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Abstract

Backward stochastic differential equations (BSDE) are known to be a powerful tool in
mathematical modeling due to their inherent connection with second-order parabolic par-
tial differential equations (PDE) established by the non-linear Feynman-Kac relations. The
fundamental power of BSDEs lies in the fact that with them one does not merely obtain the
solution of the corresponding PDE but also its spatial gradient through the control process
Z. Classical numerical methods tackling the system face the so-called curse of dimension-
ality and cannot be used to solve high-dimensional problems. In recent years, multiple
approaches have been developed to overcome this computational burden, building on deep
learning and showing remarkable empirical success even beyond 10 dimensions. However,
such Deep BSDE methods struggle with giving accurate approximations for the Z-process
throughout the whole time horizon. In this thesis we propose a novel approach aimed to give
better estimations for the control problem, exploiting the natural dynamics of the Z-process
given by Malliavin calculus. The proposed methods use deep learning parametrizations tak-
ing advantage of the universal approximation capability of neural networks. The Malliavin
derivatives are estimated through the Malliavin chain rule. Two discrete numerical meth-
ods are developed which are called One-Step Malliavin (OSM) and Multi-Step Malliavin
(MSM) schemes respectively. An error analysis is carried out proving the consistency of the
algorithms and showing first-order convergence under certain assumptions. Numerical ex-
periments are presented to demonstrate the efficiency of the Malliavin formulation compared
to other Deep BSDE solvers.

Keywords: backward stochastic differential equations, Deep BSDE, Malliavin calculus, deep learning,
neural networks, PDE, high-dimensions, curse of dimensionality.
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Az ég beborul, egészen besotétedik. Felvonyitanak a kutydk,
meglapul a nyul, fut a szarvascsorda, fut, riadtan menekil. Es
ebbe’ a félelmetes és felfoghatalan alkonyatban még a madarak is, a
madarak is megzavarodnak és a fészkiikre szallnak riadtan. Es akkor
néma csend. Minden él6lény elnémul. Vajon megindulnak a hegyek?
Réank dol a mennyboltozat? Beomlik a F6ld? Nem tudjuk mi lesz,
nem tudjuk mi lesz, mert bedllt a teljes napfogyatkozds. De... de
nincs ok a félelemre. Még nincs vége. Mert a Nap izz6 géombjének
tiloldaldn lassan kitszik a Hold. Es a Nap most jbél felragyog.
Es a Foldre lassan visszatér a fény és aradni kezd ujbol a meleg.
Es mindenkit megindultsag fog el, hogy felszabadul a sotétség silya
aldl.

Tarr Béla — Krasznahorkai Laszld, Werckmeister harméniak
(részlet)

The sky darkens, then goes all dark. The dogs howl, rabbits hunch
down, the deer run in panic, run, stampede in fright. And in this
awful, incomprehensible dusk, even the birds... the birds too are
confused and go to roost. And then... Complete silence. Everything
that lives is still. Are the hills going to march off? Will heaven fall
upon us? Will the Earth open under us? We don’t know. We don’t
know, for a total eclipse has come upon us... But... but no need
to fear. It’s not over. For across the sun’s glowing sphere, slowly,
the Moon swims away. And the sun once again bursts forth, and to
the Earth slowly there comes again light, and warmth again floods
the Earth. Deep emotion pierces everyone. They have escaped the
weight of darkness.

Béla Tarr — Laszl6 Krasznahorkai, Werckmeister Harmonies
(opening scene)
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Introduction

The concept of backward stochastic differential equations (BSDE) was first introduced by Bismut in [1]
for a linear stochastic control problem. The field has been an area of intense research ever since because
— as shown in [2] — it turns out that BSDEs provide a natural probabilistic formulation to a wide range of
physical phenomena through their inherent connections with second-order parabolic partial differential
equations (PDE). The intriguing peculiarity of BSDEs is that their solution is a pair of random processes
with which they do not merely provide the solution to a corresponding PDE by their Y-process but
also its spatial gradient at all points over spacetime in the so-called control, Z-process. Hence, these
backward equations by construction yield sensitivities simultaneously to the solution, an attribute that
is of fundamental relevance in several applications.

Driven by the possibility of probabilistic mesh-free methods they provide for PDESs, several numerical
approaches have been developed to tackle the BSDE problem. Classical numerical methods of that
kind include a discretization of the continuous time window and subsequently approximate recursive
conditional expectations backwards in time. Such approaches have proven to be successful up to 6 and
7 dimensions — see, e.g., [3], [4], [5] or [6]. However, they come with one significant drawback. Namely,
through the choice of a finite set of basis functions — such as polynomials or piecewise step functions
— they face the so-called curse of dimensionality, meaning that their computational complexity scales
exponentially in the number of input dimensions. Recently, a new class of BSDE solvers were proposed
in the literature in order to overcome this computational obstacle. The group of so-called Deep BSDE
methods are founded on the exceptional practical achievements deep learning has reached over the past
decades in a wide range of engineering applications. The majority of such Deep BSDE approaches were
inspired by the pioneering paper of Han et. al in [7], where the backward equation is reformulated in
the form of a forward Euler—Maruyama discretization, using a sequence of neural networks parametrizing
the Z-process in the BSDE. The authors of [7] then suggest to train the sequence of neural networks
on a terminal loss produced by the forward discretization. Encouraged by the experimental successes
shown by this algorithm, another approach was proposed in [8], [9] and [10] where both processes in
the backward equation are parametrized by deep neural networks. Thereupon, similarly to classical
conditional expectation approaches, the neural networks are optimized in a backward induction through
a sequence of loss functions formulated on a forward Euler-Maruyama discretization of the backward
equation. We call these two models the Forward and Backward Deep BSDE solvers respectively.

Both algorithms have shown remarkable empirical success in solving BSDEs beyond 10 dimensions
for equations of highly complex structures. These results incite hope that such deep learning based
formulations may indeed be the answer to the curse of dimensionality. However, Deep BSDE models also
exhibit serious downsides. In fact, the Forward Deep BSDE method only manages to solve the equation
at t = 0 and its accuracy severely deteriorates at further points in time, for both the Y- and Z-processes.
In exchange for performing multiple sequential optimization steps, the Backward Deep BSDE method
manages to mitigate the errors stemming in the Y-process at ¢t > 0, nonetheless it fails to give estimates
of the same accuracy for the Z-process throughout the whole time horizon. Consequently, both schemes
struggle to cope with the Z part of the solution, which in fact is the biggest challenge in the numerical
approximation of BSDEs. A possible explanation for this limitation is that both of the methods are
solely formulated on the BSDE driving the evolution of the Y-process, whereas neither of them poses
direct training on the control process. Hence, the estimations for the Z-process are only trained implicitly
through the dynamics of Y.

In this thesis, we propose a novel method to counteract this phenomenon inspired by the logic of
classical recursive conditional expectation schemes. We split up the approximation tasks of the Y- and
Z-processes and estimate each by separate neural network Least-Squres Monte Carlo (LSMC) regres-
sions. Additionally, using the natural dynamics of the control process provided by Malliavin calculus,
we show that the Z-process itself satisfies a linear BSDE depending on the Malliavin derivatives of the
solution pair of the BSDE. Building on this well-known theoretical result, we derive two discrete nu-
merical schemes where the Z-process is approximated by explicit conditional expectations arising from



Malliavin calculus. The two proposed schemes are called the One-Step Malliavin (OSM) and Multi-Step
Malliavin (MSM) schemes respectively and they only differ in their corresponding discretizations of the
underlying time horizon. In both algorithms, the Malliavin derivatives of the solution pair of the BSDE
are estimated through the Malliavin chain rule formula, enabled by neural networks being differentiable
universal function approximators.

The thesis is structured as follows. In the first three chapters we provide a theoretical introduction
to the key concepts of the main idea. Namely, in chapter 1 we introduce backward stochastic differen-
tial equations and prove their well-posedness under general assumptions on the underlying randomness.
Thereafter, we cover forward backward stochastic differential equations (FBSDE) and state the gener-
alized Feynman—Kac relations establishing the connection between BSDEs and PDEs. This is followed
by an introduction on Malliavin calculus given in chapter 2, where we mostly focus on the Malliavin
derivative operator. We emphasize the importance of the so-called Malliavin chain rule in the context
of this work. Thereafter the properties of the Malliavin derivatives of an FBSDE system are discussed,
where we show that the Malliavin derivatives of the solution pair of a BSDE satisfy a linear BSDE
themselves. This theoretical result is the basis of the proposed algorithms since the solution of the Malli-
avin BSDE provides a continuous version of the Z-process in the original BSDE. Finally, to conclude
the theoretical introduction, an overview on deep learning is presented in chapter 3. In this part, we
introduce the concept of fully-connected feedforward deep neural networks. We discuss their well-known
universal approximation capability given by Theorem 3.2.2 which states that the class of even shallow
neural networks is dense over compact subsets of Sobolev spaces.

The theoretical introduction is followed by a discussion on numerical analysis. First, in chapter 4
classical numerical methods to solve FBSDE systems are covered. We derive recursive conditional ex-
pectation schemes for the backward equation and explain the concept of the Least-Squares Monte Carlo
(LSMC) regression which is the numerical tool of this work to approximate conditional expectations. In
the final part of the chapter, we describe the class of Deep BSDE methods in more details, elaborate
on their major drawbacks and comment on why they cannot be used to give accurate control estimates
throughout the whole spacetime. Thereupon, motivated by this observation, we propose the two novel
discrete schemes OSM and MSM in chapter 5. Subsequently, an error analysis is carried out for both
proposed algorithms in chapter 6. We derive error bounds which depend linearly on the mesh-size of the
discretized time interval, on top of the regression errors induced by neural network estimations. Under
certain assumptions, we show that one, by allowing for multistepping, gains an O(1/N) order of con-
vergence in the approximation errors of the Z-process through the cumulative regression error of the
Y -process. The resulting error figures are compared to ones established for standard Deep BSDE meth-
ods. Afterwards numerical experiments are presented in chapter 7, where the practical performance of
the proposed schemes is demonstrated. We show that they indeed manage to overcome some of the draw-
backs of the Deep BSDE methods, giving more accurate control estimates in case of numerical examples
up to 10 dimensions. A particular example is highlighted where, for an equation of complex structure,
the proposed schemes give an order of magnitude better convergence than the Backward Deep BSDE
method. Ultimately, our findings are summarized in the Discussion where we conclude the results of the
work and lay out possible directions for future research.



Chapter 1

Backward Stochastic Differential
Equations

In the following chapter we introduce the key concept of this work, backward stochastic differential
equations (BSDE). We first give an intuition on how BSDEs can be interpreted compared to standard
forward stochastic differential equations (SDE), also covering how are they inherently different from them.
After this heuristic motivation, we establish the well-posedness of a general non-linear BSDE problem
and give a proof on the existence of a unique solution under certain regularity conditions. As in later
stages the class of linear BSDEs is going to be crucial for our main algorithms — see Equation 2.19 in
particular —, we give a representation formula for the solution of such equations. Finally, we introduce the
concept of forward-backward stochastic differential equations (FBSDE), define the final problem setup
for the rest of the analysis and put the work into context through the so-called generalized Feynman—Kac
relations, with which we demonstrate that solving BSDEs is (in some probabilistic sense) equivalent to
solving a rather wide class of second-order parabolic partial differential equations (PDE).

1.1 Preliminaries

Let us fix some finite 0 < T < co. During the whole thesis we are concerned with a filtered probability
space (Q, F,IF,P), where F' = {F;}icjo,r) and F == o{W, : 0 < s <t < T} is the natural filtration
generated by a d-dimensional Brownian motion augmented with P-null sets of 2. We denote F = Fr.
In what follows, (in)equalities between random IF-measurable quantities are always meant in the P-a.s.
sense.

Furthermore, throughout the whole work we heavily use the following notations, definitions of certain
spaces.

Definition 1.1.1 (Notations, spaces). Let us introduce the following notations

o |X| = /Tr[XTX] for X € R"™< We use the same notation for scalars and vectors as well,
therefore it is worth to notice that for the latter two this norm reduces to the standard Euclidean
norm;

e (y|z) : R x RY — R the inner product;
e yO 2,y z:RYx R = R? the element-wise multiplication and division respectively;

° ]Lg (R™): for any G C Fr the space of all G-measurable random variables £ : & — R"™ such that
E [[€["] < o0;

e LP(R™): the space of all progressively F-measurable random processes ® : [0,7] x Q — R%, such
that for each t € [0, T]: E [|®¢|"] < oo;

o L (R™): the space of all progressively F-measurable bounded random processes @, i.e. @ :
2 x [0,7] — R™ for which 3C' € R such that P [sup,c(o 7 [®¢| > C| = 0;
o H}(R™*?): the space of all progressively F-measurable random processes ® : [0,7] x @ — R4,
p/2
such that E [( fOT |<Ilt|2dt> ] < oo; with slight abuse of terminology we often call this latter norm

the integral norm;



CHAPTER 1. BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS

SL.(R%): the subspace in HE(R*!) of all continuous processes;

gﬁ(Rd): the space of all progressively F-measurable, continuous random processes @ : [0,7T] x  —

R?, such that E [Supte[O’T] |®:]”| < oo; with slight abuse of terminology we often call this latter

norm the supremum norm;

[[/l5: the norm, which for any 8> 0 and ¢ € Hz (R™*) is defined by H‘I)HZ =E UOT €6t|q)t|2dt}§

]I-I%Fﬁ(IR”Xd): the metric space (HZ(R™*9), |[l5) equipped with this norm.
With slight abuse of the notation, we often use Hp(R?) := HE(R'*¢) when n = 1.

Moreover, in the rest of the chapter we rely on the following widely known theorems of functional
analysis and stochastic calculus which are stated without proofs.

Theorem 1.1.1 (Banach’s Fixed-Point Theorem)
Let (X,d) be a non-empty complete metric space and ® : X — X a contraction mapping defined on it,
i.e. there exists K € [0,1) such that Vz,y € X

d(®(z), (y)) < Kd(z,y). (1.1)
Then @ admits a unique fized-point x* such that ®(x*) = x*.
Proof. See, e.g., [11]. O

Theorem 1.1.2 (Burkholder-Davis—Gundy Inequality)
Let 0 € ]H%F(]Rd). Then, for any p > 0 there exist universal constants k,, K, € R depending only on p
and d, such that the following inequalities hold

T p/2 t p T p/2
k,E / o, |2 dt <E || sup / o dW,| | < K,E / o |2 dt . (1.2)
0 tefo,7]Jo 0
Proof. See, e.g., [12]. O
Theorem 1.1.3 (Martingale Representation Theorem)
Let £ € L% (R). Then there exists a unique Z € HE(R®) such that
T
{=E[] +/ Z,dWs. (1.3)
0
Consequently, for any square-integrable F-martingale M, there exists a unique Z € HZ(RY) such that
¢
M, = My +/ ZdWs. (1.4)
0
Proof. See, e.g., [13]. O

1.2 (Forward) Stochastic Differential Equations
A forward stochastic differential equation (SDE) is an equation given by
t t
Xo=n+ [ ueXode+ [ ol X)aw, 0<t<T, (15)
0 0

where X is a d-dimensional random process, i : [0,7] x R — R9, ¢ : [0,T] x R? — R%*? are determin-
istic functions called the drift and diffusion coefficients respectively, and 7 is an Fy-measurable random
variable. We frequently make use of the above equation’s differential form, which can be written in the
following way

dXt = ,L,L(t,Xt)dt + O'(t,Xt)th, XO =n, 0 S t S T. (16)

It is important to highlight that due to the non-trivial nature of SDEs there exist multiple concepts for
what we consider a solution to the equation above. For the purpose of this work, in the following we are
only considering so-called strong solutions, meaning that we say a measurable process X is a solution to
the SDE above, if Equation 1.5 is satisfied IP-a.s. For a further discussion on other kinds of solutions see,
e.g., [13].

In order to have a basic idea on when does such a solution exist, let us establish the following
assumption
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Assumption 1.2.1 (Unique Solution of SDEs)
Let the initial condition 1 and the coefficients ju : [0, T]x R¢ — R, ¢ : [0, T] x R? — R4 in Equation 1.5
be such that
1. n e Ly, (RY);
2. they admit linear growth in x, i.e. there ewists a constant C such that ¥(t,z) € [0,T] x R?
u(t, )| + [o(t, )] < C (1 4+ [a]); (1.7)

3. w,o are uniformly Lipschitz continuous in the spatial variable, i.e. there exists a constant L such
that Y1, 79 € Rt € [0,T]

lp(t, x1) — p(t, x2)| + |o(t, x1) — o(t,x2)| < Llzy — x3]. (1.8)

Theorem 1.2.1 (Existence of Unique Solution — SDEs)
Under Assumption 1.2.1, the SDE above admits to a unique continuous solution X € $2(R4).

Proof. See, e.g., [13]. O

From now on, we often refer to the solution of SDEs satisfying the assumption above as standard
Ito-processes. An important attribute of such processes is that they provide a probabilistic representation
to the solution of a certain class of partial different differential equations (PDE) established by the well-
known Feynman—Kac formula.

Theorem 1.2.2 (Feynman—Kac)
Consider the following, boundary valued linear PDE problem

Ou (t,x) + (p|Vu) (t,x) + %Tr [oo” Hessu| (t,z) — (v|u) (t,z) — fO(t,z) =0

ot
w(T, z) = g(x).
Additionally, let X be the solution of a corresponding SDE given by

t t
X, :77+/ M(S,Xs)ds—l—/ o(s, Xs)dWs,
0 0

and let the conditions of Assumption 1.2.1 be satisfied. Then the forward SDE has a unique solution,
furthermore, if the solution of the PDE problem exists, it can be written as the conditional expectation

t

u(t,z) =E [/ el v Xn)dr f006 X ds + el ”(T’Xr)drg(XT)‘Xt = a:] . (1.9)
t

Proof. The proof is a simple consequence of It6’s lemma, we refer the more interested reader to, e.g.,

[12]. O

1.2.1 Arithmetic and Geometric Brownian Motions

To conclude this section, let us finally mention two special cases when the solution of Equation 1.5 adheres
to a closed-form expression of the underlying Brownian motion. These are the so-called Arithmetic (ABM)
and Geometric Brownian Motions (GBM) whose dynamics read as

AXPPM = il gdt + o LW, Xg P = o, 0<t<T,  (110)
AXFBM = X EBMt 4 o diag (XCEM) W, X§PM =z, 0<t<T, (1.11)

where p, 0 € R, 14 denotes a d-dimensional vector full of ones, I  is the identity matrix and diag : R¢ —
R%*? maps a d-dimensional vector to a diagonal matrix whose main diagonal is the vector itself. Notice
that in above, by slight abuse of notation, we redefined the coefficients u, o in Equation 1.5 with scalars
which — although may be confusing at first — is in accordance with the standard notation of the literature.
From this point on, when — and only then — talking about ABM or GBM, i and o always correspond to
the scalars in Equation 1.10 and Equation 1.11.

Applying It6’s lemma, it is straightforward to show that the solutions of such equations admit to

XPBM = 26 + utly + oWy, (1.12)
o2
XEBM — gy @ (1 HattoWe (1.13)

where the exponential function is also taken element-wise. These expressions are of great use since, as
we shall see in chapter 6 and chapter 7, they allow one to use analytically accurate approximations for
diffusion dynamics of the form Equation 1.10 and Equation 1.11 respectively.
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1.3 General Formulation

The concept of backward stochastic differential equations (BSDE) was first introduced by Bismut [1] in
1973 for a linear stochastic control problem. Later Pardoux and Peng [2], [14] generalized the formula-
tion and its solvability to non-linear settings and proved their connection with second-order quasi-linear
parabolic partial differential equations. The field has been an area of intense research ever since then, as
BSDEs turn out to be a natural formulation for a wide range of PDEs and stochastic control problems.
In the following section we build up an intuition on what BSDEs mean and formulate the problem in a
general setting.

As SDEs can be thought of as a non-linear extension to stochastic integration, BSDEs are an extension
to SDEs built on the martingale representation theorem. By the martingale representation Theorem 1.1.3,
we can easily see that any martingale induced by taking appropriate conditional expectations of an
¢ € L% (R) random variable: Y; := E [¢| ], admits to

t
Y: =E[¢{|F] =Yo +/ ZdWs. (1.14)
0
By which we also have

T
Yy = Y0+/ Z,dW,. (1.15)
0

Combining these latter two equations, we get

T
y;:gf/ Z,dW,. (1.16)
t

This is a linear SDE, where instead of fixing an initial condition in ¢ = 0 we fix a random terminal
condition at t = T.

It is important to notice that the solution of a BSDE is a pair of adapted random processes (Y, Z)
which satisfy the equation above. Indeed, equations with the above dynamics in the absence of the
process Z have one unique solution which reads as Y; = £. However, since £ is an Fp-measurable random
variable, allowing for such a solution would violate the natural requirements of adaptivity. Therefore —
in rather laymen’s terms — one can think of the process Z as the additional information in the solution,
which ”subtracts the required amount of randomness” [15, pg. 6] from the non-adapted terminal condition
£.

Motivated by the example above, in the rest of this chapter we are concerned with non-linear BSDEs
of the form

T T
Yt:€+/ f(s,Ys,Zs)ds—/ Z AW, 0<t<T, (1.17)
t t

where ¢ is an Fp-measurable random variable called terminal condition, and f : Q x [0, T] x R" x R"*4 —
R™ is an F-measurable function called the driver or the generator of the BSDE. We often make use of
this equation’s differential form which reads

AY; = — f(t, Y, Z,)dt + Z,dW;, Yy =¢, 0<t<T. (1.18)

As argued above, adaptivity of processes satisfying the equations above is non-trivial, therefore it is worth
to define the concept of a solution explicitly.

Definition 1.3.1 (Solution of the BSDE). The solution of the BSDE is a pair of random processes (Y, Z)
satisfying Equation 1.17, such that Y € $%(R") and Z € HZ(R"*?).

In order to establish the existence of a unique solution, we need to put certain restrictions on the
terminal condition and the generator of the equation. These are collected in the following assumption.

Assumption 1.3.1 (Unique Solution of BSDEs)
Let the parameters in Equation 1.17 be such that

1. €€ L% (R™);

2. f(t,y,z) is uniformly Lipschitz continuous in (y,z), i.e. there exists L such that V(t,y1,21),
(t,y2,22) € [0,T] x R™ x R"*4

\f(w,t, ylvzl) - f(wvt7y2’22)| < L(|y1 - yQ‘ - |Zl - 22|)7 (119)
dt x dP-a.s;



1.4. WELL-POSEDNESS OF BSDES

3. £(-,0,0) € HZ(R™).

We call the parameters (&, f) of Equation 1.17 standard when the assumption above is satisfied.

Finally, we remark that most of the results we present below would hold for a more general multidi-
mensional setting, however, since this work is only concerned with scalar BSDEs for the ease of notation
we assume n = 1. This means that — by slight abuse of notation — Z; is always a 1 x d-dimensional
row-vector.

1.4 Well-Posedness of BSDEs

In the following section we are considering the general non-linear BSDE setting and establish the well-
posedness of the problem, thus we show the existence of a unique solution. The section is built up
as follows. First we prove an a priori estimate for pairs of random processes satisfying equations like
Equation 1.17. Using this estimate, we show the existence of a unique solution by defining a contraction
mapping over the space $2(R) x HZ(R?) and applying Banach’s fixed-point theorem. Consequently,
we construct a way to estimate the unique solution via a sequence of Picard iterations. Finally, in the
light of the latter Malliavin formulation in chapter 2, we study the class of linear BSDEs and prove a
representation formula for the solution of such equations. Throughout the whole section, we are largely
building on [16, Chapter 2] and [12, Chapter 5].

1.4.1 A Priori Estimate

In order to show the well-posedness of the problem, we first derive an error bound for the difference of the
solutions of two BSDEs. It is worth to mention that in literature there exist multiple a priori estimates,
stated in different error norms — see Remark 1.4.1 below. Hereby we use the one given by El Karoui et.
al in [16], which provides the following useful a priori estimate.

Lemma 1.4.1 (A Priori Estimate)

Let {(f%,€%),i = 1,2} be two sets of standard parameters satisfying Assumption 1.3.1. Denote the solu-
tions of the corresponding BSDEs given in Equation 1.17 by {(Y*,Z%),i = 1,2}. Let L be the Lipschitz
constant of f1, and put AY, =Y} — Y2, AZ, = Z} — Z} and Nof, = fL(t, Y72, Z2) — f2(t, Y2, Z2).
Then for any triple of real numbers (u, \, B) admitting to u > 0,\2 > L, 3 > L(2+ \2?) + u? the following
inequalities hold

1
IAYIE <7 |7k [|AYe?] + 8 fl). (1.20)
Azt < 2 [t [lave] + Ljansi? 1.21
18215 < g |7 B [1aYrl] + 5l80fll5 | (1.21)

Proof. We closely follow the proof given in [16]. In what follows C always denotes a constant — depending
only on T and d —, whose value may vary from line to line.
We are considering the BSDEs of the form for i = 1,2

T T
vi=¢ +/ fi(s, Y, Zh)ds —/ ZidW,. (1.22)
t t

Using the triangular inequality it follows that

T T
|| < |¢] +/ |fi(s, Y., ZE)|ds + sup / ZiAW,|. (1.23)
0 tel0,T] |/t
As the right hand side is independent from t, it follows that
sup |Y/| < |€'] +/ |f'(s,Y{, ZL)|ds + sup / ZydWg|. (1.24)
t€[0,T) 0 tel0,T] |/t

Since, by assumption (£%, f¥),i = 1,2 are both standard parameters — i.e. f is Lipschitz continuous —,
the first two terms are L% (R) random variables. To show that so is the last term, we use the algebraic

7
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inequality (a + b)? < 2(a® + b?) and get

sup / Z:dW, = sup / Z;dVVs—/ Z:dW,
tel0,T] |Jt te[0,7] |J0 0
T 2 t 2
<2 / ZidW,| +2 sup / ZLdw, (1.25)
0 tef0,7] 1J0
t 2
<4 sup / Ziaw,| .
t€l0,T] [J0
Using the Burkholder-Davis-Gundy inequality Theorem 1.1.2, we conclude that
T 2 T
E sup / Z:dW, <CE / |Z:|"ds| < oo, (1.26)
tel0,T] |/t 0

as Z' € HZ(RY) by the definition of a solution. Therefore, we derive that SUPe(o,7] |Vi| € L% (R), and by
similar reasoning — due to the additive closedness of Banach spaces — we also gather sup,c(o 1) |AY;| € ]LQFT.

Let us now apply It6’s lemma to the process }N/S = eﬁs\AYs\z. It follows that
d (™IAY, ) = [Be™AY, =267 (15, Y}, 20) = (s, Y2 YD) AV, + |AZ ] ds
+ 2" AY,AZ, dW,. (1.27)
Integrating between t and T' gives

T T
eﬁt|Am2+ﬁ/ eﬂ8|m@|2ds+/ ¢P5|AZ, P ds
t

t

T T
:eBT\AYT|2+2/ PEAY,(fL fff)dsz/ PEAY,AZ, AW, (1.28)

t t

where we used the notations f¢ := fi(s, Y}, Z%). By the Lipschitz continuity of each driver, we have that
[fo = 2] < [fS = F2] + Ao fs| < LAY +[AZ]) + |Asfs]. (1.29)

Substituting this into the second term of the right-hand side in Equation 1.28 yields

T T
2/ e AY,(fL - f2)ds <2 / AV fS — f2]ds
t t

T (1.30)
<2 [ SAVIL(AY.]+ |AZD +|Baf.]|ds
t
Using the algebraic inequality 2y(Lz 4 t) < L)\Z; + szz +9? (/1,2 + L)\Q) for p, A > 0 implies!
T T 2 2
LIAZ, Ao fs
/ PIAY, [LIAZ,| + | A fi]] < / ess | - D B2l ey poyav P as. (s
t t

Substituting this back into the original inequality Equation 1.28, we conclude

T T
1
PUAY) + 8 / eBS|AYS|2ds+B/ P |AZ|*ds
t t

T T
L
< PTIAYT + [L(2+N) + 47 / eﬁS\AYs\QdHﬁ/ eP|AZ, | ds
t t

1 T T
+?/ eﬁs|A2fs\2ds—2/ AV, AZ AW, (1.32)
t t

lwith y = AYs, 2 = AZ, and t = A fs.
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Choosing p, A, B such that 3 > L(2 + A\?) + 2 and A? > L, this inequality reduces to
2 o 1 7 2 T
A2 < PTIAY | + E/ 95| Ao [ 2ds — 2/ P AY,AZ, AW, (1.33)
t t

Integration over the whole time horizon then gives

T
/ PUAYPdt < T
0

1 T T T
eBT\AYT|2+—2/ eﬁS|A2fs|2d51 —2/ / PAY,AZ AW dt,  (1.34)
w=Jo 0o Jt

where we applied the Fubini theorem.
Since supcjo ) |AY:| € L%, (R), AY € HE(R) and also AZ € Hi(R?), by the Cauchy-Schwarz

inequality we get
T T T
E /|eﬂSAYSAZs|2ds < TR / |AY,[?ds| E / IAZ,|*ds
0 0 0

Consequently {e?*AY,;AZ}e0,r) € Hi(RY), which implies that the stochastic integral above has zero
expectation. Therefore, taking expectations of the inequality above proves the upper bound for AY

< 0. (1.35)

1
JAYIE <T [emw ; MQIIAfIIZ] . (1.36)

Substituting this back into the inequality Equation 1.32, after identical steps as above, gives the upper
bound for the control process

A2 1
IAZI < 5o [PTIAYRE + 18] (1.37)

concluding the proof. O

Using this a priori estimate, we can now prove the well-posedness of the BSDE problem in Equa-
tion 1.17. This is usually done by defining a contraction mapping over the product space $2(IR) x HZ(R)
and arguing that — due to Banach’s fixed point theorem — the contraction has a unique fixed point. In
what follows, we present the proof of El Karoui et. al given in [16, Theorem 2.1].

Theorem 1.4.1 (Existence of Unique Solutions — BSDEs)
Given standard parameters (f,&) satisfying Assumption 1.3.1, there exists a unique pair of random pro-
cesses such that (Y, Z) € $2(R) x HZ(RY), and they satisfy

T T
Y;=¢ +/ f(s,Ys, Zs)ds — / ZdW, (1.38)
t t

P-a.s.

Proof. Most of the work has already been done by Lemma 1.4.1. We use a fixed-point argument for the
mapping D : (y,z) — (Y, Z) implicitly defined by the following equation

T T
Vi—et [ foazlas— [ zaw, (1.39)
t t

where (y, z) € $2(R) x HZ(RY).

The fact that (f,&) are standard parameters implies that f(t,v;,2) € HZ(R), and consequently
X =&+ fOT f(s,ys, zs)ds is a square-integrable Fr-measurable random variable and M; = E [X|F;] =
E [5 + fOT f(s,ys, zs)ds‘}}} is a continuous square-integrable martingale. Then, by the martingale rep-

resentation Theorem 1.1.3, we have that there exists a unique integrable process Z e IH]QF(]Rd) such
that

t
M, = M, +/ Z,dW,. (1.40)
0
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Notice that the image of the mapping ® satisfies

t
)/t:Mt_/ f(SvysaZs)dS
0

7 = 7,.

(1.41)

By the linearity of the conditional expectations we also have Y; = [ftT f(s,ys,25)ds + §|]-"t], which

naturally implies that ¥ € $%(R). We therefore conclude that ® is a mapping from the space $Z(R) x
HZ(R?) onto itself.

Let us now consider two elements of $2(R) x H2(R?) which we will denote by {(y¢,2%),i = 1,2}.
Let {(Y?, Z%),i = 1,2} be the corresponding mappings defined by Equation 1.39. Applying Lemma 1.4.1
with 8 = p? we have that — notice that in this case f! = f2,¢! = ¢2 and thus L = 0,AYy =0 —

T T s 2
o < T | [ sl b - st b
(1.42)
2 1 ’ 1,1 2 2|2
18215 < 5B | [ (ot =) — flsu )P
0
Since the driver of the BSDE is Lipschitz continuous we have that
|F(s,u5,25) = F(5,93, 25)| < L[| Ays| + Az, (1.43)

where Ay = y* — y?, Az = z! — 22, Using the algebraic inequality (a + b)? < 2(a? + b?) once again, we
conclude that

21+ 7T)L [

2 2 2 2
IAY [ + [[AZ]]; < 1Ayl + ||AZ||5} : (1.44)

Let us now choose p? such that y? = § > 2(1 + T)L. This clearly implies that the mapping
® : $2(R) x HZ(RY) — SZ(R) x HZ(R?) (implicitly) defined by Equation 1.39 is not just a mapping
from a metric space — spaces equipped with the norm ||(y, z)||?3 = ||y||?3 + ”Z”Z — onto itself, but it also
holds that 3K € [0,1) such that H<I>(y1721) — <I>(y2,22)HB < KH(yl,zl) - (y2,z2)‘ 5 V(yt, 2%), (v?, 22) €
$Z(R) x HZ(R%). Therefore ® is a contraction mapping, and consequently by Banach’s fixed-point
theorem Theorem 1.1.1 there exists a unique fixed point x* = (Y*,Z*) € $%(R) x HZ(R?) such that
®(x*) = x*. For this unique fixed-point we have

T T
ve—er [ sz [z, (1.45)
t t

Y* € $2(R), Z* € HZ(R?), meaning that (Y*,Z*) is the solution of the original BSDE indeed. This
concludes the proof. O

The proof naturally establishes a way to construct the solution which — following the derivation of
[16] — we collect in the following corollary.

Corollary 1.4.1 (Picard Iterations)
Let 3 satisfy 2(T +1)L < 3 for a BSDE with a driver with Lipschitz constant L. Let (Y*, Z*) be a Picard
sequence defined recursively by

Yy°=0,2"=0,
T T (146)
Y+l :§+/ f(s,Ysk,Zf)ds—/ zZkawy,
t t

where Y9, Z° are constant zero random processes taking values in R and R**? respectively. Then the
sequence (Y*, Z¥) converges to the solution (Y, Z) dP x dt-a.s.

Proof. For the mapping @' : (Y*, Z%) s (Y*+1 ZF+1) defined implicitly by Equation 1.46 we have that

2 2 2(1+T)L 2 2
k=1: |Y2-Y'|2+ |22 2| _T[Hyl_youﬁuzl—zouﬁ]
2(1+T)L
k=2 |V3-Y?|+2° - 2% S [HW —Y )22 - Zl||f3}
21+ T)L\? 2
< (ZEE) (vt - voll 2 - 20

10
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by Equation 1.44. Introducing the notation ¢ := %,K = HYl — YOHZ + HZl — ZOHZ we therefore

have
YR — |+ || 25 - 2R < e (1.47)

By the assumption 2(T + 1)L < § we get € < 1, which implies

i |(AY*, AZF)]

k=0

e o0

2 k+1 k|2 k+1 k|12] E_ 1

B ZMY Y "B+’|Z -Z ||,3:| *Kzs *Kli_g < 400, (1.48)
k=0 k=0

by the summation formula of geometric series. Therefore the Picard series indeed converges, concluding

our proof. 0

Remark 1.4.1 (Supremum Norm)
In the above results we were using the norm defined by

T T
/ AR / %17, ds
0 0

and gave upper bounds for convergence in metric spaces equipped with this norm, implying the exristence
of a unique solution in $S&(R) x HZ(RY). A careful inspection of the proof of Theorem 1.4.1 shows that

this result can be expanded to the space §]2F(]R) x HZ(RY), where @%(R) is the space of all progressively

2
I(Y, 2)|l% = E +E

F-measurable, continuous random processes ® : Q x [0,T] — R such that E [suptE[O,T] ®,°| < oo.
Similarly, a(nother) priori estimate can be proven to upper bound the norm
2 2 r 2
(Y, Z)|” =FE | sup |V +/ |Zs|“ds| , (1.49)
0<t<T 0

leading to a different contraction mapping but the same convergence results. Consequently one can prove
in a similar fashion that the Picard sequence above also converges for SUPe(0,77] |Y;k — Yt| to 0, P-a.s.
For a proof on the latter, we refer the more interested reader to, e.g., [12].

1.4.2 Representation of Linear BSDEs

Later in this work, for the algorithms proposed on the Malliavin derivative’s BSDE introduced in chap-
ter 2, the class of so-called linear BSDEs — i.e. where the driver f is a linear function of Y, Z — plays a
fundamental role. Therefore it is of interest to see how the solution of such linear BSDEs looks like. In
what follows, we present a representation formula for the solution of a linear BSDE built on the formu-
lation of [12], which shall be useful in the alternative representations of the Malliavin derivative of the
Y -process — see section 2.6 in particular.

Proposition 1.4.1 (Representation Formula — Linear BSDEs)
Let € € ]L%—T (R),y € HZ(R), a € LE(R), B € L (R?) bounded, progressively measurable processes. Then,
if the pair of processes (Y, Z) satisfies the linear BSDE

T T
Yi=¢+ / [Vs + asYs + ZsBs] ds — / ZdW, (1.50)
t t
the solution admits the following representation

T
Y, =T;'E FT§+/ I'yvyeds
t

ft] , (1.51)
where

t t
Ft =1 +/ OéstdS +/ BsrdeS (152)
0 0

1s defined by a linear forward SDE.

11
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Proof. We are closely following the proof given in [12]. First of all, let us highlight that the boundedness
of a, 8 implies that the driver defined as f(¢,y, 2) = vs + a5y + 285 is uniformly Lipschitz continuous and
therefore (&, f) are standard parameters satisfying Assumption 1.3.1. By the results above, we therefore
have that the linear BSDE above does indeed have a unique solution (Y, Z).

Then the representation formula is a simple consequence of Itd’s lemma. Applying the multidimen-
sional It6’s lemma for the process Y; = I';Y; yields

dY; = —Tyydt + Ty Vi8] + Z,] AW (1.53)

Introducing the notations

Y, =00, Z=Ti[YiBi+2Z), €=Tp 7 =Ty,

we immediately get

Y, =¢ +/ Ysds — / ZdWs. (1.54)
t t

This is a BSDE with a ”constant” driver f(t,Y}, Zy) = A, i.e. the driver does not depend on (Y, Z).
From the assumptions it follows that (£, f) are also standard parameters, implying that this latter BSDE
has a unique solution (Y, Z) € $2(R) x HZ(R?) too. From this, we derive that the last term’s It6-integral
has zero expectation. Consequently, taking conditional expectations gives

f7;| )

_ T
£+/‘%®
t

concluding the proof. O

T
Y, —E Hf+/ T\ y,ds
t

ft] — Y =T,'E

1.5 Forward-Backward Stochastic Differential Equations

In this work, we consider a special class of BSDEs, namely a system of so-called Forward-Backward
Stochastic Differential Equations (FBSDE) where the randomness in the backward equation is coming
from a forward SDE. These systems, in the most general setting, can be described by the following set
of equations

t t
X; =z +/ w(s, Xs,Ys, Zs)ds +/ o(s,Xs,Ys, Zs)dWy, 0<t<T, (1.55a)
0 0
T T
Y, = g(Xr) +/ (5, X, Yo, Z3)ds — / Z.dW,. 0<t<T (1.55b)
t t

Notice that in the formulation above we allowed for the so-called coupling, meaning that the solution of
the forward equation depends on the solutions of the backward equation. This poses a challenge in terms
of constructing proofs for the existence of unique solutions, as our results in the previous sections are not
applicable due to the interdependence.

Nevertheless, in the rest of the work, we only consider the above system in a decoupled manner, i.e.
we do not allow for the forward process to depend on (Y, Z):

¢ ¢
X =1 —|—/ w(s, Xs)ds —|—/ o(s, Xs)dWs, 0<t<T, (1.56a)
0 0
T T
Y, = g(Xr) +/ (s, X, Yo, Zo)ds — / Z,dW,, 0<t<T, (1.56b)
¢ ¢

where f: [0, 7] x R x R x R'*¢ — R is a measurable function. In this setting, solving the equation above
can simply be divided into two parts: solving the SDE of the forward equation first, and then plugging
the resulting randomness in the backward part. This means that if the coefficients in Equation 1.56a are
such that p, o,z satisfy Assumption 1.2.1 then the forward part of the equation has a unique solution
provided by Theorem 1.2.1. However, in the setting above the backward equation’s driver and terminal
condition also depend on the solution of the forward SDE, therefore the results obtained before cannot
be directly applied for the existence of a unique solution for the backward equation in the system above.
In order to guarantee the well-posedness of the FBSDE problem, we need to make further assumptions.

12
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Assumption 1.5.1 (Unique Solutions of FBSDEs)
Let the parameters of Equation 1.56a and Equation 1.56b be such that

1. xg,p, 0 satisfy Assumption 1.2.1;

2. f:00,T)x REx R x R — R is uniformly Lipschitz continuous with respect toy and z, i.e. there
exists L such that ¥(t,z,y1,21), (t,7,y2, 22) € [0,T] x R x R x R1*4

|f(t, 2,91, 21) — f(t, 2,92, 22)| < L(Jyr — ye| + 21 — 22]) (1.57)

3. f and g admit at most polynomial growth in x, i.e. forp > % there exists C' such that V(t,x,y,z) €
[0,7] x R% x R x R'*4

[f(t 2,y 2)| + lg(@)] < C(L+[a]”) . (1.58)

It g(-), (-, -, ) satisfy Assumption 1.5.1 above then we call them standard parameters. The following
theorem establishes the existence of a unique solution under the assumption of standard parameters.

Theorem 1.5.1 (Existence of Unique Solutions — FBSDEs)
Let the parameters of Equation 1.56a and Equation 1.56b satisfy Assumption 1.5.1. Then the system of
FBSDEs has a unique solution, namely a triple of random processes (X,Y, Z) € $%(R%) xS (R) x HZ (R?).

Proof. See, e.g., [16]. O

1.5.1 A Word on Markovianity

In the rest of this work we are relying on another important property of the decoupled FBSDE system
above, which we have so far swept under the carpet. This is related to Markovianity. By the nature of
SDEs it easily follows that the solutions of the following equations

t t
X" =x —|—/ p(r, X2%)dr —|—/ o(r, X2%)dW,, s<t<T, (1.59)
’ t ’ t
X0 = g +/ p(r, X2 0)dr +/ o(r, X270)dW,, 0<t<T, (1.60)
0 0

coincide P-a.s. for z == zg + [ p(r, XP™)dr + [ o(r, X2*0)dW,. This shows that the unique solution
of an SDE satisfying Assumption 1.2.1 is Markovian. In the above formulation we could have defined the
backward equation in the following manner

T T
Yer =g+ [ pnxem v zemar - [ zeaw, S<U<T. (161)
t t

Now, by the shifting properties of Brownian motion it can be shown that the solution of the above BSDE
inherits the measurability properties of the Markov SDE’s solution X;’* in Equation 1.59 — see, e.g.,
[16, Proposition 4.2]. Therefore we conclude that for BSDEs of the form Equation 1.61, the solutions
(Y,"*,Z,") are deterministic functions of X;** and time:

Yt =wu(t, XPT), 20T =w(t, XDY), (1.62)

for some u : [0,T] x R — R,v : [0,7] x R — R<.

In the light of the observations above, we now simplify our notation for the rest of this work. Instead
of considering a Markov FBSDE system of the form Equation 1.59 and Equation 1.61, we only consider
forward diffusions starting off from a fixed, known initial condition z¢ at ¢ = 0. In order to ease the
notation, we drop the superscripts describing the initial state of the randomness and work with equations
as before, where X; = X"V, = Y™ Z, = 7™ Nevertheless, it is essential to keep in mind that the
reason why we can later specify deterministic mappings of the form u : (¢, X;) — Y; is inherently linked
to Markovianity.
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CHAPTER 1. BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS

1.5.2 Generalized Feynman—Kac Relations

As we have just seen, due to Markovianity, the solution of the BSDE is — for each point in time — a
deterministic mapping of the solution of the forward SDE. The following theorem describes in more
depth, what the nature of this mapping is. Recall that the solution of a linear, second-order parabolic
PDE is equivalent to the solution of a forward SDE given by the Feynman—Kac lemma Theorem 1.2.2. The
fundamental power of BSDEs lies in the generalization of this theorem, which provides a similar connection
between second-order, quasi-linear parabolic PDEs and BSDEs. Hereby, in order to avoid going too deep
in functional analysis, we only state the theorem under rather strict smoothness assumptions.

Theorem 1.5.2 (Generalized Feynman-Kac Theorem)
Consider the following quasi-linear parabolic PDE of the form

ou 1

5 + 5 Tr [O'O'T Hessu(t, )| + p(t, z)Vu(t,z) + f(t,z,u, Vu)(t,z) = 0, (1.63)
w(T,z) = g(x),
and the system of decoupled FBSDEs
¢ t
X :x—i—/ ,u(s,XS)ds—i—/ o(s, Xs)dWs,
0 0 (1.64)

T T
Y, = g(XT) +/ f(S,XS7Y9, Zs)ds - / ZsdWs.
t t

Assume that the solution of the PDE satisfies u € CY2([0,T] x R?), and that the conditions of As-
sumption 1.5.1 are satisfied. Then the solution of the PDE problem coincides with the solutions of the
corresponding Markovian BSDE

u(t, X¢) =Yi, (Vu)(t,X¢) = o 1 (t, X}) Zs, (1.65)
P-a.s.

Proof. The proof is a straightforward consequence of applying It6’s lemma to the solution u(t, X;)

T

du(t, X,) = % + uVu+ % Hessu| (t, X)) dt + (0Vu) (¢, X;) AW, (1.66)
= _f(ta Xt7 U(t, Xt)? (vu)(tv Xt))dt + (Uvu)(ta Xt)th7 (167)
with w(T, X1) = g(Xr) since u(t, x) satisfies the PDE for each ¢, x. O

It is important to mention that the assumptions of this theorem can be further relaxed if we allow for
a weaker concept of the solution of the PDE, the so-called viscosity solutions. As our future assumptions
— see Assumption 2.5.1 in particular — shall require the problem to possess certain smoothness properties,
we omit these difficulties here and refer the more interested reader to, e.g., [2].
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Chapter 2

Malliavin Calculus in the Context of
BSDEs

In the following chapter we give a high-level introduction to the concept of Malliavin calculus, mostly
focused on the derivative operator in the context of FBSDEs. After fixing some additional notations,
we start by defining the derivative operator in the Malliavin sense. Thereafter, we present the main
properties of Malliavin differentiation, out of which we emphasize the importance of the Malliavin chain
rule stated in Lemma 2.3.1. After this, we turn to FBSDEs. We first show that under certain regularity
conditions the Malliavin derivative of a forward SDE satisfies a linear forward SDE itself. Subsequently,
we present a similar result for BSDEs and show that the Malliavin derivatives of the solutions of BSDEs
satisfy a linear BSDE themselves. Moreover, we shall also see that the Z-process can be interpreted as a
Malliavin derivative of the Y-process which is of fundamental importance with respect to the upcoming
algorithmic proposals in chapter 5, as it establishes the regularity and continuity of the control process.
Finally, we conclude the chapter by stating certain alternative representations for the solution of Malliavin
derivative’s linear BSDE.

Since Malliavin calculus is not the main subject but rather a tool in this work, in order to avoid
getting lost in stochastic theory we keep the discussion brief. Throughout the whole chapter we restrict
the presentation to the statement of results without proofs. We refer the more interested reader to one
of the great introductions [17] or [18] for more details on the theory of Malliavin calculus.

2.1 Preliminaries

As in the previous chapter, we are concerned with a filtered probability space (Q,F,TF,P), where
I = {Fi}iepo,r) is the natural filtration generated by a d-dimensional Brownian motion. On top of
the notations we have already introduced in section 1.1, we introduce the following additional definitions.

Definition 2.1.1 (Notations, spaces). We use the following notations.

1. CE(R¥R™): set of k times continuously differentiable functions of the form f : R* — R™ such that
all the partial derivatives of f have at most polynomial growth of order p;

2. CF(R¥R™): set of k times continuously differentiable functions of the form f : R — R™ such that
all the partial derivatives of f are bounded;

3. L2([0,T]; R™): the Hilbert space of real L2-integrable functions over a finite time interval [0, 77,
ie. h:[0,T] = R"™ such that fOT |h(t)|*dt < oo, equipped with the inner product (hlg)2 =

T
Jo h(t)g(t)dt. We denote the norm of these spaces by 2]l 20, 7);mm) = V{Z|2);

4. 9;f: for any multivariate deterministic scalar function of the form f(z) : R® — R we denote

3
f = g
5. Vof,Vyf, V. f: for deterministic multivariate functions of the form f(¢,z,y,2) : R x R™ x R™ x
. (of of . (9f of . [ 9f of
RP — R we put me = (ﬁ,...,m), Vyf = (TM”%) and sz = (T,Z]”TZP)

In what follows, we may sometimes rely on the Markovian notation introduced in subsection 1.5.1.
The need for this becomes apparent during the presentation of the variational processes corresponding
to the solutions of SDEs and BSDEs — see Equation 2.16 and Equation 2.27 in particular.
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Figure 2.1: Malliavin Derivative Illustration. T'wo realizations of the driving Brownian motion.
Left: Arithmetic Brownian Motion (u = 0,0 = 0.5), right: Geometric Brownian Motion (u =
0.2,0 = 0.5).

2.2 An Overview of Malliavin Calculus

In the following section we give a brief introduction to the concepts of Malliavin calculus mostly focusing
on the derivative operator in the case where the randomness is generated by a Brownian motion — see
section 1.1. In order to ease the notation, we restrict the presentation to the one-dimensional case,
nevertheless most results below also hold for multidimensional random variables. We only recall the most
fundamental concepts of Malliavin calculus and refer to [17, Chapter 1.2] for more details. Our goal is to
introduce a concept of differentiation for square integrable random variables X : Q — R, hence we want
to interpret the "derivative” of X (w) with respect to the randomness w.

In order to do this, let us first recall the definition of isonormal Gaussian random processes. Con-
sidering a separable real Hilbert space H, the stochastic processes W (h) which are centered Gaussians
such that Vh,g € H: E [W(h)W (g)] = (h|g) are called isonormal Gaussian. It is known that h +— W (h)
defines a linear isometry from H onto a closed subspace of ]szT (R) which we denote by H;.

From now on we only consider a special case of isonormal Gaussian processes given by the following
form

T
W (h) == /O h(s)dWs, (2.1)

where h € L([0,T]; R) and {Ws}sepo,r) is the Brownian motion generating the filtration.! It can easily
be checked that the mapping above truly defines an isonormal Gaussian random variable, indeed by

Ito-isometry we have
T T
( /O h(s)dWs> < /0 g(s)dwsﬂ E

Therefore the closed subspace of such random variables 7, :== {W(h): h € L*([0,T])} c L% _(R).
Let us now define smooth random variables of the form

EW(h)W(g)] =E

T
/ h<s>g<s>d4 = (Hg)pe.  (22)

where n. > 1, f € C(R™“R), Vi : h; € L*([0,T;;R) and W(h;) is the isonormal Gaussian
process defined by Equation 2.1. We denote the set of such smooth random variables by § =
{F:F=f(W(h),...,W(hy)), f € C3*(R";R), h; € L*([0,T]),Vi}. Similarly, we use the notation P
for random variables of the form Equation 2.3, where f is a polynomial. It is worth to notice that S is a
dense subset of L% (R) and additionally P C S.

Given the notations above, let us now define the Malliavin derivative of smooth random variables.

Tt is important to notice that W (h) and W, are not the same quantities. The former is a random variable
defined by Equation 2.1 whereas the latter is the Brownian motion at time s. This, although may be confusing
at first, is in accordance with the standard notations of the literature.
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2.3. MALLIAVIN CHAIN RULE AND PROPERTIES OF THE DERIVATIVE OPERATOR

Definition 2.2.1 (Malliavin Derivative). The Malliavin derivative DsF :  — R™ of a random variable
F € S of the form Equation 2.3 is, for each 0 < s < T, defined as

i=1
For instance, we have D;W (h) = h.

The definition above only establishes the concept of Malliavin differentiation for random variables of
the form Equation 2.3. However, it can be extended to a wider range of random processes. In fact, for
F € S,p > 1 one can define the following norm

1/p

T p/2
Iy, = |E |F|p+</0 |DSF|2ds> . (2.5)

It can be shown — see [17, Proposition 1.2.1] — that the operator D defined in Definition 2.2.1 has a closed
extension with respect to the norm Equation 2.5. We denote this closure by D'? and for the rest of the
chapter focus on random variables X € DP. In particular, for p = 2 we have that D2 is a Hilbert space
with the scalar product

(F|G)p» = E [FG] + E[(DF|DG) ] . (2.6)

Since these results also hold in the general multidimensional case, from this point on we also use the
notation D®? for the space of d-dimensional Malliavin differentiable random variables.

Finally, it needs to be mentioned that Definition 2.2.1 can straightforwardly be extended to higher-
order Malliavin derivatives — see, e.g., [19, Pg. 13] — which are usually denoted by D*¥F for the k’th
Malliavin derivative of random variables F' € S. However, in the rest of this work we only deal with
first-order Malliavin derivatives.

2.3 Malliavin Chain Rule and Properties of the Derivative
Operator

It is well-known from the theory of real calculus that the classical differentiation operator exhibits cer-
tain advantageous properties, such as the chain rule. In the following section we demonstrate that the
Malliavin differentiation operator given by Definition 2.2.1 admits to a similar formula, a result which is
essential for the upcoming algorithmic formulations in chapter 5.

First, let us highlight that by Definition 2.2.1 it follows that for any F,G € D"? and a,b € R:
D, (aF + bG) = aDsF + bD;G, i.e. the Malliavin derivative is indeed a linear operator. Furthermore, as
a consequence of the following integration-by-parts formula — proven in [17, Lemma 1.2.1] —

E[(DF|h) ;.| = E[FW(h)], (2.7)

we also have that for any F,G € D'?, D,(FG) = D,FG + FD,G. These results naturally raise the
question whether a ”chain rule like” result also holds for the Malliavin derivative operator. Turns out
that it indeed does, established by the following lemma.

Lemma 2.3.1 (Malliavin Chain Rule)

Let o € CHR%GR) and fir p > 1. Let F == (Fy,...,Fy) € DY. Then ¢(F) € DY and for each
0<s<T

Dp(F) =3 Oip(F)DoF;. (2.8)

Proof. See, e.g., [17, Proposition 1.2.3]. O

We remark that the chain rule can be extended to Lipschitz continuous functions of F' € DVP — see
[17, Proposition 1.2.4]. Note that for the continuously differentiable case, this is a direct consequence of
the Mean Value Theorem, which implies that continuously differentiable functions whose derivatives are
bounded, are also Lipschitz continuous.
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As a result, one can derive closed-form analytical expressions for the Malliavin derivative in some
special cases. In fact, with a careful inspection? of Equation 2.1 and Definition 2.2.1 we gather that
D W, = 15<,(t). This, together with the Malliavin Chain Rule, implies that for any function ¢ satisfying
the conditions of Lemma 2.3.1 Dsp(W;) = Vo(W;)1,<(t). As a direct consequence, for Arithmetic and
Geometric Brownian Motions introduced in subsection 1.2.1 we have that

DthABM = UId]]-sft(t)a (29)
D X[PM = g diag (X;) Lo<4(t), (2.10)

by their analytical solutions given in Equation 1.12 and Equation 1.13 respectively. These expressions
shall be of great use in chapter 7 as they allow one to use analytically accurate approximations for the
Malliavin derivatives of certain forward diffusions. For an illustration on Malliavin differentiation, we
refer to Figure 2.1 where the evolution of ABM and GBM are depicted in the one-dimensional case
together with their corresponding Malliavin derivatives, for two realizations of the underlying Brownian
motion.

As we shall later see in chapter 4, conditional expectations play a crucial role in the numerical
analysis of FBSDE systems. Therefore, to conclude the section, let us finally state the following useful
result which — similarly to Leibniz’s rule — establishes the interchangeability of Malliavin differentiation
and conditional expectations.

Proposition 2.3.1 (Malliavin Derivative of Conditional Expectations)
Let F € DYP. Then for all 0 < s,t < T E[F|F;] € D'? and

D.E [F|F;] = E[DsF|Fe] Ls<i(t). (2.11)
In particular, if F € F; we have DsF =0 for all s € (¢, T).
Proof. See [17, Proposition 1.2.8]. O

2.4 SDE’s Malliavin Derivative

Having introduced the concept of Malliavin differentiation, we can now discuss how this concept relates
to the FBSDE system Equation 1.56 introduced in the previous chapter. We start by first explaining
how the Malliavin derivatives of the solutions of SDEs look like.

In order to do this, let us define the flow and its inverse of an SDE, denoted by V,X(*) and
VX —1m respectively, as the solutions of following linear SDEs

t t d
Vo X7 = Iy / Vot (r, X0 ) O, X dr + / > Vol (r, X0D) 0 XTDAW] (212a)
T T ]:1

t d
VX =t / VX Vot (1 X09) = 3 Vaod (r, XD ) Ty (X090 | ar
T j=1

d
n / t DA G (r, Xﬁm) dws,

j=1
(2.12b)

where V,pu : [0,T] x R — R4V, 07 : [0,T] x R — R4 are deterministic functions corresponding
to the spatial derivatives of the coefficients in the SDE in Equation 1.56a; ¢7 denotes the j'th column
of the diffusion coefficient, and dW the j’th coordinate of the d-dimensional Brownian increment. The
following lemma provides a natural interpretation to the processes above, as the Jacobian matrix of the
alx®
solution with respect to the initial condition z: V, {Xt(m”)] = u

Lemma 2.4.1 (Flow of SDEs)
Let the conditions of Assumption 1.2.1 be in power. Additionally assume that p and o are twice con-

tinuously differentiable, with bounded derivatives. Let VmX(T’w),V$X_1(T’w) be the processes defined in
Equation 2.12. Then for every p > 1 there exists a constant C' such that

E [sup ‘VIX;T@ VX1

P
} +E {sup

p} <cC. (2.13)

2See, e.g., [20] for detailed steps.
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Furthermore, for all0 <t,s <T

2 _1me) _1mo)?
E ]vzxy»@ v, x| 4 ]vzxr L V.XC < Clr— s, (2.14)
and VzXﬁT’x)VzXfl(T’m) = I; almost surely.
Proof. See [21, Lemma 2.4]. O

The lemma above provides a direct way to represent the Malliavin derivative of the solution of an
SDE, as stated by the following theorem.

Theorem 2.4.1 (Malliavin Derivative of SDEs)

Consider Equation 1.56a and take any p > 1. Let the conditions of Assumption 1.2.1 be in power.
Additionally assume that p and o are twice continuously differentiable, with bounded derivatives. Then
forany 0 <t < T X; € ]Dd’p, and its Malliavin derivative for each 0 < s < T admits to a version
satisfying the following linear SDE

¢ ¢
DX, = o(s,Xs) +/ Vo (r, X)) Ds X dr —|—/ V.o (r, X)) DX, dW,, 0< s <t <T, (215)

with Dy Xy = 0 when 0 < t < s < T. Additionally, the version of the Malliavin derivative solving the
SDE above satisfies the following representation formula

DXy = VX"V X0 (5, X07) L 01raa(s) = VX o (s, X)Lusat) - (2.16)

almost surely. Consequently, there exists a constant C' such that for any 0 < s <u<r <T

supE {sup|DsX,«|2} <C, (2.17)
E [|DSXT - DSXU\Z] < Clr —ul. (2.18)
Proof. See [17, Theorem 2.2.1, Lemma 2.2.2]. O

Let us now interpret this result. By Equation 2.15 we see that the Malliavin derivative of the
solution of an SDE admits to a version which solves a linear SDE itself. Motivated by this, from now
on, throughout the whole work we define the Malliavin derivative of the SDE as its version solving
Equation 2.15. Additionally, it can also be seen that the Malliavin derivative DX — for any s € [0, 7]
— is bounded in the supremum norm and is also continuous. These results shall be crucial in the error
analysis presented later in chapter 6.

2.5 BSDE’s Malliavin Derivative

The Malliavin differentiability of SDEs naturally raises a question whether similar propositions can be
made about BSDEs and Malliavin calculus. Turns out that we can. Below we state the theorem which
establishes that the solution pair of the BSDE part of an FBSDE is not just Malliavin differentiable,
but their Malliavin derivatives solve a linear BSDE themselves. This property proves to be fundamental
since, as we shall soon see, the Z-process can be expressed as Z; = D;Y;. Therefore, one by solving
the BSDE of the Malliavin derivative does not merely solve the natural dynamics of the control process,
but also obtains certain regularity properties — and continuity in particular — provided by the Malliavin
derivative.

We remark that the results below hold true even in the case of general, non-Markovian BSDE problems
— see, e.g., [16], [22] or [23]. Nevertheless, since we are only concerned with the FBSDE system given
in Equation 1.56, we state the original result of Pardoux and Peng proven in [2]. For this, we first have
to make further assumptions about the FBSDE system, which are eventually all linked to the Malliavin
differentiability of its solutions.

Assumption 2.5.1 (Malliavin Differentiability of FBSDESs)
Let the conditions of Assumption 1.5.1 be satisfied. Additionally, assume that

1. p and o are twice continuously differentiable in x with bounded derivatives;

2. g is twice continuously differentiable with bounded derivatives;
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3. f is twice continuously differentiable in (x,y, z) with bounded derivatives — uniformly in time.

It is worth to highlight that comparing Assumption 1.5.1 to Assumption 2.5.1 we see that the addi-
tional assumptions are all smoothness criteria, which essentially ensure the Malliavin differentiability of
the solution triple through the Malliavin chain rule Lemma 2.3.1 and the continuity of their Malliavin
derivatives. We remark that for pure Malliavin differentiability of the solution pair it is sufficient to as-
sume continuous differentiability for both g and f and refer to [23] for a more detailed discussion on the
topic. Notwithstanding, in order to assure convergence of the upcoming numerical schemes in chapter 7,
for the rest of the work we only consider the stronger set of conditions stated in Assumption 2.5.1. With
this in mind, we can finally state the main result of this chapter.

Theorem 2.5.1 (Malliavin Differentiability of BSDEs)

Consider a BSDE in Equation 1.56b. Let the conditions of Assumption 2.5.1 be satisfied. Then for any
0<t<T: (Yo, Zy) € D2 x D%2, and their Malliavin derivatives for each 0 < s < T admit to a version
solving the following linear BSDE

T
DSY;f = vwg<XT)DsXT + / [vwf(ra er Yra Z’I‘)DSXT + vyf(r, er Ym ZT)DSY’I‘
t

T
V. f(r, X, Yy, Z,)Ds Z,] dr — / D, Z,dW,, 0<s<t<T, (2.19)
t

with DgYy = 0,D;7Z; = 0 when 0 < t < s < T. Furthermore, the above BSDE gives a version of the
Malliavin derivative for which

Zs = DgY; (2.20)
almost surely.

Proof. The proof can be split in two parts. One first needs to prove that Z, € D%2, which is the
more difficult and technical part as it requires some additional properties on the Malliavin derivative of
stochastic integrals. From there, by Assumption 2.5.1, it follows that Y; € D%2. Using these results, the
second part of the proof then simply follows by a Picard iteration argument similar to Corollary 1.4.1.
We refer to [2, Proposition 2.2] for more details. O

Let us now interpret the results provided by Theorem 2.5.1. We see that, by the concept of solutions,
{(DsYs, Ds Zy) b 1cj0,1) solving Equation 2.19 satisfy

T
/ | Dy Zy|dt

S

sup lE [ sup |D5Yt|2} +E
0<s<T 0<t<T

1 < 0. (2.21)

From now on — motivated by Equation 2.20 — we define the Z-process in the solution of Equation 1.56b
as the version of the Malliavin derivative D,Y; satisfying Equation 2.19. Consequently — since D Y is

the solution of the linear SDE in Equation 2.20 and thus E [Supte[oﬂ |D5Yt\2] < oo —, we have that the

control process is bounded under the supremum norm
E {Sup|Zt|2] < 0. (2.22)
t

Moreover, the theorem above also provides a unique way to establish the continuity of the Z-process.
This was first proven by Pardoux and Peng in [2, Lemma 2.4] for the case of Markovian FBSDEs. It was
later generalized by Hu et. al in [22] for the general non-Markovian case, where they proved Kolmogorov
continuity of the Z-process under relaxed conditions. In order to keep the discussion as general as possible,
hereby we state the latter result.

Theorem 2.5.2 (Continuity of the Z-process, Hu et. al [22])
Let the assumptions of Theorem 2.5.1 be satisfied. Then there exists a universal constant C' — independent
of s,t,r — such that the Malliavin derivative above satisfies for any 0 < s <t <r <T

E [|DSYT - D5Yt|2] < Clr—t. (2.23)
Additionally, if we define Z; = D:Y; as the version solving Equation 2.19, we also have

E [|Zt - Zs|2] <Ot — 3. (2.24)
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2.6. A FEW WORDS ON ALTERNATIVE REPRESENTATIONS

Proof. See [22, Theorem 2.6, Part (b)]. O

Summarizing the results provided by Theorem 2.5.1 and Theorem 2.5.2 we therefore have that the
unique solution pair of Equation 1.56b satisfies

E [sup|Yt|2} +E [sup|Zt2} < 0. (2.25)
t t

This is where the formulation given by Malliavin calculus shines in its full glory. It provides regularity
and continuity for the control process under Assumption 2.5.1 and essentially enables us to bound errors
of numerical schemes under the norm defined by the left-hand side of Equation 2.25 — as we shall later
see in chapter 6.

To conclude the discussion on the Malliavin differentiability of BSDEs, let us finally intro-
duce the concepts of variational processes corresponding to the solutions of BSDEs. We define
{(VIYt(s’x),VzZt(s’m))}ogsgtST as the unique pair of random processes satisfying the following linear
BSDE

VY = Vg (X)X
T
+ / |:va (7,,7 Xﬁs,a:), }/T(s,z), Zﬁs,z)) Vvags,:v) + vyf (7,’ )(55717)7)/1”(5,:5)7 Z7(ns,x)> VIYT(S,I)
t

T
V. f (r,Xﬁs’”),Y}s’”)7Z(s’z)> szﬁsw)} dr — / Vo ZEDAW,.  (2.26)

It can be shown that under the conditions of Assumption 2.5.1 this problem is indeed well-posed. Just as
in case of SDEs — see representation formula Equation 2.16 —, similar relationships hold in between the
Malliavin derivatives of the solutions of the BSDE and their corresponding variational processes. These
relations are described in the following lemma.

Lemma 2.5.1 (Variational Process and the Malliavin Derivative)
Let Assumption 2.5.1 be in power. Then for any 0 < s <t < T we have

DY, = v,y v, x 1o (S,ngﬁm>) . (2.27)
Consequently, by Theorem 2.5.1,
Zt(t’x) = VwYt(t’x)a (s,z) (2.28)

also holds. Moreover the unique solution pair (VIY(""”), VIZ(t"”)) to Equation 2.26 are the gradients of
the solutions of the corresponding Markovian BSDE in Equation 1.61 with respect to the initial condition
x. Finally, the variational process is bounded, i.e. there exists a constant C such that ¥(t,x) € [0, T] x R¢

‘un(r, Xﬁ@))‘ - \va,ﬁtv@ <c. (2.29)

Proof. For the representation formulas and the connection with the Malliavin derivative see [2, Lemma
2.4-2.5, Corollary 2.11]. For the boundedness of the variational process see [24, Corollary 3.2]. O

These results shall be crucial with respect to the error analysis provided in chapter 6 — see Lemma 6.2.2
in particular.

2.6 A Few Words on Alternative Representations

In order to conclude the chapter, let us finally have a few words on alternative representations of the
Z-process given by the Malliavin derivative. In fact, as it can be seen, Theorem 2.5.1 is not directly
applicable as one needs to gather estimations for the Malliavin derivatives (D Y, DsZ) at each point
in time. To overcome this burden and avoid solving the Malliavin BSDE directly, there have been
several representation formulas proven in the literature, providing a ”Feynman—Kac like” formula for the
continuous version of the Z-process. These representations allow one to circumvent solving the Malliavin
BSDE directly and yet gather continuous approximations for the control. Hereby we state two of them
without proofs.

The first representation exploits the fact that Equation 2.19 in Theorem 2.5.1 is a linear BSDE.
Therefore tailoring Proposition 1.4.1 to the conditions of the Malliavin BSDE, one can show that the
following holds.
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Proposition 2.6.1 (Representation Formula 1 — Malliavin Derivative)
Under the conditions of Assumption 2.5.1, the Malliavin derivative solving Equation 2.19 can be repre-
sented as

T
DSY;E =E ps,TDsYT + / ps,rva:f(Ta X’f‘7 Ytry Zr)DerdT
s

ft] ) (2.30)

where the coefficients ps  solve the following forward SDE

T T 1
por = oo ([ Vo0 X V200, [, Y 20) = GV XY 202 ar )

(2.31)
In particular, we have
T
Zs=E |ps7DsYr +/€ psoVaf(r, X, Y., Z,)Ds X, dr .7:5] . (2.32)
(2.33)
Proof. See, e.g., [16, Proposition 5.5] for the general — not necessarily Markovian — case. O

The other theorem provides a similar interpretation for the control process by representing it with
another conditional expectation. We state the theorem with the notation of [21].

Proposition 2.6.2 (Representation Formula 2 — Malliavin Derivative)
Under the conditions of Assumption 2.5.1, the continuous version of the Z-process given by the Malliavin
derivative in Equation 2.19 can be represented as

T
ZS =K g(XT)H&T + / f(ra XT')K'; ZT')HS,T‘dT
t

fs] , (2.34)

where the so-called Malliavin weights H , solve the following forward SDE

H,, = 1 /U’I(T,XT)DSXTdWT. (2.35)

’ r—s

Proof. See [24, Theorem 3.1]. O

The message to take away both from Proposition 2.6.1 and Proposition 2.6.2 is that one can solve
the control problem of the BSDE by solving the conditional expectations arising on the right-hand sides
of Equation 2.30 and Equation 2.34. Notice that the arguments of these conditional expectations do not
depend on (D,Y, DsZ) anymore, only on the Malliavin derivative of the forward process. However, it is
worth to mention that — through the coefficients p, . and Hy ;. defined in Equation 2.31 and Equation 2.35
— one needs to solve another forward SDE which may pose additional challenges in numerical methods.
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Chapter 3

A Few Words on Deep Learning

Machine learning has shown remarkable successes in a wide range of engineering problems all the way
from image recognition and language processing to solving partial differential equations — see, e.g., [25],
[26] or [27] — and, through the Feynman—Kac relations presented in Theorem 1.2.2; also BSDEs — see,
e.g., [7]. Recently, the latter field has been an area of intense research, primarily because of deep neural
networks showing excellent empirical capability in solving high-dimensional problems, and thus inciting
hope that they could be used to overcome the curse of dimensionality. Motivated by these results, we
decided to use deep learning for the approximation tool of this work. In what follows, we explain the
basic concepts of neural network modeling focused on notions which are most relevant for the algorithms
proposed later in chapter 5. We start the chapter by describing what neural networks are, after which we
motivate their use with the so-called Universal Approximation Theorems. We remark that the fact that
neural networks can approximate a function and also its derivatives arbitrarily well shall be a crucial input
to get meaningful estimations of the Malliavin derivatives through the Malliavin chain rule in chapter 5.
Thereupon, we explain the most popular optimization methods for tuning the parameter set of a neural
network. Finally, as differentiability of such function approximators is crucial in the latter algorithms
proposed in chapter 5, we briefly touch upon automatic differentiation, which provides an efficient and
cheap way to estimate derivatives semi-analytically.

Since machine learning, in the context of this work, is just a numerical tool for obtaining a wide
enough function class on which we can perform Monte Carlo regression, we keep the discussion as concise
as possible and refer the more interested reader to one of the excellent, detailed introductions to the field
[28], [29] or [30].

3.1 Deep Neural Networks

For our purpose fully-connected feedforward deep neural networks are simply a sequence of compositions
of simple functions, which therefore can be collected in the following form

NN (x]8) i= a® 0 ALF([05+1) 0.0 0 AL([0) o a- 0 a o Al(x|oY), (3.1)
with © = (91, ey 9L+1) € RP, where p is the number of parameters in the model. In Equation 3.1, a
and a°"* are (non-)linear activations applied elementwise on an input, and A*(y|6),¢ € {1,..., L+ 1} is

an affine mapping A¢(y|0°) : RV RNE, defined by
Al (y|6Y) = {W* b’} == W'y + b, (3.2)
where W¢ is an R¥ *¥""" matrix containing the so-called weights of the layer. Moreover, b is an N*-
dimensional real vector called the biases. The affine transformations A*(-|0%),¢ = 1... L are referred to
as the hidden layers of the neural network model, whereas the last transformation is called the output
layer of the network. The size of a given layer N¢ denotes how many computing units, so-called artificial
neurons are contained in that layer.
The power of deep learning is given by the fact that through such a deep sequence of simple com-
position functions, highly complex patterns can be approximated with good accuracy. For these approx-
imations to be able to extract non-linear patterns, it is crucial for the above activation function to be

non-linear as well, otherwise the model would simply be a linear transformation of the input. Common
choices for activations include the ReLU (Rectified Linear Unit), the ELU (Exponential Linear Unit) and
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Figure 3.1: Deep Neural Networks Illustration. Left: network architecture!, right: the corre-
sponding mapping with randomly initialized parameter set.

the tanh hyperbolic tangent functions, which are defined by the mappings below (z € R)

a®*V(2) = max [z, 0], (3.3)
z, x>0,

@) = {a (e*—1), x<0, 34

a**"(z) = tanh(z), (3.5)

where a > 0. Additionally, we remark that in all our forthcoming applications the output activation
a® is chosen as the identity function. In what follows, these activation functions play the central role.
Nevertheless, it is worth to note that the choice of the activation function is an inherent part of neural
network modeling, which itself has a fundamental impact on the properties of the function approximation.
The most important of these properties is differentiability. As it can easily be seen from above, a neural
network is itself differentiable, if and only if the applied non-linear activation function is differentiable.

3.2 Universal Approximation Theorem

The use of Deep Learning is most often motivated by the so called Universal Approximation Theorem
(UAT). This (set of ) theorem(s) establish(es) that the class of fully-connected feedforward neural networks
introduced above are indeed capable of fitting any real valued continuous function defined on compact
subsets of RZ. The intuitive message one should take away from these theorems is that neural networks
themselves, assuming the existence of a procedure for finding appropriate network parameters, span a
wide function class. Although, these theorems are very often cited and held in front of machine learning
research as a shield, it is also important to highlight that none of the current versions of the theorem is
constructive: they do not provide, suggest, imply a procedure for optimizing the parameter space ©.

The proposition has several — gradually relaxed — versions, hereby we only state two of the original
formulations. In the theorems below, we denote the d-dimensional hypercube by I := [0, 1}d and the
space of real-valued continuous functions defined over it by C(I;). Furthermore, we put G : R¢ — R for
the finite sums of the form

N
G(x) =Y wna (Y +bn), (3.6)

where b,,,w, € R,z,y, € R?. With these notations in hand, we are now able to state the two classical
UAT theorems. The first, given by Cybenko in [31], proves the approximation capability for a class of
so-called sigmoid activations.

Theorem 3.2.1 (Universal Approximation Theorem, Cybenko [31])
Consider the class of sigmoidal activation functions, i.e. which satisfy a : R — R, lirf a(z) =
Tr—r 400
1, lim a(x) =0. Let a be any such, sigmoidal function that is also continuous. Then the finite sums G
T——00
of the form Equation 3.6 are dense in C(I4). In other words, given any f € C(Ig) and € > 0 there is a
sum G(x) of the above form, for which

G(z) — f(z)| <&, Vaely (3.7)

'Figure drawn with NN-SVG.
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Proof. See [31, Theorem 2]. O

Comparing the form of these finite sums against the definition of fully-connected feedforward neural
networks presented in Equation 3.1, it is easy to recognize that w,, can be thought of as the n’th column
vector of the output’s weight matrix; and y, as the n’th row-vector in the weight matrix of the first
(and only) hidden layer, which contains N-many neurons. It is crucial to notice, however, that the above
theorem merely provides the universal approximation capability in the infinite limit without giving any
bounds on the size of N.

The theorem has been extended multiple times. For instance Hornik et al. in [32] generalized it to
non-sigmoid activations, and in a follow up paper in [33] showed that the networks are not just merely
able to approximate a function but also its derivatives with arbitrary accuracy. Since this observation is
crucial with respect to the algorithms proposed in chapter 5, we hereby state the theorem in its original
form. However, in order to do this we first have to introduce the concepts of Sobolev spaces and ¢-finite
activations. This is done in the next two definitions.

Definition 3.2.1 (Sobolev Spaces). Let us denote the LP-norm restricted on a subset U € R? by
11,0 = ([ |f(a;)|pdx)1/p. Then the space of functions f € C™(U) for which

1/p

W g = | D2 1D <00 (3-8)

lal<m

is called the S;"(U) Sobolev space.? Respectively, the norm on the left-hand side above is called the
Sobolev norm, and its natural metric is denoted by dj'(f,g) = || f — g||m7p7U for each f,g € S;*(U).

Definition 3.2.2 (¢-finite Activations). Let £ € IN be given. An activation function a : R — R is ¢-finite
if a € C*(R) and 0 < [, |D%a(x)|dz < oo.

With these two concepts in hand, we can now the state the universal approximation theorem in
Sobolev spaces proven by Hornik et al. in [33].

Theorem 3.2.2 (Universal Approximation Theorem in Sobolev Spaces, Hornik et al. [33])
Let a be an (-finite activation and U a compact subset of R?. Then for all 0 < m < £ the finite sums of
the form Equation 3.6 are dy'-dense in S;*(U).

In particular, for any £ = 1-finite activation we have that there exists a finite sum G such that for
any f € ST(U)? and e > 0

/ |f(z) — G(z)dz + / Vo f(z) — VoG(z)]*dz < e. (3.9)
U U
Proof. See [33, Corollary 6]. O

There is one important corollary to notice: these theorems stand for shallow, single hidden layer
neural networks, however, they naturally generalize to networks of arbitrary depth — i.e. deep neural
networks. In order to see this, apply the theorems above for the second hidden layer of the network to
approximate any f. Subsequently apply them again to further hidden layers approximating the identity
function. The output of such a network is f itself.

To conclude the discussion on the UAT property, let us finally remark that out of the activation
functions introduced before, the tanh in Equation 3.5 satisfies both the conditions of Theorem 3.2.1
and Theorem 3.2.2 with £ = 1 — on top of being smooth — and therefore is a good candidate for our
latter applications. Although, this cannot be said about neither the ReLU in Equation 3.3 nor the ELU
in Equation 3.4, it can be shown that they themselves also admit to the UAT property under weaker
assumptions. In fact, Pinkus in [34] showed that the UAT property is equivalent to non-polynomial
activations. Additionally, in a recent paper, Kidger and Lyons in [35] improved the conditions for the
deep neural network version and further relaxed the bounds for the widths of deep neural networks still
exhibiting universal approximation properties.

2In the definition above « is a multi-index and D® denotes the multivariate differentiation operator.
3Tt is worth to notice the similarities between the norm below and the one of D*? introduced in the previous
chapter — see Equation 2.6. In fact, [|-||; , is often called the Malliavin-Sobolev norm.
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3.3 Training Neural Networks

We have seen that, once the network architecture is defined, what determines the mapping of a certain
input to an output are the parameters incorporated in the neural network model, i.e. each layer’s weights
and biases. For a neural network to approximate a certain function, these parameters need to be optimized,
which — in the context of machine learning — is called the training of the network.

3.3.1 The Loss Function

In order to measure a neural network’s performance, an abstract distance from the desired behaviour must
be formulated which expresses how well is the network describing the target behaviour. This abstract
measure is called the loss function. Loss functions serve as the objective functions to be minimized during
the so-called training procedure, in which the network’s optimal set of parameters —i.e. with which the
network is generating outputs closest to the desired outputs — are sought. The loss function is inherently
linked to the specific estimation problem and the properties of the target function. Nonetheless, in the
scope of this work the most important problem setup is the so-called regression problem which we define
in the following.

Regression Problem

In a regression problem we aim to estimate a deterministic, vector valued function, mapping a d-
dimensional input to a ¢ = NL+!-dimensional output. For this, we gather training data sampled from
some (unknown) multivariate joint distribution (X,)) ~ Dx y. Here X is most often referred to as the
input-, and ) as the label space of the problem. The goal in a regression setting is then to approximate
the conditional expectation h(x) = E[Y|X = x] for (X,Y) ~ Dx,y. This deterministic function h(x) is
called the labeling function.

The purpose of the loss function is to measure how well the current approximation is adhering to the
desired output of the network. A common choice for this abstract distance is the mean squared error,
which measures the IL2-distance between predictions and true labels

£(6) = E(xy)pxy [WN (X]0) = Y], (3.10)

In practice, one is often restricted to finite samples drawn from the true distribution Dx y. In this
case the above loss function is approximated by Monte Carlo integration, and for a sample {(x;,y;) 4,
the following empirical loss function is deployed instead

M
L£emp (®|{(XiaYi)}iAi1) = % Z ‘NN (%x;]©) — Yi|2~ (3.11)

i=1

Assuming that the empirical training sample is representative for the true distribution Dy y and that
the empirical loss mean is a good estimator for the true loss measure, one — by minimizing the empirical
loss function — obtains a function that exhibits close behaviour to the desired outputs y;. Hence, the
ultimate goal of the optimization problem is to find the set of parameters for which the empirical loss
measure is the smallest

© € argmin [ceme (O{(xi, y:)}L)], (3.12)
e
given a finite training sample.

3.3.2 Stochastic Gradient Descent and Beyond

Having introduced loss functions and the intuition behind them, we now briefly cover how the optimal
parameter set above is approximated. In order to minimize the loss function with respect to the pa-
rameters of the network, the most commonly used optimization technique in deep learning is Stochastic
Gradient Descent (SGD) — and its offsprings. SGD is a first-order gradient based optimization method
built upon the idea that a scalar function — just like the loss function above — while varying its inputs
infinitesimally, can be decreased the most in the opposite direction to its gradient. Note that for such a
method to be applicable, it is crucial that the networks themselves are differentiable mappings — at least
almost everywhere.

The term ”stochastic” comes from the fact that SGD is not performed on the whole training sample,
but rather on a randomly drawn subsample of it, on which the estimation of the gradient of the loss
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function is obtained. Therefore — in case of a mean squared error loss —, the SGD step of the i’th
iteration is of the form

et = ) _ yvoL(0M),
£(00) = 3 v (su10) -5
k=1

where we loop over K-long chunks of a random bijection ¢ : {1,..., M} — {1,..., M} that is chosen
uniformly for each loop. We call such chunks mini-batches and their loop over the bijection ¢ an epoch
of the training. It is important to notice that the performance of this optimization algorithm inherently
depends on the choice of 7 € (0, 00), which is called the learning rate of the optimizer, another hyperpa-
rameter to be selected with care in a neural network estimation. We collect the detailed steps of an SGD
optimization in algorithm 1.

(3.13)

Algorithm 1: Stochastic Gradient Descent
Input: n — learning rate
Input: £(-) — stochastic objective function to be minimized
Input: ©©) — initial parameter vector
1 < 0 — initialize step counts
while O not converged do
1 < 1+ 1 — update step count
0 « 8- _ pVeL; (@(Fl)) — update parameters
end

Output: O — final parameter estimation

Adam: An Extension to SGD

Adam is a descendant of SGD, which on top of estimating the first-order derivatives of the loss function,
also calculates the moving averages of these derivatives in order to account for the variance stemming
from noisy losses. Adam is one of the most frequently used optimization algorithms for training deep
neural networks, and is the core optimization method used throughout chapter 7 in this work. Therefore,
below we collect its explicit update rules in algorithm 2 and refer the more interested reader to the
original paper in which it was proposed by Kingma and Ba [36] for more details. (We remark that in
the formulation of algorithm 2 we use the standard notations ®, @ for element-wise multiplications and
divisions respectively.) It is important to notice that on top of the usual learning rate Adam has additional
hyperparameters to be chosen: the exponential decay rates and the numerical stability parameter. As
suggested by the original paper [36], a good common choice for these latter parameters in practice are
B =0.9, 52 =0.999, ¢ = 1078,

3.4 Some Words on Specific Machine Learning Practices

The above architecture presented in Equation 3.1 has numerous extensions, most of which fall out of
the scope of this work. Nonetheless, there are two important generalizations which we shall not leave
unmentioned. In the following we briefly explain these concepts.

The first problem has to do with overfitting, a common issue in neural network modeling. As we
have seen, a neural network model is a differentiable function approximator which is parametrized by a
large parameter vector © = (91, . ,QLH) € R?. One of the biggest challenges with respect to finding
the optimal parameter set of a neural network is to avoid ”picking up on” training data specific patterns,
and rather enforce better generalization of the fitted models. Hence, just like in regular regression
models, regularization approaches have been developed for neural networks, penalizing certain norms of
the parameter vector ©. However, as we shall later see in chapter 5, in our applications the underlying
data is neither scarce nor noisy, and consequently overfitting poses a nearly insignificant and easily
manageable problem? for the latter algorithms. Therefore, in the upcoming models regularization is not
needed and consequently — instead of going into specifics — we refer the more interested reader to [28] for
an introduction on such techniques.

4Quite simply by simulating more data.
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Algorithm 2: Adam
Input: 1 — learning rate
Input: 51, 82 — exponential decay rates for moment estimates
Input: € — numerical stability parameter
Input: £(-) — stochastic objective function to be minimized
Input: ©©) — initial parameter vector
m( < 0 — initialize first-order moments
v(® « 0 — initialize second-order moments
1 < 0 — initialize step counts
while ©®) not converged do
1 < 1+ 1 — update step count
g™ V@ﬁ(i)(@(i*n) — collect gradients at time step 4
m® « Bym—Y 4+ (1 — B1)g") — update biased first-order moment estimates
@ Bouli—1) 4 (1 =) g(i) ® g(i) — update biased second-order moment estimates

m) 1"1(; — compute bias-corrected first-order moment estimates
1

20 1“121 — compute bias-corrected second-order moment estimates
2
0 « o= _pm) ¢ (x/ﬁ(i) + e) — update parameters
end

Output: O — final parameter estimation

3.4.1 Batch Normalization

Nevertheless, in the forthcoming algorithms we use another machine learning concept corresponding to
the normalization of network inputs, which we thus cover briefly in this section. The technique is called
batch normalization and it was first introduced in [37].

Batch normalization is a procedure in which the mean and the variance of each processed mini-batch
— recall subsection 3.3.2 — are also computed during the training procedure. It is meant to reduce internal
covariate shifts between the hidden layers, i.e. ”the change in the distribution of network activations due
to the change in network parameters during training” [37, Pg. 2]. Batch normalization makes up for this
phenomenon by incorporating normalization of the inputs within the network architecture. In fact, batch
normalization extends the parameter space of a network by so-called scales and offsets. For the exact
details of a batch normalization step, we refer to algorithm 3.

Having introduced batch normalization, we are now able to formulate the final neural network archi-
tecture used later in chapter 5. Hereby we extend the previous structure by inserting batch normalization
before each hidden layer in Equation 3.1

NN (x]0) = a® o AFT(105 ) o a0 BNE(|0%) 0 AL(|0F) 0a---0ao AY(]0') o BN (x]0'). (3.14)

Notice that in above the scale and offset parameters of each batch normalization layer have been included
in the parameter set of the corresponding hidden layer 7%, 3¢ € ¢, ¢ =1,..., L.

Algorithm 3: Batch-Normalization Transformation

Input: v, 8 € R¢ - scale and offset parameters

Input: {x}2, — values of x over a mini-batch of size B
Result: {y}2, - batch-normalized input

B 17 vai 1 Xi — collect batch mean

0%+ i Ef\il(xi — pp) ® (x; — pg) — collect batch variance
X (X — pp) O <@ [o% + 5) — normalization

yi < v ®X; + 3 — scale and shift normalize inputs
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O

(a) Forward Propagation

oty

(b) Backpropagation

Figure 3.2: Automatic Differentiation Illustration

3.5 Automatic Differentiation

In order to conclude this high-level introduction to deep learning, we have to say a few words about how
these concepts are implemented in practice. As we have seen above, the most commonly used optimization
methods for tuning the parameter set of a neural network model rely on the ability to estimate the loss
function’s gradients with respect to the parameters in the model. However, we have also seen that
the function approximator of a neural network depends on the parameters O := (91, R 0L+1) € RP,
where p is not seldom in the range of billions. The fact that gradient vectors of such size can be
computed is not trivial. In fact, numerical differentiation — through, e.g., finite differences — of the loss
function would not be feasible due to the large number of parameters. However, nor would symbolic
differentiation be, because the hierarchical nature of the networks lead to huge and highly redundant
symbolic expressions which would not fit in memory. In the following section we briefly explain how
this computational burden is overcome, and introduce the concept of automatic differentiation, a half-
numerical, half-symbolic differentiation method enabling us to calculate derivatives by a sequence of
simple tensor multiplications. We refer the more interested reader to the survey paper [38] for more
details.

3.5.1 Forward Propagation

In the context of neural networks, forward propagation is the hierarchical sequence of operations per-
formed in Equation 3.14, ordered from right to left. It takes an input of the network and maps it to the
output. In machine learning, such sequences of operations are executed by so-called computational graphs
which are abstract representations of operations. Mathematically speaking, a computational graph is a
directed, acyclic graph where each node corresponds to an operation and data flows through the vertices.
In this way every node in the graph defines a function of multiple variables. The values of the variables
are multidimensional arrays, i.e. tensors. Operations can be specified by three characteristics: a compute
function which calculates the function’s value with respect to its inputs, the set of input (or parent) nodes
and the set of consumer nodes, i.e. nodes who take the node’s value as an input. The key advantage
of computational graphs is that with their usage one can break down rather complex calculations to a
sequence of basic elementary operations that can easily be handled analytically.

For an example of a computational graph consider the one given in Figure 3.2a. This graph specifies
a shallow, single hidden layer, single neuron neural network and calculates its mean squared error loss
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compared to a given set of training examples. This example is meant to demonstrate that every neural
network can be represented by computational graphs which turns out to be a crucial observation with
respect to the implementability of neural networks.

3.5.2 Backpropagation

With the use of computational graphs, we can now explain why differentiation of the loss function in
the previous sections can be implemented in practice. The idea of automatic differentiation (or — in the
context of neural networks — backpropagation) is the following: on top of representing the steps of forward
propagation by a composition of simple, elementary operations — such as: additions, multiplications,
exponentials, etc. —, simultaneously also store the derivatives of such elementary operations, which due
to their simple structure can be computed analytically. Hence, besides building the original computational
graph we also construct another graph in the background, which we call the reverse graph, where each
node’s operation is replaced with the derivatives of that node with respect to its parent nodes. Now, using
the chain rule for any input value of the computational graph — having first forward propagated that input
value through the original graph — we can roll back the output values through these expressions in the
reverse graph and (in each node) get the derivative of the output with respect to that particular node. A
demonstration of this idea is presented in Figure 3.2b. Here the reverse logic of the differentiating graph
becomes apparent. Since the derivative of the loss function is known analytically (and so is the derivative
of the activation function) after having forward propagated a certain input through the original graph,
backpropagating the returned values through the differentiating graph yields the derivatives of the output
(here L) with respect to every single input. For instance, as it can be easily checked, the derivative of
the loss with respect to the weight of the network in Figure 3.2a is given by

oL OLIL Ay Iz Op R ,

otk Sudodioct Yy 2z 3.15

dw 0L 05 02 opow W W), (3.15)
leading to a simple tensor multiplication in the reverse graph. These operations, with the help of modern
matrix multiplication libraries, can be efficiently computed in parallel for a huge network, making the
calculation of the gradient vector feasible in practice.
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Chapter 4

An Overview of Existing Numerical
Methods

If interested in the solutions of FBSDEs of the form Equation 1.56, one often has to rely on numerical
methods to tackle them. In the following chapter we explain the most popular numerical methods
in the literature, focusing on encouraging recent developments built on deep learning. We start off
by describing a discretization procedure of the continuous problem and recall the well-known Euler—
Maruyama method for forward SDEs. Thereafter, we turn to the backward equation and motivate a
similar discrete approximation scheme for BSDEs. We emphasize that due to the adaptivity requirements,
one cannot just perform backward Euler stepping over the reversed time horizon, and in fact is forced
to approximate recursive conditional expectations instead. Consequently, we introduce two such discrete
approximation schemes for BSDEs, the Euler- and the theta-scheme which the forthcoming algorithms are
built upon. Subsequently, we briefly explain the idea of Least-Squares Monte Carlo (LSMC) regression,
which is the key numerical method in this work to tackle conditional expectations. In the last section
we turn to the class of recently proposed deep learning based algorithms to solve the FBSDE system.
Since this has been an area of intensive research in the last couple of years resulting in numerous different
approaches, we only describe two base algorithms which we call Forward and Backward Deep BSDE
solvers respectively. For a broader overview of such deep learning based methods we refer the interested
reader to the survey papers [39] and [40]. Finally, at the end of the section we touch upon the drawbacks
of these methodologies in order to motivate our proposed algorithms explained in the next chapter.

4.1 Preliminaries

Throughout the whole chapter we are dealing with the decoupled system of FBSDEs given in Equa-
tion 1.56 which, for the convenience of the reader, we repeat here once again

¢ ¢
X =z —l—/ (s, Xs)dWs +/ o(s, Xs)dWs, 0<t<T, (4.1a)
0 0
T T
Y}:g(XT)-i-/ f(s,Xs,l/'S7ZS)ds—/ ZsdWs, 0<t<T. (4.1b)
¢ ¢

We assume that the above coefficients p, o, f and g all satisfy the conditions of Assumption 1.5.1, and
therefore by Theorem 1.5.1 we have a unique triple of random processes (X, Y, Z) satisfying the equations
above. Moreover, in order to ensure convergence of the upcoming numerical approximations, we have to
make further assumptions with respect to the continuity of the coefficients in time.

Assumption 4.1.1 (Unique Solution of FBSDEs with Holder Continuity)
Let the p, o, f, g in Equation 4.1 be such that the conditions of Assumption 1.5.1 are satisfied. Addition-
ally, assume that

1. p,0 — on top of being Lipschitz continuous — are also %—H(')'lder continuous with Hélder constant L,
i.€. V(tl,l‘l), (t27l'2) S [O,T} X ]Rd

it @) = plta, @)l + lo(t,@1) = ot @)l S L (1 =P+ o — 2]} s (42)
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2. f —on top of being Lipschitz continuous — is also %—Hé'lder continuous with Holder constant L, i.e.
v(tlaxhyla Z]_), (t2,1’27y27 ZQ) S [O7T] X Rd x R x Rle

|f(t1, 21,91, 21) — f(t2, 22, Y2, 22)| < L (\fl —to]? 4 |21 — o] + 1 — 2| + |21 — Z2|> . (43)

We emphasize that the additional assumptions in Assumption 4.1.1 are not to assure the existence
of unique solutions but rather to provide regularity for discrete numerical approximations.
In what follows, we always denote a discretization of the underlying time horizon by

aVi={0=ty<t; < - <ty_1 <ty=T}, (4.4)

and its mesh-size by |7| == sup,_; _ xt; —t;—1. In order to ease the notation we put X7, Y,", Z] for the
discrete approximations of their continuous counterparts X; ,Y: ,Z;, for each 0 <n < N. As we shall
see, the general error bounds of discrete BSDE schemes rely on the L2-regularity of the Z-process which
is defined as follows

(|l =E

N—-1 i1 _ N 1 tit1
Z / |Z: — Z,,|"dt|, where Zj, = -—E; / Z,dt| . (4.5)
n=0 vt Atl ti

4.2 Discretization of the FBSDEs

In the following section, we introduce discretization schemes for both SDEs and BSDEs. We start off
by briefly recalling the standard Euler—Maruyama scheme and its main properties for forward equations.
Thereafter, we explain how the ideas of numerical methods for forward SDEs can be applied to discretize
BSDEs. We highlight that the need for the arising conditional expectations stems from the fact that
performing backward Euler stepping over the reversed time horizon is not possible, since it would violate
the adaptivity condition required from the unique solution of BSDEs — see Definition 1.3.1.

4.2.1 Discretization of SDEs

The solution of forward stochastic differential equations can be approximated numerically by different

discretization procedures. For the purpose of this work, we only consider the well-known Euler-Maruyama

scheme and refer the more interested reader to, e.g., [41] for a more detailed discussion on the topic. The

idea behind Euler—-Maruyama is to discretize both the time and stochastic integrals in Equation 4.1a by

the left-rectangle rule, which subsequently leads to the following iterative scheme for eachn =0,..., N—1
Xg = X,

Xi1 = X7 4 pltn, XJ) Aty + o (tn, X)) AW,

n

where At,, = (t,4+1 — t,,) and AW,, =W, 1 — Wy, It is of common knowledge that the scheme above
has strong convergence properties established by the following theorem.

(4.6)

Theorem 4.2.1 (Strong Convergence of the Euler—Maruyama Scheme for SDEs)
Let the conditions of Assumption 4.1.1 hold. Then

max E| sup X, - X7P| <O (14 fwol*) I, (4.7)
0=i=N-1 teltitiv1]
with some constant C independent from the time grid.
Proof. See, e.g., [12, Theorem 5.3.1]. O

As in our case the solution of the forward diffusion in the decoupled FBSDE system can be solved
independently from the solution of the BSDE part, we can apply the Euler—-Maruyama scheme with-
out having any prior knowledge about the trajectories of (Y, Z), and gather discrete approximations
{X7}o<n<n for the continuous solution {X }o<;<p. It is worth to notice that due to the uncoupledness
of the system in Equation 4.1, one can solve the forward diffusion on a much finer time grid, assure
strong convergence by Theorem 4.2.1 and plug the resulting randomness in the backward equation on a
sparser time partition. Consequently, in what follows the simulation error can be made arbitrarily small
in expectations for any SDE satisfying the conditions of Theorem 4.2.1.

Nonetheless, partly motivated by the observation above, the simulation error of the forward diffusion
shall not be of key interest neither for the upcoming error analysis in chapter 6, nor for the numerical
examples presented in chapter 7. The reason for this is that in the upcoming applications we restrict our
analysis to the special cases of Arithmetic (ABM) and Geometric Brownian Motions (GBM) where the
forward process can be simulated analytically for any realization of the underlying Brownian motion —
according to the closed-form expressions Equation 1.12 and Equation 1.13 respectively.
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Discretization of the Malliavin Derivative’s SDE

Before presenting discretization schemes for BSDEs, in the light of forthcoming applications in chapter 5,
let us finally have a few words on the numerical solution of the Malliavin derivative’s linear SDE given
in Equation 2.15. One, similarly to Equation 4.6, can also apply the Euler-Maruyama scheme to gather
discrete time approximations for D; X solving Equation 2.15, leading to the following discrete scheme
foreachn=0,...,N—1

Dy X7 = o (tm, X;)Lim<n(n), 0<n<m,

Do X7y = Do XT + Vopi(tn, X5) D XT Aty + Voo (tn, XD D XTAW,,  m<n<N,  (4.8)

for each 0 < m < N in the discrete time grid. It is important to notice that, unlike in the case of standard
forward diffusions, there is an additional difficulty in solving the Malliavin derivative’s linear SDE. This
stems from the fact that the initial condition D,, X7, = o(t,,, X)) is not fixed, and is already prone to
the errors induced by the Euler-Maruyama approximations deployed for X. Therefore, it can be difficult
to assure rigorous convergence bounds for the numerical approximation D,, X™. However, this source of
simulation error shall not impact the results presented later in chapter 7, as for the case of ABM and
GBM one can simulate the Malliavin derivatives analytically through their closed-form expressions in
Equation 2.9 and Equation 2.10 respectively.

4.2.2 Discretization of BSDEs

Let us now turn to backward equation in Equation 4.1b and motivate a discrete approximation scheme
for its numerical solution similar to the Euler-Maruyama scheme above. Notwithstanding, we are faced
with an additional difficulty, since, although the nature of the BSDE system would suggest a backward
Euler induction for the solution starting off from ¢ = T but this is not allowed due to the adaptivity
requirements posed on the solution pair.! As we shall see, one thus has to approximate conditional
expectations instead, in order to gather discrete time approximations for (Y, Z). To show this, let us
consider the BSDE in Equation 4.1b

T T
Y: = g(X7) +/ f(s,Xs,Ys, Zs)ds — / Z AW, 0<t<T. (4.9)
t t
Combining the dynamics for two adjacent points ¢,,t,41 € 7V, we gather

tn+1 tn+1
Y, = Yi,, + / (5, X, Yy, Z,)ds — / Z,dw,, bostnis € 7. (4.10)
t t

n n

Additionally, multiplying both sides above by the Brownian increment AW;, = W, Wi, = f;t"“ dW;

and taking conditional expectations projecting on the o-algebra F;, yields

nl

Y: E[AW,,

Fi,]=E [Yt AWy,

}‘t"] (4.11)

tnt1
ftn] —E {/ Zds ‘Ftn:| ,
tn

by It6’s isometry. Consequently Equation 4.10 and Equation 4.11 lead to the following representation
formulas

n+1

tnt1
+E |:Ath / f(saXs;thZs)dS
t

n

tnt1
Y;, =E [Ytn+1 +/ f(s, X5, Yy, Zo)ds
t

n

]:tn] , (4.12a)

tn+1
0=FE [YthAth +/ (AW, £(5, Xs,Ys, Zs) — Zs) ds
t

n

.Ftn} . (4.12b)

In order to arrive at discrete approximations (Y,7, Z7) for (Y;,, Z:, ), we need to approximate the contin-
uous time integrals in the arguments of the conditional expectations above. In what follows we present
two standard approaches for this.

!Meaning that the solution at time step n cannot be a function of the solution at time step n + 1.
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Euler Scheme for BSDEs

The Euler scheme for BSDEs — analogously to the Euler scheme for SDEs — is the most extensively
studied discrete scheme for backward equations (see, e.g., [6], [5]), which is explicit in both Y and Z. In
this approach the integrals in Equation 4.12 are approximated by the left-rectangle rule. Additionally, in
order to avoid implicitness in the scheme of Y;" we can also use the approximation f(t,, XT, Y7, Z7) ~

f(tn, X7, YT, Z7) motivated by the Lipschitz continuity of the driver, and subsequently get the following
recursive approximation scheme for each n =N —1,...,0
Y =9(XR), 25 = o (tn, X§) Vg (XR), (4.13a)
T 1 s
Zr = AtnE [AWL YT | Fa], (4.13b)
VI =E [V, + At f(tn, XJ, YT 1, Z0) | Fal - (4.13¢)

As it was shown by Zhang in [5], the approximation scheme above admits to convergence bounds estab-
lished by the following theorem.

Theorem 4.2.2 (Convergence of Euler Scheme for BSDEs)
Let the conditions of Assumption 4.1.1 hold. Consider approxzimations (Y™, Z™) given by the discrete
scheme in Equation 4.13. Then

N—-1 tit1
> / |Z, — ZTF|*ds
i=0 7l

<O (E |lg (Xin) = g XR)F] + [xl +7(n)) ,  (4.14)

sup E [|v;, — V7" +E
0<i<N

where £Z(|7|) is the L2-regularity of the control process defined in Equation 4.5 and C is a constant
independent of the time partition.

Proof. See, e.g., [5, Theorem 5.6]. O

Finally, let us make two important remarks. Firstly, in case the terminal condition g is also Lipschitz
continuous then it can be shown that €Z(|n|) is an O (|r|) function — see, e.g., [5]. Subsequently the
right-hand side of Equation 4.14 simply becomes C|r|, giving first-order convergence. Secondly, allowing
for implicitness in the approximation of ¥ does not change the convergence properties — see, e.g., [6].

Theta-Scheme for BSDEs

An other technique to discretize the continuous integrals in Equation 4.12 is to use the well-known theta-
scheme, an approach which, in the context of BSDEs, was first proposed by the authors in [42] and later
generalized in [43]. This way, the integrals in Equation 4.12a and Equation 4.12b, with some 9,9, € [0, 1]
respectively, are approximated by

Vi, R E Vi, 4+ Aty (9yfe, + (1= 9y) feon)|Fen] s (4.15a)
0~ E I:)/tn+lAth + Atn [—ﬂzZtn + (1 — ’l9z) (ftn+1Ath — Ztn+1):| |thn:| s (415b)
where we introduced the notation fs = f(s,Xs,Ys,Zs). Rearranging the equations, using standard

properties of conditional expectations results in the following recursive conditional expectation scheme
foreachn=N—1,...,0

Yy =9(XR).Zy = o (tn, X§) Vg (XT), (4.16a)
1

Zr = WE Y AW, + (1= 92) Aty (f (b1, Xpg1, Yorr, Z ) AW, — Z7 1) | Fy] . (4.16b)

YT =0y At f(tn, X3, Y, Z5) + E YT+ (1= 9y) Aty f (tng1, X7i1: Y1, Zngn) | Fal - (4.16¢)

We remark that the discrete scheme in Equation 4.16 coincides with that of the implicit Euler scheme for
BSDEs when ¥, = 9, = 1. Moreover, it is also worth to notice that for any ¥, > 0,9, € [0,T] the scheme
is implicit in Y and explicit in Z. We remark that in order to deal with implicit conditional expectations,
one most often uses a Picard iteration sequence such as the one established by Corollary 1.4.1 in chapter 1.

To conclude the discussion let us finally have a few words on the errors induced by the discrete scheme
in Equation 4.16. Zhao et. al in [42] proved that the scheme above exhibits O (|7|) convergence for any
Yy, Y, € [0,1] under the rather strict conditions that: f, g are both smooth and have bounded partial
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derivatives of all orders; f does not depend on Z; and the underlying forward diffusion is a Brownian
motion. Additionally, they also showed that the Crank—Nicolson scheme (9, = ¥, = 1/2) admits to
second-order convergence under the same assumptions. These results have been extended by Ruijter
and Oosterlee in [44], where they relaxed the conditions allowing for ABM as the forward diffusion,
while keeping second-order convergence in the Y-process. Nevertheless, to the best of our knowledge,
second-order convergence for the general case of Assumption 4.1.1 is yet to be proven.

4.3 Approximating Conditional Expectations

As we have just seen, numerical methods for solving the backward part of an FBSDE system are closely
related to approximating conditional expectations at each step in time. Moreover, by the schemes Equa-
tion 4.13 and Equation 4.16, we have also seen that these conditional expectations are nested recursively
backwards in time. Therefore, it is of interest to understand how this can be done efficiently with high
precision in a numerical algorithm. The trivial way to calculate conditional expectations for a certain
random phenomenon would be to perform inner Monte Carlo simulations on a given Monte Carlo sam-
ple and then calculate the mean of the paths starting off from each realization of X . These schemes,
however, are very expensive computationally for large Monte Carlo samples. In order to overcome such
computational burdens, we are restricted to other approaches. There have been many methodologies pro-
posed in the literature for estimating conditional expectations. For instance, in [44] the authors propose
a Fourier cosine expansion method for smooth functions u(t, XT) of forward diffusions X whose charac-
teristic functions are known. In the context of this work, we use another method called Least-Squares
Monte Carlo (LSMC) which is explained in the section below.

4.3.1 Least-Squares Monte Carlo

LSMC was first proposed in a paper by Longstaff
and Schwartz [45] to approximate conditional ex-

. . . . . o fiz— E[¥|X =4
pectations in the context of American option pric- " -

— My

ing. The method has since been extensively studied o C
and used in a wide range of numerical problems. In n
particular, Gobet et al. in [3] applied it to approx- ¢ "
imate conditional expectations arising in the dis- ¢

crete scheme of Equation 4.13. We hereby explain s .
the main idea behind LSMC focusing on the con- .

text of BSDESs, and refer the more interested reader
to the survey paper [46] for more details.

LSMC is built on Markovianity, namely it ex-
ploits the fact that in case the driving random phe-
nomenon is Markovian the conditional expectations

Figure 4.1: Least-Squares Monte Carlo Illus-
tration. Red curves: realizations of a random

can be expressed as deterministic functions of the
realizations of the underlying randomness. Addi-
tionally, it is not too difficult to show that this de-

phenomenon. Black dots: current states. Black
squares: future states to be projected through
conditional expectation.

terministic function solves a minimization problem
as stated in the following proposition.

Proposition 4.3.1 (Conditional Expectation as Minimizer)
Let G C F be two (sub-)o-algebras. Let X € LZ(R?) and ¥ € L%(R). Assume that the underlying
stochastics is a Markov process, i.e. o(X) = G. Denote the set of measurable functions f : ]Lé(]Rd) —
L% (R) by Df (R R). Then

E[W|g] =

argmin E [|\I! - f(X)\z} . (4.17)

FEDE (RER)

Proof. The proof is an elementary consequence of the law of total probability. We refer the more interested
reader to, e.g., [47] for more details. O

In the light of the proposition above — recalling that in the context of FBSDEs we have that for
each point in time Y; = u(t, Xy), Z = v(t, X¢) as explained in subsection 1.5.1 — we can break down
the approximation of the conditional expectations arising in the discrete schemes above to d + 1-many
minimization problems of the form of Equation 4.17.
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Ordinary Least-Squares Regression

Nevertheless, in order to have a fully implementable discrete scheme, we need to make two further
estimations. Firstly, we need to approzimate the infinite dimensional function space Dgf (R% R) by the
span of a finite set of (independent) basis functions {¢;}/,. This approximation, for any f € D (R%;R),
can be formulated as follows

K
FX) ) argi(X), (4.18)
k=1

where ay, expresses the weight of ¢ in the decomposition. Secondly, we also need to gather approxima-
tions for the true expectations in Equation 4.17. This can be done by taking the empirical sample mean
of M independent realizations of the random phenomenon

2 | M
zﬂz
j=1

Introducing the notations ® € RM*E : [®],,; = a;¢;(X;), ¥ := (VUy,..., V) and o == (g, ..., k) it
is well-known — see, e.g., [46] — that the best estimator is given by

2

E (4.19)

K
v — Z apdr(X)
=1

K
U= > anor(X;)
k=1

a=(oTe) 'eTw. (4.20)

Finally, to conclude the discussion of LSMC we make two important remarks. First, the performance
of LSMC is inherently linked to the choice of the set of basis functions with which we approximate the
space of all measurable functions. Such a choice should be extensive enough to span a wide function class
but not too large in order to avoid overfitting. Second, Ordinary Least-Squares LSMC has a closed form
expression given by Equation 4.20 unlike neural network LSMC introduced later in section 5.2.

4.4 Deep BSDE Solvers

In the following section we introduce two base approaches developed to tackle the FBSDE problem, using
deep learning. These algorithms were formulated with the purpose to solve high-dimensional second-
order parabolic PDEs by translating them to the corresponding FBSDE system through the probabilistic
representation provided by the general Feynman-Kac relations? in Theorem 1.5.2. In this work, we are
concerned with the solution of BSDEs and therefore we focus on such purely probabilistic methods which
are designed to deal with the system in Equation 4.1. The main ideas of these aforementioned approaches
can be classified in two distinct categories, which we briefly explain below.

4.4.1 Forward Deep BSDE Solver

The Forward Deep BSDE solver was first proposed in a paper by E et. al in [48] and [7]. The main idea
of their paper is built on the following observation. One can exploit the fact that due to Markovianity
the initial values of the backward processes are deterministic functions of Xg. In fact, for a fixed initial
condition Xy = x(, we have that the solutions of the backward equations are also fixed Yy = yo, Zp = 0.
Subsequently, one can reformulate the BSDE with an Euler-Maruyama like scheme, forward in time. In
order to do this, one needs to parametrize the solution of the BSDE part at t = 0 by Yy = 65, Zo = 6§
where 03 € R,0F € R¢ are trainable parameters. Moreover, one can also parametrize each time step’s
control process by a neural network Z, (-02) == NN (:|6Z) : R = R4, n =1,..., N — 1 where 67 € RP»
with p,, denoting the number of parameters in the n’th neural network. Thereafter, using these estimations
we can forward propagate the initial random guesses through the whole discretized time window 7%V in
terms of an Euler—-Maruyama scheme

yO :93720 :057

4.21
yn-i-l :yn _f(tn7X’l7:’yn’Z" (X;”GZ)) Atn +Zn (X::‘o’rzz) AWn' ( )

Having finished the forward propagation, one can gather estimations YV (05,63, 05, . ..,0%_,) depending
on the initial parameters and all parameters in the sequence of neural networks. By collecting these

2We remark that this special ”equivalence” between PDEs and FBSDEs establishes a way to approximate
the solution of the backward equation by means of an unsupervised learning problem over a deterministic spatial
domain, formulated on the corresponding PDE in Equation 1.63. Such methods are usually collected under the
term Deep Galerkin Methods (DGM), a few examples of which can be found in [25], [26] or [27].
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Algorithm 4: Forward Deep BSDE (FWDBSDE)
Data: {X,}; .~ — forward diffusion’s Monte Carlo sample of size M
Result: (Y™, Z™) — BSDE’s solution over time grid 7™V
Vo < 05, 20 + 6F — take initial random guesses
Zn (-102) + NN (-]62) : R — R? — neural network parametrizations

forn=0,...,N—1do
Yn — forward propagate until terminal time according to Equation 4.21

yn+1 — yn - f(tTM X77Lr> yTH Zn (X:zr’e?zm))Atn + Zn (X’ZHH’I%L) AW”

end

O+ (93/, 95, 912, . ,9]%_1) — collect model parameters

L (©) — define loss function according Equation 4.22

© « argming [£(O)]; - optimize empirical loss

VG 08, 25 « 05, Vi (YF = S F(6 X7 YT Z0)AL + XI5 ZEAW),

4T — Z, (Xj{ \5;) — gather approximations

E
Il
&
1
v
e
1
v
e
L
v
1

—>‘ Xy_1 F—»‘ X%

— AW, | Y AW, { } AW, | AW,

Figure 4.2: Forward Deep BSDE Architecture. Red area: forward part; blue area: backward
part; yellow area: optimization part. The coding of the arrows is as follows. Solid-red: for-
ward Euler SDE approximation; solid-black: forward Euler BSDE approximation; dotted-green:
neural network approximation; dashed-yellow: optimization input and output.

37



CHAPTER 4. AN OVERVIEW OF EXISTING NUMERICAL METHODS

estimations, one can compare them against the known terminal condition of the FBSDE system and
formulate a loss function according to

L(©) =E [|yN (60,02,07,....0% ) —g(X}{,)|2} . (4.22)

Minimizing this loss and gathering the optimal parameter set © = (53 , 53, - ,é\]z\,_l> thus then leads
to approximations Z7 = Z, (X,’LT @i) and Y7 := ), (©) which satisfy the forward Euler discretization of
the BSDE and also adhere to the known terminal condition. The full algorithm is collected in algorithm 4

and the architecture of the Forward Deep BSDE solver is also depicted in Figure 4.2 for illustrative
purposes.

Error Analysis

An interesting aspect of the proposed scheme is the error figures it obeys to. Since the problem formulation
is very involved, and it is difficult to guarantee rigorous regression error bounds for neural networks due
to the nature of stochastic optimization methods, it is non-trivial to prove that the errors induced by
Equation 4.21 tend to zero for infinitely small mesh-sizes. Nevertheless, the authors in [49] prove a
posteriori error estimate for the Forward Deep BSDE Method, in a more general case of weakly coupled
FBSDESs, which also stands for the uncoupled system of our interest. This is stated in the following
theorem.

Theorem 4.4.1 (Posteriori Error Estimate Forward Deep BSDE, Han-Long [49])
Under some regularity assumptions, there exists a constant C, independent of the time grid such that for

sufficiently small time steps we have
2 T 12
) [ ol -]
0

Il
<O (Il +E [lgx7) - Y7P]), @29)

where X7 == XT, Y[ =Y ZF .= ZT fort € [t;,tis1)-

sup {E UXt — )?Zr Y; — }A’f

t€[0,T]

Proof. See [49, Pg. 11, Theorem 1’| O

Let us briefly interpret this result. We see that the overall error of the discrete scheme is bounded
by two terms. The first term corresponds to the Euler—-Maruyama discretizations of Equation 4.1a and
Equation 4.1b, and it says that the error stemming from approximating continuous random processes
by discrete counterparts is an O(|xr|) function, i.e. it vanishes linearly while decreasing the mesh-size
of the time grid. On the other hand, the second term is an approximation error induced by the model
in Equation 4.21. This expression corresponds to the loss function of the Forward Deep BSDE method
and in fact incorporates all the regression errors of each neural network in the sequence. It is important
to highlight that the error bound is posteriori, i.e. it does not guarantee convergence of the scheme as
|| = 0 only provides a way to evaluate its accuracy.

4.4.2 Backward Deep BSDE Solver

Motivated by the forward Deep BSDE there has been another methodology suggested in the literature
to tackle the FBSDE problem using deep learning. This approach was first proposed by Wang et. al [8]
for the special case of zero driver BSDEs — recall Equation 1.16. It was later extended by Huré et. al
in [9] for general BSDEs and by Chen and Wan in [10] for reflected BSDEs in the context of American
option pricing. In what follows we explain this approach briefly, mostly focused on how it differs from
the forward scheme seen before.

This method is closer to the original conditional expectation scheme, as it solves the BSDE by a
sequence of recursive optimizations, backwards in time. Nevertheless, the main idea is similar to that
of the Forward Deep BSDE method: one can parametrize the initial values of the backward equation’s
solutions by trainable parameters YJ* = 0, Z§ = 6&. However, on top of parametrizing each further time
step’s control process, one also parametrizes the Y-process by neural networks. This yields approximations
Vu(-16%) = NN (-16Y) : R* — R and Z,(-|02) = NN (-]62) : R? — R?, with % € RP» and 67 € RP»
where p¥, p? denote the number of parameters in the corresponding networks. The training of the model
is then done as follows. One first collects the terminal conditions according to Y7 = g(X7% ). Subsequently
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Algorithm 5: Backward Deep BSDE (BWDBSDE)
Data: {X,}; .~ — forward diffusion’s Monte Carlo sample of size M
Result: (Y™, Z™) — BSDE’s solution over time grid 7
Y5 < 9(X%), ZR < o(tn, X)) Vzg(XF) — collect terminal condition
forn=N-1,...,0do
Vu(-10%) <= NN (+10%) : R — R, Z, (-]0%) + NN (-|62) : R? — R? — neural network

parametrizations

O, + (65,02) — collect time step parameters
L (0,) — define loss function according to Equation 4.24

O, + argming [L(0,)] - optimize empirical loss
YT — Y, (X,’Lr |§f{), Ir«— 2, (XZ{ |§fl) — gather approximations

end
m W @
v [reappte (e i

| aw, AW, | Y aw,,

Figure 4.3: Backward Deep BSDE Architecture. Red area: forward part; blue area: backward
part; yellow area: optimization part. The coding of the arrows is as follows. Solid-red: for-
ward Euler SDE approximation; solid-black: forward Euler BSDE approximation; dotted-green:
neural network approximation; dashed-yellow: optimization input and output.
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for each previous step in time one solves a regression problem given by the forward Euler—-Maruyama
discretization of the dynamics of the BSDE in Equation 4.1b, corresponding to the following loss function
foreachn=N—-1,...,0

£(00) = B [V = Y (XZ108) + f (b X7, Vo (XF108) . Z0 (X7162)) At — 20 (X7107) AW, [*]

(4.24)
where we introduced the notation ©,, = (6Y,6Z). The minimizer of this loss function thus yields an
optimal parameter set 0 = (5}{,52) € RP=*tPn such that the approximations Y™ = ), (Xf{@{) and

47 =2, | X] \@ZL closely adhere to an Euler-Maruyama discretization of Equation 4.1b and can there-

fore be considered good approximations of (Y Z). The full algorithm is collected in algorithm 5. The
architecture of the Backward Deep BSDE scheme is depicted in Figure 4.3 for illustrative purposes.
Finally, we remark that the scheme above has a modification in which only the Y-process is
parametrized by neural networks and — motivated by the Feynman-Kac lemma in Theorem 1.2.2 and the
connection in Equation 2.28 — the Z-process is approximated by the derivative of the network of ),

Zn (X7) = o(tn, X3)Vadn (X7163), (4.25)

taken by automatic differentiation — see section 3.5. However, as this modification usually yields numeri-
cally less stable results in high-dimensions because of the training of the derivative of a network — see [9]
for more details —, we restrict our analysis to the original formulation explained above.

Multi-Step Discretization

As we shall see in the next chapter, multi-step discretization schemes play an important role in one
of the proposed algorithms — see algorithm 7 in particular. Therefore, we remark that the Backward
Deep BSDE scheme described above has an extension proposed by Germain et. al in [50] to multi-step
Euler—Maruyama discretizations. In fact, instead of discretizing the BSDE in between two adjacent time
steps as in Equation 4.10, they discretize Equation 4.9 by splitting it up to a sum of integrals between
adjacent time steps, each discretized by the left-rectangle rule of the Euler-Maruyama scheme. Through
this approach, their loss consequently becomes for each n =N —1,...,0

L(On) =E| YT = Vu(X710%) + f (b, X7, Yo (X7107) , 20 (X7107)) Aty — 2, (X77107) AW,

2

N—-1

1=n-+1

This approach has shown similar performance as its one-step counterpart with mitigated regression errors.

Error Analysis

The authors in [9, Theorem 4.1] show that the above proposed recursive scheme admits to similar error
figures as in the case of the forward Deep BSDE method. However, as their error bound depends on
quantities only defined in chapter 6, for now we refrain from its concrete formulation and rather describe
them qualitatively. Analogously to the first term on the right-hand side of Equation 4.23 in Theorem 4.4.1,
the error bound of the Backward Deep BSDE scheme also has an O(|x|) term on top of which we have
quantities corresponding to the quality of neural network regressions. The authors in [9] then motivate
the consistency of their scheme by referring to the universal approximation capability of neural networks
provided by Theorem 3.2.2. The precise formulation of the theorem is given in Theorem 6.4.1 and
Theorem 6.4.2 for the one- and multi-step schemes respectively.

4.4.3 Comparison of Deep BSDE Methods

To conclude our discussion on Deep BSDE solvers, let us finally compare the two approaches described
above. For the sake of readability, we split up the comparison to the following list of aspects which are
also collected in Table 4.1. It is important to highlight that the performances below are only characterized
qualitatively. We refer to the numerical experiments presented in chapter 7 for their precise quantifications
on specific problems.
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4.4. DEEP BSDE SOLVERS

Forward Deep BSDE Backward Deep BSDE
Consistency posteriori guarantee | apriori guarantee (incl. regression err.)
Speed faster slower
Model Complexity higher lower
Memory Consumption higher lower
Robustness prone to local optima prone to rolling errors
Yy: good Yy: good
A =
ccuracy at t =0 Zo: good Zo: good
Y;: poor Y;: good
A t t<T
ceuracy at 0 <t < Zy: poor Zy : satisfactory

Table 4.1: Deep BSDE Methods Comparison

Consistency: the theoretical bounds of each algorithm depend on the approximation capabilities
of neural networks which are difficult to give rigorous bounds for. Nevertheless, in the case of
the Forward Deep BSDE solver the final approximation accuracy can only be measured posteriori,
whereas its backward counterpart provides an apriori error estimate which, however, still depends
on the regression errors of neural networks.

Speed: due to the collective training of all the parameters in the model within one optimization
cycle, the Forward Deep BSDE method excels in terms of speed. In fact, as demonstrated by [51,
Test 1], the Forward Deep BSDE method reaches the same error figure at ¢ = 0 as its backward
alternative within two orders of magnitude less time for certain problems. This effect is mostly due
to the computationally intensive recursive, multiple optimizations performed at each time step in
the backward algorithm.

Model Complexity and Size: as seen above, the Forward Deep BSDE method parametrizes the
BSDE with a sequence of neural networks which are trained within the same optimization cycle.
Contrarily, the Backward Deep BSDE method splits up the optimization to multiple regressions
which are solved recursively backwards in time. Consequently, the backward approach yields
smaller learning problems. In fact, as it is demonstrated by [9], for fine time grids — i.e. where N
is large — the Forward Deep BSDE method often does not even fit into memory.

Robustness: strongly related to the point above, because of the smaller learning problems, the
Backward Deep BSDE method is less prone to local optima. The authors in [9] present multiple
examples — even in low-dimensional problems — where the Forward Deep BSDE method diverges
for fine time grids and long time horizons. Moreover, the Forward Deep BSDE method is also
known to be sensitive for the initial choice of the parameters 67, 6;. If one starts the optimization
far off from the true values Yy, Zy, then the algorithm is susceptible to fall into local optima and
often does not converge. On the other hand, the backward approach is more susceptible to the
effect of rolling errors, i.e. the regression targets at time step n include all the fixed approximation
errors of time steps m =n+1,..., N — 1. Because of this phenomenon, one must obtain very high
accuracy for time steps close to the terminal condition in order to ensure convergence at ¢ = 0.

Accuracy: both algorithms are designed to yield accurate approximations for (Y, Z) at ¢ = 0 and
duly do so. Notwithstanding, their accuracies significantly worsen for other points in time. In case
of the Forward Deep BSDE scheme the quality of approximations quickly deteriorates for both
the Y- and Z-processes, in fact the method only manages to yield reliable approximations at the
initial point in time. The Backward Deep BSDE solver — with carefully chosen hyperparameters
alleviating the impact of rolling errors — performs better at the approximation of Y; for ¢ > 0,
however, it also fails to give control estimates of similar precision. In conclusion, both methods
struggle with the estimation of Z which indeed is the biggest challenge in the numerical solution
of BSDEs.
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Chapter 5

Algorithmic Proposals

In the following chapter we describe the two algorithms proposed in this thesis, which we call the One-
Step Malliavin (OSM) and Multi-Step Malliavin (MSM) separated Deep BSDE solvers. We highlight
that the main goal of the algorithms is to overcome the drawbacks of the Backward Deep BSDE solver by
giving accurate approximations for the Z-process throughout the whole time window for high-dimensional
FBSDEs. Consequently, OSM and MSM are designed in a way that they separate the training phase of
the Z- and Y-processes, yielding smaller learning problems and more regular losses. The control process is
trained directly by the dynamics of the Malliavin derivative, which is enabled by the Malliavin chain rule
formula and the differentiable function approximators given by neural networks. The proposed schemes
only differ in their discretizations which we shall derive in section 5.4 and section 5.5 respectively. In
what follows we focus on the derivation of the algorithms. Their error analysis shall be carried out in
chapter 6, whereas we demonstrate their numerical performance in chapter 7.

This chapter is built up as follows. First, we extend the concept of LSMC and provide an alternative
where, instead of ordinary least-squares, the regression is done with neural networks. Thereafter, we
motivate the main idea behind the proposed algorithms and derive the continuous linear BSDE dynamics
driving the evolution of the Z-process. So that we can avoid the explicit dependence on the Malliavin
derivatives D, Y and D;, Z we exploit the fact that — provided by the assumption of Markovianity —
these processes can be estimated by the Malliavin chain rule. Subsequently, we discretize the resulting
continuous equations given in Equation 5.12 and Equation 5.11 by separate theta-schemes and gather
fully implementable recursive discrete approximations in Equation 5.15 and Equation 5.22 for both OSM
and MSM. Afterwards, we discuss the details of the neural network regressions, and give out the precise
formulations of both algorithms. Finally, to conclude the chapter, we compare the resulting algorithms
to other discrete schemes founded on Malliavin calculus and qualitatively analyze the differences between
OSM, MSM and the Backward Deep BSDE method.

5.1 Preliminaries

Throughout the whole chapter we are considering the dynamics of an FBSDE system and its Malliavin
derivatives given by the following set of equations for any 0 < s <t <T

t t
X =z —|—/ p(s, Xs)dWs —|—/ o(s, Xs)dWs, (5.1a)
0 0
T T
Y, = g(Xr) +/ f(s, X5, Ys, Zs)ds —/ Z,dWs, (5.1b)
t t
t t
DX, =0(s, Xs)+ / Vaen (r, X,) D X, dr + / Vo (r,X,) D X, dW,, (5.1c)
S T S
D.Y, = V.g(Xz)D. X1 + / Vo f(r, X0, Y, Z,)Du Xy + Y, f(r, X0, Yo, Z,)DY, (5.1d)
t

T
+V.f(r, XY, Z.)DsZ,] dr 7/ D.Z,.dW,,
t

with D;X; =0,D,Y; =0,Ds7Z; =0 when 0 <t < s <T. Accordingly, we assume that the conditions of
Assumption 2.5.1 are satisfied from which — by Theorem 2.4.1 and Theorem 2.5.1 — it follows that there
are two unique triples of random processes (X, Y, Z), (Ds X, D,Y, D;Z) satisfying the equations above for
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CHAPTER 5. ALGORITHMIC PROPOSALS

each 0 < s <T. We recall that, provided by Theorem 2.5.1, we define the control process as the version
of the Malliavin derivative satisfying Equation 5.1d, therefore Z; = D.;Y; for any 0 <t < T.

Similarly as in the previous chapter, in what follows we denote a discretization of the underlying time
horizon by

N2:{01t0<t1<"'<t1\]_1<tN:T}, (52)

and its mesh size by || == sup,_; _nti —ti-1.
In order to ease the notation, we put X7, Y,", ZF D, X7, DY, D, Z" for the discrete approxima-
tions of their continuous counterparts X; Ytn, Zt Dt Xt,, Dt Y4, , Dy, Zy, for each 0 <m,n < N.

n? n? m n?

5.2 Neural Network Regression

Before we start to explain the algorithms proposed in this thesis, let us first take a short — seemingly
unrelated — detour and introduce the concept of neural network Least-Squares Monte Carlo method,
where the regression in LSMC is performed by training neural networks. In the context of this work,
this is motivated by the following three arguments. First, neural networks — provided by the Universal
Approximation Theorem in Theorem 3.2.2 — span a wide function class and therefore provide a good
basis for regression. Additionally, when choosing sufficiently differentiable activation functions, a neu-
ral network is a continuously differentiable function approximator whose derivatives can efficiently be
calculated by automatic differentiation. As we shall see — we refer to Equation 5.6 in particular —, this
observation is essential in terms of the estimations of the Malliavin derivatives D,Y, DsZ through the
Malliavin chain rule. Finally, the optimization of neural networks scale linearly in the number of input
dimensions and there is encouraging empirical evidence that they could be capable of overcoming the
curse of dimensionality. In the literature there exist a wide — and rapidly growing — range of applications
of neural network regressions in the context of LSMC, out of which we mention a few [47], [52], [53] or
[54].

Recalling the notation from subsection 4.3.1, let us now formulate this idea explicitly. Instead of
using a finite set of basis functions {¢;}X , as in Equatlon 4.18, we parametrize a Markovian conditional
expectation by a deep neural network NN (:|0) of the form Equation 3.14. Recall that by the hierarchical
composition, neural networks themselves can be interpreted as non-linear decompositions of affine basis
functions. Using this parametrization, we then approximate the expected quadratic loss estimated by a
sample mean of independent realizations

M
E ||¥ — NN (X|0)] ] qu — NN (X;|0)]%. (5.3)

The empirical loss function can be minimized by a stochastic optimization method such as Stochastic
Gradient Descent in algorithm 1 or Adam in algorithm 2, which subsequently give an estimation for the
optimal weights ©.

Although neural networks have proven to be a good, universal basis for the regression phase, they
also have an important downside compared to Ordinary Least-Squares regression introduced in subsec-
tion 4.3.1 . In fact, in case of neural network regression we do not have a closed-form expression for
the true minimizer of the expression in Equation 5.3. Consequently, due to the nature of optimization
algorithms, in practice the estimator © is never the true minimizer but rather a close approximation of
it.

5.3 Description of the Main Idea

Let us now turn back to the numerical solution of the FBSDE system in Equation 5.1 and describe the
main idea behind the One-Step Malliavin and Multi-Step Malliavin algorithms proposed in this work.
We divide the discussion in two parts. First, referring to the Deep BSDE methods explained in the
previous chapter, we identify the area in which they could be improved, and subsequently motivate a new
separated scheme which is focused on what Deep BSDE solvers struggle the most with: the approximation
of the Z-process. Thereafter, building on this observation, we exploit that the natural dynamics of the
control process is driven by the linear BSDE of the Malliavin derivative in Equation 5.1d and propose
control approximations which take this phenomenon into account. We derive the equations for the
continuous dynamics of both the Y- and Z-processes, from which the forthcoming discrete schemes shall
straightforwardly follow in the next section.
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5.3.1 Motivation

As we have seen in the previous chapter, although Deep BSDE solvers have shown remarkable successes
in solving high-dimensional FBSDEs, they are also not without drawbacks — see subsection 4.4.3 in
particular. In fact, we have mentioned that the Forward Deep BSDE method fails to give accurate
approximations for the trajectories of Y and Z, and it only manages to solve the BSDE at ¢t = 0.
Moreover, we have also covered that its backward alternative exhibits a similar behaviour, and although
it yields approximations of higher accuracy for the trajectories of the Y-process, its precision quickly
deteriorates for Z; as t > 0. Omne reason behind this latter phenomenon is that — unlike in recursive
conditional expectation schemes such as the Euler scheme for BSDEs in Equation 4.13 — the Y- and
Z-processes are fit simultaneously within the same optimization cycle, and the Z-process is only trained
implicitly through the loss of the Backward Deep BSDE method given in Equation 4.24. The algorithms
proposed in this work address these latter two observations.

In fact, OSM and MSM are motivated by the Backward Deep BSDE method and are designed in such
a way that they separate the approximations of the Y- and Z-processes, and estimate their trajectories
by solutions of distinct LSMC regressions. This way, we obtain a formulation closer to the classical
recursive conditional expectation schemes for BSDEs, as the Euler in Equation 4.13 or theta-schemes
in Equation 4.16. Consequently, it is expected that through the aforementioned approach, the resulting
discrete schemes yield smaller learning problems and more regular loss functions, which are less prone to
the effect of rolling errors and can provide more robust approximations for both Y and Z throughout the
whole time window.

Moreover, OSM and MSM are also intended to mitigate the problem of Deep BSDE solvers with
respect to the estimations of the control process. This is done by formulating the evolution of the
Z-process through its natural dynamics provided by the linear BSDE of the Malliavin derivatives in
Equation 5.1d. Thereafter, both algorithms impose direct training on the control process by formulating
a loss function on a discretization of Equation 5.1d. It is expected that in such a way more accurate
control trajectories can be obtained, as Z is not merely trained implicitly through the dynamics of Y but
rather through the equation driving its own trajectories.

5.3.2 Formulation

Motivated by the qualitative arguments listed above, let us now formulate the main idea in mathematical
terms. Under the assumptions of Theorem 2.5.1, we have that the linear BSDE driving the Malliavin
derivatives of the solutions

T
D.Y, = V,g(X1)D. X1 + / VoS (r, X0, Yo, Z)D X, + Y, f(r, X, Y, Z,)DSY,
t
T
VL (X, Vo, Z,) Do) dr — / D.Z,dW, 0<s<t<T, (54)
t

with D,Y; = 0,DsZ; = 0 for s < t, has a unique solution pair (D;Y, D;Z). In particular, exploiting the
fact that by Theorem 2.5.1 the linear BSDE above gives a version for the Malliavin derivative for which
Zs = DY, we get

T
Z, = Vag(Xz)Do X1 + / Vof(r, X, Y,, 2D, X,y + Y, f(r. X, Yy, Z,)D,Y,
° T
Jrvzf(T,XT,YMZT)DSZT] drf/ D,Z,.dW,. (5.5)

Now, due to Markovianity — see subsection 1.5.1 in particular — we know that the solutions at time ¢
are deterministic functions of the realization of the forward diffusion Y; = u(t, X;), Z; = v(t, X;), for some
deterministic functions u : [0, 7] x R? — R and v : [0, T] x RY — R?. In fact, taking advantage of the con-
nection between PDEs and BSDEs established by the general Feynman—Kac relations (Theorem 1.5.2)
we also know that the control process is related to the spatial derivative of u, namely it is given by
Zy = v(t, X¢) = o(t, X¢)Vyu(t, Xt). Therefore, using the Malliavin chain rule provided by Lemma 2.3.1,
we conclude that the Malliavin derivatives (DY, DsZ) of the solutions of the BSDE can be approxi-
mated at each point in time by the expressions D.Y; = V,u(t, X;)Ds X, and DsZ; = V,vu(t, X)) Ds X
Alternatively, by the results on variational processes provided by Lemma 2.5.1, we can write

DY, =v,Y\"'D,X, D.Z,=V,z""D,X,. (5.6)
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In what follows motivated by the Markovianity of the considered processes, when it is clear by the
context we suppress the superscripts above and denote V, Y, = V, ;""" V,Z, = V,Z\" respectively.
Substituting these observations back into Equation 5.5, for any 0 < s < T we get

T
Z, = Vg(X1)D, X1 + / Va1, X0 Yoo 2,) 4 Yy (5, X0, Ve 2)VY,

T
+sz(7“,Xer,Zr)Ver]DerdT—/ VoZ, D XpdW,,  (5.7)

on top of the dynamics of the original BSDE
T T
Y, =g(X7) +/ f(r, X, Y, Z,)dr —/ Z,.dW,. (5.8)

In particular, considering a discrete time partition, we have that for each ¢, € 7V the following set
of equations holds

T
Ztn = Vg(XT)DtnXT + / [vxf(rv Xra Y;"v Z’l“) + vyf('ra XMY;“; Zr)va:yr (593)
t

n

T
+sz(’f‘, Xr; }/r; ZT)V:UZT] Dt,,LXTdT - / V:erDtandWra
tn

T T
Yi, zg(XT)+/ f(r,XnYr,Zr)dr—/ Z,dW,.. (5.9b)
tn t

n

Equivalently, combining the dynamics of two adjacent time steps ¢,,t,+1 € 7" and using the relations
in Equation 5.6 yield

tnt1
Zt” = vx}/t"+1DtnXt,L+1 + / [wa(r, X’I‘7Y’I‘7 Zr) + Vyf(?", Xra Y;w Zr)vz}/r (5-103)
t

n

tnt1
VL, X, Yoy Z0) Vi Z] Dy, Xodr — / V. Z,Dy, X, dW,.
t

n

tn+1 tn+1
Yo, = Yo, + / F(r X, Yoy Z,)dr — / Z,aw,, (5.10b)
tn tn

subject to the terminal conditions Z;,, = o (tn, Xty ) Va9 (Xty), Yen = 9(Xty). Consequently, taking
conditional expectations with respect to F;, we arrive at the representations

Z, =F

n

T
Vg(Xr)D:, X1 + / Vof(r, X, Y, Z,) + Vy f(r, X;, Y, Z,)V, Y, (5.11a)
t

n

+sz(7“, Xra Y;, Zr)var] DtnXTdT|]:tn )

T
Y, =E lg(XT) +/ fr, Xe, Yy, Zy)dr ftn] : (5.11b)
tn
and
tnt1
Zy, =B| VoY, Dy, Xe,., + / Vo f(r, X0, Yy, Ze) + Yy f (1, X0, Ve, Z,) VY, (5.12a)
tn

—|—sz(7“, Xra Y;w Zr)var] Dt,,LXTdT|]:tn )

tn+1
Kn =E |:Y;n+1 +/ f(ra Xra Y;“a Zr)dT
t

n

]—"tﬂ} (5.12b)

respectively, subject to the terminal conditions Z;,, = o (tn, Xty ) Vg (Xty) and Vi, = g (Xt ). These
continuous equations form the basis of the discrete schemes proposed in MSM and OSM. For the upcoming
sections, in order to make the presentation more tractable, let us introduce the following notation

fPr, X0, Yo, Z0) =V f (1, X0, Yo, Z0) + Yy (1, X0, Ve, Z0) VYo + Vo f(r, X0, Ve, )V Z. - (513)
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Finally, if (Y3, , Z;, ) are parametrized by a pair of neural networks (Y, (:|6%), Z,, (:|0Z)) for each ¢,, €
7N then we do not merely gather estimations for the processes themselves but also differentiable function
approximators whose derivatives can be made arbitrarily accurate as well — provided by the universal
approximation capability in Theorem 3.2.2. Furthermore, we can efficiently calculate these derivatives
through automatic differentiation and collect approximations for the spatial gradients of the networks
(VadDn (4160%), V42, (-|62)) accordingly. Thereafter, we can substitute these approximations back into
discretized versions of the continuous dynamics in Equation 5.10 or Equation 5.9 and approximate each
time step’s Y- and Z-processes by separate neural network LSMC problems.

In conclusion, the idea of the proposed algorithms OSM and MSM can be summarized as follows.
We develop a recursive conditional expectation scheme, where the control process Z is approximated by
the evolution of the Malliavin derivative. In order to be able to approximate the Malliavin derivatives
of the solution of the BSDE (D;,Y;,, Dy, Z;,) for each time step 0 < ¢, < t; < T, we take advantage
of the Malliavin chain rule formula provided by Lemma 2.3.1 and exploit the universal approximation
capability of neural networks. In the following sections, we explain the concrete discretization procedures
which make the continuous dynamics in Equation 5.12 and Equation 5.11 fully implementable.

5.4 One-Step Malliavin (OSM) Scheme

We start by presenting the exact formulation of OSM. This algorithm, as its name already suggests, is
built on dynamics in Equation 5.12 which describe the evolution of the Z- and Y-processes in between two
adjacent time steps in a finite time partition 7. In order to arrive at a completely discrete scheme, we
need to approximate the continuous time integrals arising in the arguments of the conditional expectations
in Equation 5.12a and Equation 5.12b. For the One-Step Malliavin algorithm this is done by a theta-
discretization scheme similar to Equation 4.16. However, there is one significant difference compared
to the theta-scheme presented in the previous chapter which is related to the separated conditional
expectations formulated on different BSDEs' in Equation 5.12. In fact, for a separated conditional
expectation scheme — which approximates each time step’s Z;, first and then plugs that estimation into
the conditional expectation of Y;, — we cannot allow for implicitness in the approximation of the Z-
process, since Y;_ is not available at the time of the regression. Hence, in order to avoid dependency of
the approximation of Z;, on Y; , we approximate the time integral in Equation 5.12 between ¢,, and t,,11
by the right-rectangle rule. Consequently, we gather the following discrete time approximations for the
continuous dynamics in Equation 5.12 with some ¥, € [0, 1]

Zy, ~E[V,Ys, De, Xeo oy + At fP (tngr, Xey oy, Yeo 10 Zt
Y;fn ~ Atn’l?yf(tn7Xt th

n+1)Dtnth+1 ’]:tn} ) (5143,)
Z,) +E [Y;fnJrl + Atp(1— 191/);78(7fn+la D CS O Ztn+1)‘]:tn] . (5.14b)

n? n?

We remark that the resulting estimation is actually only “theta” in the discretization of the Y -process
and is rather ”explicit Euler” in the Z-process.

By now, we have gathered all the prerequisites to formulate the One-Step Malliavin approach proposed
in this work. The algorithm starts off by simulating trajectories of the underlying forward diffusion
{X7 }o<n<n, and all of its Malliavin derivatives {Dp, X7 }o<m<n<n through the Euler-Maruyama scheme
presented in Equation 4.6 and Equation 4.8. Then — just like in the Euler or theta-schemes for BSDEs —
we can collect the terminal states X7 of the simulations, from which we gather the approximations for the
terminal states of the solutions Y§ = g(X}) and Z% = o(tn, X5 )V.g(X%). Here, the latter equation is
given by the generalized Feynman—Kac relations in Theorem 1.5.2. Since the terminal condition is a given
deterministic (and by Assumption 2.5.1 also differentiable) function of the state of the forward process,
we also have analytical formulas for V.Y = V,g(XF;) and V, ZF; = V. 0 (6V,g) (tn, XF;), which can
be plugged in the discrete dynamics in Equation 5.14. Thereafter, one can repeat the same procedure for

all previous steps in time and arrive at the following recursive discrete scheme for eachn =N —1,...,0
Y =9(XR), 2§ =0ty X§)Veg(XR), (5.15a)
Z:zr =E [vxyvf-i-anXg-H + AtnfD(tn—&-lan-Ha nﬁu ;;T+1)DnX77zr+1|]:tn] ) (5~15b)

err = Atn”l?yf(tn7X;{, Yn7,T7 Z;:) +E [err-&-l + Atn(l - ﬁy)f(tTH-la 7771,-4-17 J+17 Z;:—Q—l)lftn] : (515C)

Notice that the scheme is explicit in Z and implicit in Y for any 9, € (0, 1].

!i.e. the original one in Equation 5.1b and the linear one of its Malliavin derivatives in Equation 5.1d.
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5.4.1 Neural Network Regression

Ultimately, in order to derive a fully implementable discrete scheme, let us explain the regression phase
of the algorithm, which is done through neural network LSMC introduced in section 5.2. In order to
simplify the presentation, let us introduce the following auxiliary discrete processes which correspond to
the arguments of the conditional expectations in Equation 5.15.

U 1 = VoY D X7+ Aty fP (b, X740, YT, Z70) D X4, (5.16a)

n

Tﬂ',n«kl = Y7:r+1 + Atn(l - ’lgy)f(thrla X:;jtla YrZTJrl? Z:ZJrl)' (516b)

n

We subsequently get Z7 = E [\I'Z)M_l’Xj{] and Y7 = At 0, f(tn, XY, Z7) + E [TZ,n+1!X7’{]- Hence,
motivated by section 5.2, we can thus parametrize the conditional expectations by fully-connected, feed-
forward neural networks Y(:[0Y) == NN (-|0%) : RY — R and Z(:|62) == NN (-|62) : R? — R? of the
form Equation 3.14. Moreover, we can define the quadratic loss functions

£2(65) =E [0, — 2(x7165)]°] (5.17a)

£1(82) =B [|X7 40 — VXTI08) — Aty £, X7, (X102, Z0)] (5.17D)

which measure the mean squared errors of the approximations. Consequently, argued by Proposition 4.3.1,
we know that the true minimizer of the losses above over the space of all measurable functions is the
conditional expectation itself. Therefore, if the function basis provided by the corresponding feedforward
neural networks is wide enough, minimizing the expressions in Equation 5.17a and Equation 5.17b results
in good approximations of the corresponding conditional expectations. The losses can be minimized
separately by a stochastic optimization method such as SGD in algorithm 1 or Adam in algorithm 2.
The resulting parameter sets are defined as

6> c argmin £*(0), é\f’l € argmin £Y(0), (5.18)
o 0

~

giving approximations Y7 = Y (X;;|§g), VYT = V,Y (X;;|§g) and Z7 = Z (X;;\az

n

), Va2 =

V.2 (X;{ |§fl> where the derivatives of the networks are calculated by automatic differentiation. Finally,

exploiting the continuity of the estimated processes over time, in order to start the optimization close to
the true solution, we use a transfer learning trick and initialize the parameters of the n — 1’th time step
according to

0>« 62, 6Y_ « 6Y, (5.19)

before proceeding with the optimization.

The complete algorithm with detailed steps is collected in algorithm 6. Furthermore, an illustration
of its architecture at time step n is depicted in Figure 5.1.

5.5 Multi-Step Malliavin (MISM) Scheme

Besides OSM, we propose an other discrete numerical algorithm which we call the Multi-Step Malliavin
(MSM) scheme. The naming of this approach is self-explanatory as the only difference between OSM
and MSM is captured by the fact that instead of considering the evolution of the Z- and Y-processes
between adjacent time steps, we consider their dynamics until terminal time given in Equation 5.11. The
reason for this is inspired by the theoretical results which imply that using multi-step discretization for
the dynamics of BSDEs can help mitigating the interdependency of regression errors — see [4], [21] and
[65] for more details. As we shall later see in chapter 6 — see the right-hand sides of Equation 6.76 and
Equation 6.154 in particular —, this in fact can be proven for MSM as well for a special class of FBSDEs.
The derivation of the algorithm is analogous to that of OSM, thus in order to avoid the repetition of
arguments, we only highlight those aspects in which they differ.

By splitting up the integrals in between t,, and T to a sum of integrals in between adjacent time steps
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Algorithm 6: One-Step Malliavin Algorithm (OSM)

Data: {X,}; ,~ — forward diffusion’s Monte Carlo sample of size M
Data: {D;,Xn}y,, 1, exnv — forward diffusion’s Mallivain derivative’s Monte Carlo
sample of size N x M

Input: 9, € [0,1] — choice of discretization parameter

Result: (Y™, Z™) — BSDE’s solution over time grid 7

Y — 9(XE), Z} < o(tn, X3 )Veg(X}) — collect terminal condition

VY5 Vog(XR) VaZF < Vi o0 (0Veg)(tn, Xi) — collect derivatives of terminal
states

forn=N-1,...,0do
WP 41 — collect regression targets of Z by Equation 5.16a

V(-|08) = NN (-|63) : RY — R, Z(-10%) :== NN (-|0Z) : R? — R? — neural network
parametrizations

L*(0%) — define loss function according to Equation 5.17a

5; < arg ming £*(f) — optimize empirical loss

Zh— Z (Xf{]@i), V2l V.2 (X,ﬂgf;) — gather approximations

Y7 i1 — collect regression targets of Y by Equation 5.16b

LY(67) — define loss function according to Equation 5.17b

0% « arg ming £Y(0) — optimize empirical loss

YT« Y (Xﬂg%), VYT VY (X;{@{) — gather approximations

0z, + 02, 6Y | « 6y — initialize parameters by transfer learning

end
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vr (@) Y (68) ¥z (80)

Figure 5.1: One-Step Malliavin (OSM) Architecture at Time Step n. Red area: forward part;
blue area: backward part. The coding of the arrows is as follows. Solid-red: forward Euler
SDE approximations; dotted-green: neural network approximation; dashed-purple: Malliavin
chain rule through automatic differentiation; solid-yellow: loss of ¥,-discretization of the BSDE;
solid-pink: loss of ¥.-discretization of the Malliavin BSDE.

ti,tiy1 € ™, Equation 5.11 subsequently becomes

Zy, = E[Vyg(Xiy)Di, Xiy (5.20a)
N-—1 tit1
e [ Va0 X0 Y2 20) V0 X Vi ZVY,
P t;

+sz(r7 X’I‘) Yr‘) Z’I‘)VZDZT] Dtand7a|]:tn] )

tit1

N—-1
Y,, =E [g(XtNH > / f(r, X0, Yo, Zp)dr
i=n “ti

i

ftn] . (5.20b)

For a completely discrete, fully implementable scheme we need to use discrete approximations for the
continuous time integrals in Equation 5.20. For the same reason as in the previous section, in order
to avoid implicitness of the conditional expectations of Z, we approximate the first integral in the sum
of Equation 5.20a by the right-rectangle rule. However, in order to keep the discussion as general as
possible we propose a theta-discretization with ¢, € [0,1] for the rest of the integrals in the sum. In
a similar fashion, we apply a theta-discretization with ¥, € [0,1] for all the integrals in the sum of
Equation 5.20b. Consequently, we arrive at the following discrete approximations for the continuous
dynamics in Equation 5.20

Ztn ~ I [vxg(th XtN)DtnXtN + AtnfD (tn-‘rlv th+1 ) )/tn+1 ) Ztn+1 )Dtnth+1 (521&)
N-1
+ > AP (t, Xy, Yy, Ze,) Dr, X,
j=n-+1
+(1 - ﬂz)fD(tj+17 th+1 ) Y;5j+1 ) th+1)Dtnth+1) |‘Ftn} ’
}/tn ~ Atnﬁyf(tn; tha }/tn ) Ztn) (521b)

+E g(XtN) + At’rb(l - ﬁy)f(tn-i-h th+1 ) Y;fn+1 ) Ztn+1)
N—-1

+ Z At] (ﬁyf(tjath7Y%j7th) + (1 - ﬁy)f(tj+17—Xt]‘+17}/;fj+17th+1)) ‘]:tn )
j=n+1
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where we used the notation f” defined in Equation 5.13.
Similarly, we can apply the same recursive approach as for OSM, collect the terminal conditions of
a set of realizations for the underlying forward diffusion and its Malliavin derivatives, and plug those
terminal states in the discrete approximations in Equation 5.21. Thereupon, we arrive at the following
recursive discrete scheme for each n =N —1,...,0
Y =9(XR), Z§ =o0(tn, X%) Veg(XR), (5.22a)
Z7 =B [Vaog(tn, XR)Du XF + Abn fP (g1, X141, Yolrs Zi ) D X774 (5.22b)

N—-1
+ > A (0.fP(t, XT, Y], Z7) Du X
j=n+1
+(1 - ﬂZ)fD(tj-&-la X;T-',—l? }/j:—h ZJ7‘T+1)DHX;'T+1) “Ftn] ’
Y = Aty Oy f(tn, X7, YT, Z7) (5.22¢)
+ I [Q(XJT\r[) + Atn(l - ﬁy)f(tn+17 X7Tzr+1a va—&—la Z’Z{—i—l)

N-1

+ Z Atj (ﬁyf(tj’X;T’Y;r’ Z;T) + (1 - ﬁy)f(tj-‘rlaX;T—i-l’Y}Z-l?Z;'T+1)) |ftn
j=n+1

We remark that the proposed scheme is explicit in Z for any choice of ¢, € [0,1] and implicit in Y for
any choice of 9, € (0,1].
5.5.1 Neural Network Regression

Finally, in order to derive a fully implementable discrete scheme, we use a similar neural network regression
as in case of OSM. We introduce the following auxiliary discrete processes which correspond to the
arguments of the conditional expectations in Equation 5.22.

Vo N = Vag(tn, XN)Dn X5 + Aty fP (tns1, X, Yo, Zn ) D X7y (5.23a)

N-—1
+ Y AW fP(t, XT Y] ZT) D XT

j=n+1
+ (1 - ﬂz)fD(tj+17 X;T+1a )/j‘lj,-la Z;T+1)D7LX]7'T+1)7
TZ,N = Q(X}{l) + Atn(l - ﬁy)f(tn-i-l’ XrTerrl’ Y7Zr+1’ Z;rJrl) (5'23b)

N-1
+ Z Atj (ﬁyf(tjaX;r»}/;'wvij'r) + (1 - ﬂy)f(thrle;rJrl?Y}llv Z;r+1)) .
j=n+1

Thereupon, we get Z7 = E [\IJZ,N|X:{] YT = At 0, f(t,, X2, YT, Z7) + E [T27N|X77{]. For the same
reasons as seen in subsection 5.4.1, we parametrize these conditional expectations by fully-connected,
feedforward neural networks Y(-|0%) :== NN (-]6%) : R? — R and Z(-|02) = NN (z]02) : R¢ — R? of the
form Equation 3.14. Furthermore, we define the following losses

£:(6;) = E [|w5 v — Z(X7105) "] (5.24)
£0(02) = E [|T7x = V(XT160) — Aty f(ta, X7 V(X7162), Z7)][°]. (5.24b)

which measure the mean squared errors of the approximations. Now, provided that the neural networks
span a wide enough function class, with the same arguments established by Proposition 4.3.1, we have
that minimizing the expressions in Equation 5.24 results in close approximations of the true conditional
expectations. The losses can in fact be minimized by a stochastic optimization method such as SGD in
algorithm 1 or Adam in algorithm 2, resulting in estimations of the optimal parameter set defined by

67 € argmin £*(A), Y € argmin £Y(). (5.25)
6 0

These parameters subsequently give approximations Y = )Y (X,’Hé\g) , VYT =V, Y (X,’LT |§${) and

zZr =2 (X;Hé\fb) Vo ZF =V, Z (X,’HQZ) where the derivatives of the networks are calculated with

n )
automatic differentiation. Using the same transfer learning trick as before, we initialize the next time
step’s parameters according to the newly found optimal ones

0z« 02, 6%, «6Y, (5.26)
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and proceed with the optimization.
The complete algorithm with detailed steps is collected in algorithm 7. Furthermore, an illustration
of its architecture at time step n is depicted in Figure 5.2.

Algorithm 7: Multi-Step Malliavin Algorithm (MSM)

Data: {X,}; c,~ — forward diffusion’s Monte Carlo sample of size M

Data: {D;, X}y, 1, ennv — forward diffusion’s Mallivain derivative’s Monte Carlo
sample of size N x M
Input: 9,9, € [0, 1] - choice of discretization parameters
Result: (Y7, Z™) — BSDE’s solution over time grid 7%V
Y g(X%), 2% « o(tn, X3 )Vag(XF) — collect terminal condition
VYT = Vo9(X%) Vo ZFy < Vyo(0Veg)(tn, XF) — collect derivatives of terminal
states

forn=N-1,...,0do
W7 n — collect regression targets of Z by Equation 5.23a

V(108) = NN (-|63) : RY = R, Z(-16%) == NN (-|0?) : R? — R? — neural network
parametrizations

L*(0%) — define loss function according to Equation 5.24a

gfl < arg ming £7(#) — optimize empirical loss

Zr— 2 (X}{\@i), VaoZ] V2 (X;[|§;) — gather approximations

Y7, v — collect regression targets of Y by Equation 5.23b

LY(67) — define loss function according to Equation 5.24b

0Y « argminy £¥(0) — optimize empirical loss

YT« Y <X}§|§%), VYT VY (XZ{@/L) — gather approximations

0z, < 02, 6Y | «+ 6y — initialize parameters by transfer learning

end

5.6 Qualitative Remarks

Ultimately, to conclude the introduction of the proposed algorithms, let us make three important qualita-
tive remarks. The first and the third corresponding to the placement of OSM and MSM in the literature,
whereas the second motivates the decision of explicit expressions in Equation 5.15, Equation 5.22 for Z.

5.6.1 Comparison with Deep BSDE Solvers

First and foremost, we need to have a few words on how the schemes proposed in Equation 5.15 and
Equation 5.22 relate to the Deep BSDE solvers introduced in the previous chapter. It is clear that OSM
and MSM were inspired by the Backward Deep BSDE method. In fact, they also start off from the
terminal condition and perform an optimization at each previous step, recursively backwards in time.
Nonetheless, there are three key differences which we shall not leave unmentioned.

Firstly, unlike the Backward Deep BSDE method, OSM and MSM separate the optimizations of the
Z- and Y -processes, approximate the conditional expectations corresponding to the control process first
and subsequently plug those estimations in the scheme of Y for each time step. Notice that — unlike
in Equation 4.24 — the losses imposed on Y in Equation 5.17b and Equation 5.24b do not depend on
the parametrization of the Z-process 7. In this regard, OSM and MSM are one step closer to classical
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Figure 5.2: Multi-Step Malliavin (MSM) Architecture at Time Step n. Red area: forward part;
blue area: backward part. The coding of the arrows is as follows. Solid-red: forward Euler
SDE approximations; dotted-green: neural network approximation; dashed-purple: Malliavin
chain rule through automatic differentiation; solid-yellow: loss of 9,-discretization of the BSDE;
solid-pink: loss of 4,-discretization of the Malliavin BSDE.
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schemes such as the Euler in Equation 4.13 or the theta-schemes in Equation 4.16 which deploy a similar
logic.

Secondly, as their names already suggest, OSM and MSM incorporate the dynamics of the Malliavin
derivative’s BSDE driving the control process, by which they apply direct training on the Z-process. It
is expected that by considering the natural dynamics of the control, more accurate approximations could
be gathered for Z throughout the whole time window. In the next two chapters we back this claim up
with both theoretical error bounds — see Theorem 6.2.1 and Theorem 6.3.1 in particular — and empirical
evidence in chapter 7.

Lastly, the hereby proposed algorithms also differ from the Backward Deep BSDE method in their
discretization. In this regard, OSM and MSM are both more general than algorithm 5, as they apply
a general theta-discretization on the BSDE in Equation 5.1b. Indeed, it can easily be seen that the
discretization of Y in Equation 5.15 coincides with that of the Backward Deep BSDE method when
vy =1.

5.6.2 Implicitness

The real reason why we allow for implicitness in the scheme of Y but not in the scheme of Z is related to
the dimensionality and the Malliavin chain rule. We know that Y is a deterministic scalar function of the
realization of X, and that Z is a deterministic d-dimensional vector-valued function of the realization of X
at each point in time. Therefore, the differentiation of these functions is inherently different: the derivative
of Y is a gradient, whereas the derivative of Z is a Jacobian matrix. Hence, if we allowed for implicitness
in the scheme of Z, through the term of D, Z7 =V, Z"D, X" during the training of the corresponding
time step, the loss would depend on the Jacobian matrix of the parametrized function Z7 = Z (X71072).
This means that with any stochastic gradient descent method built on the gradient of the objective
function, while improving the model parameters in each iteration step, one would have dependency on
the derivative of the Jacobian matrix — see Equation 3.13 in particular., However, that corresponds to the
Hessian of a vector valued function which is an R%*4*? tensor. Consequently, the optimization procedure
would become computationally very intensive as the construction of such Hessians scales cubicly in the
number of dimensions d. Since the goal of these algorithms is to tackle high-dimensional BSDE problems,
we thus decided not to allow for implicitness in the estimations of the Z-process. On the other hand, when
approximating the conditional expectations arising in Equation 5.15 and Equation 5.22 corresponding to
Y, we have no dependence of the loss on the derivative of the parametrization of Y. Therefore, while
optimizing the expressions in Equation 5.17b and Equation 5.24b, SGD algorithms only depend on the
gradient of a scalar function whose construction is of linear cost. This explains why the recursive schemes
of Y are allowed to be implicit.

5.6.3 Place in the Literature: Other Malliavin Algorithms

The One-Step Malliavin and Multi-Step Malliavin approaches are not the first algorithms in the literature
exploiting the dynamics of the Malliavin derivative in Equation 5.1d. However, to the best of our
knowledge, OSM and MSM are the first discrete formulations proposed directly on the linear BSDE
in Equation 5.1d, whereas other schemes are built on certain representation formulas. In fact, Hu et.
al in [22] developed a discrete scheme which is inspired by the fact that the BSDE of the Malliavin
derivative in Equation 5.1d is linear and its solution admits to the representation formula in Equation 2.30
established by Proposition 2.6.1. Similarly, Turkedjiev in [21] proposed a numerical approach exploiting
Equation 2.34 given by Proposition 2.6.2 — see also [55] for an error analysis. Finally, Briand and Labart
in [56] proposed an algorithm which is founded on the Wiener chaos decomposition of random variables.

Their discrete scheme uses the fact that Z; = D;Y; = DE {YT + ftT for, X, Y., Zr)dr‘}'t} established

by Proposition 2.3.1. Thereafter, they approximate the conditional expectations by chaos decomposition
formulas and collect the Malliavin derivative according to the previous expression. These approaches are
all built on representation formulas for the Malliavin derivative and — unlike OSM or MSM — are not
designed to solve the linear BSDE in Equation 5.1d.

We emphasize that the reason why OSM and MSM can directly solve the linear BSDE of the Malli-
avin derivative is inherently linked to neural network regressions which themselves enable us to use the
Malliavin chain rule for the approximations of D, Y and D; Z — see Equation 5.6 in particular. This
observation justifies the choice of using neural networks in the regression phase.
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Chapter 6

An Error Analysis

In the following chapter, we provide an error analysis for the algorithms proposed in the previous chapter.
Our main goal is to show that the approximation errors induced by OSM in Equation 5.15 and MSM
in Equation 5.22 are all of O(|x|) functions, where |7| is the mesh-size of an equidistant time grid.
We call such schemes which satisfy this requirement consistent. The chapter is structured as follows.
First, we start by introducing some additional notations and classical preliminary results which shall
ease the presentation. Afterwards, we prove the consistency of the One-Step Malliavin scheme proposed
in algorithm 6. This proof is split up to different lemmas concerning the estimations of the Y- and
Z-processes, which are stated under different conditions. In fact, it is important to highlight that the
bounds for the Z-process are only proven under rather strict conditions collected in Assumption 6.1.2.
Second, using some bounds of the one-step scheme, we extend the results to the Multi-Step Malliavin
scheme proposed in algorithm 7 and show that one — by taking multiple time steps into account — gains
an order of magnitude in the cumulative regression error of the Y-process. Thereafter, we compare the
consistency results established by Theorem 6.2.1 and Theorem 6.3.1 to the error bounds proven for the
Backward Deep BSDE methods. We highlight that due to the Malliavin problem formulation used in
this work, our results bound a strictly stronger supremum norm than that of the standard Deep BSDE
methods. Finally, concluding the chapter, we elaborate on the restrictions stated in Assumption 6.1.2
under which the theorems are presented and motivate why they had to be made.

6.1 Preliminaries

In order to enhance readability, we hereby collect the most important notations and preliminary results
used throughout the chapter.

Definition 6.1.1 (Notations, spaces). Let us introduce the following additional notations:

e we denote the mesh size of a time grid by |7| == sup;, ¢, .~ [tit1 — ti].
It is worth to highlight that for an equidistant time partition this simply comes down to |7| =

e to ease the notation, we take advantage of the usual symbol E; [-] := E[-|F,].
Keeping Markovianity in mind, this in fact means E? [] = E[-|X,, = x]. However, since we only

deal with deterministic initial conditions at ¢ = 0, to avoid overly complex formulas we drop the
superscript of the spatial part;

e argued by the Malliavin chain rule in Lemma 2.3.1, we denote for each ¢ < j
DY =V, Y[D;X], D;Z] =V,Z7D;X} (6.1)
for the approximations of the Malliavin derivatives.

e in the comparison against standard Backward Deep BSDE solvers we will need the concept of
L2-regularity of Z, which is defined as follows

N-1 tit1 _ - 1 tita
Z(n) =E | /t |Ze — Zy,|"dt|, where Z,, = i [/t tht} . (6.2)
n=0 i v i
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Throughout the whole chapter it is assumed that the conditions of Assumption 2.5.1 for a unique
solution both for the original and the Malliavin BSDEs are satisfied, leading to two unique triples of
random processes {(X,Y, Z)}, and {(DsX, D;Y, DsZ)} . It is important to keep in mind that just as in
chapter 2 we define the Z-process as the version of the Malliavin derivative which satisfies Theorem 2.5.1.
In order to assure convergence of numerical schemes we make the following standard assumption on the
continuity of the driver in time.

Assumption 6.1.1 (Unique Solution of Malliavin FBSDEs with Holder Continuity)
Let the p, 0, f, g in Equation 5.1 be such that the conditions of Assumption 1.5.1 are satisfied. Addition-
ally, assume that

1. p,o0 —on top of being Lipschitz continuous — are also %—H&lder continuous with Hélder constant L,
i.e. V(thxl), (tg,l‘z) S [O,T} x R4

t,21) = plta,22)| + lo(tn, 1) = ot mo)| < L (Jh—tal >+ oy — ol ) (63)

2. f — on top of being Lipschitz continuous — is also %—H()'lder continuous with Hélder constant L, i.e.
Y(t1, @1, 91, 21), (t2, T2, Y2, 22) € [0,T) x RY x R x R4

|f(tr,w1,91,21) — f(t2, 22,92, 22)| < L (|t1 — t2|1/2 +|z1 = z2| + ly1 — y2| + |21 — 22|> . (6.4)

We remark that these additional conditions are only required to assure the convergence of numerical
methods and not for the well-posedness of the FBSDE problem. Nevertheless, in what follows, we shall
state some results concerning the discretization of the Z-process under the following, stricter assumption.

Assumption 6.1.2 (Assumptions for the Bounds on the Z-process)
Let the conditions of Assumption 6.1.1 hold. Additionally, assume that

1. the driver of the BSDE is independent of Z, i.e. V. f =0;
2. the underlying forward diffusion is an Arithmetic Brownian Motion given by Equation 1.10;

3. the first order derivatives of f are all %—H{')’lder continuous with universal Hélder constant L.

Below, it is often used that for any continuously differentiable Lipschitz continuous function whose
partial derivatives are uniformly bounded, the partial derivatives themselves are Lipschitz continuous as
well. This is a direct consequence of the well-known Mean Value Theorem.

We remark, that in the upcoming proofs we — without warning — often use the Fubini theorem in
addition to Leibniz’s integral rule. It can easily be checked that the conditions of those theorems under
Assumption 6.1.1 are indeed satisfied.

We frequently exploit the Kolmogorov continuity of the X- and Y-processes reading as follows

E|IX - XF|<Clt-rl, E[¥i-vf]<clt-r| (6.5)

On top of the notations above, we make use of the following widely known results from the numerical
analysis of SDEs.

Theorem 6.1.1 (Strong Convergence of the Euler—Maruyama Scheme for SDEs)
Let the conditions of Assumption 1.2.1 hold. Additionally, assume that pu and o are %—H(')'lder continuous
in time with constant L. Then

max [E l sup | X, — XT]*| <C (1 + |w0|2) |7, (6.6)
te|

0<i<N-—1

titit)

with some constant C' independent from the time grid.
In fact, for a fized initial condition, we have C|r| on the right-hand side.

Proof. See, e.g., [12, Theorem 5.3.1]. O
Finally, we frequently rely on the following classical inequalities, which we state without proofs.

Proposition 6.1.1 (Young inequality)
Let a,b € R and 8 > 0. Then the following line of inequalities holds

(1—pB)a’>+ (1 —-1/8)b> < (a+b)? < (1+B)a®+ (1+1/B)b% (6.7)
In particular, we have (a + b)? < 2(a® + b?).
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Proposition 6.1.2 (Discrete Gronwall lemma)
Let {pn, qn,Tn}n be positive sequences which satisfy for allm € N

Prn < (14 an)Pns1 + 70 (6.8)

Then we have

N—-1 N—-1
X Pi S XD <2; %‘) (pN + ZO m) : (6.9)

In particular, if Vi : g; = O(1/N) this becomes

N-1
< )
Jnax pi < C (pN + ; n) : (6.10)

where C' is independent of N.

6.2 Consistency of the One-Step Malliavin Scheme

We start proving the consistency of the proposed schemes by first giving bounds for the errors induced
by the OSM scheme introduced in Equation 5.15. These bounds shall later be of good use in the
corresponding proofs of the multi-step scheme. For the convenience of the reader, we split up the whole
proof into smaller sub-lemmas, which we prove under different conditions. We glue these results together
in the final theorem of the scheme stated in Theorem 6.2.1.

In the following, we use the following notations for the true targets of the regressions of Z;,, Yz,

Vi =B [Vo Y1 DiXT 4 At (Vo fT + Vo /T Ve Y + Vo [l Ve 2l ) DX ] (6.11)

Ui = At0y f (6, X, Ui, ZT) + B [V + Ati(1—0) f(tig, X[, Y0, Z50)] (6.12)
where we use the notation V, f7 | == Vo f(tiy1, X7\ 1, Y 1, Z], 1) and similarly for the partial derivatives
in y, 2.

Due to Markovianity it is known that there exist deterministic functions u; : R* — R and v; : R —
R? such that

Ui = ui(XZT), Vviﬂ' = UZ(XZF) (613)

We can parametrize the functions u; and v; by fully-connected, feedforward deep neural nets of the
form Y(-|0¢) = NN (-|6¢) : R — R and Z(-|07) == NN (-|07) : R? — R We define

0; € argminE [Jui(X7) - Z(X7 )| (6.14)
n
0% € argmin E [|ui(X7) = V(XTI (6.15)
n
giving the following estimations
77 = Z(XTI67), Y7 = V(XT16Y). (6.16)

Additionally, differentiating the resulting networks via automatic differentiation we take
Vo2 =V Z(XTI6), V.Y = V. D(XT|0Y). (6.17)
Using all these notations, we define the regression errors of U;, V; by
z T ™ |2 T ™ w2
& = [[oi(XT) = 27 (X)) + [Voui(XT) = Vo 27 (X)) (6.18)
& = B |ui(X7) = Y7 (XD + [Vaus(XT) = VY7 (XD (6.19)

In the light of the Universal Approximation Theorem Theorem 3.2.2, these quantities can be made
arbitrarily small even with shallow neural network approximations. The goal is to bound the following
squared approximation error of the discrete, numerical scheme

T us . U s 2
ENY™.27). (V. 2)] = max E ||, — Y7 *] + max B |2, - z7I?]- (6.20)
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With all these notations in power, we can now start giving bounds for the representation errors of
quantities arising in the discrete scheme. First, a bound for the representation error of U; in Equation 6.12
is proven. This lemma is similar to the one of Huré et. al in [9, Theorem 4.1] for the the Backward Deep
BSDE method, with the differences that hereby we allow for a theta-discretization of the time integrals,
and that the Z-process is approximated by a separate regression problem.

Lemma 6.2.1 (Representation Error of U; — OSM)
Under the general conditions in Assumption 6.1.1, for sufficiently small equidistant time grids, the rep-
resentation error of the Y -targets defined in Equation 6.12 satisfies for each t; € m¥

B[V, - U] < (140 (92 + (1= 9,)%) At E [[¥i,,, — VT, ]

+C(1—0,)ALE [yzt - Z;;ﬂ + C2ALE [\Zti - Z;ﬂ + Ol (6.21)

i+1

where C' is a constant, independent of 7.

Proof. In the following C' always denotes a constant independent of the time partition, whose value may
vary from line to line. By the dynamics of the BSDE and the definition of U; we have

Y;i U, =E,; [}/;:i+1 - Y;jkl]
tit1
+'l9yEz |:/ f(raXTa}/’HZT)_f(tlaXZr7UlaZ'Zr)dr:|
t;
tit1
+ (1 —-9y)E; [/ Jr, X0, Yo, Z,) — ftigr, X{ 1, Yo, Zf+1)d7"] . (6.22)
t;

Applying the Young inequality of the form (a + b)? < (14 B)a® + (14 1/8)b?, 3 > 0 yields

- 2
i+l )/;+1])

+ (1 + 1/B) (ﬁy]Ez |:/ti+1 f(?% XY, Zr) - f(ti7Xz’Tr7Ui7 ZiTr)dT]

t;

Ve, = Uil* < (1+ B) (B [V

tit1 2
11— 9,)E; [/ f(r,Xr,Yr,zn—f(tm,Xfﬂ,ml,ZMdr}). (6.23)

t;

Using (a + b)? < a® + b? together with the Jensen inequality gives
12

+2(141/8)92E;

tit1 2
(/ fr, X, Y, Z,) — f(ti,Xi”,Ui,ZZr)dT) 1
i

i

tit1 2
£ 2(1+ 1/8)(1 - 9,)°E; [( [ 50X Y2 Z0) = i, X Vi, Zz;l)dr) ] . (624)

t;

Let us now turn to the second term of the right-hand side above. Because of the Lipschitz and Holder
continuities of the driver we have that

O X0 Yo Z) = £, X7 U 20 < L (I =2 41X, = X7+ [Ye = Ul + 12, = Z71), (6.25)

which readily yields

tit1
/ £ X, Yo, Z0) — f(ta, XE. Uy, Z5)dr

t;

tit1
SL/ r— "%+ | X, — XT| +|Y, — Ui| + |Z, — Z|dr. (6.26)

t;
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6.2. CONSISTENCY OF THE ONE-STEP MALLIAVIN SCHEME

Since (a + b+ c+d)? < 4(a® + b? + ¢ + d?), we get

E;

tiy1 2
(/ f(r>Xr7Yr7Zr) _f(ti,Xz‘Tr7Ui7Zz?T)dr) ]
t;

tit1 2
(/ X, —X;fdr> ]
t;
tit1 2 tit1 2
( / |Yr—Uz-|dr) ( / |Zr—Zf|dr> D (6.27)
t t;

Taking expectations of the equation above, using the total law of probability and the linearity of the
expectation operator, we subsequently gather

< 4L? (At? +E;

+E; +E;

E

tita 2
Ei [(/ f('nXmY'er)_f(tiqurthZZT)dr) ]1
ti

tit1 2
(/ X, — X;fdr> 1
tq
tit1 2 tit1 2
(/ v, Ul-dr> </ \Z, Z;f|dr> D . (6.28)
ti t;

Now, the Cauchy-Schwartz inequality for L?-spaces implies that the integral terms on the right-hand side

admit to
tit1 2 tit1 5 tit1 5
(/ X, — X;T|dr> <E U X, — XT| dr] E U 1| dr} (6.29)
t; t; t

<4L? (At? +E

+E +E

E

i i

tit1
= ALE U X, — X;r|2dr} : (6.30)
t;

and similarly for the last two terms. This means that the upper bound can be loosened to

E

tit1 )
E; K/t f(r, X, Y, Z,) — f(ti,XZT,Ui,Z;T)dr) H

tit1
< AL2At; (At? +E U X, — Xf|2dr}

t;
tig1 9 tit1 9
+E U v, — U dr} +E[/ Z, — 77| er. (6.31)
t; t;

i

Identical steps for the third term in Equation 6.24 lead to

E

tit1 ,
E; l(/ fr, X0, Yo, Z0) = f(tir, X[y, iT‘l‘;’l’ZZ:»l)dT) ]]
t;
tit1 )
S ALAL (At? i U | X — X7 d?l
t;

ti+1 9 ti+1 2
+E [/ Y, — v, dr} +E [/ 2, - 27, er. (6.32)
t;

Taking expectations of Equation 6.24, and using the upper bounds Equation 6.31 and Equation 6.32
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on the right-hand side, we can therefore collect

B[V, U] < (0 + 0 Vi, V0[]

tit1
+(1+1/B8)9;8L*At; <At$ +E U | X, — X;f|2dr]
ti

tit1 5 tit1 5
+E[/ Y, — U] dr}—kE[/ \Z, — 77| er
t; t;

i

tita
+ (14 1/8) (1 —9,)?8L>AL; (At? +E U | X — X?+1!2d7"]

ti

tiy1 9 tit1 2
+E U |V, — Y71, dr} +E [/ |2, — Z] 4| er. (6.33)
ti

i

Now, first of all notice that the Euler estimations of the forward equations give E [|XT - XT |2] <

E [supre[t“t“rl] | X, — X;’ﬂ < C|n| by Equation 6.6 with some C' independent of the time grid. Therefore,
we get

tit1
E U X, — X;f|2dr] < C|n|Aty, (6.34)
ti
tit1 9
E V | X — X714 | dr] < Olrn|At;. (6.35)
t;

Furthermore, we can rewrite the Y-terms using the Kolmogorov continuity of the Y-process
fis 2 2
E U Y, — Uil dr] < 20|1|At; + 2A4E [\Yt A } . (6.36)
t;
Analogously, for the ¢ + 1’th term we get
tit1 2 2
E U Y, — Y| dr} < 20|7|At; + 2A4E [|th —Y7 | ] . (6.37)
t;

Additionally, building on the continuity result established by Theorem 2.5.2, we know that the Z-
process itself is continuous admitting to the following inequality

E [|Z, - Zﬂ < Clr —t|. (6.38)

With which, the Z terms can be upper bounded in the following way

tig1 9 tit1 2
E [/ 2, — 27| dr} gc/ Ir — ti]dr + 2ALE [\Zti — 77| } (6.39)
t; t;
< CAP + 2A4E [|Ztl. - zgﬂ . (6.40)

Furthermore, identically

fita 2 2
E [/ |2, — 77| dr} < OA2 + 2ALE [|Zti+1 — 77, ] . (6.41)

t;
Plugging all these observations back into Equation 6.33 we get
S
B[V, - UP] < (1+ B)E [|Va,,, — V7 []
+8L2AL; (1+1/8) [ﬂg (C’|7r|2 +92E [\Yt - U,-|2] At; + 2E [IZti - Z;T|2] Ati)

+(1-9,)? (C’|7r|2 +2E Uth —Y7, ﬂ At; + 9E [yztm — 77, ﬂ Ati>] . (6.42)
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6.2. CONSISTENCY OF THE ONE-STEP MALLIAVIN SCHEME

Let us now choose 3 = vAt; with some v > 0. With this choice, for small enough time steps satisfying
vAt; < 1, the equation above becomes

3212

E [|Yti _ Uﬂ < <1+ {H

32L2

(1 - 79y)2] Atl) E “Y;fwrl - YzT—r&-1|2:|

_|_

. 12 3212 ”
(1—19,)2AtE [|Zti+1 - Z74| } + Tﬂ;AtiE [|Zti —Z |2}

32L2

+ L P2ALE [\Yti - Uﬂ +On®. (6.43)

Let us now choose 7 := 64L2. Since ¥, € [0,1], we have that 1912;/2 < 1 and therefore conclude’

E (Vi = UP] < (14 C (8 + (1= ,)%) A B [y, = V4[]

+ (1= 0, ALE [|Zi,,, — 27| + COIALE |12, - Z7P] + Clf?, - (6.44)

which is what we needed to show, completing the proof. O

Remark 6.2.1 (Z-independence, Implicitness)
In order to conclude this result, let us make two important remarks.

1. the coefficients of E [|Zt,i — Zﬂﬂ and E [‘Zti“ — ZZTH’Q] imply that for a completely implicit or
explicit scheme, the corresponding terms cancel out. On the other hand, for any choice of ¥, € [0, 1]

the I | term remains to be present on the right-hand side, confirming the intuition of the BSDE
dynamics;

2. the above lemma was stated under the general Assumption 6.1.1; in case the driver is independent
of Z it is easy to see that both Z terms on the right-hand side can be dropped. This observation
will be essential in the statement of the final consistency proof.

Having given an upper bound for the representation error of U;, we now proceed with giving a similar
bound on the representation error of V,U;, i.e. the spatial derivative of the Y-targets. This estimate
will be a crucial input for the estimation error of the Z-process. It is important to highlight that the
following result is only stated under the more restricted conditions of Assumption 6.1.2.

Lemma 6.2.2 (Representation Error of the Variation V,Y;, — OSM)
Under Assumption 6.1.2, for sufficiently small equidistant time grids, the representation error of the
derivative of the Y -targets satisfies for each t; € ©V

E |va;5;szi|2} <(1+C W2+ (1-19,)%) Ati)Eﬂszt fvzmﬂ

i+1

+ CORALE Vi, = Uil + C(1 = 9,)°ALE [|Yi,,, - Y7, [*] + CAZ. (6.45)
where C is a constant independent of ©V.

Proof. In the following C always denotes a constant independent of the time partition, whose value may
vary from line to line. In order to avoid repetition of previously seen arguments, we hereby only highlight
those steps which significantly differ from the ones in the previous lemma.

By the dynamics of the variational process V,Y;,? Equation 2.26 and the definition of U; Equa-

l+ax ax
1—-bx 1—-bx

2Here V.Y, = VIYT(t""w) naturally from the context. We drop the superscript corresponding to the initial
conditions, in order to ease the notation.

IThis result easily follows by the Taylor expansions of and around z = 0.
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tion 6.12, Leibniz’s integral rule® gives®

it1
tit1

+ 19y <]Ez |: vzf(r7 Xru YI")VIX’I” - vxf(t'u Xtiu Uz)sztldr]

ti
tit1
+Ei |: Vyf(r, XT,}/T)VQC}/T - Vyf(ti,Xti,Ui)ﬂvaid’f}>
t;
tit1
+ (1 - ﬂy) (]Ez |: vrcf(rv er Yr)vaT - vmf(ti+1aXt7i+1’}/iil)vﬂthi+1dT:|
t;
tit1
+E; [ Y, f(r, X, Y,)V,Y, -V, f(tHhXtWmm)vmmldrb . (6.46)

ti

Similar applications of the Young and Jensen inequalities as in Lemma 6.2.1 yield

VaYs, = VoUil* < (14 B)E; [|VaYi,, — VaYi ]

tit1

Va:f(rv X'ra Ytr)var - vmf(tza Xtia U1>Vth1dT

)

tit1
/ vﬁb’f(rv X'r’a Yf‘)v:EXT - v;cf(tz—i-l; Xti+1 1) )Qil)vatiJrldr
t

7

t;

+2(141/8)9; <Ei

2‘|
tit1 2

+E; Vo f(r, X, Yo VoY, = Yy f(t, Xo,, Un) Vo Usdr

X (Ez
D )

Let us now turn to the integral terms above. The second term above in expectations leads to
21

tit1
< dALE { / Vo f (7, X, Y )V X, — Vo f(ts, Xy, Ui)VIXti|2dr] . (6.48)
ti

tq

+2(1+1/8)(1 —9,)?

2‘|
tit1

+E; Vyf(r, X, Y )V Yo =V f(tiya, Xti+17Y;T-§r—1)vai:-1dr

ti

tit1

E V:L’f(r» er Yr)va:Xr - Va:f(t“ Xtian)sztidr

ti

by the L? Cauchy-Schwartz inequality. Now, using the fact that under Assumption 6.1.2 X is an Arith-
metic Brownian Motion whose flow — defined in Equation 2.12 —is constant I, the integrand is identically
equal to

Vo f(r, X0, Y )V Xy — Vo f(ts, Xe,, U Va Xy, |* = Vo f (r, X, Y2 — Vo f (8, X, U2 (6.49)

Since the driver is assumed to be twice continuously differentiable with uniformly bounded second deriva-
tives, we also have by the Mean Value theorem, that the partial derivatives are also Lipschitz continuous.
Additionally, under Assumption 6.1.2 the partial derivatives of the driver are also %—Hélder continuous
from which it follows that

21

2 Pit 1/2 2 2
< 4dL2CALE Ir— Y2+ X, — X0, |2 + |V, — UsPdr| . (6.50)
t;

tit1

E sz(r, X’I’7 Y’I‘>VIXT - Va:f(tza Xt“Ui)vthidr

t;

The Kolmogorov continuity of the forward and the Y-processes thus leads to

E

tit1 2
( wa(r,XmYT)—wa(ti,Xti,Ui)dr> 1 < 4dL2CAt (At§+Ati]E [|Yti—Ui|2D. (6.51)

ti

3Tt can easily be seen by the assumptions of standard parameters that the dominated convergence argument
indeed holds.

“Here V. X, denotes the flow of the SDE defined in Equation 2.12, and in fact VX, = VIXﬁt’“w). We drop
the superscript corresponding to the initial condition, in order to ease the notation.
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Through identical steps, we also gather

E

tit1 2
(/ v;cf(Ta X?": YT) - vxf(ti-i-lv Xt1,+1 ) Y;Z_Od?") ]
t;

< 4dL2CAt; (At;% +ALE UYt —Yr, \QD . (6.52)

Let us now turn to the integral terms in Equation 6.47 containing partial derivatives with respect to
y. First, notice that the integrands can be upper bounded in the following way

IV f(ry X0, Yo Vi Yy — Vo f (i, Xo,, U VU
<2V, f(r, X0, Yy) = Vi f (i, Xeo, U PV Yo [P + 2|V f (i, Xe,, U [P VLY, — VU2 (6.53)

by the triangular inequality and the submultiplicative property of the Frobenius norm. Now, given by
Lemma 2.5.1 — see Equation 2.29 in particular — we have that under the general conditions in Assump-
tion 6.1.1 the variational process V.Y, is bounded, which leads to the following upper bound

E {lvyf(ra Xra }/r) - vyf(tia Xtm Uz)|2|var|2} S CE {lvuf(ra Xr7 YF) - vyf(tia Xtm Uz)|2:| . (654)
At this point, using the uniform boundedness and Lipschitz continuity of V,f(:,-,-), on top of the

continuity of the variational process given by Lemma 2.5.1, we conclude that the original integral term
satisfies

E

tit1 2
(/ vyf(ra er Yr)v"ch - Vyf(th Xtia U’L)V’I'U7dr> ‘|
ti

< AL2ACAL; (A8 +204E [|Y, - Ui’] ) + 2L2dALE V.Y, - VU] . (6.55)

Similarly, for the ¢ + 1’th term we have

2

tit1
E (/ Vyf(r’ XT”? YT)VTYT - Vyf(ti—i-h Xti+1 ) szj—l)vT}/zz-ldr>
ti

< 4L2dCAL, (Atf 1 2ALE [yytm —Yr, ﬂ) +2L2dALE [|vmi+1 — VLY, ﬂ . (6.56)

Plugging Equation 6.51, Equation 6.52, Equation 6.55 and Equation 6.56 back into Equation 6.47 in
expectations, choosing 5 := yAt; < 1, we therefore get

E [|V,Y fszﬂ < (1+7A)E; [\vmyt
16L%d
e
Y

~ Vo7 [*]

CO2ALE |V, — U] + C(1 = 0,2 AE [V, — Vi [*]
HZALE (VoY — VU] + (1= 0, ALE [[V.Ys,., — VY77 +0ag). (6.57)

Now, if we choose 7 := 32L2d, for time steps satisfying At; < max [ﬁ, 1] we conclude

E[|v,Y, - vaﬂ < (L+C (02 +(1—0,)°) AL)E [|vxyti+1 - meﬂ

+ OPALE [V, — U] + C(1 = 0, PALE |V, — YL [*] + 0Af. (6.5)
This is what we needed to show, concluding the proof. O

Thanks to the Malliavin chain rule, the lemma above directly implies an approximation error bound
for the Malliavin derivatives estimated through Equation 6.1, which is stated below.

Corollary 6.2.1 (Approximation Error of Dy, Y;, ., — OSM)
Under the assumptions of Lemma 6.2.2 we also have

i+l i1

E “Dtth - Dimﬂ <C(1+ (W +(1—-9,)%) At)E [\vmyt - vxmﬂ
+ CO2ALE [mi - Uﬂ + O —9,)2ALE [|th —Y7, ﬂ +COAL2 + O, (6.59)

where C is a constant independent of the time grid.
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Proof. In what follows C' always denotes a constant, independent of the time partition whose value may
vary from line to line.

By the Malliavin chain rule and the approximation defined in Equation 6.1, we get that the approx-
imation error of Dy, Y;, | admits to

Dtiyvti-u D; YZFH \Y }/tz-letiXti-#l \Y Y+1D Xz'7r+1' (660)

For ABM forward dynamics the Malliavin derivative is analytically solvable and it is also constant ac-
cording to Equation 2.9, which thus gives
i1

E [|DYi., - DY || < CE [|Wu¥e,,, - V¥ (6.61)

The result then follows from Lemma 6.2.2 and the definition of the regression error Equation 6.19. [

Having obtained an error estimate for the estimation of the Malliavin derivative through the Malliavin
chain rule, let us now turn to the representation error of the Z-process.

Lemma 6.2.3 (Representation Error of Z;, — OSM)
Under Assumption 6.1.2, for sufficiently small equidistant time grids, the representation error of the
Z-targets defined in Equation 6.11 satisfies for each t; € ©¥

E [|Zti 4/1,|2} < (1+CAL)E UDtth — DY ] + CAE + CALE [|Yti+1 4@11|2], (6.62)

i+1
where C' is a constant independent of ©V

Proof. In the following C' always denotes a constant independent of the time partition, whose value may
vary from line to line. In order to avoid the repetition of arguments, hereby we only highlight the steps,
which significantly differ from those of the previous lemmas.

Using the Malliavin representation of the Z-process given by Theorem 2.5.1, we have the following
inequality

Zy, = Vi=E; [Dy,Yy,,, — D;iY[,|]

i1
tit1
+ E’L |: vzf(ru X’r, Yr)Dtin - vzf(tiJrl, Xt1+1 ) Kil)DiXZ;ldr]
t;
tit1

+E; [ Vyf(r, Xp, Y2) Dy Y, =V f(tivr, X4y, Y1) D iY;11d7”:|

ti

tit1
+Ez |:/ \Y f(T XT,Y)Dt v f( z+17th+17}/;+1)D Z7+1dT:| . (663)
t;

Under Assumption 6.1.2, the driver is independent of Z and the forward process’s Malliavin derivative
is analytically solvable. These observations, together with the application of the Young- and Jensen
inequalities with some a > 0 as in Lemma 6.2.1 yield

2]

D (660

1Z,, — Vi]* < (1 +a) 1—{|Dtth DYH”

i1
tit1

4 (1 + 1/04) (EZ vwf(r7 X, YT)DtiXT + vw.f(ti+17 th:+1 ) Y;'Z—I)th:thldr

ti

tit1
+Ez / vyf(ra X’r'a Yr)Dth + Vyf(ti-&-la Xti+1a}/17-r|-1)D Y-‘,—ldr
t

i

Let us first focus on the first term of the second term. Taking expectations gives

Ql

tit1
< dALE U |Vaf(r, X;, Y) Do, Xy — Vo f(tivr, Xeopr, Vb 1) De, Xeoyy |2dr] , (6.65)
t;

tit1

me(r» XMYT)Dtin - me(ti+1aXt1+17)/;+1)Dt Xt dT

i+1

t;
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by the L? Cauchy-Schwartz inequality. The integrand can be rewritten as

fo(’f', Xr» Y;")Dthr - vzf(ti+17 Xti+1 ) Y—iil)DtiXti-H
= (vzf(ra Xr7 Yvr) - vzf(ti+1u Xti+1ﬂY;7jrl)) th‘XT
+ vrf(ti-H? th‘+131fi11)(Dt7:X7’ - Dtith‘,+1)' (666)

In expectations, this means that
E |V f (ry X0, Yo) DXy = Vaf (i, Xop s i) Do Koy ||
< 2L2CE [|Vof (1, Xy, Vi) = Vaf (i, Koo, Y| + 202C i = v, (6.67)

where we used that the Malliavin derivative of ABM — given by Equation 2.9 — is bounded and continuous
in time. Therefore, using the standard Lipschitz continuity argument for V. f(-, -, -) we conclude that the
integral term of X admits to

2
E

tit1
(/ me(r, Xr, Yr)Dthr — me(t,;_H, Xti+1 5 Yz‘j—l)DtiXtin’)
ti

< 4L2CAL (At? + ALE [\th —Y7, |2D . (6.68)

Let us now turn to the second term of the second term in Equation 6.64.

E

tit1 2
( Vo [r D, Yy = Vo fii1 Di Yz74rr1d7”> 1
t;

< dALE {/t " \VafiDy, Yy = Va +1D¢Y£F1|2dr} (6.69)
ti
by the Cauchy-Schwartz inequality. Applying similar tricks to the integrand as before, we get that
Vo f(r, X0, Vo) Dy Ye = Vi (tisn, Xowy, V) DY
< 4(’Vyf 7 Xy, V) = Vi f (tivr, Xeoyr, Y ’ D, Y, |?
+|Vyf (i, X Y[ D Ye = Do Yoy,
HVyF i Xy YD Yy, = DY) . (6.70)
In expectations this comes down to
[|Vyf v, X, V) D Yy — Vo f(tiin, Xooy, Y ) DY }
<4C (E [!Vyf(ﬁ X, Vo) = Vy f(tita, XtHlaner)‘Q} + LP|tig1 — 7|

+I2E [|Dtthi+1 DY D . (6.71)

as the partial derivatives are uniformly bounded by L; the Malliavin derivative D;,Y, is bounded due
to the given ABM dynamics by Equation 2.27; and by the continuity given by Theorem 2.5.2 we have
that E {|D8Yt - DSYT|2} < C|t — r|. Therefore, using the Lipschitz and Holder continuities of the partial

derivative of the driver, we conclude that the Y-integral term can be upper bounded by

tit1 2
]E < VyfrDtly; - v f+1D }/;+1d7'>

ti

< 4L2dAt, (CAtf + CALE [|Yt Y;_;l{z] + ALE “DtthM DY D . (6.72)

i1l

Finally, substituting Equation 6.68 and Equation 6.72 back into Equation 6.64, choosing « := vAt; <
1 we get

16L2d

+ALE UD“YMI DY | D (6.73)
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Choosing v = 32L%d, we obtain
E {|Zti - vﬂ < (1+CAt)E UDtthm fDiY[_Llﬂ + CA#2 + CALE “th fyg_;lﬂ . (6.74)

what was needed to be shown. O

We have by now gathered all the relevant sub-results with respect to the representation errors arising
in the proposed one-step scheme, and can state the theorem establishing the consistency of the OSM
scheme under Assumption 6.1.2. The following theorem is basically only assembling the lemmas proven
above.

Theorem 6.2.1 (Consistency of the One-Step Malliavin Scheme)
Under Assumption 6.1.2, with sufficiently small time steps of an equidistant time grid satisfying the
conditions of Lemma 6.2.1, Lemma 6.2.2 and Lemma 6.2.3, for any choice of ¥, € [0,1] we have that

N—1
max E [|Yti - Yfﬂ <Clal+C Y e, (6.75)
o
max E (|2, — 27*] < Clx| + C ZO (ch+¢2), (6.76)
with some constant C independent of ©V . Consequently
N-1
ENY™,Z7),(V,Z)] < Cla[+C > (e +e). (6.77)
n=0

Proof. In what follows C always denotes a constant independent of the time partition, whose value may
vary from line to line.

We proceed in four steps. First, taking advantage of the scheme in Equation 5.15 being separated;
and the driver’s independence from Z under Assumption 6.1.2, we give an error estimate for the worst
time step’s approximation error in Y;,. Second, we give an upper bound for the approximation error of
the variational process V,Y;,. Then, we use this upper bound for the approximation error of Dy, Y;, .
Finally, we plug these error estimates into the approximation error of Z,.

Step 1: Approximation error of Y;,.

Under the assumptions, the results of Lemma 6.2.1 still hold, in fact — in light of Remark 6.2.1 — the
upper bound for the representation error of U; in Equation 6.12 becomes

E [mi - Uﬂ < (14C (024 (1—-9,)°) AL) E [|Yt7.,+1 — Y7, ﬂ +OAL, (6.78)
Using 19?2!, (1 —14,)% < 1, this can be loosened to
E [mi - Uﬂ < (1+CAt)E [|Yti+1 - Y;;ﬂ +COAL, (6.79)

Splitting up the representation error into approximation and regression errors, we have
E Vi, - Uil’] <2 |1Y;, - Y7 1] + 2B |7 - U] = 2E [Ivi, - Y7 PP + ¢, (6.80)

with the definition of the regression error given in Equation 6.19. Plugging this back into Equation 6.79
we get

E (1Y, = Y7 ] < (14 CA)E [V, — Y7 || + CAE + O (6.81)

Now, applying the Discrete Gronwall lemma Proposition 6.1.2, with the analytical terminal condition
Yy = 9(Xy) = YJ, this becomes

N-1
2
VYT < Yy .
Orgnie%xNIE [|Yt Y| } Clr|+C E,O €, (6.82)

as for an equidistant time grid Vi : At; = T/N. This proves Equation 6.75.
Step 2: Approximation error of V,Y,.
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The conditions of Lemma 6.2.2 are satisfied, therefore by Equation 6.45 we have

E |IVaYi, = VoUil’] < (14 C (92 + (1= 9,)%) AL) B ||V Yi,, = Va Y]

i1

+ CORALE Vi, = Uil + C(1 = 0,)°ALE ||, - Y7, [*] + CAZ. (6:83)
Since 97, (1 —9,)* < 1, this can be further loosened to

E[|V,Y, — vaﬂ < (14 CAH)E; [\VJKYW - vxmﬂ
+ CALE [V, - U] + CALE [|Yi,,, - Vi, ] + cag. (684)

Splitting up Y;, — U; and V,Y;, — VU, to approximation and regression errors, this leads to

T T |2
E(|V,Y, — V,Y7 | <(1+CAt)E UVthm — VLY }
+ CALE [m - y;ﬂ + CALE Uth —Yr, ﬂ +COAL2 +CeV. (6.85)
Using the bound Equation 6.75 obtained in the previous step, we have that

N-1

max [E [V, - V7P| B %, v ]| ccat+ oS e (6.86)
n=0
Plugging this back into the inequality above yields
N-1

E |V$Yti—V$Yf|2} < (1+0Ati)EUV$Yt

i+1

_ va;;ﬂ +CAL S e+ O + CAE. (6.87)
n=0

Under Assumption 6.1.2, we gather the derivative of the terminal condition analytically V,Y;, =
V29(Xiy) = VYT, and therefore obtain by the Discrete Gronwall lemma Proposition 6.1.2

N—-1
_ |2 . Yy
i E [\Vthi v.Y7 | < oAt + ¢ Z% ev. (6.88)

Step 3: Approximation error of D, Y;

i+1°

As a consequence, by Equation 6.59 in Corollary 6.2.1 we also have

E [|D1, Yy, = D[] SO (14 (92 + (1= 9,)2) At E [|VoYi,, — VoY [7]

+ CO2ALE [|Yt - Uﬂ +C(1—0,)2ALE [\th —Yr, ﬂ L OAL2 + O, (6.89)

%

Using 1957 (1—9,)? < 1 and plugging the approximation error bound Equation 6.75 and Equation 6.88
in above gives

N-1 N-1
E “DtthM - DiYillﬂ < C(1+At) (Ati + e%) +C D e+ CAL. (6.90)
n=0 n=0

Since the right-hand side above is independent from the index i, this holds for any 0 < < N —1 and we
obtain

) N—1
— DY ] <CAL+C Y e (6.91)

n=0

max E|[|Dy,Y;

0<i<N-—1 it

Step 4: Approximation error of Z;,.

The conditions of Lemma 6.2.3 are satisfied and therefore by Equation 6.62 we have that

E {|Zti - Vﬂ < (1+CAL)E []DtthHl - D,»Yillﬂ + CA#2 + CALE “le - Y;;lﬂ . (6.92)
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We can loosen the right-hand side by substituting the maximum errors established by Equation 6.75 and
Equation 6.91, which yields

n=0 n=0

N-1 N-1
E [\Zti - Vi|2] <C(1+At) <Ati + Z e%) +C Z € + CAL:. (6.93)

Splitting up the representation error of Z;, to approximation and regression errors, furthermore using
that €2 > 0 for all n, we get

N-1 N—1
E [|Zt,; - ngﬂ <C(1+At) (Ati + Z e%) +C Z(e’;’l +€2) + CAt2. (6.94)
n=0 n=0

In case of equidistant time partitions, the right-hand side now does not depend on index 7 anymore, and
therefore we conclude

N-1
2
7T < . Y z )
OS%%(AE [|Zt1’ ZT| } CAt; +C nE 0(€n +€2), (6.95)

which is the form Equation 6.76 that we needed to show.
Combining Equation 6.75 and Equation 6.76 gives the upper bound Equation 6.77. This concludes
the proof.
O

6.3 Consistency of the Multi-Step Malliavin Scheme

After completing the consistency error analysis of the one-step scheme, it is now time to turn to the
Multi-Step Malliavin scheme proposed in Equation 5.22. Similarly as in the previous section, we proceed
by proving a sequence of lemmas, which altogether shall prove the final consistency theorem stated in
Theorem 6.3.1. First of all, however, let us introduce some further notations. Most importantly, the true
targets of the regression problems in the multi-step scheme are defined as

Qi =B [Vag(XE)DXE + FRT DXT AL
(= D (6.96)
FE | Y (0 fPTDXT (=0 [T DX ) Al
| j=i+1
Pyi= 0y f(ti, X7, Py Z7) At 4 By [g(XR)] + Ei [(1 = 9y) f (i1, Xy, Vi, 25 At
S (6.97)

FEi | Y (0 f] + (L= fT10) Aty |
| j=i+1

where we used the usual abbreviation defined in Equation 5.13.
In addition, let us also define the following auxiliary processes

Ui =0y f(ti, XU, ZD) AL + By [Uiga| +Ei [(1—9y) f(tigr, X[y, Uigr, Z04) At (6.98a)
P, = 19yf(ti7Xz?rﬂ Yiﬂ> ZZT)Ati +E; [g(X;\T])] +E; [(1 - ﬁy)f(tiJrl? iTr+1ﬂ i117 Z;l)Ati}
Nl (6.98b)
+E; Z (ﬁyf;r + (1 - ﬂy)f;'r-q-l) Atj
j=i+1

It is worth to highlight that by the tower property, P satisfies the following iterated formula

~

P, = Oy f(ts, X7, Y, Z7)At; + E; |:Pi+1 + (1 =9y) f(tigr, Xiy 1, Y, 27 1) Aty | (6.99)

Due to Markovianity we know that there exist deterministic functions p; : R — R and ¢; : R — R¢
such that

P =pi(X7), Qi=aq(X]). (6.100)
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We parametrize the functions p; and ¢; by fully-connected, feedforward deep neural nets of the form
V(16Y) = NN (-16Y) : RY — R and Z(-|07) == NN (-]67) : R? — R9. We take estimations

0; € argminE [a;(X7) - Z(X7In)l*] (6.101)
n
0V € argminE |Ipi(X]) ~ V(X7 )| (6.102)
n
leading to approximations
Z7 = Z(X]107), Y7 = Y(XT|0Y). (6.103)

Additionally, differentiating the resulting networks via automatic differentiation we take
Vo ZT = Vo Z(XT167), V.Y = V. V(XT[6Y), (6.104)
Using all these notations, we define the regression errors induced by P;, @; by
07 = B [l0:(X7) = 27 (XT)P + |Vaqu( XT) = V27 (X]) P (6.105)
oV =B |Ipi(X7) = Y7 (XP) + [Vami(X]) = VY7 (X (6.106)

In the light of the Universal Approximation Theorem Theorem 3.2.2; these quantities can be made
arbitrarily small even with shallow feedforward neural network approximations. The goal is to bound the
following squared approximation error of the discrete numerical scheme

T us . ™ s 2
EIYT.27).(Y.2)] = max E [|yti vy, ﬂ + max B Uztj — 77| } . (6.107)

With the use of these notations, let us now prove similar representation lemmas as before. The
following proof is very similar to that of the Backward Deep Multistep method in [50] with the differ-
ences that hereby we apply a theta-discretization, and that the Z-process is approximated in a separate
regression task. The main idea of the proof is to split up the representation error to a sum of one-step
recursive errors induced by the auxiliary processes in Equation 6.98. In order to ease the presentation,
we only state the following results under the driver’s independence of Z. It is worth to note, however,
that the bounds for the representation error of the Y-process established in Lemma 6.3.1 — similarly to
the one-step case — would also hold in the general setup of Assumption 6.1.1.

Lemma 6.3.1 (Representation Error of Y;, — MSM)
Under Assumption 6.1.2, for sufficiently small time steps and any choice of 9,,9, € [0,1], we have

N-1
2 Yy

where C' is a constant independent of the time grid.

Proof. In what follows C' always denotes a constant independent of the time partition, whose value may
vary from line to line.

First, notice that the representation error of P; can be split up to

2 2
} +E [ ]) , (6.109)
where U, P are the auxiliary processes introduced in Equation 6.98. Having this in mind, we proceed in
three steps and upper bound each term’s contribution on the right hand side separately.
— 2
Step 1: Error of E UYtL — Ui‘ }

~

P —p

E |[v; - P| <4 (JE %, ~Ti’] +E DU )

First of all, let us highlight that U; is ”almost” identical to Equation 6.12, with the only exception that
the targets projected on F;, are not the regressed values at ¢;; but the true conditional expectations.
Therefore, this error is equivalent to the discretization error of the one-step scheme. Hence, through
identical steps as seen in Lemma 6.2.1 we can obtain

E UYti - Uﬂ < (1+CAtH)E [\le - Umﬂ +OAL, (6.110)
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in case of Z independent drivers. In order to avoid repetition, we omit this proof.
Consequently, if we collect the — under Assumption 6.1.2 — analytical terminal conditions Y;, =
9(Xty) = Un, by the Discrete Gronwall lemma, we get

Jax B [|Yt - Uﬂ < CAt;. (6.111)

This provides the first term’s error contribution in Equation 6.109.

N 2
Step 2: Error of E {Pi - P }

For technical reasons, let us first upper bound the third term’s contribution in Equation 6.109. By
the definition of the auxiliary process in Equation 6.98b and the true target in Equation 6.97 we have
that

By the Lipschitz continuity of the driver it therefore follows that

d

where we used the definition of the regression error given in Equation 6.106. This establishes the error
contribution of the third term. 1

Step 3: Error of E DUZ — ]3Z

We proceed by giving an error bound for the second term in Equation 6.109. First, notice that by the
definition of the auxiliary processes in Equation 6.98 and the recursive conditional expectation formula
for P; in Equation 6.99 we have that

P,-P

7

2
] < 92ALE [|Yf - Pi|2] N (6.113)

Ui— P =E [UiJrl - 13¢+1} + Aty [f(t, XT,Us) — f(ts, XT, Y7
+ (1= 9y)ALE; [f(tigr, X1, Uigr) — fltivn, X[, Y] -

Similar applications of the Jensen and Young inequalities as seen in Lemma 6.2.1 on top of the
Lipschitz continuity of the driver, therefore lead to

(6.114)

E UUi ~P

1 <(1+pE UUm - Isi+1’2]
FAL2AL(1+1/8) (ﬂgﬁ “E - Y;ﬂ +(1-9,)%E {|Ui+1 - Ymﬂ) . (6.115)

We can use the upper bound

|Ui—Y-Tr|2<4<‘Ui—13¢2+ P,—P

2 2
HR-vef), (6.116)

which in expectations gives

_ 2
E UUZ, _ y;ﬂ <4 (IE UU - b ] +(1+ ﬁjAt?)&f) , (6.117)
using the definition of the regression error Equation 6.106 and Equation 6.113. A similar result holds for
the ¢ + 1'th term.

Substituting these back into Equation 6.115, choosing 3 :i= yAt; < 1, v := 64L?, similarly as seen in
Lemma 6.2.1, we subsequently gather

~
i

E UU .y 1 < (1+CAL)E UUI-+1 2

2
} + CAL(5Y +67,,). (6.118)

At this point, we can apply the Discrete Grénwall lemma Proposition 6.1.2 and with the analytical
terminal condition Y;, = g(X:,) = Un = Y[ provided by Assumption 6.1.2, conclude that

max E |:‘Uz - ﬁl
0<i<N

2 N—1
} <CAt; Y 6. (6.119)
n=0
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This concludes the third step of the proof.
Finally, plugging Equation 6.111, Equation 6.113 and Equation 6.119 back in Equation 6.109, we
collect

N-1
2 Yy
_ P < . . L ]
omax E [\Ym Pyl } < CAt; + CAt; Z;) 87, (6.120)
which is what we needed to show. ]

The above lemma establishes the representation error of the multi-step scheme’s estimations for
Y, induced by discrete conditional expectations. In what follows, we gather a similar result for the
representation error of the Z-process under Assumption 6.1.2.

Lemma 6.3.2 (Representation Error of VY;, — MSM)
Under Assumption 6.1.2, for sufficiently small equidistant time steps and any choice of 9.,9, € [0,1],
we have that

N-1
_ |2 . _ Yy
Jax E [IVzYti V.P|"| < CAt; + CA; nZO 8, (6.121)

where C' is a constant independent of the time grid.

Proof. In what follows C always denotes a constant independent of the time partition whose value may
vary from line to line.
Similarly as in Lemma 6.3.1 we split up the representation error to the following three terms

]

+E “w% ~ VP,

E [|V.Y;, - V.P[*] <4 <E V.Y, = V.Ti[*] +E vam ~V.P,

2D . (6.122)

We proceed in three steps and bound each term’s contribution on the right-hand side.
Step 1: Error of E [|Vthi — Vmﬁiﬂ.

Through identical steps as seen in Lemma 6.2.2 we collect — analogously to Equation 6.45

B [|9.Y, = VoTi[*] < (140 (92 + (1-9,)°) A6) B [[9aYi, = VT[]
+ CO2ALE [m - Uﬂ +C(1—9,)2ALE [|Yti+1 - Umﬂ L OA. (6.123)

By the result obtained in Equation 6.111, this for any choice of ¥, € [0, 1] yields
i+1

E []vmyti - vﬁﬂ <(1+CAL)E [|szt VT |2] L OAL. (6.124)

Using the — under Assumption 6.1.2 — analytical terminal condition V,Y;, = V.,g9(X:y) = V,Un we
thus by the Discrete Gronwall lemma Proposition 6.1.2 conclude

max E [|vzyti - Uﬂ < CAL,. (6.125)
0<i<N

1

For technical reasons, let us proceed with the third term’s contribution in Equation 6.122. Differen-
tiating Equation 6.112 we easily get

Step 2: Error of E “Vgcﬁz — V. P

VP — Vo P = 0,AL Vo f (b, X0, YiT) = Vi f (i, X4y, P

By the usual arguments of Lipschitz continuity this yields

E vaﬁi —V,P,

2] < 209208 (E [\Yf - Pﬂ +E [|Vme - vaiF]) : (6.127)
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which translates to

E vaﬁi VP

]
Finally, let us upper bound the second term’s contribution in Equation 6.122. Differentiating Equa-
tion 6.114, using Leibniz’s integral rule gives

2
} < CO; AL 5. (6.128)

Step 3: Error of E DVin — Vxﬁi

V.U; — V.P, =E, {VzUH»l . vz-l/p\i+1] + Aty [f(t, XT,U;) — f(t, XT,Y7)]
+ (1= 0y AGE; [f(tiv1, Xy, Uier) = ftivn, X[, V)] - (6.129)

Through the usual arguments of Lipschitz continuity we therefore gather

E Uszi ~Vv,P,

2} < (14+~At)E vaUiH B Vx]sz'_s_lﬂ
452(1 + yAL) AL (O]E UUZ’ B Yi’ﬂ R [|VmUz— . VIY;T|2}
+(1—9,)°E “VzUiH - Vz}fij’l|2j|)  (6.130)

Now, we can use the upper bound

— _ ~ |2 ~ 2
|V.U; — VzYﬂQ <4 (’VIUi - V.P| + ‘VmPi —VoP| +|V.P — Vm“) , (6.131)
which in expectations gives
_ _ ~ 12
E [IVin - vmyiﬂﬂ <4 (]E Uvai - V.Pi } +(1+ Cﬁimf)éf) , (6.132)

with the use of Equation 6.128 and the definition of the regression error given in Equation 6.106. Sub-
stituting this back into Equation 6.130, with a choice of v = 8L? thus gives for every Y, € 10,1]

_ ~ |2 _ —~ 2
E UVIUZ —V.P; :l < (1 + CAti)E |:‘V;DU1+1 — VwPi—i-l‘ :| + CAtz((Sf + (5?+1). (6133)

Taking advantage of the analytical terminal condition under Assumption 6.1.2, we have that Y;, =
Uy = Py, and therefore applying the Discrete Gronwall lemma Proposition 6.1.2 yields

max [E |:‘va1 — legl
0<i<N

5 N-1
] < CAt; + CAL; y 6% (6.134)
n=0
This concludes the third step of the proof.
Let us now turn back to Equation 6.122. Plugging Equation 6.125, Equation 6.128 and Equation 6.134
into the right-hand side leads to

N-1
max E ||V,Y;, — Vo P|*| < CAt; + CAt; Y 67, (6.135)
0<i<N o
concluding the proof. O

As in Corollary 6.2.1, the above lemma gives a natural upper bound for the estimations of the
Malliavin derivative. This is stated in the following corollary.

Corollary 6.3.1 (Approximation Error of Dy, Y; — MSM)
Under the assumptions of Lemma 6.5.2, we also have that for any 0 <i < j < N

N-1
E [\Dtth]. - Diyjﬂﬂ < OAt; +C8Y +OAL S 6, (6.136)

n=0

where C is a constant independent of the time grid.
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Proof. In what follows C always denotes a constant independent of the time partition whose value may
vary from line to line.

Using the Malliavin chain rule and the definition of the approximation defined in Equation 6.1, we
have that the approximation error of Dy, Yy, for any ¢ < j admits to

DYy, — DY =V, Yy, Dy, Xy, — VYD XT. (6.137)
Under ABM dynamics this readily reads as
E [|D,Y,, - DYF[?] < CE[|V.Y;, - v.v7 [, (6.138)

by the boundedness of the Malliavin derivative of Arithmetic Brownian Motions in Equation 2.9. The
result then follows from Lemma 6.3.2 and the definition of the regression error in Equation 6.106. O

Using Lemma 6.3.2 and Corollary 6.3.1, we can prove an upper bound for the representation error of
the Z-process induced by the discrete scheme in Equation 6.96. This is collected in the following lemma.

Lemma 6.3.3 (Representation Error of Z;, — MSM)
Under Assumption 6.1.2, for sufficiently small equidistant time steps and any choice of 9,,9, € [0,1],
we have that

N-1
max E [|Zt — Qi } < OAt; + CAL 255, (6.139)

where C is a constant independent of the time grid.

Proof. In what follows C' always denotes a constant independent of the time grid, whose value may vary
from line to line.

Most of the work has already been done by Corollary 6.3.1. In order to see this, let us expand the
error term by the definition of @); in Equation 6.96 and the Z;, given by Theorem 2.5.1, which yields

tit1
Zy, — Qi = Ei [Vog( Xty ) Dy, Xty — Vaeg(X3)Di X 5] + E; {/ fPDy X fD "D X[y dr

ti

bt D,m

/ fPDy X, — [P DiXFar
Jj=i+1 t
+( Z fDDt P — FTDiXTdr |, (6.140)
Jj=i+1 tj

where we used the definition of ff)”r given by Equation 5.13. Under Assumption 6.1.2, we immediately
observe that due to the analytical terminal condition V,g¢(X;y) = V,g(XF) and also Dy, X, = D; X7,
thus the first term cancels out. By the usual arguments of the Young and Jensen inequalities, exploiting
the fact that 9, < 1 this leads to

tjt1 b
|:|Zt - Qi } <CE Z/ FPD X, — £ 7D Xy, dr (6.141)
N-1 i 2
SCIN-1-DE | > /t fPDL X, — FT D Xy, dr| | (6.142)
j=i |7t

where we used (a +b)? < 2(a? + b?) for a summation of n-many terms. The Cauchy—Schwartz inequality
thus now leads to
ti+1
/tj

Let us now turn to the integrands of the summation terms. By the definition of f” in Equation 5.13 we
have that

fPDu X, — f3TDL X,

j+1

N-1
E [|Zt1. - Qiﬂ <SC(N-1-0) Y A4E
j=i

“ar ] . (6.143)

FPDLX, — 7D, Xy, = Vaf(r, X, Yo) Dy, Xy — Vo f (tigr, X, Y ) D, X

i+19 T i+1 i4+1

+ Vyf(T, XT’ YT)DtiYT - Vyf( i+17Xti+1’Yz+1)D Y111> (6-144)
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with which we gather the upper bound

d ]

T 2
< 2F [|Vo f(r, X0, Vo) DXy = Vi (b1, Xty 00 Vi) Di Xy ||

'LX f Dt th+1

+2E Uv F(r, X0, ) DYy = Yy f(ty1, Xoy o, Y7 ) DY } (6.145)

Similarly as seen in Lemma 6.2.3 — see Equation 6.68 in particular — we obtain the following upper bound
for the first term

. 2
E [[Vaf (r, X0, ) Doy Xy = Vaf (b1, Xy, Vi) De Xe, 7]
<C (Atj +E [\th - Y;;lﬂ) . (6.146)

by the boundedness of D, X, for ABM. Furthermore we can rewrite the second term of Equation 6.145 in
the form V, f,. Dy, Y, =V, fT DY = (Vy fr =V, J+1)Dt Y +Vy 51 (D, Y — DY ) and — similarly
to Equation 6.71 in Lemma 6.2.3 — use that for ABM dynamics under Assumption 6.1.2 the Malliavin
derivative is bounded given by Equation 2.27. On top of the continuity of the Malliavin derivative

E [‘Dtin =Dy Yy, ﬂ < Cltj41 —r| provided by Theorem 2.5.2, this therefore implies

E [|Vyf(r, X0, o) DiYs = Va1, Xy 0 Vi) DY ||

<C (At +E “le 1@11]2} +E “DtthHl DY7| D (6.147)

Splitting up the approximation error to representation and regression errors, with the use of the upper
bound Equation 6.108 established in Lemma 6.3.1 we know that

N-1
E [V, - Yiul'] 0ot +cat Y 6y + ol (6.148)
n=0

Similarly, using the error bound Equation 6.136 established in Corollary 6.3.1 we collect

N—-1
— DY } < CAt; + C8Y,, +OA; Y 6. (6.149)
n=0

E [|Dy,Y;

j+1

Plugging Equation 6.148 and Equation 6.149 estimates back into Equation 6.146 and Equation 6.147
respectively, and then into Equation 6.145 we get

d

Plugging this back into Equation 6.143 subsequently yields

N— N-1
E [|Zti — Qi } < C(N—1-14) Z At? (1+ Zéﬁ) +Atj<5]+1]
Jj=i n=0
N—-1
At (1 +> 534) + At H] :

n=0

fPDy X, — fT DX,

2
} < CALy <1 + Z 5”> +C0Y . (6.150)
n=0

(6.151)
<C(N—1-14)?

Now, exploiting the fact that ¢ < N and Vj : At; :=T/N in an equidistant time grid, we conclude

N-1
E [|Zti - Qﬂ < CAt; +OAL S 6, (6.152)

n=0
concluding the proof. O

This concludes the sequence of lemmas that we needed show in order to be able to prove the final
consistency theorem of the multi-step scheme, which is stated below.
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Theorem 6.3.1 (Consistency of the Multi-Step Malliavin Scheme)
Under Assumption 6.1.2, with sufficiently small time steps of an equidistant time grid, for any choice of
Yy, 0, € [0,1], we have that

N-1

_ 2 Yy
jmax E [m Vel } < Clr|+C 2_:05,” (6.153)
N—-1
_yT ] z
max E [|Zt Z7| } < Clr|+C ZO (|m|6Y + 67, (6.154)

with some constant C independent of the w. Consequently,
N-1
ENY™,Z7),(V,Z) < Clx[+C > (e +¢). (6.155)
n=0
Proof. The results naturally follow from Equation 6.108 in Lemma 6.3.1 and Equation 6.139 in
Lemma 6.3.3. Combining Equation 6.153 and Equation 6.154 gives Equation 6.155. This concludes
the proof. O

6.4 Comparison of Results

Having obtained an approximation error bound for both the one- and multi-step schemes, let us now
briefly evaluate the results qualitatively.

First of all, observe that the right-hand sides of both Equation 6.77 and Equation 6.155 are O(|r|)
functions, in case the regression errors are O(|xr|) functions as well. For the latter, one can argue —
motivated by the Universal Approximation Theorem in Theorem 3.2.2 — that the regression errors can
indeed be made arbitrarily small with neural network parametrizations as neural networks are dense
function approximators in Sobolev spaces. Second, it is worth to highlight the differences between the
two bounds. We see that for the multi-step scheme, in Equation 6.154, the regression errors ¢¥ induced
by the conditional expectation regressions for the Y-process are O(1/N) smaller than in case of the one-
step scheme in Equation 6.76. This difference confirms the implication of other results in the literature,
where the interdependence between regression errors are mitigated via taking multiple time steps into
account — see, e.g., [21], [50]. Furthermore, we see that neither scheme’s approximation error in ¥ —
Equation 6.75, Equation 6.153 — depends on the regression errors (e7,07) of Z. It is important to notice
that this behaviour is solely due to the conditions set in Assumption 6.1.2 — namely because of the driver’s
independence from the control process — and that under general conditions it would not be the case.

Nevertheless, even under these more restricted conditions, it is of interest to see how the results
in Theorem 6.2.1 and Theorem 6.3.1 compare to the error bounds given for the Backward Deep BSDE
schemes introduced in section 4.4. As hinted in that section, the authors in [9] proved a similar consistency
theorem for the Backward Deep BSDE method, which is stated as follows.

Theorem 6.4.1 (Consistency of the Backward Deep BSDE Method — Theorem 4.1, [9])
Under certain regularity assumptions, for small enough mesh sizes, there exists a constant C' such that

N—1 tit1
max E[m - 2] +E Z/ \Z, — Z7|2dt
0<i<N = t;
N-1
<C (E {|g(XT) —g(XR)| } + || + 2 (7N) + Z (Ne! +¢€; ) . (6.156)
1=0
Proof. See [9, Pg. 10, Theorem 4.1]. O

Similarly, for the so called Backward Multistep Deep BSDE method, the authors in [50] provide an
error analysis for a multi-step scheme.

Theorem 6.4.2 (Consistency of the Deep Backward Multistep Method — Theorem 4.1, [50])
Under certain regularity assumptions, for small enough mesh sizes we have that

N-1 it
3 / \Z, — 727 2dt
i=0 Yt

N—1
<C <E [|g(XT) —g(XV)l } + |7 + 2 (7)) + Z €/ + |m|ef ) . (6.157)
i=0

max E [|Yt - Yfﬂ +E
0<i<N
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Proof. See [50, Pg. 17, Theorem 4.1]. O

Let us compare these results against the approximation errors proven in Theorem 6.2.1 and Theo-
rem 6.3.1. The first big difference which we shall not leave unmentioned is that these two theorems bound
a strictly weaker error measure, where the approximation error of the Z-process is not bounded by the
supremum norm but rather only by an integral norm projected on each step’s time interval. This advan-
tage of the hereby proposed schemes is entirely coming from the Malliavin problem formulation, which —
through Theorem 2.5.1 — enables us to give bounds for the control process in the supremum norm. This
difference in formulation is the reason for the absence of £Z(|r|) — defined in Equation 6.2 — in the bounds
of Theorem 6.2.1 and Theorem 6.3.1 as well. However, as shown in [5], eZ(|7]) = O(|r|) in case the
terminal condition is also a Lipschitz continuous function. Therefore this does not induce an additional
order of magnitude in the error compared to the hereby proposed schemes, as under Assumption 2.5.1
the terminal condition is guaranteed to be Lipschitz continuous.

Hence, we can conclude that Theorem 6.4.1 and Theorem 6.4.2 with the conditions under which our
consistency bounds were proven — stated in Assumption 6.1.2 — would read as

N-1 ;g

> / | Z, — ZT|dt
i=0 Yt

N—1 tit1

> / \Z, — ZT|dt
i=0 't

This means, that the bounds of both OSM and MSM are O(1/N) better in the cumulative regression
error of Y than in the Backward Deep BSDE scheme — on top of bounding a strictly stronger norm. On
the other hand, we also see that they are O(N) worse in the cumulative regression error of Z than in the
Deep Backward Multi-Step Method. Nevertheless, we can observe that the proposed schemes are both an
order of magnitudes better in the regression errors of €/, 47 for the approximation error in Z. However, it
is important to keep in mind, that everything we have said above only holds under the stronger conditions

of Assumption 6.1.2.

max E {|Yti - Y;ﬂ +E
0<i<N

N-1
<C <|7r + 3 (Ve + ef)> , (6.158)
1=0

max E [|Vi, - V7" + E
0<i<N '

N—-1
<C <|7r + ) (¢ + |7r|ef)> . (6.159)

1=0

6.5 Role of Restrictions in the Additional Assumptions

Before concluding the analysis, let us have a few words on the assumptions we made. As we have seen, all
results corresponding to the error schemes of the Z-process have been stated under the more restricted
set of assumptions collected in Assumption 6.1.2. In particular, we assumed three further conditions
on top of the ones in Assumption 6.1.1 providing convergence for standard numerical schemes: in the
driver’s independence of the Z-process; in the underlying forward diffusion being ABM; and in the Holder
continuities of the partial derivatives of the driver. The last one — similarly to the difference between
Assumption 2.5.1 and Assumption 6.1.1 — only provides convergence for discrete approximation schemes
and can be considered standard. Below, we motivate the first two restrictions and explain why they were
needed to be made for the analysis.

6.5.1 Arithmetic Brownian Motion Diffusion

Let us start with the assumptions on the forward diffusion. The need for the assumption of ABM dynamics
is twofold: first through a closed-form solution for X; and D;X; — via Equation 1.12 and Equation 2.9
— it eliminates the necessity of solving the underlying forward SDE and the linear SDEs of its Malliavin
derivatives numerically; second, given specifically for ABM, its flow process and Malliavin derivatives are
uniformly bounded. In what follows we elaborate on these two observations.

Closed-Form Solution

The need for an analytically solvable forward dynamics is not merely due to the numerical solution of the
underlying diffusion. Indeed, as it is stated in Theorem 6.1.1, the Euler-scheme — defined in Equation 4.6 —
is consistent with the true solution of the forward diffusion and could therefore be used to gather estimates
of an analytically not solvable forward process. In that case — see the right-hand side of Equation 6.12
in Lemma 6.2.1 — we would have an additional term in our error bound depending on the approximation
error of the non-analytical terminal condition g(X;, ) — ¢(X%) in the scheme of Y.

In fact, the real difficulty with an It6-process whose solution needs to be obtained numerically lies
in the estimations of its Malliavin derivatives, which is a fundamental input to the proposed schemes.

76



6.5. ROLE OF RESTRICTIONS IN THE ADDITIONAL ASSUMPTIONS

Regardless the fact that under standard smoothness assumptions — see Assumption 2.5.1 — on the FB-
SDE’s Malliavin differentiability, the Malliavin derivative of X does exist and exhibits all the properties
we relied on during the analysis — see Theorem 2.4.1 —, we still encounter a problem with respect to the
accuracy of their numerical approximations, since they hierarchically depend on the approximation errors
of the forward process itself. Indeed, as we have seen in chapter 4 — see Equation 4.8 in particular — the
same Euler scheme can be applied to the forward SDE of {D;, X}, s € [0,T]. However, this forward SDE
starts off from an initial condition o(¢;, X[), which already depends on the accuracy of the numerical ap-
proximation of X;,. Because of this non-fixed, noisy initial condition, it is challenging to obtain rigorous
theoretical guarantees for the approximations of each Malliavin derivative’s trajectory in the time grid.

Since in the upcoming chapter’s numerical experiments we only present results on problems with
forward dynamics which possess a closed-form solution — such as Arithmetic Brownian Motions — we
thus decided to restrict ourselves to the special case of analytically solvable forward diffusions. However,
this relaxation may also be motivated by the uncoupledness of the FBSDE system Equation 1.56. In
fact, because of the forward process being independent from the solutions of the backward equation,
the simulation of the forward diffusion can be done offline, independently from the backward solution.
This in fact provides a possibility to solve the forward dynamics Equation 1.56a on a magnitudes much
finer time grid — say, e.g., with 103NV grid points — and pass those finer approximations to the backward
stage of the proposed algorithms. Relying on Theorem 6.1.1, this would guarantee a much higher order
of convergence for the forward scheme and may also mitigate the error stemming from the numerical
approximations of its Malliavin derivatives. Nevertheless, the proper error formulation of this intuition
is out of the scope of this work, and is left for future research.

Boundedness

Another step where we were relying on the assumption of Arithmetic Brownian Motion dynamics was the
splitting of chain rule like products. In fact, when taking the expectations of products of non-negative
random variables in Equation 6.49, Equation 6.54 and Equation 6.67, we readily used that for ABM dy-
namics both the flow process and the Malliavin derivative are constant and therefore uniformly bounded.
This property was also fundamental in the approximation errors shown for D, Y;, . We have a strong
belief that this assumption can be relaxed to more general not necessarily bounded forward diffusions
with the help of classical inequalities such as the Holder and Doob’s maximal inequality. However, as
in the upcoming section we only show numerical results for ABM dynamics we decided to eliminate this
difficulty for the purpose of this work, and left the proof under general diffusions for future research.

6.5.2 Drivers Independent of Z

Finally, let us argue why the assumption of drivers with V,f(-,-,-,-) = 0 was needed. As we have seen,
this additional assumption was not used for the representation error bound of Y proven in Lemma 6.2.1.
It does, however, play a crucial role in the approximations of the Z-process. In fact, in Lemma 6.2.3 — and
similarly in its multi-step counterpart — when we gave an upper bound for the square of the time integrand
corresponding to V,, f — see, in particular, Equation 6.71 —, we used the fact that the Malliavin derivative
of Y, exhibits the following two essential properties guaranteed by Theorem 2.5.2 and Lemma 2.5.1

1. boundedness: |D;,Y,|* < oo;
2. continuity: E [|Dtm - DtiYuﬂ < Clr —ul.

The first property is provided by the assumption of ABM dynamics which we discussed above. The
second, relates to the continuity of the Malliavin derivatives. Had we allowed for drivers depending
on Z, we would have had to deal with a similar expression as in Equation 6.71 only containing the
partial derivatives in z. This expression would have included terms depending on the random variable
‘Dti Ztio — Dy, Z,.‘2. Similarly as in the steps of Lemma 6.2.3, in order to obtain a final upper bound for
the integrands, we would have needed the continuity of D,,Z. This, however, is not guaranteed by the
first-order Malliavin derivatives of the solutions, as Theorem 2.5.1 does not establish the continuity of
the Malliavin derivative of Z.

If one wants to guarantee such properties of the {D;Z}c[o, 7], then an additional layer of stochasticity
becomes needed. In fact, it can be shown — see, e.g., [57, Theorem 3.14] — that, under stronger conditions,
similar results to that of Theorem 2.5.1 hold for the second-order Malliavin derivatives of the solution
pair of the BSDE Equation 1.56b. Furthermore, it can also be shown that the second-order Malliavin
derivative DfiY admits to a version such that DiY = Dy, Z, almost surely. Recently, Izumi in [57] has
shown that the higher-order Malliavin derivatives of the solution pair of the BSDE also satisfy linear
BSDEs themselves and admit to similar relations as in Theorem 2.5.1. However, to the best of our
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knowledge, the continuity properties of these processes are yet to be fully understood, and therefore we
decided to eliminate this difficulty through the assumption of Z-independent drivers. Nevertheless, given
the interesting developments of the field in this direction — see also [58] —, extending the error bounds of
Theorem 6.2.1 and Theorem 6.3.1 to the case of general Z-dependent drivers will be in the central scope
of future research.
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Chapter 7

Numerical Experiments

To demonstrate the numerical performance of the One-Step and Multi-Step Malliavin schemes, in the
following section we present numerical results of the proposed algorithms on several high-dimensional
problems and compare them to existing deep learning based BSDE solvers. We recall that the goal of
both OSM and MSM is to provide more regularity for the control process Z by applying direct training on
it through Malliavin calculus. Therefore, in what follows we only present results on the one-step Backward
Deep BSDE method — defined by the loss in Equation 4.24 — as according to our numerical experiments it
provides better control estimates than its multi-step counterpart — defined by Equation 4.26. We remark
that due to its significantly worse performance at ¢ > 0 we exclude the Forward Deep BSDE method
from the presentation of high-dimensional problems and restrict the analysis to backward type methods
which are designed to solve the FBSDE throughout the whole time horizon.

The chapter is built up as follows. First, we fix some final notations corresponding to error measures
of the discrete schemes. Thereafter, we briefly explain the custom implementation with which the results
were obtained and discuss the hyperparameter selection used in the experiments. We highlight that in
our empirical experience OSM and MSM showed less sensitivity to the selection of these parameters than
other Deep BSDE methods which is in line with the intuition that smaller learning problems should yield
easier optimization. Nevertheless, in order to provide a fair comparison we decided to choose values best
suited for the Backward Deep BSDE method and present results on a common set of hyperparameters.
The discussion of the implementation is followed by the presentation of a non-trivial one-dimensional
problem, where we demonstrate that the proposed schemes are indeed sensible. Thereafter, we turn to
the main goal of this thesis and tackle high-dimensional FBSDEs up to d = 10 dimensions. First we
consider the famous Hamilton—Jacobi—Bellman equation with linear randomness and quadratic control.
We derive a ”semi-analytical” expression which traces back the solution to the numerical integration of
a set of ordinary differential equations (ODE). Using this reference solution we measure the accuracy
of the proposed algorithms over the whole time window. Ultimately, in the last section we consider
an FBSDE with a complex structure, whose driver is not everywhere differentiable, and for which the
Backward Deep BSDE method is known to fail to provide accurate approximations in d = 10 dimensions
— see [9, Section 5.2]. We demonstrate that OSM and MSM manage to overcome this problem, giving an
order of magnitude better control estimates. In both high-dimensional experiments the robustness of the
considered algorithms is tested by taking the averages and standard deviations of each scheme calculated
over five independent runs on the same Monte Carlo test sample.

7.1 Preliminaries

In what follows we are considering the set of equations given by an FBSDE and its corresponding Malliavin
derivatives collected in Equation 5.1. We denote the unique pair of triples of random processes solving
Equation 5.1 by (X,Y, Z) and ({DSX, DY, DsZ}se[o,T}>- We denote discrete partitions of the form

™={0=ty<ty < - <ty=T}, (7.1)

whose mesh-size is denoted by sup;, ¢~ [tiy1 —t;|. In order to ease the notation, we put X7,Y", Z7,
D X7, DY, Dy Z7 for the discrete approximations of their continuous counterparts Xy ,Y; , Zi,,
Dy, Xt , D, Ye, , Dy, Zy, for each 0 < m,n < N. We often use the absolute and relative mean squared
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errors induced by the discrete schemes, which read as follows
&7 =E v, - ¥7F, & =E |12z, - 77|, (7.2)
|2 T2
E ||vi, - Y| E |2, - 2717]
’ ’
It is worth to notice that the error measure defined in the left-hand side of Equation 6.20 used in
Theorem 6.2.1 and Theorem 6.3.1, corresponds to £ = max; &"" + max; £7°". We remark that in case

plT = pi = (7.3)

E |IY,

[

E [|Zti |2] =0orE [|Zti \2} = 0 we report on their absolute errors instead — see Figure 7.5 in particular.

Due to the nature of the considered algorithms, the approximation quality at t; = 0 is exceptionally
important which is measured by the following absolute and relative L2-errors' respectively

abs. error Yy = |Yy — Y|, abs. error ZJ = |Zy — Zf|, (7.4)

_ Yo - Y{| _ 1% =77

rel. error Y = , rel. error Z = 7.5
0 [Yol 0 | Zo| (75)

We remark that because of the hereby considered, fixed deterministic initial conditions for the forward
SDE, these latter errors are not probabilistic. Finally, on top of the errors above we also consider the
relative estimated integral errors which are defined by

E [N trapz (Y, - 7 at) | E (2N trape (120 - 27 at)]
v = : N VS — : , (7.6)
E [0 traps ([, vt | E [0 traps ([ 27t

where trapz() denotes the trapezoidal rule. These discrete errors measure the average approxzimation
quality over the whole time horizon.

7.2 Implementation Details

Before presenting the upcoming numerical experiments let us have a few words on the program which the
results below were obtained with. First, we briefly explain the code structure. Thereafter, we cover how
the hyperparameters (commonly set for all problems below) were chosen, and what impact their choice
has on the numerical results. Finally, we discuss the chosen discretization for OSM and MSM.

7.2.1 Code and Platform

Apart from the results of the Forward Deep BSDE method, all results below were obtained with a custom
implementation. The Forward Deep BSDE code base was taken from the public github repository of the
main author in [7]. The Backward Deep BSDE, OSM and MSM solvers were implemented individually.
The implementation is written in TensorFlow 2.0. Automatic differentiation is done by the .gradient (),
.jacobian() methods for tf.GradientTape() in eager execution. In order to conserve efficiency all
functions are decorated with @tf.function decorators exploiting the performance boost of static graph
execution. For more information on the structure of TensorFlow we refer to the official guide and the
tutorials therein. The code base of this project will be made publicly available after the completion of the
project under the author’s github repository. All experiments below were run under Google Colaboratory
on a randomly assigned cloud of GPUs.

7.2.2 Hyperparameter Selection

The hyperparameters of the considered models can be split into three different categories. We discuss
these separately.

! Although the notation might be slightly confusing here, we remark that these errors indeed correspond to
L?-norms. Recall from section 1.1 that throughout the whole work |-| denotes the Frobenius norm, which in case
of vectors coincides with the Euclidean norm.
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7.2. IMPLEMENTATION DETAILS

Network Architecture

We choose a fully-connected feedforward neural network of the form Equation 3.14 where batch normal-
ization layers — see algorithm 3 — are inserted before the input layer and in between each pair of hidden
layers. In order to adhere to good machine learning practices suggested by [28], there is no batch normal-
ization applied in between the last hidden and the output layers. In accordance with other deep learning
based BSDE methods, we choose networks with depth of two hidden layers L = 2, each containing
N® =100+ d,¢ = 1,2 many neurons depending on the dimensionality of the problem being considered.
Since smooth differentiability is a fundamental property of the hereby proposed algorithms, we choose a
tanh activation function. We remark that although our empirical experiments showed slightly increased
accuracy with the use of ELU (defined in Equation 3.4), we decided to present results with tanh, since
the latter satisfies the conditions of both UAT theorems (Theorem 3.2.1, Theorem 3.2.2) presented in
chapter 3. As in this work we are only concerned with fixed, deterministic initial conditions Xy = x,
similarly to the Forward Deep BSDE model, we parametrize the processes at tg = 0 by single trainable
parameters. Finally, we remark that for the results on the Forward Deep BSDE method we used ReLU
activations (defined in Equation 3.3) according to the suggestions of the paper which it was proposed in
[7].

Training

We choose a Monte Carlo sample size for the underlying for-

ward diffusion (and its Malliavin derivatives) of size M = Learning rate schedule at time step 1
217 = 131072 = O(10°). The choice for this to be a power of 10/
2 is motivated by better parallelization properties on GPUs.

We remark that in case of each upcoming experiment, the 1074
forward diffusion is an Arithmetic Brownian Motion whose
dynamics — together with its Malliavin derivatives — is an-
alytically solvable by Equation 1.12 and Equation 2.9. The
case of forward diffusions without closed form expressions is
left for future research. In each experiment we perform mini-
batch training with mini-batches of size 2!° = 1024, which :
means that in each epoch 27 = 128 iterations steps are taken. epoch

We use 100 epochs for the training of each time step that im-

plies that in total the optimizer is shown 100 x 2!7 = 0(107) Figure 7.1: Numerical Experiments
trajectories of the forward dynamics. The optimization step — Learning Rate Schedule. Learning
is done with the Adam optimizer introduced in algorithm 2. rate schedule defined in Equation 7.7.
The decay parameters are chosen according to the default
suggestions in [36].

A crucial input of the optimization is the choice of the
learning rate. In our empirical experience, this has shown to
have a big impact on the accuracy of the estimations, and
therefore it needs to be chosen carefully in order to avoid
the phenomenon of rolling errors in the backward recursive algorithms. Hereby, we choose an adaptive
learning rate schedule proposed by Chen and Wan in [10]. This changes the learning rate according to
the following formula for each epoch in 0 < e < total-epochs

learning rate
—
(=]

1077 4

107° 4

Blue curve: time step n = N — 1. Red
curve: time step n < N — 1 initialized
by transfer learning. Parameters set
according to Table 7.1.

77(6) . 77(0) % Mmax 10—6;decay_ratemax[min{(e—total—epochs/4)/(350Xtotal—epochs/GOO);l},O] 7 (77)

where 7° is the chosen initial learning rate and the schedule is floored at 10~%. We choose a decay rate
of 1074 for each upcoming problem. For the initial learning rate, in accordance with the Backward Deep
BSDE method, we select n(®) = 10~2 for the N — 1’th time steps corresponding to the first regression
problem in each model.

Thereafter, we initialize the subsequent time steps’ parametrizations by the ”optimal” parameter
set of their adjacent future neighbour according to 6,, < 6,41 for each n = 1,..., N — 2. Due to this
transfer learning trick, we bump the initial learning rate down for previous time steps in the time grid
to n(®© = 10~*. The resulting learning rate schedules are depicted in Figure 7.1. We remark that in our
empirical findings, the aforementioned transfer learning trick contributes significantly to the accuracy at
time steps n < N — 1, confirming the intuition that, due to continuity, the solutions at adjacent time
steps should not be far off from each other. This empirical finding is also confirmed in [10, Figure 4].
Finally, we remark that in order to apply a similar logic at ¢y we initialize the values of the trainable
parameters in each model by their corresponding explicit schemes.
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hyperparameter value
L 2
network architecture | N, ¢ =1,...,L 100+ d
activation tanh (FWDBSDE: ReLU)
optimizer Adam (default momentums)
learning rate defined in Equation 7.7
initial learning rate 102n=N—-1;104n< N -1
training decay rate 1074
epochs 100
batch size 1024
M — Monte Carlo sample size | 217 = 131072
discretization %ti,_iﬁi 0. N—1 ;//?N
Table 7.1: Numerical Experiments — Common Hyperparameters
Discretization

Ultimately, we remark that in the following examples we only consider equidistant time partitions whose
mesh size is At; = T/N. For the parameters v, 9, in OSM and MSM, we choose the Crank-Nicolson
scheme ¥, = ¥, = 1/2. We highlight that according to our empirical findings, the Crank—Nicolson yields
slightly better accuracy than the completely implicit scheme ¥, = 1 and both perform significantly better
than the explicit scheme ¥, = 0. Investigation on the optimally chosen theta-discretization is left for
future research. Finally, in what follows we only present results for a fixed, fine enough time partition
and do not analyze the N — oo limit behaviour. This is in accordance with other methods in the
literature, argued mostly be the computational complexity of deep learning models. Our offline empirical
experiments suggest that while increasing the time horizon 7' and the number of discretization points N
the Forward Deep BSDE method diverges or does not fit into memory. For the Backward Deep BSDE
method’s, the previously described rolling error phenomenon becomes more apparent and accuracy is
lost towards ¢ = 0. We have experienced that OSM and MSM are prone to similar effects, although to
a smaller extent. This coincides with the intuition that one by separating the estimations of the Y- and
Z-processes derives smaller and easier learning problems. Nevertheless, the thorough the investigation of
the vanishing mesh-size behaviour is left for future research.

7.3 One-Dimensional Problem

Taking advantage of the possibility for insightful visualizations in one-dimensional problems we first
present results on the following FBSDE system which is taken from [43]

pw=0, o=1, (7.8a)
flt,z,y,2) =yz— 2+ 2.5y —sin (t + ) cos (t + ) — 2sin (t + ), (7.8b)
g(x) =sin (T + x). (7.8¢)

Notice that the underlying forward diffusion reduces to a shifted Brownian motion. The analytical
solution of the FBSDE is given by

Xt :Xo—f—Wt, (Y;,Zt) = (Sin(t—FXt),COS (t+Xt)), OSIJ} ST (79)

The equation is considered with terminal time T° = 0.5, the forward diffusion starting off from Xy =1
and we take N = 20 discretization points in the time partition.

Since d = 1, one can evaluate the approximation accuracy at each point time by comparing the
fitted deterministic mappings (¢,, X¢ ) — (Y,7, ZT) against their corresponding reference curves given by
Equation 7.9. This is done in Figure 7.2 where such mappings are studied in case of OSM, MSM and the
Backward Deep BSDE method for the two most important learning problems in the time sequence.? In
the top row we see the approximation accuracy at the time step closest to termination for both Y and Z.

In all backward recursive algorithms this is the very first approximation step — after the collection of the

2We remark that due to the higher orders in the errors of the Forward Deep BSDE scheme’s approximations,
we excluded its result from this presentation.
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analytical terminal conditions — which is subsequently an input for all previous time steps’ regressions.
Hence, its accuracy is fundamental with respect to the overall approximation quality of each numerical
scheme. Accordingly, we can see in the top left plot of Figure 7.2 that all the three algorithms manage to
capture the deterministic mapping (tN_l,Xthl) — Y;,_, accurately over the discovered spatial area.
Nevertheless, we can also see in the top right plot that the approximation accuracy for Z;, _, is less good
at the scarcely discovered regions of space: namely the two edges of the curves. These correspond to areas
in the space domain where the forward diffusion seldom arrives and whose importance is less accentuated
during the training. Notwithstanding, we see that OSM and MSM both perform slightly better at these
sparsely sampled regions than the Backward Deep BSDE method which can be contributed to the direct
training applied on Z through the Malliavin problem formulation.

Moreover, in the bottom graphs of Figure 7.2 we see the approximation quality at ¢t = ¢1, i.e. the
last time step in the recursive time sequence where deterministic mappings are fitted. Here, the left plot
shows that although all algorithms capture accurate approximations for Y in the most densely discovered
spatial area of the domain, their errors also significantly increase during the backward recursion at the
edges of the curve. The one-step schemes OSM and Backward Deep BSDE method seem to perform
slightly better at these extremes than MSM. However, on the right part of the bottom row in Figure 7.2
we see an opposite behaviour for Z. Namely, the Backward Deep BSDE method’s approximations roll a
large error in the control around the edges of the spatial region and the quality of the approximations
significantly deteriorates during the training of the time sequence. This confirms the observations in
section 4.4. On the contrary, we see that OSM improves the approximation quality at Z;, and MSM
performs even better. This incites hope that the direct training on the control process through Malliavin
calculus can indeed mitigate the problem of worsening control estimates.

This phenomenon is further illustrated by Figure 7.3. Here we can see the relative mean squared
errors of the approximations over the whole discretized time window. In the left plot we see that the
Backward Deep BSDE method rolls an increasing error in the Y-process towards ¢ = 0. On the other
hand OSM and MSM mitigate this impact and around time steps closest to ¢ = 0 their approximation
accuracy is nearly an order of magnitude better than that of the Backward Deep BSDE method. In the
right-hand side we see a very similar pattern for the control process. However, on top of OSM and MSM
performing much better at the rolling errors throughout the recursive time window, we can also observe
that their approximation quality at ¢ _ is significantly better than the Backward Deep BSDE’s, giving
further confirmation of the meaningfulness of the Malliavin formulation. Moreover, let us also highlight
the difference between the magnitudes of relative errors the Backward Deep BSDE method gives for the
Y- and Z-processes. Indeed, we see that the approximation error of the control (green curve on the
right-hand side of Figure 7.3) is roughly an order of magnitude larger compared to the left-hand side
corresponding to the Y-process. This is further empirical confirmation that the Backward Deep BSDE
method is not suited to deal with the control problem of the BSDE. This phenomenon seems is mitigated
to a great extent in case of OSM and MSM.

Additionally, the approximation quality over the whole time horizon is also depicted in Figure 7.4,
where we can see approximated against analytical trajectories of each model for two independent real-
izations of the underlying Brownian motion. In the top group we see the pathwise trajectories of the
Y-process. These plots show that OSM and MSM both perform better throughout the whole time horizon
than the Deep BSDE solvers. It is worth to notice the large inaccuracies of the Forward Deep BSDE
method for ¢ > 0 which indeed confirms that the forward algorithm only manages to give accurate esti-
mations at t = 0. One can see a similar pattern in the pathwise trajectories of the Z-process, where the
approximation and reference curves for OSM and MSM coincide with their analytical reference, whereas
in case of the Backward Deep BSDE method we see a significant gap between the curves at time steps
close to termination already.

We conclude the discussion of the one-dimensional problem by the precise numerical error figures
collected in Table 7.2. We highlight that out of the four algorithms OSM performs the best with respect
to the approximation error in Yy. On the other hand MSM excels in the approximation error of Zy. The
proposed algorithms also perform better than the Deep BSDE solvers in the maximum approximation
errors max; p."",max; p;" of both Y and Z. We highlight that the average approximation error v*™ of
the Z-process is nearly an order of magnitude better for the proposed algorithms than for their Deep
BSDE counterparts.

7.4 Hamilton-Jacobi-Bellman Equation

Having demonstrated the proposed algorithms relevance in a one-dimensional problem, we now turn to
the main focus of this work and investigate high-dimensional equations. First, we consider the so-called
Hamilton—Jacobi—Bellman equation which has its roots in dynamic programming and is a fundamental
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Figure 7.2: One-Dimensional Problem — Deterministic Mappings. Top row: estimations at

t = tn_1. Left: Y_,; right: Z%,_;. Bottom row: estimations at ¢t = ;1. Left: Y{"; right: ZT.
Evaluated on a test sample of size M =2!2. (d=1,T = 0.5, Xo =1, N = 20).
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Figure 7.3: One-Dimensional Problem — Relative Errors. Comparison of relative mean squared
errors at each time step. Left: Y;, ; right: Z; . Calculated on an independent Monte Carlo test
sample of size M =2'7. (d=1,T = 0.5, Xg = 1, N = 20).
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Figure 7.4: One-Dimensional Problem — Pathwise Trajectories. Analytical and approximated
trajectories for two random realizations of the underlying Brownian motion. Top group: Y;
bottom group: Z;. Within each group, from top to bottom, left to right: One-Step Malliavin,
Multi-Step Malliavin, Backward Deep BSDE, Forward Deep BSDE. (d =1, T' = 0.5, Xy = 1,
N = 20).
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OSM MSM BWDBSDE FWDBSDE
Y 8.3836E-01 8.4542E-01 8.2857E-01  8.4545E-01
rel. error V" 3.6985E-03 4.6943E-03 1.5331E-02  4.7293E-03
3 5.3022E-01 = 5.3674E-01 5.1015E-01  4.9501E-01
rel. error Z§ 1.8670E-02 = 6.5883E-03 5.5801E-02  8.3826E-02
max; p?7" 2.6724E-05 2.3105E-05 2.3503E-04  2.5036E-02
max; p; " 7.9368E-04 2.5373E-04 3.3403E-03 NaN
vy 1.6229E-05 1.5776E-05 6.2536E-05  2.4161E-03
v=r 4.4425E-04 = 1.0238E-04 2.5376E-03  NaN

Table 7.2: One-Dimensional Problem — Numerical Results. Comparison between OSM, MSM,
Backward Deep BSDE and the Forward Deep BSDE method. Best performances highlighted in
blue . Calculated on an independent Monte Carlo test sample of size M = 2'7. The reference
solution is (Yp, Zy) = (sin(1),cos(1)) ~ (0.8414709848, 0.54030230586) up to 10-digit accuracy.
(d=1,T=05, Xg=1, N =20.)
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Figure 7.5: Hamilton—Jacobi-Bellman — Relative Errors. Comparison of the means and standard
deviations of relative mean squared errors at each time step over 5 independent runs of the
algorithms. Left: Y; ; right: Z; . Calculated on an independent Monte Carlo test sample of size
M =2 (d=10,T = 0.2, Xg = 14, N = 20). (Remark: since E [|Z0|2} = 0 for the reference
solution, the first point of the right figure is replaced with the absolute error instead.)

OSM MSM BWDBSDE

mean std mean std mean std
Y 2.9508 3.3462E-03 = 2.9278 1.4344E-03  2.9589 2.4922E-03
rel. error Y7  4.0469E-03 1.1386E-03 3.7933E-03 4.8807E-04 6.8077E-03 8.4800E-04
abs. error Z§  2.8224E-02 5.9020E-03 1.0496E-02 1.8431E-03 1.6231E-02 5.7578E-04
max; p!"" 2.2999E-04 1.3814E-05 2.6134E-04 2.6361E-05 1.0672E-04 5.7766E-06
max; p;" 6.0213E-03 4.3501E-04 3.3738E-03 2.7089E-04 4.1265E-03 5.3368E-04
vy 1.3488E-04 4.8917E-06 2.0124E-04 1.1244E-05 6.3589E-05 3.1082E-06
V& 9.5775E-04 6.3483E-05 2.8542E-04 1.1835E-05 2.1473E-03 8.2628E-05
time (sec.) 2385.1363 26.0981 2575.4532 12.9191 1172.8388 17.6732

Table 7.3: Hamilton—-Jacobi-Bellman — Numerical Results. Comparison between OSM, MSM
and Backward Deep BSDE method. Means and standard deviations taken over 5 independent
runs of each algorithm. Best performances highlighted in blue . Calculated on an independent
Monte Carlo test sample of size M = 2'7. The reference solution is Yy ~ 2.9389333435, Z; ~
0.0000000000 x 14 up to 10-digit accuracy. (d =10, T = 0.2, Xo = 14, N = 20.)
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Figure 7.6: Hamilton—Jacobi—Bellman — Pathwise Trajectories of Y;. Analytical and approxi-
mated trajectories for two random realizations of the underlying Brownian motion. Means and
standard deviations taken over 5 independent runs of each algorithm. From top to bottom,
left to right: One-Step Malliavin, Multi-Step Malliavin, Backward Deep BSDE, Forward Deep
BSDE. (d = 10, T = 0.2, Xo = 14, N = 20).
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problem of stochastic control. In what follows we analyze a formulation of the equation with linear
randomness and quadratic control (HJBLQ), i.e. a quadratic terminal condition. This equation poses a
significant challenge in numerical approximations as its terminal condition is unbounded and its driver
scales quadratically in the control process. Subsequently, the resulting PDE reads as follows

%1; + Au— |Vu(t,z)]? =0, w(T,z)=|z>. (7.10)

By the Feynman-Kac relations given by Theorem 1.2.2 we collect the parameters of the corresponding
FBSDE system in the form

We remark that unlike in other Deep BSDE related papers — see, e.g., [7], [59] or [39] — we consider a
different, quadratic terminal condition. The reason for this is to have a semi-analytical solution, callable
over the whole spatial domain, which can be used as a reference to evaluate the accuracy of the considered
algorithms. The form of this reference solution is established by the following proposition which creates
a link between the solution of the PDE in Equation 7.10 and a system of ordinary differential equations
(ODE).

Proposition 7.4.1
Consider Equation 7.10 and assume that the solution satisfies u € CY2([0,T] x R4 R). Then the solution
can be represented in the following form

u(t,z) = 2T P(t)x + 27 Q(t) + R(t), (7.12)

where P : [0,T] — R>4,Q : [0,T] = R% R :[0,T] — R are continuously differentiable functions of time
which satisfy the following set of ODEs

0
Q) —2[P@) +PT(B] Q1) =0, (7.13)
R(t) + Tx [P(t) + P" ()] — |Q(6)* = 0
P(T) = 14,Q(T) = 0, R(T) = 0
where 14 is the d-dimensional identity matriz and Og4 is a d-dimensional vector full of zeroes.

Proof. The proof can be obtained by elementary differentiation of the ansatz w(t,z) in Equation 7.12.
Indeed, we collect

ou

at (t, x) =2TP(t)x + 27 Q + R(1), (7.14)
t,x) = (P(t)+ PT(t)) =+ Q(1), (7.15)
Au(t, x) =Tr [P(t)+P"(t)]. (7.16)

Taking the Euclidean norm of the gradient of the ansatz gives
IVt 2)]? = [Vu(t,2)]” [Vu(t, z)] = 27 [P(t) + PT(£)]* 2 + 227 [P(t) + PT(£)] Q(t) + |Q(1)|%. (7.17)

Substituting Equation 7.14, Equation 7.17 and Equation 7.16 back into the ansatz of Equation 7.12, we
get

ou
ot

— a2 [P(t) + PT(0)] " + 227 [P(8) + PT(1)] Q(t) + |Q(¢)]”
=T (P() = [P@) + PT()]") v+ 2" (Qt) — 2 [P®) + PT ()] Q1))
+ (R + T [P@) + PT@)] - 1Q)F).

L(u) = (t,x) + Au(t,z) — |Vu(t,z)]> = 2T P(t)z + 27 Q(t) + R(T) + Tr [P(t) + PT(t)}

(7.18)
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From which we derive that £(u)(t,z) = 0, V¢, z € [0, T] x R? if and only if all the terms on the right-hand
side above are identically equal to zero. Additionally, at terminal time the ansatz reads as

u(T,z) = 2" P(T)x + 27 Q(T) + R(T), (7.19)

which only satisfies the terminal condition of the PDE for each x in space if P(T') = I4, Q(T') = 04, R(T) =
0. We conclude that the ansatz in Equation 7.12 satisfies the PDE in Equation 7.10 if the following set
of equations are all satisfied

2

P(t) — [P(t) + PT(1)]" =0,
Q(t) -2 [P(t) + PT(t)] Q(t) =0, (720)
R(t)+ T [P(t) + PT(1)] — QM) =0,
P(T)=1;,Q(T)=0,R(T)=0.
This concludes the proof. O

As a consequence, we have that although the Hamilton-Jacobi-Bellman does not have closed-form
analytical solution, one can integrate out the corresponding set of ordinary differential equations in
Equation 7.13 numerically on a much finer time grid up to machine precision and substitute the resulting
estimations for the time dependent coefficients P(t), Q(t), R(t) back into the ansatz of Equation 7.12.
Subsequently, one can gather approximations of almost arbitrary accuracy for each point in space and
time. We implemented the set of ODEs in Equation 7.13, and using scipy’s odeint function integrated
it out on a hundred thousand times finer equidistant time grid with 10° N points than that of the back-
ward equation. We took the resulting approximations for the coefficients {P(t;), Q(t;), R(t:) }o<i<105n as
ground truths and used their values at each point in the backward equation’s time domain® to approxi-
mate the representation given by Equation 7.12. This is the reference solution against which we compare
the numerical estimations obtained with the considered algorithms. Therefore, the ”semi-analytical”
solution of the Hamilton—Jacobi—Bellman equation can be written in the form

X, = V2W,, (7.21a)
Y; = u(t,X;) = XT P(t) X + XTI Q(t) + R(t), (7.21b)
Zy = oVu(t,Xy) = V2 ([P(t) + PT(t)] X, + Q(1)) (7.21c¢)

where P, @, R are numerical solutions to the system of ODEs specified in Equation 7.13. The equation
is considered in d = 10 dimensions, with T'= 0.2, X = 14 = (1,...,1) and N = 20 discretization points.

In what follows, in order to be able to empirically demonstrate the robustness of the algorithms, we
do not merely present results on one trained model according to OSM, MSM and the Backward Deep
BSDE solver, but we run each algorithm five times, independently from each other, and calculate the
means and standard deviations of these runs on a sixth independent Monte Carlo sample of size M = 217,
This way we are able to investigate the robustness of the machine learning training phase and empirically
discuss how much impact does the stochastic optimization — performed on a stochastic sample — have on
the final accuracy and stability of the considered methods.

Unfortunately, due to the high-dimensionality, we cannot directly evaluate the quality of deterministic
mappings (t,, Xy, ) — (Yi,, Z:,, ) visually and we are therefore restricted to the presentation of their mean
squared errors instead. This is depicted in Figure 7.5 where the mean of the relative mean squared errors
and their standard deviations over 5 independent runs of all the three considered backward algorithms are
collected. In the left-hand side we see the error figures of the Y-process over the discretized time window.
Here we can observe that the proposed algorithms OSM and MSM perform approximately two times
worse at the approximation of the Y-process close to terminal time. Subsequently, going backwards in
time, the approximation error of the Backward Deep BSDE method slowly decays, the one of MSM stalls
whereas in case of OSM we see a steep decrease. In fact, for the first four points in time OSM reaches a
smaller error figure than that of the Backward Deep BSDE method, giving more accurate approximations
around ¢ = 0. Additionally, we see that MSM also exhibits a sharp decrease in the approximation error
of the Y-process around ¢ = 0.075 and by ¢ = 0 it gives a smaller relative error than the Backward Deep
BSDE method. However, we must also notice that the approximations of the Backward Deep BSDE
method are more robust in the Y-process, especially compared to MSM which around the middle of the
time window displays a large standard deviation in the approximations over independent runs of the
algorithm. In this regard both one-step schemes are better and more stable than the multi-step scheme.

3Notice that since both time partitions are equidistant, the backward equations time partition is a subset of
the ODE’s time partition and thus there is no need for interpolation for the time dependent coefficients.
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On the other hand, we see an opposite behaviour in the approximation errors of the Z-process which
are depicted on the right-hand side of Figure 7.5. First, we highlight that through the direct training
provided on Z the error figures at time step N — 1 are an order of magnitude better for both OSM and
MSM than that of the Backward Deep BSDE method. Additionally, one can also observe that as we go
back towards t = 0, the error figures of the Backward Deep BSDE method and OSM increase whereas the
ones of MSM stay nearly constant, giving almost an order of magnitude better approximations throughout
the whole time window. We remark that MSM exhibits a much better performance at the approximation
error of Z than OSM which indeed is in line with the theoretical findings of the previous chapter. In fact,
as seen in Theorem 6.2.1 and Theorem 6.3.1, for MSM the cumulative regression error in the Y-process
has a O(|7]) = O(1/N) better coefficient than in case of OSM — see Equation 6.154 against Equation 6.76
in particular. This is confirmed by the numerical experiments above, where we see that the increase in the
relative mean squared errors of the Z-process is much flatter for the Multi-Step scheme. We remark that
the approximation errors at ¢ = 0 are better in both proposed schemes than for the Backward Deep BSDE
method. Finally, it is worth to mention that the approximations for the Z-process of OSM and MSM
show more robustness than in case of the Backward Deep BSDE method. Indeed, we see that the curve
corresponding to the Backward Deep BSDE method has a widening standard deviation going towards
t = 0, whereas in case of OSM and especially MSM these error areas are much narrower, suggesting that
the proposed schemes depend a lot less on the randomness during training.

Similarly as in the one-dimensional case, we depicted the mean approximated pathwise trajecto-
ries and their standard deviations over five independent runs of each algorithm for two independent
realizations of the underlying Brownian motion in Figure 7.6. We remark that such plots — due to the
high-dimensionality of the problem — are not available in case of the Z-process. One can notice that OSM,
MSM and the Backward Deep BSDE method give accurate and stable pathwise estimations, whereas the
Forward Deep BSDE method does not manage to capture the true dynamics.

We conclude the discussion of the Hamilton—Jacobi-Bellman equation with the precise numerical
results collected in Table 7.3 for all the three algorithms. Similarly as before, here the columns ”mean”
and ”std” correspond to five independent runs of each algorithm evaluated on the same test sample.
First of all, it is worth to notice that both OSM and MSM give almost two times better approximations
for Yy than the Backward Deep BSDE method, whereas all the three methods yield very similar error
figures for Zy with MSM performing the best. On the other hand, the Backward Deep BSDE method
gives almost two times better and more robust estimates than the hereby proposed algorithms for the
maximum relative approximation error max; p{’" and the average relative approximation error v¥:™ of the
Y -process. However, we can also see that there is an opposite behaviour in the errors of the Z-process,
where in case of MSM the average approximation error v*”™ is almost an order of magnitude better
and more robust than that of the Backward Deep BSDE method. We see similar, but slightly worse
performance in case of OSM. These observations are in line with the previous findings in Figure 7.5 and
suggest that OSM and MSM indeed give more accurate control estimates, however only with a trade-off
for somewhat worse approximations in the Y -process.

7.5 Unbounded Solution, Complex Structure

Our last numerical example is an FBSDE system with ABM dynamics, unbounded solution and a complex
structure where the driver depends on the product of the backward processes and also scales quadratically
in the Y-process. This example is taken from [9, Section 5.2], where they demonstrate that the Backward
Deep BSDE method does not converge to the true solution in d = 10 dimensions. In what follows we
show empirically that both OSM and MSM do, giving an order of magnitude better approximations than
the standard Backward Deep BSDE method. The FBSDE is given by the following parameters

=0, o= %7 (7.22a)
Ft..2) = K@) + 2 (1al2) + 50 (7.220)

d
g(z) = cos <Z mz> . (7.22¢)

i=1

The function k : R? — R above is defined in such a way that the solution of the corresponding PDE
admits to

d d
T t
u(t,x — Z sin (z;) 1y, <o(xs) + i1y, >0] + cos <Z le> . (7.23)
=1

=1
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Figure 7.7: Unbounded Solution, Complex Structure — Relative Errors. Comparison of the means
and standard deviations of relative mean squared errors at each time step over 5 independent
runs of the algorithms. Left: Y; ; right: Z; . Calculated on an independent Monte Carlo test
sample of size M =217, (d =10, T = 0.2, Xo = 14, N = 20).
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Figure 7.8: Unbounded Solution, Complex Structure — Pathwise Trajectories of Y;. Analytical
and approximated trajectories for two random realizations of the underlying Brownian motion.
Means and standard deviations taken over 5 independent runs of each algorithm. From top to
bottom, left to right: One-Step Malliavin, Multi-Step Malliavin, Backward Deep BSDE, Forward
Deep BSDE. (d =10, T = 0.2, Xg = 14, N = 20).
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By the virtue of the generalized Feynman—Kac relations in Theorem 1.2.2, the analytical solution of the
FBSDE is thus

1

X, = Xo+ \/th, (7.24)
1
(Yi, Z;) = (u(t,Xt), \/;ivmu(t,Xt)> . (7.25)

It is worth to notice that neither the solution, nor the driver are continuously differentiable at
{z:30<i<d x;=0}. In the implementation we therefore take the one-sided derivatives when calcu-
lating V., f. The equation is considered in d = 10 dimensions, with 7'= 0.2, Xo = 14 = (1,...,1) and
N = 20 discretization points.

Similarly as in the case of HJBLQ, in order to evaluate the quality of the approximations of the
mapping (tn, Xs,) — (Y7, ZT) we consider the relative mean squared errors depicted in Figure 7.7. From
the plot on the left-hand side we can immediately see that the Backward Deep BSDE method indeed
fails to capture the true dynamics of the Y-process and rolls an increasing error towards t = 0. In fact,
at time step t; its relative error roughly reaches the magnitude of O(1072). On the contrary, OSM and
MSM both show significantly better convergence and yield nearly three times better error figures. In
particular, we observe that OSM exhibits a strictly decreasing error behaviour and by time steps around
t = 0 it reaches an accuracy almost ten times better than the Backward Deep BSDE method.

Moreover, we can see that in case of the approximations for the Z-process depicted in the right-
hand side of Figure 7.7, OSM and MSM show even bigger dominance over the Backward Deep BSDE
method. In fact, we deduce that through the direct training applied on the Z-process through the
Malliavin formulation, a whole order of magnitude is gained in terms of relative mean squared accuracy.
Additionally, OSM and MSM are more stable, giving similar error figures throughout the whole time
horizon whereas the Backward Deep BSDE method has an exceptionally large peak in the relative errors
close to terminal time. The final accuracy in the control process is an order of magnitude better for
both OSM and MSM. Finally, we can also extract from Figure 7.7 that the hereby proposed algorithms —
and OSM especially — yield more robust estimations for the backward processes, as the five independent
trainings of the model gave error figures narrowly distributed around their respective means. This implies
that by splitting up the regression tasks of the backward processes for such a complex problem as in
Equation 7.22, one gathers more stable algorithms which are less prone to the inherent stochasticity
involved. Similarly as in the previous examples, we collected the pathwise estimations throughout the
whole time window for two independent realizations of the underlying Brownian motion in Figure 7.8.
Here, on top of seeing further confirmation of the better performance of OSM and MSM, we see that the
Forward Deep BSDE method does not manage to capture the dynamics of the BSDE and shows poor
accuracy even at t = 0.

In order to conclude the discussion on the FBSDE given by Equation 7.22; we finally collect the precise
numerical error measures in Table 7.4. We can see that the proposed algorithms show better accuracy
and more robustness than the Backward Deep BSDE method in every considered metric. In particular,
we highlight that the relative L? approximation errors at ty = 0 are an order of magnitude better for
both OSM and MSM than in case of the Backward Deep BSDE method, which exhibits poor O(1071)
relative error in the Z-process. This phenomenon is not restricted to the initial time step, as — suggested
by the figures of ¥*™ — it can be seen that the average error figures are also an order of magnitude
better in the proposed algorithms. These observations are in line with the visual conclusion drawn from
Figure 7.7. Additionally, we see a similar pattern in the approximations of the Y -process, where OSM
and MSM perform nearly twice as much better than the standard backward algorithm. We conclude
that through gathering better estimations for the control process the One-Step and Multi-Step Malliavin
schemes proposed in this thesis manage to deal with the very complex FBSDE given by Equation 7.22,
where the Backward Deep BSDE method fails.

7.6 Summary of the Results

Ultimately, to conclude the presentation of numerical experiments, let us summarize the empirical findings
above. We have seen that both deep learning based schemes OSM and MSM proposed in this thesis
result in more accurate approximations for the Z-process than their Deep BSDE counterparts for high-
dimensional equations which has been the main goal behind their formulation. Nevertheless, we have
also seen that this additionally gained accuracy comes with a trade-off in estimations of the Y-process,
where in case of the Hamilton—Jacobi—Bellman equation the Backward Deep BSDE method performed
better over the majority of the time horizon than both of the proposed schemes. Motivated by Figure 7.5
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7.6. SUMMARY OF THE RESULTS

OSM MSM BWDBSDE
mean std mean std mean std
YT 2.2262E-01 3.5502E-03 2.2229E-01 4.7006E-03 2.2835E-01 1.6379E-03

rel. error Y©  1.4299E-02 7.4833E-03 1.9745E-02 7.6514E-03 2.8023E-02 7.3736E-03
rel. error Zf  2.4236E-02 2.0412E-03 1.1196E-02 3.6085E-03 1.0145E-01 1.3677E-03

max; p!”" 2.8399E-03 1.5082E-04 4.7348E-03 4.7556E-04 7.3814E-03 3.5887E-04
max; p;" 3.1281E-03 1.8654E-04 4.1591E-03 8.0439E-04 3.6252E-02 2.5125E-03
vy 1.3533E-03 2.7770E-05 2.5549E-03 1.6672E-04 4.5282E-03 1.9526E-04
v=7 1.9527E-03 6.1691E-05 2.6506E-03 1.7378E-04 1.8975E-02 8.0768E-04

time (sec.) 2533.0447  142.5024 2799.7629 136.1857 1326.4776  87.4576

Table 7.4: Unbounded Solution, Complex Structure — Numerical Results. Comparison between
OSM, MSM and Backward Deep BSDE method. Means and standard deviations taken over
5 independent runs of each algorithm. Best performances highlighted in blue . Calculated
on an independent Monte Carlo test sample of size M = 2'7. The reference solution is Yy ~
0.2221267563, Zp ~[0.3224749004, 0.6386252454, 0.9547755904, 1.2709259355, 1.5870762805,
1.9032266255, 2.2193769706, 2.5355273156, 2.8516776606, 3.1678280057] up to 10-digit accuracy.
(d=10,T =02, Xo =14, N = 20.)

the relative error of OSM in Y is smaller for the time steps around %y, a possible remediation of this
phenomenon would be to use a hybrid of OSM and MSM where Y is approximated by a one-step scheme
and Z by a multi-step one. Whether such a fusion of the two discretizations would manage to improve
the results is an open question left for future research.

Moreover, we have also seen empirical evidence on the error bounds established in Theorem 6.2.1 and
Theorem 6.3.1. Namely, in case of the HIBLQ equation — see the right figure in Figure 7.5 — we could
observe that MSM reaches a much smaller increasing error figure in the approximation of the Z-process.
This is in accordance with the theoretical bounds obtained in Equation 6.76 and Equation 6.154, where
in case of MSM the cumulative regression errors of the Y-process contribute an O(1/N) factor less to the
worst approximation error for the control process.

Finally, we need to mention one more aspect which we have not discussed before, namely the execution
time of the training of each algorithm. Not surprisingly, out of the four algorithms considered in this
chapter the Forward Deep BSDE method is trained the fastest, however, as it has been shown it only
gives accurate approximations at tg = 0. Comparing OSM, MSM against Backward Deep BSDE method,
one would intuitively assume that by splitting up the regression tasks of the Y- and Z-processes and
performing twice as many regressions at each time step, the proposed algorithms should be roughly
twice as much slower. This is confirmed by the last rows in Table 7.3 and Table 7.4. We emphasize
that these numbers do not provide a precise fair comparison, as all experiments were run under Google
Colaboratory on randomly assigned GPUs — i.e. there is no guarantee that the compared experiments
were run on the same hardware. Nonetheless, we report on their figures to give comparative ballpark
estimates on the execution times. A possible mitigation of this phenomenon would be not to perform full
epoch training for the interior time steps initialized by the transfer learning trick. In fact, results from
the literature suggest — see, e.g., [52] — that in such a recursive backward scheme when transfer learning
is applied as in Equation 5.19, a few iterations over the whole dataset may suffice to provide accurate
approximations. We remark that our offline numerical experiments confirmed this result, however also
note that the thorough testing and implementation of this idea are left for future research.
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Discussion

In this chapter we conclude the discussion of the novel proposed methods. First we summarize our findings
and collect the main results of this work. Finally, we lay out future directions for further development of
the proposed algorithms, and list other problems where such approaches may turn out to be useful.

7.7 Concluding Summary

In this thesis we considered a general FBSDE system given by Equation 1.56. We proposed a novel
approach which takes the evolution of the Z-process provided by Malliavin calculus into account using
deep learning. The work can be summarized as follows.

In chapter 1 we gave an introduction to the concept of backward stochastic differential equations.
We motivated BSDEs as a non-linear extension to forward SDEs given by the martingale representation
theorem. We showed the well-posedness of the problem in Theorem 1.4.1 under general assumptions
on the underlying randomness. Thereafter we explained the concept of forward backward stochastic
differential equations and presented their inherent connection with second-order parabolic PDEs through
the generalized Feynman-Kac relations in Theorem 1.5.2.

In chapter 2 we explained the core concepts of Malliavin calculus, mostly focusing on the derivative
operator. We established a connection between SDEs and their Malliavin derivatives and showed in The-
orem 2.4.1 that the Malliavin derivative of the solution of a forward SDE satisfies a linear SDE itself. In
a similar fashion we demonstrated an analogous connection for BSDEs and established that the Malli-
avin derivatives of the solution pair of BSDEs satisfy a linear BSDE themselves given by Theorem 2.5.1.
This theorem was the basis of the algorithmic formulations in chapter 5, as it provides a natural BSDE
dynamics for the Z-process which additionally is also continuous provided by Theorem 2.5.2.

This was followed by chapter 4 where we explained the main ideas behind classical numerical ap-
proaches to solve an FBSDE system. We derived classical recursive conditional expectation schemes for
BSDEs in the Euler scheme Equation 4.13 and the theta-scheme Equation 4.16. We covered the concept
of Least-Squares Monte Carlo regression which was the numerical method of this work to approximate
conditional expectations. Finally, we explained the key ideas behind the recently proposed class of BSDE
solvers built on deep learning, developed to deal with high-dimensional FBSDE problems. We covered
the main advantages and drawbacks of these algorithms and discussed that neither of them manages to
yield accurate approximations for the Z process over the whole time horizon.

Motivated by this observation, we derived the novel numerical methods proposed in this work, and ex-
plained the discrete One-Step Malliavin and Multi-Step Malliavin schemes in chapter 5. These algorithms
are built on neural network LSMC regression and approximate separate conditional expectations for the
Y- and Z-processes recursively, backwards in time. Both algorithms exploit the linear BSDE dynamics of
the Z-process given by Malliavin calculus. The Malliavin derivatives (DY, DZ) in Equation 2.19 are ap-
proximated by the Malliavin chain rule that is enabled by the fact that neural networks are differentiable,
universal function approximators which are dense in Sobolev spaces provided by Theorem 3.2.2.

Subsequently, in chapter 6 we analyzed the convergence of the proposed schemes and proved that
they are consistent, meaning that their approximation errors vanish in the limit of infinitely small mesh-
sizes. In the first part of the chapter we proved a consistency formula for the OSM scheme where the
representation errors corresponding to the Y- and Z-processes were split up to different lemmas. We
remark that the error bounds corresponding to the control process, and consequently the final error
bounds in Theorem 6.2.1 were only stated under rather strict assumptions stated in Assumption 6.1.2 for
special forward diffusion dynamics. Thereafter, we extended these results to the consistency of MSM and
in Theorem 6.3.1 showed that one by taking multiple discretization points into account gains an O(1/N)
convergence factor in the approximation error of the Z process through the cumulative regression errors of
the Y-process. To conclude the chapter we compared the error bounds we obtained to the ones established
for Backward Deep BSDE methods.
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Finally, in chapter 7 we presented numerical experiments demonstrating the performance of the
proposed algorithms on multiple high-dimensional problems. We have observed empirical confirmation
of the error bounds obtained in Theorem 6.2.1 and Theorem 6.3.1, and seen that the multi-step scheme
indeed manages to mitigate the interdependency of regression errors in the approximation of the control
process. In the final example of the chapter, we presented numerical solutions on a fairly complex high-
dimensional problem for which the standard Backward Deep BSDE method is known to fail in d > 10
dimensions. We have shown that the hereby proposed methods OSM and MSM manage to overcome
this difficulty and provide an order of magnitude better approximations for the Z-process in d = 10
dimensions.

7.8 Future Research

Our findings have several straightforward generalizations in which they could be improved or extended.
Out of these we would hereby mention a few.

First and foremost, we have seen that the error bounds in Theorem 6.2.1 and Theorem 6.3.1 were only
proven under the assumptions that the underlying forward diffusion is an Arithmetic Brownian Motion,
and the driver of the BSDE is independent of Z. In order to gain a deeper understanding of OSM and
MSM it is of fundamental importance to generalize these results to the case of general, Z-dependent
drivers and forward Ité-processes satisfying the minimal requirements of well-posedness. Additionally,
relaxations of the smoothness assumptions in Assumption 2.5.1 would also be desirable for the methods
to be more widely applicable. We remark that the Malliavin differentiability of BSDEs is well-established
under more relaxed assumption than those in Assumption 2.5.1 — see, e.g., [24] or [23] —, and that for
the purpose of this work we only restricted our analysis to the stronger conditions to be able to provide
rigorous error bounds for the arising discrete schemes. Nevertheless, the thorough investigation of these
theoretical questions will be in the central scope of future research.

On the numerical analysis side, we would highlight two significant improvements from which the
proposed algorithms could benefit immensely. First, we have seen that due to the nature of sequential
backward recursive optimizations, OSM and MSM are approximately twice as much slower than the
Backward Deep BSDE method. However, empirical results in the literature suggest — see, e.g., [52] —
that by using the transfer learning initialization defined in Equation 5.19, one can significantly reduce the
number of optimization steps needed for the pretrained steps in the recursion. Developing an adaptive
optimization scheme which exploits this phenomenon could reduce the computational complexity of OSM
and MSM to a great extent and close in the gap which — in terms of speed — is currently in favour of the
Backward Deep BSDE method. Second, recall that for the numerical experiments in chapter 7 we put
¥y =19, = 1/2 for both schemes. The detailed investigation of the impact of different theta-discretizations
is left for future research both theoretically and numerically.

As we mentioned before the main goal of this work was to obtain more accurate control estimates.
One field of application where this is of fundamental importance is in finance, where the BSDE can
be interpreted as the simultaneous solution of an option’s pricing and hedging problems. Modifications
of Deep BSDE solvers have been applied to tackle the american option pricing problem and shown
encouraging successes in obtaining accurate delta hedging in dimension up to 100 — see, e.g., [10] or [9].
American options themselves follow a so-called reflected BSDE where the continuation value is driven
by a BSDE. It can be shown — see, e.g., [60] — that the control process Z of reflected BSDEs admit to a
similar relation with the Malliavin derivative of Y as in Theorem 2.5.1. Therefore, it would be interesting
to see how the methods proposed in this thesis compare to other algorithms developed to deal with the
delta hedging problem. Additionally, from a financial point of view, our methods could also be extended
to take the linear BSDEs driving higher-order Malliavin derivatives of the solution pair into account.
Indeed, as we have mentioned it before, it can be shown that the higher-order Malliavin derivatives of the
solution pair of the BSDE admit to similar dynamics as in Theorem 2.5.1. Consequently, the encouraging
results shown in this work incite hope that similar methods could be used to obtain accurate estimates
for higher-order sensitivities (greeks) in high-dimensional option pricing.

Last but not least, it would also be exciting to see how the methods proposed hereby would be able
to deal with the most complicated case of 2BSDEs (corresponding to fully non-linear PDEs) where there
is additional layer of stochasticity driving the control process. We remark that the Forward Deep BSDE
method has already been extended to the case of 2BSDEs in [61] showing promising empirical results.
Nevertheless, it needs to be mentioned that the theory of 2BSDEs is fairly underdeveloped and there are
many open questions yet to be fully understood for numerical methods to be able to approximate them
accurately in high-dimensions. Whether the Malliavin formulation proposed in this work could provide
any further insight in this quest is an open question left for future research.
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