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Chapter 1

Introduction

In the last years wireless communication has become more and more ubiquitous.

This is most visible for voice communication. We see in Fig 1.1 that the number

of mobile phone subscriptions increased linearly for years. In Europe the number

of mobile phone subscriptions already surpassed the number of inhabitants in

2005 [1]. At the time of writing, there are 5, 3 billion mobile cellular subscriptions

worldwide [2]. The key drivers of this migration of voice communication from

fixed lines, e.g., the plain old telephone service (POTS) and ISDN, to wireless

networks, e.g., GSM and UMTS, are mobility and low installation hurdles.

The successful migration of voice communication raises the question whether a

migration of data communication is also possible. However, the requirements for

data communication are different from the requirements for voice communication.

Whereas voice communication has strict delay requirements, data communication

has higher data transfer rate requirements. The most popular standard for wire-

less data transmission today is the IEEE 802.11b standard. It was released in

1999 and has a maximum raw data rate of 11 Mbit/s. The succeeding standards,

e.g., 802.11g quickly followed.

Further increasing the data rate was problematic at that time, since, as stated

by Shannon’s famous channel-capacity theorem, the maximal achievable data rate

is ultimately limited by the available bandwidth, the available transmit energy,

and the noise on the channel. Increasing the transmission power drains the

1
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Figure 1.1: Number of mobile phone subscriptions in Europe (EU-27) [1].
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batteries of the mobile devices and just provides a logarithmic growth in capacity.

Thus, the only alternative is to increase the used bandwidth. The bandwidth,

however, is an expensive resource as demonstrated by the UMTS auctions in 2000

and 2001.

An elegant solution to this problem is to use multiple antennas at the transmit-

ter and the receiver side, i.e., multiple-input multiple-output (MIMO) systems [3].

It was shown in [4] that the ergodic capacity of a MIMO system increases linearly

with the number of transmit and receive antennas. Recent standards already in-

clude MIMO transmission, e.g., 802.11n. Channel knowledge at the transmitter

side further increases the ergodic capacity.

Channel knowledge at the base station is not just beneficial to increase the

ergodic capacity of a MIMO point-to-point link but also plays an important role

in scheduling the users in a broadcast system [5]. If the channels between the base

station and the different users fade independently then having channel knowledge

allows the base station to transmit to the user with favorable conditions. Thus,

the channel state information (CSI) enables the base station to reap the multiuser

diversity benefits of the system [6].

We see that modern wireless communication systems benefit from channel

knowledge at the transmitter side. Channel knowledge can be easily acquired

through training for time-division duplexing (TDD) where uplink and downlink

share the same channel. For frequency-division duplexing (FDD), however, the

downlink channel has to be estimated at the receiver and then it has to be

fed back to the transmitter. Thus, acquiring perfect CSI at the transmitter

side is problematic due to the generally data-rate limited feedback link. This

limitation raises the question what quantized information should be fed back to

the transmitter in order to enable the benefits that MIMO promises.

1.1 Problem Statements

The following section starts by presenting the general system model, as depicted

in Fig 1.2, and the general assumptions used throughout the thesis. Subsequently,

the more specific system models, and the related problems attacked in this thesis,

are introduced.

3



Transmitter Channel ReceiverSource Sink

Feedback Link

Figure 1.2: General system model for closed-loop wireless communication.

This channel model appears in many different scenarios:

• Narrowband single-carrier transmission with multiple antennas at the trans-

mitter and the receiver

• Transmission over the different subcarriers of a single-antenna orthogonal

frequency-division multiplexing (OFDM) system

• Transmission over a wire with interference from different users, e.g., DSL

channels

Throughout the thesis we focus on the first scenario, i.e., the narrowband single-

carrier transmission. This scenario is modeled using a simple discrete MIMO

channel model.

Further, we assume that the CSI is perfectly known at the receiver. The trans-

mission of CSI back to the transmitter is possible through a feedback link. We

assume that the feedback link is instantaneous, error-free, and data-rate limited.

Thus, due to the data-rate limitation on the feedback link, we must carefully

choose what information we feed back to the transmitter. There are basically

two major approaches: statistical CSI and instantaneous CSI. Statistical CSI

feedback is beneficial if the channel changes randomly, or very fast, between the

feedback instances according to given channel statistics. Feeding back instan-

taneous CSI would thus be suboptimal, since the instantaneous CSI would be

outdated quickly. However, for slowly time-varying channels, the feedback of in-

stantaneous CSI is beneficial. This thesis considers mainly slowly time-varying

channels, and thus the focus is on the feedback of instantaneous CSI. The gen-

eral problem of this thesis is the use of the data-rate limited feedback link to

improve the transmission from the transmitter to the receiver. However, how the

transmission can be improved depends on the detailed system model.

4



Tr
an

sm
itt

er Channel

Re
ce

ive
r

Source Sink

Feedback Link

... ...

Figure 1.3: General system model for a single-user transmission over a MIMO
channel.

The next sections contain more detailed system models. Further, they also

contain the corresponding and more precise versions of the general problem.

These problems are then subsequently attacked throughout the thesis.

1.1.1 Single-User MIMO Communication

The first part of the thesis, i.e., Part I, considers narrowband single-user MIMO

systems. The transmitter has NT antennas and the receiver has NR antennas.

The use of multiple antennas enables spatial diversity, and allows to transmit

multiple symbols simultaneously. The discrete input-output relationship of this

system is [7]

y[t] = H[t]x[t] + n[t] (1.1)

with y[t] ∈ CNR×1 being a vector containing the received symbols, H[t] ∈
CNR×NT the channel matrix, x[t] ∈ CNT×1 the transmitted symbol vector, and

n[t] ∈ CNR×1 the noise vector. C denotes the field of complex numbers. We

assume that the different elements in the noise vector are i.i.d. and complex

white Gaussian with zero mean and variance N0. The transmitted symbols are

modeled as a random process, and thus the average transmit energy is denoted

ET = E(xHx).

Please note that we omit the time index when the specific time instant is not

important.

CSI knowledge at the transmitter side allows the application of linear pre-

5



coded spatial multiplexing, i.e., linear precoding. Linear precoding multiplies the

transmit vector with a precoding matrix F ∈ CNT×NS that is calculated based

on the available CSI. The transmitted symbol vector is calculated as

x =
√
ETFs (1.2)

where s ∈ CNS×1 contains the data symbols. The data symbols are i.i.d. and

selected from a finite constellation. The covariance matrix of s is Rss = E(ssH) =
1
NS

INS . We further assume that ‖F‖2F = NS . This guarantees that E(‖Fs‖2) =

1, and makes a fair comparison with single-input single-output (SISO) systems

possible.

The design of the optimal precoding matrix FI depends on which optimiza-

tion criteria should be optimized, but also on the constraints at the transmitter

and the receiver, e.g., transmit power constraints or receiver architectures. The

constraints at the transmitter can include a power constraint or the availability

of limited or delayed CSI. The receiver can be constrained, in order to reduce

complexity, to a linear equalizer.

Assuming a total power constraint, the optimal precoding matrix that maxi-

mizes the channel capacity of the effective channel HFI can be written as [4, 8]

FI = VD (1.3)

where V is calculated by the singular value decomposition (SVD) decomposition

of the channel H = UΣVH , and D is a diagonal power allocation matrix that can

be found using the water-filling algorithm [9]. Using the left singular vectors UH

as an equalizer then decomposes the channel in multiple parallel SISO channels.

We will denote this equalizer as the SVD transceiver.

The joint design of precoder and equalizer has a long history [10]. One of

the first applications to modern MIMO channels was [11]. There, assuming a

linear equalizer GH and a power constraint at the transmitter, the precoding

matrix F and G were jointly designed to minimize the mean square error (MSE)

E(‖s− ŝ‖2) between the transmitted symbol vector s and the estimated symbol

vector ŝ = GHy. The results were extended to include more general power

constraints and optimization criteria based on the MSE matrix E((s− ŝ)(s− ŝ)H)

6



in [12] and [11]. Interestingly, all the presented optimal precoders have the same

structure as in (1.3) while only having different power allocation matrices D.

A crucial problem of these designs is the requirement to feed back the full

CSI to the transmitter, since the feedback link is generally data-rate limited.

A possibility is to quantize the CSI before it is fed back, but this requires the

quantization of NTNR complex values. The structure of the optimal precoder

(1.3) motivates the idea to solely feed back the first NS columns of the unitary

matrix V and not the power allocation matrix. The resulting precoder matrix

has less degrees of freedom than the full channel matrix and can thus be easier

quantized. The design of the corresponding precoder codebooks for different

linear receivers was investigated in [13]. The time-correlation of the channel can

also be used to reduce the required feedback, e.g., [14], [15], and [16]. However,

these papers assume a slow fading channel where the precoder is limited to change

to a small subset of all the available precoders at the transmitter.

Since vector quantization is a mature field [17], this leads to the first problem

that is attacked in this thesis:

Problem 1. Is it possible to use the available vector quantization techniques

to improve the quantization of unitary precoding matrices for single-user MIMO

transmission?

Contribution 1. Chapter 3 presents the novel result to use entropy coding

for precoder quantization. The first presented results, originally presented in

[18], exploit the time-varying nature of the channel by using entropy coding

to reduce the average feedback rate. The transmitter and the receiver share a

common codebook that contains the precoding matrices. The receiver has full CSI

knowledge, and decides which precoding matrix from the codebook is optimal.

The index of this precoding matrix is compressed using entropy coding and is then

fed back to the base station. The advantage of the proposed strategy is that we

achieve a feedback reduction without a performance loss, compared to [15] where

the feedback reduction is achieved by dropping the least-probable codebooks.

Further novel results, presented in [19], do not aim to reduce the feedback rate,

but instead improve the performance of the resulting linear precoded system

under full exploitation of the available feedback rate. In [19] we present both

7



techniques in the common vector quantization framework, and compare their

performances through numerical simulations. In [18, 19] we assume that the

statistics of the underlying channel model do not change. We extend the use of

entropy coding in [20] to compensate for changing channel statistics. There, both

transmitter and receiver track the fed back precoder matrices and estimate the

occurrence probabilities of the different precoder matrices after every feedback.

These occurrence probabilities are then used to update the entropy code used

to feed back the precoder indices. A selection of these results are published

in [21].

In general, feedback is only possible at fixed instances, e.g., at the beginning

of each transmission block. Thus, due to the time-varying nature of the channel,

the available CSI becomes quickly outdated between these feedback instances.

This raises the following question:

Problem 2. Can the unitary precoding matrix be efficiently extrapolated based on

the previously fed back precoding matrices for single-user MIMO communications?

A solution is to extrapolate the current unitary precoding matrix using geodesic

interpolation [22]. The advantage of geodesic interpolation is that the resulting

matrix is already unitary [23].

Contribution 2. In Chapter 4, published as [24], we present an improved SVD

transceiver and compare its performance to the minimum mean square error

(MMSE) equalizer, assuming precoder extrapolation through geodesic interpola-

tion.

1.1.2 MISO Broadcast Channel

Part II and Part III of this thesis consider the multiuser multiple-input single-

output (MISO) broadcast channel. All the chapters in these parts consider a

single-cell scenario. The cell contains a base station with NT antennas and NU

single-antenna users. We are using space-division multiple access (SDMA), i.e.,

the base station transmits data to multiple users simultaneously. We assume

again a narrowband channel model, and the symbol received by a user i can be

8
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written as

yi = hix + ni (1.4)

where yi ∈ C is the symbol received by user i, hi ∈ C1×NT the channel of user

i, x ∈ CNT×1 the vector containing the data transmitted by the base station,

and ni the noise experienced by user i. The noise is modeled as complex white

Gaussian with zero mean and variance N0. Using SDMA the transmitted vector

x is constructed as

x =
∑
j∈S

√
Ejwjsj (1.5)

where the set S contains all the users scheduled for that time instant, wi is the

unit-norm beamforming vector used for user i, and si is the data symbol trans-

mitted to user i with E(|s|2) = 1. We see that a user i receives interference by

the users in S \{i} if their corresponding beamforming vectors are not orthogonal

to the channel hi of user i. This interference leads to the signal-to-noise-plus-

interference ratio (SINR). The SINR for a user i is calculated as

SINRi =
Ei|hiwi|2∑

j∈S\{i}Ej |hiwj |2 +N0
. (1.6)

9



Using the SINR’s of the scheduled users, the instantaneous sum rate (R) is cal-

culated as

R =
∑
i∈S

log (1 + SINRi) . (1.7)

It was proven in [25] that the optimal sum rate, i.e., the sum rate capacity,

is achieved through dirty-paper coding (DPC) [26, 27]. DPC was introduced by

Costa in [26] for the SISO channels. Assuming interference on the channel known

to the transmitter, DPC adapts the signal so that no penalty due to the interfer-

ence occurs, i.e., the capacity of the Gaussian channel with interference known

to the transmitter is identical to the capacity of the Gaussian channel without

interference. An precoding technique based on DPC for the broadcast channel

was presented in [27]. However, the drawback of DPC is its high computational

complexity. This motivates the research of simpler linear schemes. A simple

linear scheme is zero-forcing (ZF) beamforming, where hiwj = 0, ∀i, j ∈ S,

and i 6= j. Further, assuming opportunistic scheduling, ZF precoding achieves

asymptotically the same sum rate as DPC for an increasing number of users in

the cell. However, ZF beamforming requires CSI knowledge at the base station.

Assuming that feedback is solely possible over a rate-limited feedback link, this

requires an efficient use of the available feedback.

The first problem in this part considers the generation of quantization code-

books for spatially correlated channels.

Problem 3. Is it possible to design codebooks that minimize the sum rate loss

due to quantization for spatially correlated channels?

Contribution 3. In Chapter 5, published as [28], we start by extending a well-

known SISO channel model to the MISO case. The novel channel model allows to

simulate a spatial correlation between the users. Next, codebooks are generated

for this channel model that minimize the sum rate loss induced by the CSI quan-

tization. Further, the benefit of theses adapted codebooks are depicted through

simulations.

The next problem considers temporally correlated channels.

10



Problem 4. Can the current CSI be extrapolated based on the past fed back CSI

for temporally correlated channels?

Contribution 4. We exploit in Chapter 6, published as [29], the temporal cor-

relation of the channel by introducing predictive vector quantization for CSI

quantization. Both the transmitter and the receiver predict the current channel

based on the previous quantized, and fed back, channel realizations. The receiver

then just feeds back the quantized difference between the predicted channel and

the true channel.

It is well known that the availability of CSI at the base station allows to ex-

ploit the multiuser diversity [30]. The optimal scheduling scheme that maximizes

the sum rate for a given beamforming scheme is opportunistic scheduling [6].

Opportunistic scheduling picks a set of users so that the resulting sum rate is

maximized. However, it ignores any fairness issues. A scheduling scheme that

realizes perfect fairness is round-robin scheduling. There, the users are scheduled

in a predefined order. It achieves perfect fairness but does not achieve the avail-

able sum rate capacity. A tradeoff between both scheduling schemes is done by

proportional fair scheduling [31], where scheduled users are penalized in order to

give users with unfavorable channel conditions a chance.

Problem 5. Is it possible to create an algorithm that implements round-robin

scheduling but still exploits multi-user diversity?

Contribution 5. We propose in [32] a scheduling scheme for pseudo-round-

robin scheduling, i.e., every user in the cell has to be scheduled once inside a

block. Further, all the users have to fulfill a strict signal-to-noise-plus-interference

ratio (SINR) requirement. The system is using SDMA, i.e., the base station can

transmit to multiple users at a time, and the limited feedback is then used to

pair the users efficiently.

In [33] we consider real round-robin scheduling. There, the presented algo-

rithm tries to schedule the same set of users in the same slot over multiple blocks,

i.e., we assume that every block consists of the same number of slots. The feed-

back consists of an estimate of the minimum energy that must be assigned to

every user so that he can fulfill a predefined SINR constraint. If the sum of the

11



required minimum energy exceeds the maximally available transmit energy, the

worst user in the set is removed, and he has to be rescheduled at a different

block.

1.2 Outline

• Chapter 2: We start by introducing the quantization algorithms used through-

out the thesis. We highlight their individual advantages and shortcomings.

• Chapter 3: Here, different possibilities to exploit the data-rate limited feed-

back link for linear precoded spatial multiplexing are investigated. The

chapter was published as

[21] C. Simon and G. Leus, ”Feedback quantization for linear precoded spatial multi-

plexing,” EURASIP Journal Advances Signal Process., vol. 2008 (2008), Article

ID 683030, 13 pages, doi:10.1155/2008/683030.

and the individual results were initially published as:

[18] C. Simon and G. Leus, ”Feedback reduction for spatial multiplexing with lin-

ear precoding,” in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Process.

(ICASSP), Honolulu, HI, USA, Apr. 2007.

[20] C. Simon and G. Leus, ”Adaptive feedback reduction for precoded spatial mul-

tiplexing MIMO systems,” in Proc. Int. ITG/IEEE Workshop Smart Antennas

(WSA), Vienna, Austria, Feb. 2007.

[19] G. Leus and C. Simon, ”Quantized feedback and feedback reduction for precoded

spatial multiplexing MIMO systems,” in Proc. Int. Symp. Signal Process. and

Applicat. (ISSPA), Sharjah, United Arab Emirates, Feb. 2007.

• Chapter 4: This chapter investigates precoder and decoder extrapolation

for a linear transceiver assuming a temporally correlated channel. The

results have been published in

[24] G. Leus, C. Simon, and N. Khaled, ”Spatial multiplexing with linear precoding in

time-varying channels with limited feedback,” in Proc. European Signal Process.

Conf. (EUSIPCO), Florence, Italy, Sept. 2006.

• Chapter 5: An existing channel model is extended to create a spatially

correlated broadcast channel model. We create CSI quantization codebooks
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for this channel model in order to feed back the CSI from the single-antenna

users to a multi-antenna base station. The results have been published in:

[28] R. de Francisco, C. Simon, D. T. Slock, and G. Leus, ”Beamforming for correlated

broadcast channels with quantized channel state information,” in Proc. IEEE

Workshop Signal Process. Advances Wireless Commun. (SPAWC), Recife, Brazil,

July 2008.

• Chapter 6: Predictive vector quantization is used to feed back the CSI from

single-antenna users to a multi-antenna base station. The CSI is used for

zero-forcing beamforming. The results have been published in:

[29] C. Simon, R. de Francisco, D. T. Slock, and G. Leus, ”Feedback compression for

correlated broadcast channels,” in Proc. IEEE Symp. Commun. Vehicular Techn.

Benelux (SCVT), Delft, The Netherlands, Nov. 2007.

• Chapter 7: The next chapter considers scheduling for the broadcast channel.

We adapt the BestFit algorithm to work with Grassmannian beamforming.

The performance of the two resulting variants are compared by simulations.

The results have been published in:

[32] C. Simon and G. Leus, ”Low-delay scheduling for Grassmannian beamforming

with a SINR constraint,” in Proc. IEEE Int. Conf. Acoust., Speech, and Signal

Process. (ICASSP), Taipei, Taiwan, Apr. 2009.

• Chapter 8: This chapter considers a novel scheduling algorithm that allows

round-robin scheduling for SDMA. All the scheduled users fulfill a strict

SINR constraint and the fed back CSI is limited to a scalar. The results

have been submitted to:

[33] C. Simon and G. Leus, ”Round-robin scheduling for orthogonal beamforming with

limited feedback,” IEEE Trans. Wireless Commun., accepted in May 2011 for

publication.

• Chapter 9: The final chapter concludes the thesis with a short review and

by proposing future work.
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Chapter 2

Quantization

This chapter gives a short overview of basic scalar quantization, vector quantiza-

tion, and the algorithms used to design the quantization codebooks. We limit our

presentation of codebook design algorithms to the three most popular algorithms,

i.e., the Lloyd algorithm [34], the Generalized Lloyd algorithm (GLA) [35], and

Monte-Carlo Codebook Design (MC).

The design of quantization systems has a long history. One of the first pa-

pers [36] to discuss the advantages of using nonuniform codebooks over uniform

codebooks was published in 1951. The presented asymptotic results were gener-

alized to codebooks with limited size by Lloyd in [34]. He also presented neces-

sary conditions to minimize the average distortion, and proposed two algorithms

based on these conditions to find good quantization codebooks for scalar inputs.

The first algorithm, i.e., denoted Method 1, will be called the Lloyd algorithm

throughout the thesis. The GLA [35] extends the Lloyd algorithm to vector

quantization and is the most popular vector quantization algorithm. The nota-

tion in this chapter is selected to be close to [17] where an in-depth treatment of

quantization can be found.
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2.1 Introduction

Quantization is a mapping Q that maps every element from a set X to a corre-

sponding element from a set C

Q : X → C with |C| ≤ |X |. (2.1)

The set C is called the quantization codebook. The size of the quantization code-

book is generally limited to fulfill a data-rate constraint. Quantization divides

the input space X into |C| disjoint regions Ri, i = 1, . . . , |C|, i.e.,

X =

|C|⋃
i=1

Ri and Ri ∩Rj = ∅ ∀i, j. (2.2)

Every input element x that lies in the same region Ri is mapped to the same

codebook element ci

Q(x) = {ci ∈ C | x ∈ Ri}. (2.3)

Thus, a quantizer is entirely defined by the codebook C and the quantization

regions Ri with i = 1, . . . , |C|.

2.2 Distortion Function

The distortion function d : X × C → R is a measure for the quality of the

quantization process. However, the quality of the quantization often depends on

a subjective assessment and thus the selected distortion function has to be chosen

according to the application.

The average distortion of the quantization system is the most popular perfor-

mance metric of a quantization system and is defined as

D = E{d(x,Q(x))} (2.4)
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where the expectation is taken over the possible input elements

D =

∫ +∞

−∞
d(x,Q(x))fX(x)dx. (2.5)

We assume that the input x of the quantizer is a realization of the random variable

X and its pdf is denoted fX(x).

The most common overall distortion used to design a quantization system is

the mean-squared error (MSE) between the unquantized element x ∈ X and the

quantized element Q(x) ∈ C

D = E{|x−Q(x)|2}. (2.6)

One of the major advantages of the MSE is that its simple form often leads

to simple mathematical expressions. Further it has a physical meaning, i.e.,

it corresponds to the energy of the error signal. A detailed treatment of the

advantages and disadvantages of the MSE as a distortion function can be found

in [37].

2.3 Optimality Conditions

The quantization codebook C should be designed so that the overall distortion D

of the quantization system is minimized, i.e.,

Copt = arg min
C

D. (2.7)

However, solving (2.7) in closed-form is cumbersome since it requires to jointly

find the optimal quantization regions and the optimal codebook elements. How-

ever, solving the problems separately is straightforward and leads to two necessary

conditions that the optimal quantizer must fulfill [34]. The first condition, the

so-called nearest neighbor condition, defines the optimal quantization regions for

a fixed codebook. The second condition, the so-called centroid condition, defines

the optimal quantization codebook if the quantization regions are fixed. These

two necessary conditions yield the topic of this section.
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2.3.1 Nearest Neighbor Condition

The nearest neighbor condition states that the optimal quantizer maps an un-

quantized element x to an element from the codebook C so that the resulting

distortion d(x,Q(x)) is minimized

Q(x) = arg min
ci∈C

d(x, ci). (2.8)

Thus, the quantization regions Ri for i = 1, . . . , |C| can be determined as

Ri = {x ∈ X | d(x, ci) ≤ d(x, cj),∀j ∈ {1, . . . , |C|} \ {i}}. (2.9)

Note that it is possible that a given input x has the same distortion between

two elements in the codebook, i.e., d(x, ci) = d(x, cj) with i 6= j. In this case,

the input symbol x can simply be mapped to one of the two regions, i.e., Ri or

Rj . The simplest solution is to randomly assign this boundary point to one of

the regions that minimize the distortion, e.g., to the quantization region with the

smallest index. Which one of this regions is selected is irrelevant since they all

lead to the same overall distortion.

2.3.2 Centroid Condition

The centroid condition states that all the input symbols from the same region

Ri have to be mapped to the element ci that minimizes the resulting distortion.

The corresponding element, the so-called centroid, ci is found as

ci = arg min
y

∫
Ri
d(x, y)fX(x)dx. (2.10)

For the simple case where the squared error is used as distortion function, d(x, y) =

(x− y)2, the centroid is given by

ci =

∫
Ri xfX(x)dx∫
Ri fX(x)dx

. (2.11)
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2.4 The Lloyd Algorithm

Besides introducing the optimality conditions [34], Lloyd also proposed two algo-

rithms for scalar quantization. Both algorithms, called Method 1 and Method 2,

are described in this section. Method 2 was also independently proposed by

Max [38]. Sufficient conditions for the optimality of the Lloyd algorithms were

presented in [39].

Please note that we just consider scalar quantization in this section. The

extension to vector quantization will be described in the next section.

2.4.1 Method 1

Lloyd’s Method 1, depicted in Algorithm 1, starts by choosing a random code-

book C0. The algorithm then calculates the corresponding optimal quantization

regions that are given by the nearest neighbor condition. However, the initial

codebook is probably not optimal for the given quantization regions, i.e., it does

not fulfill the centroid condition. Thus, a new codebook C1 is calculated that

fulfills the centroid condition. Now, the quantization regions are no longer opti-

mal for the new codebook and have to be recalculated. The algorithm continues

to iteratively apply the optimality conditions by recalculating the quantization

regions and the quantization codebook. The algorithm stops when the overall

distortion of the new codebook just provides a minor improvement to the last

codebook, i.e.,
Dj−1−Dj
Dj−1

≤ ε where ε is a threshold that is fixed beforehand.

However, as Lloyd noted [34], this stationary point is not necessarily the global

optimum codebook. Since the resulting codebook is determined by the initial

codebook C0 the algorithm can be run multiple times with different initial code-

books, and finally the codebook with the best overall distortion is selected.

2.4.2 Method 2

In order to simplify the exposition of Method 2, we will assume that the squared

error is used as the distortion function. We further assume that the elements in

the codebook C = {c1, . . . , c|C|} are ordered, i.e., ci < cj ,∀i < j.

The algorithm starts by randomly picking a value for c1. This also fixes

19



Algorithm 1 Designing a codebook based on the Lloyd algorithm.

1: j := 0
2: Generate a random initial codebook Cj
3: Calculate the distortion Dj for the current codebook Cj .
4: repeat
5: j := j + 1
6: Calculate the optimal quantization region Ri for every element ci ∈ Cj−1

for i = 1, . . . N .
7: Calculate the new codebook Cj by determining the centroid ci of Ri for

i = 1, . . . N .
8: Calculate the overall distortion Dj for the codebook Cj .
9: until

Dj−1−Dj
Dj−1

≤ ε
10: The final codebook is Cj .

the upper bound of the quantization region R1 = (−∞, r1] due to the centroid

condition (2.10). The upper bound r1 is found by finding the r1 that satisfies

c1 =

∫ r1
−∞ xfX(x)dx∫ r1
−∞ fX(x)dx

. (2.12)

If a closed form solution to r1 cannot be found, then it can be determined by

numerical means. Using the nearest neighbor condition, we find the next code-

book element c2 by choosing the element that fulfills d(r1, c1) = d(r1, c2). For

the simple case of using the squared error as the distortion function, this is

c2 = 2r1 − c1. (2.13)

The algorithm can now find the upper bound r2 of region R2 = [r1, r2] by us-

ing the centroid condition (2.10) again. The algorithm continues until all the

codebook elements are determined.

We see that the initial random selection of c1 uniquely determines the resulting

codebook. However, the optimal codebook must also fulfill the centroid condition
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for the last region, i.e.,

c|C| −

∫ +∞
r|C|−1

xfX(x)dx∫ +∞
r|C|−1

fX(x)dx
= 0. (2.14)

If the difference in (2.14) is positive (resp. negative), then the initial value c1

was chosen to be too large (resp. too small), and the algorithm has to restart

with a smaller (resp. larger) value of c1. The difference varies as a continuous

function of c1, and the initial value of c1 is adapted until the difference becomes

lower than some given threshold.

2.4.3 Comparison

The advantage of Method 2 over Method 1 is that the algorithm does not require

fX(x) to be continuous. This makes it a popular algorithm for scalar quan-

tization. However, Method 1 can be extended to vector quantization but not

Method 2.

2.5 The Generalized Lloyd Algorithm

The most popular algorithm to design codebooks for vector quantization is the

Generalized Lloyd algorithm (GLA) [35]. It extends the Lloyd algorithm to vector

quantization, and additionally does not need to know the pdf of the quantizer

input. The GLA requires solely a large training set that contains samples of the

quantizer input. If the input to the quantizer is ergodic and stationary then the

resulting quantizer also performs well for future inputs. The larger the training

set, the better the performance of the resulting quantizer. Theoretical results

about the convergence of the GLA are published in [40]. There, the convergence

has been proven for several distortion functions.

Note, that we use boldface letters to denote the fact that the variables can be

vectors.
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2.5.1 Algorithm

The input of the GLA is a large training set T that contains |T | samples of the

quantizer input.

The GLA is identical to the Lloyd algorithm, presented in the previous section,

with the exception that it calculates the quantization regions and the centroids

without a proper knowledge of the pdf fX .

Quantization Regions

The precise quantization regions cannot be determined without proper knowledge

of the underlying pdf fX . Alternatively, the training set is partitioned into |C|
disjoint regions

T =

|C|⋃
i=1

Pi and Pi ∩ Pj = ∅ ∀i, j. (2.15)

This is done by uniquely assigning every element in the training set T to a set

Pi as

Pi = {x ∈ T | d(x, ci) ≤ d(x, cj)} i 6= j. (2.16)

Note that if d(x, ci) = d(x, cj) then x can be randomly assigned to either Pi or

Pj The resulting partitions Pi approximate the optimal quantization regions Ri
for i = 1, . . . , |C| if the training set is large enough.

Centroids

For a give partition Pi = {p1, . . . ,p|Pi|} the centroid is calculated as

ci = arg min
c

|Pi|∑
i=1

d(pi, c) (2.17)
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For the simple case where the squared error is used as distortion function, the

centroid is calculated as

ci =
1

|Pi|

|Pi|∑
i=1

pi. (2.18)

2.5.2 Initial Codebook

The basic GLA starts with a random codebook and then gradually refines it.

An additional approach was proposed in [35]. This variant starts by designing a

codebook C1 with |C1| = 1 entry using the GLA. The element c1,1 in the resulting

codebook C1 is then split into two elements using c2,1 = c1,1−ε and c2,2 = c1,1+ε,

where ε is a fixed perturbation vector. The new codebook C2 = {c2,1, c2,2} is

now optimized using the GLA. Once a codebook is found the number of entries

is doubled by splitting and the resulting codebook is optimized using the GLA.

The algorithm stops when we have found a codebook with the desired number of

entries.

2.6 Monte-Carlo Codebook Design

An alternative simple and robust codebook design algorithm is Monte-Carlo code-

book design. It randomly generates an initial codebook, and then calculates its

performance, e.g., the average distortion, for the given training set. Then, it gen-

erates a new codebook, and again calculates the performance for the training set.

The performance for both codebooks is compared, and the best codebook is kept.

This process is repeated until a predefined stopping condition is fulfilled. The

stopping condition can be that a predefined number of random codebooks has

been tested, or that the best codebook did not change for a predefined number

of iterations.

The big advantage of this approach is its simplicity and the robustness. The

algorithm has a small probability to get caught in a local minimum and it is easy

to parallelize which is beneficial for a software implementation.
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Part I

Linear Precoding for

Single-User MIMO

Channels
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Chapter 3

Feedback Reduction and

Optimization∗

This chapter addresses Problem 1 of the thesis, i.e., the application of exist-

ing vector quantization techniques to quantize unitary precoding matrices. The

chapter starts by giving an overview and a comparison of recent feedback quan-

tization schemes for linear precoded spatial multiplexing systems. In addition,

feedback compression methods are presented that exploit the time correlation of

the channel. These methods can be roughly divided into two classes. The first

class tries to minimize the data rate on the feedback link while keeping the per-

formance constant. This class is novel and relies on entropy coding. The second

class tries to optimize the performance while using the maximal data rate on

the feedback link. This class is presented within the well-developed framework

of finite-state vector quantization. Within this class, existing as well as novel

methods are presented and compared.

∗The results in this chapter have been published in [18–21].
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3.1 Introduction

An attractive scheme to make spatial multiplexing more robust against rank

deficient channels, and to reduce the receiver complexity, is linear precoding.

The linear precoding matrix is a function of the channel state information (CSI),

which is, in general, only available at the receiver. Thus, the required information

to calculate the precoding matrix must be fed back to the transmitter over a

feedback link, which is assumed to be data-rate limited. An important approach

to improve the performance of linear precoded spatial multiplexing is optimizing

the exploitation of the limited data-rate on the feedback link.

The notion of linear precoding was introduced in [12], there the optimal linear

precoder that minimizes the symbol mean square error for linear receivers under

different constraints was derived. The bit-error-rate (BER) optimal precoder

was introduced in [41], and the capacity optimal precoder in [4]. The first use of

partial CSI at the transmitter was presented in [42], where the Lloyd algorithm

is used to quantize the CSI. Other approaches focused on feeding back the mean

of the channel [43], or the covariance matrix of the channel [44]. An overview

of the achievable channel capacity with limited channel knowledge can be found

in [45]. Schemes that directly select a quantized precoder from a codebook at

the receiver, and feed back the precoder index to the transmitter have been

independently proposed in [46] and [47]. There the authors proposed to design

the precoder codebooks to maximize a subspace distance between two codebook

entries, a problem which is known as the Grassmannian line packing problem.

The advantage of directly quantizing the precoder is that the unitary precoder

matrix [12] has less degrees of freedom than the full CSI matrix, and is thus more

efficient to quantize. Several subspace distances to design the codebooks were

proposed in [48], whereas the selected subspace distance depends on the function

used to quantize the precoding matrix. In [49] a precoder quantization design

criterion was presented that maximizes the capacity of the system and also the

corresponding codebook design. A quantization function that directly minimizes

the uncoded BER was proposed in [50].

This chapter presents existing and novel schemes for linear precoding in the

well-known vector quantization framework. We present the most popular selec-
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Figure 3.1: System model of the linear precoded spatial multiplexing MIMO
system with limited feedback.

tion and distortion criteria used for linear precoding, but also novel techniques like

entropy coding, and finite state vector quantization. Further, we show how these

schemes can be adapted to changing channel statistics, i.e., to non-stationary

sources.

Notation: We use capital boldface letters to denote matrices, e.g., A, and

small boldface letters to denote vectors, e.g., a. The Frobenius norm and the

2-norm of a matrix A is denoted as ‖A‖F , and ‖A‖2, respectively. E(·) denotes

expectation and P (·) probability. [A]m,n is the element in the mth row and nth

column of A. The n × n identity matrix is denoted In, and Um×n is the set of

unitary m× n matrices. tr(A) is the trace of A, and det(A) the determinant of

A. < (A) is the real part of the complex matrix A.

3.2 System Model

Throughout the chapter, we assume a narrowband spatial multiplexing MIMO

system with NT transmit and NR receive antennas. The system transmits NS ≤
min(NT , NR) symbol streams, as depicted in Fig. 3.1.

The system equation at time instant t is

y[t] = H[t]
√
ETF[t]s[t] + n[t], (3.1)

where y[t] ∈ CNR×1 is the received vector, n[t] ∈ CNR×1 is the additive noise

vector, s[t] ∈ CNS×1 is the data symbol vector, H[t] ∈ CNR×NT is the channel

matrix, ET is the transmit energy, and F[t] ∈ CNT×NS is the linear precoding
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matrix. We assume the data symbol vector s[t] is zero mean spatially and tem-

porally white distributed over a complex finite alphabet, e.g., the entries belong

to a QAM alphabet A, and the noise vector n[t] is zero mean spatially and tem-

porally white complex Gaussian distributed. The channel matrix H[t] is zero

mean possibly spatially and temporally correlated complex Gaussian distributed.

We assume without loss of generality that the symbols and the noise have unit

variance.

The singular value decomposition (SVD) of H[t] is defined as

H[t] = Ū[t]Σ̄[t]V̄H [t] (3.2)

where Ū[t] ∈ UNR×NR , V̄[t] ∈ UNT×NT , and Σ̄[t] is a real non-negative diagonal

NR×NT matrix (the diagonal starts in the top left corner) with non-increasing di-

agonal entries. The columns of Ū[t] and V̄[t] are called the left and right singular

vectors, respectively, whereas the diagonal entries of Σ̄[t] are the corresponding

singular values. Only focusing on the NS strongest modes of the channel (the

ones with the largest singular values), let us define U[t] = [Ū[t]]:,1:NS ∈ UNR×NS ,

V[t] = [V̄[t]]:,1:NS ∈ UNT×NS , and Σ[t] = [Σ̄[t]]1:NS ,1:NS , where [A]a:b,c:d selects

the submatrix of A on the rows a to b and the columns c to d, and the range

indices are omitted when all rows or columns should be selected.

Many studies have been carried out to derive the optimal precoding matrix

for a certain performance measure, see [4, 12, 41, 51]. In general, the optimal

precoding matrix looks like

Fopt[t] = V[t]Θ[t]M[t], (3.3)

where Θ[t] ∈ CNS×NS is a diagonal unitary power loading matrix, and M[t] ∈
UNS×NS is a unitary mixing matrix. For some performance measures, the mixing

matrix is arbitrary, whereas for other performance measures its value matters.

In any case, it has been shown that for low-rate feedback channels, it is better

not to feed back the power loading matrix and to stick to feeding back a unitary

precoder [52]. That is why we will limit the precoding matrix F to be unitary,

i.e., F ∈ UNT×NS .

The maximum data rate on the feedback link is assumed to be R bits per
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channel use, and the feedback is assumed to be instantaneous and error-free. We

consider two different types of feedback channels: a dedicated feedback channel

and a non-dedicated feedback channel. A dedicated feedback channel is only

used to transmit the precoder index to the transmitter, whereas a non-dedicated

feedback channel is also used for data transmission. The transmission is organized

in a block-wise fashion, i.e., feedback is only possible at the beginning of each new

block, and every block has a duration of Tf . We assume the channel is perfectly

known at the beginning of every block.

3.3 Vector Quantization (VQ)

The data-rate limited feedback link requires quantization of the channel matrix,

resulting in a unitary precoder. The simplest approach is to use a memoryless

vector quantizer (VQ), which quantizes every channel matrix H[t] separately.

Hence, we can drop the time index t everywhere in this section. In memoryless

VQ, we select a unitary NT ×NS matrix Fi from a codebook C = {F1, . . . ,FK}
that minimizes or maximizes a given selection function S. The size of the code-

book C is denoted K = |C|. We will denote Q(H) as the quantized version of the

channel matrix, but note that it actually represents the unitary precoder. More

specifically, for a given selection function S and a given codebook C, Q(H) can

be defined as

Q(H) = arg min/max
F∈C

S(H,F), (3.4)

where we take the minimum or the maximum depending on the selection function

S. The quantization process can be further separated into an encoding step and

a decoding step. The encoder α maps the channel into one of K precoder indices,

which for simplicity reasons can be represented by the set I = {1, 2, . . . ,K}:

α(H) = arg min/max
i∈I

S(H,Fi). (3.5)
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precoders bitwords non-dedicated bitwords dedicated
F1 w1 = 00 w1 = /
F2 w2 = 01 w2 = 0
F3 w3 = 10 w3 = 1
F4 w4 = 11 w4 = 00

Table 3.1: Example of a 4-entry (K = 4) codebook for a non-dedicated and
dedicated feedback link.

The decoder β simply maps the precoder index into one of the K precoders:

β(i) = Fi. (3.6)

So we actually have

Q(H) = β(α(H)).

Note that the index i ∈ I is transmitted over the feedback channel as a bitword

wi. What type of bitwords we have to feed back strongly depends on the type of

feedback link: dedicated or non-dedicated. In case of a non-dedicated feedback

channel, the transmitter has to be able to differentiate between a bitword and

the data. This means the bitwords should be instantaneously decodable and thus

prefix-free (PF), i.e., a bitword can not contain any other bitword as a prefix.

This is not the case in a dedicated feedback channel, where we can use non-prefix-

free (NPF) bitwords. If the quantizer is well-designed, all precoders Fi have more

or less the same probability. Under that assumption, we can think of two ways

to design our bitwords wi. For a non-dedicated feedback link, we can take K

equal-length PF bitwords, leading to a feedback rate of dlog2Ke bits per channel

use. For a dedicated feedback link, however, we can take any K bitwords with the

smallest average length, leading to an average feedback rate of 1/K
∑K
i=1blog2 ic.

An example is given in Table 3.1, where we assume a codebook with K = 4

entries. Next we focus on a number of selection functions for linear precoding,

and we discuss the design of precoder codebooks.
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3.3.1 Precoder Selection

In this section, we will give an overview of some common selection functions S

that have been proposed in recent literature. Whether we have to minimize or to

maximize the selection function will be clear from the context. In [48], selection

criteria are derived based on different performance measures. Optimizing the

performance of the maximum likelihood (ML) receiver is related to maximizing

the minimum Euclidean distance between any two possible noiseless received

vectors:

SML(H,F) = min
s1,s2∈ANS×1,s1 6=s2

‖HF(s1 − s2)‖2 . (3.7)

For linear receivers, two performance measures are considered in [48]: the mini-

mum SNR on the substreams and the trace or determinant of the MSE matrix.

Maximizing the first measure for the zero forcing (ZF) receiver is related to max-

imizing the minimum singular value (MSV) of the effective channel HF:

SMSV(H,F) = λmin {HF} , (3.8)

where λmin {A} denotes the MSV of the matrix A. Minimizing the second mea-

sure for the minimum mean square error (MMSE) receiver, leads to minimizing

the following selection function:

SMSE(H,F) = m(INS + FHHHHF)−1, (3.9)

where m = tr or m = det. Finally, [48] also proposes to maximize the mutual in-

formation (MI) between the transmitted symbol vector s and the received symbol

vector y over the effective channel HF:

SMI(H,F) = log2 det(INS + FHHHHF). (3.10)

It has been shown in [48] that the above performance measures can be asso-

ciated to a subspace distance between the right singular vectors of H, collected

in V, and F. As such this subspace distance could also be used as the selection

function to be minimized. The performance of the ML receiver, the minimum
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SNR on the substreams for the ZF receiver, and the trace of the MSE matrix for

the MMSE receiver are all related to the projection 2-norm distance:

SP2(H,F) = dP2(V,F) = ‖VVH − FFH‖2, (3.11)

whereas the determinant of the MSE matrix for the MMSE receiver and the MI

criterion can be connected to the Fubini-Study distance:

SFS(H,F) = dFS(V,F) = arccos|det(VHF)|. (3.12)

Next to minimizing those subspace distances, minimizing the chordal distance is

also used as selection criterion:

SC(H,F) = dC(V,F) = 1/
√

2‖VVH − FFH‖F

=
√

tr(INS −VHFFHV). (3.13)

This function is related to the performance of an orthogonal space-time block

code (OSTBC) that is used on top of the precoder [53].

For all the above selection criteria the optimal unitary precoder is given by

VM, where M is an arbitrary NS ×NS unitary matrix, i.e., M ∈ UNS×NS . This

unitary ambiguity can be a problem when we are interested in other performance

measures, such as uncoded bit-error-rate (BER) for instance. We know that in

that case, the actual structure of the ambiguity matrix becomes important [50].

One solution could of course be to simply minimize the BER:

SBER(H,F) = BER(H,F). (3.14)

However, this is often difficult to compute. A simpler solution might be to encode

V using VQ and to adopt the optimal (or a suboptimal) unitary mixing matrix

M according to [50]. Hence, in that case, we do not use Fi but FiM as a precoder

at the transmitter. We could encode V for instance by minimizing the Frobenius
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norm between V and F [53]:

SF (H,F) = dF (V,F) = ‖V − F‖F

=
√

2 tr(INS −<(VHF)). (3.15)

This selection function is however not invariant to a phase shift of the singular

vectors collected in V. That is why the Frobenius norm has been extended to

the so-called modified Frobenius norm [24]:

SMF(H,F) = dMF(V,F) = arg min
Θ∈DNS

‖VΘ− F‖F

= ‖V diag(VHF) diag(|VHF|)−1 − F‖F

=
√

2 tr(INS − |VHF|), (3.16)

where Dn ⊂ Un×n is the set of all complex, diagonal, and unitary n×n matrices.

Notice how through the use of the real or absolute value of VHF, instead of the

product VHFFHV in (3.13), we truly encode V instead of its subspace. Let us

now discuss the codebook design.

3.3.2 Codebook Design

In general, a codebook design aims at finding a set of precoders C that minimizes

some average distortion:

Dav =

∫
CNR×NT

D(H, Q(H))p(H)dH, (3.17)

where D(H, Q(H)) is the distortion between H and Q(H), and p(H) is the prob-

ability density function (PDF) of the channel matrix H. The distortion function

D can take many different forms depending on the performance measure we are

interested in (as was the case for the selection function). In [48], it has been

shown that if we are interested in the performance of the ML receiver, the mini-

mum SNR on the substreams for the ZF receiver, or the trace of the MSE matrix

for the MMSE receiver, we can take as distortion function, the squared projection

2-norm distance between V and Q(H): DP2(H, Q(H)) = d2P2(V, Q(H)). On the
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other hand, if we care about the determinant of the MSE matrix for the MMSE

receiver or the MI, we should take the squared Fubini-Study distance between

V and Q(H) as distortion function: DFS(H, Q(H)) = d2FS(V, Q(H)). Finally,

the distortion function related to the performance of an STBC that is used on

top of the precoder is presented in [53] as DC(H, Q(H)) = d2C(V, Q(H)) =

tr(INS − VHQ(H)Q(H)HV). The reason why squared subspace distances are

used as distortion functions (and not the performance measures themselves) is

because they lead to simpler design procedures as detailed later on.

In [49], an alternative and more exact distortion measure for the MI is pro-

posed, namely the capacity loss introduced by quantization:

DCL(H, Q(H)) = tr(Λ−ΛVHQ(H)Q(H)HV), (3.18)

where Λ = (INS + Σ2)−1Σ2. Note that this distortion function converges to the

squared chordal distance DC when the diagonal elements of Σ2 go to infinity.

All the above distortion functions are invariant to a left multiplication of

the precoder with a unitary matrix. As already indicated in the previous sec-

tion, this could create a problem when performance measures like the uncoded

BER are considered. Taking the distortion function equal to the BER, i.e.,

DBER(H, Q(H)) = BER(H, Q(H)) leads to a difficult codebook design. But as

before, we could take the squared Frobenius norm or squared modified Frobe-

nius norm between V and Q(H) as a distortion function to solve this com-

plexity problem: DF (H, Q(H)) = 2 tr(INS − <(VHQ(H))), DMF(H, Q(H)) =

2 tr(INS − |VHQ(H)|). In this case our goal is again to feedback V, and we

will not use the precoder Q(H) but Q(H)M at the transmitter, where M is the

optimal (or a suboptimal) unitary mixing matrix [50].

Now the question is how we can solve (3.17) for a certain distortion function.

We can basically distinguish between three different approaches: Grassmannian

subspace packing, the generalized Lloyd (GL) algorithm, and the Monte-Carlo

(MC) algorithm.

36



Grassmannian Subspace Packing

In case the distortion function is a subspace distance and the channel is spatially

white, we can simplify (3.17) by means of a Grassmannian subspace packing

problem. In such a problem, the objective is to find a set of unitary precoders

that maximizes the minimal subspace distance between them [48,53]:

max
C

min
Fi,Fj∈C
Fi 6=Fj

d(Fi,Fj), (3.19)

where d is any of the subspace distances we discussed above. Of course, such

a codebook can also be used when the channel is not spatially white, but the

performance will decrease with an increased spatial correlation of the channel.

Unfortunately, there still does not exist a closed form solution to design such

codedooks. However, good codebooks, i.e., codebooks that are sufficient for prac-

tical applications, can be designed using numerical algorithms [50,54].

Generalized Lloyd Algorithm

The generalized Lloyd (GL) algorithm tries to solve (3.17) by iteratively opti-

mizing the encoder and the decoder [17, 35]. For a given decoder β, the encoder

is optimized by taking the precoder index leading to the smallest distortion (the

so-called nearest neighbor condition):

α(H) = arg min
i∈I

D(H, β(i)), (3.20)

thereby splitting the space of channel matrices into K channel regions Ri, i ∈ I:

Ri = {H : D(H,Fi) ≤ D(H,Fj),Fi,Fj ∈ C,Fi 6= Fj}. (3.21)

On the other hand, for a given encoder α, the decoder β is optimized by taking

the centroid of the related channel region (the so-called centroid condition):

β(i) = arg min
F∈UNT ,NS

∫
Ri
D(H,F)p(H)dH. (3.22)
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The GL algorithm converges to a local minimum, which might not necessarily be

the global minimum. To avoid working with the continuous channel distribution,

the GL algorithm makes use of a set of training channels T = {H(r)}, where

r is the realization index. This set can be interpreted as the discrete channel

distribution that approximates the continuous one. The more training vectors in

the set, the better the approximation. Computing the exact centroid based on T
is not always easy [40]. For the squared subspace distances as well as the capacity

loss distortion function in (3.18), closed form expressions for the centroid exist.

However, for the BER and even the squared Frobenius norm or squared modified

Frobenius norm, a closed form expression does not exist. For those distortion

functions, we simply apply a brute-force (approximate) centroid computation by

exhaustively searching the best possible candidate among the set of matrices V(r)

for which H(r) belongs to the related region.

Monte-Carlo Algorithm

Another interesting approach is the pure Monte-Carlo based design. Instead of

trying to optimize an existing codebook, this design randomly generates code-

books, checks the average distortion (3.17) of these codebooks, and keeps the best

one. As for the GL algorithm, we will make use of the set of training channels

T to approximate the continuous channel distribution. Although this algorithm

becomes computationally expensive for large dimensions, for small dimensions we

have observed that the MC algorithm is a very good alternative to Grassmannian

subspace packing or the GL algorithm.

3.4 Feedback Compression Through Entropy Cod-

ing

This section explores methods to compress the feedback requirements on the feed-

back link, without sacrificing performance. It uses variable-rate codes to encode

highly probable precoder matrices with small bitwords and less probable precoder

matrices with longer bitwords. This is called entropy coding [17]. However, as

we already indicated in Section 3.3, if the memoryless VQ is well-designed all
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precoders Fi have more or less the same probability. We therefore try to exploit

the time correlation of the channel and make use of the transition probabilities

between precoders instead of the occurrence probabilities. Hence, instead of as-

signing a bitword wi to a precoder Fi, we assign a bitword wi,j to a precoder Fi

if the previous precoder was the precoder Fj . Our goal then is to minimize the

average length

K∑
i=1

l(wi,j)P (Q(H[t]) = Fi |Q(H[t− 1]) = Fj), (3.23)

where l(wi,j) is the length of the bitword wi,j and Pi,j = P (Q(H[t]) = Fi |Q(H[t−
1]) = Fj) is the transition probability from Fj to Fi. Depending on the type of

feedback channel, we obtain different solutions for (3.23). For a non-dedicated

feedback link, or in other words for PF bitwords, the solution of (3.23) is given

by the Huffman code [9]. For a dedicated feedback link, or in other words for

NPF bitwords, the solution of (3.23) is simply given by selecting any K bitwords

with the smallest possible average length, and assigning the longest (smallest)

bitwords to the lowest (highest) transition probabilities.

An example of a codebook for a dedicated feedback link and a non-dedicated

feedback link is depicted in Table 3.2. The transition probabilities are estimated

through Monte-Carlo simulations. This example assumes that the previous quan-

tized precoder is Q(H[t−1]) = F8. Due to the time correlation of the channel, the

most probable precoder in this example at time instant t is then again F8. Thus,

the most probable precoder matrix F8 gets a short bitword assigned, whereas the

precoders with lower probabilities get longer bitwords assigned.

Please note that for OFDM, where several precoder matrices for different tones

are transmitted at the same time instant, the individual precoding matrices do

not need to be instantaneously decodable. They can be jointly encoded, e.g.,

through the use of arithmetic coding.

The scheme can be extended to incorporate error correcting codes to make it

robust against errors on the feedback channel.

The above techniques rely on the exact knowledge of or the knowledge of the

ordering of the transition probabilities between the past precoder Q(H[t − 1])

and the actual precoder Q(H[t]). Unfortunately, a closed form expression of

39



Codebook Pi,8 Huffman Code NPF Code
F8 0.25 01 /
F2 0.20 11 0
F7 0.18 000 1
F4 0.16 001 00
F3 0.10 101 01
F6 0.08 1000 10
F5 0.02 10010 11
F1 0.01 10011 000

Table 3.2: Example of feedback compression through entropy coding. (Pi,8 =
P (Q(H[t]) = Fi |Q(H[t− 1]) = F8))

the transition probabilities is not known, and difficult to derive due to the non-

linearity of the quantization. For the special case of known channel statistics,

they can be estimated offline through a Monte-Carlo approach [55]. However,

in practice the underlying channel statistics are unknown, or are changing at

runtime. The next section provides a solution to this problem.

It is possible to adaptively estimate the transition probabilities at runtime.

This allows to adapt the used entropy code to changing channel statistics. The

algorithm starts by assuming that all the different transitions are equiprobable.

After each feedback, the transition probabilities are updated depending on the

feedback. If the feedback at time instant t−1 signifies a switch from precoder Fj

to precoder Fi, then the transition probability Pi,j for time instant t is updated

as [17]

Pi,j [t] =
(N − 1)Pi,j [t− 1] + 1

N
. (3.24)

The remaining transition probabilities are updated as

Pk,j [t] =
(N − 1)Pk,j [t− 1]

N
for k 6= i. (3.25)

The factor N controls how fast or how accurate the probabilities are estimated.

Larger values of N lead to a smaller increase or decrease after each iteration, and

thus, to a slower, but more accurate estimation. Since both the transmitter and

receiver know the feedback, they can both keep track of the changed transition

40



probabilities. The changed transition probabilities are then used, both at the

transmitted and at the receiver, to update the used entropy code on the feedback

link. Note that this approach relies on the errorless transmission of the feedback.

Feedback errors would lead to different codebooks at the transmitter and the

receiver.

Instead of updating the transition probabilities, one can also directly update

the Huffman code, in the case of a non-dedicated feedback link [56–58]. However,

the effect is very similar to the two step approach of first updating the transition

probabilities and then computing the new Huffman code.

3.5 Finite-State Vector Quantization (FSVQ)

In this section, we will look at a number of methods to improve the performance

exploiting the maximal data rate of R bits per channel use on the feedback

channel. We will present the different methods in the well-developed framework

of finite-state vector quantization (FSVQ), and we closely follow [17].

3.5.1 Introduction

Before introducing FSVQ, let us consider a so-called switched VQ, consisting

of a finite number of memoryless VQs and a classifier that periodically decides

which memoryless VQ is best and feeds back the index of this VQ to the decoder.

The decision of the classifier is generally based on an estimate of the statistics

of the channel. An example of this approach is given in [59], where the different

memoryless VQ codebooks are constructed by rotating and scaling a specific root

codebook. The drawback of this approach is of course the additional feedback

overhead due to the fact that the classifier periodically feeds back the index of

the best memoryless VQ.

FSVQ solves this problem since it does not require any additional side in-

formation. An FSVQ has some built in mechanism to determine which of the

memoryless VQs should be used to transform the current channel into a quan-

tization index. It is the current state that determines which memoryless VQ to

employ, and that is why the related codebook is called the state codebook. The
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current state together with the obtained quantization index then determines the

next state through the so-called next-state function. This is explained in more

detail next.

Suppose we have a set S of NS states, which without loss of generality can be

denoted as S = {1, 2, . . . , NS}. Every state s ∈ S is related to a state codebook

Cs = {F1,s,F2,s, . . . ,FK,s}. The encoder α maps the current channel and state

into one of K quantization indices, which for simplicity reasons can be represented

by the set I = {1, 2, . . . ,K}. Assume for instance that at time instant t the

channel and state are given by H[t] and s[t], respectively, then we can describe

our encoder as

α(H[t], s[t]) = arg min
i∈I

S(H[t],Fi,s[t]), (3.26)

where S is one of the selection functions described in Section 3.3.1. The decoder β

simply maps the current quantization index and state into one of the K precoders

of the related state codebook. Assume for instance that at time instant t the

quantization index and state are given by i[t] and s[t], respectively, then our

decoder can be expressed as

β(i[t], s[t]) = Fi[t],s[t]. (3.27)

So the overall quantization procedure can be written as

Q(H[t], s[t]) = β(α(H[t], s[t]), s[t]). (3.28)

Finally, we need a mechanism that tells us how to go from one state to the next.

This is obtained by the next-state function. Keeping in mind that both the

encoder and decoder should be able to track the state, the next-state function

fNS can only be guided by the quantization index. Assume that at time instant

t the current quantization index and state are given by i[t] and s[t], respectively,

then the next-state function can be expressed as:

s[t+ 1] = fNS(i[t], s[t]). (3.29)

An FSVQ is now completely determined by the state space S, the state code-
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books Cs = {F1,s,F2,s, . . . ,FK,s} for all s ∈ S, the next state function fNS, and

the initial state s[0]. Note that the union of all state codebooks is called the

super codebook C =
⋃
s∈S Cs, which contains no more than KNS precoders.

As in memoryless VQ, we can consider two ways to assign bitwords wi to the

indices i ∈ I. We can use K equal-length PF bitwords (for a non-dedicated feed-

back link), with a feedback rate of dlog2Ke bits per channel use, or K increasing-

length NPF bitwords (for a dedicated feedback link), with an average feedback

rate of 1/K
∑K
i=1blog2 ic. This assignment is again based on the assumption that

for a certain state s, the precoders Fi,s have more or less the same probability.

As will be illustrated later on, the design of an FSVQ is often based on an

initial classifier that classifies channels into states. Such a classifier could for

instance be a simple memoryless VQ with a codebook Cclass = {F1,F2, . . . ,FNS}
that assigns a state s ∈ S to a channel H[t] using the function fclass:

fclass(H[t]) = arg min
s∈S

Sclass(H[t],Fs), (3.30)

where the selection function Sclass is one of the functions introduced in Sec-

tion 3.3.1, and could possibly be different from the selection function S chosen

in the encoder (3.26). We will come back to this issue in Section 3.5.3.

In the next few subsections, we will describe a few methodologies to design

the state codebooks and the next state function based on the initial classifier.

In the first subsection, we will discuss some FSVQ designs. These are basically

existing designs, although they have not always been introduced in the framework

of FSVQ or in the context of time-correlated channels. In the second subsection,

we describe the so-called omniscient design, which is a FSVQ design approach

which has not yet been used for feedback compression. Note that due to the

dependence of the codebooks on the next-state function it is still possible to

iteratively improve the obtained state codebooks as illustrated in [17, p.536].

However, this generally only shows marginal performance gains over the initial

designs, and thus we will not consider it in this work.
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s′ P (fclass(H[t]) = s′ | fclass(H[t− 1]) = 8) d(Fs′ ,F8 )
1 0.0380 1, 6292
2 0.0200 1, 4550
3 0.0132 1, 3461
4 0.0365 1, 2801
5 0.0250 1, 1548
6 0.0397 1, 3112
7 0.0232 1, 4487
8 0.8045 0

Table 3.3: Example of transition probabilities and precoder distances assuming
the previous state was s = 8.

3.5.2 FSVQ Designs

We first discuss a few FSVQ feedback designs, where the super codebook C cor-

responds to the classifier codebook Cclass, and the state codebooks Cs are subsets

of the classifier codebook Cclass.

Conditional Histogram Design

For the conditional histogram design, the next states of a current state s are

the K states s′ that have the highest probability to be reached from state s

in terms of the initial classifier. Hence, the state codebook Cs is the set of K

precoders Fs′ corresponding to the K states s′ that have the highest transition

probability P (fclass(H[t]) = s′|fclass(H[t− 1]) = s). If we define, without loss of

generality, Fi,s as the precoder Fs′ of the state s′ with the i-th highest transition

probability P (fclass(H[t]) = s′|fclass(H[t− 1]) = s), then the next-state function

fNS(i, s) is simply given by this state s′. Note that the transition probabilities

can be computed as in Section 3.4, but the adaptive approach cannot be used

here because the decoder does not have knowledge about the current channel. An

example is given in Table 3.3, where we assume that the current state is s = 8.

Assuming the state codebooks have size K = 4, the state codebook C8 is given

by C8 = {F8,F6,F1,F4}. Although presented in a different framework, a similar

approach has been proposed in [55].
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Nearest Neighbor Design

For the nearest neighbor design, the next states of a current state s are not the

K states s′ that have the highest transition probability, but the K states s′ that

have the closest precoder to the precoder of state s in terms of some distance

d, which could be a subspace distance, the Frobenius norm dF , or the modified

Frobenius norm dMF, although the latter are not strictly speaking distances.

Hence, the state codebook Cs is the set of K precoders Fs′ that have the smallest

distance d(F′s,Fs). If we define, without loss of generality, Fi,s as the precoder

Fs′ of the state s′ with the i-th smallest distance d(Fs′ ,Fs), then the next-

state function fNS(i, s) is simply given by this state s′. Again looking at the

example in Table 3.3, we now see that the state codebook C8 is given by C8 =

{F8,F5,F4,F6}.
In the context of orthogonal frequency division multiplexing (OFDM), this

approach has already been proposed in [60] to compress the feedback of the

precoders on the different subcarriers. The advantage of the Nearest Neighbor

Design over the Conditional Histogram Design is that it does not require the

transition probabilities between the different states.

Discussion

The problem of both the conditional histogram design and the nearest neighbor

design is that if the time between feedback is large and the time correlation of

the channel is small, the optimal transition might be not one of the K most likely

ones or not one of the K transitions with the smallest distance between precoders.

This could lead to a so-called derailment problem. As suggested in [17, p.540],

the derailment problem could also be solved by periodic re-initialization.

3.5.3 Omniscient Design

In this section, we present a novel feedback compression method, based on what

in the field of vector quantization is known as the omniscient design [17]. In

general, the omniscient design provides the best performance of all the FSVQ

design approaches [17].
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To explain the omniscient design, let us assume that the next-state function

is not determined by the current quantization index and state, but simply by the

current channel, for instance by means of the classifier function fclass:

s[t+ 1] = fclass(H[t]). (3.31)

The state codebook Cs for a state s can then be designed by minimizing some

average distortion

Dav,s =

∫
CNR×NT

D(H, Q(H, s)) p(H[t] | fclass(H[t− 1]) = s) dH, (3.32)

where D(H, Q(H, s)) is the distortion between H and Q(H, s), and

p(H[t] | fclass(H[t−1]) = s) is the conditional probability density function of H[t]

given fclass(H[t − 1]) = s, or equivalently, given the current state s[t] = s. Any

of the distortion functions presented in Section 3.3.2 can be considered. We can

now solve (3.32) by the GL algorithm or the MC algorithm, as was done in Sec-

tions 3.3.2 and 3.3.2. This requires a set of training channels Ts. To construct Ts,
we first generate a large set of pairs of consecutive channels based on the channel

statistics, P = {(H(r)[t−1],H(r)[t])}, where r is the realization index. From this

set P we construct Ts as the set of channels H(r)[t] for which fclass(H
(r)[t−1]) = s,

i.e., Ts = {H(r)[t]|(H(r)[t−1],H(r)[t]) ∈ P and fclass(H
(r)[t−1]) = s}. The prob-

lem of this approach is that the decoder can not track the state, because it does

not have access to the current channel. Hence, it is assumed here that the decoder

is omniscient, i.e., that is knows the unquantized channel. Hence, we should re-

place H[t] in the next-state function by its estimate Ĥ[t] that is computed based

on the quantized precoder Q(H[t], s[t]) known to the decoder. As an estimate,

we could for instance consider

Ĥ[t] =
[
Q(H[t], s[t]) 0NT×(NR−NS)

]
. (3.33)

This is of course not a good channel estimate for equalization, but it is good in

terms of the NS largest right singular vectors collected in V[t]. Hence, if the

classifier fclass is designed based on a selection function Sclass that only depends

on V[t], then fclass(Ĥ[t]) is a good approximation of fclass(H[t]). That is why
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we often choose Sclass based on a subspace distance (SP2, SFS , or SC), the

Frobenius norm (SF ), or the modified Frobenius norm (SMF ), irrespective of

what is chosen as selection function S in the encoder (3.26). So, we keep the

idealized state codebooks Cs but we change the next-state function into

s[t+ 1] = fclass(Ĥ[t]) = fNS(i[t], s[t]). (3.34)

This way we obtain an FSVQ.

3.5.4 Adaptive FSVQ

Unfortunately, it is not trivial to extend the FSVQ to adapt to changing chan-

nel characteristics. The adaptation of the state codebooks Cs has to rely on

information that is available both at the encoder and the decoder. This shared

information can for instance consist of the last l states s[t], s[t−1], . . . , s[t− l+1]

and the last l quantized precoders Q(H[t], s[t]), Q(H[t− 1], s[t− 1]), . . . , Q(H[t−
l + 1], s[t− l + 1]). We restrict our approach to such a window of l samples due

to memory restrictions, and we forget past samples for which the channel might

have different characteristics. Whenever the precoder is Q(H[t], s[t]) = Fi,s[t],

we know that the channel matrix H[t] lies in some region Ri,s[t]. Assuming a

realistic channel distribution, we can then define one or more random channel

matrices that also lie in the region Ri,s[t]. Finally, the FSVQ design algorithms

mentioned previously can be used with the new training sequence to design the

new state codebooks. Note that the state codebooks, and thus the quantizer

regions, are recalculated from scratch after each feedback. Instead, we could also

consider updating the codebook as done in competitive learning [61]. However,

such techniques still have to be adapted to take the unitary constraint of the

precoding matrix into account, and they are considered future work.

3.6 Simulations

In this section we are providing numerical results for the different schemes and

design approaches presented so far. We assume that NS = 2 data streams are

transmitted over NT = 4 antennas. The receiver is equipped with NR = 2 receive
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Figure 3.2: Comparison between different codebooks using the BER selection
criterion. (NS = 2, NT = 4, NR = 2, |C| = 16, ZF receiver).

antennas, and quadrature phase-shift keying (QPSK) modulation is used.

We start in Subsection 3.6.1 by comparing the BER performance for different

codebooks using the BER criterion as selection function. Subsection 3.6.2 then

shows the performance of Monte-Carlo and subspace packing codebooks for spa-

tially correlated channels. In subsection 3.6.3 the possible feedback compression

gains of entropy coding over memoryless VQ are shown for time-correlated chan-

nels. Subsection 3.6.4 shows how fast the adaptive entropy coding schemes adapt

to changing channel statistics. The following subsection then compares FSVQ

to memoryless VQ, and it also compares the different FSVQ design approaches.

Finally, Subsection 3.6.6 shows the duality between FSVQ and entropy coding.
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3.6.1 Memoryless VQ

Fig. 3.2 compares the performance of different codebook designs presented in

Subsection 3.3.2. The BER is used as selection function (3.14). The Frobenius

norm, the modified Frobenius norm, and the chordal distance codebook are using

the Monte-Carlo algorithm to solve (3.17), using the respective squared distances

as distortion function. The BER codebook is also designed using the Monte-

Carlo algorithm. The Love-Heath codebook [48] and the Zhou-Li codebook [50]

are designed to optimize (3.19) with the chordal distance as subspace distance.

Love and Heath were using techniques from [62], and Zhou and Li were using the

generalized Lloyd algorithm. The simulation shows that the performance of the

different codebooks is similar, and even using the BER as a distortion function

in the codebook design does not yield a noticeable performance gain.

3.6.2 Codebook Design for Spatially Correlated Channels

Fig. 3.3 compares the performance of two codebooks for a spatially correlated

channel. One codebook is designed using the Grassmannian subspace packing

approach with the chordal distance, and the other codebook is designed using

the Monte-Carlo algorithm with the squared modified Frobenius norm as distor-

tion function. The channel is modeled using the measurements in [63], and the

BER selection function (3.14) is used to choose the best codebook entry. We

see that the Monte-Carlo codebook, which takes the channel correlation into ac-

count, outperforms the Grassmannian subspace packing codebook, which aims

at spatially white channels.

3.6.3 Entropy Coding

Fig. 3.4 depicts the compression gains possible through entropy coding. The chan-

nel is modeled through Jakes’ model with the Doppler spread fixed. The mean

feedback rate is depicted as a function of the frame duration Tf . A small frame

duration implies a highly correlated channel, whereas a longer frame duration

implies a less correlated channel. The Huffman code is used as prefix-free code,

and the simple binary numbering from Table 3.2 is used as the non-prefix-free

code. The modified Frobenius norm (3.16) is used as selection function and the
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Figure 3.3: Comparison of different codebooks for memoryless VQ for a spatially
correlated channel. (NS = 2, NT = 4, NR = 4, |C| = 4, ZR receiver).
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squared modified Frobenius norm as distortion function to design the codebook

using the Monte-Carlo algorithm. The transition probabilities used to design the

entropy codes are estimated through Monte-Carlo simulations.

We see that the prefix-free code achieves a mean feedback rate of 1 bit for

highly correlated channels, whereas the non-prefix-free code can even achieve

0 bits, i.e., no feedback is necessary. For longer frame durations, i.e., uncorrelated

channels, the mean feedback rate for the Huffman encoded bitwords converges to

4 bits, since the transitions between the different codewords become equiprobable,

and then the Huffman code assigns equal-length bitwords to all the precoders.

The non-prefix-free code converges to 2, 375 bits for uncorrelated channels since

the transitions between the different codewords become equiprobable as well, and

thus it assigns the binary numbering bitwords randomly.

3.6.4 Adaptive Entropy Coding

The tradeoff between adaptation speed and accuracy for adaptive entropy coding

is depicted in Fig. 3.5 and Fig. 3.6. To depict the adaptation of the adaptive

entropy coding to changing channel statistics, we changed the frame duration

from 10−3 s to 10−2 s after 3000 frames, and back after another 3000 frames. The

remaining simulation parameters are identically as in the previous subsection.

Fig. 3.5 assumes a non-dedicated feedback channel. We see how the selection

of the weighting factor N controls the tradeoff between performance and speed

of the adaptive encoding process. For small N , the transition probabilities are

estimated faster but less accurate, and for higher N , the estimation is slower but

more accurate.

Fig. 3.6 shows a similar scenario, but for a dedicated feedback channel, where

the bitwords are designed using the non-prefix-free code from Table 3.2. We see

that the system quickly adapts to the changing frame lengths for both values

of N , since the encoding of the bitwords does no longer depend on the exact

transition probabilities but only on their order.
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Figure 3.5: Tradeoff between adaptation speed and accuracy using a Huffman
code (fD = 30 Hz, NS = NT = 2, |C| = 16).
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Figure 3.6: Tradeoff between adaptation speed and accuracy using a non-prefix-
free code (fD = 30 Hz, NS = NT = 2, |C| = 16).
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3.6.5 FSVQ

The performance of different state codebook designs is depicted in Fig. 3.7. The

FSVQs are created using the omniscient design. The different codebooks are

designed with the squared modified Frobenius norm as distortion function, and

the mod. Frobenius norm (3.16) is used as selection function for the classifier

(3.31) as well as for the quantization (3.28).

We see that the performance of the FSVQ highly depends on the time corre-

lation of the channel. If the time correlation between the channels is high, the

2 bit feedback of a FSVQ has the same BER performance as the 4 bit memory-

less VQ. However, for less correlated channels the performance drops to the same

performance as the 2 bit memoryless VQ.

Different design approaches for FSVQ codebooks are shown in Fig. 3.8. We
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simulate for the different design approaches the performance after 1 transmission

and after 100 transmissions. We use the same distortion and selection functions

as in the previous simulations.

We see that the omniscient design performs best after 1 transmission, but it

also suffers the most from the derailment problem, i.e., its performance after 100

transmissions is worse than the nearest neighbor and the conditional histogram

design. This effect can be counteracted through periodic reinitialization.

3.6.6 Comparison Entropy Coding and FSVQ

We compare the omniscient design with the entropy coding approach for a MIMO

system with a non-dedicated feedback link. Fig. 3.9 shows the average feedback

rate and the BER of the linear MMSE receiver as a function of the frame length

Tf . The modified Frobenius norm is used as selection function, and the squared

modified Frobenius norm is used as distortion function to design the codebooks.

We consider codebooks for the entropy coding approach with |C| = 2, 4, 8, and 16,

whereas for the omniscient design we take |Cclass| = 64 and |Cs| = 2, 4, 8, and 16.

For the entropy coding approach, the BER is constant and the average feedback

rate increases with an increasing Doppler spread. On the other hand, for the

omniscient design, the average feedback rate is constant and the BER increases

with an increasing Doppler spread. Hence, the question basically is how their

average feedback rates (BERs) compare for the same BER (average feedback

rate). To answer this question, let us take a look at a few examples. We see that

the entropy coding approach with |C| = 8 has the same average feedback rate as

the omniscient design with |Cclass| = 64 and |Cs| = 4 at Tf ≈ 0.01 s. However, at

this frame length, the first has a worse BER as the latter. Similarly, we see that

the entropy coding approach with |C| = 8 has the same BER as the omniscient

design with |Cclass| = 64 and |Cs| = 4 at Tf ≈ 0.02 s. But at this frame length,

the first has a higher average feedback rate as the latter. Other examples show

the same behavior. Hence, we can conclude that for this particular set-up, the

entropy coding approach is worse than the omniscient design. The main reason

for this behavior is that the super codebook of the omniscient design is much

larger than the codebooks used for entropy coding.
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3.7 Conclusions

In this chapter, we presented existing and novel schemes exploiting limited feed-

back for linear precoded spatial multiplexing in the framework of vector quanti-

zation. We depicted the different selection and distortion functions to generate

the codebooks, and to quantize the input. Further, we considered the problem

of reducing the data rate on the feedback link, and the problem of optimizing

the overall performance of the system. The simulations show the benefit of using

FSVQ and entropy coding to better exploit the limited feedback channel for for

temporally correlated channels. As an extension we show that entropy coding

can also be easily adapted to changing channel characteristics.

In conclusion, we see that existing techniques from the field of vector quantiza-

tion can be easily and beneficially used for better exploiting the limited feedback

link.
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Chapter 4

Precoder and Equalizer

Extrapolation∗

The following chapter attacks Problem 2 of the thesis. As in the previous chapter

we also focus on quantizing and feeding back the unitary precoding matrix. Ad-

ditionally, we are trying to extrapolate the unitary precoding matrix throughout

the block using the past feedback. Further, we investigate both the linear min-

imum mean square error (LMMSE) detector, which minimizes the mean square

error (MSE) between the transmitted and estimated symbols, and the singular

value decomposition (SVD) detector, which is a detector that aims at diagonaliz-

ing the channel matrix. Simulation results illustrate the efficiency of the proposed

extrapolation methods.

4.1 Introduction

Spatial multiplexing has emerged in the last years as an efficient technique to

reach high data rates. To make it more resistant against rank deficient channels,

it is advantageous to use linear precoding [12] on top of spatial multiplexing. As

mentioned in the previous chapter, the optimal precoding matrix is the product

∗Parts of this chapter are taken from [24].
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of a diagonal power loading matrix and a unitary matrix. In order to reduce

the feedback requirements, we discard the diagonal power loading matrix, and

just use the unitary matrix as precoding matrix. Note that without the diagonal

power loading matrix it is no longer possible to apply the water-filing algorithm

to balance the power levels of the different spatial streams. The unitary matrix

is quantized and fed back to the transmitter. The quantization of the precoding

matrices requires a suitable codebook design and code selection procedure. This

could for instance be based on average mean square error (MSE) [64]. However,

this does not necessarily lead to a decoupling of the different spatial streams,

which generally results in a better performance if only a few of the spatial streams

are used. This is due to the fact that when the spatial streams are stronger

decoupled, the average performance of the stronger modes is better. Hence, we

will focus on a precoder that consists of a few right singular vectors of the channel

matrix, and we will adopt the codebook design and code selection procedure that

was proposed in [65]. But since this approach still has a phase ambiguity for every

singular vector, we modify the codebook design and code selection accordingly,

leading to a better performance.

To limit the amount of feedback, we will only feed back the right singular

vectors at regular time instants. At other time instants, we can extrapolate the

precoder by exploiting the coherence of the channel in the time domain. The

extrapolation scheme we will adopt here is similar to the one proposed in [22].

Since the precoder is only fed back at regular time instants, it is only necessary to

estimate the channel at those time instants, which means we can also reduce the

amount of training overhead. At other time instants, we can then extrapolate the

channel, again exploiting its coherence in the time domain. We will investigate

two receiver methods: the linear minimum mean square error (LMMSE) detector,

which minimizes the mean square error (MSE) between the transmitted and

estimated symbols, and the singular value decomposition (SVD) detector, which

is a detector that aims at diagonalizing the channel matrix. We select these two

receivers as a comparison since both are popular linear receivers.

Notation: We designate vectors with lowercase boldface letters, and matrices

with capital boldface letters. The notation [A]i,j denotes the (i, j)th entry of the

matrix A, and [A]:,1:n is the submatrix of A consisting of the columns 1 to n. In
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Figure 4.1: Spatial multiplexing MIMO system with linear precoding and a feed-
back link.

is the n×n identity matrix. Further, AH denotes the conjugate transpose of the

matrix A, A−1 the inverse, and expm(A) the matrix exponential. Finally, E(·)
represents expectation and p(·) probability.

4.2 System Model

We assume a narrowband spatial multiplexing MIMO system with NT transmit

antennas and NR receive antennas. The system input-output relation at time

instant t is given by

y[t] = H[t]
√
ETF[t]s[t] + n[t], (4.1)

as specified in Section 1.1.1, where y[t] ∈ CNR×1 is the received vector, s[t] ∈
CNS×1 is the vector that contains the NS transmitted data symbols, H[t] ∈
CNR×NT is the channel matrix, ET ∈ R is the transmit energy, F[t] ∈ CNT×NS

is the linear precoder, and n[t] ∈ CNR×1 is the additive noise vector.

We assume that the elements of s[t] are i.i.d. and uniformly distributed over

a finite alphabet with zero mean and variance 1
NS

. We further assume that the

elements of n[t] are i.i.d. and complex Gaussian distributed with zero mean and

variance N0. We finally assume that the elements of H[t] are i.i.d. and distributed

according to Jakes’ model [66] with zero mean and variance 1:

[H[t]]nR,nT =
1√
S

S∑
s=1

As,nR,nT exp(j2πfdtT cos(φs,nR,nT )), (4.2)

where S is the number of scatterers, As,nR,nT is complex Gaussian distributed
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with zero mean and variance 1, φs,nR,nT is uniformly distributed in [0, 2π], T is the

symbol period, and fd is the Doppler frequency. The index of A and φ indicates

that they are different for every scatterer and for every receiver-transmitter pair.

The SVD of H[t] will be denoted as H[t] = U[t]Σ[t]VH [t], where U[t] and V[t]

belong to UNR and UNT , respectively, with Un denoting the set of unitary n× n
matrices, and Σ[t] is a diagonal NR × NT matrix with the diagonal starting in

the top left corner.

Generally, the precoding matrix is restricted to have orthonormal columns,

i.e., FH [t]F[t] = INS . Within that class, it can for instance be shown that

F[t] = [V[t]]:,1:NSQ is optimal with respect to the average MSE [65], where Q is

an arbitrary matrix belonging to UNS .

Note that this Q matrix does not change the average MSE but can be used to

enforce a certain MSE profile across the different spatial streams. For instance,

selecting a Q matrix with constant modulus entries enforces an even MSE profile

across the different spatial streams, thereby minimizing the uncoded BER [67,68].

However, selecting Q = INS links a specific spatial stream to a specific spatial

mode of the channel, leading to a better seperation of the spatial streams. Hence,

we consider F[t] = [V[t]]:,1:NS to be the optimal precoder in this work. Note that

if NS 6= NT , then the precoding matrix is not a unitary matrix. However, in

order to keep our notation consistent with the literature, we still also call the

non-square precoding matrix, the unitary precoder.

To estimate the symbols, we make use of a linear detector G[t], i.e., ŝ[t] =

GH [t]y[t]. We will consider two types of linear detectors in this work. The first

detector is the LMMSE detector, which is given by

GLMMSE[t] = H[t]F[t](FH [t]HH [t]H[t]F[t] +N0INS )−1. (4.3)

The second detector, referred to as the SVD detector, relies on the left singular

vectors U[t] of the channel matrix H[t], and is given by

GSVD[t] = [U[t]]:,1:NS . (4.4)

For the SVD detector, the relationship between the estimated symbols ŝ and the
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transmitted symbols s then becomes

ŝ[t] = [Σ]1:NS ,1:NSs[t] + ([U[t]]:,1:NS )Hn. (4.5)

We see that this corresponds to the transmission over NS SISO channels. Note

that the receiver does not know Σ, and thus, the scaling of the data symbols.

Hence, the SVD detector only works for phase-shift keying (PSK) modulation

whereas the LMMSE detector works for any type of modulation.

4.3 Precoder Quantization

It is clear that the use of the optimal precoder requires feedback from the receiver

to the transmitter. However, since the feedback link only has a limited rate, we

have to quantize the information. We can either feed back the channel or the

precoder. But since the precoder has less degrees of freedom than the channel,

it is better to send the quantized precoder than the quantized channel to the

transmitter, as illustrated in the simulations section.

Hence, we have to select the precoder F[t] from a finite codebook F = {Fi}.
The code selection and codebook design criteria can for instance be based on av-

erage MSE [64]. However, as we discussed before, this does not necessarily lead

to a one-to-one link between the spatial streams and the spatial modes. Hence,

in this work, we will quantize the right singular vectors V[t] and we will pick

the quantized right singular vectors VQ[t] from a finite codebook V = {Vi}. The

precoder is then selected as F[t] = [VQ[t]]:,1:NS . Note that if we follow this ap-

proach, the codebook design and code selection are independent of the number

of spatial streams NS that are selected. This allows for the use of code extrap-

olation when different spatial streams are selected at different time instants, a

procedure known as multi-mode precoding. Code extrapolation will be discussed

later on.

4.3.1 Codebook Design and Code Selection

The first codebook design we consider here is the same as in [65]. We review

this design here shortly. First of all, assuming that the elements of H[t] are i.i.d.
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and complex Gaussian distributed, V[t] is isotropically distributed in UNT [69,70].

Within that space we have to look for an optimal set of regions {Ri} and centroids

V = {Vi}, such that VQ[t] = Vi if V[t] ∈ Ri. We can find such an optimal set of

regions and matrices in UNT , by minimizing the average quantization distortion,

measured by the mean square error between V[t] and its quantized version. In

other words, we try to solve

{Ri,Vi} = arg min
{Ri,Vi} | Ri⊂UNT ,Vi∈UNT∑

i

E(‖V[t]−Vi‖2F | V[t] ∈ Ri)p(V[t] ∈ Ri). (4.6)

The solution is not known in closed form, but can be identified iteratively by the

generalized Lloyd algorithm. Based on this codebook design, the optimal VQ[t]

is then found as

VQ[t] = arg min
Vi∈V

‖V[t]−Vi‖2F . (4.7)

4.3.2 Modified Codebook Design and Code Selection

Note that the right singular vectors V[t] are actually only known up to a phase

shift of their columns. We refer to this ambiguity of V[t] as the orientation

ambiguity of V[t], and it is characterized by a right multiplication of V[t] with

an orientation matrix Θ[t] ∈ DUNT , where DUNT is the set of diagonal unitary

NT ×NT matrices. The previous codebook design and code selection, however,

do not take this orientation ambiguity of V[t] into account. We can therefore

improve the previous approach by not simply using the mean square error between

V[t] and its quantized version, but between the optimally oriented V[t] and its

quantized version. Hence, we have to solve a problem of the form

min
Θ[t]∈DUNT

‖V[t]Θ[t]−Vi‖2F . (4.8)
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The solution can easily be computed in closed form and is given by [71, pp.

431-432]

[Θopt,i[t]]p,q =


[VH [t]Vi]p,p
|[VH [t]Vi]p,p|

, if p = q,

0, otherwise.

. (4.9)

As a result, we modify the codebook design into

{Ri,Vi} = arg min
{Ri,Vi}|Ri⊂UNT ,Vi∈UNT∑

i

E(‖V[t]Θopt,i[t]−Vi‖2F |V[t] ∈ Ri)p(V[t] ∈ Ri). (4.10)

Again, the solution is not known in closed form, but can be identified iteratively

by the generalized Lloyd algorithm. Based on this codebook design, the optimal

VQ[t] is then found as

VQ[t] = arg min
Vi∈V

‖V[t]Θopt[t]−Vi‖2F . (4.11)

4.4 Precoder Extrapolation

By exploiting the coherence of the channel in the time domain, we can avoid

feeding back the quantized right singular vectors VQ[t] at every time instant t.

More specifically, we will feed back the quantized right singular vectors every N

time instants, i.e., VQ[kN ] is fed back for all k. We can then extrapolate the

quantized right singular vectors at some time instant kN+t, for t = 1, 2, . . . , N−1,

using the last K known quantized right singular vectors {VQ[(k+ l)N ]}0l=−K+1.

The method we use is the same as proposed in [22]. To estimate VQ[kN + t],

for t = 1, 2, . . . , N − 1, we first transform the set {VQ[(k + l)N ]}0l=−K+1 to a

new set {Vk,l}0l=−K+1, correcting the orientation of all matrices such that they

are as close as possible to VQ[kN ] in Frobenius norm, and rotating all matrices

such that VQ[kN ] becomes the identity matrix. Note, that the identity matrix
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is arbitrary chosen as the reference.

VQ[kN ]→Vk,0 = I

VQ[(k − 1)N ]→Vk,−1 = VH
Q [kN ]VQ[(k − 1)N ]Θk,−1

...

VQ[(k −K + 1)N ]→Vk,−K+1 = VH
Q [kN ]VQ[(k −K + 1)N ]Θk,−K+1,

where Θk,l is the orientation matrix that minimizes the Frobenius norm between

VQ[(k + l)N ]Θk,l and VQ[kN ]. The solution is similar to (4.9) and is given by

[Θk,l]p,q =


[VH

Q [(k + l)N ]VQ[kN ]]p,p∣∣∣[VH
Q [(k + l)N ]VQ[kN ]]p,p

∣∣∣ , if p = q,

0, otherwise

. (4.12)

In a next step we transform the set of unitary matrices {Vk,l}0l=−K+1 to a set

of related skew-Hermitian matrices† {Sk,l}0l=−K+1, such that Vk,l = expm(Sk,l).

Then we try to fit a P th order polynomial through {Sk,l}0l=−K+1, i.e., we

solve

min
{Ck,p}

0∑
l=−K+1

‖Sk,l −
P∑
p=0

Ck,p((k + l)N)p‖2F . (4.13)

Hence, extrapolating {Sk,l}0l=−K+1 to time instant kN+t, for t = 1, 2, . . . , N−1,

we get
∑P
p=0 Ck,p(kN+t)p, and thus extrapolating {Vk,l}0l=−K+1 to time instant

kN + t, for t = 1, 2, . . . , N −1, we get expm(
∑P
p=0 Ck,p(kN + t)p). Note that this

extrapolated Sk,l is still skew-Hermitian, and thus the extrapolated Vk,l is still

unitary. Finally, correcting for the fact that all matrices {VQ[(k + l)N ]}0l=−K+1

were rotated such that VQ[kN ] becomes the identity matrix, an estimate for

VQ[kN + t] is obtained as

V̂Q[kN + t] = VQ[kN ]expm

(
P∑
p=0

Ck,p(kN + t)p

)
. (4.14)

†A square matrix A is called skew-hermitian if AH = −A [71, p. 100].
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4.5 Receiver Design

Note that the above precoder extrapolation was intended to reduce the amount

of feedback that would be required. However, it generally coincides with a re-

duction of the training overhead, since we can also exploit the coherence of the

channel in the time domain to reduce the amount of training required to esti-

mate the channel. We could for instance send some pilot symbols and estimate

the channel at regular time instants, after which we can extrapolate the channel

for future time instants. For simplicity, we assume that the feedback and training

frequencies are the same. Hence, we may assume that the channel is known at

the receiver every N time instants, i.e., H[kN ] is known for all k. We can then

extrapolate the channel at some time instant kN + t, for t = 1, 2, . . . , N − 1,

using the last K known channels {H[(k + l)N ]}0l=−K+1. In order to estimate

H[kN + t], for t = 1, 2, . . . , N − 1, we try to fit a P th order polynomial through

{H[(k + l)N ]}0l=−K+1, i.e., we solve

min
{Dk,p}

0∑
l=−K+1

‖H[(k + l)N ]−
P∑
p=0

Dk,p((k + l)N)p‖2F . (4.15)

The channel H[kN + t], for t = 1, 2, . . . , N − 1, is then estimated as

Ĥ[kN + t] =

P∑
p=0

Dk,p(kN + t)p. (4.16)

4.5.1 LMMSE Detector

If we want to adopt the LMMSE detector (4.3), we carry out the above channel

extrapolation approach and mimic the precoder extrapolation at the receiver, in

order to find an estimate of the LMMSE receiver at every time instant.

4.5.2 SVD Detector

If we want to adopt the SVD detector [72], we can actually choose between two

approaches. In the first approach, we carry out the above channel extrapolation

approach and compute the left singular vectors Û[t] for every channel estimate
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Ĥ[t] (note that for t = kN these estimates are assumed to be exact). We then

use [Û[t]]:,1:NS or [Û[t]Θopt[bt/NcN ]]:,1:NS as detector, for the conventional or

modified feedback approach, respectively. In the second approach, we compute

U[kN ] for all k at the receiver, and we carry out an extrapolation approach

that is similar to the one for the precoder. We extrapolate between the U[kN ]s

or the U[kN ]Θopt[kN ]s, for the conventional or modified feedback approach,

respectively, and use the first NS columns of those matrices as detectors. Note

that the latter approach is less complex than the first approach, because the

amount of SVDs that has to be computed is reduced by a factor of N .

4.6 Simulation Results

In this section, we study the performance of the proposed methods on a 2×2

MIMO system (NR = NT = 2). The system is modeled as in Section 4.2 with

a Doppler frequency of fd = 30 Hz. For simplicity, we assume the number of

spatial streams is fixed and equal to the number of spatial modes, i.e., NS =

min{NT , NR} = 2, and we assume that QPSK modulation is used on every

spatial stream. To illustrate the decoupling between the two spatial streams, we

will plot the symbol error rate (SER) of the two spatial streams separately. The

larger the distance between the two SER curves, the larger the decoupling. All

performances are computed based on 104 channel realizations.

First, we consider no extrapolation, and a feedback link that is instantaneous,

error-free, and limited to 8 bits per symbol period. Figs. 4.2 and 4.3 show the

performance of the LMMSE and SVD detector, respectively, assuming perfect

channel knowledge at the receiver. In both figures, we compare the conventional

precoder quantization approach of Section 4.3.1 with the modified precoder quan-

tization approach of Section 4.3.2. Also shown is the performance of channel

quantization, where the sign of the real and imaginary part of every channel tap

is fed back (optimal for the considered channel model). Clearly, precoder quanti-

zation realizes a larger decoupling between the spatial streams. In addition, the

modified precoder quantization approach outperforms the conventional one.

Next, we include extrapolation in our simulations. We assume a feedback and

training frequency of once every NT = 10−3 s. Hence, the channel is assumed
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Figure 4.2: LMMSE detector, 8 bit feedback every time instant, fd = 30 Hz.

perfectly known once every NT = 10−3 s, at which point 8 bits of information

are fed back to the transmitter. Note that we do not give specific values for

N and T , since the performance is only determined by their product NT and

its relationship to the Doppler frequency fd. We only consider the modified

precoder quantization approach of Section 4.3.2 and compare the extrapolated

LMMSE detector with the two extrapolation schemes for the SVD detector (see

Section 4.5 for more details). In all extrapolation schemes, we consider a memory

depth of K = 3 and a polynomial degree of P = 2. We see that the LMMSE

detector performs the best. In addition, the SVD detector based on channel

extrapolation performs worse than the SVD detector based on left singular vector

extrapolation. A possible explanation for this phenomena is that the polynomial

channel extrapolation is better suited to keep track of the simulated channel, i.e.,

the channel generated by Jakes’ Model, than geodesic extrapolation.
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Figure 4.3: MT = 2, MR = 2, SVD detector, 8 bit feedback every time instant,
fd = 30 Hz.
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4.7 Conclusions

As the previous chapter, this chapter evaluates the performance of spatial mul-

tiplexing with linear precoding, exploiting a low-rate feedback link. However,

in this chapter we considered as a performance metric the ability of the system

to link the different spatial streams as tight as possible to the different spatial

modes, leading to an increased gap between the SER curves of the different spa-

tial streams, and as a result, to an increased average performance if only a few

of the spatial streams are used. We have observed that quantizing and feeding

back the precoder outperforms quantized channel feedback. Furthermore, we

have proposed a modified precoder quantization approach that outperforms the

conventional one. Both the LMMSE and SVD detector are investigated, assum-

ing perfect channel knowledge at every time instant. The LMMSE detector is

shown to perform slightly better than the SVD detector. We have also discussed

precoder extrapolation, when the precoder is only fed back at a limited number of

time instants, as well as a related detector extrapolation scheme for the LMMSE

and SVD detector, when the channel is only known at some specific time instants.

Simulation results using these extrapolation ideas have revealed that the LMMSE

detector works better or slightly better than the SVD detector, depending on the

extrapolation method that has been chosen for the SVD detector.

These results would suggest to drop the SVD detector for the sake of the

LMMSE detector. Even though these results hold for the used system parameters,

a general conclusion is not possible using these results.
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Chapter 5

CSI Codebook Design

In this and the next part of the thesis we consider the multi-user broadcast

channel. Two channels are considered, the spatially correlated channel and the

temporally correlated channel.

In this specific chapter we address the design of codebooks to quantize the

CSI of spatially correlated broadcast channels. A design criterion that effectively

exploits the cell statistics is proposed, based on minimizing the average sum-rate

distortion in a system with joint linear beamforming and multiuser scheduling.

The proposed average distortion function is optimized by generating a set of

quantization codebooks through random trials, keeping the codebook that yields

the lowest distortion. Comparisons with limited feedback approaches relying on

random codebooks are provided, highlighting the importance of matching the

codebook design to the cell statistics. Numerical results show a performance

gain in scenarios with non-uniform user distributions. Further, we propose a

scheme that exploits the limited channel knowledge at the base station to reduce

the computational complexity of determining the beamforming vectors and of

finding the optimal user set.

The results in this chapter have been published in [28]. The contribution of the author
of this thesis was the codebook design for quantizing the channels generated by the model
proposed by the first author.
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5.1 Introduction

Multiple-input multiple-output (MIMO) systems can significantly increase the

spectral efficiency by exploiting the spatial degrees of freedom created by multiple

antennas [3]. In the MIMO broadcast channel, it has recently been proven [73]

that the sum capacity is achieved by dirty paper coding (DPC) [26]. However,

the applicability of DPC is limited due to its computational complexity and

the need for full channel state information (CSI) at the transmitter. As a low

complexity alternative, downlink techniques based on Space-Division Multiple

Access (SDMA) have been proposed that achieve the same asymptotic sum rate

as that of DPC, e.g., zero-forcing beamforming [74]. On the other hand, while

having full CSI at the receiver can be assumed, this assumption is not reasonable

at the transmitter side. Several limited feedback approaches have been considered

in point-to-point systems [42, 47], where each user sends to the transmitter the

index of a quantized version of its channel vector from a codebook. An extension

for MIMO broadcast channels is made in [75], in which each mobile feeds back

a finite number of bits regarding its channel realization at the beginning of each

block based on a codebook.

Codebook designs for MIMO broadcast channels with limited feedback follow

in general simple design criteria, with the purpose of simplifying codebook gen-

eration and system analysis. Opportunistic SDMA (OSDMA) has been proposed

in [76] as an SDMA extension of opportunistic beamforming [31], in which feed-

back from the users to the base station is conveyed in the form of a beamforming

vector index and an individual signal-to-interference-plus-noise ratio (SINR). An

extension of OSDMA is proposed in [77], coined as OSDMA with limited feed-

back (OSDMA-LF), in which the transmitter counts on a codebook containing an

arbitrary number of unitary bases. In this approach, the users quantize the chan-

nel direction (channel shape) to the closest codeword in the codebook, feeding

back the quantization index and the expected SINR. Multiuser scheduling is per-

formed based on the available feedback, using as beamforming matrix the unitary

basis in the codebook that maximizes the system sum rate. Other schemes for

MIMO broadcast channels propose to use simple Random Vector Quantization

(RVQ) [78] for quantizing the user vector channels, such as the approach de-
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scribed in [75]. A simple geometrical framework for codebook design is proposed

in [47], which divides the unit sphere in quantization cells with equal surface area.

This framework is used for channel direction quantization in [79], where feedback

to the base station consists of a quantization index along with a channel quality

indicator for user selection. These codebook designs do not take into account ei-

ther spatial correlations or user distributions present in the system, which could

yield better quantization codebooks and in turn better sum-rate performance.

The gains of adaptive cell sectorization have been studied in [80] in the context

of code division multiple access (CDMA) networks and single antenna commu-

nications, with the aim of minimizing the total transmit power in the uplink

of a system with non-uniform user distribution over the cell. This situation is

analogous to a system with multiple transmit antennas in which beamforming is

performed, adapting its beams to uneven user distributions. In a scenario with

limited feedback available, adaptation of quantization codebooks can be per-

formed instead in order to improve the system performance. In [81], an approach

for exploiting long term channel state information in the downlink of multiuser

MIMO systems is proposed. A flat-fading multipath channel model is assumed,

with no line of sight (NLOS) between the base station and user terminals. Each

user can be reached through a finite number of multipath components with a

certain mean angle of departure (AoD) from the antenna broadside and angle

spread. The mean angles of departure are fixed and thus no user mobility is

considered.

In this chapter, we highlight the importance of cell statistics for codebook de-

sign in MIMO broadcast channels with limited feedback. The average sum rate

distortion in a system with joint linear beamforming and multiuser scheduling is

minimized, exploiting the information on the macroscopic nature of the underly-

ing channel. A non-geometrical stochastic channel model is considered, in which

each user can be reached in different spatial directions and with different angle

spread. Based on this model, comparisons with limited feedback approaches re-

lying on random codebooks are provided in order to illustrate the importance of

matching the codebook design to the cell statistics. As shown through numerical

simulations, the proposed approach provides considerable performance gains in

scenarios with non-uniform user distributions.
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5.2 System Description

We consider a broadcast channel consisting of NT antennas at the base station

and NU single-antenna users in a single cell scenario. Let S denote an arbitrary

set of users with cardinality |S| = NT . Given the user set S scheduled for

transmission, the signal received at the k-th user terminal is given by

yk = hk
√
Ekwksk +

∑
i∈S,i6=k

hk
√
Eiwisi + nk (5.1)

where hk ∈ C1×NT , wk ∈ CNT×1, sk and nk are the channel vector, the beam-

forming vector, the transmitted signal, and the additive white Gaussian noise at

receiver k, respectively. Ek is the energy associated to user k. The first term in

the above equation is the useful signal, while the second term corresponds to the

interference by the other users. We assume that the variance of the transmitted

signal sk is normalized to one and nk is independent and identically distributed

(i.i.d.) circularly symmetric complex Gaussian with zero mean and variance N0.

The channel is assumed to be perfectly known at the user side. The CSI is

transmitted to the base station over a feedback link that is limited to B bits per

transmission. Hence, the CSI has to be quantized before it is fed back using a

codebook C with N entries. We assume throughout the chapter that N = 2B .

Thus, it is possible to feed back every element of the codebook, and the data rate

on the feedback link is fully exploited. Strategies that exploit the time correlation

of the channel to use larger codebooks with N > 2B are presented in [19,55].

The user channels are mapped to the closest codeword in C, as described by

ĥk = arg min
c∈C

‖hk − c‖2 . (5.2)

Note, that this function also takes the norm of the channel into account unlike

the quantization functions used for pure channel direction quantization.

5.2.1 Linear Beamforming

At the base station the beamforming vectors are computed on the basis of the

matrix Ĥ, whose rows are the quantized user channels ĥk, k ∈ S. Different linear
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beamforming techniques may be considered. Commonly applied low-complexity

linear beamforming techniques are transmit matched filtering (TxMF) and zero-

forcing (ZF) beamforming [74]. Transmit matched filtering uses the normalized

columns of Ĥ as beamforming vectors. Zero-forcing beamforming uses the nor-

malized columns of the pseudo-inverse of Ĥ.

5.2.2 User Selection

We consider optimal scheduling throughout the chapter, i.e., we do not consider

fairness issues between the users. Let Q be the set of all possible user subsets of

cardinality NT with disjoint indices in {1, . . . , NU}. The set of users scheduled

for transmission at each time slot corresponds to the one that maximizes the

estimated sum rate over all possible user sets

Ŝ∗ = arg max
S∈Q

∑
k∈S

log2(1 + ˆSINRk). (5.3)

Since the base station has no access to perfect channel state information, the

following SINR estimate is computed for the user set S and k-th user

ˆSINRk =
Ek|ĥkwk|2∑

i∈S,i6=k Ei|ĥkwi|2 +N0

(5.4)

where wk denotes the beamforming vector for user k.

5.3 Channel Model

In this section we present the model considered both for the user vector channels

and the cell statistics. A non-geometrical stochastic channel is assumed, in which

the channel physical parameters are described by probability density functions

assuming an underlying geometry. The channel model we propose to use is mainly

based on the work in [82], extended to multiuser scenarios. We consider an

outdoor environment with NLOS between transmitter and receivers, in which

local scatterers, that are randomly distributed around each mobile user, produce

a clustering effect. The multipath components (MPC) arrive in clusters in both
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space and time. For the sake of simplicity, we consider flat fading and hence all

paths are assumed to arrive at zero delay. Furthermore, we assume that each

user sees MPCs incoming from surrounding scatterers that are grouped into one

cluster.

Each user is reached with a different mean angle of departure (AoD) θk. The

AoDs associated to the multipath components are distributed around the mean

according to a certain power angular spectrum (PAS), which depends on the

spatial distribution of scatterers. In practice, we only consider the azimuth di-

rections (angle of propagation with respect to the antenna array broadside) since

the elevation angle spread is generally small compared to the azimuthal angle.

Different probability density functions (PDF) are considered in the literature,

such as Gaussian, uniform or Laplacian [83].

5.3.1 User Vector Channels

The signals from the base station arrive at each user terminal through a finite

number of L paths, which have different AoDs with respect to the antenna array

broadside but arrive at the receiver with the same delay. The AoD for the k-th

user and l-th path can be expressed as θkl = θk + ∆θkl, where θk is the mean

AoD for user k and ∆θkl is the angle offset for the l-th multipath component.

The multipath components have complex Gaussian distributed gains γkl with

zero mean and unit variance. The channel of user k is given by

hk =
1√
L

L∑
l=1

γkla(θkl) (5.5)

where a(θkl) are the steering vectors. An omnidirectional uniform linear array

(ULA) is considered although the proposed technique can benefit from any array

configuration. The steering vectors a(θkl) of a ULA are given by

a(θkl) =
[
1, e−j2π

d sin θkl
λ , . . . , e−j2π

(M−1)d sin θkl
λ

]
(5.6)

where λ is the wavelength, and d is the antenna spacing at the base station.

As shown by the measurements presented in [84] the distribution of the angles
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around the mean AoD can be assumed to have a double-sided Laplacian PDF,

given by

f(∆θkl) =
1√
2σθ

exp(−|
√

2∆θkl/σθ|) (5.7)

where σθ is the angular standard deviation, σθ =
√
E[|∆θkl|2].

5.3.2 Spatial Cell Statistics

Most papers based on the above mentioned stochastic models assume that mean

AoDs are uniformly distributed over all directions. In indoor scenarios, the rela-

tive cluster AoD is indeed uniformly distributed over [0, 2π], as it has been seen

from channel measurements [85], since the location of cluster centers is uniformly

distributed over the cell. However, as noted in [85], this is not realistic in out-

door scenarios where the base station is elevated and the mobile stations are

often surrounded by local scatterers. In these cases, the mean AoD is very de-

pendent on the macroscopic characteristics of each particular scenario: topology,

user distribution, mobility pattern, distribution of scatterers, etc. Hence, the

mean AoDs for all users, θk, do not need to be uniformly distributed over the

interval [0, 2π]. In our model, they are considered to be uniformly distributed

over an arbitrary range of angles
⋃
i[θmini , θmaxi ]. A graphical representation of

the broadcast channel model is depicted in Fig. 5.1.

5.4 Codebook Design

We present in this section the design of the user channel codebook. Compared to

existing design approaches [42] we rely on a pure Monte Carlo based approach.

This approach allows a wider range of distortion functions than the commonly

used generalized Lloyd algorithm, and it also allows to exploit the cell statistics.

As discussed in [86], most techniques relying on limited channel state informa-

tion consider separate feedback bits (and thus separate quantization) for channel

direction information (CDI) and channel quality information (CQI). Since the

amount of feedback is limited, a tradeoff arises between the amount of bits used
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Figure 5.1: Broadcast channel model with user terminals (UT) surrounded by
local scatterers grouped in clusters, located in different mean angles of departure
(AoDs) with respect to uniform linear array (ULA) broadside.
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for CDI quantization, which has an impact on the multiplexing gain, and the

amount of bits used for CQI quantization, which has an impact on the multiuser

diversity gain achieved from user selection. In this work, we consider joint quan-

tization of CDI and CQI information. Channel quantization is done directly over

the user vector channels rather than quantizing the norm and channel direction

separately, thus providing better granularity. Hence, since the proposed channel

quantization is adapted to the cell statistics, including the average SNR condi-

tions and number of active users, the tradeoff between multiplexing gain and

multiuser diversity is implicitly optimized.

The proposed approach consists of designing a channel quantization codebook

valid for all users in the cell by minimizing the average sum-rate distortion of the

scheduled users. Since scheduling and beamforming are performed jointly at each

time slot, the distortion measure needs to account for both jointly. Hence, differ-

ent linear beamforming techniques will result in different optimized codebooks.

This criterion yields quantization codebooks that are statistically matched to

the users that maximize the estimated sum rate, which are selected as described

in (5.3). The quantization codebook is optimized during an initial training pe-

riod, after which the codebook is fixed and broadcast to the users.

5.4.1 Design Criterion

The codebook of N codewords, is found by solving the optimization problem

C∗ = arg min
C

E[d(H, Ĥ)] (5.8)

where d(H, Ĥ) is the distortion measure between the set containing the unquan-

tized user channels H = {h1, . . . ,hNU } and the set containing the quantized user

channels Ĥ = {ĥ1, . . . , ĥNU }.

The distortion measure used throughout the chapter is the sum-rate loss due

to the channel quantization. The resulting codebook depends on the number

of scheduled users NT for transmission, the number of active users NU in the

cell, the used beamforming technique, and the channel statistics. The distortion
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measure can be described as

d(H, Ĥ) = SR(H)− SR(Ĥ). (5.9)

The first term in the equation above corresponds to the maximum sum rate

that can be achieved with the chosen linear beamforming technique and perfect

channel state information, given by

SR(H) = max
S∈Q

∑
k∈S

log2(1 + SINRk). (5.10)

The beamforming vectors and the user set obtained in the case of perfect channel

state information are in general different from the ones obtained on the basis of

quantized channel information for a given time slot. The second term in (5.9)

corresponds to the actual sum rate achieved by the system. The beamforming

vectors are computed on the basis of the quantized channels and the users sched-

uled for transmission are selected as described in (5.3). Hence, the achieved sum

rate is given by

SR(Ĥ) =
∑
k∈Ŝ∗

log2(1 + SINRk). (5.11)

Note that, as opposed to the estimated SINR values employed for user selection,

the above equation computes the effective SINR experienced by each of the users

in the scheduled set Ŝ∗.

5.4.2 Codebook Design

We are using a Monte Carlo based codebook design algorithm to generate the

channel quantization codebooks. The ability of this algorithm to work with

arbitrary distortion functions makes it a prime candidate to solve (5.8).

The Monte Carlo codebook design algorithm generates random codebooks

having the same distribution as the channel. For every one of these random

codebooks the average distortion is estimated by averaging over a large number

of channel realizations. Finally, the codebook with the lowest average distortion

is kept. This codebook minimizes the long term sample average distortion, and
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thus, provides a good solution to (5.8).

An alternative procedure consists of using the generalized Lloyd algorithm [35]

to iteratively find the optimizing codebook and partition cells. However, the

Monte Carlo codebook design avoids convergence to local minima exhibited by

Lloyd’s algorithm, and thus provides a better performance if the number of tried

codebooks is sufficiently high. A codebook design that is more similar to the

Monte Carlo based codebook design is random coding [17]. However, random

coding just uses N random channel realizations as codebook, and does not allow

to optimize an arbitrary distortion function.

5.4.3 Practical Considerations

The proposed technique for codebook design is expected to perform better in

scenarios with strong spatial correlations. Different linear beamforming tech-

niques will yield different performances, since quantization errors affect them

differently. For instance, while TxMF and ZF beamforming exhibit similar be-

havior for a given error variance, optimized unitary beamforming proves to be

very robust [87].

Since the statistics of the best NT users govern the design, the quantization

codebooks may favor certain spatial locations or directions that provide good

sum rates, favoring the users in those particular locations. In a system with low

mobility and slow variations, this situation may lead to a fairness issue. This

behavior may be accentuated when incorporating shadowing and pathloss to the

channel model. This effect can be attenuated by performing proportional fair

scheduling (PFS), which would yield an average distortion function based on a

weighted sum rate, penalizing the users that have already been scheduled.

Instead of simply generating the quantization codebooks during a training

period, the base station may slowly adapt the codebook to changes in the en-

vironment: changes in traffic and mobility patterns, changes of scatterers, etc.

Each time a user enters the system or in case there is a codebook update, the base

station would send the updated codebook to the users, which in general changes

from cell to cell. In addition, similarly to the work presented in Chapter 3 for

single-user MIMO communications, the amount of feedback can be reduced by

exploiting temporal correlations in the system.
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5.5 Low-Complexity Beamforming and Schedul-

ing

The limited channel knowledge at the transmitter side deteriorates the achievable

performance of the system, but can also be exploited to reduce the computational

load for beamforming and scheduling. The quantization of the user channels

creates equivalence classes between the users. The users whose channels are

quantized to the same entry in the codebook are members of the same equivalence

class. Thus, the base station only knows which class a user belongs to, but it

cannot distinguish between the users in the same class. It is thus sufficient to

do the beamforming and the scheduling only based on the representative of the

class, i.e., the codeword, instead of based on all the users in the class. We

denote a set that consists of NT representatives of different classes as a class

set. The number of class sets to be considered for beamforming and scheduling

NCS = NNT is smaller than the number of user sets NUS =
(
NU
NT

)
for practical

system parameters with N � NU . Once the optimal class set is determined, a

corresponding user set can be selected by choosing for every class in the class set

a corresponding user. The user inside a specific class can be selected randomly

or using a fairness constraint.

The complexity of determining the beamforming vectors and the class sets

can be further reduced using a lookup table that stores for all the class sets the

corresponding sum rate estimates and the beamforming vectors. We assume that

this lookup table is sorted based on the estimated sum rate of the class sets,

where the first entry contains the class set with the highest estimated sum rate.

After the base station received the feedback from all the users, it checks if it

has a matching user for every entry in the first class set. If not, then the base

station does the same check for the following class sets in the lookup table until

it finds a class set that has for every class in the class set an active user. The

advantage of using precalculated beamforming vectors stored in a look-up table

is that computational more complex beamforming schemes can be used, e.g.,

Dirty Paper Coding. Note that TxMF is a special case since there the different

beamforming vectors are independent of the other users that are scheduled for

transmission. Hence, the storage of only N beamforming vectors is sufficient.
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The storage requirements for the lookup table can be reduced by storing only

the most probable class sets. The probability that the first class set is selected

increases with the number of users in the cell. For the event that no class set in the

lookup table is selected, a user set can still be calculated using a low-complexity

scheme, e.g., TxMF beamforming.

5.6 Simulation Results

We compare the performance of linear beamforming with quantized CSI feedback

to OSDMA-LF. The used linear beamforming strategies are ZF and TxMF. We

assume a 2-GHz system with an antenna spacing at the base station of d =

0.4λ ≈ 15 cm. Each user channel is modelled with L = 10 multipath components.

The mean AoD of the different users is uniformly distributed over the interval

[60◦, 120◦], and the angular spread is fixed to σθ = 30◦. We assume single-antenna

users and a base station with NT = 2 antennas. The data rate on the feedback

link is limited to 3 bits/transmission. In order to make a fair comparison between

the schemes, the SINR feedback of the OSDMA-LF algorithm is also quantized.

Thus, the OSDMA-LF algorithm has to share the available 3 bits between the

CDI, i.e., the index of the preferred beamforming vector, and the CQI, i.e., the

SINR of the preferred beamforming vector. We simulate the performance of all

possible CDI/CQI bit allocations, and finally select the allocation that results in

the highest sum rate. The codebook to quantize the scalar CQI is designed with

the generalized Lloyd algorithm [17], using the mean square error as distortion

function. The performance of the different random codebooks, i.e., their resulting

average sum rate, is estimated through averaging over the instantaneous sum rate

of 10 000 channel realizations.

Fig. 5.2 depicts the performance for different numbers of users with a fixed

SNR of 10 dB. We see that ZF and TxMF with quantized CSI outperform

OSDMA-LF with quantized SINR feedback. The same result can be seen in

Fig. 5.3 for different SNR values and NU = 10 users. We see how the sum rate

of the different schemes saturates at high SNR, where the performance is limited

by the quantization error.
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Figure 5.2: Sum rate for the correlated channel model for different numbers of
users. (NT = 2, SNR=10 dB)
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Figure 5.3: Sum rate for the correlated channel model for different SNR’s. (NT =
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5.7 Conclusions

The problem of designing channel quantization codebooks for correlated broad-

cast channels with limited feedback has been addressed for systems where joint

linear beamforming and multiuser scheduling is performed. The numerical results

provided have shown the benefits of using quantization codebooks optimized ac-

cording to the cell statistics. The generated codebooks perform well in scenarios

with reduced angular spread and effective range of mean angles of departure.

This makes the proposed approach particularly interesting in outdoor systems

with spatial correlation and nonuniform user distribution.
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Chapter 6

Predictive Vector

Quantization∗

In this chapter we apply Predictive Vector Quantization (PVQ) to quantize the

channel state information of time-correlated broadcast channels. PVQ exploits

the time-correlation of the channel to reduce the quantization error, and thus to

improve the sum rate of the system. PVQ predicts the actual channel based on a

number of previous channels, and then quantizes the difference between the pre-

diction and the true channel. We further show how the corresponding codebooks

can be designed, and we present a prediction strategy. The performance of PVQ

for a broadcast system is depicted through numerical simulations.

6.1 Introduction

Space division multiple access (SDMA) has emerged in the last years as an attrac-

tive transmission scheme for multiple-input multiple-output (MIMO) broadcast

channels [3, 7]. It has been shown to outperform time division multiple access

(TDMA) [88]. The optimal SDMA scheme for the Gaussian MIMO broadcast

channel is dirty-paper coding (DPC) [25, 26], i.e., the rate region of DPC cor-

∗The results in this chapter have been published in [29].
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responds to the capacity region of the channel. Unfortunately, DPC has a high

computational complexity, and is thus difficult to implement. However, zero-

forcing (ZF) beamforming has been lately shown [74] to reach asymptotically the

same performance as DPC for a high number of users. Most existing SDMA

schemes assume channel knowledge at the transmitter side. However, in general,

channel state information (CSI) knowledge is only available at the receiver side,

and must be fed back to the transmitter. The feedback link is generally assumed

to be bandwidth limited, meaning that only a limited number of bits can be fed

back to the transmitter. The CSI must thus be quantized before it can be fed

back to the transmitter.

A low-complexity SDMA scheme that works with limited feedback is oppor-

tunistic SDMA (OSDMA) [76]. OSDMA is an extension of opportunistic beam-

forming [31] to multiple users. It uses a random set of orthonormal beamforming

vectors at the base station with M antennas to simultaneously transmit indepen-

dent data streams to the M users with the highest signal-to-noise ratio (SINR).

Several extensions of OSDMA have been proposed lately [77, 89] to incorporate

larger sets of beamforming vectors, and thus, to improve the performance for sce-

narios with a lower number of users. Even though the OSDMA algorithms have

a good performance for i.i.d. channels, there exists, to the best of the authors’

knowledge, no extension of these algorithms to exploit time-correlated channels.

In this chapter we present a scheme that uses Predictive Vector Quantization

(PVQ) [90] to exploit the correlation between successive channel realizations in

order to improve the quantization, and thus to improve the sum rate of the

system. Further, our scheme does not make any assumptions on the scheduling

function and on the transmission strategy, which allows for a high flexibility.

Notation: We use capital boldface letters to denote matrices, and small bold-

face letters to denote vectors. E(·) denotes expectation, |A| the cardinality of a

set A, and ‖a‖ the l2-norm of a vector a. Im denotes the m×m identity matrix,

and ⊗ represents the Kronecker product.
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6.2 System Model

We assume the MISO broadcast channel as specified in Section 1.1.2, i.e., the

downlink of a flat-fading multiuser system where the base station is equipped

with NT antennas, serving NU single-antenna users. Given a set S of NT users

scheduled for transmission, the corresponding data model using linear beamform-

ing at time instant t is

yk[t] =
∑
i∈S

hk[t]
√
Eiwi[t]si[t] + nk[t] (6.1)

where yk ∈ C is the received symbol of user k, hk ∈ C1×M the channel vector of

user k, Ei is the transmit energy assigned to user i, wi ∈ CM×1 the beamforming

vector for user i, and si the data symbol transmitted to user i. The noise nk ∈ C
is i.i.d., and zero mean circularly symmetric complex Gaussian distributed with

variance N0.

Although the proposed methods work for more general channel models, we

assume for simplicity that the different channel vectors are i.i.d., and that the

channel correlation is separable in space and time:

Rm = E(hHk [t]hk[t−m]) = Rρm (6.2)

where R is the space-correlation matrix, and ρm is the time-correlation function.

In this chapter, we will mainly concentrate on the time-correlation. Exploitation

of the space-correlation for limited feedback in broadcast channels was studied

in Chapter 5.

The data is transmitted in a block-wise fashion. We assume a data-rate

limited feedback link that can feed back B bits at the beginning of each block.

Further, the feedback is assumed to be instantaneous and error-free.

We assume that the receivers have achieved perfect CSI through the use of

training, i.e., symbols both known to the transmitter and the receiver are trans-

mitted over the channel and based on the received symbols the channel is esti-

mated. Note that acquiring perfect CSI at the receiver is not possible for practical

system, but we assume perfect CSI in order to keep the problem managable. The

users then quantize the CSI to an element of a codebook C, and feed back the
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corresponding index to the base station. The base station then decides, based

on the received feedback, which set of users to serve, and their corresponding

beamforming vector.

The performance of the vector quantization (VQ) step can be improved by

taking the time correlation of the channel into account. Vector quantizers with

memory allow to quantize the actual channel more efficiently, i.e., the quanti-

zation error of VQ with memory is smaller than the quantization error of VQ

without memory for the same amount of feedback. Even though there exists a

large number of VQs with memory [17], we focus in this chapter solely on pre-

dictive VQ (PVQ) since its simplicity makes it a good candidate for practical

systems. It allows to exploit the correlation of the channel by considering a vari-

able number of previous channels, without an exponential increase of the storage

requirements for the codebooks as is the case for finite-state vector quantizers.

6.2.1 Linear Beamforming

The most common linear beamforming schemes are transmit matched filtering

and zero-forcing (ZF) beamforming [7]. Transmit matched filtering uses the nor-

malized channel vector as beamforming vector. A scheme with a better per-

formance is ZF beamforming. It provides a good tradeoff between the high-

complexity schemes with good performance, e.g., DPC, and schemes like matched

filtering.

The different ZF beamforming vectors are calculated based on the concate-

nated matrix Ĥ. The rows of Ĥ consist of all the quantized channels ĥi of the

users from the set S. The ZF beamforming vectors are then the normalized

columns of the pseudo-inverse of Ĥ.

6.2.2 User Selection

The optimal set of active users scheduled for transmission, denoted as S∗, is

selected to maximize the sum rate of the active users by an extensive search over
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all possible combinations of users

S∗ = arg max
S

∑
k∈S

log2(1 + SINRk) (6.3)

where the signal-to-interference-and-noise ratio (SINR) is calculated as

SINRk =
Ek|ĥkwk|2∑

i∈S,i6=k Ei|ĥkwi|2 +N0

(6.4)

and ĥk is the quantized CSI known to the transmitter. Note that this exhaustive

search is computational very expensive if a large number of users is in the cell.

However, the focus of this chapter is CSI quantization, and thus, we use optimal

scheduling.

6.3 Predictive Vector Quantization

This section gives an overview of PVQ and its application to channel quantization

of broadcast channels. For simplicity reasons, we omit the user index here.

PVQ starts by estimating the actual channel h[t] based on the m previously

quantized channels ĥ[t − i], i = 1 . . .m , at both the base station and the users,

resulting in

h̃[t] = P (ĥ[t− 1], ĥ[t− 2], . . . , ĥ[t−m]) (6.5)

where P (·) denotes the prediction function. Note that the channel estimate is

used in the next steps both by the base station and the users. Is is thus essential

that the prediction can be done by the base station and the users. The users, who

have full CSI knowledge, then calculate the true error e[t] between the estimated

channel h̃[t] and the true channel h[t]:

e[t] = h[t]− h̃[t] (6.6)

The error is quantized by finding the entry in the quantization codebook C with
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the smallest Euclidean distance to the true error

eQ[t] = arg min
c∈C

‖e[t]− c‖2. (6.7)

The quantized error eQ[t] is fed back to the base station, and the quantized

channel at time instant t is then computed as

ĥ[t] = h̃[t] + eQ[t]. (6.8)

The challenge of PVQ is to design the codebook and the prediction function.

6.3.1 Codebook Design

A popular approach to design a codebook for PVQ is the open-loop approach [17].

It does not have an iterative nature, and it relies on the assumption that the

quantized channels are a good approximation of the real channels. The codebook

design assumes that the prediction function is known, and it uses regular VQ

without memory on a training set T , where the different elements of the training

set T are the ideal prediction errors calculated as

eideal[t] = h[t]− P (h[t− 1],h[t− 2], . . . ,h[t−m]). (6.9)

The application of a memoryless VQ is possible since the prediction step in (6.9)

removes, in the ideal case, the time correlation between the channels at different

time instants.

Note that the ideal prediction error eideal[t] differs from the true error e[t] in

(6.6). The true error is calculated as a function of the previously quantized chan-

nels, and thus depends on the quantization codebook. Using the ideal prediction

error to design the codebooks removes this dependence, hence the name open-

loop approach. Iterative designs, i.e., closed-loop approaches [90], only provide a

minor gain.

The most common algorithm to design codebooks is the generalized Lloyd

algorithm (GLA) [35]. It is a descent algorithm [17], i.e., it reduces the average

distortion of the codebook with every iteration. However, the GLA is not guaran-
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teed to find the global optimal codebook for non-convex distortion functions [40],

since it may get trapped in a local minimum.

A more robust approach to find good codebooks is a Monte-Carlo based code-

book design. This approach generates random codebooks, estimates their perfor-

mance through Monte-Carlo simulations, and finally keeps the codebook with the

best performance. Even though this approach works well for small codebooks, it

becomes computationally expensive for larger codebooks.

The optimal design aims at finding a codebook that maximizes the overal sum

rate of the system. However, this design objective is computationally complex,

and it depends on all the components of the system, e.g., the number of users,

the selected beamforming strategy, the selection function.

To reduce the computational complexity, we focus instead on codebooks which

minimize the average Euclidean distance between the ideal prediction error, and

the quantized prediction error

C∗ = arg min
C

E(‖eideal[t]− eideal,Q[t]‖2) (6.10)

with

eideal,Q[t] = arg min
c∈C

‖eideal[t]− c‖2. (6.11)

6.3.2 Prediction Function

The other crucial part in designing the PVQ is the prediction function. A common

technique for PVQ [17] is vector linear prediction [91].

Based on the previous m known channel vectors we want to predict the actual

vector h[t] using coefficient matrices Aj :

h̃[t]H = −
m∑
j=1

Ajh[t− j]H (6.12)

The goal is to minimize the average mean square prediction error. Using the
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orthogonality principle, the coefficient matrices can be derived from

R0,j = −
m∑
µ=1

AµRµj j = 1, . . . ,m (6.13)

where Ri,j is the channel correlation matrix

Ri,j = E(h[t− i]Hh[t− j]). (6.14)

Stacking (6.13) in matrix form as


R1,1 R1,2 . . . R1,m

R2,1 R2,2 . . . R2,m

...
...

. . .
...

Rm,1 Rm,2 . . . Rm,m




AH
1

AH
2

...

AH
m

 = −


R1,0

R2,0

...

Rm,0

 (6.15)

the coefficient matrices Aj can now be found through simple matrix inversion. For

the channel model presented in Section 6.2, we have that Ri,j = Rj,−i = Rρj−i.

In that case, (6.15) becomes



ρ0 ρ−1 . . . ρ−m

ρ1 ρ0 . . . ρ−m+1

...
...

. . .
...

ρm ρm−1 . . . ρ0

⊗R




AH
1

AH
2

...

AH
m

 = −


ρ−1

ρ−2
...

ρ−m

⊗R. (6.16)

If R is assumed diagonal, it is clear that this equation can be solved for every

channel entry separately.

6.4 Simulations

We start by comparing the sum rate, which we want to maximize, for PVQ

with ZF beamforming, and of OSDMA-LF [77]. We assume a base station with

NT = 2 antennas, NU users with SNR = 10 dB, and a data rate limited feedback

link (B = 3 bits). The channel is modeled through (6.2) with R = IM and
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Figure 6.1: The sum rate for different number of users. (NT = 2, and SNR =
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ρm = J0(2πfDTfm) where J0 is the Bessel function of zeroth-order, fD the

Doppler spread, and Tf the frame length (Jakes’ model [66]). Thus, we simply

have to simulate different products fDTf . The algorithm predicts the actual

channel based on the last m = 3 channels using polynomial extrapolation of

order p = m− 1. The initial channels are assumed to be known perfectly, which

can be approximated by starting the algorithm with a high-resolution memoryless

VQ. In order to make a fair comparison to OSDMA-LF possible, we enforce the

feedback limitation, i.e., no scalar SINR feedback is allowed. Thus, we also have

to quantize the SINR feedback of the OSDMA-LF scheme. The SINR codebook

is generated with the GLA using the mean squared error as distortion function.

We simulate all the possible bit-distributions between SINR quantization and

beamforming indexing, and finally choose the distribution which results in the

highest SINR [86]. We see in Fig. 6.1 how the performance of PVQ with ZF

improves for higher fDTf values, i.e., for scenarios with a higher time correlation

between the channels. For fDTf = 0, 03 the resulting SINR curve for PVQ with

ZF and quantized feedback is similar to the performance of ZF with perfect CSI.

Simulations depicting the performance of CSI quantization for spatially correlated

channels can be found in Chapter 5.

Fig. 6.2 shows the influence of the initial quantization of the first m channels

on the average sum rate. The plot compares the scenario where perfect CSI of the

first m channels is available to scenarios where the first m channels have been

quantized. We see how the sum rate increases after the first frame for larger

codebooks. However, the importance of the quantization of the first m channels

degrades over time, and all the schemes would converge to the same sum rate

after a while.

6.5 Conclusions

We depicted through numerical simulations the benefits of using PVQ for time-

correlated channels. PVQ uses a simple prediction step to remove the correlation

between the channel to be quantized and the previous channels. This allows us

to improve the performance of the quantization step.

We have seen in Chapter 5 and now in Chapter 6 that it is beneficial to
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adapt the feedback mechanism to an existing temporal or spatial correlation of

the broadcast channel. However, this requires that the nature of the correlation

is known and that it is possible to train the feedback mechanism accordingly. A

possible extension would be to investigate schemes that adapt at runtime to the

channel statistics, i.e., similar to the ideas investigated in Section 3.4.

104



Part III

Scheduling in Multi-User

MISO Channels
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Chapter 7

Low-Delay Scheduling with

Grassmannian

Beamforming∗

In the following part we are mainly concerned about scheduling the users. We

propose in this chapter an algorithm to schedule the users of a broadcast channel

in a near round-robin fashion, i.e., in every block every user is scheduled once.

In the next chapter we then present an algorithm to realize true round robin

scheduling, i.e., every user is scheduled at the same position in the block as long

as possible.

We are presenting an algorithm for scheduling users in a single-cell broadcast

scenario. The presented algorithm aims to minimize the number of transmissions

that are necessary to serve all the users in the cell a single time, while the different

users still fulfill a strict SINR constraint. Depending on the individual channel

characteristics, the presented algorithm adapts the number of users scheduled

for transmission on the fly, and dynamically allocates the transmit power to

the scheduled users. A high-performance and a low-complexity variant of the

algorithm are presented and their performance is evaluated through simulations.

∗The results in this chapter have been published in [32].
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7.1 Introduction

An important scenario in modern communications is the wireless broadcast chan-

nel. It covers the transmission from a single base station to multiple users. Trans-

mission schemes for broadcast channels are generally designed to maximize the

data rate from the base station to the users. The multiuser diversity in a broad-

cast channel allows high data-rates by simultaneously transmitting to a set of

users, i.e., spatial division multiple access (SDMA) [3].

A popular low-complexity joint-beamforming-and-scheduling algorithm is op-

portunistic SDMA (OSDMA) [76]. OSDMA uses a random set of orthogonal

beamforming vectors. The users calculate the individual signal-to-interference-

plus-noise ratios (SINR) for the beamforming vectors and feed back the SINR

and the index of the beamforming vector with the highest SINR. OSDMA is

optimal for scenarios with a large number of users in the cell, i.e., the sum rate

of OSDMA scales like the sum rate of dirty-paper-coding as a function of the

number of users and the number of transmit antennas [76]. The OSDMA algo-

rithm was extended to the use of multiple sets of orthogonal beamforming vectors

in [77]. The transmission to a number of users that is higher than the number of

antennas at the base station was presented in [92]. There, Grassmannian code-

books [93] were used as beamforming vectors. An algorithm that switches from

time-division multiple access (TDMA) to SDMA based on statistical assumptions

has been proposed in [94] .

These systems focus mainly on opportunistic or proportional-fair scheduling.

This allows a high data-rate and achieves long-term fairness. However, improving

the data-rate is not the only problem in practical systems. More important is

that modern applications, e.g., audio and video communications systems, have

strict delay requirements. Further, communication systems have strict SINR

constraints, and improving the SINR over the minimum requirement does not

yield any benefits. Even though opportunistic scheduling of the users has received

much attention lately, scheduling schemes that minimize the maximal delay time,

i.e., the time until all the users in the cell have been scheduled for transmission

once, are not so well investigated, despite being of high practical relevance [95].

An exception is [96], where the problem of minimizing the frame duration by
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dynamically switching between SDMA and TDMA is adressed. The presented

algorithm, i.e., the Best Fit algorithm [96], explicitly aims to minimize the number

of transmissions needed by the users to address the base station once. Further,

all the scheduled users fulfill a strict SINR constraint.

We adapt the Best Fit scheduling algorithm for the broadcast channel with

Grassmannian beamforming and imperfect channel state information (CSI) at

the base station. The adapted algorithm further fulfills a strict transmit power

constraint imposed by the base station. We present two variants of the algorithm,

i.e., a high-performance variant and a low-complexity variant. The performance

of the two variants is demonstrated through simulations, and it is shown that the

adapted algorithm reduces the necessary transmission time while still guarantee-

ing the SINR constraint.

Notation: We use capital boldface letters to denote matrices, e.g., A, and

small boldface letters to denote vectors, e.g., a. The L2-norm of a vector a is

denoted as |a|. E(·) denotes expectation, and the set X contains |X | elements.

7.2 System Model

We assume a narrowband single-cell system. The base station has M antennas,

and there are K single-antenna users in the cell. The K users are indexed by

integers and the set that contains all the indices is denoted Uall = {1, . . . ,K}.
The system equation for the transmission from the base station to the user i

is [76]

yi = hix + ni ∀i ∈ Uall (7.1)

where yi ∈ C is the data received by user i, hi ∈ C1×M is the channel between

the base station and the user i, x ∈ CM×1 is the data transmitted over the M

antennas by the base station, and ni ∈ C is the noise experienced by user i. The

elements of the user channel are independent and identically distributed complex

Gaussian with zero mean and unit variance. The noise is also independent and

identically distributed complex Gaussian with zero mean, but with variance N0.

The channel is block-fading, i.e., it remains constant throughout a block of length
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L. The maximal transmit energy of the data vector x is limited to ET , i.e.,

E
{
xHx

}
≤ ET . All the users in the cell experience the same transmitted signal-

to-noise ratio (SNR) of ET
N0

.

We assume linear beamforming throughout the chapter. The base station

simultaneously transmits data to the users in a set T ⊆ Uall that contains |T |
different users. The data symbol si, that is transmitted to user i, is picked from

a PSK constellation with average unit-energy, e.g., QPSK. The different data

symbols for the users in T are multiplied by a unit-norm beamforming vector

wi ∈ CM×1 before transmission. The beamforming vectors are restricted to the

elements of a codebook W with P elements which is known to the base station

and all the users. We denote the mapping between each user and the index of its

associated beamformer as g : Uall → {1, . . . , P}. Thus the transmitted symbol

vector is

x =
∑
i∈T

√
Eiwg(i)si (7.2)

where Ei is a power normalization factor. Due to the overall transmit power

restriction the individual powers have to fulfill the constraint∑
i∈T

Ei ≤ ET . (7.3)

We assume perfect channel knowledge at the user side. Assuming a closed-

loop scenario, there exists a feedback link between the users and the base station.

The feedback link is only used for improving the downstream transmission, i.e.,

the transmission from the base station to the users. The link itself is assumed to

be error-free and instantaneous.

7.3 Modified Grassmannian Beamforming

One of the differences between our approach and opportunistic schemes such as

Grassmannian beamforming is that a user i does not feed back the resulting SINR

of the strongest beam and the corresponding index, but the composite channel

energy ρi,p = |hiwp|2 for all the beamforming vectors p = 1, . . . , P . The values
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of the composite channel energy for all the beamforming vectors are necessary in

the scheduling step to evaluate the interference produced by the other scheduled

users, as explained in Section 7.5.

7.3.1 Beamformer Codebooks

The beamforming vectors are selected from a Grassmannian codebook W =

{w1, . . . ,wP }. [93].

The unit-norm entries in the codebook are representing 1-dimensional sub-

spaces in CM , i.e., points in the complex Grassmannian space G(M, 1) [97]. The

codebook is designed to maximize the smallest chordal distance between two

unit-norm entries in the codebook

W = arg max
{w1,...,wP }

|wp|=1, p=1...P

min
1≤k<l≤P

√
1− |wH

k wl|2. (7.4)

We design the codebook through a Monte-Carlo codebook design [17].

7.3.2 Training

The algorithm starts by estimating the individual user channels through training.

Once every user has perfect CSI, he can calculate the matching ρ’s for all the

beamforming vectors, i.e., user i calculates

ρi,p = |hiwp|2 (7.5)

for p = 1, . . . , P . These P ρ’s are then transmitted to the base station. Note

that we assume that P < 2M , and thus it is more efficient to feed back the P ρ’s

than feeding back the M complex channel coefficients.

If the ρ’s are assumed to be noisy, due to erroneous CSI or due to quantization

errors, then the base station allocates the available energy based on erroneous

information. As a result, the users in Usched are no longer guaranteed to fulfill

the SINR constraint.
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7.3.3 Beamformer Selection

For each user i the base station selects the beamforming vector that results in

the highest composite channel energy ratio

g(i) = arg max
j=1,...,P

ρi,j ∀i ∈ Uall. (7.6)

The beamforming has to rely on the fed back ρ’s, and thus, beamforming tech-

niques that select the beamforming vector based on the CSI of the other scheduled

users, e.g., ZF or MMSE beamforming, cannot be used.

7.4 Problem Formulation

We consider the problem of minimizing the time necessary to successively sched-

ule the users in a single cell once. The different scheduled users must sustain

a minimum SINR, denoted SINRmin. This constraint allows to choose a fixed

modulation and coding for all the users. Adapting these parameters would re-

sult in additional overhead, i.e., the base station would have to inform the users

about the selected coding and modulation. However, due to the fading nature

of the wireless channel, some user channels might be in a deep fade, and reliable

communication is not possible to these users. Thus, we exclude the users that are

not able to fulfill the SINR constraint even when there are no interfering users

present and all available power is allocated to them, i.e., TDMA. The set of users

in the cell that can fulfill the SINR constraint under TDMA is defined as

Usched =

{
u ∈ Uall |

ET
N0
|huwg(u)|2 ≥ SINRmin

}
. (7.7)

Note that if Usched = ∅ then the algorithm stops without scheduling a single user.

We want to find an algorithm that is able to address all the users in Usched once

and in a minimum of time, as presented in (7.8). If Usched 6= ∅ then (7.8) provides

a solution. The worst-case solution is that the elements of Usched are scheduled

in a TDMA fashion. The set of users scheduled for transmission at a time step

k is denoted T [k]. Every user has to have a SINR higher or equal SINRmin. We

further require that the sum of the energy assigned to a set is smaller than or
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minimize N

subject to :
Ei|hiwg(i)|2∑

j∈T [k],j 6=iEj |hiwg(j)|2 +N0
≥ SINRmin

∀i ∈ T [k], k = 1 . . . N

N⋃
k=1

T [k] = Usched and
∑
i∈T [k]

Ei ≤ ET , k = 1 . . . N and

g(i) 6= g(j), ∀i, j ∈ T [k], i 6= j, k = 1 . . . N

(7.8)

equal to ET and that the users in a set are all assigned different beamforming

vectors. The number of transmissions necessary to serve all the users in Usched
once is denoted N . We assume throughout the chapter that L = N . If L > N

then the algorithm would restart scheduling all the users again in the same way

until the end of the block, and if L < N then the algorithm would simply address

the remaining users in the next block.

In solving (7.8), the base station decides based on the KP ρ’s that are fed

back from the users, which users to schedule for transmission.

7.5 Scheduling

The base station decides based on the feedback which users are scheduled for

transmission. We assume that the composite channel energies are perfectly known

to the base station, i.e., no quantization on the feedback link and perfect channel

knowledge at the user side. Thus, we can rewrite the SINR constraint, that all

the users in the set T must fulfill, from (7.8) as

(SINRmin)
−1
Eiρi,g(i) ≥

∑
j∈T [k],j 6=i

Ejρi,g(j) +N0 (7.9)

where the terms on the right side yield the interference penalty for choosing

additional users and the noise. Note, that we will omit the time index in the rest

of the section.
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We start by adapting the Best Fit algorithm [96] to work with the composite

channel energies, and then we present two variants to find a solution to (7.8).

The two variants have different complexities and different performances. How-

ever, both variants can serve the same set of scheduled users Usched, i.e., both

algorithms are using TDMA T = {i} with Ei = ET for a user i with adverse

channel conditions. The main difference between the two variants is how they

allocate the power to the beamforming vectors.

7.5.1 Adapted Best Fit Algorithm

The algorithm starts by eliminating all the users from the original user set Uall
that can not even fulfill the desired SINR constraint SINRmin when they are

scheduled alone, i.e., in the TDMA mode. The set of users that can be scheduled

for transmission is calculated as

Usched =

{
u ∈ Uall |

ET
N0

ρu,g(u) ≥ SINRmin

}
. (7.10)

From the resulting set Usched the user with the lowest composite channel energy

is selected

u = arg min
i∈Usched

ρi,g(i) (7.11)

and the scheduled user set is initialized with T := {u}. The scheduled user is

removed from the set of users that can be scheduled Usched := Usched \ {u}. The

algorithm now iteratively tries to add users to the set T . How such an additional

user ubest is selected varies on the possible power allocation for the beamforming

vectors and is explained in the following two subsections. Once the best matching

user ubest is found the set is updated T := T ∪ {ubest} and the user is removed

from the set of scheduled users Usched := Usched \{ubest}. This continues until the

algorithm does not find an additional user anymore and the base station starts

transmitting to the users in T . Finally, the algorithm restarts with the updated

set Usched until Usched = ∅.
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7.5.2 Low-Complexity Variant

The low-complexity variant equally distributes the available transmit energy ET

to the scheduled users

Ei =
ET
|T |

, i ∈ T . (7.12)

The user selection is done by

ubest = arg max
u∈{l∈Usched | g(l) 6=g(i),i∈T }

min
v∈T

⋃
{u}

(SINRmin)
−1
ρv,g(v) −

∑
j∈T

ρv,g(j) −N0
|T |+ 1

ET
. (7.13)

The penalty for adding an additional user, i.e., the negative terms in (7.13), con-

sists of the interference produced by the other scheduled users and the reduction

of the power allocated to the individual users since the transmission power is now

distributed over more users. Note that the selection function guarantees that the

different elements in the set have unique beamforming vectors.

After a candidate ubest has been determined, the algorithm then checks if the

SINR constraint (7.9) is still fulfilled. If (7.9) is not fulfilled, then ubest is not

added to T , and the base station starts transmitting to T . Then T is removed

from Usched and the algorithm restarts. The SINR constraint can also be checked

simultaneously with the user selection by checking if the SINR term inside the

user selection remains positive for all the members in the set T
⋃
{u}.

7.5.3 High-Performance Variant

The following variant can assign different transmit powers to the beamforming

vectors in order to balance the SINRs of the different users. An algorithm to

maximize the smallest SINR in a set of users with fixed beamforming vectors

by adapting the power allocation assigned to the different users was presented

in [98].
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The high-performance variant selects the additional users by solving

ubest = arg max
{u∈Usched | g(u) 6=g(i),i∈T }

min
v∈T

⋃
{u}

(SINRmin)
−1
Evρv,g(v)

−
∑
j∈T

Ejρv,g(j) −N0(|T |+ 1) (7.14)

under the constraint
∑
i∈T ∪{u}Ei = ET . Thus, for every considered set T ∪

{u} the individual transmit powers Ei, i ∈ T ∪ {u}, have to be recalculated

by using the algorithm in [98]. The computational most expensive step of this

SINR-balancing algorithm is the calculation of the largest eigenvalue and the

corresponding eigenvector of a complex matrix with the dimensions |T | + 1 ×
|T | + 1. Thus, the high-performance variant of Section 7.5.3 has a much higher

complexity than the low-complexity version presented in Section 7.5.2.

7.6 Simulation Results

In this section the performance of the high-performance (HP) variant and the

low-complexity (LC) variant are compared. We assume that the base station has

M = 3 antennas and that there are K = 100 single-antenna users present in the

cell. We consider a beamforming codebook with P = 4 entries, and all the users

experience the same SNR = 18 dB.

Fig. 7.1 depicts the number of transmissions needed to serve all the users in

Usched. We see how for a growing SINRmin the two variants of the algorithm

gradually require more transmissions to serve the K = 100 users. The two

variants slowly switch from SDMA to a TDMA mode in order to fulfill the given

SINR constraint (7.9). We see that the HP variant outperforms the LC variant

over all possible SINR constraints. The HP variant performs better because it can

allocate more energy to the weak users in the scheduled set, and thus, improve

the smallest SINR in the scheduled set. We also see that N slightly decreases for

a high SINRmin. This is because even in TDMA mode, where the base station

allocates all the power to the single scheduled user, it is not possible to fulfill the
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high SINR constraint of all the users. Thus, for an increasing SINR constraint,

the number of non-scheduled users also increases.

In Fig. 7.2 we compare our algorithm to the traditional Grassmannian beam-

forming algorithm [92]. We depict the ratio of the number of users that are

scheduled for transmission |Usched| to the number of users in the cell |Uall| for dif-

ferent SINR constraints. The Grassmannian beamforming algorithm feeds back

one scalar, i.e., the SINR for the strongest beamformer, and one integer, i.e.,

the index of this beamformer. We see that feeding back the composite channel

energies, and thus being able to adapt the number of scheduled users, allows a

larger amount of users to be served for a given SINR constraint. Please note

that it is not necessary to distinguish between the low-performance and the high-

performance variant, since both variants resort to TDMA in the worst case.

The next simulation depicts how the different variants group their users into

sets. We see in Fig. 7.3 that the HP variant collects in general more users in a set

than the low-complexity variant. For increased values of SINRmin both variants

are no longer able to schedule sets with the maximum number of users P . The

amount of incomplete sets increases until for very high values of SINRmin most

scheduled sets consist of a single users.

7.7 Conclusions

We have proposed two variants of the BestFit algorithm to schedule all the users

in a broadcast channel once. The algorithm minimizes the amount of transmis-

sions needed to schedule the different users under strict SINR constraints. The

variants differ in their computational complexity. Both variants can switch be-

tween TDMA and SDMA depending on the channel conditions. The LC variant

distributes the available transmit energy equally amongst the scheduled users,

and the HP variant uses the available transmit energy to balance the SINR of

users scheduled in the same time instant. The performance of both variants is

compared through simulations. They show the benefit of carefully distributing

the available transmit energy, i.e., the gain of the HP variant over the LC variant.

A possible extension of the presented work would be the consideration of noisy

feedback.
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Figure 7.1: Number of transmissions N as a function of SINRmin. (M = 3,
P = 4, K = 100, and SNR = 18 dB)
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Chapter 8

Round-Robin Scheduling for

Orthogonal Beamforming∗

After the previous chapter proposed two variants of the BestFit algorithm for

near-round-robin scheduling, we present in this chapter an algorithm for true

round-robin scheduling. The proposed algorithm uses orthogonal beamforming

to schedule users with a strict signal to interference-plus-noise ratio (SINR) con-

straint and it assumes a limited feedback link from the users to the base station.

The presented algorithm aims at scheduling the users at identical slots over differ-

ent blocks, in order to reduce the necessary scheduling overhead, and to minimize

the maximum delay between serving the same user. The algorithm allocates the

users using orthogonal beamforming based on the quantized feedback provided

by the users. The quantized feedback consists of the estimated energy that is

necessary to fulfill a predefined SINR constraint. Further, we propose an algo-

rithm to design codebooks to quantize the estimated energy. Using the feedback,

the base station redistributes energy from users with spare energy to users that

lack energy so that they fulfill their SINR constraints. The performance of the

algorithm is demonstrated through simulations.

∗The results in this chapter have been published in [99].
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8.1 Introduction

Some of the key drivers of wireless communication are delay-critical services like

audio and video communication. Of special interest for these services is the vector

Gaussian broadcast channel where the base station incorporates multiple anten-

nas but the individual users just have a single antenna. The vector Gaussian

broadcast channel promises large sum rates [100] if perfect channel state infor-

mation (CSI) is available at the base station. CSI is easily acquired at the user

side through training, but feeding back the CSI to the base station is problematic

due to the inevitable data-rate limitation on the feedback link. This motivates

the research into limited feedback systems where only partial CSI is fed back to

the base station [101,102].

Another challenging problem of multi-user schemes in general is scheduling.

The scheduling algorithm should have a low complexity, but the transmissions

to the users must still fulfill strict Quality-of-Service (QoS) constraints. An im-

portant QoS constraint is the minimum signal to interference-plus-noise ratio

(SINR). The minimum SINR constraint requires that every scheduled user in

the cell has an SINR larger than a predefined threshold. Further, especially for

modern real-time multimedia communication systems, it is important that the

delay between two transmissions to the same user remains constant, i.e., that the

users are scheduled in a round-robin fashion. Another advantage of round-robin

scheduling is the reduced overhead since the base station does not need to sac-

rifice transmission time to inform the users in every block about their allocated

slot positions. However, due to the stochastic nature of the wireless channel, it

is not possible to provide hard QoS guarantees, i.e., if the channel is in a deep

fade it is not possible to fulfill the SINR constraint.

The large sum rate on the vector Gaussian broadcast channel is achievable

with dirty paper coding (DPC) [25, 26, 100]. DPC has a high computational

complexity, but the same performance gains are also possible with zero-forcing

beamforming in the high user regions [74]. In [103], a scheduling algorithm for

zero-forcing beamforming was proposed that takes the individual queue lengths

at the base station into account. However, zero-forcing beamforming requires

perfect CSI at the base station. One of the first schemes to exploit the multiuser
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diversity assuming a data-rate limited feedback link is orthogonal beamforming

(OB). OB was presented in [76] using opportunistic scheduling to maximize the

instantaneous sum rate. The price of using opportunistic scheduling is the lack

of short-term fairness, i.e., fairness is only achieved in the long run. The effect

of partial CSI at the base station on zero-forcing beamforming was investigated

in [104]. Another important aspect of beamforming is the distribution of the

available energy over the different beamforming vectors. The solution to the

power allocation for maximizing the minimum SINR of the scheduled user was

presented in [98], and a solution to fulfill individual SINR constraints on the users

was presented in [105].

An algorithm that takes the time-varying nature of the channel into account,

but still provides strong bounds on the maximum delay, is the Channel Aware

Round-Robin (CARR) scheduling algorithm [106]. It schedules every user once

inside each block, but it does not implement true round-robin scheduling, since

the positions of the users inside the block are dynamically allocated. The CARR

algorithm chooses the positions depending on the channel state of the different

users in the different slots. Thus, the maximum delay between two transmis-

sions using the CARR algorithm is two block lengths. The main disadvantage

of CARR scheduling compared to round-robin scheduling is the additional over-

head. For CARR scheduling the base station has to inform the users for every

block in what slot they are scheduled. A similar scheduling algorithm for space

division multiple access (SDMA) is the Best Fit algorithm [107]. The Best Fit

algorithm also tries to assign all the users in every block, but it uses SDMA to

dynamically assign multiple users to the same slot depending on the resulting

SINR. It further considers an SINR constraint. A low-complexity variant is the

Partial Best Fit (PBF) algorithm [108]. It just adds new users according to the

Best Fit strategy and removes the expired users, i.e., the users that have no more

packets to transmit. An overview of other algorithms that consider scheduling

under the exploitation of the spatial diversity can be found in [5].

Our proposed algorithm tries to schedule all the users in the cell in a round-

robin fashion as long as possible. The application of orthogonal beamforming

allows to reduce the interference between users scheduled at the same time in-

stant. Further, it also reduces the feedback requirements from the users to the
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base station since full CSI feedback is not necessary. We propose a corresponding

feedback metric, and we consider the necessary quantization due to the data-rate

limited feedback link. The feedback is used by the base station to dynamically

divide the available transmit power among the users. This allows the weakest

users, i.e., the users with the worst channel conditions, to fulfill the SINR con-

straint longer than with an equal power distribution. A user is rescheduled if he

is no longer able to fulfill the SINR constraint despite receiving additional power,

i.e., the user is scheduled at a different slot and with a different beamformer in

the next block. The performance of the algorithm is depicted through simulations

for a time-varying channel.

Notation: We use capital boldface letters to denote matrices, e.g., A, and

small boldface letters to denote vectors, e.g., a. E(·) denotes expectation, and

P (·) probability. We will denote the probability density function (pdf) of the

random variable X as fX(x), and the cumulative distribution function (cdf) as

FX(x). We write the logical conjunction between two values x and y as x ∧ y,

and the logical disjunction as x ∨ y.

8.2 System Model

We assume a narrowband single-cell scenario where a base station with M an-

tennas transmits data to N single-antenna users. At a given time user i receives

the symbol

yi =
∑
j∈S

hiwg(j)

√
Ejsj + ni (8.1)

where S contains the indices of the users scheduled at that time instant, hi ∈
C1×M is the channel of user i, and wg(j) ∈ CM×1 is the beamforming vector

assigned to user j. The mapping g(j) maps a beamforming vector from the

beamformer codebook W to every user.

The energy assigned to user j is denoted Ej , and the data symbol sj , that is

transmitted to user j, is selected from a constellation with average unit energy.

The noise ni is complex Gaussian distributed with zero mean and variance N0,

i.e., ni ∼ CN (0, N0). The total allocated transmit energy is limited to ET =
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∑
i∈S Ei, and the signal-to-noise ratio (SNR) of the system is SNR = ET

N0
.

The users have the possibility to feed back information to the base station at

the start of every block. The feedback link itself is instantaneous, error-free, and

data-rate limited to B bits. All the users have to fulfill a strict SINR constraint

denoted SINRmin. We assume that the individual users acquire perfect channel

state information (CSI) at the start of each block through training. The time-

correlated channel is modeled according to Jakes’ model [66].

Every block consists of K slots. We further assume that the channel is block-

fading, i.e., the channel is constant throughout the K slots of a block. The block

index k starts at k = 0, and the slot index l restarts at the beginning of each

new block at l = 0. Thus, the relation between the current time step t and the

current block/slot index is t = kK + l.

We are using a set of orthogonal beamforming vectors from a codebook W to

simultaneously transmit to maximally M users [76]. The codebook W contains

M orthogonal beamforming vectors wm. The M beamformers in the codebook

all have unit norm, i.e., ‖wm‖2 = 1,m ∈ M = {1, . . . ,M}. The codebook W is

known to the users and to the base station. Note that a possible extension would

be to consider multiple orthogonal beamforming codebooks.

8.3 Problem Description

The main objective is to schedule the users in a round-robin fashion. If a user

i has been scheduled at time instant t = (k − 1)K + l using the beamformer

wm, then we want to schedule him also at time instant t = kK + l using the

beamformer wm. Further, all the scheduled users have to fulfill a strict SINR

constraint, i.e., they need to have an SINR higher than SINRmin.

Serving the users in a round-robin fashion should result in a packet delay

variation of zero. However, due to the time-varying nature of the wireless channel,

there is a non-zero probability that the channel is in a deep fade, i.e., reliable

communication is not possible. Thus, it is not possible to guarantee the QoS

constraints, i.e., to have hard QoS guarantees. The problem is now to exploit the

available feedback link to schedule the users as long as possible in a round-robin

fashion while still fulfilling the SINR constraint.
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8.4 Algorithm Overview

We assume that the different users are able to acquire perfect CSI at the beginning

of each block, i.e., user i knows hi at time t = kK, ∀k. Due to the block-fading

nature of the channel, an individual user thus has perfect channel knowledge for

every slot in the block. Using this channel knowledge the user then calculates

how much energy the base station has to assign to him in order to reach the SINR

constraint.

Next, this minimum energy is quantized and fed back to the base station.

Once the base station receives all the feedback from the users, it checks for

every time slot if the sum of the fed back quantized minimum energies exceeds

the maximally allocatable transmit energy ET at the base station. If the sum is

lower, then all the users in that slot can be scheduled using the available transmit

energy. However, if the sum is higher then it is not possible to schedule all the

users. The users with the highest energy demands are dropped until the sum of

the required energy for the remaining users is lower than the available transmit

energy.

In the next step, the dropped users from the previous block and the users

who just entered the cell are scheduled. Once all the users have been assigned

to a slot, their required energy is assigned to them and the remaining energy is

equally distributed to all the users in that slot.

8.4.1 Feeding Back the Required Energy

The SINR for user i is calculated as

SINRi =
|hiwg(i)|2Ei∑

j∈S\{i} |hiwg(j)|2Ej +N0
. (8.2)

We see that the SINR of user i depends on the individual transmit energies of

the users in the set S. In order to determine the minimum amount of energy

that is required by user i to reach SINRmin, it is necessary to know the amount

of energy that is assigned to the other users scheduled in the same slot. However,

the individual energy levels assigned to the other users in the set are not known

to the individual users. A solution is to feed back the full CSI to the base station

126



and to balance the SINR between the different users using the algorithm in [98].

The drawback is that it requires full channel knowledge or at least knowledge

of the composite channel energies |hiwg(j)|2, j ∈ S at the base station and thus

incorporates a lot of feedback.

In this chapter, we try to find an estimate of the energy assigned to user i

that fulfills the SINR constraint, and that does not depend on the energy levels

assigned to the other users in the set S. This required energy will be denoted Êi.

We start by defining an estimate of the true SINR, denoted ˆSINRi, that does not

depend on how the total transmit energy is distributed over the users in S, but

that is guaranteed to be smaller than the true SINR

ˆSINRi ≤ SINRi. (8.3)

Due to (8.3), it is certain that if the estimated SINR fulfills the SINR constraint,

so does the true SINR, i.e., if SINRmin ≤ ˆSINRi then SINRmin ≤ SINRi. We

propose to use

ˆSINRi =
|hiwg(i)|2Ei

maxj∈M\{g(i)} |hiwj |2(ET − Ei) +N0
(8.4)

which is lower than or equal to the real SINR since inserting (8.4) and (8.2) into

(8.3) results in ∑
j∈S\{i}

|hiwg(j)|2Ej ≤ max
j∈M\{g(i)}

|hiwj |2(ET − Ei) (8.5)

which is always true. The minimum energy assigned to a user i that fulfills the

SINR constraint and that only depends on the total energy can thus be calculated

as

Êi =
maxj∈M\{g(i)} |hiwj |2ET +N0

1
SINRmin

|hiwg(i)|2 + maxj∈M\{g(i)} |hiwj |2
. (8.6)

Next, the energy Êi is quantized and fed back to the base station.

The probability distribution of the required energy depends on whether the

user is scheduled for the first time or not. If a user is scheduled for the first time,
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then it chooses the beamforming vector that maximizes its SINR, i.e., the user

chooses the beamforming vector

g(i) := arg max
j∈M

|hiwj |2. (8.7)

For the successive blocks, the beamforming vector g(i) might no longer be the

beamforming vector that results in the highest SINR for user i. However, even

with this suboptimal beamforming vector, the user i might fulfill the SINR con-

straint.

As mentioned, if a user is scheduled for the first time, then its beamforming

vector is determined using (8.7). For that case we call the required energy the

initial required energy. The cdf and the pdf of the initial required energy are

derived in Appendix 8.B. For every successive scheduling instant, however, the

true channel changes according to the assumed channel model, but the selected

beamforming vector remains the same. Note that then the index of the beam-

forming vector has to be fed back just once. In order to simplify the derivation

of the cdf and the pdf of the required energy we assume, just for the derivation,

that the channel is i.i.d. between the scheduling instances. This corresponds to

a scenario where the channel has a high Doppler spread or where the user has

been scheduled for a long time in the same slot. We call the resulting required

energy, the regular required energy. The cdf and the pdf of the regular required

energy are derived in Appendix 8.A.

8.4.2 Quantizing the Feedback

The data rate limitation on the feedback link makes a quantization of the mini-

mum energy necessary before it can be fed back to the base station. The quanti-

zation Q maps the minimum energy Êi to an element of a predefined codebook

C = {c1, . . . , cb}, i.e., Q : R+ → C. We assume that the codebook size is limited

to b = 2B entries in order to fulfill the data-rate limitation of the feedback link.

The required energy Êi of user i is quantized using

Q(Êi) = arg min
cq∈C

cq − Êi s.t. Êi ≤ cq (8.8)
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and the index q of the element cq = Q(Êi) of the codebook C is fed back to the

base station. The quantized minimum energy of user i is denoted ÊQ,i = Q(Êi).

In order to prevent that a user gets too little energy assigned due to the

quantization error, the condition Êi ≤ Q(Êi) has to be fulfilled, and therefore

we must define cb = +∞. We further define cb−1 = ET . However, this might

not be optimal in the sense of maximizing the number of scheduled users. This

is best visualized by imagining the case of having only 1 bit available to quan-

tize the required energy. Then, using the previous reasoning, we would use the

codebook C1 = {ET ,+∞}. The disadvantage of C1 is that the users can only be

scheduled in a TDMA fashion, since every user requests either all the available

transmit energy ET , or he declares that he cannot be scheduled. If we would use

the codebook C2 = {ETM ,+∞}, then only users would be scheduled that reach

the SINR constraint assuming an equal power allocation and M − 1 interfering

users. The disadvantage of codebook C2 is that if user i has a required energy

between ET
M < Êi ≤ ET he cannot be scheduled, whereas that user could have

been scheduled with codebook C1. On the other hand, the use of C2 allows the

scheduling of up to M users simultaneously. We see that the number of users

in the cell and also the number of available slots inside a block must be taken

into account when a codebook is designed that maximizes the average number

of scheduled users. However, in order to keep the problem tractable, we assume

that the number of users in the cell remains small enough so that the TDMA

mode is beneficial, i.e., we always take cb−1 = ET .

8.4.3 Codebook Design

In order to simplify the notation we will substitute Êi with x throughout this

section. Designing the codebook requires the definition of a distortion metric

d(x,Q(x)) which serves as a measure for the quality of the quantization. The

most popular metric used in the quantization literature is the mean squared

error [37]. However, for quantizing the required energy, the absolute error is a

better metric, since it corresponds to minimizing the overall energy loss due to

the quantization. Using this metric, the average distortion D of a codebook C is
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calculated as

D(C) =

∫ +∞

−∞
|x−Q(x)|fE(x)dx (8.9)

where fE(x) is the pdf of the required energy. Inserting the selection function

(8.8), we can rewrite (8.9) as

D(C) =

b∑
q=1

∫ cq

cq−1

(cq − x)fE(x)dx (8.10)

with c0 = 0 since the required energy of a user is always positive. We see that,

compared to classic quantizer design, the codebook elements and the regions

are directly linked. However, fixing cb = +∞ makes (8.10) ill-defined since the

occurence of an element in the region (ET ,+∞) leads to an infinite average

distortion. However, since cb−1 and cb are already fixed, we can also restrict

ourselves to minimizing the simplified distortion function

Ds(C) =

b−1∑
i=1

∫ ci

ci−1

(ci − x)fE(x)dx (8.11)

with c0 = 0 and cb−1 = ET . We start by rewriting (8.11) as

Ds(C) =

(
b−1∑
i=1

∫ ci

ci−1

cifE(x)dx

)
− k with k =

∫ ET

0

xfE(x)dx. (8.12)

It is possible to show through simulations that Ds(C) is not convex and not

quasiconvex. Thus, we cannot solve the problem directly using standard tools.

We start by looking for the codebooks that are critical points of the simplified

distortion function Ds. The gradient of the distortion function is zero for the

critical points of the distortion function

∇Ds(C) = 0b−2 (8.13)

where 0b−2 is a (b− 2)-dimensional column vector with all entries being 0. Since

cb−1 is determined beforehand we just have b− 2 variables in our problem. The

130



critical points are found by solving

∂

∂ci

b−1∑
j=1

∫ cj

cj−1

cjfE(x)dx = 0 for i = 1, . . . , b− 2 (8.14)

which can be simplified to

∂

∂ci

∫ ci

ci−1

cifE(x)dx+
∂

∂ci

∫ ci+1

ci

ci+1fE(x)dx = 0 for i = 1, . . . , b− 2.

(8.15)

We use the Leibniz Integral Rule to solve (8.15) and receive∫ ci

ci−1

fE(x)dx− (ci+1 − ci)fE(ci) = 0 for i = 1, . . . , b− 2. (8.16)

A codebook C that fulfills (8.16) is a critical point. It is not possible to design the

codebook based on the Lloyd’s Method 1 [34] since there are no iterative optimal-

ity conditions to solve, i.e., nearest neighbor condition and centroid condition.

However, it is possible to design the codebook using variational techniques, e.g.,

Lloyd’s Method 2 [34]. The core idea is to solve (8.16) by fixing c1 and then to

calculate the remaining elements ci for i = 2, . . . , b− 2 as

ci+1 =
1

fE(ci)

∫ ci

ci−1

fE(x)dx+ ci (8.17)

until finally we have cb−1. We assumed initially that cb−1 should be ET . However,

the resulting cb−1 provided by (8.17) might not result in cb−1 = ET . Thus, if

h(c1) = cb−1 − ET is negative (positive), then it means that c1 was chosen too

small (large). Then we choose a larger (smaller) c1 until we finally find h(c1) = 0

and thus cb−1 = ET . Using the results from Appendices 8.A and 8.B, the problem

can be easily solved numerically.

Note that we implicitly assume that the codeword cb−1 is a strictly mono-

tonically increasing function of c1. Numerical simulations show that this holds

for the investigated cases. The solution is then also assumed to be the unique

solution of (8.11), although we cannot rigorously prove this.
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8.5 Scheduling

After the base station receives the instantaneous feedback from all users, it sched-

ules the users for the current block k using the following three steps.

Validation of the Scheduled Users

The base station starts by assigning for every slot l = 0, . . . ,K− 1 in the current

block k the same users that were scheduled in the same slot in the previous

block, i.e., S[kK + l] := S[(k − 1)K + l], using the same beamforming vectors as

in the previous block. Then, the base station calculates the sum of the required

energies for every slot using the fed back required energies. If the sum is larger

than the available transmit energy ET then it is not possible to schedule the

users so that they all fulfill the SINR constraint while still using the same slot

and the same beamformer as in the last block. The straightforward solution is to

remove the user from the set that has the highest energy demand, i.e., the user

that feeds back the highest required energy. The dropped user is added to the

set Uresched[kK] and will be treated in the next block. This is repeated until the

sum of the minimum energies of the remaining users is smaller than the available

transmit energy ET . This first step of the scheduling algorithm is described in

Algorithm 2.

Algorithm 2 Validation of the Scheduled Users

1: Uresched[kK] := ∅
2: for l = 0 to K − 1 do
3: t := kK + l
4: S[t] := S[t−K]
5: while

∑
i∈S[t] ÊQ,i[kK] > ET do

6: i := arg maxi∈S[t] ÊQ,i[kK]
7: S[t] := S[t] \ {i}
8: Uresched[kK] := Uresched[kK] ∪ {i}
9: end while

10: end for
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Scheduling the New Users and Rescheduling the Dropped Users

We collect the dropped users from the previous block Uresched[(k − 1)K] and the

new users entering the cell Unew[kK] in the set U [kK] := Uresched[(k − 1)K] ∪
Unew[kK]. All these users feed back their required energy as well as the index

of the corresponding beamforming vector. Thus, user i ∈ U [kK] feeds back

g(i) from (8.7) and ÊQ,i[kK]. If we assume that the data-rate limitation on the

feedback link is strict, then we have to use a codebook with 2B−dlog2Me entries to

quantize Êi[kK]. The base station then tries to successively schedule all the users

in U [kK] according to their fed back minimum energy. The algorithm starts by

scheduling the user with the largest energy requirement first. Once this user has

been found, the base station looks for a slot that is not yet using the preferred

beamformer of the considered user. For every one of these free slots the base

station calculates the sum of the minimum energy levels of the users in the slot,

assuming the considered user is added, and finally chooses the slot that results

in the lowest sum. If the base station does not find a valid slot then the user is

skipped for the current block and added to Uresched[kK]. However, if the base

station finds a slot then the user is scheduled for transmission. This second step

of the scheduling algorithm is described in Algorithm 3.

Energy Assignment

Once all the users are scheduled, every scheduled user is assigned its required

minimum energy. The remaining transmit energy is uniformly distributed over

the remaining users in the same slot. Thus, the transmit energy for user i, that

is allocated to t = kK + l, is calculated as

Ei[t] := ÊQ,i[kK] +
ET −

∑
j∈S[t] ÊQ,j [kK]

|S[t]|
. (8.18)

Note that this approach tries to balance the SINRs of the different users in the

same slot. However, due to the quantization, and due to the unknown interference

between the users in the set S[t], it is not possible to truly balance the SINRs

as it is possible with full CSI at the base station [98]. It is also possible to save

energy at the base station by solely assigning the required energy to the users
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Algorithm 3 Scheduling the New Users and Rescheduling the Dropped Users

1: U := Uresched[(k − 1)K] ∪ Unew[kK]
2: while |U| > 0 do
3: i := arg maxi∈U ÊQ,i[kK]
4: Temp Index := −1
5: Temp Energy := ET
6: for l = 0 to K − 1 do
7: if

∑
j∈S[kK+l] ÊQ,j [kK] + ÊQ,i[kK] ≤ Temp Energy and g(i) 6=

g(j),∀j ∈ S[kK + l] then
8: Temp Index := l
9: Temp Energy :=

∑
j∈S[kK+l]EQ,j [kK] + ÊQ,i[kK]

10: end if
11: end for
12: if Temp Index 6= −1 then
13: S[kK + Temp Index] := S[kK + Temp Index] ∪ {i}
14: else
15: Uresched[kK] := Uresched[kK] ∪ {i}
16: end if
17: U := U \ {i}
18: end while

and not redistributing the spare energy. Then, (8.18) simply becomes

Ei[t] := ÊQ,i[kK]. (8.19)

8.6 Extensions

8.6.1 Exploiting the Time-Correlation of the Channel

We can also use the time-correlation of the channel to better exploit the data-

rate limited feedback link. A simple variant of predictive quantization [17] is

difference quantization. There, the difference between the previously fed back

quantized required energy and the current required energy is quantized and fed

back. The required energy is calculated at the base station as

ÊQ,i[kK] = ÊQ,i[(k − 1)K] +Q(∆Êi[kK]) (8.20)
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and the fed back quantized energy difference is calculated as

Q(∆Êi[kK]) = arg min
cq∈C

cq − (Êi[kK]− ÊQ,i[(k − 1)K]) (8.21)

s.t. cq ≥ Êi[kK]− ÊQ,i[(k − 1)K]. (8.22)

Note that the additional constraint guarantees that the estimated required energy

is greater than or equal to the true required energy. The predictive quantization

requires the use of two quantization codebooks. The first codebook Cinit is used

to quantize the initial required energy when no prediction is possible, i.e., the user

is scheduled for the first time or the user is rescheduled. The second codebook C
is used afterwards to quantize the prediction difference (8.21). The performance

of predictive quantization can be additionally improved by using a more sophis-

ticated prediction. However, the prediction algorithm has to be matched to the

underlying channel model.

8.6.2 Entropy Coding

Similar to the work in Section 3.4, the time-correlation of the channel can also

be exploited in this chapter by the use of entropy coding [17]. Entropy coding

uses short codewords to feed back highly probable indices, in order to reduce the

required average feedback, e.g., a 1-bit codeword is used as feedback when the

quantized required energy is identical to the quantized required energy from the

previous feedback.

8.7 Simulations

We start by comparing the performance of the codebook design algorithm from

Section 8.4.3 to different common codebook design strategies. We design two

codebooks using the algorithm from Section 8.4.3. The first codebook, denoted

the regular codebook, is designed using the statistics from Appendix 8.A, and the

second codebook, denoted the initial codebook, is designed using the statistics

from Appendix 8.B. Their performance is compared with a uniform codebook

and with an equiprobable codebook. All the codebooks contain the values ET
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Figure 8.1: Comparison of different codebook design approaches for scheduling a
user at the first slot. (M = 4, |S| = 4, SNR = 10 dB, SINRmin = 7 dB)

and +∞ as their two largest elements. Thus, we can only freely choose the

remaining b − 2 elements from the codebooks. The ith element of the uniform

codebook is calculated as i ETb−1 with i = 1, . . . , b− 2. The equiprobable codebook

is designed such that all the elements of the codebook are selected with the

same probability. First calculating Pavg = P (0≤Êi≤ET )
b−1 , the different elements

are successively calculated by solving FX(ci)−FX(ci−1) = Pavg where c0 = 0 for

i = 1, . . . , b−2. For the simulations presented in Fig. 8.1 and Fig. 8.2, we consider

the average quantization error per user as a function of the codebook size. The

simulations consider an average SNR of 10 dB, M = 4, and a minimum required

SINR of 7 dB. The Rayleigh channel model was used for both simulations. We

also created some simple test cases to investigate the optimality of the proposed

codebook design algorithm. In all these test cases, the critical point turned out

to be the optimal point.
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Figure 8.2: Comparison of different codebook design approaches for scheduling a
user at a later slot. (M = 4, S = 4, SNR = 10 dB, SINRmin = 7 dB)

We see in Fig. 8.1 that the intial codebook has a lower quantization error

E(ÊQ,i − Êi) than the other codebooks for quantizing the energy immediately

after scheduling. This is expected since the initial codebook is designed using the

proper statistics for the first scheduling instance from Appendix 8.A. Further, we

see in Fig. 8.1 that the regular codebook, which is designed using the mismatched

statistics, performs as good as the equiprobable codebook that is designed using

the correct statistics, at least for small codebook sizes. However, with every

successive block the assumption that the user uses its optimal beamformer, i.e.,

the beamforming vector that maximizes the SINR, becomes weaker.

The extreme case is depicted in Fig. 8.2. There we assume that the beamform-

ing vector is selected randomly amongst all the available beamforming vectors.

This corresponds to the case where the user is able to fulfill its SINR constraint

successively over a prolonged time using the same beamformer. We see that the
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Figure 8.3: Average number of slots that a user is successively scheduled for a
varying product of block length Tf and Doppler frequency fD. (M = 2, K = 100,
150 users, 1000 blocks, SNR = 15 dB, SINRmin = 5 dB)

regular codebook performs well for both cases, and thus, for the sake of simplicity,

we use the regular codebook for the following simulations. Note that a codebook

switching strategy, where we use the initial codebook for the first slot, and then

switch to the regular codebook should provide a minor performance gain, but

requires more storage capacity from the users and from the base station.

The simulation depicted in Fig. 8.3 shows how long the different users are

successively scheduled on the average as a function of the product of the Doppler

frequency fD and the block length Tf. We assume a homogeneous cell where all

the users experience SNR = 15 dB. The SINR constraint is fixed to SINRmin =

5 dB. The time-correlation between the blocks is modeled according to Jakes’
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model. At time instant t the pth element from the channel hi[t] is modelled as

[hi[t]]p =
1√
Q

Q∑
q=1

ap,q exp(j 2πTffD dt/Ke cosαp,q) (8.23)

where Q is the number of scatterers, ap,q is i.i.d. complex Gaussian distributed

with zero mean and variance 1, and αp,q is uniformly distributed over [0, 2π].

We assume Q = 30 scatterers. The influence of quantizing the fed back mini-

mum energy is depicted for multiple codebooks and for no quantization. We see

that for slowly changing channels, i.e., channels with a low product of Doppler

frequency fD and block length duration Tf, the average number of consecutive

blocks increases. We simulate 1000 blocks for every channel realization, and thus

the maximum number of blocks a user can be successively scheduled is limited

to 1000. However, if fDTf increases, then the channel becomes more volatile.

This increases P (
∑
i∈S[t−K] ÊQ,i[t] > ET |

∑
i∈S[t−K] ÊQ,i[t − K] ≤ ET ), i.e.,

the probability that the users from the set S[t−K] in the slot t−K cannot fulfill

the SINR constraint in the slot t and thus have to be rescheduled.

The next simulation, depicted in Fig. 8.4, shows the average number of users

that have to rescheduled per block as a function of TffD. The users have to be

rescheduled if they cannot fulfill the SINR constraint for the current slot using

the same beamforming as in the previous slot, or if they could not be scheduled

for the current block at all. We see that the number of rescheduling operations

is low if the channel exhibits a strong time correlation, and that the number of

rescheduling operations increases as the channel becomes more volatile. We see

that more users have to be rescheduled if the energy loss due to the quantization

is higher. For the codebook with 4 entries (2 bit), the system works in TDMA

mode, i.e., every user is assigned to one

Fig. 8.5 depicts the average number of users that are scheduled per block as

a function of TffD. We see that the average number of scheduled users decreases

as the channel becomes more volatile. This is because the probability that a

user has to be rescheduled increases with the volatility of the channel, and every

rescheduled user is not scheduled for at least one block. We also see the effects

of quantizing the required energy. A smaller codebook size leads to a larger
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energy loss since the user requests more energy than he actually needs, due to the

quantization error. For small codebooks, the system nearly operates exclusively

in TDMA mode, i.e., every slot has just a single user assigned to.

The next simulation, Fig. 8.6, compares the feedback of the required energy

to having full CSI at the base station. We assume that in both cases Algorithm 3

is used to schedule the new and the dropped users. However, the base station

with full CSI uses the results from [98] to calculate the optimal energy assigned

to every beamforming vector to balance the resulting SINRs. We see that having

full CSI allows to schedule more users successively in the same slot.

Fig. 8.7 shows the effect of erroneous CSI on the scheduling. We create

the noisy channel estimate hi,noisy by adding noise to the true channel, i.e.,

hi,noisy = hi,true + ei with ei ∈ C1×M . The different components of the noise
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vector are complex Gaussian distributed with zero mean and variance NE . The

users calculate their required energy based on the noisy channel, and feed it back

to the base station. Then, the base station uses the feedback to schedule the

users. Next, we check, using the true channel, how many of the scheduled users

really fulfill the SINR constraint. We see that, as the noise on the feedback

channel increases, the number of wrongly scheduled users increases.

8.8 Conclusions

We presented a scheme to implement round-robin scheduling using orthogonal

beamforming and data-rate limited feedback. The scheme uses scalar feedback

from the users to divide the transmit energy amongst the users so that they all

fulfill a given SINR constraint. The simulations show that the presented algo-

rithm is attractive to implement round-robin scheduling for time-varying chan-

nels. We further propose an algorithm to design the codebooks used to quantize

the feedback, and the codebooks outperform other popular codebooks.

8.A CDF and PDF of the Regular Required En-

ergy

We assume that the channel hi of user i is a random variable. Thus, the re-

sulting required energy Êi is also a random variable, and we want to derive the

corresponding cdf

FE(z) = P (Êi ≤ z) (8.24)

= P

(
maxj∈M\g(i) |hiwj |2ET +N0

1
SINRmin

|hiwg(i)|2 + maxj∈M\g(i) |hiwj |2
≤ z

)
(8.25)

and pdf fE(z) = d
dzFE(z). We assume in this section that the function g :

{1, . . . ,K} → M randomly assigns a beamforming vector to a user. The set

of orthogonal beamforming vectors are unit-norm ‖wm‖2 = 1, ∀m and known.

The different elements of the channel hi are assumed i.i.d. and circular Gaussian
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distributed according to CN (0, 1). In order to simplify the notation we will write

(8.25) as

FE(z) = P

(
XAET +N0

XB +XA
≤ z
)

(8.26)

where XA = maxj∈M\g(i) |hiwj |2, and XB = 1
SINRmin

|hiwg(i)|2. The real part

and the imaginary part of hiwj are independently Gaussian distributed N (0, 12 ).

We define the continuous random variable X1 = |hiwj |2, and model this variable

as X1 = 1
2 (X2

11 + X2
12), with X11 ∼ N (0, 1) and X12 ∼ N (0, 1). The term

X2
11 +X2

12 is χ2(2) distributed. The pdf fX1
(x) of X1 then is

fX1
(x) =

e−x if x ≥ 0

0 otherwise
(8.27)

and the corresponding cdf FX1
(x) is

FX1(x) =

1− e−x if x ≥ 0

0 otherwise
. (8.28)

The different realizations of |hiwj |2 are identical and independently distributed

for all j ∈M. The cdf of XA = maxj∈M\g(i) |hiwj |2 then is

FXA(x) = (FX1(x))M−1 =

(1− e−x)M−1 if x ≥ 0

0 otherwise
. (8.29)

The resulting pdf of XA = maxj∈M\i |hiwj |2 is

fXA(x) =

e−x(1− e−x)M−2(M − 1) if x ≥ 0

0 otherwise
. (8.30)
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The pdf of XB = 1
SINRmin

|hiwg(i)|2 corresponds to XB = 1
SINRmin

X1, and is

fXB (x) =

 ˆSINRmin e
−x ˆSINRmin if x ≥ 0

0 otherwise
. (8.31)

Since the random variables XA and XB are always positive, we can rewrite (8.26)

as

FE(z) = P ((ET − z)XA − zXB ≤ −N0) . (8.32)

The random variable (ET − z)XA − zXB will be abbreviated as XC in order to

keep the notation compact. We use (8.30) to find the pdf of the random variable

(ET − z)XA which is

f(ET−z)XA(x) =
M − 1

|ET − z|
e
− x
ET−z (1− e−

x
ET−z )M−2 (8.33)

if (x ≥ 0 ∧ ET ≥ z) ∨ (x ≤ 0 ∧ ET ≤ z) and f(ET−z)XA(x) = 0 otherwise. The

pdf of −zXB is found by using (8.31), and is

f−zXB (x) =

SINRmin

|z| e
x
z SINRmin if (x ≥ 0 ∧ z ≤ 0) ∨ (x ≤ 0 ∧ z ≥ 0)

0 otherwise
. (8.34)

Since (ET − z)XA and −zXB are statistically independent, the pdf fXC can be

calculated as

fXC (x) =

∫ +∞

−∞
f(ET−z)XA(x− y)f−zXB (y)dy. (8.35)

The product f(ET−z)XA(x− y)f−zXB (y) is not zero when

[(x ≥ y∧ET ≥ z)∨ (x ≤ y∧ET ≤ z)]∧ [(y ≥ 0∧z ≤ 0)∨ (y ≤ 0∧z ≥ 0)]. (8.36)
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Using Boolean algebra this can be rewritten as

(ET ≤ z ∧ x ≤ y ∧ y ≤ 0 ∧ z ≥ 0) ∨ (ET ≤ z ∧ x ≤ y ∧ y ≥ 0 ∧ z ≤ 0)

∨ (ET ≥ z ∧ x ≥ y ∧ y ≤ 0 ∧ z ≥ 0) ∨ (ET ≥ z ∧ x ≥ y ∧ y ≥ 0 ∧ z ≤ 0). (8.37)

We can thus distinguish between the following four cases:

• Case 1: ET ≤ z ∧ x ≤ y ∧ y ≤ 0 ∧ z ≥ 0

• Case 2: ET ≤ z ∧ x ≤ y ∧ y ≥ 0 ∧ z ≤ 0

• Case 3: ET ≥ z ∧ x ≥ y ∧ y ≤ 0 ∧ z ≥ 0

• Case 4: ET ≥ z ∧ x ≥ y ∧ y ≥ 0 ∧ z ≤ 0

We see in (8.26) that FE(z) = 0, ∀z < 0. Thus, we can ignore Case 2 and Case

4. Next, we rewrite (8.35) as

fXC (x) =


fXC ,1(x) 0 ≤ z ≤ ET
fXC ,2(x) ET ≤ z

0 otherwise

(8.38)

with

fXC ,1(x) =

∫ min(0,x)

−∞

M − 1

|ET − z|
e
− x−y
ET−z (1− e−

x−y
ET−z )M−2

SINRmin

z
e
y
z SINRmindy (8.39)

fXC ,1(x) =
(M − 1)SINRmin

|ET − z|z
e
− x
ET−z∫ min(0,x)

−∞
e
y
(

1
ET−z

+
SINRmin

z

)
(1− e−

x−y
ET−z )M−2dy. (8.40)

147



Since we assume that M ≤ 2 we can rewrite the previous equation as

fXC ,1(x) =
(M − 1)SINRmin

|ET − z|z
e
− x
ET−z

∫ min(0,x)

−∞
e
y
(

1
ET−z

+
SINRmin

z

)

M−2∑
k=0

(
M − 2

k

)(
−e−

x−y
ET−z

)k
dy (8.41)

fXC ,1(x) =
(M − 1)SINRmin

|ET − z|z
e
− x
ET−z

M−2∑
k=0

(
M − 2

k

)
(−1)ke

− kx
ET−z

∫ min(0,x)

−∞
e
y
(

k+1
ET−z

+
SINRmin

z

)
dy. (8.42)

Similarly, the second case in (8.38) becomes

fXC ,2(x) =
(M − 1)SINRmin

|ET − z|z
e
− x
ET−z

M−2∑
k=0

(
M − 2

k

)
(−1)ke

− kx
ET−z

∫ 0

x

e
y
(

k+1
ET−z

+
SINRmin

z

)
dy. (8.43)

Using fXC we can now calculate the cdf

FE(z) =


FE,1(z) =

∫ −N0

−∞ fXC ,1(x)dx 0 ≤ z ≤ ET
FE,2(z) =

∫ −N0

−∞ fXC ,2(x)dx ET ≤ z

0 otherwise

. (8.44)

On the region 0 ≤ z ≤ ET the cdf is given by

FE,1(z) =

M−2∑
k=0

(
M − 2

k

)
(−1)k

(M − 1)z

zk + z + SINRmin(ET − z)
e−N0

SINRmin
z . (8.45)
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The cdf FE,1(z) can be written in a more compact form. We start by rewriting

(8.45) as

FE,1(z) = (M − 1)!

M−2∑
k=0

(−1)k

(M − 2− k)!k!(k + 1 + SINRmin(ETz − 1))

e−N0
SINRmin

z (8.46)

Using Lemma 1 we can rewrite it as

FE,1(z) = Γ(M)
Γ(1 + SINRmin(ETz − 1)

Γ(M + SINRmin(ETz − 1)
e−N0

SINRmin
z . (8.47)

On the region ET < z the cdf is given by

FE,2(z) = −
M−2∑
k=0

(
M − 2

k

)
(−1)k

(M − 1)SINRmin

zk + z + SINRmin(ET − z)(
ET − z
−1− k

e
−N0

−1−k
ET−z − z

SINRmin
e−N0

SINRmin
z

)
. (8.48)

Using (8.44) the pdf of the required energy can now be derived as

fE(z) =


fE,1(z) = d

dzFE,1(z) 0 < z < ET

fE,2(z) = d
dzFE,2(z) ET < z

0 otherwise

(8.49)

with (8.56) and (8.57).

Using Lemma 1, we can write (8.56) in a more compact form as

fE,1(z) =
SINRmin

z2

(
N0 + ET

(
ψ

(
M + SINRmin

(
ET
z
− 1

))
−ψ

(
1 + SINRmin

(
ET
z
− 1

))))
FE,1(z) (8.50)

where ψ(·) denotes the digamma function.
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Lemma 1. Let a ∈ R with x > 0, and b ∈ N. Then, the identity

b∑
k=0

(−1)k

k!(b− k)!(k + 1 + a)
=

b+1∏
j=1

1

a+ j
(8.51)

is true.

Proof. We prove the lemma by induction. It is easy to see that the equation is

valid for the induction basis, i.e., b = 0. Next, we have to show that (8.51) is

true for b if it is true for b− 1. We start by rewriting (8.51) as

b∑
k=0

(−1)k

k!(b− k)!(k + 1 + a)
=

1

a+ b+ 1

b∏
j=1

1

a+ j
. (8.52)

Now, we insert the induction hypothesis and receive

b∑
k=0

(−1)k

k!(b− k)!(k + 1 + a)
=

1

a+ b+ 1

b−1∑
k=0

(−1)k

k!(b− 1− k)!(k + 1 + a)
(8.53)

⇒
b∑

k=0

(−1)k

k!(b− k)!
= 0. (8.54)

Using the identity

b∑
k=0

(−1)k
(
b

k

)
= 0 (8.55)

from [109], we see that (8.54) is true. Thus, the induction step is proved as

well.
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8.B CDF and PDF of the Initial Required En-

ergy

As in Appendix 8.A we want to calculate the cdf of the initial required energy

FE(z) = P (Êmin ≤ z) (8.58)

= P

(
maxj∈M\g(i) |hiwj |2ET +N0

1
SINRmin

|hiwg(i)|2 + maxj∈M\g(i) |hiwj |2
≤ z

)
(8.59)

and its corresponding pdf fE(z) = d
dzFE(z). However, in contrast to Appendix 8.A

we assume that g(i) = arg maxj∈M |hiwj |2. Thus, we cannot assume that

maxj∈M\g(i) |hiwj |2 and |hiwg(i)|2 are statistically independent anymore. We

define again the continuous random variable X1 = |hiwj |2, with the pdf (8.27),

and the cdf (8.28). Using ordering statistics notation, we write X(M−1) =

maxj∈M\g(i) |hiwj |2 and X(M) = |hiwg(i)|2 with X(1) ≤ X(2) ≤ . . . ≤ X(M),

and thus

FE(z) = P

(
X(M−1)ET +N0

1
SINRmin

X(M) +X(M−1)
≤ z

)
. (8.60)

The problem can be reformulated as

FE(z) = P ((X(M−1), X(M)) ∈ Dz) =

∫∫
Dz

fj(x, y) dx dy (8.61)

where the region Dz is

Dz = {(x, y) ∈ R2 | xET +N0
1

SINRmin
y + x

≤ z} (8.62)

and the joint density f of X(M−1) and X(M) is calculating using [110, Eq. (2.1.6)]

as

f(x, y) =

 M !
(M−2)!FX1 [x]M−2fX1(y)fX1(x) if x < y

0 otherwise
. (8.63)
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However, since (8.27), (8.28), and (8.63) are piecewise functions, the evaluation

of (8.61) is cumbersome. Thus, we define the region D1 ⊂ Dz

D1 := {(x, y) ∈ Dz | 0 ≤ x ∧ 0 ≤ y ∧ x ≤ y} (8.64)

where f is non-zero. Next, we define the function f1 : D1 → R as

f1(x, y) =
M !

(M − 2)!
(1− e−y)M−2e−ye−x. (8.65)

Then, using (8.64) and (8.65), we can rewrite (8.61) as

FE(z) =

∫∫
Dz

f(x, y) dx dy =

∫∫
D1

f1(x, y) dx dy (8.66)

The domain D1 can now be calculated as

D1 =

D2 = {(x, y) ∈ R | 0 < x < ay − b ∧ 0 < x ≤ y} if ET − z > 0

D3 = {(x, y) ∈ R | ay − b < x ∧ 0 < x ≤ y ∧ 0 ≤ y} if ET − z < 0

(8.67)

with a = z
(ET−z)SINRmin

and b = N0

ET−z . We start by calculating D2, i.e., we

assume that ET − z > 0. We see that D2 is bounded by the line L1 = {(x, y) ∈
R2 | x = ay − b} and L2 = {(x, y) ∈ R2 | x = y}. We differentiate between the

following three cases:

• a > 1⇔ z > ET SINRmin

1+SINRmin

• a = 1⇔ z = ET SINRmin

1+SINRmin

• a < 1⇔ z < ET SINRmin

1+SINRmin

Line L1 and L2 intersect at a point with the exception of the second case, i.e.,

a = 1, where L1 and L2 are parallel. The intersection point (xc, yc) is calculated

as

xc = yc = − N0SINRmin

SINRmin(ET − z)− z
. (8.68)
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Another point of interest is the intersection of L1 with the y-axis. This point,

denoted (0, y0), is calculated as

y0 =
N0SINRmin

z
. (8.69)

We start by investigating a > 1. We assume that L1 and L2 intersect on the

line segment {(x, x) ∈ R2 | x < 0}, i.e., we assume that

− N0SINRmin

SINRmin(ET − z)− z
< 0 (8.70)

⇒ ETSINRmin

SINRmin + 1
> z (8.71)

which contradicts that a > 1, and thus L1 and L2 must intersect on {(x, x) ∈
R2 | x ≥ 0}. We can now define the domain D2 for ET SINRmin

1+SINRmin
< z < ET as

D2 = {(x, y) ∈ R | (0 < x < ay − b ∧ y0 < y < yc) ∨ (0 < x < y ∧ yc < y))}.
(8.72)

Next, we investigate a = 1, i.e., L1 and L2 are parallel. Since b > 0, the

border of D2 is defined by L1, and L1 intersects with the y-axis at y0. We can

then define the domain D2 for z = ET SINRmin

1+SINRmin
as

D2 = {(x, y) ∈ R | 0 < x < ay − b ∧ y0 < y)}. (8.73)

Finally, we assume that a < 1. We approach this case as the a > 1 case:

We can prove that the intersection of L1 and L2 has negative coordinates, and

next, we determine the intersection of L1 and the y-axis. We can then define the

domain D2 for 0 < z < ET SINRmin

1+SINRmin
as

D2 = {(x, y) ∈ R | 0 < x < ay − b ∧ y0 < y}. (8.74)

We see that we can omit to treat the a = 1 case separately by including

it with a > 1 or a < 1. We choose a > 1, and thus a ≥ 1 covers the region
ET SINRmin

1+SINRmin
≤ z < ET .
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Finally, we can express the region D2 as

D2 = {(x, y) ∈ R | (0 < x < ay − b ∧ y0 < y)} (8.75)

if 0 < z < ET SINRmin

1+SINRmin
and as

D2 = {(x, y) ∈ R | (0 < x < ay − b ∧ y0 < y < yc)∨

(0 < x < y ∧ yc < y))} (8.76)

if ET SINRmin

1+SINRmin
≤ z < ET .

We can now proceed to determine the region D3. Using the fact that z > ET

and using (8.71) we see that the intersection point of L1 and L2 has positive

coordinates. Since a < 0, the region D3 is

D3 = {(x, y) ∈ R | (ay − b < x < y ∧ yc < y < y0) ∨ (0 < x < y ∧ y0 < y)}
(8.77)

and thus all the domaines are determined. The resulting cdf is

FE(z) =



0 z < 0

FE1(z) 0 < z < ET SINRmin

1+SINRmin

FE2(z) ET SINRmin

1+SINRmin
< z < ET

FE3(z) ET < z

. (8.78)

The different pieces of the cdf can now be determined using straightforward

integration. On the domain (0, ET SINRmin

1+SINRmin
) the cdf FE(z) is

FE1(z) =

∫ +∞

y0

∫ ay−b

0

f1(x, y) dx dy (8.79)

=

M−2∑
k=0

(−1)k
M !

k!(M − 2− k)!

z

(ET − z)SINRmin + z(k + 1)
e−

N0SINRmin
z .

(8.80)
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On the domain [ET SINRmin

1+SINRmin
, ET ), FE(z) is

FE2(z) =

∫ yc

y0

∫ ay−b

0

f1(x, y) dx dy +

∫ +∞

yc

∫ y

0

f1(x, y) dx dy (8.81)

which results in (8.86). and finally, on the domain [ET ,+∞), the cdf FE is

calculated as

FE3(z) =

∫ y0

yc

∫ y

ay−b
f1(x, y) dx dy +

∫ +∞

y0

∫ y

0

f1(x, y) dx dy (8.82)

which results in (8.87). We see that FE3 = FE2, and thus the cdf is now

FE(z) =


0 z < 0

FE1(z) 0 < z < ET SINRmin

1+SINRmin

FE2(z) ET SINRmin

1+SINRmin
< z

. (8.83)

The pdf can now be found by derivation as

fE(z) =


0 z < 0

fE1(z) = d
dzFE1(z) 0 < z < ET SINRmin

1+SINRmin

fE2(z) = d
dzFE2(z) ET SINRmin

1+SINRmin
< z

(8.84)

with

fE1(z) =

S−2∑
k=0

(−1)k
S!

k!(S − 2− k)!

SINRmin(N0(1 + k − SINRmin)z + ET (N0SINRmin + z))

z(ETSINRmin + (1 + k − SINRmin)z)2
e−

N0SINRmin
z (8.85)

and (8.88).
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Part IV

Conclusions
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Chapter 9

Review and Future Work

In the following chapter we will conclude the thesis by reviewing the results from

the different topics and we will propose possible extensions as future work.

Linear Precoding for Single-User MIMO Channels

In Chapter 3 we address the problem whether it is possible to use vector quantiza-

tion techniques to quantize unitary precoding matrices for MIMO transmission,

i.e., Problem 1. We apply several vector quantization techniques to this problem

and we show the benefits of the applied techniques through simulations. However,

all the presented codebooks are found by Monte-Carlo designs. Even for the most

simplest distortion functions there still exists no optimal design approaches. An

interesting, but very hard topic, would be the investigation of improved codebook

design algorithms, i.e., algorithm that do not converge to a local optimum but to

the global optimum.

The next chapter, Chapter 4, considers Problem 2, i.e., the extrapolation

of the current channel based on previously known channel realizations. The

used technique, i.e., geodesic extrapolation, shows promise for the investigated

channel model. As future work it would be interesting to do a comparative study

of geodesic extrapolation with other extrapolation techniques.
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Correlated Multi-User MISO Channels

In the next part of the thesis we visit similar problems in the context of multi-user

MISO channels.

In Chapter 5 we design codebooks for a spatially correlated channel using a

Monte-Carlo codebook design. As in the previously mentioned single-user case,

the next step would be the investigation of improved codebook design algorithms.

The same is true for the results of Chapter 6 where we design codebooks for

temporally correlated channels.

Scheduling in Multi-User MISO Channels

The next two chapters are concerned with Problem 5. In Chapter 7 we present an

extension of the BestFit algorithm for near-round-robin scheduling. The following

chapter, Chapter 8, then considers true round-robin scheduling. The presented

algorithm tries to allocate the users in the same position in a block as long as

possible by distributing the available energy correspondingly. We further present

an algorithm to generate the codebooks to quantize the feedback. The next step

should be to prove the optimality of the presented codebook generation algorithm.

Adaptive Codebooks

Throughout the thesis we generate the codebooks offline based on known and

fixed channel statistics. However, we have to assume that in real systems the

channel statistics are not known and maybe even not time-invariant. The code-

books should adapt during runtime to the changing channel characteristics. A

possible solution is the application of self-adapting codebooks. We already present

some basic work in this particular direction in Chapter 3.

Imperfect CSI

A topic not considered in this thesis, but of great practical importance, is im-

perfect channel knowledge, i.e., acquiring perfect CSI is not possible due to the

limited time available for training in practical systems. As a consequence, the

applied algorithm should be robust against imperfect CSI.
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Beyond Narrowband

Further, as we mentioned in the problem statements in Chapter 1.1, we just

considered narrowband single-carrier transmission throughout the thesis. How-

ever, the proposed techniques can also be implemented for other systems, e.g.,

quantizing the subcarriers of an OFDM system.

Implementation

It is important to note that the performance of the presented algorithms in this

thesis is evaluated by simulations. These simulations rely on various optimal

assumptions on the underlying system, e.g., Rayleigh fading. However, in order

to judge the practical relevance of the presented algorithms, they have to be

implemented, and their performance in real systems has to be evaluated.
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Abbreviations

AoD angle of departure

BER bit error rate

CARR channel aware round-robin

CDI channel direction information

CDMA code division multiple access

CQI channel quality information

CSI channel state information

DPC dirty paper coding

FDD frequency-division duplexing

FSVQ finite state vector quantization

GLA generalized Lloyd algorithm

HP high performance

i.i.d. independent and identically distributed

LC low complexity

LMMSE linear minimum mean square error

MC Monte-Carlo

MI mutual information

MIMO multiple-input multiple-output

MISO multiple-input single-output

ML maximum likelihood

MMSE minimum mean square error

MPC multipath components

MSE mean square error
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MSV minimum singular value

NLOS no line of sight

NPF non-prefix-free

OB orthogonal beamforming

OFDM orthogonal frequency-division multiplexing

OSDMA opportunistic SDMA

OSDMA-LF OSDMA with limited feedback

OSTBC orthogonal space-time block code

PAS power angular spectrum

PBF partial Best Fit

PDF probability density function

PF prefix-free

POTS plain old telephone service

PSK phase-shift keying

PVQ predictive vector quantization

QAM quadrature amplitude modulation

QoS Quality-of-Service

QPSK quadrature phase-shift keying

RVQ random vector quantization

SDMA space-division multiple access

SER symbol error rate

SINR signal-to-noise-plus-interference ratio

SISO single-input single-ouput

SVD singular value decomposition

TDD time-division duplexing

TDMA time-division multiple access

TxMF transmit matched filtering

ULA uniform linear array

UT user terminal

VQ vector quantizer

ZF zero-forcing
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Abstract

The number of deployed wireless communication systems has grown rapidly in

the last years. Their popularity is mainly due to the effortlessness with which the

systems can be deployed. Further, the new generation of wireless systems, e.g.,

802.11n, starts to close the performance gap to their wired counterparts. The

performance of these systems can be improved if channel state information (CSI)

is available at the transmitter. Unfortunately, having perfect CSI at the transmit-

ter all the time is difficult to realize. CSI can be acquired through training, but

becomes outdated very quickly afterwards due to the inevitable time-variability

of the wireless channel. However, if the coherence time of the channel is suffi-

ciently large, then the CSI becomes time correlated. One of the main topics of

this thesis is to exploit this time correlation to improve the performance of the

wireless system. Another problem is that the CSI can often just be acquired at

the receiver and must be fed back to the transmitter over a data-rate limited

feedback link. Thus, the CSI has to be quantized before it can be fed back. The

application of tools from the large vector quantization framework to CSI quanti-

zation is the other main topic of the thesis. Throughout the thesis we investigate

different scenarios where CSI knowledge at the transmitter plays a paramount

role.

In the first part of the thesis we consider a single-link MIMO system. We

start by investigating how the unitary precoder can be extrapolated based on the

knowledge of previous precoders using geodesic interpolation. Next, we apply

tools from vector quantization to quantize the precoders by exploiting the time

correlation of the channel.

In the next part we consider the MISO broadcast channel. There, we propose
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the use of predictive vector quantization to exploit the time correlation to improve

the CSI quantization. Further, we introduce a novel channel model, and generate

the corresponding CSI quantization codebooks.

We investigate in the last part the feedback of different metrics to enable

round-robin scheduling, and near round-robin scheduling, assuming a limited

feedback link. We present different metrics, and also propose an algorithm to

design the corresponding codebooks.
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Samenvatting

Het aantal gëınstalleerde draadloze communicatiesystemen is de laatste jaren snel

gegroeid. Hun populariteit is voornamelijk te danken aan het gemak waarmee de

systemen kunnen worden geinstalleerd. Ook heeft de nieuwe generatie draadloze

systemen, zoals 802.11n, een prestatie die steeds dichter tegen die van bedrade

systemen aanligt. De prestatie van deze systemen kan worden verbeterd als

kanaalinformatie beschikbaar is bij de zender. Helaas is het zeer moeilijk om

continu perfecte kanaalinformatie bij de zender te krijgen. Kanaalinformatie kan

verkregen worden via training, maar de informatie veroudert snel vanwege de

onvermijdelijke variaties in het draadloze kanaal. Echter, als de coherentietijd van

het kanaal voldoende lang is, is de kanaalinformatie gecorreleerd in de tijd. Een

van de hoofdonderwerpen in dit proefschrift is het benutten van deze tijdcorrelatie

en hierdoor de prestatie van het systeem te verbeteren.

Een ander probleem is dat de kanaalinformatie meestal enkel bij de ontvanger

gemeten kan worden, en teruggestuurd moet worden naar de zender over een

retourkanaal met beperkte capaciteit. De informatie moet gecomprimeerd worden

voordat het kan worden teruggestuurd. Het gebruik van technieken uit de vector-

kwantisatie voor de compressie van kanaalinformatie is een ander hoofdthema in

het proefschrift. We bestuderen diverse scenarios waarbij kanaalinformatie bij de

zender een belangrijke rol speelt.

In het eerste deel van het proefschrift beschouwen we een enkele verbinding in

een multi-kanaals (MIMO) systeem. We beginnen met het bestuderen hoe de uni-

taire precoder geextrapoleerd kan worden gebaseerd op de kennis van voorgaande

coders met gebruikmaking van geodetische interpolatie. Vervolgens passen we

gereedschappen uit de vectorkwantisatie toe om deze precoders te kwantiseren
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met gebruikmaking van de tijdcorrelatie van het kanaal.

In het volgende deel beschouwen een MISO omroepkanaal. Hiervoor stellen

we het gebruik van voorspellende vectorkwantisatie voor, waarin de tijdcorrelatie

gebruikt wordt voor verbeterde kanaalkwantisatie. We introduceren een nieuw

kanaalmodel, en genereren de bijbehorende kanaalkwantisatie codeboeken.

In het laatste deel onderzoeken we het terugsturen van diverse parameters om

“round-robin” schema’s mogelijk te maken over een beperkt retourkanaal. We

bestuderen diverse parameters, en stellen een algoritme voor om de bijbehorende

codeboeken te ontwerpen.
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