), independent of the position, and the horizontal flow velocity u(R, t) at r = R.
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Figure 9.1: Global equilibrium

The global equilibrium, which is independent of the position, is given in equation 9.1. The equilibrium can
be rewritten into an expression for v(#), see equation 9.2. The full derivation is given in appendix J.

2nRzpu(R, 1) = prR2v(1)* (9.1)
v(D) :\/ZRZ( utt ”) 9.2)

As expected, this global expression for v(#) is a function of u(R, ) and R,. This expression needs to be con-
nected to the local equations derived in chapter 4. Several approaches have been made, they are explained in
appendix J. None of these approaches resulted in a better description of the hydrodynamic force. As became
clear from approach 2 & 3, described in the appendix, the valve radius was omitted from the momentum
equation. This is impossible, since R, represents the presence of the valve in the hydrodynamic force.

A possible next step in improving the force is to reanalyze the derived fundamental expressions, especially
the horizontal fluid flow velocity. Possibly u(r, t) should contain R,z,, which would mean that, as expected, the
R, remains present in u(r, t) and therefore in the expression for the pressure and hydrodynamic force.

9.2.2. SET-DOWN OF AN ACTUAL SUCTION PILE

The set-down of a disk has been analyzed in this study. By including actual skirts and adding length to the
disk, a more realistic analysis of the set-down of a suction pile on the seabed can be obtained. From this
analysis, the following is expected to be observed:

1. As the skirts start penetrating the soil, they will generate an extra resistance force acting on the suction
pile. It is likely that the pile will come to rest before actually reaching the top.

2. The inside of the suction pile will fill up with water. Since water is assumed to be incompressible, the
tip of the pile is expected to have the same characteristics as a closed disk.

3. For atall pile, it is thought that the tip is not influenced by the valve, meaning the tip could be compared
with a closed disk with uniform pressure underneath. A stagnation in the middle of the pile is expected
to be present.

4. The top of the pile will be influenced by the valve, as water can only escape through the valve in vertical
direction. For larger valves, water can flow easier through it, relieving the pressure underneath the top
of the pile quicker. Right underneath the top of the pile, at some position left and right of the valve a
stagnation point is expected.

After implementing an actual suction pile into the dynamic model, the set-down velocity can be analyzed
more extensively. It is recommended to study/compare the structure velocities derived with the simplified
method based on Bernoulli, the DNV iteration analysis and from the established dynamic model to detect
whether any conservatism is included.

In this model a perfectly vertical set-down was assumed, neglecting the horizontal forces acting on the struc-
ture. In reality, the set-down of a suction pile can happen under a small angle. In this case, the horizontal
forces acting on the suction pile need to be accounted for. It is expected that the hydrodynamic force will also
act in horizontal direction on the structure and thus should be considered in the derivation of the hydrody-
namic force.
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9.2.3. OPTIMIZATION

To ensure a safe subsea installation operation and to minimize the costs, decisions concerning the influential
parameters need to be well considered. To optimize the set-down of a suction pile, the following parameters
need to be further analyzed, individually and together:

1. The amount and size of valves. This thesis indicates that the larger the valve, the lower the hydrody-
namics force and thus the lowest soil displacement is expected. Suction piles can have several valves
instead of one big one in the middle. Generally valves are quite expensive. A well considered deci-
sion between the allowable soil deformation and the costs spent on the amount and size of valves is
recommended.

2. The constant crane lowering velocity. During this study a value of 0.1 m/s for the constant crane low-
ering velocity has been used. To optimize the set-down of structures, the impact of variable constant
crane lowering velocities is advised. Especially in combination with irregular waves, it is not straight-
forward whether fast or slow lowering is favourable.

3. The crane tip heave motion. Maximizing these heave motions together with the constant crane lower-
ing velocity will ensure to acquire an optimum set-down velocity for the suction pile. With this velocity
the pile should maintain enough holding capacity in the soil guaranteeing a safe installation.
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DNV ITERATION ANALYSIS

This appendix describes the iterative analysis procedure established by Det Norske Vertias [4]. With this
method the velocity of a suction pile can be calculated. The procedure, consisting of 11 steps, takes the
non-linear behaviour of soil resistance into account.

1. Assume an incremental soil displacement Ad,;; [m].

2.

Calculate clearance h;[m] between skirt tip and seabed. The clearance h; becomes negative when the
skirts start penetrating into the soil.

hi=hi_1 —Az;+ A0 where Az; = v, At [m]

Calculate the area for water to escape A flow; [m?], consisting of the valve area A, and the area under
the pile till the seabed:

Aflowi = A, +nDh;

Calculate the water pressure Py, [N/ m?], the flow velocity v flow;Im/s] and the water pressure force
Quw, [N] on the suction pile and the soil:

P, = 0.5k 1000 (Vfiow,)’

. _ Agp A5&01‘1-
with vpiou, = (72 (ve — =57
Qw,- = Pw,- Asp

Calculate the total force on the soil Qs,;;, [N], consisting of the water pressure force Q,,; and the skirt
force Qskirs;:

Qsoili = Qwi + stirti

Calculate the soil displacement §,;;,[m] and the change in soil displacement Ad,;;,[m]. There are
three situation possible:
(@) For Qgo;1; < Qsq, which means ’elastic’ soil deformation

Qsaili
6501'1,- = 5m0b( Osa )

A6501’1,4 = 6soili _5soil,~,1

(b) For Qspiy; = Qgq OF QSO+S;QM = —0.0001, which means 'permanent’ soil deformation

For h; > 0, skirts are not yet penetrated:
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72 A. DNV ITERATION ANALYSIS
Atow, = (v = 258 A | L5552
hy = Aflo;[ub_Ah
Absoil; =—hi_1+Az;+h;
6soili = 6soili_1 + A5301’11»
For h; <0, skirts are penetrating:
Y PO LT Y LTI
7. Step 1 to 6 are repeated until convergence is reached.
8. Calculate the change in crane wire length 6;,,, [m], where v, represents the constant crane lowering
velocity:
Oline, = ¥.Azi — (Vct+ doi (sini+¢) - simp))
9. Calculate the new line force Qy; e, [IN], where kj;p, is the crane wire stiffness:
Qline,- = Qline,O + kline(slinei =0
10. Calculate loss in kinetic energy AEy, [Nm] and the remaining kinetic energy Ey;:
AEki = (Qw,- (ASZ;)AU) + stirt,' + Qlinei - quhm) At
Ek; = Ex;_, —AEk,
11. Calculate the new velocity v,,, [m/s]:



SOIL DISTURBANCE

This appendix explains the method based on the conservation of energy for describing the soil disturbance
resulting from the hydrodynamic force. The method includes the inertia of the soil. The soil is modelled
as a 1 DOF mass spring system with viscous damping, on which a general disturbing force is acting: the
hydrodynamic force. The situation is illustrated in figure B.1.

l thd

e e
l Zsoﬂ(t)

kSOiE LJ Csoil

Figure B.1: 1 DOF system with viscous damping under general disturbing force

The 1 DOF system with viscous damping under a general disturbing force [20] can be explained by the equa-
tion of motion given in equation B.1 and can be rewritten into equation B.2. The terms m, ¢ and k are related
to the soil in this case.

MZsoi1 + CZsoil + KZsoit = Fya (1) (B.1)

. . 1
Zsoil +20wo Zs0i1 +‘ngsoil = Ethd(t) (B.2)
With

wo : Natural frequency of soil, wg =1/ % [rad/s]
¢ : Dampingratio, { =0.7-1.3 [-]

The mass of the soil is calculated using the formula in equation B.3. Assuming that the soil under the disk
with a depth of R can be affected by the momentum, the soil volume is calculated as V = 7R?R. The density
of the soil is taken as 2600 kg/m?. The soil stiffness k;,;; is equal to the one taken for the linear spring in the
structural model.

m=psoitV (B.3)

To describe the maximum soil displacement, equation B.2 is integrated between the starting time #, and the
collision time t,,;. The collision time #,; is the moment at which the hydrodynamic force is maximum. This
is just before the structure lands on the seabed. With respect to the starting time fy, the following requirement
should hold:

(teor — t0) < To (B.4)
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74 B. SOIL DISTURBANCE

The natural period Ty is calculated by 57’; By taking requirement B.4 into account, the integration is described
by the following equation:

Leol 1
f Zs0i1 +20woZs0i1 +wgzsoil = Ethd(t)dt (B.5)
fo

The left-hand side of the equation describes the behaviour of the soil, including the inertia of the soil. The
right-hand side of the equation describes the momentum or impulse coming from the hydrodynamic force.
The impulse can be derived by means of the trapezoidal rule in the following manner:

leol 1 Lol — L F (o) + F (o)
f —thd(t)dt — ( col 0) hyd\'0 hyd\tcol (B.6)
7 m m 2

0

This expression describes the total impulse of the hydrodynamic force that is exerted onto the soil during the
landing procedure. The integration of the first two terms on the left-hand side can be derived as follows:

Teol
f Zs0i1d T = Zsoi1(Leol) = Zsoi1 (10) = —Zs0i1(To) B.7)
fo

teol
f 20woZs0i1Ad T = 20wo (Z50i1(Tcol) — Zso0i1 (1)) (B.8)
I

0

It is assumed that the velocity of the soil is zero at the time of collision. Therefore Z,;;(%:0;) is set equal to
zero and equation B.7 results in —Z,;;(#). The integration of the third term on the left-hand side is slightly
more complex. The soil displacement at a variable time z,;;(¢), valid for 7y < ¢ < t.,;, can be explained by
function B.10. This expression is integrated in equation B.11.

Leol
f Wi zsoidt (B.9)
fo
Zs0i1 (1) = Zs0i1 (o) + (1 —to) (B.10)
teol a 2 5
fm (Zsoil(t0)+(l‘—to)a)dl‘=(Zsoil(fo)—ato)(l‘col—l‘o)+E(l‘wl—fo) (B.11)

The a term, eventually inserted into equation B.11, can be found in the following way:
Zsoil(tcol) = Zs0i1 (10) + (teo1 — ) (B.12)

o= Zs0il(tcol) — Zsoil (o)
Leol — o

(B.13)

Next, equations B.6, B.7, B.8, B.11 and B.13 can be substituted into the energy balance of equation B.5 and the
equation can be solved for the soil displacement at time of collision #.,;. This has been done in Maple and
resulted into the following expression for zg,;;(c01):

- (mwgzsoil(t()) (teo1 — to) —4Mmwo Zspi1(fo) + (thd(to) + thd(tcol)) (to— teol) — 2stbil(fo))
mwo (—wo fy + Woteop +40)

Zs0il (Teol) =

(B.14)

Based on conservation of energy, the expression in equation B.14 represents the maximum soil displace-

ment which results from the momentum of the hydrodynamic force. The result from equation B.14 can be

compared with the Design Profile. Compared to the Design Profile, this is expected to be a less conservative
method to estimate the maximum soil disturbance.



DERIVATION BRENNEN

In this two dimensional model, Brennen considers a flat plate of width 2a and length [ lying on the ocean
floor. This plate is lifted away from the floor by a vertically upward force F and rises to a uniform height k()
above the floor at time ¢. Figure C.1 illustrates the situation.

F
! .

| El i i i i i A i il i B z*z ZZ 771

; - h(t)
Nl i i S i = i i i i i P S g ,f,ff/.f/fx//?'?’f??‘?'???ﬁ'???w_

——
: €

Figure C.1: Brennen’s flat plate near ocean floor

Once the plate is lifted, the proximity increases and therefore the inflow of water increases. This approach
is only applicable when the structure is in close proximity with the seabed, a/h >> 1. In this section, an
explanation of the derivation of the obtained equations is given. As Brennen explains in his paper, the force
can be derived by making use of the laws of conservation [22].

CONSERVATION OF MASS

According to White, the law of mass conservation for a fixed control volume is described in terms of volume
V, surface area A and pressure p, as was seen in figure 4.3. The volume of the fluid is defined as V and varies
over time ¢ and position x. The surface area is derived between boundaries x and x+Ax and for p the pressure
at those boundaries is taken. Similar to the volume, the pressure varies over time and position. In both cases,
V and p are treated uniform over the vertical cross section A. The mass conservation law by White is given

as:
0 o
—ff pdVv +ff p(tixn)dA=0 (C.1
otJJv A
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76 C. DERIVATION BRENNEN

Physically this equilibrium answers the questions ’how much mass will flow through the channel with cross-
sectional area A in time A¢?’. In this equilibrium equation, the first term describes the change in mass over
time and the second term the in and out flow of mass in the control volume of length Ax. Thus the equilibrium
can be rewritten into equation C.2. If a plate with width, 2a, and length, I, is considered, the change in mass
over time is given as in equation C.3.

0
—ff pdV +(pAu)our — (PAW)in =0 (C.2)
ot 174

0 o rhn dh
— V = — A = Ax— .
mfffvpd atfo plAxdz=pl x (C.3)

Next, the in and out flow of mass over the control volume is determined. The mass entering the system at
point x is described as (p Au) . Similarly, the mass leaving the system at point x + Ax is given by (0 Att) x+ax-
The quantity p Au is the mass flow passing through the system in kg/s. To solve this equation, use is made of

the Taylor expansion '.

ou
(AW our — (P AW = phl (u(x+ Ax) —u(x)) = phl ((u(x) + an) - u(x)) (C.4)

ou
(AW our — (PAU) i = phlan (C.5)

The above obtained equations can be substituted into the law for conservation of mass of equation C.1, which
results into the following:

dh ou
Ax— = —phl—A .
ol xdt phlax X (C.6)

By rearranging and clearing the equilibrium of mass conservation, an expression for the velocity gradient is
found in equation C.7. The horizontal fluid flow velocity underneath the plate can be found by integrating
the velocity gradient with respect to x, given in equations C.8 and C.9.

ou _ 1dh

gu___an C.7
ox  hdr €D

*Qu * 1dh
—dx= ———d C.8
b ox fo hart €8
[ -5 ax—utn-uo,n=-3 C9)
A P L A :

One of boundary conditions Brennen addresses in his paper is the fact that the flow velocity in the middle of
the plate has to be zero, u(0, t) = 0. Thus the remaining equation describing the horizontal fluid flow velocity
underneath the plate becomes:

x dh
u(x, t) ——EE (C].O)

Equation C.10 describes the horizontal flow velocity underneath the plate appearing in the gap between the
plate and the seabed. Since the flow is considered to be 1D, the vertical flow velocity can assumed to be zero,
uz(x,t)=0.

ITaylor series: u(x+ Ax) = u(x) + %Ax
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To give an idea of the behaviour of the fluid flow velocity, equation C.10 has been plotted for an imposed
oscillating motion of z(f) = 0.5sin(wt) + 2, see figure C.2. The results for the sinusoidal development motion
can be found in figure 4.4. As can be seen in the figure, the velocity in the middle of the plate is zero, which
confirms the boundary condition. Furthermore, the figure indicates that the flow velocity is maximum at the
edges of the plate.

Horizontal flow velocity under plate over time for T=10s

Flow velocity [m/s]

4 0 Time [s]

Position along suction pile [m]

Figure C.2: Horizontal fluid flow velocity under plate

CONSERVATION OF MOMENTUM
As explained by White, the conservation of linear momentum, likewise to the conservation of mass, must also
be applied to the system. It is described as:

- d .
ZF—E(’W) (C.11)

The term Y F is the vector sum of all external forces acting on the structure. The law for momentum con-
servation is also known as Newton’s second law. Similar to the mass conservation law, the conservation of
momentum can be divided into an expression for the change of momentum over time and the momentum

flux. 5
ZF:Efffvpudv +fpr(u-n)udA (C.12)

The first term on the right-hand side of the equation describes the change of momentum over time. By ex-
amining a plate with width 2a and length [ again, the following equation is obtained:

g av=2 " piaxudz = p1ax 2
9| paav=2 Axudz = plAx~ C.13
Otffvpu 6tfo pldxudz=plaxa (hu) (C.13)

The second term on the right-hand side of the equation represents the momentum flux. In this equation
the value for i is positive in the x-direction and the normal vector 7# is positive in outward direction. As
stated by White, the inlet momentum will be negative and the outlet momentum positive. This is due to the
dot product, seen in equation C.12. This term equals the vector sum of outlet momentum fluxes minus the
vector sum of inlet fluxes.

fpr(ﬁ-ﬁ)iidAz (AW iy — (PAW) Uy (C.14)

To derive this equation, again use is made of the Taylor series” principle. The derived expression eventually
describes the momentum flux.

= phl(u(x+A%)% — (u(x)?) = phl((u(x) + g—ZAx)Z - (u(x))z) (C.15)

2
2Taylor series: (u(x+ Ax))2 ~u? +2u%Ax + (%Ax)
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ou
=phl{2u—A C.16
0 ( U= x) (C.16)

The equations for the change of momentum over time and the momentum flux describe the internal forces
acting on the body. As explained above, ) F is the vector sum of all external forces. Since we are only con-
sidering horizontal flow, the gravitational forces can be neglected. Thus the only external force acting on the
structure is due to the pressure of the surrounding fluid.

ZF:Fp:ess:‘[[Ap(_ﬁ)dA (C.17)

As pointed out by White, the external pressure force acts normal to the surface and is directed inward. Again
the unit vector 7i is defined positive in outward direction and thus always in opposite direction of the pressure.
The force expression for the pressure over the surface area is given in equation C.18. The term p(x+Ax) solved
with the Taylor series”.

ff p(—?z)dA:hl(p(x)—p(x+Ax):—hla—pr (C.18)
A 0x

Finally, the three expressions describing the conservation of momentum have been derived. Next, equations
C.13, C.16 and C.18 can be substituted into equation C.12. Consequently, the momentum conservation law
can be described by:

op

Y et
0x

0 ou
Ax—pleE(hu)+phl(2uan) (C.19)

By dividing the whole equation by p/hAx and rearranging it, the following expression describing the conser-
vation of linear momentum can be found.

10p 2ua_u 10

- ——(huw)=0 C.20
p6x+ 0x+h6t( “ ( )

PRESSURE CALCULATION
The horizontal flow velocity from equation C.10 and its derivative with respect to x can be inserted into the
momentum relation obtained in equation C.20.

16_p+2( xdh)( ldh) 16(_ dh):o

- S e [y c.21
p ox ndr) noi\Var (21

hdt

By multiplying the terms within the brackets with each other, eventually a simplified expression for the con-
servation of momentum can be found.

10p 2x/dh\2 d%h
d x( ) 4Ny (C.22)

—_—— + —_— —_———
pox h2\dr h dt?
Equation C.22 can be rewritten into an expression for the pressure gradient g—’;, given in equation C.23. This

pressure gradient can be used to find the expression for the pressure as function of time ¢ and position x. To
find an expression for the pressure, equation C.23 is integrated over its position, seen in equation C.24.

o __ (Z_X(@)Z_fﬂ) C23)
ox  P\w2\ar) “nare :
49dp a 2x(dh\2 xd’h
Pax=[ —p[Z(LL) 222 g 24
fx ox " fx p(hz(dt) hdtz)x . (C.24)
lx=a— (xt)——B(az—xz)(i(@)z—l@) (C.25)
Plaza=pt D ==7 w\di) ~hare :

3Taylor series: p (x+Ax) = p+ %Ax
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One of the boundary conditions concerns the pressure at the outside of the plate, at x = a. It is assumed that
the pressure at that point is equal to the ambient pressure, resulting in the assumption that p|,-, = 0. Taking
this boundary condition into account, equation C.25 can we rewritten into the following expression for the
pressure underneath the flat plate:

2 (dh)2 1 dzh)
dr

- Pro_ 2
P, 1) = plica+ & (a® - x )(h2 Ldh

2 (C.26)

The pressure distribution has been plotted in figure C.3. By looking at the figure, it can be seen that the
pressure is zero at the outside a = 2.25m. The pressure is expected to be highest in the middle of the plate,
this is also confirmed by the graph in the figure C.3.

Pressure distribution under plate for T=10s

Pressure [Pa]

40 Time [s]

Position along suction pile [m]

Figure C.3: Pressure distribution under plate

FORCE CALCULATION

With equation C.26 the expression for the force exerting on the plate can be derived. Next, the pressure p(x, t)
is integrated over the whole surface area of the plate. This means that the pressure is integrated over twice
the width a and over the length [. Since a unit plate length is considered the value ! =1 is used.

1 ra
Fzzf f plx, t)dxdy (C.27)
o Jo
_zfuﬂ(az_xz)(i(@)z_lﬂ)dx (C.28)
I 2 \dt h dr? '

Finally, the equation for the hydrodynamic force acting on a flat plate in proximity of a solid surface can be
formulated as:

ar (C.29)

P35 ) - )

3% h\n S ar

The hydrodynamic force arises as a result of the fluid imposed on the plate in the proximity of a solid surface.
It must be stated that Brennen displays it in a different way, i.e. the velocity squared term and acceleration
term are switched in sign. This is correct, since Brennen indicates that he assumes the force to be directed
downward.

In this force F, also known as the added mass force, clearly a velocity % and an acceleration % term can
be seen. The force, related to the plate’s motion behaviour, represents the hydrodynamic properties acting
on the plate. Since the plate’s motion changes over time, this hydrodynamic force changes over time and in
proximity of a solid surface.

In his paper, Brennen mentions the initial force on the plate in absence of a solid boundary, i.e. freely moving
in open water:
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d?h
Ffree= —pnazﬁ (C.30)

The reason is to illustrate what influence the presence of the boundary has on the magnitude of the force.
The presence of the boundary results in an increase in the magnitude of the hydrodynamic force. As the as-
sumption of a/h >> 1 should be satisfied, it can be stated that the presence of the solid boundary dominates
the development of the hydrodynamic force imposed by the fluid on the plate.

The total hydrodynamic force, together with the velocity and acceleration term, has been plotted in figure
C.4. In the figure, an overpressure in the first half of the period can be seen. In the second half, an under-
pressure can be seen. The progress of the acceleration term is dominant in the development of the total force.

Hydrodynamic force on plate for T = 10s
800 r r
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—200F
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Force [N]

—400}
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-800F

——Fhyd
—1000 —— Fvelo|:
Facc

_1200 H H H H
0 2 4 6 8 10
Time [s]

Figure C.4: Hydrodynamic force acting on the plate



BEHAVIOUR HYDRODYNAMIC FORCE

In this appendix, the results for the motion behaviour and hydrodynamic force for different imposed lowering
motions on a rigid underground are given. The difference between the imposed lowering motions is the
phasing. Whereas the first motion starts with zero phase difference, the second imposed motion has a phase
difference of .

Figure D.1 and D.2 correspond with the input motion of z(¢) = 0.5sin(wt) —0.1¢ + 2. Figure D.2a shows the
results for the disk without valve and figure D.2b for a disk with valve. The influence of the valve is clearly
visible: it decreases the magnitude of the force.

Structure elevation

2, 0. Structure velooily Structure acceleration
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(a) Structure’s elevation (b) Structure’s velocity (c) Structure’s acceleration

Figure D.1: Motion behaviour with input z(#) = 0.5sin(wt) — 0.1t +2
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Figure D.2: Hydrodynamic force with input z(#) = 0.5sin(wt) — 0.1t +2
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82 D. BEHAVIOUR HYDRODYNAMIC FORCE

Once the proximity increases, the velocity contribution to the force increases rapidly. As explained by Bren-
nen, the presence of the boundary becomes dominant in the behaviour of the hydrodynamic force. This
statement is confirmed by these graphs.

Figures D.3 and D.4 corresponds to the input motion of z(¢) = 0.5sin(wt+m)—0.1£+2. The difference with the
previous graphs is the starting direction of the oscillation, resulting from the phase difference. The intention
of these different imposed motions is to show the phase dependency of the hydrodynamic force.
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Figure D.3: Motion behaviour with input z(#) = 0.5sin(wt +m) —0.1¢ +2

Figure D.4a is the result for the disk without valve and figure D.4b results from the disk with valve. Again the
influence of the valve is seen in the magnitude of the total force.

Around 13 s, the motion gets 0.2 m from the rigid underground. With this imposed motion, an increase
from the acceleration term (yellow line) is observed at that moment in figure D.4. At this distance to the
rigid underground, the presence of the boundary is not yet dominant in the magnitude of the hydrodynamic
force, while this was the case in figure D.2. Since one term is quadratic and the other is not, the force is also
frequency dependent. This is seen in the results from figure D.4.
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(a) Hydrodynamic force, without valve (b) Hydrodynamic force, with R, = 1m

Figure D.4: Hydrodynamic force with input z(¢) = 0.5sin(wt+m) —0.1¢t+2



2D MODEL: HYDRODYNAMIC FORCE

For the 2D model, the hydrodynamic force has been derived through the numerical software programme
Maple. In this appendix the Maple code is given.

2D MODEL: DERIVATION HYDRODYNAMIC FORCE
This file gives a stepwise explanation ofthe deriwation of the hydrodynamic force incduding a valve.

Congervation of mass: plate side

L= restart
= Masschamge + Massfowl + Massfow? =1
Masschamge + Massfow! + Massfow2 =10 1)
» Masschange == p -ﬂ-r-m-%z{r]
i d b
Masschange = pnr A | ety | 2
A, £
= Massdow? = 2-p - m-Ar-z(t)-u
Massfowl == 2pndrz(t)u (K]
= Massflow? =-1-p-n-(Rr)-Ar-v(t)
Massfow? == -p 7w Fv Arv(t) )
[ = Comsofdass = Masschange + Massfow § + Massfows =10
Consofdass = prr Ar | %Z[I] t+ipnArzitiu—prnRrArvit)=0 ()
ES uir,t) = sohe(Consofdass, u)
wi= (r, t) —sohe | Consofduss, u) {6)
[= u(r,t)
(2 ) =i R
1 kdrz|_])|r vit) -
2 Z(1)
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E. 2D MODEL: HYDRODYNAMIC FORCE

Conservation of mass: valve side
=> restart
> Masschange? = 0

Masschange? == 0 ®
> Massflowl2 == 2-n-p-Rv-z-u(Rv, t)
Massflowl2 = 21w p Rvz u(Rv, t) )
> Massflow22 :=-p-m- (Rv)zv
Massflow22 == -p = RA v 10)
> ConsofMass2 == Masschange2 + Massflowl2 + Massflow22 =0
ConsofMass2 == 2mp Rvzu(Rv,t) —pm RAv=0 11
> v(t) = solve(ConsofMass2, v)
v = t—solve(ConsofMass2, v) a2
> v(t)
2u(Rv, t
u(Rv, t) z 13)
Rv

Conservation of momentum: plate side
=> restart

> Momentumchangel = p ~n~r-Ar-%(Z(l)'u(r» 1))

Momentumchangel = p 1 r Ar [ [% z(l)j u(r, ) +z(1) (% u(r, 1) )] (14)

> Momentumfluxl = p -2- n~r-z(t)~[2-u(r,t)-%u(r, t)Ar)

0
Momentumflux] == 4 p nrz(t)u(r,t) (E u(r, t)) Ar (1s)

> Externall == -2- w-r-z(t)-dpdr-Ar
Externall == -2 nrz(t) dpdr Ar (16)

=> Mom1 = Momentumchangel + Momentumfluxl = Externall
0
Moml = pnrAr ((% z(t)j u(r,t) +z(1) (a u(r, t))) +4pmrz(t)u(r, a7
0
1) (5 u(r, t)) Ar=-2nrz(t) dpdr Ar
> dpdrl := solve(Moml, dpdr)
0 0 d
p (42([) u(r,t) (E u(r, t)j + z (1) (E u(r, t)) + (E z(t)] u(r, l)j
z(1)

1 0 0
> dpdrll = ;Ep(r, 1)+ 2-u(rt) (E u(r, t)) +

dpdrl = Y 8)

) o
T o P ) =
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0
EP("J) 0
dpdrll = 0 +2u(r,t) [E u(r, t))
d
| (E z(l)j (ryt) +z(1) [ P u(r, l))
+ = =0
2 z(t)

Conservation of momentum: valve side
|> # Conservation of momentum 2

| > restart

> Momentumchange2 = -p -1t~Rv2-Ar-% v(?)
Momentumchange2 :== -p Tt RV Ar (% v(t))

> Momentumflux2 = p TRV [Z-V(t)'%v(t)ﬂrj

Momentumflux2 = 0

> External? = —Tl:-Rv2dpdr-Ar
External? == - RV dpdr Ar
[> Mom2 = Momentumchange2 + Momentumflux2 = External2

Mom?2 := -p TRV Ar (% v(t)) = - RV dpdr Ar

B dpdr2 = solve(Mom2, dpdr)

1 0 0
> dpdr22 = ;Ep(r, t)-&(v(t)) =0
0
a p(r9 t)

r d
dpdr22 = f — (a V(l‘)) =0

| > restart

> dpdrl = (p(—2~u(r, 1) (% u(r, t)]— 221@ -%(Z(t)-u(n t)))j

Insert Equilibrium between equations of conservation of momentum

%z(l)j u(r,t) +z(1) (% u(r, ’))

R 1
dpdrl = p[—zu(r, 1) (5 “(“)j T2 z(1)

d
1 (Ez(t))r—v(I)Rv
2 z(t)

|

19)

(20)

@1

22)

(23)

24

@25

(26)
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d
- _)_l (az(t))r—v(t)Rv -
] = (rf)=-7 20 @7
[> u(Rv, 1)
1 [Ez(t))Rv—v(l) Rv 28
i 2 z(1) @8
[> aiff(u(r, 1), r)
d
—z(1)
1 dt
i 2 z(n) @9
i d
A = simplify| -
> simplify G )
Q)
A = - 30
] 0 (30)
> diff ((z(1)-u(r, 1)), 1) ,
1 (d d
_z[dlgz(t)jw(dlv(z)]m @1
B 2
> B:= simplijj/(—; [:lltz z(t)] Rv + % (% V(t)) RVJ
1 & d
B:_ZRV[dZZZ(Z)_[dIV(Z)j] 32)
> dpdrl = simpllfj}(p(—Z-u(Rv, t)-A - 220 Bj)
11 d d d
dpdr] = p[4 e [Rv [4 [E Z(l)) v(t) + z(2) [dtz z(t)] —z(¢) [E v(t)) 33)
d 2
SERt)
>
d
> dpdr2 = p m V(1)
dpdr2 = p (% v(t)) (34)
[> C = simplify(dpdrl — dpdr2=0)
11 d & d
C = — Rv|4|—z z —z —z — 35
p[4 rE [ V[ FEOKE (r)[dzz z)] 0 (g 0] (3)
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4 [izmjzm —p (0] =0

> DPDR := F-% v(t) + Gv(t) + H=0
DPDR = F[% v(t)j +Gv(t)+H=0

> solve(DPDR, d v(t)]

dr
Gy +H
i F
i Rv
F = -1 —
> r= (1= ) o
i F=-1=7 20
Rv d
> G = Z(t; il
d
Ry (E z(t))
G:= .
i z(1)
I Ry d 2 Ry
> = z(1)? (5 t)) 4z(1) qf 2
Rv (dz(z)jz Ry [dZZ(Z)]
o de L1 dr
z(1)* 4 z(1)

> solve(DPDR, % v(t)]

Pressure calculation

| > restart
d
| (Ez(t))r—v(t)Rv
> u(r,t) == - )
(%Z(t)) r —v(t) Rv
u = (r,t)—>—? )

(36)

37

(33%)

(39

40)

1)

“2)
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|y (0)—ron) ()
Ipdr == p 5 Z(t)z

1 _;[j;z(t)Jr—k;[iv(t)ij
= z(1)

;> # Integrate first part of equation

> DPDRI = (p(-z'”(’» 2 [% ur t)j))

“3)

44

DPDRI = p % ((iz(z)jr_v(tjmj (?
L z(1)
2
— z (1)
> DPDRIA :=_%p (di(t)2 ) . o
DPDRIA = - — P (EZ(Z)j '
z(1)?

= int(DPDRIA, r =r..R) assuming r > 0,R > 0
d 2

[> INTI4 :

Co))

L (] ®=7)
INTIA = - — 46
_ y e (46)
[ d

L o (g =0)
> DPDRIB = - — 5

2 z(1) 5

v(t) Ry (E z(t)j
DPDRIB = — : @7
i 2 2(1)
[> INTIB := int(DPDRIB, r = r .R) assuming > 0, R > 0
d
v(t) Ry (a z(t)j (R—r)
INTIB = — 5 (48)
I 2 (1)
[> INTI = INT14 + INTIB
d 2 d
| p[az(l)j (R — %) . v(t)Rv[Ez(l)j(R—r)
INTI == - — + = 49
4 2 Z(t)z

z(1)

:> # Integrate second part of equation
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1 0
> DPDR2 = p[— 22(0) -E(z(t)-u(r, t))j
1 (& 1 (d
[ . 2((1t22(t)Jr+2(dtv(t)ijJ
DPDR2 = p Y -0)
(Z“J
>DPDR2A:—*

> INT2A4 = int(DPDR2A, r =r..R) assuming » > 0,R > 0
2

d
(it22(t)] (R —+)
z(1)

|
INT24 = )

d
1 [E v(t)ij
> DPDR2B = o] —Z T

DPDR2B = p[—i T

> [INT2B = int(DPDR2B,r =r..R) assuming » > 0,R > 0
| (% v(t)) Ry
INT2B=p|-— ~——+— | (R—
N Pl7 3 2 (1) (R=r)
> INT2 := INT24 + [NTZB

[ ] wor [ 1 (iv(”jm]m—r)

INTI + INTz))
P = (r,t)— -INTI — INT2

‘

INT2 =

> P(r,t) == (-1-

> P(r,1)
2
| p[?z(t)] (R — %) 1 v(t)Rv(?z(t)](R—r)
4 z(1)? 2 z(1)?
p iz(r) (R —r2) 4 )R
e . [_1 (&) ] i
8 (1) Pl7% (1) (R=7)

(50)

(1)

(52)

(33

(4

(55)

(56)

(57
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E. 2D MODEL: HYDRODYNAMIC FORCE

Calculate force F by integrating P from Rv..R and from 0 to 2pi

2-m R
> F(t) = L JR".P(r,t)-rdrde
27n R
Fi=t— P(r,t) r drdo (58)
L J,O J’Rv ( )
> F (1)
d : ¢’
p(—z(r)) P[ZZ(t)J
1 1 dt 1 dr 4 4
2| {4 e +3 =) (R* — RV (59)
d d
| 1 V(Z)RV[EZ(Z)j [ 1 (E v(l)ijJ X X
302 o PUe T (£ = Rr7)
4 2R2 r[ L R P iZ(t) R
R p (g =0) R AR L b
2 | 4 z(t)2 2 Z(I)z 8 z(?)
d
| (E v(t)ijJ , ,
>

Calculate hydrodynamics force as function of z, dzdt, dz2dt2 & v

Insert the function of dvdt into the hydrodynamic force as it was derived earlier.

=> restart
d d d )
. Rv[4[dtz(t)jv(t)+z(t)[dt2Z(t))_4[dt2(t)j J
> g o= (1) (Rv+ 42(1))
d &’ d ’
. Rv {4 (Ez(t))v(t)ﬂ(t) dfz(t)] —4 (EZ“)) ]
o = z(t) (Rv+4z(1)) ©0)

:> # Hydrodynamic force as function of oa v & dvdt (

(weo) ) o[
p| 5zt 2z
S N R dr (R*—=”R') n

d d
v(t) Rv | — z(¢) — v(t) | Rv
+§[; ()dzf ) +p[-1 [df ] H(R3—Rv3)n
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d 2 d dZ
+{1 p[EZ(t)j R 0 v(t)Rv(Ez(z‘))R_i P(dtzz(t)JRz ) [
4 z(1)° 2 (1) 8 z(1) P
d
— v(t) | Rv
_‘1‘ [dtz(t)) JRJ (RZ RZ)TI:
d 2 &
p (g 20) p[zzz(r)]
=t —l 4 L d 4 4
o [ S a7 16 =0 (& =~7) 1)
d d
1 v(t)Rv[EZ(t)j ) | (E v(t)ijJ . .
+ 3 2(1)2 +?P "4 (1) (R —RV)m
4 2R2 R[4 R p iz(r) R
N ip[dtz(t) ) v(dtz(t)) Pl . [
4 z(1)? 2 z(1)? 8 2(1) P

1 2 2
42(”]1&} (RF—=R")m

| > # Hydrodynamic force as function of z, dzdt, dz2dt2 & v
| > # dvdt inserted into hydrodynamic force equation
d & d :
Rv 4| —z +z —z —4 | —z
o v[ (g =00 (r)[dtz (r)] & (z)j]
z(t) (Rv+42z(1))
d & d :
Rv [4 (E Z(l)] v(t) +z(1) [dtZZ(t)J —4 [E Z(I)) ]
I vl = 2(1) (Rv+ 4z(1)) 62)
[ dvdt (63)
L ) 2
p [fzmj p [zzm]
_1 1 Pla 1 ‘ot
> Fhyd(1) = - [ 2 e +3 20 (R*—RV')m
d
2 |1 YW RV(EZ“)) I (dvdr) Rv s
+[z p G GOk
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_ 1 (dvdt) Rv
4 z(t)
(d ())2 p[d2 z(r)]
p| 7 z(t e
D dr dr i s
Fhyd =t < e T 20 (R —R")m
d
(t)Rv[—z(t)j
1 dt 2 1 dvdtRv 3 3
i R el SIGE Ok
d 2, d & 2
. 1 p (Ez(t)) R 1 v(Z)Rv(Ez(t))R 1 p[dtz z(t)) ) [
4 z(1)? 2 z(1)? 8 z(t) P
1 dvdtRv 5 2
T 0 )R] (RF—R")m
[> Fhyd(1)

LI p[(fz(z)]
[; p(dtz(l)J L dr J(R4R4)n+[

)2 16 2 (1) v 3 (1)

2 d d2 d 2
. Ry [4 (E z(t)) v(t) +z(1) [Zz z(t)] —4 (E Z(t)) ] JJ .
4 z(1)* (Rv+42(1))

(64)

(65)



INPUT DATA

The complete list of all the input data for the base case situation is given here.

Input data Value
Sea water density pw = 1025 kg/m3
General Steel density ps = 7850 kg/m?3
Soil density Psoil = 2600 kg/m3
Gravitational acceleration g =9.81 m/m?
Structural mass M =222 ton
Radius R=2.75m
Structural Valve radius R, =0.75m
Submerged weight Fyupm = 1.90 MN
Position from seabed zZp=2m
Period T=10s
Angular velocity w =0.628 rad/s
Amplitude A=0.5m
Crane Initial crane wire length Lp=1000m
Crane wire stiffness kiine = 1.09 MN/m
Crane lowering velocity Ve=0.1m/s
Soil Soil stiffness ksoi1 =3.52 MN/m
Soil damping ratio (=07-13
Soil mass Mgoi1 = 169.9 ton
Hydrodynamics Added mass coefficient Cp=28.4ton
Drag coefficient Cp=10

Table E1: All input data for the base case situation

The crane wire stiffness value is based on the crane wire stiffness from the Balder. The main hoist has an
axial stiffness of 272 kN/m. In this case, a 4-fall crane wire was taken resulting in a crane wire stiffness of 1.09
MN/m, seen in table E 1. The soil stiffness of 3.52 MN/m was derived by making use of equations 3.6 and 3.7

for large strains and linear behaviour for the shear strength (S, = 2).

The initial conditions differ for the 1D and 2D model. They are discussed for each model separately in sec-

tions 6.1 and 6.2, respectively.
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VALIDATION

To investigate whether the obtained equations of motion are correct, some simple checks have been done.
These checks were done to see if the system is consistently in equilibrium and if the results are in line with
the expectation. In this section, the results of both the 1D model and the 2D model for the following tests are
given:

* Free fall test
* Free decay test
* Constant lowering test

The results for the free fall test for both the 1D and the 2D model are given in figure G.1. In a free fall test, there
is no line connected to the structure, so it should go to zero immediately. In figure G.1a, it can be seen that
eventually the velocity and acceleration become zero. This is at the moment when the submerged weight is
in equilibrium with the soil force.

The exact same is observed for the 2D model with R, = 0.75 m in figure G.1b. Notice that the crane oscillation
from the top right corner in figure G.1a has been replaced by the valve velocity in figure G.1b. As expect, the
valve velocity quickly increase and immediately decreases back to zero again.
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(a) Free fall test for 1D model (b) Free fall test for 2D model

Figure G.1: Model validation: free fall test

The results for the free decay test for both models can be found in figure G.2. In a free decay test, the constant
lowering speed of the crane and the amplitude are assumed to be zero. The system starts in an unbalanced
situation (in this case 3 m above the seabed) and needs to get back into its equilibrium state. This is eventu-
ally achieved, as seen in the figure G.2.
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G. VALIDATION

Displacement
E Structure
k=3 Soil
&
£
8
ke
&
g
0 200 400 600 800 1000
Time [s]
Velocity
2
-
E
20
]
°
2
-2
0 200 400 600 800 1000
Time [s]
x 10 Line force
3
Z2
3
1
0
0 200 400 600 800 1000
Time [s]

Displacement Displacement Velocity
__ 1005 _ 3 02
E Crane E Structure - Vertical fluid flow
H £ 2 Soil £ o1
S 1004 s E
g 51 E
S 1003 8 8
g g0 2 -0
a 1002 8 1 0.2
0 200 400 600 800 1000 0 200 400 600 800 1000 “o 200 400 600 800 1000
Time [s] Time [s] Time [s]
Acceleration Velocity Acceleration
— 5 2 — 5
5 £ s
g0 g0 g’
o ° o
8 B 8
< <
-5 -2 -5
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Time [s] Time [s] Time [s]
X 10* Hydrodynamic force & Soil force 3X 10° Line force X 10* Hydrodynamic force & Soil force
1
Z o Ze2 z
8 8 g o %====——
5 s 21 £ 4
-10 0 -2
0 200 400 600 800 1000 0 200 400 600 800 1000 [ 200 400 600
Time [s] Time [s] Time [s]

(a) Free decay test model for 1D model

(b) Free decay test for 2D model

Figure G.2: Model validation: free decay test

The results of the constant lowering test can be found in figure G.3. During this test, the amplitude and period
are assumed to be zero. This means that the structure is lowered with the constant crane lowering velocity
of 0.1 m/s. Basically the structure is pushed downwards with a constant velocity and once it reaches the soil,
this velocity changes due to the soil reaction force. This can be seen in the figure below.

The behaviour for the closed disk, illustrated in figure G.3a, and for the disk with a valve radius of R, = 0.75
m, are shown in figure G.3b, is expected.

Displacement Displacement Displacement Velocity
_ 2 1005 _ 2 0
B Soil € 1004 E 1 Soil E
5 § § Z -005
g0 £ 1003 S 0 %
-3 3 o
7] 2y @2 >
a o a
-1 1002 -1 -0.1
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 20 40 60
Time [s] Time [s] Time [s] Time [s]
Velocity Acceleration Velocity Acceleration
0.05 o« 01 0.05 « 015
- % . 2
£ 0 E 005 2 0 o E o1
E < E <
Z -0.05 g o0 Z -0.05 £ 005
2 0. 5 Z 0. 5 O
k] & S &
2 -0t g -005 2 -o1 g o0
-0.15 < o4 -0.15 < 005
20 40 60 80 100 0 20 40 60 80 100 [ 20 40 60 0 20 40 60
Time [s] Time [s] Time [s] Time [s]
R x10° Line force » x 10° Hydrodynamic force & Soil force N x10° Line force R x 10° Hydrodynamic force & Soil force
Z 1 z gt =t
g g g
S S S S
€0 “ o5 “ 05 “ 05 hyd
Fsoil
-1 0 0 0
0 20 40 60 80 100 0 20 40 60 0 20 40 60 0 20 40 60
Time [s] Time [s] Time [s] Time [s]

(a) Constant lowering test for 1D model

(b) No heave oscillation test for 2D model

Figure G.3: Model validation: constant lowering test



H.1.

1D MODEL: OPEN DISK

RESULTS BASE CASE

The results for the base case situation of the 1D model with a valve of R, = 0.75 m are given here. Also here the
structure decreases as it gets closer to the seabed and an increase in the acceleration and the hydrodynamic
force is observed. The maximum hydrodynamic force is slightly lower compared to the closed disk.
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30
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(c) Structure’s acceleration
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(d) Hydrodynamic force & Soil force

Figure H.1: 1D model with valve with R, = 0.75m: results base case

Since the development is similar to the closed disk for the 1D model, the graphs corresponding to the hor-
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H. RESULTS BASE CASE

izontal fluid velocity, pressure distribution and estimated soil displacement are left out of here. Table H.1
shows the soil disturbance for different damping ratio’s calculated with the conservation of energy method.

Model Dampingratio{  Soil disturbance zg,;;
0.7 0.276 m
Closed 1D model 1 0.227 m
1.3 0.189 m
0.7 0.218 m
Open 1D model 1 0.182m
1.3 0.154 m
0.7 0.219m
Open 2D model 1 0.183m
1.3 0.153m

Table H.1: 1D % 2D model: estimated soil displacement for various damping ratio’s

H.2.2D MODEL: DISK WITH ONE SYMMETRIC VALVE

The results for the 2D model including the initialisation are given in this section. As can be seen in figure H.2,
the structure’s velocity and acceleration and vertical fluid flow velocity start with an initial condition of zero.
After 80 s the crane starts to lower with a constant velocity of 0.1 m/s.
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Figure H.2: 2D model with valve with R, = 0.75m: results base case



RESULTS SENSITIVITY ANALYSIS

I.1. STRUCTURAL PROPERTIES: VALVE SIZE

RIGID UNDERGROUND

In figures [.1 and 1.2, the results for all ratio’s related to the free fall are shown. From figure I.1b and 1.1d, a
clear development for different valve sizes can be observed. Figure 1.2b clearly indicates that a large valve
results in a lower hydrodynamic force.
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Figure I.1: Free fall test for all ratio’s, part 1
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Figure 1.2: Free fall test for all ratio’s, part 2

The pressure distribution for a disk with valve with R, = 0.5 m and R, = 2.5 m, respectively, have been given
in figure [.3. As expected, the pressure distribution underneath a disk with a large valve is lower compared to
the disk with the smaller valve.

Pressure distribution Pressure distribution
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(a) Pressure distribution for Rv = 0.5m (b) Pressure distribution for Rv=2.5m

Figure 1.3: Free fall test for R, =0.5m and Ry =2.5m

The results for the constant lowering test are given in figure [.4. Based on this test it can be stated that for a
structure with a large valve, lowered with a constant velocity of 0.1 m/s, the hydrodynamic is lowest. This is
in line with the expectation and also seen in the free fall test.

In figure [.4d, some unexpected results for the vertical fluid flow velocity were observed. The vertical fluid
flowing through a valve with R, > 2 m is expected to be nearly equal to the structure’s velocity. This was not
observed in this test.
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Figure 1.4: Constant lowering test for all ratio’s, part 1

The horizontal fluid flow velocity for various valve sizes was evaluated. The results for a disk with valve radius
of 0.5 m and of 2.5 m are given in figure I.5. As was expected, the horizontal flow velocity for the large valve
is generally lower than for the smaller valve. Similar to the free fall test, a lower pressure distribution for the
disk with R, =2.5 m was observed and therefore has been left out of here.
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Figure 1.5: Constant lowering test for R, = 0.5m and Ry =2.5m

SOIL UNDERGROUND
The results for the base case situation for all valve ratio’s can be found here. A clear development in the
hydrodynamic force can be visualized in figure 1.6d.
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Figure 1.6: Base case for all valve ratio’s
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The P90 values of the hydrodynamic force and the soil displacement for a disk with R, = 1.5 m are given in
figure 1.7. The soil disturbance, based on the P90 values for T = 8 s, are given in figure 1.7b. Also here the
combination of T = 8 s and A = 1.25 leads to the largest soil displacement. The estimated soil disturbance
graphs corresponding to a period of 10, 12, 14 & 16, respectively, have been left out of this report.

Period & amplitude sensitivity for Rv = 1.5

P90 estimated soil disturbance caused by structure
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(a) Weather sensitivity on hydrodynamic force for disk (b) Estimated soil disturbance for disk with
with Ry =1.5m Ry =1.5m, T =8s and variable A

Figure 1.7: Weather sensitivity analysis for disk with R, = 1.5m

Figure 1.8 shows the results for a disk with R, = 2.5 m. It can be noticed that the P90 values for such a large
valve are significantly lower compared to a valve with R, = 1.5 m. According to the Design profile, a structure
with this size in valve will displace nearly no soil. It is expected that the Design profile for structures with such
large valves is not valid any more. In such a case, it is predicted that the soil will move in upward direction
through the valve.

Period & amplitude sensitivity for Rv = 2.5
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Figure 1.8: Weather sensitivity analysis for disk with R, =2.5m
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The conservation of energy method also has been used to calculate the soil displacement corresponding
to the contour plots in figures 1.7b and 1.8b. The displacements coming from T =8 s, { = 1 and various
amplitudes for the disk with R, = 1.5 m and R, = 2.5 m are given in table [.1. The value for R, =0 m and R,
= 0.5 m are for simplicity also given in the table. As expected, they are more conservative compared to the

Design Profile.
R, A=025m A=05m A=0.75m A=1m A=125m
0Om 0.094 m 0.130 m 0.140 m 0.163m 0.181m
0.5m 0.072m 0.074 m 0.082 m 0.158m 0.176 m
R,=15m 0.058m 0.070 m 0.087 m 0.104m 0.169 m
R,=25m 0.035m 0.060 m 0.075 m 0.091m 0.106 m

Table I.1: 2D model: estimated soil displacement for { =1, T = 8 s and various amplitudes

I.3. SOIL CONDITIONS

The maximum hydrodynamic force for all phases and estimated soil disturbance has been visualized for dif-
ferent soil stiffnesses in figure [.9. For soil with stiffness k;,;; = 7.04 MN/m, the highest hydrodynamic forces
and largest soil disturbance can be observed. This was expected and in correspondence to what was seen in

the analysis on the valve influence on a rigid boundary, section 7.2.
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Figure 1.9: Sensitivity analysis soil conditions




GLOBAL EQUILIBRIUM

J.1. DERIVATION GLOBAL EQUILIBRIUM
This section explains the derivation of the global equilibrium. Global means the equilibrium is independent
of the position. Thus, the global equilibrium must hold at the edges of the disk, see figure J.1.

v(t) T R,
-

.
RU

=

L

z(t)
u(R, 1)

-

Figure J.1: Global equilibrium

This global equilibrium is derived by means of the conservation of momentum. Assuming there is no change
in momentum, the momentum flux and external force for the plate side are described in equations J.1 and J.2
and for the valve in equations J.3 and ] .4, respectively. The P* and P~ represent the pressure at the plate side
and the valve, respectively.

f fA p(ii-7) idA=2nRzpu(R, t)? Jg.n
f fA p(-A)dA=P 2nRz J.2)
fpr (-7 id A = prR2v(1)? (.3)
f fA p(-n)dA=P nR’ (J.4)

These equations can be substituted into the conservation of momentum, see equation J.5. In the derivation
of the hydrodynamic force, the hydrostatic pressure at the outside was assumed to be zero: P* = P~ = 0.
Finally, the global equilibrium is given in equation J.6.

P*2nRz+2nRzpu(R, )* = P"nR% + pnR%v(1)? (1.5)
2nRzpu(R, t)* = prRZv(1)* (J.6)
b1 =\/2Rz( u ”) 0.7)

v
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J.2.

ATTEMPTED APPROACHES

This section describes the attempted approaches on improving the hydrodynamic force by including an extra
boundary equation.

BASED ON EQUILIBRIUM BETWEEN EQUATIONS OF MOMENTUM CONSERVATION

The local equilibrium between the equations of momentum conservation, % Iplate = g—’r’ |yalve resulted
in alocal expression for 7 in chapter 4.

This expression was set equal to the global 3¢ derived from equation J.7, and solved for an expression
for the stagnation point R;.

The local a”, global v(t) and stagnation point R; were inserted in the conservation of momentum. That
equation, belng a function of only know variables, was converted into an equation for the pressure and
eventually the hydrodynamic force. The results generated were not realistic.

When implementing a variable stagnation point, the connection made of g—’f Iplate = g—’fl valve &L T =Ry,
does not hold any more. It is thought that in this case you should remain with a conservation of mass
of u(r, r) (as function of i.a. R,) and a conservation of momentum (instead of each equation double).

It is expected that we remain with the global equation J.6 and the following two local equations:

Ryv(t) -4 oz

22 J.8)

u(r, 1) =

1P 094 L9 (- (1.9)

por or 2zot '
In the three other attempted approaches, only these three fundamental equations have been consid-
ered.

BASED ON EQUILIBRIUM v/(f)

The global equilibrium (equation J.6) was rewritten into u(R, ) and set equal to the local horizontal
velocity u(r, t) atr = R.

Solving this equilibrium for v(#) and substituting that into u(r, #) resulted in a function of u(r, ) inde-
pendent of R,,.

Converting the conservation of momentum into the pressure, with substitution of u(r, t) independent
of Ry, resulted in a function for the pressure independent of R,. This can not be correct, as R, repre-
sents the presence of the valve in the hydrodynamic force.

BASED ON EQUILIBRIUM u(R, t)

The local u(r, ) was inserted into the global equilibrium (equation J.6) at r = R, and solved for v(¢). By
inserting this v(f) into u(r, ) again the R, was omitted from u(r, ).

Similarly, this ended in a function for the pressure independent of R,,.

BASED ON EQUILIBRIUM 4% = 0

dr

At the position where the stagnation point occurs, the following should hold: ﬂ = 0. By using J.8, this
dz
equilibrium results in Zbr‘ = d’ = 0. The only possibility for this to hold is if z or Z were equal to zero.

This seems unrealistic and thus expected to be incorrect.
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