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ABSTRACT
Mountains are important suppliers of freshwater to downstream areas, affecting large populations 
in particular in High Mountain Asia (HMA). Yet, the propagation of water from HMA headwaters to 
downstream areas is not fully understood, as interactions in the mountain water cycle between the 
cryo-, hydro- and biosphere remain elusive. We review the definition of blue and green water fluxes 
as liquid water that contributes to runoff at the outlet of the selected domain (blue) and water lost to 
the atmosphere through vapor fluxes, that is evaporation from water, ground, and interception plus 
transpiration (green) and propose to add the term white water to account for the (often neglected) 
evaporation and sublimation from snow and ice. We provide an assessment of models that can 
simulate the cryo-hydro-biosphere continuum and the interactions between spheres in high 
mountain catchments, going beyond disciplinary separations. Land surface models are uniquely 
able to account for such complexity, since they solve the coupled fluxes of water, energy, and 
carbon between the land surface and atmosphere. Due to the mechanistic nature of such models, 
specific variables can be compared systematically to independent remote sensing observations – 
providing vital insights into model accuracy and enabling the understanding of the complex 
watersheds of HMA. We discuss recent developments in spaceborne earth observation products 
that have the potential to support catchment modeling in high mountain regions. We then present 
a pilot study application of the mechanistic land surface model Tethys & Chloris to a glacierized 
watershed in the Nepalese Himalayas and discuss the use of high-resolution earth observation data 
to constrain the meteorological forcing uncertainty and validate model results. We use these 
insights to highlight the remaining challenges and future opportunities that remote sensing data 
presents for land surface modeling in HMA.
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1. Introduction

Mountains act as water towers of the world, supplying 
crucial freshwater to adjacent downstream areas 
(Bandhopyadhyay et al. 1997; Immerzeel et al. 2020; 
Viviroli et al. 2007). Changes in the mountain water 
cycle have immediate implications for runoff production, 
ecosystem functioning, and water resources (Cauvy- 
Fraunié and Dangles 2019; Milner et al. 2017; Stibal 
et al. 2020), affecting large populations particularly in 
High Mountain Asia (HMA; Immerzeel, Van Beek, and 
Bierkens 2010; Nie et al. 2021; Pritchard 2019; Yao et al.  
2022). Yet, the propagation of water from HMA head-
waters to downstream areas is not fully understood, as the 

mountain water cycle is shaped by complex interactions 
between the hydrosphere and biosphere which are rarely 
studied or modeled together.

Here, we provide a perspective on recent efforts to 
model the high mountain water cycle in an integrated 
manner, considering the cryosphere-hydrosphere- 
biosphere continuum. We review and update the defi-
nition of blue and green water fluxes, and consider the 
models that can represent that continuum and the 
interactions between spheres going beyond disciplin-
ary separations. Traditionally, glaciers are modeled 
with glacier models, snow processes with snow mod-
els, hydrology by conceptual simplified models, and 
vegetation is either ignored or considered as a separate 
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field of research. When these distinct processes and 
compartments are taken together, this is mostly in 
simplified, conceptual, or empirical glacio- 
hydrological models. We argue that we can advance 
beyond this separation, which is still dominant in 
classical hydrology, between streamflow generation 
processes, whether from rain, snow, glaciers, or 
groundwater, and water stored or transformed by the 
biosphere, such as evapotranspiration. This move can 
be enabled by land surface models, which are estab-
lished for large-scale simulations, but have rarely been 
used for distributed catchment simulations and even 
less so for the high mountain water cycle. Here, we 
show an example of how land surface models, in 
combination with a new generation of spaceborne 
remote-sensing data, offer powerful tools to shed 
light on processes until now ignored or that have 
remained unquantified.

2. A new perspective for modeling high 
mountain catchments

2.1. Blue-green-white water fluxes

Understanding the partition between blue–green 
water fluxes is crucial for quantifying the hydrology 
of mountain areas. Blue-green water fluxes have been 
often defined in the context of water management and 
agricultural research (Falkenmark 1995; Falkenmark 
and Rockström 2006; Feng, Yang, and Han 2021; 
Rockström et al. 2009) to quantify water resources 
readily available for use (blue water) versus vapor 
flows that go back to the atmosphere (green water) 
(Sood, Prathapar, and Smakhtin 2014). A more holis-
tic definition, however, is missing. Here, we use 
a definition based on a catchment water balance 
(Figure 1(a)), where blue and green water fluxes are 
calculated for given spatial and temporal scales. Blue- 
green water must be defined as fluxes, because the fate 
of water in a given storage is a priori generally 
unknown for a spatial domain (e.g. a catchment) and 
for a temporal period (e.g. annually). Given these 
assumptions, blue water encompasses liquid/flowing 
water that contributes to runoff at the outlet of the 
selected domain and is thus accessible for (human) 
use, whereas green water comprises water lost to the 
atmosphere through vapor fluxes, that is evaporation 
from water, ground, and interception plus transpira-
tion. We propose here to call moisture fluxes due to 
evaporation and sublimation from snow and ice, 
which are often unaccounted for in hydrological mod-
els, as white water. Note that as stated above, water 
storage within the domain, which can be of many 
types, does not fall into either category until it con-
tributes to runoff or vapor fluxes. Practically, the blue 
water flux flowing out of a defined domain determines 
the freshwater supply to downstream regions, while 

green water fluxes are key to transfer precipitated 
water back into the atmosphere, with the potential to 
move it across zones and regions (De Kok et al. 2018; 
Keune and Miralles 2019; Rockström et al. 2023). 
Storage in the cryosphere (e.g. snow, ice, permafrost), 
biosphere (e.g. plant water content) and pedosphere 
(e.g. soil moisture, groundwater) can potentially 
become blue, green or white water, according to 
energy fluxes, topography, and catchment character-
istics, even though for certain storage types (such as 
groundwater or plant water content), the fate can be 
largely predicted a priori.

A few examples illustrate these potential transfor-
mations: i) water stored in the soil can become blue 
water if e.g. washed out by additional rain, or it can 
become green water if evaporated at the soil surface or 
through plant transpiration; ii) solid precipitation or 
an existing snowpack can become blue water if melted 
and transferred into a river that leaves the domain, 
white water if sublimated or green water if melted and 
subsequently evaporated by the soil or vegetation; iii) 
liquid precipitation will become blue water as soon as 
it contributes to discharge as infiltration excess runoff, 
but can remain stored in the soil or wetlands.

In high mountainous areas, the complex terrain, 
with high spatial heterogeneity of land surface condi-
tions and rapid changes in elevation and microclimate, 
affects the water cycle in many ways. The cryosphere- 
hydrosphere-biosphere responses and feedbacks (e.g. 
melting snow feeding vegetation, snowpack persis-
tence preventing the beginning of the growing season) 
are often complex and nonlinear, which hinders 
a proper quantification of different water budget com-
ponents in traditional large-scale climate change 
impact assessments (Fan et al. 2019). For example, 
glaciers and snow can act as key water reservoirs dur-
ing droughts in HMA (Pritchard 2019) but anthropo-
genic warming is anticipated to increase atmospheric 
evaporative demands (Vicente-Serrano et al. 2014), 
with the consequence of potentially shifting the parti-
tion of the catchment water balance by turning blue 
into green water (Falkenmark and Rockström 2006; 
Jolly et al. 2005; Mastrotheodoros et al. 2020; Orth and 
Destouni 2018). The role of air temperature in accel-
erating ice and snow melt has been at the center of 
scientific attention (e.g. Huss and Hock 2018; 
Kraaijenbrink et al. 2017). However, its role in chan-
ging the ablation partition from sublimation- 
dominated to melt-dominated (Fyffe et al. 2021), in 
enhancing evapotranspiration (ET) and diminishing 
blue water fluxes due to increased productivity at 
short-time scales (Mastrotheodoros et al. 2020) or 
vegetation succession at longer terms (Carnahan, 
Amundson, and Hood 2019) has been studied much 
less. Understanding how vegetation processes affect 
the availability of blue water from HMA catchments 
with glaciers, snow, and liquid precipitation varying 
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sub-seasonally and with elevation, is a pressing but 
challenging research question. The science commu-
nity is, however, at a stage where models of increasing 
sophistication, and abilities can i) resolve all processes 
leading to blue, green, and white water fluxes’ forma-
tion simultaneously and in a unified framework 
(rather than through distinct analyses) and ii) tackle 
their complex transformation in a warming climate. 
This step is strongly supported by the increasing diver-
sity, accuracy, and resolution of remote sensing 
products

2.2. Land surface modelling in High Mountain 
Asia

The tools that can account for the complexity of pro-
cesses generating blue-green-white water fluxes are 

land surface models, i.e. numerical models that solve 
the coupled fluxes of water, energy, and carbon 
between the land surface and atmosphere (Blyth 
et al. 2021; R. A. Fisher and Koven 2020). Land surface 
models simulate biophysical processes in (most of) the 
critical zone – Earth’s dynamic skin, e.g. from the top 
of the vegetation canopy through the soil and poten-
tially down to fresh bedrock and the bottom of the 
groundwater in multiple grid cells (Grant and Dietrich  
2017). To date, most land surface models focus on 
global or regional scales with horizontal grid dimen-
sions of 0.25–1° (equivalent to about 25–100 km at 
mid-latitudes), and are thus not able to resolve energy 
and water fluxes at sufficient spatial detail to capture 
local heterogeneities and the complexity of high eleva-
tion topography. Most importantly, microclimatic and 
topographic effects leading to complex energy inputs 

Figure 1. (a) Conceptual representation of a mountain watershed with typical land cover and updated blue-green-white water 
fluxes scheme: blue water (B; liquid/flowing water contributing to runoff), green water (G; water lost to the atmosphere through 
evapotranspiration), and white water (W; evaporation and sublimation from snow and ice); (b) Landscapes at different altitudes in 
the upper Langtang Valley (Nepal), the catchment in our pilot study (photos: P. Buri).
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and lateral flows of water in the surface and subsurface 
are often not solved, with few exceptions (Bierkens 
et al. 2015; Fan et al. 2019; Ivanov, Bras, and Vivoni  
2008; Mastrotheodoros et al. 2020; Wood et al. 2011). 
This is particularly relevant in mountainous domains 
such as glacierized watersheds in HMA. Many of the 
land surface models available today were developed 
several decades ago, and only recently included 
detailed mechanistic representations of the entire 
soil – plant – atmosphere continuum (Bonan et al.  
2021; Kennedy et al. 2019). They still struggle in 
representing vegetation dynamics (Fisher and Koven  
2020), or specific processes such as the role of soil 
structure (Fatichi et al. 2020) and thus might over-
simplify the link between soil moisture and transpira-
tion (Clark et al. 2011; De Kauwe et al. 2015; Sheffield, 
Wood, and Roderick 2012; Teuling 2018). Mountain 
glaciers, and especially those with a debris-covered 
surface, which are common in HMA (estimated at 8– 
12% of glacierized area; Herreid and Pellicciotti 2020; 
Kraaijenbrink et al. 2017; Scherler, Wulf, and Gorelick  
2018), have been completely neglected in current land 
surface-modeling applications.

Another category of models commonly used to 
understand water resources in glacierized catchments 
are glacio-hydrological models. Numerous studies have 
applied distributed conceptual glacio-hydrological 
models in HMA, i.e. models that use parameterization 
and conceptual description of hydrological processes 
and in particular calculate snow and glacier melt 
based on (calibrated) degree-day melt factors (see 
a non-exhaustive list of the most advanced model 
approaches in Table 1). Temperature index models 
(also called degree-day models) are based on an 
assumed relationship between ablation and air tem-
perature usually expressed in the form of positive tem-
perature sums (Hock 2003). These models often 
simplify the components of the hydrological cycle, 
and mostly ignore vegetation processes. Due to the 
general scarcity of in-situ data at high elevations, these 
models, requiring little input data and relatively low 
computation time, represent a reasonable way to esti-
mate glacier- and snow melt for multiyear or decadal 
time scales, from the catchment (Ragettli, Immerzeel, 
and Pellicciotti 2016) to regional (Kraaijenbrink et al.  
2021; Kraaijenbrink et al. 2017) and global scales 
(Rounce et al. 2023). However, they depend on para-
meters calibrated for site-specific and present-day con-
ditions, limiting their transferability in space (Gabbi 
et al. 2014) and time (Fatichi et al. 2016; Marzeion 
et al. 2020), and for extreme conditions. This makes 
simulations from such models less robust, especially in 
a regionally variable, non-stationary climate. 
Importantly, while focusing on the cryosphere, glacio- 
hydrological models neglect green fluxes, either 
entirely, or by oversimplifying these processes (e.g. 
vegetation dynamics, soil–vegetation interactions) 

through empirical equations (e.g. Priestley – Taylor 
eq. in Ragettli et al. 2015; Hamon eq. in Sorg et al.  
2014) or considering the total ET amount as 
a residual of the water balance. Glacierized catchments, 
even located at very high altitudes as in HMA, are not 
solely covered by glaciers – a substantial part consists of 
rock, soils, and vegetation, and, in some cases, dense 
forest (e.g. in the Langtang Valley shown in 
Figure 1(b)). The treeline in HMA is among the highest 
in the world (Miehe et al. 2007), and vegetation (mostly 
shrub) has been observed to develop even on the deb-
ris-covered tongues of Himalayan glaciers 
(Racoviteanu, Nicholson, and Glasser 2021). Plant tran-
spiration might thus represent a major part of the water 
budget (Fatichi and Pappas 2017; Yang et al. 2023), 
even in high mountain areas with scarce vegetation 
(Buri et al. 2023). The large variability in microclimatic 
effects, soil-moisture availability, and stomata sensitiv-
ity to water stress (Lansu et al. 2020; Lin et al. 2015; 
Mastrotheodoros et al. 2019; Teuling et al. 2010) hinder 
a quantification based on simple parameterizations.

To our knowledge, only one land surface modeling 
study has been conducted in HMA to date: it resolved 
the full surface energy and mass balance for the 
Langtang catchment in Nepal, accounting mechanis-
tically for the relevant processes of the cryo-, hydro- 
and biosphere (e.g. clean ice, snow and sub-debris 
melt, soil and vegetation dynamics, and lateral flow 
routing; Buri et al. 2023). We use this in this study to 
show the potential and challenges of modeling high 
mountain blue-green-white water fluxes and their 
dynamics. This represents a research frontier and 
demands innovative use of multiple datasets for 
model confirmation.

2.3. Use of earth observation data for land 
surface modelling

There is a dramatic lack of high-elevation in-situ data 
in HMA (Cogley 2011; Pellicciotti et al. 2012; 
Pritchard 2021; Winiger, Gumpert, and Yamout  
2005), which results in a general difficulty of capturing 
land–atmosphere interactions with field measure-
ments (Hiller, Zeeman, and Eugster 2008). Remotely 
sensed observations at high resolution offer a great 
opportunity to develop and evaluate land surface 
models while reducing uncertainties in model initiali-
zation and simulation (Zhao and Li 2015). Remote 
sensing has permitted an unrivaled understanding of 
key changes in the cryosphere (Dehecq et al. 2019; 
Hugonnet et al. 2021; Miles et al. 2021) and biosphere 
(e.g. Maina et al. 2022; Zhu et al. 2016) of HMA over 
the past decades. The systematic combination of 
remote sensing and catchment models has proven 
vital for the understanding of the complex catchments 
of HMA (e.g. Ragettli, Immerzeel, and Pellicciotti  
2016). Model structure and complexity, however, 
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needs to lend itself to a combination with spatial data 
from remote sensing, requiring a distributed approach 
and a physical representation of processes.

Remote sensing data from different platforms have 
become increasingly available (Small 2021), and we 
present here a selection of them (Section 3) that 
shows how these new remotely sensed data sets can 
be exploited to advance our understanding of blue- 
green-white water interactions in high elevation catch-
ments when combined with land surface models. We 
show a possible way forward in the land surface mod-
eling of HMA by presenting a pilot study to inform, 
constrain, and evaluate simulations from a detailed 
mechanistic model with the help of high resolution 
remote sensing data (Section 4).

3. Advances in remote sensing of the cryo-, 
bio- and hydrosphere in High Mountain Asia

In this section, we provide a selection of current earth 
observation products, albeit without any claim to be 
exhaustive, that have the potential to be integrated 
into land surface modeling to resolve blue-green- 
white water fluxes, specifically in HMA.

3.1. Cryosphere

3.1.1. Glacier thinning and mass change
The glacier mass balance gives an integrated assess-
ment of the model’s ability to represent both precipi-
tation and melt processes in a distributed way. The 
elevation change of a glacier surface can be measured 
from space using radar or laser altimetry, gravimetry, 
or by differencing digital elevation models derived 
from synthetic aperture radar or stereo optical ima-
gery (Berthier et al. 2023). These methods have been 
increasingly applied at local, regional, and global scales 
(Hugonnet et al. 2021; Jakob and Gourmelen 2023; 
Shen, Jia, and Ren 2022; Wang, Yi, and Sun 2021). At 
local scales, longer-term glacier elevation change mea-
surements are possible due to declassified spy satellite 
data (e.g. Bhattacharya et al. 2021; Dehecq et al. 2020), 
which can prove very useful for assessing long-term 
glacier mass balance changes (e.g. Jouberton et al.  
2022).

However, contemporary geodetic mass balance 
measurements only provide a single mass balance 
value per glacier. A substantial step forward compared 
to this approach is the derivation of distributed glacier 
mass balance estimates. These are derived by solving 
the continuity equation (Miles et al. 2021; Van Tricht 
et al. 2021), which requires distributed estimates of 
geodetic glacier thinning (e.g. Hugonnet et al. 2021), 
glacier surface motion (e.g. Gardner, Fahnestock, and 
Scambos 2022; Millan et al. 2023) and ice thickness 
(e.g. Farinotti et al. 2019), which are all directly or 
partly derived from remote sensing data.

3.1.2. Snow cover
To reproduce the mountain water cycle accurately, 
land-surface models must accurately represent all 
the processes that cause snow to accumulate or lose 
mass. The assessment of distributed snow cover 
serves as a proxy for precipitation amounts and 
timing, precipitation phase partitioning and snow 
melt dynamics (e.g. Armstrong et al. 2019; Misra 
et al. 2020; Rittger, Painter, and Dozier 2013). 
Snow cover remote sensing primarily involves 
manually delineating snow-covered areas in optical 
satellite images, or generating Normalized 
Difference Snow Index (NDSI) images from green 
and near shortwave infrared spectral bands, and 
delineating snow-covered areas automatically via 
a thresholding approach (e.g. Hall, Riggs, and 
Salomonson 1995). Clouds must be identified and 
removed before the creation of binary or fractional 
snow cover maps. Fractional snow cover can then 
be calculated for a region by integrating snow cov-
erage, while snowline elevation can be calculated, 
for example, through optimization approaches 
using an elevation model (e.g. Krajčí et al. 2014).

The most commonly used snow cover satellite pro-
ducts are Moderate Resolution Imaging 
Spectroradiometer (MODIS) Snow Cover (daily, 500 m; 
Hall and Riggs 2020), and the NDSI products from the 
Landsat and Sentinel satellites (16-day, <30 m). Planet, 
Digital Globe, and Pléiades all offer high-resolution opti-
cal imagery which can be used in a similar manner (Shaw 
et al. 2020a). As cloud computing has developed and 
access to such products has become easier, there has 
been a proliferation of snow cover studies at both regio-
nal and local scales (e.g Zhang et al. 2021).

3.1.3. Glacier albedo
By determining the net shortwave radiation absorbed 
at the glacier surface, glacier albedo is one of the key 
surface characteristics which controls the surface 
energy balance and can be used to indirectly assess if 
the snowfall and snow/ice melt distribution is correct. 
Glacier albedo can be estimated by satellite data 
(Naegeli et al. 2017; Naegeli, Huss, and Hoelzle 2019; 
Fugazza et al. 2019; Ren et al. 2021; Shaw et al. 2020b). 
So far, one glacier albedo product is widely used, 
which is MODIS (MOD10A1/MYD10A1 for snow 
albedo and MCD43A3 for land surface albedo). In 
addition, Landsat and Sentinel glacier albedos can 
also be obtained by a glacier albedo retrieval method 
using Google Earth Engine (Ren et al. 2021), and have 
been used in model calibration and validation (Buri 
et al. 2023).

3.1.4. On-glacier debris cover
As supraglacial debris is an important component of 
many glaciers in HMA we also include information on 
generating debris-specific model inputs from remote- 
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sensing data. Modeling the glacio-hydrological 
response of debris-covered glaciers requires account-
ing for a number of additional glacier characteristics 
including debris thickness, as melt decreases exponen-
tially as debris thickness increases (Fyffe et al. 2020; 
Östrem 1959). Supraglacial cliffs and ponds also 
enhance melt locally, partly compensating the debris 
influence (Buri et al. 2021; Miles et al. 2018). Debris 
extents have been derived at the global scale from 
optical images (Herreid and Pellicciotti 2020; 
Scherler, Wulf, and Gorelick 2018), and, recently, esti-
mates of distributed debris thickness have been deter-
mined at regional and global scales (McCarthy et al.  
2022; Rounce et al. 2021) using a combination of 
remotely sensed distributed surface mass balance pro-
ducts (Miles et al. 2021) and energy balance modeling. 
These products still have relatively high uncertainties, 
but other methods based on the inversion of remotely 
sensed debris surface temperature show good results 
at the local scale and could prove promising for catch-
ment modeling (e.g. Foster et al. 2012; Kraaijenbrink 
et al. 2017; McCarthy 2018; Mihalcea et al. 2008; 
Rounce and McKinney 2014; Schauwecker et al.  
2015). Depending on the method used and the scale 
at which debris thickness is derived, the influence of 
ice cliffs and ponds is somewhat implicitly already 
accounted for (McCarthy et al. 2022; Rounce et al.  
2018). However, these contributions could be added 
explicitly, by combining ice cliff mapping from optical 
images (Miles et al. 2017; Watson et al. 2018; Kneib 
et al. 2021a, 2021b) with their enhancement factor 
relative to conventional sub-debris or clean ice melt 
(Miles et al. 2022).

3.2. Biosphere

3.2.1. Vegetation indices
An increasing number of data products have become 
available that map classical vegetation indices region-
ally and globally, leveraging surface reflectance obser-
vations, optical imagery, microwave, and laser ranging 
(e.g. Fang et al. 2019; Zeng et al. 2022). These products 
make it possible to characterize vegetation dynamics 
and structure at the global scale in a consistent way 
(e.g. Munier et al. 2018), with these indices being 
potentially directly comparable to land surface model 
outputs.

Both the normalized difference vegetation 
index (NDVI), which is a measure of vegetation green-
ness and density, and the Enhanced Vegetation Index 
(EVI) which allows corrections for atmospheric noise 
and canopy background signals (Huete et al. 2002) 
have been available globally since the 1980s from 
a combination of Advanced Very High-Resolution 
Radiometer (AVHRR; 1 km spatial resolution; daily 
temporal resolution) and MODIS data (500 m, daily). 
More recently NDVI is also available e.g. from Project 

for On-Board Autonomy-Vegetation (PROBA-V; 
2014 onwards; 300 m; 10 days) and Sentinel-3 (2020 
onwards; 300 m; 10 days).

Leaf Area Index (LAI) is defined as the total area of 
one-sided leaves over a unit of area on the ground 
(Chen and Black 1992). It quantifies the plants’ cap-
ability to interact with the atmosphere as it determines 
the available area for the exchange of energy and mass 
between the canopy and the surrounding air (e.g. Law, 
Cescatti, and Baldocchi 2001). It can be mapped on 
a large scale using empirical or semi-empirical models 
that relate indices like NDVI or EVI to ground- 
observed LAI (Fang et al. 2019). Widely used global 
LAI products come from AVHRR (0.05° spatial reso-
lution; daily temporal resolution), MODIS (500 m, 4  
days), and more recently e.g. from PROBA-V (300 m, 
10 days) and Visible Infrared Imaging Radiometer 
Suite (VIIRS; 300 m, 10 days).

A number of gross primary productivity (GPP) pro-
ducts have been made available combining various 
data sources and modeling techniques, including 
remotely sensed indices like NDVI and EVI, ground 
observations from flux towers, earth system model 
outputs, photosynthesis modeling, machine learning, 
and data assimilation. As an example, the MODIS 
GPP product (1 km spatial resolution, 8 day repeat 
cycle) uses MODIS derived NDVI together with 
meteorological observations as inputs for a light-use- 
efficiency model and is calibrated with global flux 
tower data (Running, Mu, and Zhao 2015). More 
recently, remotely sensed sun-induced fluorescence 
(SIF) retrievals were used as a proxy for GPP (e.g. 
Köhler et al. 2018; Maes et al. 2020; Pickering, 
Cescatti, and Duveiller 2022).

In theory, remotely sensed indices describing phe-
nology and vegetation states have an enormous poten-
tial to aid the development, parameterization, and 
validation of mechanistic land surface models. 
However, the relatively coarse spatial resolution and 
often low overpass frequencies currently hinder robust 
applications in combination with land surface models, 
especially in HMA (with prevalent complex topogra-
phy and frequent cloud cover).

3.2.2. Surface temperature
Surface temperature is a key variable with which to 
evaluate the performance of land-surface models 
because the major surface energy fluxes depend on it 
(e.g. longwave radiative, latent, and sensible heat, con-
ductive heat flux). For this reason, comparing surface 
temperature simulated by a land-surface model with 
spaceborne surface temperature observations, i.e. ther-
mal infrared radiation emitted by the land surface and 
atmospherically corrected, allows one to assess how 
well the model solves the surface energy balance, and 
therefore how well it represents the underlying physi-
cal processes. However, even though such a 
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comparison might appear straightforward, the cap-
ability of satellite sensors to observe only the upper-
most layer of canopies or other surface properties, 
issues with emissivity specifications, and the fact that 
land-surface models might have quite distinct (and 
often integrated) methods of solving for surface tem-
perature (e.g. one, two or multiple-layer approaches 
exist; Bonan et al. 2021) make such comparisons chal-
lenging, especially in heterogenous and topographi-
cally complex areas. Such comparisons therefore 
hold greater validity in a relative rather than absolute 
sense.

Surface temperature products from satellite sensors 
include MODIS Land Surface Temperature and 
Emissivity (daily, 1 km; Wan, Hook, and Hulley  
2021), ECOsystem Spaceborne Thermal Radiometer 
Experiment on Space Station (ECOSTRESS) Land 
Surface Temperature and Emissivity (approx. 3 days, 
70 m; Fisher et al. 2020), ASTER Surface Kinetic 
Temperature (16 days, 100 m; NASA JPL 2014), and 
products from Landsat instruments 4, 5, 7, 8 and 9 (16  
days, 60–100 m; courtesy of US Geological Survey). 
The spatial and temporal coverage of these products 
is limited by cloud cover, however their accuracy can 
be relatively high and is constantly improving. An 
advantage of the ECOSTRESS product is the availabil-
ity of images at different times of day, allowing the 
temporal dynamics of surface temperature to be 
reconstructed.

3.2.3. Latent heat flux
The energy associated with the transport of water from 
Earth’s surface to the atmosphere (through evapora-
tion, sublimation, transpiration), can be a major 

component of the surface energy balance and is thus 
an important variable in land surface models. 
Although latent heat fluxes are essential e.g. for the 
estimation of green and white water fluxes, it is extre-
mely difficult to measure them in a distributed way.

Several products provide ET estimates, i.e. the 
total amount of all vapor fluxes, for HMA (e.g. 
Chen et al. 2014; Fisher et al. 2020; Jung et al.  
2019; Martens et al. 2017; Mu, Zhao, and Running  
2011; Yuan et al. 2021; Zhang et al. 2019). Large- 
scale estimates of ET using satellite data usually do 
not distinguish between surfaces with snow and ice 
cover (that might experience sublimation) and those 
without. The ETMonitor system (1 km spatial reso-
lution; Zheng, Jia, and Hu 2022) accounts for tran-
sient snow-covered areas and estimates sublimation 
using the Penman equation. Generally, ET from the 
ETMonitor product reproduces the expected spatial 
regional variation of ET, with higher ET values in 
the eastern and southern parts of the Tibetan 
Plateau and lower ET values in the central and 
western parts of the Tibetan Plateau (Figure 2, top 
left map). Other ET products, e.g. FLUXCOM 
(0.083° spatial resolution; e.g. Jung et al. 2019); 
Global Land Evaporation Amsterdam Model 
(GLEAM); 0.25°; e.g. Martens et al. (2017); 
MOD16 (MODIS Global Terrestrial 
Evapotranspiration Product; 500 m; e.g. Mu, Zhao, 
and Running 2011); EB (Surface Energy Balance 
Based Global Land Evapotranspiration; 0.1°; e.g. 
Chen et al. 2014); Penman-Monteith-Leuning 
Model Version 2 (PML-v2; 500 m; e.g. Zhang et al.  
2019 (Figure 2), failed to capture the spatial pat-
terns of ET in mountainous regions, despite the 

Figure 2. Spatial distribution of ET estimates (including sublimation where explicitly considered) from different products in the 
southeast edge of the Tibetan Plateau (white pixels denote “no data”): ETMonitor (1 km); FLUXCOM (0.083°); GLEAM (0.25°); 
MOD16 (500 m); EB (0.1°); PML-v2 (500 m).
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higher spatial resolution of some of them (MOD16 
and PML-V2).

Although there are several spaceborne ET products, 
it is difficult to tell which is correct. A comparison of 
monthly averaged ET (including sublimation) over the 
glacierized Langtang Valley domain (Nepal), esti-
mated based on remote sensing data (ETMonitor 
and GLEAM) and modeled using a mechanistic land 
surface model (Tethys & Chloris (T&C); Buri et al. 
(2023), shows an apparent disagreement regarding 
subseasonal variability and annual amount of ET 
(Figure 3). Assuming that the modeled ET is closer 
to reality due to the higher spatiotemporal and physi-
cal detail and the local catchment focus of the land 
surface model approach, this mismatch demonstrates 
the need for mechanistic land surface modeling efforts 
in these types of catchments.

3.3. Hydrosphere

Estimating river discharge from remote sensing is 
challenging, and currently limited to rivers with low- 
flow cross sections wider than ~100 m (Huang et al.  
2018, 2020), hindering the use of such products for 
most high-elevation catchments to validate simulated 
streamflow as a proxy for an integrated water balance 
component.

Distributed soil water content serves as an inte-
grated indicator of the model’s combined ability to 
represent subsurface soil conditions together with 
precipitation (amount and phase) and ET patterns. 
However, the currently limited spatial resolution of 
soil moisture products from satellite remote sen-
sing (on the order of 0.1–1°) and difficulties in 
detecting water deeper in the soil (e.g. the root 
zone; Feldman et al. 2023; Peng et al. 2021) pre-
vents a detailed assessment of this hydrologic com-
ponent that is considered highly variable in space. 
Daily global soil moisture data are available from 

active and passive microwave remote sensing 
instruments (Dorigo et al. 2017), such as the 
Advanced Microwave Scanning Radiometer for 
EOS (AMSR-E) and its successor AMSR2, the Soil 
Moisture and Ocean Salinity (SMOS), the Soil 
Moisture Active Passive (SMAP) and the 
Advanced Scatterometer (ASCAT) (Colliander 
et al. 2017; Kerr et al. 2012; Kim et al. 2015; 
Wagner et al. 2013). Those microwave instruments 
operate at different frequencies with various con-
figurations, which can affect the sensitivity of the 
measurements to soil moisture. A promising 
approach is the multi-channel collaborative algo-
rithm (MCCA) which can construct long-term 
soil moisture datasets from various satellite sensors 
(Zhao et al. 2021). The MCCA, in conjunction with 
the Zhang-Zhao’s dielectric constant model (Wu 
et al. 2022), allows for the estimation of unfrozen 
water content during freezing conditions, which is 
important in HMA with extensive areas of perma-
frost and frequent freeze-thaw cycles.

4. Constraining and validating a land surface 
model with high- and moderate resolution 
earth observation data

In this section, we show, using results from one of 
the few land surface modeling studies at catchment 
scale, how remote sensing data can be used in 
a multi-step, multi-variable calibration and valida-
tion, to inform a land surface model in the simula-
tion of blue-green-white water fluxes in a complex 
high elevation catchment in HMA. We use the 
model setup, forcing and simulations from Buri 
et al. (2023) to perform a set of experiments show-
ing the potential of the new datasets from space to 
reduce model uncertainty, characterize processes, 
and then explore the partition of fluxes in the 
catchment.

Figure 3. Monthly evapotranspiration amounts [mm] (including sublimation) averaged for the upper Langtang catchment for the 
hydrological year 2018/2019 as derived from GLEAM v3.7b (0.25° spatial resolution), ETMonitor (1 km) and modelled with T&C 
(100 m). Annual sums [mm] of each product are shown below the x-axis.
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4.1. Case study description

Buri et al. (2023) simulated blue-green-white water 
fluxes in a high elevation 350 km2 watershed in the 
upper Langtang Valley, Nepalese Himalayas (Figure 
S1), by using the state-of-the-art land surface model 
Tethys & Chloris (T&C; Fatichi et al. 2012a, 2012b) at 
a high spatio-temporal resolution (100 m, hourly). 
This valley was chosen due to the availability of 
meteorological data used to force the model, and 
a variety of ground-based data, used alongside the 
remote-sensing data for calibration and validation.

T&C models the catchment’s energy- and water 
fluxes in a fully distributed and highly mechanistic 
way by resolving the surface energy balance, soil 
hydrology and vegetation dynamics, processes of run-
off generation and flow routing, and the evolution of 
snow and ice packs. T&C has been applied to a large 
spectrum of ecosystems, environmental conditions, 
and scales (e.g. Botter et al. 2021; Buri et al. 2023; 
Fatichi et al. 2021; Fugger et al. 2022; Fyffe et al.  
2021; Manoli, Ivanov, and Fatichi 2018; 
Mastrotheodoros et al. 2020; Paschalis et al. 2018; 
Shaw et al. 2022). Details about the model forcing, 
study catchment, model settings, and inputs can be 
found in Buri et al. (2023). Here, we apply the same 
model to show how glacier mass balance data from 

space can be used to constrain the highly uncertain 
meteorological input data to the model, and precipita-
tion in particular which is the main uncertainty in 
HMA water cycle simulations.

4.2. Glacier mass balance

We leveraged a high-resolution dataset of glacier mass 
balance inferred from remote sensing using the con-
tinuity equation approach (Miles et al. 2021; 
Figure 4(b)) to constrain high elevation precipitation 
inputs (Figure 4(a)) in an inverse optimization 
approach. We forced T&C with precipitation mea-
sured at the Automatic Weather Station (AWS, Fig. 
S1), using seasonally variable vertical precipitation 
gradients (Immerzeel et al. 2014) derived from pluvi-
ometer data recorded at different sites in the study 
catchment. Because of a lack of high-elevation preci-
pitation observations (>5000 m a.s.l.), the validity of 
a continued linear vertical gradient is questionable and 
a “plateau”-effect, i.e. constant or decreasing precipi-
tation above a threshold elevation, is assumed instead 
(Hewitt 2005, 2011; Immerzeel, Pellicciotti, and 
Shresta 2012). We tested different precipitation pla-
teau elevations (5500, 6000, and 6500 m a.s.l.) as for-
cing for T&C and compared the modeled glacier mass 

Figure 4. (a) Altitudinally resolved annual specific glacier mass balance for the glacierized area in the Langtang basin for the period 
October 2017 - October 2019 as inferred from remote sensing data based on the continuity equation approach (Miles et al. 2021) 
shown in red, and modelled using T&C with calibrated precipitation elevation gradients (black) and alternative precipitation 
gradients (blue and green, respectively). (b-c) Distributed annual glacier mass balance, inferred from remote sensing data, and 
modelled with T&C, respectively. Contour lines have an equidistance of 500 m.
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balances to the remote sensing inferred estimates 
(Figure 4(a)). In this way, we use the highly resolved 
mass balance estimates from space to define the “cor-
rect” elevation of the precipitation plateau. The two 
lower precipitation plateaus resulted in a distinct over-
estimation in modeled glacier mass loss below 6000 m 
a.s.l. and accumulation deficit at higher elevations 
(blue and green lines, respectively) compared to the 
reference estimate (red line). Only a forcing with 
increasing precipitation up to 6500 m a.s.l. (black 
line) allowed the model to simulate sufficient accumu-
lation rates high up (>5800 m a.s.l.) and suppressed 
melt rates enough in the ablation zone (<5800 m a.s.l.) 
of the glacierized areas in the Langtang Valley to 
match the glacier mass balance estimates inferred 
from remote sensing.

By limiting this precipitation optimization exercise 
to the glacierized area of the catchment, we avoid 
a “calibration” over the entire watershed (as often 
done in hydrology-oriented studies). This is important 
because it allows one to identify clear potential errors 
in precipitation inputs that could have been mistaken 
for errors in melt or ET if only the runoff was used to 
assess the correctness of the water balance.

4.3. Glacier albedo

We used distributed glacier albedo observations 
from cloud-free Landsat 8 Operational Land 
Imager reflectance data (30 m spatial resolution; 

courtesy of US. Geological Survey) derived with 
updated anisotropy parameterizations (Ren et al.  
2021), to estimate the best structural bounds (adap-
tation to the cold high-elevation conditions) for our 
albedo module and to validate the evolution of 
glacier albedo simulated with T&C for different 
elevations (Figure 5(a)).

Due to the scarcity of in-situ albedo measurements 
at high elevations, its temporal evolution remains 
uncertain and snow albedo parameterizations are 
based on observations from lower field sites. We tested 
different variations based on the snow albedo para-
meterization of Ding et al. (2017) and show here the 
comparison of model results and observations for one 
specific elevation band (5600–5800 m a.s.l.; 
Figure 5(a)). At this elevation, coinciding with the 
current average equilibrium-line altitude of the gla-
ciers in the Langtang Valley, we expect the highest 
fluctuations in glacier albedo and hence effects on 
melt patterns. The comparison of simulations includes 
three different parameterizations: i) an elevation- 
dependent minimum albedo with a linear increase of 
0.2 km−1 [-], starting with 0.5 at 5500 m a.s.l. (green 
line); ii) a zero albedo decay under non-melting con-
ditions (blue line); and iii) the standard run with an 
overall minimum snow albedo of 0.5 (black line). 
Although all three simulation runs were within the stan-
dard deviation of the observations (red) for the elevation 
band shown here (5600–5800 m a.s.l.), the standard run 
showed the best agreement with the observations and 

Figure 5. (a) Monthly averaged glacier albedos at 5600–5800 m a.s.l. In the Langtang catchment basin for the period 
1 October 2017 to 30 September 2019 as observed with Landsat 8 (Ren et al. 2021) and modelled using T&C with calibrated 
albedo parameterizations (black) and alternative albedo parameterizations (blue and green, respectively). Main model target 
period (hydrological year 2018/2019 is indicated in red. (b–c) Distributed annual average glacier albedo, derived from remote 
sensing data, and modelled with T&C, respectively. Contour lines have an equidistance of 500 m.
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was then used for the simulations of the water balance in 
the catchment.

Modeled annually averaged distributed glacier 
albedo (Figure 5) slightly underestimates glacier 
albedo at the highest elevations (accumulation zones) 
as retrieved by Landsat 8 (Figure 5(b)), but matches 
well the observations in the lower elevations (ablation 
zones). Both observed and modeled annual averages 
show the expected elevation gradient in albedo on 
glaciers.

4.4. Snow cover

In contrast to glacier mass balance (Section 4.2) and 
glacier albedo (Section 4.3), snow cover data were not 
used to estimate model parameters, but to evaluate the 
model performance. We retrieved snow cover data 
(NDSI threshold: 0.4) using the daily MOD10A1 pro-
duct from MODIS-Terra) (500 m spatial resolution; Hall 
and Riggs 2020). We compared monthly average snow- 
line altitudes (Figure 6(a)) observed from MODIS (blue 
dots) and modeled with T&C (black line). The main 
differences between the observed and modeled snow- 
line altitude are apparent in the post-monsoon season 
2018 and pre-monsoon season 2019, respectively, in 
which the model overestimated the average snow-line 
altitude in the catchment, i.e. the model simulated 
a smaller snow cover fraction in the catchment with an 
earlier snow pack depletion at low elevations in both 
shoulder seasons (spring and autumn). The modeled 

annually averaged distributed snow cover fraction 
(Figure 6(c)) shows a smaller area with permanent 
snow cover (snow cover time fraction = 1) than retrieved 
by MODIS (Figure 6(b)). However, the simulations show 
more gradual changes in annual snow cover with eleva-
tion compared to MODIS, which might indicate some 
limitations related to the coarse spatial resolution of the 
satellite product.

4.5. Leaf Area Index

We used LAI to evaluate the performance of T&C 
regarding vegetation dynamics, which has rarely 
been considered in high elevation catchments, to the 
best of our knowledge. We extracted LAI from the 
VNP15A2H product from the VIIRS instrument on 
board the Suomi-National Polar-orbiting Partnership 
(S-NPP; 500 m spatial resolution; Myneni and 
Knyazkhin 2018) and MODIS (MCD15A3H, Terra +  
Aqua combined 4 day repeat cycle; 500 m spatial reso-
lution). We discarded pixels that were recorded with 
low quality regarding clouds, cloud shadows, high 
aerosol quantity, and snow, respectively, and then 
compared the cleaned LAI to the spatially averaged 
T&C model outputs for all pixels assigned with larch 
vegetation (Figure 7(a); see Figure S2 for distribution 
of larch vegetation). Simulated and observed LAIs for 
larch agree relatively well in the growing phase in pre- 
monsoon 2019, whereas the satellite products estimate 
decreasing LAI earlier in the post-monsoon than the 

Figure 6. (a) Monthly averaged snow line altitudes for the upper Langtang catchment basin for the period 1 October 2017 to 
30 September 2019 as observed with MODIS (MOD10A1 product from MODIS-Terra) and modelled using T&C. Main model target 
period (hydrological year 2018/2019 is indicated in red. (b–c) Distributed annual snow cover time fraction, derived from remote 
sensing data, and modelled with T&C, respectively.
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model. This discrepancy could be due to the patchy 
occurrence of larch stands in the study catchment, 
which is not reflected well by the coarse remote sen-
sing products. The influence of spatial resolution on 
the general pattern can also be seen in the annually 
averaged maps, where the simulated LAIs (Figure 7(c)) 
follow a more gradual and potentially more realistic 
pattern with topography and land cover than the 
satellite product (Figure 7(b)). Moreover, general 
uncertainties in modeled and remotely sensed LAI 
values reveal the need for more vegetation-specific 
ground observations, e.g. through phenological cam-
eras (Brown et al. 2016).

4.6. Land surface temperature

T&C simulates surface temperature by resolving the 
energy balance and this variable is thus an important 
indicator for the model performance regarding energy 
fluxes in general and latent heat in particular. The 
ECOSTRESS product provides land surface tempera-
ture at a spatial resolution of ~65 m (Fisher et al. 2020) 
and since its installation in July 2018 it passed over the 
study region approximately at a 3-day frequency. 
However, due to cloud cover or incomplete coverage, 
only 17% of the available imagery (8 of 47 images 
during the target period) were usable to retrieve the 
surface temperature across the watershed. We com-
pared the remote sensing derived land surface tem-
peratures, spatially averaged over all debris-covered 

ice pixels in the study catchment (see Figure S1 for 
distribution of debris covered ice) for each satellite 
overpass, with the simulated surface temperatures 
(Figure 8(a)). The observed surface temperatures 
(dots) were captured by the model (line) at different 
hours of the day (dot colors). Figure 8(b) shows the 
direct comparison of modeled and observed surface 
temperatures at the AWS-site for different days of 
the year (dot colors).

Nevertheless, direct comparisons of observed and 
modeled surface temperatures, especially in complex 
catchments, are challenging (see also Surface tempera-
ture in Section 3.2.2 above) and should be assessed in 
a relative rather than absolute sense.

5. Discussion

5.1. Insights into blue-green-white water fluxes’ 
partition

Distributed results from the T&C simulations 
(Figure 9) show the complex feedbacks between topo-
graphy, elevation, and land cover and reveal the 
importance of applying a detailed mechanistic model 
to unravel all these interactions.

At the annual scale (hydrological year 2018/2019) 
the domain’s water fluxes in the Langtang Valley 
amount to 1210 mm (blue), 122 mm (green), and 
164 mm (white), respectively (Table 1 in Buri et al.  
2023). Evaporation and sublimation (E) are important 
in the catchment, occurring on most of the land 

Figure 7. (a) Spatially averaged Leaf Area Indices for larch vegetation in the upper Langtang catchment basin for the period 
1 October 2017 to 30 September 2019 as observed (with MODIS and VIIRS, respectively) and modelled using T&C (monthly 
average). Main model target period (hydrological year 2018/2019 is indicated in red. (b–c) Distributed average LAI for August 2019 
as an example snapshot covering the entire watershed, derived from remote sensing data (VIIRS) and modelled with T&C, 
respectively. White lines indicate glaciers.
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surfaces except the rock and supraglacial debris sur-
faces when they are snow free (Figure 9(a)), summing 
up to a catchment total of 260 mm w.e. a−1 (Buri et al.  
2023). Simulating dynamic subsurface soil conditions 
(e.g. infiltration and lateral flow routing) is especially 
important in the summer months (April – 
September), with very high spatial variability in 
E (Figure 9(a)), mainly through evaporation from the 
ground and standing water (Figures S3-S4).

Transpiration Rates (Tr; Figure 9(b)) are highest 
during monsoon, coinciding with a peak productivity 
through generally higher temperatures and vapor 
pressure deficits. Evaporation from intercepted water 
on vegetation (Eintercept.,veg.; Figure 9(c)) shows a clear 
peak during the monsoon season (July – September), 
and a clear vertical gradient controlled by air tempera-
ture (see Figure S5 for modeled mean annual air 
temperature). The vapor lost to the atmosphere from 
snow and ice surfaces (white water, primarily sublima-
tion; Esnow/ice; Figure 9(d)) only happens in very high 
elevations of the study basin (>6500 m) throughout 
the year in considerable amounts. Only in winter 
(January – March) when snow covers large parts of 
the catchment and atmospheric conditions are cold 
and dry enough Esnow/ice takes place in most of the 
Langtang Valley. We simulated substantial sublima-
tion rates at high elevations during the winter season 
(0.6, 0.7, and 1.3 mm d−1 at 5000, 6000, and 7000 m a. 
s.l., respectively, from January to March) and in spring 
(0.5, 1.3, and 1.6 mm d−1 at 5000, 6000, and 7000 m a. 
s.l., respectively, from April to June).

The ET/precipitation ratio (ET as total evapotran-
spiration, including sublimation; precipitation as total 
solid and liquid precipitation; Figure 10(a)) at the 
annual scale shows a clear vertical gradient. It demon-
strates the relevance of green water fluxes and in parti-
cular vegetation (through transpiration and evaporation 
from interception; Figure 9(b-c)) for the water balance 

in the lowest zones of the study catchment. However, 
the ratio of the total water lost to the atmosphere (ET) 
to the sum of all direct contributions of liquid water 
(rain, snow melt and ice melt; Figure 10(b)) reveals how 
important green and white water fluxes are compared 
to blue water amounts in a spatial dimension. Our 
simulations show that at high elevations sublimation is 
the only energy flux that removes water from areas 
covered by snow and ice, as snow and ice melt are 
shut down, which is in agreement with recent observa-
tion-based considerations of glacier mass balance e.g. 
on Everest’s South Col Glacier (Brun et al. 2022; Potocki 
et al. 2022). Our simulations reveal in a distributed way 
the important role of sublimation at high altitudes and 
in the winter season, which has been observed at the 
point scale (Litt et al. 2019; Sherpa et al. 2023; Stigter 
et al. 2018; Wagnon et al. 2013) but never quantified for 
an entire catchment.

5.2. Remaining challenges and pathways forward

In this article, we have updated the definition of blue 
and green water fluxes and provided an example of 
modeling the cryo-hydro-biosphere continuum in 
high mountain catchments and we showed how con-
sidering the interactions between spheres is important 
(Section 2). We have discussed recent developments in 
spaceborne Earth observation products that have the 
potential to support catchment modeling in high 
mountain regions (Section 3) and presented 
a promising pilot study application of the mechanistic 
land surface model T&C to a glacierized Himalayan 
basin and explain the use of high-resolution Earth 
observation data to constrain the meteorological 
uncertainty and validate our model results 
(Section 4). Here, we use the lessons learnt to highlight 
the remaining challenges and future opportunities that 

Figure 8. (a) Spatially averaged hourly surface temperature for all debris-covered ice in the Langtang Valley for the period May to 
September 2019, as modelled with T&C (line) and derived from ECOSTRESS product (dots). Dot colour indicates hour of the day of 
satellite product acquisition. (b) Modelled against ECOSTRESS surface temperature at Kyanjing automatic weather station for 
points in time with matching ECOSTRESS spatiotemporal coverage. Dot colour indicates day of the year.
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remote sensing data presents for land surface model-
ing in HMA.

5.2.1. Remote sensing products for modellers
Developments in processing and storing space-
borne Earth observation data in recent years 
brought a massive transition from custom work-
flows, i.e. needing a specialist for every application, 
to operationally available near real-time data in 
various fields of environmental research. For the 
cryosphere and hydrosphere, datasets of glacier 
thinning (Hugonnet et al. 2021), glacier surface 
motion (Millan et al. 2023), glacier/snow albedo 
and snow cover area (MODIS), land surface tem-
perature (Landsat TM; ECOSTRESS), ET 

(ECOSTRESS; Fisher et al. 2020) and vegetation 
indices (MODIS) are now operationally available. 
Besides the open-data policy associated with an 
increasing number of remote-sensing products, 
powerful platforms (e.g. cloud computing services) 
that allow easy and timely access to these datasets 
are an essential tool that improved the usability of 
remote sensing products in recent years, e.g. 
Google Earth Engine, AppEEARS, Microsoft 
Planetary Computer, SentinelHub and others. To 
further ease the use of earth observation data for 
validation and evaluation in land surface models 
new remote sensing studies should use these plat-
forms in order to allow more easily reproducible 
workflows for modelers.

Figure 9. Distributed quarter-annual sums of (a) total evaporation (E; evaporation and sublimation, without plant transpiration), 
(b) plant transpiration (Tr), (c) evaporation from vegetation-interception (Eintercept.,veg), and (d) sublimation from snow and ice 
(Esnow/ice).
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5.2.2. Water balance components hidden from 
satellites
Despite the extraordinary progress in the ability of 
remote-sensing products to provide individual water 
balance components, many key variables remain chal-
lenging or impossible to monitor. Satellite-derived 
estimates of precipitation can vary widely due to the 
specific sensors utilized and the relationships between 
predictors and precipitation, as well as bias-correction 
and blending methodologies (a detailed overview is 
provided by Sun et al. 2018). Here, we have high-
lighted the potential of process-based models to back- 
compute the magnitude and timing of precipitation at 
extreme elevations based upon glacier mass balance, 
a very promising way forward which however cannot 
provide sub-seasonal variability and interannual fluc-
tuations, unless satellite derived glacier mass balance 
products become available at those resolutions. ET is 
a second key variable that remains largely elusive, and 
difficult to constrain. Although a variety of spaceborne 
ET products exist, these are not direct observations 
but modeled quantities or parameterized indirectly 
based on various data sources (Figure 2). Most of 
these products are constrained by coarse spatial reso-
lution, low overpass-frequencies, and quality issues 
related to cloud cover. Therefore, simulated latent 
heat fluxes are extremely challenging to validate with 
remote-sensing data. There is also a lack of eddy- 
covariance measurements in high mountain regions, 
and so their installation – in locations where topogra-
phy allows – in underrepresented land covers, climatic 
regimes, and elevations in HMA would be beneficial to 
improve the validation of both land surface models 
and remote sensing products.

Groundwater is a largely unconstrained water bal-
ance component. It is impractical to be assessed from 
space in complex mountain terrain. Estimates of 

groundwater changes using spaceborne gravimetry 
measurements (Gravity Recovery and Climate 
Experiment, GRACE) exist at the regional scale 
(Jacob et al. 2012; Loomis et al. 2019; Scanlon et al.  
2018), but are too coarse (>100 km spatial resolution) 
to capture changes in the terrestrial water storage in 
individual mountain watersheds.

5.2.3. Future developments in land surface 
modelling
Expanding cloud computing resources (and the advent 
of machine learning) will likely modify the field signifi-
cantly, with land surface models able to run much faster 
and which will likely have data-driven components 
combined with process-based components (e.g. Zhao 
et al. 2019). This will allow their application at both 
high or hyper spatial resolution and on a very large 
spatial scale, a challenge in present conditions. The 
increasing availability and resolution of remote sensing 
products can help substantially in both informing and 
constraining complex land surface models. Probably for 
the first time in the era of spaceborne Earth observation 
the spatial resolution of remote sensing data starts to be 
interesting for mechanistic approaches that simulate the 
cryosphere-hydrosphere-biosphere continuum at high 
spatiotemporal resolution, which will give them a boost 
in the coming decade.

However, issues regarding complex topography 
remain, and whereas many processes and states at the 
land surface can be retrieved (e.g. snow, ice, vegetation, 
and temperature), their quality over complex terrains 
remains to be further evaluated. Additionally, the below-
ground remains completely hidden from space. 
Subsurface conditions are extremely heterogeneous 
and, to date, not even the simplest boundary condition 
(e.g. soil depth), although important for many processes, 
is known beyond the plot scale. Belowground 

Figure 10. Maps of total annual per-pixel ratio of (a) ET (including sublimation) divided by (liquid and solid) precipitation and (b) 
ET (including sublimation) divided by the sum of rain, snow melt and ice melt for the upper Langtang catchment 
(hydrological year 2019), modelled with T&C. Glacier outlines are shown in white.

16 P. BURI ET AL.



characteristics can only be estimated indirectly (e.g. 
Stocker et al. 2023) or by analyzing properties of hydro-
graphs (e.g. Beck et al. 2013; Cooper et al. 2023), or can 
be approximated by stochastic approaches that are 
informed with the statistical properties of the subsurface 
heterogeneity (e.g. Maxwell and Kollet 2008), which are 
presently unconstrained. This will be one of the next 
frontiers for remote sensing applied to the cryo- and 
hydrosphere.

The main benefit of the projected advancements in 
mechanistic high-resolution land surface modeling will 
be to have results which are “physically constrained”, 
concurrently for all variables: no other approach – not 
even direct observations – can produce such results, 
which are distributed, i.e. that every point matters, with 
the clear capability to run scenarios where the com-
plexity of and nonlinear relationships between the 
water cycle and ecological components is preserved.
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