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Cerebron: A Reconfigurable Architecture for
Spatiotemporal Sparse Spiking Neural Networks

Qinyu Chen™, Member, IEEE, Chang Gao™', Member, IEEE, and Yuxiang Fu

Abstract—Spiking neural networks (SNNs) are promising
alternatives to artificial neural networks (ANNSs) since they
are more realistic brain-inspired computing models. SNNs have
sparse neuron firing over time, i.e., spatiotemporal sparsity; thus,
they are helpful in enabling energy-efficient hardware inference.
However, exploiting the spatiotemporal sparsity of SNNs in
hardware leads to unpredictable and unbalanced workloads,
degrading the energy efficiency. Compared to SNNs with sim-
ple fully connected structures, those extensive structures (e.g.,
standard convolutions, depthwise convolutions, and pointwise
convolutions) can deal with more complicated tasks but lead
to difficulties in hardware mapping. In this work, we propose
a novel reconfigurable architecture, Cerebron, which can fully
exploit the spatiotemporal sparsity in SNNs with maximized
data reuse and propose optimization techniques to improve the
efficiency and flexibility of the hardware. To achieve flexibility,
the reconfigurable compute engine is compatible with a variety of
spiking layers and supports inter-computing-unit (CU) and intra-
CU reconfiguration. The compute engine can exploit data reuse
and guarantee parallel data access when processing different
convolutions to achieve memory efficiency. A two-step data
sparsity exploitation method is introduced to leverage the sparsity
of discrete spikes and reduce the computation time. Besides,
an online channelwise workload scheduling strategy is designed
to reduce the latency further. Cerebron is verified on image
segmentation and classification tasks using a variety of state-of-
the-art spiking network structures. Experimental results show
that Cerebron has achieved at least 17.5x prediction energy
reduction and 20x speedup compared with state-of-the-art field-
programmable gate array (FPGA)-based accelerators.

Index Terms—Field-programmable gate array (FPGA),
spiking neural network (SNN), workload balancing.

I. INTRODUCTION

OVER the past decade, the revolution of deep neural
networks (DNNs) has led to the state-of-the-art per-
formance on various tasks, such as image classification [1],
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semantic segmentation [2], and object detection [3]. However,
DNNs are computational-intensive. They have high compu-
tational complexity and tremendous parameters, leading to
a large memory footprint and power budget and are diffi-
cult to be deployed on resource-constrained platforms. DNN
compression methods [4] and dedicated, efficient hardware
accelerators [5], [6], [7], [8] were explored to deal with
this problem. Network compression methods include data
quantization [9], [10], sparsity exploration [11], [12], and
compact model design [13], [14]. MobileNet [13], [15] as a
typical representative of compact models, adopts depthwise
separable convolution (DSC), which can achieve a comparable
accuracy with much fewer multiply-and-accumulation (MAC)
operations and parameters. To further improve throughput
and energy efficiency, dedicated hardware accelerators for
compact models [7], [8] were designed to explore computing
parallelism and efficient memory organization.

Another way to enhance energy efficiency is to use spik-
ing neural networks (SNNs). Compared to continuous-valued
DNNs, SNNs adopt an event-driven computing mechanism
(i.e., the membrane potentials of neurons are updated only
when the input spikes arrive); thus, they have inherent spa-
tiotemporal sparsity brought by discrete binary spikes [16]
and can achieve high energy efficiency by replacing multibit
MAC operations by additions. Existing works, such as IBM
TrueNorth [17], Intel Loihi [18], and Tianjic [19], have shown
that event-based SNNs can be efficiently implemented in
custom hardware.

It is believed that the ultimate advantage of SNNs comes
from their ability to fully exploit spatiotemporal event-based
information [16]. Previous works have shown that SNNs can
achieve competitive accuracy compared with nonspiking coun-
terparts for some complicated image segmentation and image
classification tasks [20], [21], [22], [23]. However, modern sil-
icon implementations of SNNs still lag behind DNNs, mainly
featuring lower throughput and higher energy per neuron [24].
The spatiotemporal event-based information processing para-
digm leads to spatiotemporal sparsity in the networks. Exploit-
ing spatiotemporal sparsity in hardware design usually leads
to unpredictable and unbalanced workloads, and potentially
irregular and redundant memory access, thus degrading effi-
ciency. Besides, the inputs need to be received and processed
across several time steps, which leads to repeated data accesses
and longer processing time. Therefore, exploiting parallelism
in SNNs is more challenging than DNNs. Current SNN
accelerators mainly focus on accelerating traditional network
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structures such as multilayer perception [25], [26], which are
difficult to meet the requirements of increasingly complex
applications in terms of performance and efficiency.

Therefore, we are motivated by these findings to design a
reconfigurable architecture for SNNs, called Cerebron, target-
ing high flexibility and efficiency. Cerebron can further lever-
age flexibility to achieve higher efficiency. For example, Cere-
bron can use both event-driven characteristics (spatiotemporal
sparsity exploitation) and compact model structures (DSC) to
achieve higher efficiency. We also propose several optimiza-
tions to achieve high performance and low hardware overhead.
The main contributions are:

1) To obtain flexibility, a reconfigurable compute engine
with inter-computing-unit (CU) reconfiguration and
intra-CU reconfiguration is proposed to support various
spiking layers, covering operations in various hybrid-
NNs. The compute engine is also designed to exploit
data reuse and guarantee parallel data access when
processing different types of convolution to achieve high
memory efficiency.

2) To reduce the computation time, a two-step data sparsity
exploration method is introduced to leverage the spar-
sity of discrete spikes. Besides, an online channelwise
workload scheduling method is proposed to reduce the
latency further.

3) The proposed design is implemented on a Xilinx
XC7Z100 field-programmable gate array (FPGA) and
verified by image segmentation and classification tasks.
Results show at least 17.5x prediction energy reduction
and 20x speedup achieved by Cerebron compared with
state-of-the-art FPGA-based accelerators.

II. PRELIMINARIES AND MOTIVATIONS

A. Neuron Model for SNN

The integrated-and-fire (IF) neuron model is used in this
work. Assume that at time step ¢, the IF neurons in layer /
receive binary input spikes ®/(¢), and the update mechanism
of the temporary membrane potential of neurons is given by

Vemp(t +1) = VI(6) + W' (1) (1)

where V/(t) is the membrane potential at time step ¢, themp (t+
1) is the intermediate variable from V'(z) to V/(t + 1), Vy, is
the voltage threshold, and W' is the synaptic weight, which
can signify the connection between neurons.

If VL (t+1) exceeds a predefined threshold Vi, an output
spike ®'(r + 1) will be produced. The membrane poten-
tial at + + 1 would be updated by the reset-by-subtraction

method [27]. The updating rules are described as
O™ (1) = U(Viemp(t + 1) = Vin) ©)

where U (x) denotes a unit step function. As shown in Fig. 1,
SNNs are organized in cascaded layers and are executed over
time steps with inputs encoded in spike trains. The spikes
propagate through the network until reaching the output.
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B. Depthwise Separable Convolutions

DSC [28] factorizes the standard convolution into a depth-
wise convolution and a pointwise convolution. Fig. 2 describes
how standard, depthwise, and pointwise convolution work.
In the standard convolution, the input feature map has to do
a convolution with F filters with a size of K x K x C.
The DSC comprises two steps. The first step is the depthwise
convolution, where only 2-D convolution is performed on each
input channel individually with K x K kernels. The second
step is the pointwise convolution, which can be regarded as
a standard convolution with 1 x 1 kernels. Compared to
standard convolution, DSC considerably reduces the number
of operations and parameters. One of the typical applications
of DSC is the compact model MobileNet, which can be run
much faster than traditional DNNs.

C. Spatiotemporal Sparsity and Event-Based
Workloads in SNNs

In traditional DNNSs, sparsity exists both in weights and
feature maps. Some state-of-the-art pruning methods can
significantly increase the weight sparsity in networks with
comparable accuracy. Feature sparsity is the zeros existing
in the feature maps and is mainly caused by the activation
function (e.g., ReLU). The sparsity level is defined by the
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Fig. 3. Spike activity of a spiking convolution layer when running 28 x
28-16¢5-32¢3-8c1(branch1)-10c3(branch2)-fc network on MNIST dataset.

fraction of zeros in filters or features. Operations involved
with zeros have no impact on the final results and thus can be
skipped to reduce computational workloads. In DNNs, sparsity
only exists in the spatial dimension.

In contrast, SNNs run over multiple time steps. The sparsity
exists not only spatially across neurons but also temporally
over time steps, i.e., spatiotemporal sparsity. In SNNs, weight
sparsity has the same definition as that of DNNs. However,
feature sparsity is not present in SNNs but replaced by the
neuron state sparsity caused by discrete spikes. The neuron
state is binary, where 1 denotes that a spike is produced and
its fan-out connections are active, O denotes no spike produced,
and its fan-out connections are inactive. As mentioned before,
a spike is only produced when the accumulated membrane
potential exceeds a predefined threshold. The spike rate of
SNNs is defined as the fraction of neurons that produce a spike
across all time steps, which directly affects the sparsity level.
Fig. 3 shows the spike activity of a convolution layer when
running on samples in the MNIST dataset. Most neurons do
not fire at each time step, showing high-level spatiotemporal
sparsity (~93%).

SNNs have intrinsically event-driven workloads since the
workload associated with a layer strongly relates to the spike
rate of neurons and the number of active fan-out connections
per neuron [24]. The dynamic, active connections between
neurons introduce an unpredictable workload pattern. Fig. 4
shows the input neuron state maps of different channels.
We found that the spike rate varies considerably among these
input channels. The unbalanced spike rates among the input
channels will correspondingly lead to unbalanced workloads.
In summary, due to weight pruning and the randomness of
input spikes, the sparsity is irregular and unpredictable, which
is difficult for accelerators to leverage. Besides, the unbalanced
workload caused by the sparsity will reduce the hardware
efficiency.

III. RELATED WORK

SNNs are intensive in computing and data access. A variety
of SNN acceleration methods have been designed to improve
the efficiency of SNN computation and can be categorized
into three types. The first type is to deploy SNNs on com-
mercial platforms such as GPUs [29], [30], [31]. However,
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Fig. 4. Demonstration of the workload. (a) Spike summation of different
channels. (b) Spike rate distribution of different channels in a certain CONV
layer. The data are collected during segmenting a frame in a driving video,
and the output is the segmentation mask for the road.

GPUs can only achieve maximum efficiency when having
a large amount of parallelizable computation and memory
access, which is in contrast with the event-driven nature of
SNNs. The second direction is to build specific hardware
for SNNs [17], [18], [19], [24], [32], [33], [34], [35], [36],
[37], [38], [39], [40], [41]. In this direction, various SNN
hardware implementations have recently been proposed, which
can be divided into two categories in terms of topologies:
general mesh and feedforward [42]. For the general mesh,
existing large-scale neuromorphic hardware systems, such as
IBM TrueNorth [17], Intel Loihi [18], and Tianjic [19], can
support a mesh of neurons by routers and schedulers. The
SNN networks are distributed among the neurocores, and each
neurocore is responsible for storing a portion of the weights
and computing that portion of the SNN topology. These
accelerators are biologically plausible but usually need large
area costs. Some accelerators (e.g., SIES [43], S2N2 [36],
and Spinalflow [24]) choose the feedforward approach. Their
neurocores are arranged in a cascaded fashion or configurable
processing element (PE) array. The accelerators belonging to
this kind require less area cost and achieve higher computing
resources utilization. Our work Cerebron also falls into this
category and is also largely complementary. The third category
is to explore emerging devices or materials that can be adapt-
able to the event-driven properties of SNNs, e.g., optics [44],
[45], memristors [46], [47], and spintronics [48], [49]. Using
the property of novel devices or materials may potentially
boost efficiency. For example, Feldmann ef al. [45] designed
a fully optical neuromorphic framework for implementing
SNNs using phase-change materials, presenting a photonic
neural network consisting of four neurons and 60 synapses.
Singh et al. [49] built an ultralow-power architecture NEB-
ULA for SNNs and artificial neural networks (ANNS) infer-
ence using a spintronics-based magnetic tunnel junction neu-
ron model.

IV. ARCHITECTURE DESIGN AND DATA PROCESSING
A. Architecture Overview

The top-level architecture of Cerebron is shown in Fig. 5.
It is composed of a controller, on-chip buffers, an address
generator, and a compute engine. The on-chip buffer caches
neuron states, membrane potential (VMEM), and synaptic
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Fig. 5. Proposed system architecture.

weights. A Xilinx Direct Memory Access (DMA) IP block
controlled by the host is used to manage the I/O communica-
tions between the accelerator and the host. Input neuron states
are streamed to the accelerator and stored in the neuron state
buffer. The address generator produces the addresses of the
corresponding weights and membrane potentials. The compute
engine also consists of a CU array, a data collection unit, and
a workload scheduling unit.

In the compute engine, the CU array has M x N CUs,
and each CU is primarily composed of L PEs. The CU
array is designed to be compatible with standard convolutions,
depthwise convolutions, and pointwise convolutions to obtain
versatility and flexibility. It is also optimized to support
three kinds of data reuse: weight reuse, input neuron state
reuse, and overlap reuse, which can vastly reduce memory
access and eliminate the memory access conflict problem. The
data collection unit contains multiple first input—first outputs
(FIFOs) and register files to buffer data. The input neuron
states and synaptic weights are loaded into the CU array to
realize weight reuse and feature reuse. The overlap reuse is
processed by transmitting overlaps in the data collection unit.
The realization of data reuse by the data collection unit is
further discussed in Section IV-D. The workload scheduling
unit accumulates the spikes generated by CUs in each column
to record the spike summation of each output channel, i.e.,
the spike summation of each input channel in the subsequent
convolution. By comparing the spike summations of different
input channels, the workload in the convolution can be sched-
uled channelwisely to obtain the balance.

B. Reconfigurable Compute Engine

1) Inter-CU Reconfiguration: The systolic array is a spe-
cialized network of homogeneous PEs designed to process
massive parallel computations [50]. In a typical systolic array,
PEs get their inputs from neighboring PEs without frequently
accessing data from memory. This is why the systolic array
can achieve high throughput with relatively low memory
bandwidth. Due to this advantage, many previous works adopt
systolic arrays with output stationary dataflow for accelerating
DNNs [51], [52]. However, the naive systolic array with
output stationary dataflow has some shortcomings. On the one

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 30, NO. 10, OCTOBER 2022

Data Data RF
Collection Collection
FiFol+{cu r FiFol| *cull 7 cu cu
. I
v v |
(| FIFO ** ~cul{*cu ! FIFo| | ~[cu
[~ I
e || i
FIFO —> *' el oy FiFol| =[cu
e ¢
(a) (b)
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hand, it is not suitable for processing all kinds of convolution
operations. For example, from a data reuse perspective, the
depthwise convolution cannot be processed in a naive systolic
manner because each 2-D input feature map is only convolved
with one filter; in other words, PEs cannot get inputs from
their neighboring PEs. Only the PEs in the first column are
busy, resulting in a considerable reduction of the utilization
ratio and degrading the performance. On the other hand,
the naive systolic array cannot fully exploit the parallelism
in neural networks. Each PE undertakes a convolution com-
putation, limiting the parallelism on sliding input windows’
dimensions, such as channel dimension or vector dimension.
Previous works [7], [8] designed configurable adder trees
to support different convolutions and exploit the inherent
parallelism in convolutions. The reconfigurable adder tree can
be reconfigured to process x additions, each adding y input
data simultaneously, making it compatible with the parallelism
in various convolutions. However, this parallelism brought by
adder trees might result in the difficulty of processing sparsity.

In this work, we design a reconfigurable CU array to
support different convolutions and exploit the parallelism.
Our computing structure combines the advantages of the
systolic array and adder tree-based structure, exploiting higher
parallelism and keeping flexible and sparsity friendly. The
proposed reconfigurable CU array can be reconfigured to
different modes by changing the connections from the data
collection unit to each CU and between neighboring CUs.
Fig. 6 describes the details of the two reconfigurable modes,
including systolic mode and unicasting mode. In the systolic
mode [Fig. 6(a)], the input neuron state maps are loaded from
FIFOs in the data collection unit. They are sent to the CU array
from the left input port and horizontally shifted to the CUs.
The output neuron states and updated membrane potentials
are shifted to the right edge of the array. Each CU column
has a weight bus, which is connected to a group of register
files. The weight bus broadcasts the weights to CUs in this
column. In the unicasting mode [Fig. 6(b)], each CU has its
own connection to the register files, and the input neuron state
maps can be directly loaded from the register files in the
data collection unit. In this way, depthwise convolution can
be deployed on the CU array while keeping all the CUs busy.

2) Intra-CU Reconfiguration: Within a CU, the PE
can be reconfigured to support both different functions
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Fig. 7. Reconfigurable PE: (a) PE architecture, (b) datapath under average-pooling mode, (c) datapath under stand-alone convolution mode, and (d) datapath

under cascade convolution mode.

according to the configuration word mode, which includes
the average-pooling mode [Fig. 7(b)], stand-alone convo-
Iution mode [Fig. 7(c)], and cascade convolution mode
[Fig. 7(d)]. Under the average-pooling mode, PEs can exe-
cute the average-pooling function independently. Under the
stand-alone convolution mode, PEs can undertake the convolu-
tion independently, mainly used in the depthwise convolution.
Under the cascade convolution mode, PEs are configured to
work with other PEs in the same CU to process the convo-
lution, adopted in the standard and pointwise convolutions.
The cascade convolution mode obtains the parallelism on the
channel dimension.

As shown in Fig. 7(a), the PE mainly consists of an accumu-
lator and several comparators. Most of these units are reused
in different modes. Therefore, the unused PE area is relatively
small. The PE structure can be decomposed into three mod-
ules: data selecting, integrating, and output forwarding. The
data selecting module selects the nonzero data to support zero
skipping, thus reducing operations and power consumption.
The integrating module performs the accumulation. In the
stand-alone and cascade convolution modes, the inputs of the
accumulation are the synaptic weights from the aligned pairs,
while in the average-pooling mode, the inputs are the input
neuron states from the aligned pairs. The aligned pair denotes

the pair where the input neuron states and weights are both
nonzero data. The output forwarding module is designed for
the cascade convolution mode. Since the sparsity is irregular,
the workload of each PE might not be equal, and the output
forwarding module works as an output regulator to arrange the
transmission of the partial sums between PEs. Within a CU,
the output enable signal from the next PE En_next will be
transferred to the current PE and works together with the local
output result enable signal En_local to determine when the
output enable signal En_Psum_next of the current PE should
be forwarded to the next PE.

C. Two-Step Data Sparsity Exploitation

The nonzero aligned data pairs should be extracted before
accumulating to exploit both input neuron state sparsity and
weight sparsity. The operations involved with zero operands
should be skipped to save energy and processing time.

Some works first compressed the data using popular sparse
encoding formats, e.g., CSC [5], ECOO [50], and then
extracted and compared the indices of nonzero features and
weights to get the nonzero aligned data pairs. However, SNNs
are not suitable for encoding binary neuron states since the
indices of nonzero data lead to high memory overhead since
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they require multiple bits [36]. The previous work [35] adopted
a one-step sparsity exploitation method to skip the input
neuron state sparsity. The addresses of weights that correspond
to the nonzero neuron state are calculated, and the weights
are read from the buffers in one step. However, this requires
several copies of the weights; otherwise, it will lead to memory
access conflict. PEs in the same column receive different rows
of input neuron states to reuse filters. However, the various
sparsity existing in these neuron state rows leads to different
weight addresses, thus leading to conflicts.

In this work, a two-step data sparsity exploitation method
is proposed to overcome the limitations. As shown in Fig. 8§,
we take a pointwise convolution example to illustrate how
the two-stage data sparsity exploitation method works. In the
first stage, two 1-D input neuron state vectors with length C
are formed to two C-bit index signals “00010001” and
“10100000” and loaded to the data collection unit.

The two index signals will be dispatched to PE (0, 0) and
PE (1, 0) in the CU array. Meanwhile, in the second stage, the
starting address of each input spike vector is sent to the address
generator to calculate the corresponding weight address. In this
way, the weight vectors “wo0w;0w,w30w,4” are read from the
weight buffer and transmitted to the register files in the CU
array. The index signals and the weight vector are adopted as
mutual masks to determine the weights that have the exact
location of aligned pairs, where both the index and weight
are nonzero data. Within one clock cycle, the nonzero data
will be filtered out, saved to the register file, and waiting to
be accumulated. In the PE (0, 0), only the synaptic weight
wy is filtered out to accumulate; in the PE (1, 0), the synaptic
weights wg and w; are filtered out.

In such an approach, memory access conflicts are avoided
when reusing weights. Furthermore, the CU array mainly
involves accessing small register files instead of frequently
accessing large buffers [static random access memory
(SRAM)]. The energy efficiency could be improved accord-

ingly.

D. Data Reuse Supporting Different Convolutions

Different convolutions usually involve different accumula-
tion patterns, which brings an obstacle to the hardware design,
especially in terms of data reuse. Fig. 9 describes how these
convolutions achieve data reuse on the compute engine.
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1) Data Reuse in the Standard Convolution: The stan-
dard convolution can be exploited in weight reuse, feature
reuse, and overlap reuse. The details of data reuse in the
standard convolution are shown in Fig. 9(a). The weight
reuse and input neuron state map reuse are obtained by
broadcasting the same weights to CUs in the same CU column
and transferring the same inputs to CUs in the same row.
In the standard convolution, the input neuron state maps
required for the three convolution operations SM1, SM2,
and SM3 are overlapped with each other. The overlapped
part of SM1 and SM2 is called 3-D vertical overlap, and
the overlapped part of SM2 and SM3 is denoted as 3-D
horizontal overlap. If it is a naive design, the overlapped parts
of the input neuron state maps would be stored as several
copies, resulting in a waste of memory; also, repeated mem-
ory accesses are introduced, leading to unnecessary energy
consumption.

In this design, all input neuron state map elements need
to be read from the buffer only once. The vertical-FIFOs (v-
FIFOs) and horizontal-FIFOs (h-FIFOs) in the data collection
units are used to store the vertical overlap and horizontal
overlap, respectively, temporarily. We take the first convolution
involved with SM1 as an example. C;; denotes the input vector
along the channel dimension. In the first period, C;;, C»;, and
C3; are loaded from buffers and sent to the CU array to initiate
the three convolutions. Meanwhile, copies of Cyy, Cz;, and Cs;
are streamed into v-FIFOs. In the second period, the copy of
C»; in v-FIFO2 is sent to the first CU row. In the third period,
the copy of C3; in v-FIFO3 is sent to the first CU row. Then,
in the fourth period, Ci2, Cy, and Cs; are loaded from the
buffers while holding two copies in v-FIFOs and h-FIFOs. The
copies of Cy, and Cs; in v-FIFOs are sent to the first CU row in
the following two periods. In the next three periods, Ci3, Cas,
and Cs3 are operated in the same manner. The copies stored
in the h-FIFOs provide inputs for the neighboring right-hand

convolution involved with SM3.
2) Data Reuse in the Pointwise Convolution: The pointwise

convolution can be regarded as a particular case of the standard
convolution, i.e., the standard convolution with 1 x 1 kernel
size. In this case, overlapped input neuron state maps do not
exist when the filters slide over the inputs. They are only
related to weight reuse and feature reuse. Fig. 9(b) shows
the details of data reuse in the pointwise convolution. The
weight reuse and input neuron state map reuse in the point-
wise convolution can be achieved using the same approach
used in standard convolutions. The weights of the filters are
broadcasted to CUs in the same column, and the inputs are
transferred to CUs in the same row.

3) Data Reuse in the Depthwise Convolution: The depth-
wise convolutions are composed of multiple individual 2-D
standard convolutions. Each 2-D convolution only has one
filter, indicating that the input neuron state reuse does not
exist. In this case, only the weight reuse and overlap reuse
are exploited. The input neuron state maps cannot be fetched
from the neighboring CUs because the input neuron state maps
are not reused in the depthwise convolution. Therefore, the
CU array is reconfigured to unicasting mode to increase the
parallelism. As shown in Fig. 9(c), each CU in the array is
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Fig. 9.

designed to have an extra interface to the outside, connected
to a group of register files.

Each CU column performs one 2-D convolution indepen-
dently. The weight reuse is obtained by broadcasting the
weights to CUs in the same CU column. The overlap here is
divided into vertical overlap and horizontal overlap. We take a
2-D convolution as an example. The first multiple rows of the
input neuron state map are read from the buffer directly, and
then, they are reshaped into a vector and stored in the register
file. The inputs required for computing an output point can
be directly fetched from the register files. In this case, the
horizontal overlap reuse can be realized. As for the vertical
overlap reuse, when the input neuron states in the first row are
no longer involved in the convolution, they will be replaced
by the input neuron states in the next row while keeping other
intermediate rows in the register files. Each time only the
useless rows will be replaced.

E. Exploiting Workload Balance in Spiking Convolutions:
Online Channelwise Workload Scheduling

Fig. 4 shows the considerably unbalanced sparsity among
the input neuron state maps of different channels. This

Data reuse supporting different convolutions: (a) standard convolutions, (b) pointwise convolutions, and (c) depthwise convolutions.

unbalance will reduce the throughput when processing con-
volutions. In the standard convolution, PEs undertake the
computations over the input channels. Within a CU, the PE,
which computes with the most sparse inputs, first finishes
its task, whereas the PE processing with the most nonzero
inputs becomes the bottleneck of the hardware throughput.
Similarly, in the depthwise convolutions, each CU column
performs one slice of depthwise convolution (i.e., 2-D con-
volution) individually. Since the input sparsity of each 2-D
convolution is different, the CU column, which computes
the 2-D convolution with the most sparse inputs, first fin-
ishes its task, whereas the CU column processing 2-D con-
volution with the most nonzero inputs becomes the foot
dragger.

We propose an online workload scheduling method targeting
spiking convolutions (seen in Algorithm 1) to deal with this
problem. The workload is scheduled with the minimum gran-
ularity of the 2-D convolution (i.e., a separable slice of depth-
wise convolution or partial channel convolution of standard
convolutions). The scheduling task is mainly undertaken by the
workload scheduling unit, primarily composed of a workload
accumulator, a serial full comparison sorting module, and a
scheduling table.
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Fig. 10. Demonstration of the proposed workload scheduling method using a simple example.

The preparation work is to get the spike number of the input
neuron state map in each 2-D convolution; in other words,
we need to accumulate the spikes generated by the neurons
in each output map in the previous convolution. The output
generated by each CU will be transferred sequentially to the
workload accumulator, each positive signal indicates an active
connection, and makes the workload number add by 1. The
first step is sorting and regrouping. Every round, we will get a
list containing M output spike summations, and then, M values
in the list will be sorted in order. Here, we adopt the serial
full comparison sorting method, and the latency is about 2M
cycles each round. The latency of all rounds except the last
one is hidden by the computations in CUs. The last 2M-cycle
delay is negligible as it takes more than thousands of cycles
to finish the convolution. Now, we get F'/M sorted lists, each
containing M elements. Then, the value in the same position
of each list will be put together to regroup M new lists; each
new list has /M elements. The sorting and regrouping results
will be stored in the scheduling table. The second step is
fine-tuning. The maximum element in each new group will
be selected and compared with the maximum element of the
previous group using comparators in the serial full comparison
module. If it is larger, these two elements will swap places.
The fine-tuning results will be saved back to the scheduling
table. The third step is adjusting. To guarantee the parallelism,
we need to keep the element in the list equal to Q. The
value Q is the number of PEs within a CU when processing
standard convolutions, whereas the number of CU columns

is in depthwise convolutions. Q is compared with F/M to
determine whether the lists need to be split or concatenated
with others.

Fig. 10 shows the procedure of the proposed work-
load scheduling method working on depthwise convolution.
Assume that the CU array has eight CU columns (M = 8),
and there is a pointwise convolution with 64 output neuron
state maps (F = 64). These 64 output neuron state maps as
the inputs of 64 2-D convolutions in the subsequent depthwise
convolution need to be scheduled to achieve the workload
balance. The input neuron state map with most spikes within
a round dominates the processing time (denoted as the red
triangle). The scheduling method can gather the 2-D convolu-
tion with similar levels of spike summation together into one
processing round, thus reducing the workload unbalance. It is
observed that the processing time is gradually reduced with
the scheduling process.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Methods for direct training of SNNs have made tremendous
progress recently but are often computationally expensive and
challenging to scale up to deeper networks. Conversion of
DNNs to SNNs is a more straightforward way to obtain an
SNN with equivalent accuracy to the DNN. This method
transfers the pretrained ANN parameters to a network of the
same topology as ANN but uses spiking neurons. In this work,
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Algorithm 1 Channelwise Workload Scheduling Mechanism

Require:
F, the number of 2D convolutions in a convolution layer;
M, the number of CU columns;
S, the spike number of each 2D input neuron state map;
T, the iteration number.
Ensure:
G, the balanced task group.
: // Step 1: Sorting and Regrouping.
cfori=1;i < F/M;i++ do
C; = Sort(S;).
end for
fori=1;:<M; i+ + do
for j =1, < F/M;j++ do
Add the element C; to Ly;
end for
: end for
: // Step 2: Finetuning
. for iter = 1; iter < T; iter + + do
fori=1;i<F/M;i++ do
if Max(L;) > Max(L;4+1) then
Swap places.
end if
end for
: end for
: // Step 3: Adjusting
: if F/M > G then
Split each list L into F//MG sublists .
. else
Concatenate every F//MG list L into a list.
: end if

R AN Al e

PR DR = m om s s s s s e
O N e = B = R B N VO N R =

for converting the DNNs to the spiking version, we use an
open-source SNNtoolbox,! which implements the conversion
methods described in [27].

We evaluate the effectiveness of the proposed design using
two kinds of tasks, including image classification and image
segmentation. When testing image classification tasks, we use
two representative models of the spiking version on the
MNIST and CIFAR-10 datasets. For the MNIST dataset, an in-
house ConvNet model with architecture 28 x 28-16C3-32C3-
16C3-10 is used for evaluation. For the CIFAR-10 dataset,
we select a variant of MobileNet: a thinner MobileNet. The
thinner MobileNet includes one standard convolution layer as
the first layer, followed by eight DSCs, an average-pooling
layer, and a fully connected layer. The detailed architecture
is shown in Table I. Since the input size of CIFAR-10 is
smaller than ImageNet, we change the stride of the first three
depthwise convolutions from 2 to 1 to guarantee the resolution.
When testing image segmentation tasks, we study the task
of detecting lanes in driving videos. We use a segmentation
network (referred to as SegNet hereinafter) with 160 x 80 x
3-8C3-16C3-32C3-32C3-16C3-1C3-160 x 80 x 1 structure

Uhttps:/snntoolbox.readthedocs.io/

TABLE I

ARCHITECTURE OF THINNER MOBILENET ON CIFAR-10
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Layer | Type/Stride Filter Shape Output Size
1 Conv / sl 3 x3x3x16 32 X 32 X 16
2 Conv dw/ sl 3 x3x 16dw 32 x 32 x 16
3 Conv / sl 1 x1x16 x 32 32 x 32 x 32
4 Conv dw/ sl 3 X3 x32dw 32 x 32 x 32
5 Conv / sl 1 x1x32x 64 32 X 32 x 64
6 Conv dw/ sl 3 X 3 x 64dw 32 X 32 x 64
7 Conv / sl 1 x1x64x 64 32 X 32 x 64
8 Conv dw/ sl 3 X 3 X 64dw 32 x 32 x 64
9 Conv / sl 1 x1x64x 128 32 x 32 x 128
10 Conv dw/ sl 3 x 3 x 128 dw 32 x 32 x 128
11 Conv / sl 1 x 1 x 128 x 128 | 32 x 32 x 128
12 Conv dw/ s2 3 x 3 x 128 dw 16 x 16 x 128
13 Conv / sl I x 1 x 128 x 256 | 16 x 16 x 256
14 Conv dw/ s2 3 x 3 x 256 dw 8 x 8 x 256
15 Conv / sl 1 x1x 25 x 512 8 x 8 x 512
16 Conv dw/ sl 3 x 3 x512dw 8 x 8 x 512
17 Conv / sl 1 x1x512x 512 8 x 8 x 512
18 AvgPool / sl 8 x 8 1 x 1 x512
19 FC 512x10 10

to realize the end-to-end pixelwise prediction. The model is
tested on the dataset from the MLND-Capstone project.”

We implement our design on a Xilinx Zynq XC7Z100
FPGA running at 200 MHz. The host program is responsible
for sending synaptic weights and input neuron state maps into
the programmable logic (PL) and collecting the final results.

B. Design Space Exploration in Workload Balance

The theoretical peak throughput of the accelerator on the
PL part is given as

3)

where f denotes the clock frequency of PL and P is the total
number of PEs in this design. In this accelerator, P = M x
N x L, where M denotes the number of CU columns, N is the
number of CU rows, and L is the number of PEs within a CU.
Theoretically, the peak hardware throughput is proportional to
the number of PEs; however, the actual throughput is affected
by the workload imbalance brought by the inherent dynamic
spatiotemporal sparsity of SNNs.

As we analyzed in Section III-E, in depthwise convolution
and standard convolution, the slices of 2-D convolutions have
different nonzero values in the input neuron state maps,
leading to unbalanced workloads. To alleviate the unbal-
ance, we propose an online channelwise workload scheduling
method. To quantify the balance effect, we define the balance
ratio (BR) of the PEs adopted in [53]

T
Zt:l WLl,mean

Throughput,.,, = f * P

BR = “)
> WLy max
M
WLt,mean = ZWL;" (5)
m=1
WL, max = max (WL, WL7, ..., WLY) (6)

where WL; mean and WL, max are, respectively, the mean and
max workload of PE array at time step ¢. The BR is obtained

Zhttps://github.com/mvirgo/MLND-Capstone/
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Fig. 11. Balance ratio of the accelerator versus the choice of Q in depthwise
convolutions and standard convolutions.

by running over T time steps. The performance is dominated
by the max workload WL, .. We can achieve better perfor-
mance when the max workload is closer to the mean workload.

To evaluate the influence of the choice of Q on the workload
balance, we conduct the experiments on depthwise convolu-
tion from MobileNet and standard convolutions from SegNet
separately. As mentioned before, in depthwise convolution, Q
denotes the number of PEs in a CU. Fig. 11(a) shows the BR
across depthwise convolution layers of the spiking MobileNet
with and without the online channelwise workload scheduling
method and demonstrates how the BR changes with different
choices of Q. It was observed that the workload is more
balanced (~1.6x) when the scheduling method is applied.
Besides, the workload is naturally more imbalanced when the
value of Q is increasing. As the precondition to increasing
the hardware parallelism, we considered setting the Q value
between 4 and 8, where the BR value is between 0.79 and 0.82.

In the standard convolution, Q denotes the number of CU
columns. Fig. 11(b) and (c) shows the BR across standard con-
volution layers with and without workload scheduling method
and demonstrate how the BR changes with different choices of
Q, under two cases: ConvNet model for MNIST dataset and
SegNet model for MLND-Capstone dataset. In the first case
[Fig. 11(b)], the workload is more balanced (~1.3x) when
the workload scheduling method is applied. In the second
case [Fig. 11(c)], the workload is more balanced (~1.7x)
when the workload scheduling method is applied. Similar
to before, the workload is naturally more imbalanced when
the value of Q increases. As the precondition to increasing
the hardware parallelism, we considered setting the Q value
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between 4 and 8, where the BR value is between 0.68 and
0.75. Therefore, we set the number of CU columns as 8 and
PEs within a CU as 4.

C. Memory Efficiency

Memory efficiency is mainly featured by evaluating the
reduction of required buffer accessing and buffer capacity.
In this design, it is mainly obtained by the overlap reuse
and two-step sparsity exploitation. Fig. 12 shows the average
reduction ratio in different models. From the overlap reuse per-
spective, nearly 9x reduction of neuron state buffer accessing
and capacity is achieved on the ConvNet and SegNet since
a large number of overlapped maps have existed. However,
the reduction in MobileNet is relatively smaller because the
pointwise convolution as the major component of MobileNet
is involved with 1 x 1 kernels, which has no overlap. From the
two-step sparsity exploitation perspective, it solves the weight
access conflict problem and avoids using several copies of the
weight buffer, thus reducing 8x of the buffer capacity.

D. Energy Efficiency and Performance

In this section, we evaluate the energy efficiency improve-
ment of this design. Without considering off-chip data access,
Fig. 13 shows that Cerebron can achieve up to 9.6x energy
consumption reduction over various models compared to the
accelerator without optimization. On one hand, numerous
additions have been skipped, which reduces the energy con-
sumption largely. On the other hand, the energy consumption
caused by buffer access is significantly reduced. The overhead
introduced by FIFOs or register files is much less than the
above two aspects, which takes up less than 5% of the power.
Experimental results also show that Cerebron with a larger
number of CU rows (N) could obtain a higher improvement
in energy efficiency. Considering that the input size of the
latter layers in the network is small, we set the number of
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TABLE II
COMPARISON WITH PREVIOUS WORKS
Metrics TCAS-I'21[37] JCST’20 [43] ICCAD’20[38] | ASSCC’19[39] | JSA’17[40] This work
FPGA Platform VC707 XCVU440 XCZU9EG XC7VX690T Spartan-6 XC7Z100
Task Classifi. Classifi. Classifi. Classifi. Classifi. Classifi./Seg.
Dataset MNIST MNIST/CIFAR-10 MNIST MNIST MNIST/EEG | MNIST/CIFAR-10/MLND-Capstone
Input size 784 784/1024 784 784 78416 784/1024/12800
Model MLP! ConvNet?/VGG-16 | MLP/CNN? MLP* MLP3 ConvNet/MobileNet/SegNet
Accuracy 92.93% 99.16%/91.46% | 98.96%/99.42% 98% 93.8%/92.7% 99.40%/91.90%/97.30%
Clock Frequency (MHz) 100 200 125 - 25 200
on-chip Power (W) 1.6 - 4.5 0.7 - 1.4
Predition Energy (mlJ/frame) 5.04 - 2.34/33.84 0.7 - 0.04/14.88/1.12
Computation Time(ms/image) 3.15 - 0.52/7.69 1.09 160 0.026/10.63/0.80
Frame Per Second (KFPS) 0.32 - 1.92/0.13 0.91 0.006 38.5/0.09/1.25
Effect. Throughput (GSOp/s) - 1.5625 (TOpfs) 0.73 - 40.1/44.2/45.0
Efficiency (GSOp/s/W) - - 0.95 - 28.6/31.6/32.1

! Classification network with 784-200-100-10 structure.
2 Classification network with 28x28-12c5-mp-64c5-mp-10 structure.

3 Classification network with 784-500-500-10 and 28x28-32C3-P2-32C3-P2-256-10 structure.

4 Classification network with 784-512-384-10 structure.

5 Classification network with 784-500-500-10 structure on MNIST dataset and another classification network with 6-50-100-2 structure on the dataset about

the EEG signals for motor imagery.

CU rows as 8. In summary, the scale of Cerebron is set to
8 x 8 x 4.

An essential feature of Cerebron is its ability to handle the
dynamic sparsity in the temporal—spatial domain. We adopt the
two-step sparsity exploitation method to eliminate the sparsity
and an online channelwise workload scheduling strategy to
deal with the unbalance workload introduced by the dynamic
sparsity. Through analysis, the baseline is the 50-GOp/s the-
oretical peak throughput obtained by (4). When the two-step
sparsity exploitation method was applied alone, the accelerator
can achieve 0.44-, 0.48-, and 0.45-TOp/s effective throughput
on ConvNet, MobileNet, and SegNet models, respectively.
After the online channelwise workload scheduling method is
applied, further speedup is achieved, and the accelerator can
achieve 0.65, 0.52, and 0.60 TOp/s. Overall, by combining
sparsity exploitation and workload scheduling, the accelerator
achieved up to 13x speedup compared to the accelerator
without optimization. For better illustrating Cerebron’s ability
to handle temporal SNNs, the effective throughput across
different time steps is also tested. Taking the spiking ConvNet
as an example, as shown in Fig. 14, the effective throughput
changes with the time steps due to the varying active con-
nections. Another evaluation method is based on the synaptic
operation (SOP) [25]. Each SOP delivers a spike through an
individual synapse. After optimizations, the throughput can
reach 40.1, 44.2, and 45.0 GSOp/s on ConvNet, MobileNet,
and SegNet models, respectively.

E. Comparison With Previous Works and Discussion

Table II compares the performance of Cerebron with pre-
vious state-of-the-art SNN accelerators, including information
such as tasks, datasets, computation time, energy consumption,
and throughput. As can be seen from the table, Cerebron
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Fig. 14. Effective throughput across time steps when processing the Spiking
CovNet.

has maximum flexibility, which can support a variety of
emerging network structures and model sizes. It has the lowest
computation time (0.026 ms/image) and prediction energy
(0.04 mJ/image) while achieving state-of-the-art accuracy clas-
sification accuracy (99.40%) for the MNIST classification
task among these designs. When processing larger scale net-
works, it can achieve 10.63 ms/image, 14.88 mlJ/image, and
91.90% accuracy for MobileNet on the CIFAR-10 dataset,
and 0.80 ms/image, 1.12 mJ/image, and 97.30% accuracy for
SegNet on the MLND-Capstone dataset. Results show that
the implementation achieves at least 17.5x prediction energy
reduction and 20x speedup compared with those state-of-the-
art FPGA-based accelerators. The resource utilization of the
XC772100 FPGA is summarized in Table III and the power
breakdown is shown in Fig. 15.

The neuromorphic processors, such as TrueNorth and Loihi,
exploited sparsity at the expense of area cost. Since they are
biologically inspired designs, each neuron has occupied a fixed
resource of the chip without reuse, and large areas of resources
will be in the idle state. In our work Cerebron, resources can
be reused by neurons and well-arranged to achieve both energy
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TABLE III
XC77Z100 FPGA RESOURCE UTILIZATION OF CEREBRON

Metrics [ LUT [ FF [ DSP [ BRAM
Avaliable 277400 554800 2020 755
85926 70544 0 283
(75.2%@CE, | (85.3%@CE,
Used 8.5%@AG 43%@AG
7.9%Ctrl, 4.5%Cl, (100%@Buf)
8.4% @Buf) 5.9% @Buf)
Percentage 30.97% 12.71% 0% 37.48%

efficiency and low cost by sparsity exploitation and afterward
workload balance and scheduling. Besides, compared to other
SNN accelerators using feedforward topology, our design
is more sparse-friendly, and it exploits the spatiotemporal
sparsity and further improves the throughput by scheduling
the event-driven workloads.

Recently, some latest works, such as LSMCore [54] and
SSO-LSM [55], are concentrating on accelerating liquid state
machine (LSM), which is the spiking version of reservoir
computing. As discussed in LSMCore, there are three main
challenges for LSM acceleration: 1) any possible connections
among neurons are required; 2) the computation and com-
munication of all neurons are completed within one time
step; 3) sparsity utilization is adopted to reduce hardware
resource and latency overhead. Luckily, Cerebron can meet
these requirements and can be used to execute LSMs.

VI. CONCLUSION

In this work, we introduce a reconfigurable architec-
ture, Cerebron, for SNNs targeting flexibility and efficiency.
To achieve flexibility, a reconfigurable compute engine with
inter-CU and intra-CU reconfiguration is proposed to support
various spiking layers. To achieve memory efficiency, the com-
pute engine is also designed to exploit data reuse and guarantee
parallel data access when processing different convolutions.
To reduce the computation time, the inherent spatiotemporal
sparsity is exploited. Besides, an online channelwise work-
load scheduling is designed to reduce the latency further.
This design was implemented on a Xilinx XC7Z100 FPGA
and verified on image segmentation and classification tasks,
which uses spiking models, including ConvNet on MNIST,
MobileNet on CIFAR-10, and SegNet on the MLND-Capstone
dataset.
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