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Abstract

In order to provide accurate statistics for industries, the classification of enterprises by economic activity
is an important task for national statistical institutes. The economic activity codes in the Dutch busi-
ness register are less accurate for small enterprises since small enterprises are not labelled manually.
To increase the quality of the register, automatic classification of enterprises based on their websites
has been tried with supervised text mining techniques. The performance of current supervised text
mining techniques is limited by the available accurately labelled training data. Since inaccurate labels
are available for all enterprises, the current study investigates how to leverage the noisy labelled data
to improve the economic activity classification of small enterprises based on their webpage texts. The
current study compares the performance of various semi-supervised methods that enlarge the train-
ing data by leveraging the abundance of noisy labelled data. The methods are compared against a
supervised baseline, which uses all noisy data as is. The proposed proportional weakly self-training
method queries noisy labelled instances through high probability sampling and filters mispredicted in-
stances. Results showed that proportional weakly self-training improves upon the supervised baseline
while requiring far less training instances. From qualitative analyses, we conclude that the filter of pro-
portional weakly self-training reduces error propagation compared to classic self-training. Additional
experimental results showed that large enterprises are less suitable as training data for prediction of
small enterprises and that top-k performance scores improve results but are not yet sufficient for semi-
automatic classification. Further examination of error detection methods is recommended to improve
web-based economic activity classification.
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Introduction

Official statistics often rely on international classification standards such as the type of economic activ-
ity of businesses. The economic activity classification in the European Union is further referred to as
the NACE classification. The hierarchical NACE classification system is used by all national statisti-
cal institutes in the European Union and can be used to monitor trends across economic (sub)sectors
(e.g., for researchers, policymakers, fund managers, and investment managers), to allow companies
to relate to their competitors and to perform competitive intelligence actions (Berardi et al., 2015).

The quality of economic statistics by (sub)sector in the Netherlands is based on the General Busi-
ness Register (GBR). The GBR contains all 1.8 million enterprises in The Netherlands (CBS, 2020) and
their main economic activity, the NACE code. The main economic activity of an enterprise is the activity
with the largest added value. The NACE codes are mostly derived from the Chamber of Commerce
which identifies the economic activity of new enterprises. The NACE codes in the GBR are prone to
errors since an enterprise can change their main economic activity or perform multiple economic ac-
tivities while little effort is put into the maintenance of the NACE codes. To keep the NACE codes of
enterprises updated, Statistics Netherlands holds a yearly Structural Business Statistics survey where
a small sample of most of the Dutch enterprises is selected and in which the economic activity of en-
terprises might be derived. The NACE code is manually edited by experts if the code is not in line with
values on product and costs filled in on surveys or when it is an outlier, but only for influential (large)
enterprises. For small enterprises, the manual validation of NACE codes is too expensive. An auto-
matic process is hecessary to obtain accurate NACE codes for small enterprises.

At Statistics Netherlands, for many of the enterprises in the GBR a website address is available (ten
Bosch et al., 2019). Websites can give valuable information about the current economic activity of an
enterprise (Berardi et al., 2015). Roelands (2017) and Kihnemann (2019) used the text elements of
the enterprise’s websites to predict their economic activity with supervised text classification methods
(e.g., Naive Bayes and SVM models). However, results showed that the machine learning models
performance is limited by the amount of available labelled data. Other mentioned issues are the within-
class heterogeneity and the class imbalance in the data sets (Roelands, Kihnemann).

In the previous studies, accurate NACE codes for the training data were only derived from the yearly
survey’s, which is a limited sample of all enterprises. The large noisy labelled data set from the GBR
was not used at all. This study investigates how to leverage noisy labelled data to enlarge the train-
ing set with the aim to improve the economic activity classification of small enterprises based on their
webpage texts.

Two problem domains related to the case study that we treat need to be clearly defined. One do-
main is the noisy labelled or in other words inaccurately labelled data. The problem of handling noisy
labelled training data is a type of weak supervision (Zhou, 2017). The other domain concerns a clas-
sification task using a large amount of unlabelled data and a limited amount of labelled data, which is

1



2 1. Introduction

known as semi-supervised learning (Zhu, 2008).

A popular semi-supervised learning method is active learning (Settles, 2009). In active learning an
oracle, e.g., a human expert, can be queried to obtain the ground-truth of unlabelled instances. In our
case, the noisy labels can act as an oracle. Active learning aims to minimise the number of queries
needed for good model performance. The most used query strategy is uncertainty sampling. The
opposite sampling strategy is to query existing instances of which the learner is most certain how to
label and add them to the training set which is referred to as self-training (Mihalcea, 2004). Both ac-
tive learning and self-training require less labelled training data to start with than traditional supervised
techniques. (Stikic et al., 2008)

In short, to automatically classify the text of small enterprise’s webpages into their main economic
activity the main problem of a limited number of labelled examples needs to be solved. Therefore the
research objective of the current study is to evaluate methods that enlarge the training set by leveraging
the abundance of noisy labelled data.

Our main contributions are as follows:

» A performance comparison of several semi-supervised text classification methods, e.g., self-
training and active learning. The comparison addresses the different type of query strategies.

» A performance comparison for several choices of initial training data. The comparison addresses
the usefulness of webpage texts of large enterprises for the prediction of small enterprises.

» A performance comparison of the semi-supervised text classification methods for different groups
of classes and some characteristic classes. The comparison examines the results in detail.

Another more theoretical contribution is our derivation of definitions for top-k performance scores.

The remainder of this thesis report is structured as follows. Chapter 2 presents a background on
NACE classification and discusses related work on handling noisy data and semi-supervised learning
methods. Chapter 3 describes the semi-supervised methods used in the experiments. Chapter 4
describes the data flow of the text mining pipeline, the evaluation metrics and a bootstrap method for
uncertainty estimation. Chapter 5 presents results for three experiments; with four semi-supervised
classification methods, with different types of initial training data and with top-k performance scores.
Furthermore, a quantitative analysis and two qualitative analyses examine the results in more detail.
Chapter 6 discusses the key findings of our research and contains suggestions for future work on
web-based economic activity classification.



Background and Related Work

This chapter first discusses previous work on the specific problem of NACE classification, i.e., predicting
the economic sector of enterprises. Some estimates for the misclassification rate are derived from
literature and an overview is given of recent supervised approaches to the classification problem. Then
our two defined problem domains are introduced: noisy labelled data and semi-supervised learning.
We translate our problem to a semi-supervised classification problem with noisy labelled data. Several
semi-supervised learning techniques are examined that can deal with the large set of available noisy
data. We discuss the primary characteristics of each technique.

2.1. NACE classification
2.1.1. NACE taxonomy

The NACE classification system is a hierarchical taxonomy used to classify enterprises in the European
Union. Specifically, the taxonomy describes the type of economic activity of enterprises. The taxonomy
defines for each group a unique identifier (i.e., NACE code) together with a description. The NACE code
identifies the group of enterprises to which a single enterprise belongs. The NACE taxonomy has four
levels of hierarchy. In The Netherlands, an additional fifth level of hierarchy is used. The taxonomy can
be considered as an ‘is-a hierarchy’ where each level is a subset of the level above it. For example,
enterprises with a fifth-level NACE code of 47641 are classified as 4764 at the four-digit NACE level
(Table 2.1). The current study uses the leaf classes (i.e., the five-digit NACE codes) to construct three
new classification schemes (Section 4.1.2).

Table 2.1: Characteristics of the NACE taxonomy. The fifth level of detail is used at Statistics Netherlands

[ NACE code | #Groups | Group example \

A-U 21 G Wholesale and retail trade; repair of motor vehicles and motorcycles

01-99 88 47 Retail trade (not in motor vehicles)

011-990 272 476 Shops selling reading, sports, camping and recreation goods

0111-9900 615 4764 Shops selling bicycles and mopeds, sports and camping goods
and boats

01111-99000 | 952 47641 Shops selling bicycles and mopeds

2.1.2. Misclassification rate

In NACE classification the goal is to obtain for each enterprise their correct main economic activity
code. Previous work on NACE classification shows that NACE codes available to national statistical
institutes are not always adequately covering the true state of affairs concerning the type of activities
in enterprises. Forinstance, Christensen (2008) estimates that in a binary classification setting 18% of
Swedish enterprises were misclassified as services rather than production, i.e., their NACE code from
the business register did not match their true type of activity. The misclassification rate varied over

3



4 2. Background and Related Work

different industries with some sectors having a misclassification rate of over one fourth. The findings
were robust to taking into account that some enterprises have more than one industry code. Burger
et al. (2015) report, in an internal audit at Statistics Netherlands on the quality of the GBR, 97% of the
three-digit NACE codes were correct for large enterprises (20 employees or more) in the retail trade
sector while 69% of the three-digit NACE codes were correct for small enterprises (up to 19 employees)
averaged over industries. The proportion of correct NACE codes is higher for large enterprises than
for small enterprises because more resources are invested in classifying large enterprises’ economic
activity through profiling. Another study by van Delden et al. (2016) estimates that one-third of Dutch
enterprises in the car trade sector were misclassified. The original data of five consecutive years used
in their study could be obtained to estimate the businesses transition probability to change from one
NACE class to another. We verified that approximately 2-3% of businesses in the car trade sector have
their five-digit NACE class changed throughout a year. Currently, the error rate of the NACE codes in
the GBR is unknown.

2.2. Supervised approaches

Recently there have been several approaches to automatically obtain a classification of industry code
through supervised machine learning methods. Berardi et al. (2015) used website texts to predict the
industry of Italian enterprises according to a taxonomy of 216 classes designed for market research
purposes. The study used and evaluated an extensive list of both endogenous (e.g., URL, title, body)
and exogenous features. The most predictive exogenous features were derived from Alexa, which was
not available for the current study. Of the endogenous features, the URL and website texts (e.g., title,
body, headings) were most predictive. Roelands (2017) and Kiihnemann (2019) also used website
texts to predict the industry of Dutch enterprises. Roelands used a taxonomy with 9 main and 29 sub-
categories, while Kilhnemann attempted to predict 111 classes. Caterini (2018) did not use websites
texts but self-reported texts submitted to the Italian Chamber of Commerce describing the economic
activity of the enterprise.

The current study can be seen as a continuation of research on the economic activity classification
of enterprises based on their websites by Roelands and Kiihnemann. Both studies suggest the poor
text classification performance for many of the classes is (partly) due to the limited amount of available
labelled data. The main distinction with the previous studies is that the current study adds noisy labels
to the training set. Since nowadays website data is plenty available, the abundance of noisy labelled
website texts could be leveraged. We assume, by leveraging the abundance of data with noisy labels,
both the size and quality of the training data can be increased. In numbers, Roelands retrieved a GBR
sample of 5 010 websites and Kilhnemann retrieved a total of 50 654 website texts with NACE labels
for the yearly survey data.

2.3. Handling noisy data

A large amount of noisy labelled or in other words inaccurately labelled data is available. The class
labels are inaccurate since little effort is put into the maintenance of the labels. Noisy or weak training
data are a source of weak supervision when the data is used to obtain labelled training data. In general,
there are three typical types of weak supervision (Zhou, 2017): incomplete supervision, where only a
subset of training data is given with labels; inexact supervision, where the training data are given with
only coarse-grained labels; and inaccurate supervision, where the given labels are not always ground-
truth. In practice, these three types often occur simultaneously (Zhou, 2017). Our situation can be
viewed as incomplete supervision when we consider the noisy data to be unlabelled. This view is real-
istic when the quality of the labels is very poor. Alternatively, we could assume inaccurate supervision
where (part of) the data is considered as noisy labelled.

In inaccurate supervision, a typical scenario is learning with noisy labels where for each exam-
ple complete class information is provided although the correctness is not guaranteed (Hernandez-
Gonzalez et al., 2016). In learning with noisy labels three types of approaches can be distinguished
(Frénay and Verleysen, 2013): label noise-robust models, label noise-tolerant learning algorithms and
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data cleaning methods. Most studies dealing with label noise assume random classification noise, i.e.,
the class labels are subject to random noise. Label noise-robust models (i.e., models that still perform
well despite the presence of label noise (Frénay et al., 2014)) are a straightforward approach to deal
with label noise. Another approach is to use label noise-tolerant learning algorithms. Herein prior in-
formation on the label noise is leveraged (i.e., the label noise is not completely at random). In practice,
data cleaning is a basic approach to deal with label noise by somehow identifying the potentially misla-
belled instances (Zhou, 2017, Miller and Markert, 2019). The detected suspicious instances can then
be either removed or relabelled (Frénay and Verleysen, 2013).

2.4. Semi-supervised learning

In case we would naively assume only incomplete supervision semi-supervised learning is commonly
used (Zhou, 2017). Semi-supervised learning attempts to automatically exploit a large amount of un-
labelled data in addition to a limited amount of labelled data to improve learning performance. In semi-
supervised learning a set of labelled instances {X,Y} = {x;,y;; i = 1, ..., n}, where x; denotes the vector
of features for unit i and y; denotes the class label of unit i, is given together with a set of unlabelled
instances X’ = {x3, ..., xm}, i.e., the set of feature vectors for all m units. The goal is now to find the cor-
responding labels Y’ = {y], ..., vy, } for the unlabelled instances. Historically the oldest semi-supervised
learning approach is self-training (Chapelle et al., 2006). Nowadays active learning is becoming more
popular (Settles, 2009).

2.4.1. Active learning

Incomplete supervision with (human) intervention is also referred to in the literature as active learn-
ing. In active learning, one can query the ground-truth of unlabelled instances using a (human) oracle.
Active learning aims to minimise the number of queries needed for good model performance, i.e., it
attempts to select the most valuable unlabelled instance to be labelled by the oracle (Olsson, 2009).
The primary question in active learning is query formulation: how to choose which instances to try next.
The query strategy determines the ordering of instances to be checked manually. The most used strat-
egy is called uncertainty sampling. In uncertainty sampling, an active learner queries the instances it
is least certain or least confident how to label and retrieves its label through the oracle.

2.4.2. Self-training

For incomplete supervision, instead of uncertainty sampling, another option is to apply the opposite
sampling strategy; query existing instances of which the learner is most certain how to label and add
them to the training set, which is called self-training (Mihalcea, 2004, McClosky et al., 2006, Settles,
2009), bootstrapping (Zhu, 2008, Pise and Kulkarni, 2008) or incremental semi-supervised training
(Rosenberg et al., 2005) and which requires no human intervention. Self-training is a semi-supervised
learning method commonly used in Natural Language Processing (Pise and Kulkarni, 2008, Tanha
et al., 2017). Self-training first trains a classifier with the small amount of labelled data. The classifier
then iteratively labels the unlabelled data with a certain probability. Typically the most confident un-
labelled points, together with their predicted labels, augment the training set and the classifier is then
re-trained. The incremental labelling of the most certain instances attempts to minimise the number
of incorrect labels since randomly adding all of the weakly labelled data to the training set can lead to
more incorrect labels.

Perceptive readers could now note the self-training classifier uses its own predictions to teach it-
self. The self-teaching is indeed problematic since the error rate is prone to error propagation after
each iteration. To solve the potential problem of error propagation many extensions to the self-training
procedure have been proposed. Liand Zhou (2005) propose a self-training with editing algorithm which
utilises a data editing method to identify and remove the mislabelled instances from the self-labelled
data. Only reliable self-labelled instances are used to enlarge the labelled training set. Didaci and Roli
(2006) propose the concept of ensemble-driven self-training. Here each classifier is trained with the
instances which are labelled by an ensemble of multiple classifiers.
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A sometimes neglected setting in self-training is the use of proportional or class-specific sampling
(Mihalcea, 2004, Li and Zhou, 2005, Didaci and Roli, 2006, Triguero et al., 2014). Proportional sam-
pling ensures that the class distribution in the labelled data is maintained (i.e., in each self-training
iteration the number of selected instances assigned to a class is proportional to the prior probability of
that class in the training set). The proportional sampling is necessary to ensure the prior probabilities
of the augmented training set during the self-training procedure do not change.

In self-training (and active learning) the choice in the number of iterations and the number of added
training instances in each iteration influences the speed and performance of the learning process. The
number of iterations can be defined in advance or the algorithm can be run until the unlabelled data
set is empty. The size of the batch of instances is dependent on the amount of computing time one
has. For smaller sized sets the learning progresses slower than for larger sizes. However, a too-large
size could harm the self-training performance and it becomes more difficult to find query strategies for
selecting a good batch (Attardi et al., 2012).

A more general technique than self-training is co-training (introduced by Blum and Mitchell, 1998),
where instead of a single learner one requires multiple learners, each with a different view (in terms
of features) of the data. When one learner is confident of its predictions about the data, the predicted
label of the data is applied to the training set of the other learners. Co-training can be refined by using
an agreement-based objective function as suggested by Collins (1999) and Mihalcea (2004) and as
more theoretically justified by Dasgupta (2001).

2.5. Learning with noisy labels

Classic self-training is prone to error propagation. If the model’s predictions on unlabelled data are
confident but wrong the erroneous data is nevertheless incorporated into training. The model’s errors
are then amplified in future iterations. Since we have access to noisy labels for all data we can combine
the paradigms of semi-supervised learning and weak supervision. Instead of applying semi-supervised
classification in a setting with incomplete supervision, we aim to apply the learning process in a setting
with inaccurate supervision in which we can leverage the available noisy labels.

For active learning, we propose to use the noisy labels as if they were coming from a (noisy) oracle.
The query strategy can be determined by the learner in the semi-supervised setting where the least
likely predicted instances are incorporated into the training set (Algorithm 4).

For self-training, we propose self-training with noisy labels where instances are only added to the
training set if the predicted label agrees with the noisy label (Algorithm 5). The selection of instances
to be added to the training set is a form of data cleaning. Data cleaning aims to prevent mislabelled
instances from entering the training set.

2.6. Summary

The NACE misclassification rate in the GBR in the Netherlands has been studied earlier but is recently
not accurately estimated. There have been several approaches to the problem of NACE classification.
The performance of supervised approaches using only webpage texts was limited by the amount of
available labelled data. The methods of active learning and self-training are similar techniques. The
query strategy and the iteration parameters are the vital control elements in both settings. Since we
have access to noisy labels for all data we combine the two paradigms of semi-supervised learning and
weak supervision. To leverage the abundance of noisy labelled data we introduce in the next chapter
weakly semi-supervised variants of active learning (Algorithm 4) and self-training (Algorithm 5).



Semi-Supervised Learning Methods

In the previous chapter, we explored the approaches of semi-supervised learning and handling noisy
data. This chapter presents the proposed weakly semi-supervised learners to be used in the experi-
ments. In weakly semi-supervised classification, weakly refers to the usage of noisy (inaccurate) labels
while semi-supervised refers to the incremental learning phase where some kind of query strategy is
applied on a large set to expand a small training set. Which query strategy to apply is an important
question. The key factor to be changed in our methods is therefore the applied query strategy in the
weakly semi-supervised learning setting.

In general, our weakly semi-supervised classifiers (Algorithm 1) can be described as iterative meth-
ods having as input three data sets, a classifier and a batch-size. The selection of the three data sets
as well as the complete text-mining pipeline is discussed in the next Chapter 4. For now, we refer to the
data sets as the labelled gold training set L, the test set T and the noisy labelled set N. In the learning
phase, a probabilistic classifier is first trained on labelled set L and iteratively expands L with more
instances derived from noisy set N. In each iteration, the classifier’s performance is bench-marked on
a fixed test set T.

Algorithm 1 General weakly semi-supervised algorithm

Input:
Set of labelled training instances L.
Set of noisy labelled instances N.
Classifier C.
Batch-size b.
Procedure:
1: Apply supervised method to train a classifier C with L.
2: while |N| decreases do
3: Select a subset of instances P from N.
4 Expand L with (a subset of) P
5 Remove (a subset of) P from N
6: Retrain classifier C with enlarged set L.
7. end while
Output:
Enlarged labelled instances set L and classifier C.

In the next sections, the exact procedure for four weakly (semi-)supervised classification methods
is described. The Figures 3.1-3.4 show the main characteristics and differences for each method.

7
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First, a weakly supervised baseline method is defined (Figure 3.1, Algorithm 2). BL is weakly supervised
because it uses the labels in the noisy set N (i.e., the method selects randomly a batch of b instances
from N in each iteration). In each iteration, b instances are added to L and removed from N and the
classifier C is retrained with the expanded set L. To compare the performance of our methods, classifier
C predicts the class labels in each iteration for instances in the fixed test set T.

Algorithm 2 Weakly supervised baseline (random sampling)

Procedure:

1: Apply supervised method to train a classifier C with L.

2: while |[N| > 0 do

3 Select randomly b instances P from N.
4 L = L U P with the noisy labels of P

5 N=N\P

6: Retrain classifier C with enlarged set L.
7: end while

3.2. Self-training

Semi-supervised self-training uses its own predictions on unlabelled data to expand the labelled training
set. The query strategy could be denoted as high probability sampling. The ST strategy (Figure 3.2,
Algorithm 3) is based on the probabilities of the predictions on all instances in the noisy set N and on
the batch-size b. In each iteration, the b instances with the highest predicted probability are added to

the labelled set L together with their predicted label.
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Algorithm 3 Self-training (high-probability sampling)
Procedure:
1: Apply supervised method to train a classifier C with L.
2: while [N| > 0 do
3: Predict labels of N.
4 Select the b most confident predicted instances P.
5: L = L U P with the predicted labels of P
6: N=N\P
7
8:

Retrain classifier C with enlarged set L.
end while

Semi-supervised self-training is known to be prone to error propagation. Additionally, the available
noisy labels are not used at all (the ‘cross’ in Figure 3.2). In the next sections, we aim to introduce two
semi-supervised learners less prone to error propagation by leveraging the available noisy labels using
heuristic query strategies.

3.3. Proportional weakly active learning

In self-training, the query strategy searches for the most confident instances from the noisy set. How-
ever, we have access to noisy labels and in the context of active learning these labels can act as a
noisy oracle. When having access to an oracle, and in general for active learning, the most used query
strategy is uncertainty sampling. Uncertainty sampling is a query strategy in which the least confident
instances are selected.

In PWAL (Figure 3.3, Algorithm 4) the least confident predicted instances are added to L in each
iteration. Besides the query strategy, we apply the proportional stratified or class-specific sampling
technique. In proportional sampling, the number of instances to be added in each iteration is fixed and
calculated in advance for each class to ensure fixed probabilities of the class prior. Each sample ¢; is

sized proportional to the fraction of class i in the population and is calculated such that ¢; « Wil ang

[N
Y.c; = b, where |N;| denotes the number of instances of class i in the population.

Algorithm 4 Proportional weakly active learning (uncertainty sampling)

Procedure:
1: Calculate for each class i the proportional number of instances to be added ¢; «

such that }; ¢c; = b.
2: Apply supervised method to train a classifier C with L.
3: while |[N| > 0 do
4: Predict labels of N.
for each class i in classes do
Select the c; least confident predictions P.
L = L U P with the noisy labels of P
N=N\P
Retrain classifier C with enlarged set L.
10: end for
11: end while

[Ni]

W in each iteration

© 2N o a

3.4. Proportional weakly self-training

PWST (Figure 3.4, Algorithm 5) first calculates for each class the proportional number of instances
to be added in each iteration. The method feeds labelled set L into a classifier and then repeatedly
predicts all labels from N. In each iteration and for each class, a set of ¢; instances PN is added to
L and removed from N. PN is constructed by first selecting the predictions that match the noisy label
and then selecting the ¢; most confident predictions. The iterations continue until set N is stable. Set
N stabilises when none of its predicted labels match the corresponding noisy labels.
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Algorithm 5 Proportional weakly self-training (high-probability sampling)

Procedure:
1: Calculate for each class i the proportional number of instances to be added ¢; « % in each iteration
such that }; ¢c; = b.
Apply supervised method to train a classifier C with L.
while |N| is decreasing do
Predict labels of N.
for each class i in classes do
For the most confident predictions P, select ¢; instances PN < P where predicted label
equals the noisy label.
7 L=LUPN
8: N =N\PN
9: Retrain classifier C with enlarged set L.
10: end for
11: end while

3.5. Other methods

While implementing the described methods, several other methods not shown in the current chapter
were tested. In PWST, the selection of instances is a form of data cleaning where (presumed) misla-
belled instances are prevented to enter the training set. One can either keep (as done in Algorithm 5)
the mislabelled instances in the noisy set or delete them. The deletion of the mislabelled instances,
i.e., the instances where the predicted label did not match the noisy label, performed similarly to our
proposed PWST (Algorithm 5) and is therefore not further evaluated. Furthermore, the variants without
proportional or class-specific sampling both for PWAL and PWST were implemented but preliminary
results again showed similar learning curves as our proposed methods. Since self-training is often im-
plemented proportional to maintain the class-distribution of the initial data set (Mihalcea, 2004, Li and
Zhou, 2005, Didaci and Roli, 2006, Triguero et al., 2014) we used the proportional variant for weakly
self-training and weakly active learning.



Data and Text Mining Methods

The previous chapter described the proposed machine learning methods (e.g., self-training and active
learning) to deal with noisy data. The proposed weakly semi-supervised methods require as input three
labelled sets of data and a classifier. This chapter describes the process to obtain the labelled data
sets, the text mining pipeline, the classification method, the evaluation metrics used and a method to
assess the prediction confidence.

4.1. Data

This section describes how we obtained the labelled data sets. A summary of the data flow of the
text mining pipeline is shown in Figure 4.1. The data set started with is the Dutch General Business
Register (GBR) containing for each enterprise a website URL, a NACE code and the enterprise size.
First, the text of an enterprise’'s webpage is scraped (Subsection 4.1.1). Secondly, only enterprises
with a NACE code in our used classification schemes are selected (Subsection 4.1.2). Thirdly, a filter
step is applied based on the obtained webpage texts (Subsection 4.1.3). Fourthly, exploratory analysis
is performed on the resulting labelled data (Subsection 4.1.4). Finally, the selection of the test set T,
the gold set L and the noisy set N from the labelled documents is described (Subsections 4.1.5 and
4.1.6). The construction and selection of the features are described in Section 4.2.

Labelled data
GBR Data set Clean data Text (Bag of

ID, URL, NACE, size, Text, URL, NACE, Text, URL, NACE, Features Words),
etc. size size URL (ngrams),
NACE, size

#documents: 737 215 440 876 214811 214 811

Figure 4.1: Summary of the data flow of the text mining pipeline.

4.1.1. From GBR to scraped data set

In 2018 there were a total of 1 665 795 Dutch business units (CBS, 2020). Each business unit or en-
terprise is listed in the GBR at Statistics Netherlands. From the GBR of 2018, we obtained 737 215
unique webpage addresses belonging to an enterprise. Besides the business unit’'s unique identifier,
the GBR also contains the classification of the number of employees (i.e., the enterprise size) and the
NACE code of each enterprise.

With a list of webpage addresses from the Chamber of Commerce, a large set of Dutch enterprise’s
webpages (+1.8 million) had been scraped and cached at Statistics Netherlands in May 2019. The
text of the main webpage of each website was scraped resulting in a cache size of 1.5 terabyte. For
each of the 737 215 unique URL's obtained from the GBR, we requested the cached HTML webpage.
The requests were successful for 440 876 of the 737 215 webpages, i.e., a successful HTTP response
status code (200 — 299). With a Python library, the clean texts from an HTML webpage are obtained.
The library jusText (Pomikalek, 2011) is a boilerplate content removal tool designed to preserve mainly

11
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text containing full sentences and is therefore well suited for creating linguistic resources. All texts
heuristically qualified by jusText as ‘bad’ were removed from the HTML webpage, resulting in a clean
text for each enterprise. Now the data set has 440 876 documents and contains for each business
identifier a five-digit NACE code, a business size code, a URL and a clean webpage text (Figure 4.1).

Note the GBR data is from the year 2018 although the webpages were scraped in May 2019. Since
approximately 2-3% of businesses change their five-digit NACE class throughout a year we expect to
see at least a similar increase in error rate besides the (currently unknown) misclassification rate in the
GBR.

4.1.2. Classification schemes

The full NACE classification scheme currently used by all member states in the European Union has
615 unique classes at the fourth level (consisting of four-digit numerical codes). In the Netherlands,
a fifth numerical code is added resulting in 952 unique classes at the fifth level. Such a high number
of classes is detrimental for the classification performance. Therefore we decided, with the help of a
NACE domain expert, to split-up the five-digit NACE classification scheme in three smaller schemes.
The schemes are constructed in accordance with the manual annotating process at Statistics Nether-
lands to determine the NACE code of an enterprise. Herein first the type of business chain and the
type of good of an enterprise is determined by an expert. Furthermore, the schemes are constructed
with the aims of removing between-class imbalance (i.e., obtaining more similar class frequencies) and
removing within-class imbalance (i.e., obtaining more homogeneous classes) by merging or splitting
individual classes.

The first scheme has 8 classes and is about the type of business chain
of an enterprise (Table 4.1). The second scheme has 120 classes and Table 4.1: List of classes in the
is about the type of good an enterprise is associated with. The third type of business chain scheme
scheme is constructed as the combination of the type of business chain

and the type of good, resulting in a total of 181 unique economic activity Class name

Detailhandel in winkel
Detailhandel overig
Detailhandel via internet

classes.

The set of NACE codes used in all the three custom classification

schemes are a subset of the set of the five-digit NACE codes in the GBR. gllzr;?;andel
Specifically, the included NACE codes are from the economic sectors man- Industrie
ufacturing, construction, distributive trades and services. These economic Markthandel
sectors contribute to a large portion of employees and net turnover in trade Reparatie

and industry. The labelled data set is filtered by only selecting the docu-
ments where the five-digit NACE codes are in the subset of NACE codes
used in our classification schemes. After the selection, 303 331 of 440 876 documents remain in our
data set.

4.1.3. Clean data
To prevent low-quality text data from entering the learning system, we delete the following documents
from our data set of 303 331 documents:

» Non-Dutch webpages as detected by the library Langdetect (Shuyo, 2010) (64 909)
» Webpage texts that are duplicated (50 562)
» Webpages with uninformative content (18 045)

» Webpage texts with less than 20 characters (8 063)

Webpages with uninformative content were manually selected by using a rule-based text filter. The
filter excludes documents containing text that indicate the webpage is uninformative such as ‘is offline’
or ‘is gereserveerd’. The result of the filter for low-quality text data is a clean data set with for each
enterprise a website text, a URL, a NACE code and a size code. After the filter step 215 843 of 303 331
labelled documents remain as input for our learning system (Figure 4.1).
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4.1.4. Labelled documents

The 215 843 labelled documents are used to construct the test set, the gold set and the noisy set for
the semi-supervised learning methods. The distribution of the documents among the classes in the
classification schemes are shown in Figure 4.2 for each of the three classification schemes.

Business chain (8) Good (120) Business chain x Good (181)
160000

140000 12000
120000
10000
100000
8000
80000
6000
60000
20000 4000

20000 2000

[

Figure 4.2: Document distribution over classes in the classification schemes: the ‘Type of business chain’ scheme with 8 classes,
the ‘Type of good’ scheme with 120 classes and the ‘Type of business chain x Type of good’ scheme with 181 classes.

There is a large class imbalance in all three classification schemes, especially in the ‘Type of busi-
ness chain’ scheme with 8 classes where the most frequent class (‘Dienst’) amounts to 74% of the
215 843 documents. For the other two classification schemes, the most frequent class (‘Organisatiead-
viesbureaus’) amounts to 6.6% of the labelled documents.

Another important distribution in the set of labelled documents is that of the size of the enterprises.
The size of an enterprise is categorized into 20 categories. The categories are defined by the number

of employees of an enterprise and ranges from 0 to 2000+ employees. The distribution of the 215 843
documents by enterprise size is shown in Figure 4.3.

Labelled documents by enterprise size (sum = 215843)

B Enterprises
100000 4
BOO0D -
BO000
40000 1
20000 -
0 - == T T = T T T
=1 [t o = =]
- & o E E 3 < ) & E E § é
=1 = e & & = = & = =1
S &® & 4 2 2
g
Employees

Figure 4.3: Document distribution by number of employees of an enterprise.

Almost half of the enterprises have only one employee. Most one-man enterprises belong to self-

employed freelancers. An enterprise has zero employees when it has no registered employees, e.g.,
start-ups or holdings.
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4.1.5. Selection of test set

The goal of Statistics Netherlands is to improve the accuracy of the NACE labels within the GBR for
small enterprises (Chapter 1). Therefore from the labelled documents the small enterprises with less
than 5 employees are selected. The test set is constructed by a stratified random sample of 20% from
the selected set of small enterprises. The stratification is done with respect to the class labels (i.e.,
the random sample contains approximately the same percentage of samples of each target class as
the complete set of small enterprises). The test set T has a total of 35 093 labelled documents and is
always left unchanged.

4.1.6. Selection of gold sets

Semi-supervised classification methods need a gold labelled training set to initialize. Gold refers to the
assumption that the labels in the training set are correct. Since we do not have access to a perfectly
labelled set, we use a set that comes as close as possible to a perfectly labelled set. In the remainder,
we refer to this as the gold sets. The gold sets are constructed to compare the effect of different types
and sizes of the gold set. Four gold sets are considered. Table 4.2 shows the gold set types and sizes
for which a gold set is constructed.

Table 4.2: Characteristics of the four gold sets. Size refers to the number of labelled samples in the gold set, type refers to the
number of employees of the enterprise.

Gold set | Size S (=~ 8 000) Size L (40 380)
Type S (0 —4) Size S, type S -
Size S, type S (no type L)

Type L (5+) Size S, type L Size L, type L

» The size L, type L gold set is constructed by selecting from the labelled documents the enter-
prises with 5 employees or more (40 380 documents). The rationale behind the selection of large
enterprises is that large enterprises have more accurate labels than small enterprises.

» The size S, type S gold set is constructed by selecting from the labelled documents the en-
terprises which have less than 5 employees and which are in the yearly survey of 2015, 2016
or 2017. Because the size of the selection is limited, not all classes might be represented in
the selection. Therefore for each economic activity class in each of the three used classification
schemes, we add random documents from that class until a minimum of 20 selected documents
are obtained. Using at least 20 documents per class provides a more stable generalisation per-
formance (Dumais et al., 1998).

* The size S, type S (no type L) gold set is constructed by first deleting all large companies from
the labelled documents. A stratified sample is taken from the remaining documents such that the
sample size equals the size of the ‘size S, type S’ gold set (= 8 000).

» The size S, type L gold set is constructed by first selecting a random sample from the enterprises
with 5 employees or more (40 380 documents), such that the sample size approximately equals
the size of the ‘size S, type S’ gold set (= 8 000). Subsequently, for each economic activity class
in each of the three used classification schemes, we add random documents from that class until
a minimum of 20 selected documents are obtained.

The remaining documents (i.e., the documents not in the test set nor gold set) define the noisy set
N, except in the ‘size S, type S (no type L) gold set where additionally the large enterprises are com-
pletely deleted.
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4.2. Features

4.2.1. Derivation of features

Two types of features are assembled; one for the webpage texts and one for the webpage domains.
For feature representation of text data, common approaches used in literature are the bag of words
model and the n-gram model. We apply both approaches: for webpage texts a bag of words feature
representation is used while for the webpage domains a character n-gram feature representation with
a length for n of 3 to 6 is used.

The content of the webpage texts is cleaned before extracting the features: all special symbols are
deleted, all numbers are deleted, duplicated white-spaces are deleted. The text is then transformed
into tokens. The webpage domains are obtained by removing any prefixes (i.e., ‘http://’ and ‘www’) and
suffixes (e.g., .com’, “.nl') from the website URL.

4.2.2. Term weighting

Term weighting is applied to put a stronger emphasis on tokens high frequent in a particular text but
low frequent in the other texts. Term weighting is therefore a way of increasing the weight of terms
that are assumed to be important for classification. In this study, we apply the state-of-the-art BM25
weighting scheme (also known as Okapi weighting method) to both types of features. BM25 is a bag-of-
words retrieval function that ranks a set of documents based on the terms appearing in each document,
regardless of their proximity within the document. For the BM25 method, the frequency of term ¢t in
document d (tf), the inverse-document frequency (idf) values for the terms, the document length
(len(d)) and the average document length (avgdl) are calculated using the full data set. The BM25
weighting formula is now defined as:

BM25(t,d) = idf (t) -

tf(tf,d) (kg +1)
- len(d) (41)

tf(td) +hy - (1=b+b- 200

where b = 0.75 and k; = 1.5 are constants as in Manning et al. (2008, p.232-233) and where idf (t)
is defined as:

0.5+ N — df(t)
0.5+ df (t)

where N denotes the total number of documents d and df (t) denotes the document frequency (i.e.,
the number of documents d containing term t).

idf(t) = log (4.2)

The BM 25 function is applied to all features in all documents: irrespective of documents residing in
the gold set, the noisy set or the test set. All documents can be used as input for the weighting function
since in our semi-supervised setting we have no real ‘unseen’ data, i.e., all webpages are available
beforehand.

4.2.3. Feature selection

Text classification is usually a problem with a high dimensional feature space. For example, when using
a bag of words approach the number of unique words in the corpus is often larger than the number of
single documents. Feature selection is a dimensionality reduction technique that aims at selecting a
subset of features from the input data by removing irrelevant, redundant or noisy features while main-
taining the model performance. One way of feature selection is to set a threshold for the minimum and
maximum frequencies that a feature occurs in the document collection. The motivation is that highly
(in)frequent features add much less information since they are either present in almost every document
or present in only a few documents.

For the bag of words features a minimum document frequency of 10 is used. Since in the character
n-gram feature type the number of features is even higher, a larger minimum document frequency of
50 is chosen for the n-gram features derived from the webpage domain names.
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Additional feature reduction techniques such as stopword removal and lemmatization have been
tried but were not implemented in the final models.

4.3. Classification method

After applying feature selection the number of features in our term-frequency document matrix is still
reasonably high. To prevent overfitting due to a high number of features relative to the number of
documents a linear classifier is a good choice. In multi-class text classification, the most widely used
classification methods are the Support Vector Machine (SVM) and the multinomial Naive Bayes (NB)
classifier. Both classifiers are linear but since NB is faster than a SVM and NB outperforms a SVM in
similar settings (Roelands, 2017) we decide to use the NB classifier for our experiments.

In a general text classification setting, the predicted class ¢ a given document d belongs to is for-
mulated as:

¢ = argmax.P(c|d) = argmax.P(c)P(d|c) (4.3)

The term Naive Bayes refers to the strong independence assumptions in the Naive Bayes model
rather than the particular distribution of each feature. A NB model assumes each of the features used
are conditionally independent of one another given the true class. Formally the Naive Bayes conditional
independence assumption states when given some class c, the probability of observing a document d
(or equivalently, the terms t, through t,,, of document d) is:

P(d|c) = P(ty, ..., tnylc) = Md  P(tx|c) (4.4)

where t; denotes the term at position k of document d. While the NB assumption is ‘naive’ it turns
out that in practice NB models work well even if its assumptions are violated (Zhang, 2004). When
defining a document space X consisting of all documents we can write the class-conditional probability
for document d as:

P(d|c) = Nick<ny, P(Xi = tilc) (4.5)

where X, is the random variable for position k in the document and takes as values terms from the
vocabulary. Thus P(X,, = t|c) is the probability that in a document of class ¢ the term ¢ will occur in
position k.

Because in NB classification each term is considered separately the actual position of the terms is
not relevant. The positional independence assumption therefore states:

P(Xy, = tlc) = P(Xk, = t|c) (4.6)
for all positions k4, k,, terms t and classes c.

After applying the conditional independence and positional independence assumptions the final
decision rule that the multinomial Naive Bayes classifier maximises (i.e., the class ¢ in Equation 4.3 for
which the rule reaches a maximum) is:

P(c)P(d|c) = P(c)1<ksn, P(X = ti|c) (4.7)

where the prior probability P(c) is determined as the number of documents labelled as class ¢ di-
vided by the total number of documents d and where the conditional probability P(X = t;|c) is estimated
as the relative frequency of term t;, in documents belonging to class c. Note the relative frequency uses
the positional independence assumption and includes multiple occurrences of a term in a document.
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A problem with maximising the above decision rule is the occurrence of term-class combinations in
the test set not occurring in the training set, resulting in zero probabilities and thus wiping out all other
information in the other probabilities when they are multiplied. To eliminate zeros Lidstone smoothing
adds a value of 0 < a < 1 to each count for the relative frequency of term t; belonging to class c.
Similar as in Kihnemann (2019), we set ¢ = 0.1. For the implementation of the NB classifier the
Python package Scikit-learn (Pedregosa et al., 2011) is used.

4.4. Evaluation metrics

To evaluate the experiment’s performance and to compare the results against each-other evaluation
metrics are used. For classification tasks the terms true positives (TP), true negatives (TN), false pos-
itives (FP), and false negatives (FN) compare the predictions of a classifier against the true document
label in the test set. The terms positive and negative refer to the classifier’s prediction while the terms
true and false refer to whether that prediction corresponds to the true class label (Table 4.3).

Table 4.3: Confusion matrix for class ¢

| Predicted label ¢ Predicted not ¢
True label ¢ | True positive (TP,) False negative (FN,)
True not ¢ False positive (FP,)  True negative (TN,)

4.4.1. Accuracy
The most basic evaluation metric for classification tasks is the accuracy measure, defined in the multi-
class setting as (van Asch, 2013):

X TR

cecC
N

accuracy = A = (4.8)

where C is the set of classes in the test set, TP, is the number of true positives for class c and N is
the total number of instances in the test set.

4.4.2. F1-scores

The F;-score is a widely used metric in multi-class text classification. The F;-score is defined as the
harmonic mean of precision and recall. Both precision and recall can be calculated using so-called
micro- or macro-averaging. In micro-averaging, the elements of the confusion matrix are aggregated
over all classes while in macro-averaging the elements are used to calculate the metric scores per class
and then averages these scores. Therefore micro-averaging treats all predictions equally (with a bias
towards larger classes) while macro-averaging treats all classes equally. Micro-averaged precision and
micro-averaged recall are defined as:

X TR

cec
Y TP+ Y FP.
cec cec

2 TP,

cec
> TP.+ Y FN,

cecC cec

micro-averaged precision = (4.9)

micro-averaged recall =

(4.10)

Note in the multi-class setting Y. FP, = Z FN, since every single false positive for one class is a
cec

single false negative for another class. Further note ) TP.+ Y FR.=Nand ) TP.+ Y FN, = N.

ceC ceC CceC CceC
Therefore micro-precision, micro-recall and accuracy are the same. Since the F;-score is calculated

as the harmonic mean of precision and recall, the micro-averaged F;-score is also the same:
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micro-averaged F;-score = micro-averaged precision = micro-averaged recall = accuracy (4.11)

The equivalence of the micro-averaged scores is a disadvantage if one wants to compare precision
and recall or to tune the system such that it gains more precision at the cost of recall or vice versa.

To calculate the macro-equivalent scores, we first define the precision and recall of a single class

TR,

" TP.+FP.
TP,

Ro= ———
TP. + FN,

P, 4.12)
(4.13)

Now the macro-averaged precision and macro-averaged recall are defined as the averages over
all C classes:

"

macro-averaged precision = z il (4.14)
ER

macro-averaged recall = £ iCl (4.15)

Finally, the macro-averaged F; score is defined as the harmonic mean of macro-averaged precision
and macro-averaged recall. Because in macro-averaging scores are first calculated per class the metric
is insensitive to class imbalance and treats all classes as equal. In contrast, micro-averaging treats
each prediction as equal and is therefore sensitive to class imbalance.

4.4.3. Reciprocal Rank

The Naive Bayes classifier is probabilistic and can return for each class a classification probability,
resulting in a ranked list of classes that appear to be the most plausible for the webpage. Instead
of ‘hard classification’ where only the top-predicted class is considered to evaluate the results, in ‘soft
classification’ the ranked list of predicted classes is used. A straight-forward soft classification measure
is the reciprocal rank (RR) of a document d, defined as

1
RR(d) = @ (4.16)
where r(d) is the rank of the true class of document d in the ranked list of predicted classes. A
variant of RR, introduced by Berardi et al. (2015), only looks at the top—k predicted classes and gives
no credit to classes at rank (k + 1) or higher and is defined as:
L ird) <k

RR(d) =} r(@ ) > k 4.17)

Similar as with the F; score both micro-averaged and macro-averaged scores can be calculated
for the reciprocal rank. The micro-averaged scores RR) are calculated by averaging RR,(d) across
all the test instances whereas the macro-averaged scores RR} are calculated by first computing the
class-specific averages of RR, (d) and then averaging the results across the classes.

4.4.4. Top-k F1-scores

The F;-score is calculated only by considering the top-predicted classes for each document. However,
by considering the top-k predicted classes we will define the extended F; (k)-score. For the extension
of the F;-score, the four categories in the confusion matrix need to be redefined. While for the true
class labels no changes occur, for the predicted class labels we now want to look at the top-k predicted
classes instead of only the top predicted class. To prevent inconsistencies we only want to look at the
top-k predicted classes if the true class label matches the class label for which we are calculating the
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Table 4.4: Conditional top-k confusion matrix for class ¢

c in top-k predictions ¢ not in top-k predictions

True label ¢ True positive (TP,) False negative (FN,)
c is top prediction ¢ not top prediction

True not ¢ False positive (FF,) True negative (TN,)

confusion matrix. Therefore the new confusion matrix is conditional: the decision to look at the top-k
predicted classes depends on the true class label (Table 4.4).

To illustrate how the conditional top-k confusion matrix is used Table 4.5 shows the decisions for
four documents with their true labels and their first three predicted labels. The decisions are based on
the class that we are calculating; if this class matches the true label we look at the first three predictions,
else we look only at the top prediction. For example, when calculating the decisions for class U we
see that the true labels match for the first two documents. Therefore we use the upper part of the
conditional top-k confusion matrix; when U is in the first three predictions the decision category is TPy,
otherwise the decision category is FNy.

Table 4.5: Examples of top-3 prediction according to the conditional top-k confusion matrix in Table 4.4

Predictions Class-based decision
2 3 \U \% W
V U | TP TN, FPy
V Z | FNy TN, FBy
\%
U

Document | True label
1

W | TN, TPB, TNy
W | FB, TP, TNy

<<CC
<Ccsszs-

2
3
4

Using Table 4.4, the top-k precision, top-k recall and F; (k) scores can be calculated with the same
formula’s as in Subsection 4.4.2, both for micro-averaged and macro-averaged scores. Note the redef-
inition of the confusion matrix does not affect the counts of the false positives and the true negatives,
only the counts of the true positives and the false negatives change. Precisely the number of true posi-
tives goes up with the same amount as the number of false negatives goes down. With this observation
we can derive the following lemma:

Lemma 1. The top-k F, score, F,(k), is a monotonically increasing function of k.

Proof. The F; (k) score is defined as the harmonic mean of top-k precision and top-k recall and can be
directly expressed in terms of the four categories in the top-k confusion matrix for class c:

£ = 2TP,
Le(k) = 2TP, + FN, + FP,
We use the observation that the number of true positives goes up with the same amount n as the

number of false negatives goes down to calculate the F; .(k + 1) score for a top-(k + 1) confusion
matrix, given an arbitrary top-k confusion matrix:

(4.18)

_ 2(TR. +n)
Fretk+1) = 2(TP, + n) + (FN, —n) + FP, (4.19)
_ R (kK)TP. + FN. + FP,) + 2n 4.20)
B 2TP, + FN, + FP. +n :
_ Fc()@2TP, + FN; + FF, + 2n) @21)
2TP. + FN,+ FP. +n
= Fic(l) + - (4.22)

2TP. + FN, + FP. +n
> F (k) (4.23)
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for some integer n = 0. O

4.5. Uncertainty estimation

The evaluation metrics described in the previous section all provide an estimation of the performance of
a classifier, given a labelled test set and the predictions. To assess the confidence of the performance
estimations uncertainty estimates such as the standard error and the confidence intervals need to be
obtained. In this section, we show how to calculate uncertainty estimates for the performance scores
by applying the bootstrap method principle to the test set.

4.5.1. Bootstrapping test set

The test set T was constructed as a stratified random sample from the set of small enterprises. When
applying the bootstrap method to the labels of T together with the classifier’s predicted labels, a se-
quence of independent estimations for a given metric is obtained through resampling from the units of
T. The sequence of independent estimations allows to obtain an estimation of the sampling distribution
and uncertainty estimates such as the standard deviation for the given metric.

Given metric M we define the sequence of independent bootstrap estimations as M* where each
single estimation M; is defined for 1 < i < R for some integer R. The corrected sample standard
deviation for the metric M is then defined as:

R
1
= Z(M: —m(M)y? (4.24)

where m(M*) denotes the mean of the sequence M* and where R denotes the sequence length
(i.e., the number of bootstrap resamples from the units of T). Each M; is calculated by applying the
metric function M to one simple random resample from the units of T. One bootstrap resample from
the units of T consists of random draws with replacement of the same size as T (i.e., 35 093).

4.5.2. Testing differences

The bootstrap method allows to obtain an estimate of the standard deviation s,, for the performance
scores @ of our semi-supervised methods. With the performance scores and standard deviations of
different methods, we can give the reader an understanding of the significance of the results. For ex-
ample, to test whether the performance of the baseline (BL) method is different from the proportional
weakly self-training (PWST) method, we test the null hypothesis H, : §5% = §PWST against the alterna-
tive hypothesis H, : 7L = 8P"ST. The null hypothesis can be rejected at a 0.05 level of significance if
shown that |68 — §PWST| > 25,,(8BL — HPWST) where 6B and §P"ST denote the accuracy scores for
the predictions on the bootstrapped test set for respectively BL and PWST. The standard deviation of
the difference for metric M in sequence A compared to sequence B is defined as:

su(A—B) =\/Var(A—B) = /Var(A) + Var(B) — 2Cov(A, B) (4.25)

where A and B each denote the accuracy scores for the predictions on the bootstrapped test set
for one of the semi-supervised methods. Note that in the bootstrap estimations the same random
seed should be used for the two resample procedures to be able to calculate the covariance of the
sequences.



Experiments and Results

The previous chapter described the process to obtain the data and the text mining pipeline. This chap-
ter presents the experiments conducted for our research objective. The main research objective was
to evaluate methods that increase the size of the training data by leveraging the abundance of noisy
labelled data. The first experiment compares the performance of the semi-supervised methods (Chap-
ter 3) for three classification schemes (Section 4.1.2). The second experiment evaluates the effect
of using different types and sizes for the gold set (Section 4.1.6). The third experiment evaluates the
top-k performance scores. Table 5.1 shows for each of the three experiments the settings used. Fur-
thermore, one quantitative and two qualitative analyses are performed.

Table 5.1: Overview of used settings for the three experiments.

Exp. | SSL method Gold set Scores Section
I Supervised baseline (BL) ‘Size S, type S (no L) top-1 5.1
Semi-supervised self-training (ST)

Proportional weakly active learning (PWAL)

Proportional weakly self-training (PWST)

Il Proportional weakly self-training ‘Size L, type L top-1 5.2
‘Size S, type S (no L)
‘Size S, type S’
‘Size S, type L

1] Proportional weakly self-training ‘Size S, type S (no L) top-k 5.3

In the experiments in the current chapter, the text mining pipeline and the supervised classifier is left
unchanged. The set of labelled documents (Section 4.1.4) is always used to construct the three labelled
sets. The labelled test set T, containing 35 093 small enterprises, is left unchanged. The feature
representations used are bag of words for the webpage texts and character n-grams for the webpage
domains (Section 4.2.1). To both feature representations the BM25 weighting function is applied to
construct a term-document matrix (Section 4.2.2). Feature selection is applied by only including terms
in the term-document matrix if the term exceeds a minimum document frequency threshold (Section
4.2.3). In the weakly semi-supervised methods (Algorithm 2) the used classifier is multinomial Naive
Bayes (Section 4.3) and the batch-size is fixed at 10 000 documents in each iteration of the method.

5.1. Comparison of semi-supervised methods

5.1.1. Research objective

In Chapter 3 we described the four implemented classification methods for dealing with the noisy data.
The methods differ in the applied query strategy, i.e., which subset of instances to choose from the noisy
set. The current experiment aims at evaluating the effect of the query strategies. The main question
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Figure 5.1: Accuracy scores (left) and macro F; scores (right) for the supervised baseline (BL) and the semi-supervised self-
training (ST), proportional weakly active learning (PWAL) and the proportional weakly self-training (PWST) methods for the gold
set ‘Size S, type S (no type L) for each of the three classification schemes.
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to be answered is whether the query strategies in our semi-supervised methods are an improvement
compared to the random sampling strategy in the supervised baseline method. For evaluation, the
metrics used are both accuracy and macro-averaged F,-score.

5.1.2. Experimental set-up

Still unmentioned are choices for the classification schemes, the evaluation metrics and the golds sets
for the comparison of the semi-supervised methods. The results for all three classification schemes
are compared. For the performance evaluation, the accuracy and macro-averaged F, scores are ex-
amined. The gold set used is ‘Size S, type S (no type L)', a small-sized sample of the small companies
and where the large companies are excluded from the noisy set. The comparison with other gold set
choices is the main question in the next section.

5.1.3. Results

For each of the four classification methods and each of the three classification schemes accuracy and
macro-averaged F; scores are shown in Figure 5.1. For the presentation of the results, instead of only
the final performance scores, the learning curves are shown. The learning curves allow to compare
for each method the performance by the number of documents trained. The curves therefore show the
initial performance (i.e., the performance after training on the small gold set) of the methods as well as
the final performance and the final number of documents used.

The results show, in all settings, that ST is under-performing compared to BL. For the ‘Type of
business chain’ scheme ST is even reducing the final performance compared to the performance when
trained on the gold set. BL and PWAL perform similarly. Their final performance scores are exactly
similar since the algorithms differ only in the order of the sample selection; the final set of selected
instances is always the full noisy set N with the corresponding noisy labels. PWST only adds instances
if the predicted label matches the noisy label and is therefore using less training instances. When
looking at the accuracy performance scores PWST improves upon BL. The final scores are higher than
those of BL while requiring far less training instances. When looking at the macro-averaged F;-scores
something interesting happens. The advantage of PWST compared to BL disappears. Macro-averaged
scores give equal weights to all individual classes and averages them. The lower macro-averaged
scores suggest that PWST favours the correct prediction for large classes at the cost of misclassifying
instances for small classes.

5.2. Comparison of gold sets

The gold set is the set of labelled training instances used to train the supervised NB classifier before
applying the query strategy in the iterative semi-supervised methods. The query strategies in the meth-
ods all use the (sorted) prediction probabilities of the NB classifier which was trained on the gold set.
Therefore, besides the initial performance, the gold set strongly influences the performance in all fur-
ther iterations.

5.2.1. Research objective
The current experiment aims at evaluating the effect of the choice of gold set. The experimental results
could give insights into the best choice for the type and size of the gold set.

5.2.2. Experimental set-up

The characteristics of four gold set choices were shown in Table 4.2. In short, the construction of the
gold sets is based on the desired size of the gold set and the content type of the gold set. The content
type is based on the number of employees of an enterprise. Small enterprises (type S) have less than
five employees while large enterprises (type L) have five or more employees.

The best performing method in terms of accuracy is PWST. This method is chosen to compare
the accuracy performance scores for each of the four gold sets and each of the three classification
schemes. Results are presented in Figure 5.2.
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Figure 5.2: Accuracy scores for the proportional weakly self-training (PWST) method for the four gold sets for each of the three
classification schemes.
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5.2.3. Results

The results show surprisingly that the large-sized gold set performs worse than small-sized gold sets.
Specifically, the initial accuracy performance score when training on the ‘size L, type L’ gold set is low
compared to the small-sized gold set scores. Another observation is that the best performing set ap-
pears to be the ‘size S, type S (no type L) gold set. This observation is most clear when comparing
the initial accuracy performance.

Both observations indicate that besides the size of the gold set, the type of the gold set affects the
performance scores. More specifically the gold sets with small enterprises perform better compared to
the gold sets with large enterprises. Moreover simply not using large enterprises at all (i.e., gold set
‘size S, type S (no type L)) leads to the highest accuracy performance scores. When only the final
accuracy scores are observed the difference between the four gold sets seems marginal. However
note that the gold set ‘size S, type S (no type L) achieved a similar final accuracy score with far fewer
documents trained.

The ‘size S, type S (no type L)’ gold set has the highest initial performance and has a good final
performance and is therefore the best choice as gold set. This result can be explained by the contents of
the test set T, which contains only small enterprises. With these results, we cannot hold our hypotheses
that data of large enterprises benefit the prediction of small enterprises. Instead, the results suggest
that not using the large enterprises at all is the best choice.

5.3. Comparison of top-k scores

5.3.1. Research objective

Until now the experimental results only focused on the top-1 performance scores for each prediction.
Enterprises often engage in multiple economic activities. When the main webpage of an enterprise
describes multiple economic activities the top prediction of our method could be one of the enterprises’
side activities instead of its main activity. The predicted rank of the main activity could then be in the
second or lower place. Therefore the current experiment aims at using the top-k predictions of the NB
classifier to evaluate the top-k performance scores. The main question to be answered is whether the
top-k performance scores are high enough for a semi-automatic classification system.

5.3.2. Experimental set-up

The top-k performance scores for the current experiment are shown for settings that were used in the
two previous sections. The settings used are the classification scheme ‘Type of business chain x Type
of good’, the PWST method and the ‘size S, type S (no type L) gold set. Results are shown with
learning curves in Figure 5.3 as well as final performance scores in Table 5.2.

5.3.3. Results
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Figure 5.3: Top-k F,; scores for the proportional weakly self-training (PWST) method, the gold set ‘Size S, type S (no type L)’
and the ‘Type of business chain x Type of good’ scheme with 181 classes.
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Table 5.2: Final top-k performance scores for the proportional weakly self-training (PWST) method, the gold set ‘Size S, type S
(no type L)’ and the ‘Type of business chain x Type of good’ scheme with 181 classes.

Top-1 Top-2 Top-3 Top-5 Top-10

Level | Metric
Micro | F1-score 0.48 0.56 0.59 0.63 0.66
Precision 0.48 0.53 0.55 0.57 0.59
Recall 0.48 0.58 0.64 0.69 0.76
Rec. Rank 0.48 0.53 0.55 0.56 -
Macro | F1-score 0.34 0.40 0.44 0.48 0.54
Precision 0.34 0.40 0.43 0.46 0.51
Recall 0.35 0.44 0.48 0.53 0.61
Rec. Rank 0.35 0.39 0.41 0.42 -

Results in Figure 5.3 and Table 5.2 show, as mathematically derived in Lemma 1, the top-k F; scores
are increasing as a function of k. in Table 5.2, compared to top-k precision, the top-k recall scores are
increasing at a faster rate. This observation can be explained by our remark in Section 4.4.4: the
number of true positives goes up with the same amount as the number of false negatives goes down.
The fractional expression for precision has the true positives in the denominator while the expression
for recall has the true positives and the false negatives in the denominator (Equations 4.9 and 4.10).
Since the number of false negatives decreases for a higher k value, the recall value increases.

Performance scores in Table 5.2 can be compared with previous research. For instance, our micro-
averaged F;-score of 0.48 is much lower compared to the score of 0.81 obtained by Berardi et al.
(2015). Kuhnemann (2019) obtained micro-averaged F;-scores of around 0.5. The higher score of
0.5 can mostly be explained by the smaller classification scheme used (111 classes versus our 181
classes). Our macro-averaged F;-score of 0.34 is lower compared to the score of 0.49 obtained by
Berardi et al.. Our macro-averaged top-5 reciprocal rank score of 0.42 is also lower compared to the
score of 0.54 obtained by Berardi et al.. Possible explanations for the higher performance scores by
Berardi et al.. are that besides the main webpage also the first 10 subpages were crawled and that
exogenous features were used (e.g., using Alexa queries).

The top-k performance scores are successfully evaluated, both mathematically and empirically. As
in the first experiment, the micro-averaged scores are higher than the macro-averaged scores. Higher
micro-averaged scores can be explained by higher performance scores for large classes and lower
performance scores for small classes. For building a semi-automatic classification system a F;-score
of over 0.9 is necessary. Since our top-10 F;-score is 0.66 we can conclude that the performance of
our method is still too low.

5.4. Quantitative analysis

5.4.1. Research objective

In the previous sections, results were compared for different semi-supervised methods and different
gold sets. However, the significance of these results was not evaluated. In this section, we aim to
evaluate the significance of our experimental results with a quantitative analysis. The analysis should
indicate the significance of the experimental results.

5.4.2. Experimental set-up

For the quantitative analysis, standard deviations for the learning curves are calculated by applying
1000 bootstrap resamples to the class predictions and true class labels of the test set T (Section 4.5.1).
For the largest classification scheme (i.e., ‘Type of business chain x Type of good’) error bars are shown
for each gold set and each classification method. First each classification method is compared for the
best performing gold set (i.e., ‘Size S, type S (no type L)) (Figure 5.4). Secondly for the best performing
classification method (i.e., PWST) each gold set is compared (Figure 5.5).



5.5. Qualitative analysis for groups of classes 27

5.4.3. Results
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Figure 5.4: Accuracy scores of each method for the gold set Figure 5.5: Accuracy scores of proportional weakly self-
‘Size S, type S (no type L) and the ‘Type of business chain x training (PWST) for the four gold sets and the ‘Type of busi-
Type of good’ scheme with 181 classes. Error bars represent ness chain x Type of good’ scheme with 181 classes. Error
+2 standard deviations. (Error bars for PWAL are left out) bars represent +2 standard deviations.

To test whether results are different the learning curves with their standard deviations can be used.
First, we define 0 as the estimated accuracy score after training of approximately i documents. Then
our null hypothesis for evaluating PWST against BL is defined as H, : 7% = §7"ST and our alternative
hypothesis as Hy : §FL = 6FWST_ If |§FL — §PVST| > 2S.4,(A — B) the null hypothesis can be rejected
ata 0.05 level of significance. Here S4 ;(A — B) denotes the standard deviation of the difference of the
accuracy scores after the training of i documents for BL and PWST.

ST performs consistently worse than the other methods (Figure 5.4). Classic self-training in itself
is therefore not a suitable semi-supervised method for webpage classification. PWAL performs almost
similar compared to BL. Since the learning curves mostly overlap the performance of the methods can
not be considered significantly different. The practical difference is the order in which training docu-
ments are added; BL selects documents randomly while PWAL selects the least confident predicted
documents.

PWST performs consistently better than BL. To quantify the difference we calculate the standard
deviation of the difference of the accuracy scores according to Equation 4.25 for one measurement of
the learning curves. The accuracy measurement closest to 78 000 training documents both for BL and
PWST is chosen. We define sequence A as the performance scores for BL and sequence B as the
performance scores for PWST. Then S 75000(4) = 0.003, S 4 78000(B) = 0.003 and S 4 7g000(4 — B) =
0.002. The standard deviation of the difference is smaller than the standard deviation of the individual
sequences because of the high correlation of 0.75 for sequences 4 and B. The high correlation can be
explained by the methods using the NB classifier and the same gold set. Since the instances and its
features are shared among the two test sets the predictions of the classifiers are highly correlated and
thus have positive covariance. Returning to our hypotheses, since |65k, — 65457 | = 0.469 —0.480| =
0.011 = 0.004 = 25,4 73000(4 — B) the null hypothesis can be rejected, thus our PWST method indeed
improves upon a supervised method.

5.5. Qualitative analysis for groups of classes

5.5.1. Research objective

This section examines the data set and results for PWST in more detail. The aim is to evaluate the
performance of PWST in more depth, i.e., for groups of individual classes. The research question to be
answered is whether there are specific groups of classes that are hard to predict by our classification
method. For evaluation of the results, we use the accuracy scores on individual class level.
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5.5.2. Experimental set-up

The first qualitative analysis is done on groups of individual classes. Specifically, we select four differ-
ent quarters based on their final performance in the BL method. Quarter 1 consists of all classes with a
final accuracy of less than 0.25, quarter 2 of all classes with a final accuracy of 0.25 or higher and less
than 0.5, quarter 3 of all classes with a final accuracy of 0.5 or higher and less than 0.75 and quarter
4 consists of all classes with a final accuracy of 0.75 or higher. Our hypothesis with this selection of
classes is that high-performing classes will not increase a lot while low-performing classes might signif-
icantly increase their performance during the semi-supervised learning, dependent on the documents
trained for that class. To examine the accuracy scores for each quarter of classes we use the largest
classification scheme (i.e., ‘Type of business chain x Type of good’), the best-performing gold set (i.e.,
‘Size S, type S (no L)) and the PWST method.

5.5.3. Results
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Figure 5.6: Accuracy scores per class of four performance quarters for proportional weakly self-training (PWST) with the gold
set ‘Size S, type S (no type L) and the ‘Type of business chain x Type of good’ scheme with 181 classes.

The results for the accuracy scores of PWST for each quarter of classes are shown in Figure 5.6.
The shaded dots can be seen as elements of the learning curve of each class. To prevent cluttering,
the learning curves of the 181 individual classes are not shown. Instead, for each quarter the moving
averages with a window width of 25 are drawn. The x-axis is cut at 3000 because only a few large
classes have that much training documents added.

The results show that for the two best performing quarters the absolute and relative increase in
performance is lower compared to the absolute and relative increase in performance for the two worst-
performing quarters. Especially when a limited number of documents is trained and when the accuracy
is low, the accuracy improves when more training documents are added. The good performance of self-
training when a limited amount of initial training data is available is well-known in literature (Rosenberg
et al., 2005, Stikic et al., 2008). When for a class a considerable number of documents have been
trained our PWST method stabilises in terms of accuracy, i.e., training more documents has little to no
effect on the final score.

5.6. Qualitative analysis for individual classes

5.6.1. Research objective

This section examines the data set and results for the semi-supervised methods at the lowest level of
detail. The aim is to evaluate the performance of the methods for individual classes. The research
question to be answered is whether there are specific types of classes that are hard to predict by our
classification methods. For evaluation of the results, we use the accuracy scores on individual class
level.
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5.6.2. Experimental set-up

To examine the performance for individual classes learning curves for the accuracy scores are shown
for some characteristic example classes of all the 181 classes in the largest classification scheme (i.e.,
‘Type of business chain x Type of good’). As in the first experiment, the learning curves for each of the
four classification methods are compared, but now on individual class level. The experiments use the
best-performing gold set (i.e., ‘Size S, type S (no L))).

5.6.3. Results
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Figures 5.7 and 5.8 show results for the largest class ‘Organisatieadviesbureaus’ and for another
large class ‘Haarverzorging’. Similar as in the first experiment, ST performs worse than BL and PWAL.
In Figure 5.8 PWST barely outperforms ST and performs worse than BL. The worse performance of
PWST can only be explained by the filter step, where documents are neglected if the predicted label
does not match the noisy label. Surely without the filter step, the final performance of PWST would
be similar as the BL and PWAL final performances. As shown in the previous qualitative analyses
PWST seems to stabilize at large accuracy scores. The worse performance of PWST for the ‘Haarver-
zorging’ class could therefore be explained by the high accuracy scores, which is also the case for
other good-performing classes such as ‘Schoonheidsverzorging’. The high accuracy scores for these
classes could be due to the high homogeneity of the class documents.

Figure 5.7 shows the accuracy scores for the largest class. ST has self-trained over 16 000 docu-
ments while in the noisy set less than 11 000 documents belong to the class. This ‘over-training’ is an
example of why classic self-training is prone to error propagation. Our PWST method does not suffer
from this type of error propagation. Instead, the error propagation is reduced by the filter step. While
the filter step reduces the number of training documents, the final accuracy score of PWST is similar
to BL for the largest class ‘Organisatieadviesbureaus’.

Figures 5.9 and 5.10 show results for two smaller classes with somewhat lower performance scores.
ST underperforms against BL while PWST outperforms BL. These two characteristic cases show when
our PWST method performs best; when the initial accuracy is low and when the initial number of training
documents is low.
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Discussion

The research objective of the current study was to leverage the abundance of noisy labelled data to
increase the size of the training data. To that end, several semi-supervised machine learning methods
were evaluated. The main question in the semi-supervised setting was which query strategy to apply
for expanding the training data. Other questions that arose were the influence of the size of the gold
set, the influence of the type of the gold set and the influence of the used classification scheme. The
results indicate that 1) the proposed proportional weakly self-training method improves upon the su-
pervised baseline method in terms of accuracy, 2) the best choice for the gold set is not using the large
enterprises at all and 3) the top-k performance scores improve results but are not yet sufficient to apply
semi-automatic classification in practice.

The first experiment aimed at evaluating the effect of the query strategies. The improvement of
the proposed PWST method upon the supervised baseline indicates that the query strategy of high-
probability sampling was successful. More specifically the heuristic filtering strategy to only add in-
stances that agree with the prediction was successful. PWST improved in terms of accuracy while
requiring far less training instances, suggesting that part of the available noisy data is not useful as
training data.

The second experiment compares different types and sizes of the gold set for PWST. The best
choice for the gold set to not use the large enterprises at all was unexpected. We hypothesised that
the documents of large enterprises would help increase performance for predicting small enterprises
since the documents of large enterprises are labelled more reliably. An explanation for the false hy-
pothesis could be that the features on webpages of large enterprises differ from those on webpages of
small enterprises. Then the model could learn wrong feature weights and thus make wrong predictions.

The third experiment aimed at evaluating top-k performance scores to assess whether these are
high enough for a semi-automatic classification system. A top-k F;-score was first defined and shown
to be a monotonically increasing function of k. The experimental results indeed show the top-k scores
are improving upon top-1 scores with a top-10 F; score of 0.66 for the classification scheme with 181
classes. However, for building a semi-automatic classification system a F;-score of over 0.9 is nec-
essary. In the experiment, the micro-averaged scores are higher than the macro-averaged scores
which can be explained by higher performance scores for large classes and lower performance scores
for small classes. A limitation of the experiment is that the top-k scores were not integrated into the
iterative training algorithm. When the algorithm optimises the top-k scores these scores could increase.

The qualitative analyses aimed at evaluating the performance of classes in more detail. The finding
that PWST performs well when for a class a limited amount of initial training data is available is in line
with the literature (Rosenberg et al., 2005, Stikic et al., 2008). Another finding of the qualitative anal-
yses is that classic semi-supervised self-training is prone to error propagation while PWST reduces
error propagation through the filter step. The filter step aims to prevent mislabelled documents from
entering the training set. Compared to the supervised baseline PWST performs best when the initial
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accuracy is low and when the initial number of training documents is low. However when for a class a
considerable number of documents have been trained the training of more documents has little to no
effect on the final performance score, even when this score lies below 0.5.

The final performance results are comparable to previous research on web-based prediction of eco-
nomic activity. Roelands (2017) used enterprises’ websites and text mining to predict 29 categories
of economic activity with a NB classifier, obtaining a maximum accuracy (micro-averaged F,) score of
0.42. Kihnemann (2019) obtained higher maximum accuracy scores of around .5 when predicting 111
categories of economic activities based on webpage texts. Even higher accuracy scores of 0.81 were
obtained by Berardi et al. (2015) when predicting 216 categories using enterprises’ websites. The high
micro-averaged F, scores obtained by Berardi et al. could be explained by severe class imbalance
indicated by their lower macro-averaged F; score of 0.50 and macro-averaged top-5 reciprocal rank of
0.54. Other explanations are that more complete input data was used, for example, the first 10 sub-
pages were crawled and exogenous features were used (e.g., results of Alexa queries).

When using text mining to predict the economic activity of enterprises one should take into account
the size of the enterprise. Roelands already showed that one-man-enterprises can be predicted much
easier than others. Our findings add that for predicting the economic activity of small enterprises the
webpages of large enterprises are less suitable. Indeed, the use of large enterprises’ webpages re-
duced the performance scores on the test set.

The final performance scores for the classification scheme with 181 classes of .48 for the F;-score
and .66 for the top-10 F;-score are insufficient for building a semi-automatic classification system.
Higher performance scores are necessary to be able to evaluate and edit the NACE codes of small
enterprises in the GBR.

Concerning the semi-supervised learning approach, there are several points for improvement. First,
the availability of an accurate gold set and test set is important. While PWST is less prone to error
propagation than semi-supervised self-training, PWST still heavily depends on the accuracy of the ini-
tial gold training set. Secondly, the (initial) performance of PWST could be improved by reducing the
batch-size at the cost of increasing the run-time of the algorithm. Thirdly, PWST is a heuristic semi-
supervised approach. Other semi-supervised approaches could be to use an ensemble of classifiers
(Didaci and Roli, 2006) or use the more general co-training technique Blum and Mitchell (1998). The
most promising approach is using semi-supervised neural networks, which have been shown to con-
sistently outperform their supervised counterparts (van Engelen and Hoos, 2019) and have already
been applied to website classification (Du et al., 2018). Neural networks can additionally handle noisy
labels and can be incorporated with the hierarchical NACE system because of their hierarchical nature.

Concerning the noisy labels in the GBR, it would be worthwhile to inspect the errors in the NACE
labels. For instance, the error rate of the five-digit NACE labels could give an indication of the maxi-
mum classification performance. Additionally, if error rates for specific classes or industries are high
actions could be taken to manually improve the labels. Moreover, actions could be taken automatically
by using error detection or even error correction methods. The filter step in PWST can be seen as
a heuristic semi-supervised error detection method. Further examination of error detection methods
such as data cleaning and label noise-tolerant methods as specified by Frénay and Verleysen (2013)
could improve classification performance.

Concerning the text mining pipeline, the most important part is the features extracted from an en-
terprise’s website. We expect the classification performance can be improved by extracting additional
features from websites such as the content of meta tags, the images, the content of subpages or ex-
ogenous features from search engines.

Our results provide important insights into handling text classification problems with noisy labels.
However, the web-based classification of economic activity remains a challenging research objective.
The objective could be achieved by promising future work such as further examination of error detection
methods or the further development of (semi-supervised) neural networks.
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