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Summary

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) tech-
nology has transformed molecular biology by enabling a strategy for precise,
efficient, and relatively simple genome editing. Guided by a small strand
of RNA, CRISPR locates specific DNA sequences within the genome and
introduces double-strand breaks (DSBs). A typical cell can detect and fix
the damage by invoking one of several DNA repair pathways. However,
repair is not error-free and often introduces mutations. The mutagenic
nature of repair pathways can be leveraged to disrupt genes or regulatory
elements with high specificity, providing a powerful tool for gaining insights
into gene function. Researchers can also generate datasets of mutations left
behind after DSB induction and repair within different genomic contexts
to learn more about the mutagenic effects of DNA repair. In this thesis, we
explore challenges and novel approaches for analysing large-scale datasets
of mutations and gene essentiality generated via CRISPR technology.

We begin by addressing ways to improve the efficacy of template-free
CRISPR editing, a gene-editing approach that leverages the more preva-
lent cellular repair pathways, such as non-homologous end joining (NHEJ) or
microhomology-mediated end joining (MMEJ), to introduce precise edits at
pre-programmed CRISPR DSB-induced loci. While this approach has poten-
tial to induce precise sequence-dependent insertions or deletions, its inherent
stochasticity complicates the prediction of mutational outcomes, creating un-
certainty during experimental design. To overcome this, we propose a model
that predicts CRISPR-induced mutational outcomes. Moreover, generating
the datasets to train such models is expensive, so currently these datasets
only exist for a limited set of genomic contexts. Thus, we further demonstrate
how our model can utilise transfer learning to improve generalisability to
new genomic contexts, especially in data-scarce domains.
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Next, we investigate the use of large-scale CRISPR datasets to elucidate DNA
DSB repair mechanisms. We analyze frequency distributions of CRISPR
repair outcomes collected under individual gene knockout conditions and
describe our two main challenges. First, we develop a method to identify
genes whose knockouts cause significant deviations from expected wild-type
repair distributions estimated without the need for experimental controls.
Second, we propose a clustering method to group gene knockouts based
on their repair outcome profiles, revealing potential gene functions and
membership of DNA repair pathways. Based on this analysis, we iden-
tify and recommend several high-impact candidate repair genes for further
experimental validation.

Finally, we shift focus to genome-wide CRISPR functional screens, which
evaluate the impact of gene knockouts on cell survival. Using these datasets,
we propose a computational framework to predict synthetic lethal interac-
tions (SL) between genes, a concept with therapeutic implications, partic-
ularly in cancer treatment. Unlike earlier sections focused on DNA repair
pathways, this approach extends to broader cellular contexts. We address a
major challenge in SL prediction — selection bias — by proposing strategies to
enhance the reliability and applicability of predictive models, making them
more effective for identifying therapeutic targets.

Through this research, we make novel contributions to multiple fields that
utilize large-scale CRISPR datasets, showcasing the power of this technology
to uncover new biological insights while addressing current key challenges,
oversights, and limitations in its application.



Samenvatting

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) tech-
nologie heeft de moleculaire biologie veranderd door een strategie mogelijk
te maken voor precieze, efficiénte en relatief eenvoudige genoombewerk-
ing. Geleid door een kleine RNA-streng, lokaliseert CRISPR specifieke DNA-
sequenties in het genoom en introduceert double-strand breaks (DSBs).
Een typische cel kan de schade detecteren en herstellen door een beroep te
doen op een van de verschillende DNA-reparatie mechanisme. Reparatie is
echter niet foutloos en introduceert vaak mutaties. De mutagene aard van
reparatie mechanisme kan gebruikt worden om genen of regulerende ele-
menten zeer specifiek te verstoren, wat een krachtig hulpmiddel is om inzicht
te krijgen in de functie van genen. Onderzoekers kunnen ook datasets van
mutaties genereren die zijn achtergebleven na DSB inductie en reparatie bin-
nen verschillende genomische contexten om meer te leren over de mutagene
effecten van DNA reparatie. In dit proefschrift verkennen we uitdagingen
en nieuwe benaderingen voor het analyseren van grootschalige datasets van
mutaties en genessentialiteit gegenereerd met CRISPR-technologie.

We beginnen met het onderzoeken van manieren om de effectiviteit van
template-free CRISPR editing te verbeteren, een gen-editing aanpak die
gebruik maakt van de meer gangbare cellulaire reparatie mechanisme, zoals
non-homologous end joining (NHEJ) of microhomology-mediated end join-
ing (MMEJ), om precieze edits aan te brengen op voorgeprogrammeerde
CRISPR DSB-geinduceerde loci. Hoewel deze aanpak het potentieel heeft
om precieze volgorde-athankelijke inserties of deleties te induceren, bemoeil-
ijkt de inherente stochasticiteit het voorspellen van mutatieresultaten, en
leidt tot onzekerheid bij het experimentele ontwerp. Om dit te verhelpen
stellen we een model voor dat CRISPR-geinduceerde mutatieresultaten voor-
spelt. Bovendien is het genereren van datasets die nodig zijn om zulke
modellen te trainen duur, dus momenteel bestaan deze datasets alleen voor
een beperkte set van genomische contexten. Daarom laten we verder zien
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hoe ons model transfer learning kan benutten om de generaliseerbaarheid
naar nieuwe genomische contexten te verbeteren, vooral in domeinen met
weinig gegevens.

Vervolgens onderzoeken we hoe grootschalige CRISPR datasets gebruikt
kunnen worden om DNA DSB reparatiemechanismen te doorgronden. We
analyseren frequentieverdelingen van CRISPR reparatie uitkomsten verza-
meld onder afzonderlijke gen knock-out condities en beschrijven onze twee
belangrijkste uitdagingen. Ten eerste ontwikkelen we een methode om genen
te identificeren waarvan de knock-outs significante afwijkingen veroorzaken
ten opzichte van de verwachte wild-type reparatiedistributies, geschat zonder
de behoefte aan experimentele controles. Ten tweede introduceren we een
clustermethode om gen-knockouts te groeperen op basis van hun reparatie-
uitkomstprofielen, waardoor potentiéle functies van genen en betrokkenheid
bij DNA-reparatie mechanismes aan het licht komen. Op basis van deze anal-
yse identificeren en bevelen we meerdere cruciale potentiéle herstelgenen
aan voor verdere experimentele validatie.

Ten slotte richten we ons op genoombrede functionele CRISPR screening, die
de impact van gen knock-outs op de overleving van cellen evalueren. Met
behulp van deze datasets stellen we een computationeel raamwerk voor om
synthetic lethal interacties (SL) tussen genen te voorspellen, een concept
met therapeutische implicaties, vooral in de context van kankerbehandeling.
In tegenstelling tot eerdere secties die zich richtten op DNA reparatie mech-
anismes, strekt deze aanpak zich uit tot bredere cellulaire contexten. We
adresseren een belangrijke uitdaging in de voorspelling van SL-interacties
door strategieén te introduceren om de betrouwbaarheid en toepasbaarheid
van voorspellende modellen te verbeteren, zodat ze effectiever worden in het
identificeren van therapeutische doelen.

Door dit onderzoek doen we nieuwe bijdragen aan meerdere vakgebieden
die gebruik maken van grootschalige CRISPR datasets, waarbij we de kracht
van deze technologie demonstreren om nieuwe biologische inzichten te
ontdekken terwijl we de huidige belangrijkste uitdagingen, tekortkomingen
en beperkingen in de toepassing ervan aanpakken.



Achoimre

Ta teicneolaiocht CRISPR (Clustered Regularly Interspaced Short Palindromic
Repeats) tar éis réabhléid a dhéanamh i mbitheolaiocht méilineach tri straitéis
a chur ar fail do modhna géanéim atd cruinn, éifeachtdil agus measartha
simpli. Treoraithe ag ribe beag RNA, aimsionn CRISPR seiceamh shonrach
DNA sa ghéandim agus tugann sé isteach briseadh déribe (DSB). Is féidir
le gnath cheall an damaiste a aimsit agus a chdiriu tri ceann de na conair
deisitichain DNA éagstila a chur i bhfeidhm. Mar sin féin, nil deisiichain
saor 6 earraidi agus is minic a chruthaithear sochdin da bharr. Is féidir an
nadur s6-ghineach a bhaineann leis na cosdin deisitichdin a dsaid chun géinte
no eiliminti rialaitheacha le sainghnéithe arda, ag cur uirlis cumhachtach
ar fail do thaighdeoiri a thugann 1éargas nios fearr ar fheidhmiu géine. Is
féidir le taighdeoiri tacair sonrai ar shochain a fagadh ina diaidh tar éis
indochtu agus deisitichain DSB laistigh de chomhthéacsanna géandémaioch
a chruthd chun nios mé a fhoghlaim faoi éifeachtai sd-ghineach a bhaineann
le deisitichdin DNA. Sa trachtas seo, déantar plé ar dhushldin agus ar cur
chuige nua chun anailis a dhéanamh ar thacar sonrai ar scala mor ar shochdin
agus ar nadur géine a chruthaitear tri theicneolaiocht CRISPR.

Tosaimid tri aghaidh a thabhairt ar bealai chun éifeachttilacht eagarthdireacht
CRISPR gan teimpléad a fheabhsd. Is cur chuige eagarthéireacht géine
é seo a bhaineann leas as na conair deisitichain is laidre, ar nés ceangal
crioch neamh-homaldégach (NHEJ) né ceangal crioch tri mhedn na micrea-
homalégachta (MMEJ), chun eagarthéireacht cruinn a thabhairt isteach ag
laithreacha réamh-riomhchlaraithe. Cé go bhfuil pditeansail ag an gcur chuige
seo ionsanna no scriosanna seiceamh-spleach cruinn a chruthd, is féidir lena
nadur stocastach na tuartha ar thorthai s6chantila a dhéanamh nios casta, ag
cruthd éiginnteacht le linn dearadh trialach. Chun € seo a shéart, molaimid
munla a thuarann torthai sochana ionduchtaithe ag CRISPR. Ina theannta
sin, ta sé costasach na tacair sonrai don cur chuige seo a thraenail, mar sin,
nil na tacair sonrai seo ar fail ach do thacar géanémach teoranta faoi lathair.
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Mar sin, 1éirimid conas gur féidir lenadr gcur chuige foghlaim thraschurtha a
Usaid chun inghinearalaitheacht do chomhthéacsanna géanémach a fheabhsu,
go moér mor i réimsi atd gann 6 thaobh sonraf de.

Ina dhiaidh sin, déanfaidh muid fiosrichan ar tsaid thacair sonrai CRISPR ar
scdla mér chun modhanna deisitichain DNA DSB a shoiléira. Déanfaidh
muid anailis ar dhaileachain mhiniciochta thorthai deisitichain CRISPR
bailithe faoi choinniollacha asleagan géine aonaracha agus déanfaidh muid
cur sios ar ar dha phriomh dhushldin. I dtosach baire, forbraimid modh
chun géine a aithint a bhfuil a gcuid asleagan ag cruthu athruithe suntasacha
6 déileachdin fidin a mheastar gan ga le rialaitheoiri turgnamhacha. Ar
an dara dul sios, molaimid modh bailiichdin chun asleagan géine a chur i
ngrapai bunaithe ar a bprdifili torthai deisitichdin, ag nochtadh feidhmeanna
géine féideartha agus ballraiochtai chonair deisitichain DNA. Bunaithe ar an
anailis seo, aithnimid agus molaimid roinnt géinte deisitichdin a d’fhéadfadh
a bheith tabhachtach do bhailiochtti turgnamhach breise.

Ar deiridh, aistrimid ar bhfécas chuig scagthastalacha feidhmitla CRISPR
ar fud an ghéanéim a dhéanann measunt ar an tionchar atd ag asleagan
géine ar mharthanacht cille. Ag baint Usaid as na tacair sonrai seo, mo-
laimid creatlach riomhaireachtuil chun caidrimh sintéiseach marfach (SL)
idir géinte a mheas, coincheap le himpleachtai teiripeacha, go mér moér 6
thaobh cdir leighis le haghaidh ailse de. Difritil é na cuideanna roimhe
seo a bhi dirithe ar chonair deisitichdin DNA, clidaionn an cur chuige seo
comhthéacsanna ceallach nios leathan. Tugann muid aghaidh ar dhishlan
mor i dtuar SL - laofacht roghnichdin - tri straitéisi a mholadh chun iontao-
facht agus infheidhmeacht do mhuinlai tuarthacha a fheabhsti, 4 dhéanamh
nios éifeachtach chun spriocanna teiripeacha a aithint.

Trid an taighde seo, tugaimid ionchur nua do réimse iomadudil a bhaineann
Usdid as tacair sonrai CRISPR ar scala mor, ag taispedint cumhacht an teicne-
olaiocht seo chun tuiscinti bitheolaiochta nua a aimsiu agus ag an am céanna,
ag tabhairt faoi dushldin, dearmaid agus srianta tdbhachtacha reatha le linn
a usdid.



Introduction

The fourth R of gene physiology, essential to
both the survival and mutability of
organisms, might be “repair.”

— Siddhartha Mukherjee
(The Gene: An Intimate History)

Deoxyribonucleic acid (DNA) is a special molecule at the centre of all life as
it exists today. DNA consists of four nucleotides — adenine, cytosine, guanine,
and thymine — and from these four nucleotides stems all of the diversity and
wonder we witness in the biological world, from flowers to trees, insects, birds,
fish, and more. But how does DNA achieve this? DNA is often considered a sort
of language, and when arranged into a full genome, it describes the entire set
of instructions for cellular function and, thus, for life. These instructions are
passed from parent to child, from old cells to new, from generation to generation.
They may shift and change and mutate both within and between generations,
but core genetic elements must remain to retain cell viability. The central dogma
of molecular biology states that genetic information flows in one direction: DNA
is transcribed into ribonucleic acids (RNA), some of which are translated into
proteins, the machines that fuel life. This means that DNA is the only method
by which the instructions for life are preserved. Therefore, it should be quite
apparent to the reader that protecting this information is of utmost concern to
maintaining the very existence of life itself.

There is much we understand about how DNA functions, “The Three R’s” as
described by Mukherjee: how it (r)eplicates itself to produce new copies for
new cells; how it (r)ecombines to facilitate the exchange of genetic information,
promoting diversity and providing an engine for evolution to occur; and how
it (r)egulates itself within a cell to maintain homeostasis, to respond to its
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environment, and to differentiate into various cell types. Mukherjee alludes to
the presence of a fourth “R”, upon which this dissertation is focused - (r)epair:
the ability of the genome to self-correct damage to the DNA structure and
maintain its integrity and stability, generation after generation. Specifically,
this dissertation focuses on the repair of a particular type of damage to DNA
where its sequence has been split into two - otherwise called a double-strand
break (DSB).

This chapter aims to introduce the basic concepts of DNA, DSBs, and the need for
repair; and to familiarise the reader with the current state of scientific knowledge
surrounding the topic. We discuss some of the latest research developments
and describe how they produce vast quantities of data for the community, what
opportunities have arisen from these data, and the challenges alongside them.
Finally, we present the contributions made by this thesis to advance research in

the field.

Sugar- : Sugar-
phosphate Base pairs phosphate
backbone backbone
5' o 3
0
e
o o
...... (0]
2 ,
______
9
0 ol T
0’ """ 02: Ao
0
M """ o
O o
5 S e
M """ M
H-bond
0 -
Jog
3 % s

Fig. 1.1: Ilustration of the building blocks of DNA. The DNA double-helix structure
consists of two strands running in opposite directions. Each consists of a
sugar-phosphate backbone and nucleotide bases that pair specifically across
strands to form ladder-like rungs. Created with BioRender.com.
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1.1 DNA - the language of life

DNA is the fundamental molecule that encodes the genetic instructions re-
quired for all living organisms to grow, develop, function, reproduce, and
evolve. Structurally, DNA is a double-stranded helix comprised of four nu-
cleotide bases: adenine (A), cytosine (C), guanine (G), and thymine (T) (Fig.
1.1). These bases form specific pairings (A with T and C with G) [26]. In
natural language terminology, we can think of these bases as the “letters”
of the language of DNA. These letters can be arranged in a sequence which
constitutes the genetic code. It can be read in sets of three (called “codons”)
to synthesize proteins, the building blocks and functional units of cells [28].
A gene is a DNA segment containing instructions for building proteins. If
the bases are the letters, we might think of the codons as words and genes
as sentences. The full body of text is called the genome and represents the
entirety of an organism’s DNA, including all genes and non-coding regions.

1.2 Breaks in DNA - causes and consequences

Throughout the lifetime of the cell, the DNA stored within that cell can
experience different forms of genetic damage. One of the most severe forms
of damage to DNA is a double-strand break (DSB), which occurs when
both strands of the DNA double helix are broken, either directly opposite
each or within a few nucleotides apart. The average human somatic cell
suffers roughly 10-50 DSB events a day [24]. DSBs can be endogenously
induced during cellular processes such as meiosis, V(D)J recombination, or as
a byproduct of processes like DNA replication, or caused by factors external
to the cell like ionizing radiation or certain chemicals [7].

The presence of unrepaired DSBs can activate DNA damage response (DDR)
pathways, resulting in cell cycle arrest or apoptosis (programmed cell death)
in the case of excessive damage [7]. To return to our earlier language
metaphor, if the genome is the full body of text representing all the instruc-
tions for life, then tearing the book into two severely hampers the ability
of the cell to continue to read from this text. Cells do not have memory, so
without instructions, they will struggle to produce the necessary components
they need to survive (see Fig 1.2).

1.1 DNA - the language of life
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Fig. 1.2: Causes and consequences of double-strand breaks (DSBs). DSBs can
be caused by various stressors, leading to cell cycle arrest, transcription
and activation of the DNA damage response, and initiation of DNA repair
mechanisms. If DSBs are not properly repaired or remain unresolved, they
can trigger apoptosis, premature aging, genetic disorders, and potentially
contribute to the development of cancer. Adapted from [15]. Created with
BioRender.com.

Considering the dire consequences that DSBs can exert on cellular function,
cells have evolved numerous mechanisms to repair and recover from such
events. Yet, these repair mechanisms (described in more detail later) can also
result in cellular abnormalities. Erroneous DSB repair can lead to chromoso-
mal aberrations, such as translocations, inversions, or deletions, which are
associated with various genetic diseases, including the development of cancer.
These problems can become more pronounced if the repair machinery of the
cell is defective. Thus, while DSBs are common, their uncontrolled occur-
rence or improper repair has profound implications for organismal health
and development, and must be treated.

1.3 Repairing breaks - what we know and why we care

The initial discoveries that demonstrated that the genome had encoded within
it the ability to recognise and repair damage to its own DNA were made by
Evelyn Witkin and Steve Elledge. Witkin discovered the bacterial SOS re-
sponse, a global regulatory network that activates DNA repair mechanisms
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when cells experience extensive damage to their DNA [27]. Working inde-
pendently, Steve Elledge focused on DNA damage response in eukaryotic
cells, identified key protein interactions and revealed how cells detect, signal,
and repair DNA damage [10]. In the time since these pivotal works, the
scientific community has greatly expanded its understanding of the cell’s
capabilities and limitations for sensing and repairing DNA damage. We know
now that the cell has multiple pathways — networks of proteins and other
molecules that interact with one another in a cascading fashion — which can
be called upon to sense and fix irregularities in the DNA. These pathways can
be separated into two main modes of function: homologous recombination
(HR) and non-homologous end joining (NHEJ) [19] (Fig. 1.3).

Double-stranded break

I, ImT
Homology-directed repair Non-homologus end joining Mircohomology-mediated end joining
X X ¥ R
T T J ImT T I T
Donor DNA Nucleotide deletion Nucleotide addition Sequence alignment
I T T T T
Perfect Repair Indel, but can repair perfectly if break is clean Deletion

Fig. 1.3: DSB repair pathways. Homologous recombination (HR): a precise DNA
repair process that uses a homologous template, usually the sister chromatid,
to accurately restore the original DNA sequence. Non-homologous end
joining (NHEJ): error-prone DNA repair mechanism that directly ligates
broken DNA ends back together. Mirochomology-mediated end joining
(MMEJ): DNA repair pathway that uses short homologous sequences near
the break to join DNA ends, often resulting in small deletions. Created with
BioRender.com.

Homologous recombination is a highly accurate repair mechanism that uses
homologous sequences as templates. This process typically occurs during the
S and G2 phases of the cell cycle, when the sister chromatid is readily available
to serve as a repair template to restore the original DNA sequence. NHEJ
is the preferred repair pathway during other phases and can be subdivided
into two separate pathways: classical-NHEJ (cNHEJ) and alternative-NHEJ
(alt-NHEJ). In cNHEJ, the broken ends are directly ligated together, often
resulting in small indels (insertions or deletions of nucleotides) at the break
site [22]. In alt-NHEJ, also called microhomology-mediated end joining
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(MMEJ), opposing ends of the DSB are resected along opposite strands, after
which small regions of homology on either side of the break are used to
align and repair the broken DNA, resulting in a deletion of nucleotides [20].
Research has explored many corridors of the labyrinth of interactions that
constitute the entire DSB repair process [19]. Yet, there are still avenues
left to explore in order to fully map out these systems. One specific interest
is to understand how the DNA sequence itself affects the choice of which
pathways to use and how these pathways select for the mutations that they
leave behind [14, 17].

Beyond the noble and ongoing pursuit of understanding the world around
us, there are immediate and practical benefits to uncovering the mechanisms
of DNA double-strand break (DSB) repair. As mentioned above, faulty DSB
repair can lead to the accumulation of mutations within the genome, increas-
ing the risk of cancer [4]. In fact, defective DSB repair is a hallmark of many
cancer cells [23, 4]. While these faulty mechanisms contribute to cancer
development, they can also be exploited for cancer therapy. Treatments
like chemotherapy and radiation therapy work by inducing DSBs across the
genome [23]. Healthy cells with intact repair systems can better recover from
this damage. In contrast, cancer cells with impaired DSB repair are less likely
to recover, leading to their selective elimination.

Additionally, drug therapies such as PARP inhibitors further weaken a can-
cer cell’s ability to repair DNA damage, making them more vulnerable to
chemotherapy or radiation [8]. Treatments like PARP inhibitors can reduce
the need for, or exposure to, radiation therapies, which are notorious for
their toxicity and the toll they take on a patient’s overall health and quality
of life [8]. By advancing our understanding of DNA repair, we can expand
the range of personalized treatment options available to clinicians [11].
This could reduce the exposure of a patient to highly toxic therapies like
chemotherapy, improving both recovery time and quality of life.

One method to further DNA repair research is by profiling the mutations left
behind by the different repair pathways and reverse engineering their causal
mechanisms. This can be done in two ways: by randomly inducing DNA
breaks across the genome, such as with ionizing radiation, followed by whole
genome sequencing to capture mutations; or by creating breaks at specific
sites with precision tools, and then sequencing only the targeted regions. The
random approach captures mutations at multiple sites but makes it difficult
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to pinpoint break locations, making these approaches useful for studying
what mutations the repair pathways leave behind across the genome if we
are not interested in the local sequence context surrounding each break. The
targeted approach allows precise identification of break sites, allowing the
investigation of how local sequence context influences the mutations that
occur, but introduces bias through non-random sequence selection. This
dissertation utilises the second approach, employing CRISPR technology to
induce DSBs at targeted locations.

1.4 CRISPR - Pushing the boundaries of DNA repair
research

CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats)
is one of the latest technological advances that has revolutionised modern
molecular biology research efforts [13]. CRISPR offers a cost-effective, effi-
cient, and precise method to induce double-strand breaks (DSBs) at specific,
targeted locations within the genome [5, 16, 25, 12, 2]. The key to this
targeting ability lies in the single-guide RNA (sgRNA), which contains a
short programmable nucleotide sequence designed to be complementary to
the region of DNA that researchers wish to cut. The sgRNA directs the Cas9
protein to this complementary sequence, where Cas9 functions like molecular
scissors to create a DSB at the targeted site (Fig. 1.4). Once the break occurs,
the cell’s natural DNA repair mechanisms — such as HR or NHEJ — are trig-
gered. This targeted approach allows researchers to study how cells respond
to DNA damage, which repair pathways are activated, and how the chosen
genomic location influences the outcome of DSB repair. CRISPR technology
has brought upon us the advent of new data types we can use to advance our
understanding of DNA repair and beyond.

1.4.1 CRISPR knockout screening

CRISPR enables the creation of gene knockouts with ease [5, 16, 25, 12,
2]. When the cell repairs the DSB, the genome may either be restored to
its original sequence or modified with small insertions or deletions. If such
alterations occur within a coding region, such as a gene, they can effectively
"knockout" that gene, allowing researchers to generate cells with altered
genetic backgrounds. This ability to create gene knockouts is especially
valuable for studying the roles of genes in processes like DNA repair or for
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Cas9

sgRNA
DNA

N

Fig. 1.4: The CRISPR-Cas9 genetic scissors. When researchers edit a genome using
CRISPR-Cas9, they design a single guide RNA (sgRNA) that matches the
specific DNA sequence where the cut is intended. The Cas9 protein then
forms a complex with the sgRNA, guiding it to the exact location in the
genome to cut the DNA at the targeted site. Adapted from [18]. Created
with BioRender.com.

exploring how pathway dynamics shift when specific genes are altered or
disabled. Furthermore, CRISPR knockout screens can be performed at a large
scale, enabling the generation of thousands of single-gene knockouts across a
population of cells to systematically assess gene function on a genome-wide
scale. Compared to other technologies such as shRNA (short hairpin RNA) or
siRNA (small interfering RNA), which temporarily reduce gene expression
("knockdown"), CRISPR creates permanent and complete knockouts, offering
greater precision, cleaner results, and more consistent outcomes in functional
studies [6].

1.4.2 CRISPR repair outcomes

With the advent of CRISPR-Cas9 technology and programmable target loca-
tions for the induction of DSBs has come a new type of data for researchers
to exploit: CRISPR repair outcomes. As discussed, after the Cas9 protein
cleaves the DNA in a cell, repair pathways kick into action and work to fix
the lesion. Often, the post-repair DNA product is altered due to error-prone
repair pathway activity, such as NHEJ or MMEJ. Small-scale research has
shown that the DNA products left behind post-repair are non-random, as
they are influenced by the state of the cellular repair mechanisms and by the
sequence context surrounding the cleavage site [14, 17]. These findings have
created new possibilities: by studying these repair outcomes, we get another
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window into the world of interactions among DSB repair factors and how
they influence DSB repair (Fig. 1.5).

I T
CRISPR activity ina [EII]]]]]I Deletions  Insertions
cell population _—
produces mutations I )~
at target site-specific i
frequencies
Wild-Type/ Frequency of
Target Sequence A mutational outcomes

Deletions  Insertions

RS 5 Deletions

o
== Insertions
_—
—f
T

Target Sequence B

Altering genotype (e.g.
via gene knockout) or
cutting at different
target sites can change
mutational spectra

We study these changes at large scales
(1000s of target sequences/genotypes)

Fig. 1.5: Studying DSB Repair via CRISPR repair outcomes. CRISPR-Cas9 induces
a DSB in DNA, which, when repaired, produces a sequence context-specific
distribution of mutational outcomes across a population of cells. Altering
the cell state or targeting a different sequence can change the distribution.
Large-scale studies of these changes may inform us about the underlying
DSB repair mechanisms. Created with BioRender.com.

Furthermore, CRISPR-Cas9 technology itself allows for the cost-effective and
efficient induction of DSBs at thousands of target sites simultaneously. These
advances have allowed researchers to produce large-scale datasets analysing
how the repair outcomes are influenced by thousands of different sequence
contexts [21, 3, 9], or by the knockout of hundreds of individual genes along
one or multiple repair pathways [1] (Fig. 1.5).

1.4 CRISPR - Pushing the boundaries of DNA repair research



10

A CRISPR repair outcome dataset typically has three main dimensions: the
mutational outcome, the target sequence, and the genotype (Fig. 1.6 ).
The mutational outcomes are the unique products that can be produced (or
have been observed) post-repair. The outcomes are always highly dimensional
since cleavage at a single target site can typically produce approximately
450 to 550 unique mutational outcomes. The target sequence describes
the sequence context surrounding the DSB used to generate the mutational
outcomes. Mutational outcomes are typically unique to a particular target
site, so comparing across target sites may require some form of aggregation
across outcomes to make them comparable between sites. The genotype
describes the specific genetic makeup of the cell within which the outcome
was observed (i.e. the organism, the tissue, whether the cell is wild-type or
has any genes knocked out, and so on). Existing datasets are typically low-
dimensional in either the gene knockout, target sequence, or both dimensions,
and no datasets exist with high dimensionality along both the gene knockout
and sequence context dimensions (see Table 1.1 for a summary of current

datasets).
Mutational Outcome Genotype
Sequence Alignment Type Length A B
CGGACGGCGGTTGTGAC | CTAGGGTGTGCGCGCCGG None
~ CGGACGGCGGTTGTG--|---------- CGCGCCGG Deletion 12bp
ﬁ CGGACGGCGGTTGTG- - | -~-----~ TGCGCGCCGG Deletion 10bp
€ CGGACGGCGGTTGTGAC | - TAGGGTGTGCGCGCCGG Deletion 1bp
%  CGGACGGCGGT---- - - l-=--m-- GTGCGCGCCGG Deletion 13bp
$ CGGACGGCGGTTGTGACCCTAGGGTGTGCGCGCCGG Insertion 1bp
.UJ_ CGGACGGCGG------- [----- GTGTGCGCGCCGG Deletion 12bp
% CGGACGGCGGTTGTGA- | - - -GGGTGTGCGCGCCGG Deletion 4bp
':_‘i CGGACGGCGGTTGT - - - | - -AGGGTGTGCGCGCCGG Deletion 5bp
CGGACGGCGGTTGTG- - | - - - -GGTGTGCGCGCCGG Deletion 6bp
CGGACGGCGGTTGTG- - | CTAGGGTGTGCGCGCCGG Deletion 2bp
CCTAGGGTGTGCGCGCC | GGCTAGAAAGGCTGTCCG None
« CCTAGGGTGTGCGCGC- | - - - TAGAAAGGCTGTCCG Deletion 4bp
t CCTAGGGTGTGCGC- - - | - - -TAGAAAGGCTGTCCG Deletion 6bp
€  CCTAGGGTGTGCGCGCCCGGCTAGAAAGGCTGTCCG Insertion 1bp
g CCTAGGGTGTGC- - - - - | - - -TAGAAAGGCTGTCCG Deletion 8bp
T CCTAGGGTGTGCGCG- - | -GCTAGAAAGGCTGTCCG Deletion 3bp
?  CCTAGGGTGTGCGCGCC | - - -TAGAAAGGCTGTCCG Deletion 3bp
‘g CCTAG------------ [-==---- AAAGGCTGTCCG Deletion 18bp
5 CCTAGGGTGTGCGCGC- | GGCTAGAAAGGCTGTCCG Deletion 1bp
K CCTAGGGTGTGCGCGCC | -GCTAGAAAGGCTGTCCG Deletion 1bp
CCTAGGG---------- | - -CTAGAAAGGCTGTCCG Deletion 12bp

— T
Frequency

Fig. 1.6: Illustrative Example of CRISPR Repair Outcome Dataset. Each dataset
usually has 3 dimensions: target sequence, mutational outcomes, and
genotype. The mutational outcomes are dependent on the target sequence.
A different genotype (different organism, tissue, or other modification
such as a knockout) can produce different frequencies for the mutational
outcomes.
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Genotype Low dimensionality High dimensionality
Sequence Context

Low dimensionality [14, 17] [17]
High dimensionality | [21, 3, 9] None

Tab. 1.1: Breakdown of the types of CRISPR outcome datasets present in the current
literature.

1.4.3 Computational challenges of using CRISPR data in research

While these new CRISPR-generated datasets offer exciting opportunities to
explore previously ambitious questions, they also present new challenges,
including:

Scarcity of data for most genomic contexts. While we see a growing num-
ber of available CRISPR datasets, it is still relatively tiny when compared to
the vast number of possible genomic contexts. For instance, different organ-
isms such as humans, mice, fish, plants, or different tissue types within an
organism, such as lung, heart, liver, and so on. In reality, only a small number
of cell line models with specific contexts will get large datasets created for
them, as these require considerable resources to produce. Therefore, one
of the challenges here is: how do we generalise the findings or results we
identify in one dataset, in one specific genomic context, to be applicable in
other contexts?

Hundreds of unique outcomes per target site. When analyzing CRISPR
repair outcome data, each target site presents a partially unique set of hun-
dreds of potential repair outcomes. Even for repair outcomes shared between
different sites, their relative frequencies vary in a target site-dependent. This
variability complicates cross-site comparisons. Simple approaches to this
problem have employed some form of categorization that, in turn, challenges
the interpretability of models and results. Therefore, the challenge here
is to develop a strategy to handle the thousands of possible outcomes in a
ubiquitous manner across target sites while maintaining interpretability.

Rarer outcomes are sparse. The frequency of CRISPR repair outcomes
observed at any given target site is not uniformly distributed across all possible
outcomes. In wild-type cells, the repair pathways often produce a small
number of frequently occurring outcomes. Current studies tend to emphasise

1.4 CRISPR - Pushing the boundaries of DNA repair research
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these common outcomes. Yet, it also happens that these frequently occurring
outcomes result from pathways or routes through these pathways that are
already relatively well-characterised. Therefore, some of the potentially more
interesting information or areas where discoveries may reside are within
the rarely occurring outcomes. This introduces a few problems: sequencing
must be performed with deep enough coverage to accurately capture the
frequency distributions of rare outcomes. This coverage is limited by the
resources of the labs conducting these experiments. Therefore, data for rarer
outcomes can be sparse or noisy, introducing complexity in how to extract
useful information from these sets of outcomes.

Pathway interactions confound results. When analysing repair outcome
data, we are aware that multiple repair pathways are, in a sense, competing to
perform repair. Furthermore, different repair pathways can also collaborate or
independently produce the same post-repair mutational outcome. Therefore,
when looking at the final distribution of observed outcomes, it is difficult to
delineate what pathways, and to what extent, are responsible for producing
each of the repair outcomes. Some genes also function in more than one
pathway, complicating the manner of determining causality further. This can
make interpreting CRISPR outcome data difficult along either the mutational
outcome or genotype dimension, and analysing the marginal effects along
one dimension only may result in missing important interactions. Therefore,
the challenge here is to attempt to deconvolve these mixtures of signals
coming from multiple pathways to allow for a better understanding of the
genes and pathways responsible for producing these mutational patterns.

1.5 Thesis outline and contributions

In this dissertation, we begin by introducing a model capable of predicting
the frequency of occurrence of repair outcomes for any given target sequence.
We introduce new features which are ubiquitous to different categories of
repair outcomes, simplifying the best-in-class architecture for this problem
while allowing for better interpretability of the model. Furthermore, we
demonstrate how transfer learning may be used to tackle the issue of data
scarcity in the genomic contexts for the available CRISPR outcome datasets.
Next, we introduce a ranking algorithm for mutational spectra that quantifies
their deviation from the central distributional trend without the need for
controls.. Then, we present an approach to analyse CRISPR repair outcome
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data to identify and functionally characterize the “fingerprints” or “signatures”
left behind by the DNA repair pathways at given target sites. We use these
signatures to quantify repair pathway activity through association with known
genes, intending to uncover novel functions for candidate genes. Finally, we
shift focus from DSB repair-focused work to focus on improving synthetic
lethality (SL) prediction. SL describes a relationship between genes where the
simultaneous loss or mutation of two genes leads to cell death, while a defect
in only one is not lethal. We develop models using features engineered from
CRISPR gene dependency screens (among others) to predict SL interactions
between genes, which can also be applied to DSB repair genes.

1.5.1 X-CRISP: Interpretable and Domain-Adaptable CRISPR Repair
Outcome Prediction

Precise CRISPR-based gene editing requires control over repair outcomes.
Since donor template-based editing is often inefficient, researchers have
sought to use DSB repair pathways that do not rely on a template to achieve
the desired results. Machine learning models have been developed to predict
the distribution of repair outcomes based on target sequences, but general-
izability remains a challenge—how well these models perform in genomic
contexts beyond the original training cell line is unclear. Additionally, current
top-performing models suffer from limited interpretability due to suboptimal
feature representations and model architectures. Chapter 2 introduces X-
CRISP (eXplainable CRISPR PRedictions), a more interpretable and adaptable
machine learning model designed to predict CRISPR-based DNA repair out-
comes. It uses a unified encoding of sequence features to improve accuracy,
explainability, and transferability to new, data-scarce domains. The model is
evaluated across multiple datasets and compared to other leading models,

with results demonstrating the benefits of transfer learning in improving
predictions in data-scarce domains.

1.5.2 MUSICIAN: Detecting Gene-DNA Repair Associations via
Control-Free Mutational Spectra Analysis

Enhancing our understanding of DNA double-strand break (DSB) repair
mechanisms is crucial for understanding and treating diseases like cancer.
Attempting to identify gene-repair pathway interactions is time-consuming
and expensive. Traditional approaches to speed up this process rely on gene

1.5 Thesis outline and contributions
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knockout screens and indirect measures of DSB repair involvement. For
example, growth assays that measure sensitivity to ionizing radiation. A
more promising approach is to analyse CRISPR repair outcome distributions
resulting from genome-wide CRISPR-Cas9 knockouts to reveal novel genes in-
volved in DSB repair. Chapter 3 introduces MUSICIiAN (Mutational Signature
Catalogue ANalysis), a multivariate algorithm to detect and rank mutational
spectra based on how their behaviour deviates from the expected wild-type
spectra across multiple target sites in genome-wide assays, without the need
for traditional controls, facilitating the discovery of lesser-known DNA repair
factors. We demonstrate and evaluate MUSICiAN on a published genome-
wide CRISPR mutational spectra dataset against several sets of experimentally
validated DSB repair genes.

1.5.3 Signatures in CRISPR Mutational Spectra Reveal Role and
Interplay of Genes in DNA Repair

Understanding DSB repair is key to genomic instability in cancer and therapy.
Genome-wide studies link many genes to DSB repair, but their roles remain
unclear. Evidence from other studies shows that related genes similarly
modulate the frequency of specific mutational outcomes following DSB repair
but have largely ignored the fact that DSB repair pathways share genes,
functions, and repair outcomes. In Chapter 4, we present a computational
method to exploit this connection between mutational outcomes and repair
pathways to link genes to DSB repair function. We use non-negative matrix
factorization (NMF) to analyze CRISPR repair outcome screens conducted
on both established and candidate repair genes, as identified in Chapter 3,
and identify signatures of repair pathway activity. We further employ these
signatures to characterize the shared roles of repair pathways in shaping
mutational patterns and link candidate genes to potential functions within
these pathways based on these shared responsibilities between known and
candidate DSB repair genes.

1.5.4 Overcoming Selection Bias in Synthetic Lethality Prediction

Chapter 6 explores approaches to enhance our understanding of gene inter-
actions in DNA repair pathways by stepping outside of CRISPR-based repair
outcome analyses and examining gene-gene interactions through the lens of
synthetic lethality (SL). SL occurs when the simultaneous loss of function in

Chapter 1



two genes leads to cell death. This concept holds great promise for developing
anti-cancer therapies, particularly in cases where defective DNA repair path-
ways are prevalent. The discovery of SL interactions within these pathways
has paved the way for personalized cancer treatments. However, identifying
new SL pairs — and thus new therapeutic opportunities — is both costly
and time-consuming. As a result, computational methods are increasingly
used to predict SL interactions and guide experimental validation. Despite
this, current methods often suffer from selection bias as they tend to rely
heavily on known SL interactions, which limits their generalizability and
overall performance. In response, we introduce SBSL (Selection Bias-resilient
Synthetic Lethality) prediction models, designed to enhance robustness and
generalizability across various cancer types. By integrating molecular features
from cancer cell lines, patient tumour samples, and healthy donor tissues,
this approach aims to improve predictive accuracy while reducing the impact
of selection bias present in existing SL data. Importantly, we also highlight a
class of methods in the literature whose performance is often overestimated
due to their lack of generalizability when applied to new data.

1.5 Thesis outline and contributions
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X-CRISP: Interpretable and
Domain-Adaptable CRISPR
Repair Outcome Prediction

Have no doubt, this technology will —
someday, somewhere — be used to change
the genome of our own species in ways that
are heritable, forever altering the genetic
composition of human kind.

— Jennifer A. Doudna
(A Crack In Creation: Gene Editing and the
Unthinkable Power to Control Evolution)

Controlling the outcomes of CRISPR editing is crucial for the success of gene
therapy. Since donor template-based editing is often inefficient, alternative
strategies have emerged that leverage mutagenic end-joining repair instead.
Existing machine learning models can accurately predict end-joining repair
outcomes, however: generalisability beyond the specific cell line used for training
remains a challenge, and interpretability is typically limited by suboptimal fea-
ture representation and model architecture. We propose X-CRISP, a flexible and
interpretable neural network for predicting repair outcome frequencies based
on a minimal set of outcome and sequence features, including microhomologies
(MH). Outperforming prior models on detailed and aggregate outcome predic-
tions, X-CRISP prioritised MH location over MH sequence properties such as GC
content for deletion outcomes. Through transfer learning, we adapted X-CRISP

Colm Seale and Joana P. Gongalves. “X-CRISP: Domain-Adaptable and Interpretable CRISPR
Repair Outcome Prediction.” bioRxiv,
10.1101/2025.02.06.636858

19



20

pre-trained on wild-type mESC data to target human cell lines K562, HAP1,
U208, and mESC lines with altered DNA repair function. Adapted X-CRISP
models improved over direct training on target data from as few as 50 samples,
suggesting that this strategy could be leveraged to build models for new domains
using a fraction of the data required to train models from scratch.

2.1 Introduction

Gene therapies that alter the DNA to treat diseases have been made widely
accessible with the emergence of CRISPR (Clustered Regularly Interspaced
Short Palindromic Repeats) technology [11], providing faster, cheaper, and
more effective gene editing [5, 20, 31, 10, 3]. The CRISPR strategy to
gene editing performs enzyme-based cleavage of the DNA at a programmed
location, determined by a guide RNA sequence, and subsequently exploits
endogenous mechanisms recruited by the cell to repair the DNA break and
introduce the desired changes. The success of gene therapies relies on
CRISPR editing to produce a precise outcome, regardless of whether aiming
to inactivate a disease-causing gene, to replace such a gene with a healthy
copy, or to introduce a new gene with therapeutic properties. In principle,
homology-directed repair (HDR) offers the most control over the repair
outcome, given that it can make use of a donor template. However, HDR is
typically inefficient, as it is only available during the G2 and S phases. As an
alternative, template-free editing can be performed throughout the cell cycle,
leading to repair by HDR or one of the more error-prone non-homologous end
joining (NHEJ) and microhomology-mediated end joining (MMEJ) pathways
[26].

Template-free editing is appealing for its wide availability but presents chal-
lenges to ensure a precise post-repair outcome, given the stochasticity of the
repair processes as a result of pathway choice and inaccuracies of the repair
machinery. Notably, numerous studies have reported a strong dependence
of CRISPR-induced repair outcomes on the DNA sequence surrounding the
break site [13, 23]. This suggests that it might be possible to influence the
post-repair outcome distribution by purposefully designing guide RNAs to
target sequence contexts favouring desired outcomes.

Several machine learning models leverage the relationship with sequence
context to predict the frequency distribution of CRISPR-induced DNA repair
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outcomes, aimed at improving guide RNA design. We categorise these models
regarding predicted outcomes into more or less granular. The more granular
models estimate the distribution of individual repair outcomes, and include:
inDelphi, using a dual neural network and k-nearest neighbours model [27];
and FORECasT [4] and Lindel [8], both multinomial logistic regression
models. The less granular models predict the frequencies of aggregated or
higher-level repair outcomes: SPROUT, using a gradient-boosted tree [15];
and CROTON, based on a convolutional neural network [18]. Less granular
models lack detail to offer control over precise repair outcomes. For example,
CROTON predicts the overall frequency of 1bp insertions, whereas inDelphi
predicts a 1bp insertion frequency per nucleotide.

Model interpretability is another key aspect of repair outcome prediction
that has been insufficiently explored. The ability to explain predictions for
individual target sequences and delineate how features such as sequence
properties influence changes in outcome frequency provides a means to
scrutinise model output and gain insight into DNA repair processes, as well as
to optimise gene editing. However, less granular models make it infeasible to
explain individual outcomes, whereas more granular models show a tradeoff
between interpretability and performance. Specifically, FORECasT and Lindel
outperform inDelphi [8], but are difficult to interpret due to the use of a
large number of features with suboptimal encoding. Despite their linear
model architecture, FORECasT and Lindel rely on over 3000 binary features
related to sequence context and repair outcome characteristics. Furthermore,
features such as deletion or microhomology length are one-hot encoded,
making it challenging to recover the inherent relationship between different
values of the same feature. This also leads to significant sparsity, with many
features showing marginal contributions to a large proportion of outcomes.
The inDelphi model uses non-linearity to leverage a more compact feature
set, but ignores microhomology location and increases model complexity by
distributing the prediction of deletion outcomes across multiple models. We
argue that improved interpretability could be achieved by pairing a compact
set of interpretable features with a non-linear model, while keeping model
complexity as low as possible.

Repair outcomes are further influenced by cellular and genomic context
which may affect the reliability of model predictions in diverse genomic
contexts. However, training models for each context requires considerably
large data that might be unavailable or challenging to generate. Notably,
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most pre-trained models focus on a few mice and human cell lines for which
data either previously existed or was purposely generated [27, 4, 8, 15, 18].
The limited diversity, combined with the high cost of generating new data,
impedes model adoption in more diverse or unique genomic contexts, such
as those encountered when developing CRISPR therapeutics [7] for precision
medicine or rare diseases. To overcome this challenge, we explore transfer
learning (TL) as a means to reuse and adapt knowledge from repair outcome
prediction in data-rich genomic contexts for prediction in new contexts with
limited data availability [24, 32, 30]. The success of TL is influenced by the
degree of “relatedness” between the source and target prediction domains,
while evidence suggests that DNA repair mechanisms are highly conserved
among eukaryotes [16, 6] and that models trained on mouse embryonic stem
cell (mESC) data can reasonably predict outcomes in zebrafish and Xenopus
embryos [21]. We hypothesise that TL could exploit the conservation of DNA
repair mechanisms to facilitate adaptation of pre-trained CRISPR outcome
prediction models to data-scarce genomic contexts.

Here, we introduce X-CRISP (eXplainable CRISPR Predictions), a repair out-
come prediction model designed to be granular, interpretable, and sufficiently
flexible to enable adaptation to new genomic contexts. X-CRISP integrates
a neural network model based on five deletion-descriptive features for pre-
diction of deletion outcomes, alongside two multinomial logistic regression
models for prediction of insertion outcomes and deletion-insertion ratio. We
employ Shapley values [19] to interpret the behaviour of X-CRISP for each
outcome prediction. Finally, we demonstrate several transfer learning strate-
gies, wherein X-CRISP models pre-trained on wild-type (WT) mESC cells are
adapted to other domains encompassing different cell types, organisms, and
genotypes with altered DNA repair function.

2.2 Methods

2.2.1 Data and preprocessing

We used sequence data from two template-free CRISPR targeting screens:
FORECasT [1] and inDelphi [2]. Both studies employed thousands of de-
signed gRNAs paired with a 55bp (inDelphi) or 79bp (FORECasT) DNA
sequence containing a PAM-adjacent 20bp target, which were delivered to
Cas9-expressing cells via lentiviral transduction. Following several days of cell
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culture for genomic integration, DNA cleavage, and repair, DNA sequencing
was performed to capture the CRISPR repair products.

Targets, samples, and outcome sequence data. From FORECasT, we ana-
lyzed the 11,058 “Explorative gRNA-Targets” in the “FORWARD” orientation
(“NGG” PAM, not “CCN”), requiring a minimum of 30bp on both sides of
the cut site. From inDelphi, we used the 1,996 “FORWARD” gRNA-target
pairs in “Lib-A”. Specifically, we examined data from mouse embryonic stem
cells (mESCs), either in their wild-type form (WT) or upon double-knockout
of Prkdc and Lig4 (denoted by Prkdc”"Lig4”") resulting in NHEJ deficiency
(hereafter denoted by NHEJ”-, [33]). We also included data from human
leukemic near-haploid cells (HAP1), human osteosarcoma cells (U20S), and
modified human chronic myelogenous leukaemia cells (TREX2), where the
TREX2 modification fuses the Cas9 protein to the three-prime repair exonucle-
ase 2. All FASTQ files were obtained from the European Nucleotide Archive
[17] (see Supplementary Table 2.S1 for study and accession numbers).

Sequence alignment, repair outcome calling. We relied on the same set
of tools to process all datasets. For FORECasT data, we used PEAR v0.9.11
[34] to merge paired-end reads using parameters “-n 20 -p 0.1” (specifying a
minimum combined sequence length of 20 and a probability of no overlap
below 0.1) and the “indelmap” tool [4] to map the merged reads to target
sequences, both parameterised and performed as in [4], also discarding
reads mapped to multiple targets. For inDelphi, we reverse complemented
the target-containing reverse reads before mapping, also using the same
“indelmap” tool as described in [4] ( Supplementary Fig. 2.51-2.S6 show the
distributions of counts of reads mapped to target sites per dataset). Finally,
we used SIQ v4.3 [25] to call repair outcomes per read with options “-m 2 -¢
-e 0.05”, specifying a minimum number of 2 reads for the event to be counted,
the collapsing of identical events to a single record with the corresponding
sum of counts, and a maximum permitted base error rate of 0.05.

Repair outcome profile generation. We calculated outcome frequency
distributions (or repair outcome profiles) per gRNA-target and screen as
follows. We considered all deletions up to 30bp long overlapping the cut
site or adjacent to the upstream nucleotide neighbouring the cut site. This
cut-off was selected because deletion lengths over 30 bp were rarely observed
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(Supplementary Fig. 2.S7-2.512), and also to maintain consistency with
other studies on CRISPR repair outcome profile prediction. [4, 8]. We then
determined unique deletion outcomes by grouping deletions that produced
identical repair products. Only MH-based deletions presented such ambiguity,
as a result of the loss of one of two microhomologous sequences flanking the
deleted region (Fig. 2.1). All remaining unique deletions were categorised
as “MH-less deletions”. This yielded unique sets of approximately 330-480
deletion outcomes per target site. We also considered all unique single-
and di-nucleotide insertions, as well as one single category for insertions of
at least 3bp due to their rarity of occurrence ( Supplementary Fig. 2.513-
2.518), totalling 21 insertion outcomes. We mapped reads to outcomes per
gRNA-target, and discarded gRNA-targets with less than 100 mutated reads.
Outcome counts were divided by the sum of counts per gRNA-target to obtain
the final outcome profiles. The target sequences surviving the filtering step
(and their respective repair outcome profiles) were then randomly split into
non-overlapping train and test sets per source study (i.e. the same sequences
are used for training and testing across datasets sourced from the same
study), with train sets later used for model hyperparameter optimisation
and test sets held out for evaluation (Table 2.1). The only exception is
the inDelphi WT mESC dataset, where all the points were used as an extra
held-out dataset for testing. We calculated Needleman-Wunsch [22] and
Smith-Waterman [29] alignment scores (scoring: match=1, mismatch=0.0,
gap=0.0), and Hamming distances between sequences in the train and
test sets to ensure there were no near-identical sequences between them
(Supplementary Fig. 2.519-2.521).

5' MH Cutsite PAM 3'

Original sequence a. GTGAAGTGCCTAC | TATCGGTAAACG

MH-less deletion b. GTGAAGTGCCTA- | TATCGGTAAACG

MH-based deletion c. GTGAAGTGCC—--- | TATCGGTAAACG

Different deletions d. GTGAAGTGCCT-- | -ATCGGTAAACG
result in the same

repair product e. GTGAAGTGCCTA- | --TCGGTAAACG

Fig. 2.1: Deletion type categorisation.
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Cell line Genotype Study Total Train Test

mESC WT FORECasT 9854 5900 3954
mESC WT inDelphi 1961 0 1961
mESC NHEJ”~ inDelphi 1485 500 985
K562 TREX2 FORECasT 3855 500 3355
HAP1 WT FORECasT 4450 500 3950
U20S WT inDelphi 1462 500 962

Tab. 2.1: Counts of processed repair outcome profiles per cell line, genotype, and
study. Total counts, as well as train and test set splits.

2.2.2 X-CRISP

The proposed model, X-CRISP, uses three sub-models to predict the repair
outcome profile for a 60bp sequence centred at the cut site. The first two
sub-models predict individual deletion and insertion outcomes, and the third
predicts the overall frequency of deletions and insertions. The outputs of the
first two sub-models are scaled by the output of the third and concatenated
to construct the complete predicted repair outcome profile.

Deletion model. The deletion model predicts a frequency distribution per
target over all considered deletion outcomes. Different from the other gran-
ular deletion models, X-CRISP introduces common features for MH-based
and MH-less deletions, and avoids one-hot encoding by representing integer
features as-is. Five features are reconciled and used ubiquitously by X-CRISP
across deletion categories to consolidate deletion prediction into one single
interpretable model: “Left edge” and “Right edge”, representing the left and
right deletion edges or the positions of the nucleotides closest to the cut site
for the left and right MHs; “Gap”, denoting the distance between the two
edges; and MH length and MH GC fraction, which are both zero for MH-less
deletions. These features are fed to a fully connected neural network that
independently scores each outcome between 0 and 1.

The network contains two hidden layers of 16 nodes and one output node,
using sigmoid activation at every layer. We trained two models, “X-CRISP
KLD” and “X-CRISP MSE”, respectively using the Kullback-Leibler divergence
(KLD) [14] and mean-squared error (MSE) loss functions. Training was
performed using PyTorch v.1.8.0 with the Adam optimiser [12] (5, = 0.99,
B2 = 0.999, and remaining default settings), a batch size of 200, and learning
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Feature Description

MH length Length of MH, defined as M € [0,30]. Zero for MH-less
deletions. For MH-based deletions, M € [1,30], since the
deletion contains one of the MHs (Fig. 2.1) and 30 is the
maximum deletion length.

MH GC Fraction of GC in MH, defined as F' € [0, 1]. Zero for MH-less
deletions.
Gap Length between MHs, defined as G € [1,30]. For MH-less

deletions, it equals the deletion length.

Left edge Deletion left edge position L € [—30, 0], where O indicates
the edge is at the cut site. For MH-based deletions: L is the
distance in bp from the cut site to the closest base pair of the
PAM-distal MH.

Right edge Deletion right edge position R € [0, 30], where 0 indicates
the edge is at the cut site. For MH-based deletions: R is the
distance in bp from the cut site to the closest base pair of the
PAM-proximal MH.

Tab. 2.2: X-CRISP deletion outcome feature descriptions.

rates 0.05 and 0.01 for KLD and MSE, respectively. We applied an exponential
learning rate decay with v = 0.999 per epoch. We used L2 regularisation
and optimised hyperparameters with 5-fold cross-validation (CV) on the
train set. The final models were trained on the entire train set using the
hyperparameter values yielding the lowest mean loss (Supplementary Table
2.S2 for tested and final hyperparameters).

Insertion and deletion-insertion models. The insertion model predicts
frequencies for the 21 insertion outcomes, while the deletion-insertion model
predicts the overall frequency of deletions and insertions. Both models use
softmax regression and take a DNA sequence as input, represented by one-
hot encodings of single nucleotides and dinucleotides at each position. The
insertion model uses the six nucleotides directly upstream of the PAM, and the
deletion-insertion model considers the 20bp target sequence. Both models
were trained using the Adam optimiser and an exponential learning rate
decay. We used 1.2 regularisation and optimised hyperparameters using 5-fold
CV on the train set. The final models were trained on the entire train set using
the hyperparameter values yielding the lowest mean MSE (Supplementary
Table 2.S2 for tested and final hyperparameters). We trained for a maximum
of 200 epochs, with early stopping if there was no improvement after two
epochs.
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Other prediction models. We compared X-CRISP against four other pub-
lished models at the time of writing: inDelphi [27], FORECasT [4], Lindel [8],
and CROTON [18] (Supplementary Table 2.S3). We excluded SPROUT [15],
as it only predicts aggregate outcomes at a higher level, namely: “average
insertion length”, “average deletion length”, “diversity”, and “most likely
inserted pair”. These prediction tasks do not align well with the practical
applications we envision for X-CRISP, which require more detailed outcomes.
Every model was trained on the same data (Table 2.1), following the proce-
dures outlined in the respective publication, with two exceptions: we trained
inDelphi with a maximum deletion length of 30bp for consistency across
models, and we trained CROTON using the architecture provided by the
authors without redoing the architecture search.

Evaluation of prediction performance. We trained each model on 5900
FORECasT WT mESC target repair profiles and tested it against 3954 FORE-
CasT and 1961 inDelphi target repair profiles, without overlap between train
and test. Direct comparisons were challenging due to the different outcome
categorisations used by each model (Supplementary Table 2.S3). To address
this, we assessed each model on the outcomes described in its original pub-
lication, as well as on three sets of outcomes comparable across models:
common MH-based deletions, common MH-less deletions, and 1bp insertions.
Across models, predicted deletion outcomes were limited to 30bp in size.
For comparison with FORECasT for 1bp insertions, non-repeat insertions
of nucleotides neighbouring the cut site were grouped as one outcome. To
measure the error between predicted and observed repair outcome probabil-
ity distributions, we used the Jensen-Shannon distance (JSD) and Pearson’s
correlation coefficient. The JSD is designed to measure the divergence be-
tween probability distributions, and its symmetry and bounded range (0 to 1)
make it respectively invariant to the order of the two distributions and more
comparable across targets with varying numbers of possible repair outcomes
than other relevant metrics such as KLD or cross-entropy. The Pearson’s corre-
lation quantifies the linear relationship between the predicted and observed
frequency vectors of each target. It is less suitable for probability distributions
because it assumes independence between the values in each vector, whereas
the probabilities associated with the repair outcomes of any target sum to
1 and are necessarily dependent on one another. Nevertheless, Pearson’s
correlation is still commonly used and we include it for completeness. For
the overall frequencies of deletions and insertions, we used MSE.

2.2 Methods
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We also assessed the ability of each model to classify “precision-X%” target
sequences, defined as those where a single outcome represented at least
X% of the reads assigned to all considered repair outcomes, with X €
{20, 30,40, 50,60,70}. Targets were classified as positive if they met the
criteria and negative otherwise. We used precision, recall, and Matthew’s
correlation coefficient (MCC) to evaluate performance. Precision denotes the
rate at which the model is expected to be correct when it predicts a target
sequence as a precision-X% site. Recall expresses the fraction of all observed
precision-X% targets of a set we can expect the model to identify. For CRISPR-
based gene editing, the focus is on which targets can be more confidently
used to produce the desired outcome with the highest possible fidelity for
more precise gene editing. As a result, higher emphasis is placed on precision
and reducing the risk of false precision-X% target predictions, compared to
recall and recovering the most precision-X% targets. The MCC evaluates the
quality of the binary precision-X% predictions made by the model, including
but also beyond precision and recall, providing a value between -1 and +1,
where +1 indicates perfect agreement, 0 indicates random prediction, and
-1 indicates total disagreement between model predictions and observed
outcomes. The MCC is generally reported as more informative and reliable to
assess binary classification than other combined performance metrics, such
as F1 and AUC. It is also more suitable for evaluation under class imbalance,
which is present in the case of precision-X% prediction tasks, where most
targets are non-precision-X%.

Lastly, we assessed six aggregate prediction tasks (deletion, 1bp insertion,
1bp deletion, 1bp frameshift, 2bp frameshift, and frameshift frequencies)
using the MSE and Pearson’s correlation. We emphasise the MSE to determine
the best performing model for these prediction tasks because MSE takes the
magnitude of the errors into account, while Pearson’s correlation does not (it
is both scale- and shift-invariant).

Explainability. To interpret X-CRISP predictions, we used SHapley Additive
exPlanations (SHAP, python library v0.39.0 [19]). We calculated SHAP
values to estimate the contribution of each feature to the change in outcome
frequency predicted by the X-CRISP model for a given target, relative to the
average frequency obtained for a background set of targets. For the deletion
model, we used the “DeepExplainer” function with 10k randomly selected
deletions from target sequences in the train set as background. For the
insertion and deletion-insertion models, we used the “LinearExplainer” with
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5k randomly selected targets as background. All other parameters were set as
default. We generated SHAP values to explain 400 randomly selected target
sequences from the test set per model. We aggregate the SHAP values for the
nucleotide features by summing the SHAP values of their binary encodings.
For example, the SHAP value for "A" at position 16 is the sum of the SHAP
values for the feature|value pairs (A16/1, C16|0, G16/0, T16|0).

Code Weight initialisation Frozen layers Trained & fine-
tuned on target

SO Random No No

TO Random No Both

FT Pre-trained No Fine-tuned

PFO Pre-trained No Both

PF1 Pre-trained First hidden Both

PEF2 Pre-trained Both hidden Both

Tab. 2.3: Baseline X-CRISP models and transfer learning strategies. Baselines: SO,
source only; TO, target only. Transfer learning: FT, pre-trained on source
and fine-tuned for target; PFO-2, pre-trained on source and retrained +
fine-tuned on target with 0-2 frozen hidden layers.

Transfer learning. We investigated whether X-CRISP models trained on
FORECasT WT mESC data as a source domain could be adapted using transfer
learning (TL) to predict on the following different cell lines as target domains:
mESC NHEJ”~, TREX2, HAP1, and U20S. Our general TL approach was to
first initialise a new model using the learned weights from the pre-trained
X-CRISP KLD mESC model, and then either fine-tune (FT) or retrain and fine-
tune (PFO-2) the initialised model using n samples from the other cell line of
interest to adapt the model to the target domain. We used sets of samples
of increasing size, with n € {2, 5,10, 20, 50, 200, 500}, where each subsequent
set was a superset of the preceding one. Fine-tuning alone (FT) involved
training the model on the target domain samples using a low learning rate.
When retraining before fine-tuning (PF0-2), we controlled the flexibility of
the model to adapt itself (i.e. the number of learnable model parameters
or weights) by freezing the weights of none (PF0), the first (PF1), or both
(PF2) of its hidden layers before retraining, allowing only unfrozen layers
to change [30] ( Supplementary Table 2.S2 for hyperparameter details). As
baselines for comparison, we used the X-CRISP KLD model trained only on
the WT mESC source domain data (SO) and another X-CRISP KLD model
trained only on the target cell line data (TO) (Table 2.3).
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2.3 Results and Discussion

2.3.1 X-CRISP accurately predicts detailed repair profiles

We first evaluated the ability of all models trained on the 5900 FORECasT
mESC target sequences to predict repair outcome profiles for the 3954 and
1961 mESC WT target sequences in the FORECasT and inDelphi test sets,
respectively.

Full outcome profile MH-based deletions MH-less deletions 1bp insertions

210 | 0.0x10° B.9 x 10721 2.0x 10713 1.5x 10713
o 2.0 x 107~ 2 X107
£
%
® 0.5
S
%
)
@ 200
@
1. _ -175
o0k 1 k107305 1.2 x 10716 3.6x107 7 1.4x 1071
0 : — ‘
£
= 05
Q.
T
o
£
0.0
Model

I X-CRISP-KLD [ FORECasT M inDelphi
@ X-CRISP-MSE I Lindel

Fig. 2.2: Detailed repair outcome prediction performance. Jensen-Shannon distance
(JSD) between predicted and observed outcomes for (top) 3954 FORECasT
or (bottom) 1961 inDelphi mESC WT test target sites, considering: (left to
right) original publication outcomes; common MH-based deletions; common
MH-less deletions; 1bp insertions. Significance p-values calculated using
Wilcoxon two-sided signed-rank tests, comparing X-CRISP KLD to the best
of the non-X-CRISP models. For 1bp insertions, X-CRISP KLD and Lindel
perform identically, given that they are based on the same model, so the
comparison is then made with FORECasT, the next best of the non-X-CRISP
models.

When predicting the profile as described in the original publication (Fig. 2.2,
Original outcomes; Supplementary Fig. 2.S22 for Pearson’s correlation),
both X-CRISP KLD and X-CRISP MSE achieved the best performances with a
significantly lower median JSD compared to FORECasT, the best non-X-CRISP
model (FORECasT|inDelphi mESC data X-CRISP KLD: 0.43|0.37, FORECasT:
0.47|0.42; Wilcoxon two-sided signed rank test p-values < 0.05).
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For deletion frequency prediction, the X-CRISP KLD model significantly out-
performed all others, with FORECasT and Lindel as the best non-X-CRISP mod-
els for MH-based (FORECasT|inDelphi mESC data X-CRISP KLD: 0.38|0.32,
FORECasT: 0.40|0.35) and MH-less deletions (FORECasT|inDelphi mESC
data X-CRISP KLD: 0.61|0.53, Lindel: 0.62|0.56), respectively (Fig. 2.2).
The FORECasT and Lindel models could be at a disadvantage compared
to X-CRISP due to their linear architectures and binary feature representa-
tions, since the one-hot encoding of integer-valued features (such as deletion
length) and assumption of feature independence impairs their ability to
model relationships between values within and across features. In contrast,
X-CRISP uses integer-valued features as-is to safeguard interpretation, and
leverages non-linearity to learn feature interactions. The inDelphi model
uses a similar strategy, however X-CRISP additionally considers deletion edge
locations, which seem to confer a further boost in performance.

For insertion predictions, we had two considerations: (i) inDelphi only
predicts 1bp insertions; (ii) FORECasT groups all 1bp insertions that do
not repeat the nucleotides flanking the cut site into one outcome. Thus,
we compared only 1bp insertion frequencies and aggregated non-cut site-
repeating insertions into one outcome. Both X-CRISP models performed
comparably to Lindel, which was expected given that the X-CRISP insertion
model is based on Lindel (Fig. 2.2). Moreover, X-CRISP/Lindel achieved a
lower JSDs than inDelphi, but higher than FORECasT (FORECasT|inDelphi
mESC data X-CRISP KLD: 0.22]|0.18, FORECasT: 0.21]0.17). We reason
that given FORECasT is trained to predict the frequency of non-cut site-
repeating insertions as a single group directly, it has a slight advantage
in these comparisons. In addition, the advantage of X-CRISP/Lindel over
inDelphi could possibly be explained by the use of a wider sequence context
surrounding the cut site (6bp vs. 3bp), providing additional degrees of
freedom to model insertion frequencies.

2.3.2 X-CRISP generalises well to frameshift prediction tasks
We further investigated if the detailed repair profiles predicted by the models
could be useful to address higher-level prediction tasks, focusing on precision-

X% targets and broader outcome categories.

First, we assessed the prediction of precision-X % targets, defined as target
sequences for which a single outcome accounts for at least X% of all reads
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assigned to any outcome [27]. The ability to predict the precision-X% prop-
erty can help with selecting CRISPR targets that maximise the proportion of
the desired outcome relative to all other outcomes, for more precise gene
editing. Performance was measured using precision (Table 2.4), recall, and
Matthew’s correlation coefficient (Supplementary Table 2.54). On the FORE-
CasT mESC test set, X-CRISP excelled in precision-20% but came second to
FORECAST in precision-30% through to precision-70% (Table 2.4). On the
inDelphi mESC test set, FORECasT led in precision-20,/30/40/50%, while
X-CRISP MSE achieved top performance in precision-60%. Note that each
model performed worse on inDelphi than on FORECasT data, highlighting
the challenges of generalising to other datasets, even within the same cell

type and genotype.

Test set Model Prediction of precision-X %
(performance with X = ..)
20 30 40 50 60 70

X-CRISPKLD 0.75 0.84 084 0.80 0.71 0.66
X-CRISPMSE 0.75 0.83 0.83 0.77 0.69 0.65

ngRiCEZg FQRECasT 0.72 085 0.86 0.83 0.76 0.74
Lindel 0.72 0.77 0.69 056 033 0.50
inDelphi 040 045 0.24 0.09 0.06 0.03
X-CRISPKID 0.73 0.70 0.57 040 0.28 0.00
inDelphi X-CRISPMSE 0.73 0.70 0.54 0.34 0.21 0.00
WT mESC FQRECaST 0.77 083 0.71 046 021 0.00
Lindel 0.69 064 053 037 0.16 0.00
inDelphi 036 0.31 0.07 0.02 0.00 0.00

Tab. 2.4: Performance of six precision-X% prediction tasks, with X €
{20, 30, 40, 50, 60, 70}, measured using the precision performance score.
All five models were trained on the 5900 FORECasT WT mESC target train
set from Table 2.1, and then tested separately on the 3954 FORECasT and
1961 inDelphi WT mESC target test sets from Table 2.1.

We further evaluated the performance of each model on six outcome profile
aggregation tasks: deletion, 1bp insertion, 1bp deletion, 1bp frameshift, 2bp
frameshift, and frameshift frequency prediction. We also included a CROTON
model [18] in the evaluation, which was originally developed to predict these
six broader outcomes. To ensure comparability, we retrained CROTON on the
same data as the other models, and aggregated the predictions of the other
models per broader outcome.
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Fig. 2.3: Broader repair outcome prediction performance. Mean-squared error (MSE)
for six outcomes: deletion, 1bp insertion, 1bp deletion, 1bp frameshift,
2bp frameshift, and frameshift frequency prediction. Models trained on
FORECasT WT mESC and tested on 3954 FORECasT and 1961 inDelphi WT
mESC target sites.

The X-CRISP model achieved top or near-top performance across all tasks
(Fig. 2.3 for MSE, Supplementary Fig. 2.S23 for Pearson’s correlation).
In both datasets, X-CRISP competed for the best deletion frequency and
1bp insertion frequency prediction performance with Lindel and CROTON,
respectively. FORECasT led in 1bp deletion frequency prediction for both
datasets, while X-CRISP excelled on all frameshift prediction tasks. Frameshift
prediction is an especially important task as frameshifts often result in gene
knockouts, useful for studying gene function and developing therapeutics.
We attribute the improved performance of X-CRISP on broader outcome
prediction to the superiority already demonstrated when predicting detailed
repair outcome profiles. In this case, the ability to predict more accurately
across the entire frequency distribution seemed to translate into improved
aggregate frequency predictions.

Overall, the results indicate that repair outcome profiles predicted by X-
CRISP generalise better than those predicted by other models to higher-
level prediction tasks, such as precision-X% and broader outcome prediction.
However, the loss function used to achieve optimal performance could be
task-specific.

2.3 Results and Discussion
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2.3.3 Deletion prediction is most influenced by MH location

Compared to models like FORECasT and Lindel that break down (combina-
tions of) outcome attributes such as MH length and position into thousands
of categorical binary feature encodings for specific values or bins, X-CRISP
preserves each of the five attributes it uses as a single feature in its original
integer or real-valued range. For instance, Lindel splits MH length into five
categorical bins (0, 1, 2, 3, and 4+) and couples them with positional and
deletion length categories, resulting in a total of 2649 features where the
effect of MH length alone cannot be easily discerned from the effects of other
attributes. Similarly, FORECasT bins MH length into seven categories (“No
MH”, 1, 2, 3, 4-6, 7-10, 11-15) and pairs those with additional attributes like
deletion length or microhomology location, both also binned with varying
ranges, yielding 525 MH-related features out of a total of 3633 used by the
FORECasT model. In contrast, X-CRISP represents the MH length attribute
using a single integer-valued feature and relies on the neural network to learn
eventual interactions with other attributes or features in a data-driven man-
ner. Similar observations can be made for the remaining attributes: where
X-CRISP uses a single feature per attribute, FORECasT and Lindel typically
use hundreds of features combining specific values or bins from multiple
attributes.

While the encoding employed by FORECasT and Lindel is not necessarily
limiting in terms of performance, given that the large numbers of features
provide sufficient degrees of freedom to learn good prediction models, the
dispersion and combination of attribute values across features make it chal-
lenging to isolate and interpret the contribution of each attribute on its own.
On the other hand, the X-CRISP approach allows the learning of feature
interactions and thus introduces black-box characteristics to the model. Nev-
ertheless, post-hoc explainability tools such as SHAP are precisely designed
to summarise and quantify how input attributes influence the predictions of
(black-box) models, which we can readily use to gain insight into the impact
of sequence characteristics on CRISPR outcome prediction across target sites
and outcomes. To explore this, we obtained SHAP values for 400 randomly
selected targets from the FORECasT test data to elucidate the influence of
each feature on the predicted score of each X-CRISP submodel.

For MH-based deletions (Fig. 2.4A), the influence (SHAP value) of the left and
right edges increased as they got closer to the cut site (feature values near
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Fig. 2.4: Influence of X-CRISP model features on repair outcome prediction. Feature
effects expressed by SHAP values, calculated for 400 targets from the
FORECasT WT mESC test set. Strip plots show SHAP values per feature for
10k randomly selected (A) MH-based and (B) MH-less deletions.

zero), meaning that an MH-based deletion became more likely. We consider
this intuitive, since the edge features also denote MH location, and MHs closer
to the cut site should be easier to select and anneal during repair due to their
physical proximity. Counter-intuitively, as the gap between MHs decreased,
the influence (SHAP value) of the gap feature decreased. We reason that
this could be a correction applied by the model when both edges are near
zero, to prevent the deletion frequency from growing disproportionately
large. Longer MHs also led to larger MH-based deletion frequencies, yet were
considerably less influential than MH location (left/right edge), while GC
content exhibited minimal contribution. This could indicate that the selection
of an MH during repair might be more influenced by MH position than by
sequence content. For MH-less deletions, the gap and edge features showed
similar behaviour to that described above for MH-based deletions, but with
smaller SHAP value ranges.

For insertions, we focused on the most prominent group: 1bp insertions
(Fig. 2.5A). Cut site-proximal positions showed more influence than others,
where an A or T immediately upstream of the DSB (at the 17th position/index
position 16 of the 20nt gRNA sequence, see Fig. 2.5C for an illustration of
target sequence indexing) promoted the insertion of an A or T, respectively.
Insertions of C were positively influenced by the presence of CC immediately
upstream of, or CG centred at, the cut site. We did not observe strong

2.3 Results and Discussion
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Fig. 2.5: Influence of X-CRISP model features on repair insertion prediction. Feature
effects expressed by SHAP values, calculated for 400 targets from the
FORECasT WT mESC test set. (A) Top 30 features for all 1bp insertions,
ranked by maximum SHAP value. (B) Top 30 features for the deletion-
insertion model, with SHAP values denoting impact on deletion frequency
and ranked by absolute SHAP value. (C) Indexing of 1- and 2-nucleotide
features for an example target DNA sequence.

associations between single or dinucleotide sequence content and G insertions.
These findings align with existing literature [23, 27, 4, 8, 28, 9].

For the deletion-insertion model, DSB-proximal nucleotides were strong
influencers as well (Fig. 2.5B), with C or G at position 16 promoting deletions.
However, A or T at position 16 (e.g. T|16, GT|15, CA|15, or AG|16) promoted
insertions. A standout observation was that dinucleotide repeats centred at
the cut site (except AA|16) favoured deletions of DSB-adjacent nucleotides,
as previously observed elsewhere [4].
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2.3.4 Transfer learning greatly reduces data required for new domains

We explored if transfer learning could adapt pre-trained X-CRISP models
to new domains, like other cell types or genomic contexts, and reduce the
requirements of domain-specific training data.

We first examined changes in the distributions of repair outcomes between
WT mESC cells and each of the four different target domains: human U20S,
human HAP1, NHEJ-deficient mESC, and human TREX2 cells (Fig. 2.6).
The HAP1 cells revealed high similarity with mESC, exhibiting similar MH-
based and MH-less deletion frequency distributions, average frequencies
per deletion length, and insertion frequency distributions. The U20S cells
showed a larger variation in overall deletion frequency, a higher proportion
of single A insertions, and a lower proportion of >3bp insertions. Cell lines
with modified repair function deviated the most from the others: mESC
NHEJ”~ cells favoured MH-based deletions and led to less frequent insertions,
especially 1bp insertions; TREX2 cells preferred deletions of 10-16bp over
deletions of 3-9bp, and MH-less over MH-based deletions.

For the transfer learning task, we adapted the X-CRISP models pre-trained
on WT mESC data to each target domain using several techniques (Fig. 2.7
for JSD, Supplementary Fig. 2.524 for Pearson’s correlation). Each adapted
model was further tested against heldout unseen data from the corresponding
target domain. Pre-training on mESC data alone (SO, source only) generalised
well to HAP1 cells (full repair profile mean JSD: mESC 0.428, HAP1 0.432),
and achieved comparable performance to training directly on HAP1 data
using at least 500 samples (TO, target only).

The TL strategies showed little benefit here, likely due to the similarity
between mESC and HAP1 (Fig. 2.6), requiring at least 500 target HAP1
samples before a consistent gain in performance could be observed across
all TL methods (TL mean JSD: 0.420). For the transfer to U20S cells, all
TL methods significantly improved the full repair profile performance over
the SO and TO baselines after retraining and fine-tuning on 50 target U20S
samples, with PFO (retrained and fine-tuned on target data without layer
freezing) achieving the best results (Wilcoxon two-tailed signed-rank test p-
values PFO vs. SO: 6 x 107°2; and vs. TO: 1 x 10~'37). The improvement was
also seen for both U20S MH- and MH-less deletion prediction. In addition,
fine-tuning (FT) on U20S cells improved deletion-insertion ratio prediction

2.3 Results and Discussion
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Fig. 2.6: Repair outcome distributions across all X-CRISP processed repair outcome
profiles observed for the mouse and human cell lines in Table 2.1: (A)
densities for overall deletion frequency (horizontal) vs. MH-based deletion
frequency (vertical), with each contour line denoting 10% of the data;
(B) trend line of average frequency per deletion length; (C) frequency
distributions of 1bp and > 2bp insertions, outliers excluded.

over SO and TO from only two target samples. These results indicate that TL
could be used to reduce the number of target samples required to train new
models for some target domains.

Lastly, we examined the results for cell lines with modified cellular DNA repair
function. For mESC NHEJ”" cells, all TL methods showed small improvements
in full repair profile performance over SO and TO after training on 50 target
samples. Using 500 target samples, only PFO outperformed SO and TO (mean
JSD; PFO: 0.505, SO: 0.533), driven by small improvements in MH-based
deletion prediction, consistent with the fact that impairment of NHEJ visibly
altered MH-based deletion activity (Fig. 2.6). For TREX2 cells, PFO was the
only effective TL method, showing gains from just five target samples. Here,
the insertion model displayed a significant performance benefit over both
SO and TO baselines up to 500 target samples, while the deletion model did
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not benefit from TL, likely due to the large distribution shift towards longer
deletions driven by the Cas9-fused three-prime exonuclease 2. The TO model
achieved comparable performance to TL using 500 samples.

Overall, the most flexible transfer learning strategy (PFO, no layer freezing)
showed the most effective adaptation to new domains, requiring only 50
target domain samples to consistently achieve results comparable or superior
to training directly on a larger number of samples for the 4 different target
domains. The gap between the least and most flexible TL strategies was
especially apparent when adapting to larger changes between source and
target context distributions (Fig.2.7, TREX2). These changes seemed largest
when the underlying biological mechanisms for cutting or repairing the DNA
were modified than across wild-type cell lines (Fig. 2.6, NHEJ~/~ and TREX2
vs. WT mESC, U20S, and HAP1). This suggested a higher conservation of
repair mechanisms between wild-type cells, even across mouse and human.
Importantly, our results also showed that TL strategies provided the most
benefit for genotypes affecting CRISPR-Cas9 function and DNA damage
response (Fig. 2.7), creating opportunities to better understand the associated
biological mechanisms and to improve the control over CRISPR-induced
outcomes for more precise gene editing across fundamental and translational
applications. Increasing the number of learnable parameters allowed the
X-CRISP model to better realign to the larger changes in repair outcome
distributions exhibited by genetically modified cells, highlighting that the
effectiveness of TL is domain-dependent and considerations such as further
tweaking of the models could be necessary for successful adaptation to more
challenging contexts. We also analysed the impact of TL on the prediction
performance of broader repair outcomes, where TL consistently improved
the MSE over the baselines on the frameshift frequency tasks after 50 target
domain samples (Supplementary Fig. 2.525, see Supplementary Fig. 2.S26for
Pearson’s correlation). We envision that similar TL strategies could be used
to adapt models for precise CRISPR therapeutic interventions considering the
unique genetic landscape of specific patient cohorts or individual patients.
To determine how successful such strategies could be would need extensive
investigation and validation across a wide variety or at least a representative
selection of human donors.

2.3 Results and Discussion
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X-CRISP model adaptation to new domains or cell lines using transfer
learning (TL). Prediction performance of baseline X-CRISP models and TL
strategies, as the average JSD or the MSE between predicted and observed
frequencies per model and number of training samples from the target
domain. (Baseline models) TO, X-CRISP trained on target only; SO, X-CRISP
trained on source only; FORECasT, Lindel, inDelphi. (Transfer learning) FT,
X-CRISP pre-trained on source and fine-tuned for target; PFO-2, X-CRISP
pre-trained on source and retrained + fine-tuned on target using 0-2 frozen
hidden layers. (Top to bottom) Prediction models for full repair profile, MH-
based deletions, MH-less deletions, 1bp insertions, and deletion-insertion
ratios. Note: horizontal axis is categorical, thus it is not to scale; and
the SO, FORECasT, inDelphi, and Lindel baselines do not use any samples
from the target domain, so their performance remains constant along the
horizontal axis. (Left to right) Models tested against U20S (962), HAP1
(3950), TREX2 (3355), and mESC NHEJ”~ (985) test target sites.
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2.4 Conclusion

We introduced X-CRISP, an interpretable and domain-adaptable model to
predict the frequency of CRISPR repair outcomes. The X-CRISP model ex-
hibited superior accuracy and generalisation in both detailed and broader
repair outcome frequency prediction, especially when predicting frameshift
mutations — a crucial task in experimental and therapeutic genome editing
applications.

Top performance was achieved while retaining interpretability and flexibility
to adapt X-CRISP models to additional genomic contexts. Contributing to
this was the inclusion of informative features like deletion edges, which also
function as indicators of MH location, and showed a prominent influence on
deletion frequency prediction of X-CRISP models. Additionally, the ubiquitous
representation of features for both MH-based and MH-less deletions, coupled
with a non-linear neural network architecture, enabled X-CRISP to leverage a
compact set of 5 features for improved and interpretable deletion prediction,
compared to the next best models using ~3k features.

Finally, we showed that pre-trained X-CRISP models could be successfully
adapted using transfer learning for prediction in additional domains, span-
ning different organisms, cell lines, and DNA repair function characteristics.
Transfer learning was effective from 50 target domain samples, suggesting
that the typical range of thousands of domain-specific samples required to
train a repair outcome prediction model for a new domain could be re-
duced by adapting existing pre-trained models, potentially using orders of
magnitude less target domain samples.

More flexible TL approaches, with freedom to adjust all weights of the
prediction model, generally adapted better and were especially effective in
transferring to more distant contexts characterised by larger changes in the
repair outcome frequency distribution. These results highlight the potential
of transfer learning to expedite the development of CRISPR repair outcome
prediction models for contexts where generating extensive data may not be
feasible and thus facilitate research involving CRISPR assays. Specifically,
these models could help improve the design of guide RNAs to efficiently
knock out specific genes with the aim of studying their function, or contribute
to the development of CRISPR therapeutics by improving the design of guide
RNAs to correct pathogenic variants across various genomic contexts.

2.4 Conclusion
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2.5 Supplementary Tables

Source Cell Type Genotype Sample Accession(s)
FORECasT [4] mESC Wild-Type SAMEAS5093999,
SAMEA5094000
K562 TREX2 SAMEA104549464
HAP1 Wild-Type SAMEA5094017,
SAMEA5094018
inDelphi [27] mESC Wild-Type SAMNO08955971
U20S Wild-Type SAMN09689449

mESC Prkdc’/'Ligd”- SAMNO08955971

Tab. 2.S1: CRISPR repair outcome sequencing data accession numbers.

Model 51 Ba Learning LR decay Penalty Penalty (fi-
rate (LR) () (optimised nal)
via 5-fold
V)

Training on source domain

Deletion .99 .999 0.05 0.999 Tested L2 0.00001
regularisa- (L.2)
tion with
weights in
{0.1,0.05,0.01,
0.001}

Insertion .99 .999 0.001 0.99 Tested L1 0.0005011872
and L2 reg- (L1)
ularisation
indepen-
dently
with
weights
in the
range of
between
1071° and
107t

Continued on next page
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— continued from previous page

Model 81 P2 Learning LR decay Penalty Penalty (fi-
rate (LR) () (optimised nal)
via 5-fold
Ccv)
Deletion- .99 .999 0.001 0.99 Tested L1 0.00025118864
insertion and L2 reg- (L1)
ularisation
indepen-
dently
with
weights
in the
range of
between
10719 and
1071
Transfer Learning: Further training on target domain
Deletion .99 .999 0.05 0.999 NA 0.0
Insertion .99 .999 0.001 0.99 NA 0.0005011872
(L1)
Deletion- .99 .999 0.001 0.99 NA 0.00025118864
insertion (LD
Transfer Learning: Fine-tuning on target domain
Deletion .99 .999 0.0005 0.999 NA 0.0
Insertion .99 .999 0.0001 0.99 NA 0.0005011872
(L1)
Deletion- .99 .999 0.0001 0.99 NA 0.00025118864
insertion (LD

Continued on next page
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— continued from previous page

Model 51

B2 Learning
rate (LR)

LR decay Penalty Penalty (fi-
Q0] (optimised nal)

via 5-fold

cV)

Tab. 2.S2: Hyperparameters for model training on source domain and transfer to
target domains.

Model

Input

Model architec-
ture

Predicts fre-

quency of...

FORECasT [4]

3,633 binary fea-
tures describing
each potential in-
del

Logistic regres-
sion model

All deletion out-
comes touching
the
directly down-

nucleotide

stream of the
cut site, up a
deletion length
of 30nt, and all
insertions of up
to 2nt in the
-3/0 window
upstream of the
cut site.

Continued on next page
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— continued from previous page

Model Input Model architec- Predicts ratio
ture of...
Lindel [8] 2,649 binary fea- Three multiout- All 536 of 550

tures describing
MH
within the tar-

locations

get  sequence
and 384 binary
features for the
one-hot encoded
target sequence

put logistic re-
gression models

possible deletion

outcomes of
length  <30nt
that overlap

with the -3/+2
window around
the cut site, 21
insertion out-
comes including

all single and

dinucleotide
insertions and
insertions of

length > 3bp.

inDelphi [27]

de-
each

3 features
scribing
MH

one-hot

deletion,
en-
codings of the
-3, -4, and -5
nucleotides
(upstream of the
PAM), and 2 fea-
tures describing
the
distribution  of

predicted

deletions

Combined two
neural networks
and k-nearest

neighbour model

All MH-based
deletions  and
all non-MH-
based deletions
grouped by dele-
tion length, with
a deletion length
< 60nt, and all
single nucleotide
insertions.

Continued on next page
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- continued from previous page

Model Input Model architec- Predicts ratio
ture of...
CROTON [18] One-hot encoded Convolutional Aggregate

60nt target se-
quence

neural network

categories of out-
comes against all

others. Six sep-
arate CROTON
models trained
for predictions
of: deletions,
Int insertions,
Int  deletions,
Int frameshift
mutations, 2nt

frameshift muta-
tions, frameshift
mutations.

Tab. 2.S3: Repair outcome prediction model comparison. FORECasT, Lindel, and
inDelphi predict repair outcome profiles. CROTON predicts the ratio of
six aggregate categories of repair outcomes against all others.

Test set Model Performance of precision-X% prediction tasks
(task: is the target precision-X%? yes/no)
X =20 30 40 50 60 70
Precision performance score
FORECasT X-CRISP KLD 0.746 0.841 0.844 0.795 0.702 0.655
WT mESC  X-CRISP MSE 0.751 0.831 0.828 0.766 0.695 0.653
[4] FORECasT 0.723 0.853 0.858 0.836 0.755 0.739
Lindel 0.714 0.769 0.693 0.596 0.333 0.333
inDelphi 0.400 0.447 0.238 0.086 0.059 0.029
inDelphi X-CRISP KLD 0.726  0.702 0.569 0.396 0.278 0.000
WT mESC  X-CRISP MSE 0.728 0.698 0.537 0.340 0.211 0.000
[27] FORECasT 0.771  0.827 0.704 0.464 0.211 0.000

Continued on next page
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— continued from previous page

Test set Model Performance of precision-X% prediction tasks
(task: is the target precision-X %? yes/no)
X =20 30 40 50 60 70
Precision performance score
Lindel 0.682 0.617 0.512 0.3326 0.115 0.000
inDelphi 0.363  0.313 0.071 0.022 0.000 0.000
Recall performance score
FORECasT X-CRISP KLD 0.643 0.597 0474 0.412 0.301 0.191
WT mESC  X-CRISP MSE 0.652 0.617 0.518 0.458 0.378 0.250
[4] FORECasT 0.522 0.428 0.323 0.244 0.157 0.080
Lindel 0.520 0.329 0.172 0.075 0.011 0.004
inDelphi 0.559 0.368 0.280 0.173  0.154 0.093
inDelphi X-CRISP KLD 0.712 0.771 0.669 0.462 0.333 0.000
WT mESC  X-CRISP MSE 0.726  0.780 0.706 0.555 0.400 0.000
[27] FORECasT 0.613 0.572 0.460 0.359 0.216  0.000
Lindel 0.648 0.551 0.412 0.271 0.162 0.000
inDelphi 0.608 0.316 0.075 0.020 0.000 0.000
Matthew’s correlation coefficient (MCC)
FORECasT X-CRISP KLD 0.283 0.498 0.515 0.504 0.418 0.337
WT mESC  X-CRISP MSE 0.298 0.501 0.534 0.519 0.468 0.386
[4] FORECasT 0.172  0.384 0.409 0.388 0.311 0.232
Lindel 0.150 0.267 0.218 0.143 0.039 0.042
inDelphi -0.016 0.143 0.095 0.020 0.036 0.027
inDelphi X-CRISP KLD 0.370 0.589 0.535 0.387 0.292 -0.001
WT mESC  X-CRISP MSE 0.381 0.591 0.528 0.388 0.275 -0.002
[27] FORECasT 0.376 0.561 0.496 0.367 0.198 -0.003
Lindel 0.253  0.387 0.365 0.268 0.146 -0.004
inDelphi 0.055 0.166 0.010 -0.003 -0.006 0.000
Continued on next page
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Test set

— continued from previous page

Model Performance of precision-X% prediction tasks

(task: is the target precision-X%? yes/no)
X =20 30 40 50 60 70

Precision performance score

Tab. 2.54: Performance of five models for six different precision-X% prediction tasks

Chapter 2

and two test sets, according to three performance metrics. The goal of
each prediction task was to predict if a given target had a precision-X%
outcome or not for a specific value of X. We evaluated six precision-X%
prediction tasks, each for a different value of X € {20, 30, 40, 50, 60, 70},
using three performance metrics: precision, recall, and Matthew’s corre-
lation coefficient. All models were trained on the FORECasT wild-type
mESC train set and were then tested separately on the FORECast and
the inDelphi wild-type mESC test sets from Table 1 of the main article,
as specified in the “Test set” column. Note that precision-X% refers to
a target sequence for which a single CRISPR-induced repair outcome
accounts for at least X% of all reads assigned to any outcome observed
for that target sequence, as defined by Shen et al. in [27].



2.6 Supplementary Figures
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Fig. 2.5S1: Distribution of mutated read counts per target site for the FORECasT mESC
WT data. The horizontal axis shows the number of mutated reads assigned
to each target site in bins of 100 in width. The vertical axis shows the
number of target sites within each bin.
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Fig. 2.52: Distribution of mutated read counts per target site for the inDelphi mESC
WT data. The horizontal axis shows the number of mutated reads assigned
to each target site in bins of 10000 in width. The vertical axis shows the
number of target sites within each bin.
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Fig. 2.S3: Distribution of mutated read counts per target site for the U20S data. The
horizontal axis shows the number of mutated reads assigned to each target
site in bins of 10000 in width. The vertical axis shows the number of target
sites within each bin.
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Distribution of mutated read counts per target site for the NHEJ-deficient
mESC data. The horizontal axis shows the number of mutated reads
assigned to each target site in bins of 10000 in width. The vertical axis
shows the number of target sites within each bin.
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Distribution of mutated read counts per target site for the HAP1 data. The
horizontal axis shows the number of mutated reads assigned to each target
site in bins of 100 in width. The vertical axis shows the number of target
sites within each bin.
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Distribution of mutated read counts per target site for the TREX2 data.
The horizontal axis shows the number of mutated reads assigned to each
target site in bins of 100 in width. The vertical axis shows the number of
target sites within each bin.
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Mean Frequency of Deletions of Given Lengths Across Target Tites for
FORECasT mESC WT
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Fig. 2.57: Mean frequency of deletions of given lengths across target sites for the
FORECasT mESC WT data.
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Fig. 2.58: Mean frequency of deletions of given lengths across target sites for the
inDelphi mESC WT data.
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Fig. 2.59: Mean frequency of deletions of given lengths across target sites for the
U20S data.
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Fig. 2.510: Mean frequency of deletions of given lengths across target sites for the
NHEJ-deficient mESC data.
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Fig. 2.511: Mean frequency of deletions of given lengths across target sites for the
HAP1 data.
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Fig. 2.512: Mean frequency of deletions of given lengths across target sites for the
TREX2 data.
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Fig. 2.513: Mean frequency of insertions of given lengths across target sites for the
FORECasT mESC WT data.
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Fig. 2.514: Mean frequency of insertions of given lengths across target sites for the
inDelphi mESC WT data.
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Fig. 2.515: Mean frequency of insertions of given lengths across target sites for the
U20S data.
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Fig. 2.516: Mean frequency of insertions of given lengths across target sites for the
NHEJ-deficient mESC data.
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g. 2.517: Mean frequency of insertions of given lengths across target sites for the
HAP1 data.
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Fig. 2.518: Mean frequency of insertions of given lengths across target sites for the
TREX2 data.
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Fig. 2.519: Pairwise Needleman-Wunsch scores between (A) sequences in the FORE-
CasT dataset (B) sequences from the inDelphi dataset (C) sequences
from the inDelphi dataset and the FORECasT dataset (D) sequences from
the inDelphi dataset and the FORECasT dataset (E) sequences from the
FORECasT train set and the inDelphi test set. All sequences are 60bp
in length, centred at the cut site. Scoring parameters used: match: 1.0,
mismatch: 0.0, gap: 0.0.
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Distribution of Pairwise Smith-Waterman Scores between...
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Fig. 2.520: Pairwise Smith-Waterman scores between (A) sequences in the FORECasT
dataset (B) sequences from the inDelphi dataset (C) sequences from the
inDelphi dataset and the FORECasT dataset (D) sequences from the
inDelphi dataset and the FORECasT dataset (E) sequences from the
FORECasT train set and the inDelphi test set. All sequences are 60bp
in length, centred at the cut site. Scoring parameters used: match: 1.0,
mismatch: 0.0, gap: 0.0.
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Distribution of Pairwise Hamming Distance Scores between...
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Fig. 2.521: Pairwise Hamming distances between (A) sequences in the FORECasT
dataset (B) sequences from the inDelphi dataset (C) sequences from
the inDelphi dataset and the FORECasT dataset (D) sequences from
the inDelphi dataset and the FORECasT dataset (E) sequences from the
FORECasT train set and the inDelphi test set. All sequences are 60bp in
length, centred at the cut site.
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coefficient between predicted and observed outcomes for (top) FORE-
CasT or (bottom) inDelphi test data, considering: (left to right) original
publication outcomes; common MH-based deletions; common MH-less
deletions; 1bp insertions. Significance p-values calculated using Wilcoxon
signed-rank tests, comparing X-CRISP KLD to the best of the non-X-CRISP
models. For 1bp insertions, X-CRISP KLD and Lindel perform identically,
given that they are based on the same model, so the comparison is then
made with FORECasT, the next best of the non-X-CRISP models.
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Broader repair outcome prediction performance. Pearson’s correlation
coefficient for six outcomes: deletion, 1bp insertion, 1bp deletion, 1bp
frameshift, 2bp frameshift, and frameshift frequency prediction. Models
trained on FORECasT WT mESC and tested on 3954 FORECasT/1961
inDelphi WT mESC target sites.
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Fig. 2.524: X-CRISP model adaptation to new domains or cell lines using transfer
learning (TL). Prediction performance of baseline models and TL strate-
gies, as the average Pearson’s correlation or the MSE between predicted
and observed frequencies per model and number of training samples.
Baseline models: TO, X-CRISP trained on target only; SO, X-CRISP trained
on source only; FORECasT, Lindel, inDelphi. Transfer learning: FT, pre-
trained on source and fine-tuned for target; PF0O-2, pre-trained on source
and retrained + fine-tuned on target using 0-2 frozen hidden layers. (Top
to bottom) Prediction models for full repair profile, MH-based deletions,
MH-less deletions, insertions, and deletion-insertion ratios. Note: hori-
zontal axis is not to scale; and the SO baseline does not use any samples
from the target domain, so its performance remains constant along the
horizontal axis.
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Fig. 2.525: X-CRISP model adaptation via Transfer Learning on aggregate tasks

evaluated via MSE. Prediction performance of baseline models and TL
strategies, as the MSE between predicted and observed frequencies per
model and number of training samples. Baseline models: TO, X-CRISP
trained on target only; SO, X-CRISP trained on source only; FORECasT,
Lindel, inDelphi, CROTON. Transfer learning: FT, pre-trained on source
and fine-tuned for target; PF0-2, pre-trained on source and retrained
+ fine-tuned on target using 0-2 frozen hidden layers. (Top to bottom)
Prediction models for frequency of deletions, 1bp deletions, 1bp inser-
tions, 1bp frameshift, 2bp frameshift, and any frameshift. Note: The
horizontal axis is not to scale, and the SO, FORECasT, inDelphi, Lindel,
and CROTON baselines do not use any samples from the target domain,
so its performance remains constant along the horizontal axis.
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Fig. 2.526: X-CRISP model adaptation via Transfer Learning on aggregate tasks evalu-

ated via Pearson’s correlation. Prediction performance of baseline models
and TL strategies, as the Pearson’s correlation between predicted and
observed frequencies per model and number of training samples. Base-
line models: TO, X-CRISP trained on target only; SO, X-CRISP trained on
source only; FORECasT, Lindel, inDelphi, CROTON. Transfer learning:
FT, pre-trained on source and fine-tuned for target; PFO-2, pre-trained
on source and retrained + fine-tuned on target using 0-2 frozen hidden
layers. (Top to bottom) Prediction models for frequency of deletions,
1bp deletions, 1bp insertions, 1bp frameshift, 2bp frameshift, and any
frameshift. Note: The horizontal axis is not to scale, and the SO, FORE-
CasT, inDelphi, Lindel, and CROTON baselines do not use any samples
from the target domain, so its performance remains constant along the
horizontal axis.
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MUSICiAn: Genome-wide
|dentification of Genes Involved in
DNA Repair via Control-Free
Mutational Spectra Analysis

The intellectual question has remained the
same over the last 20-something years: How
does DNA repair work? The complexity is
quite astounding.

— Patrick Sung
(Interview with American Society for
Biochemistry and Molecular Biology Today)

Understanding the factors involved in DNA double-strand break (DSB) repair
is crucial for the development of targeted anti-cancer therapies, yet the roles of
many genes remain unclear. Recent studies show that perturbations of certain
genes can alter the distribution of sequence-specific mutations left behind after
DSB repair. This suggests that genome-wide screening could reveal novel DSB
repair factors by identifying genes whose perturbation causes the mutational
distribution spectra observed at a given DSB site to deviate significantly from the
wild-type. However, designing proper controls for a genome-wide perturbation
screen could be challenging. We explore the idea that a genome-wide screen
might allow us to forgo the use of traditional non-targeting controls by refram-
ing the analysis as an outlier detection problem, assuming that most genes have

Colm Seale, Marco Barazas, Robin van Schendel, Marcel Tijsterman, and Joana P. Gongalves.
“MUSICiAn: Detecting Gene-DNA Repair Associations via Control-Free Mutational Spectra
Analysis.” bioRxiv, 10.1101/2025.01.27.635038
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minimal influence on DSB repair. We propose MUSICiAn (Mutational Signature
Catalogue Analysis), a compositional data analysis method that ranks gene
perturbation-specific mutational spectra without controls by measuring devia-
tions from the central tendency in the distributions of all spectra. We show that
MUSICiAn can effectively estimate pseudo-controls for the existing Repair-seq
dataset, screening 476 genes and 60 non-targeting controls. We further apply
MUSICiAn to a genome-wide dataset profiling mutational outcomes induced
by CRISPR-Cas9 at three target sites across cells with individual perturbations
of 18,406 genes. MUSICiAn successfully recovers known genes, highlights the
spliceosome as a lesser-appreciated player in DSB repair, and reveals candidates
for further investigation.

3.1 Introduction

Double-strand breaks (DSBs) in DNA are critical cellular events that occur
spontaneously due to endogenous processes like replication or external agents
like ionizing radiation. Left unaddressed, DSBs can lead to genomic instability
and eventually cell death or cancer [9]. As a result, cells have evolved a suite
of mechanisms to repair DSBs, including the non-homologous end joining
(NHEJ), microhomology-mediated end joining (MMEJ, also called alt-NHEJ),
and homology-directed repair (HDR) pathways [38]. Understanding the roles
that genes play in DSB repair can importantly contribute to the development
of targeted therapies for diseases such as cancer [45, 5]. For example, PARP
inhibitor drugs are indicated to treat cancers with impaired HDR or BRCA
gene function, whose synthetic lethality with PARP is leveraged to block DSB
repair and cause a fatal accumulation of DNA damage in HDR- or BRCA-
deficient cancer cells [10]. The ability to discover further opportunities for
targeted therapy requires deeper insight into gene function, yet for many
genes the link with DSB repair remains unclear.

In searching for these links, research has turned to large-scale gene functional
screens enabled by CRISPR technology [5]. Originally, functional screens for
DSB repair focused on the effect of gene silencing or knockout on readouts
such as cell growth and proliferation to identify repair factors [18, 42, 50, 30,
32]. While valuable to characterize gene essentiality, inhibition of cellular
growth is only indirectly related to DSB repair and could lead to results con-
founded by other mechanisms of cellular activity. For more precise readouts
and biological insights, recent advances use CRISPR targeting to induce DSBs
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and deep sequencing to analyze how disruption of gene function alters the
mutational spectra, or the frequency distributions of mutations arising at
DSB sites following repair [33, 47, 7, 40, 41, 19]. Multiple studies have
demonstrated that knockouts of certain genes yield distinct, sequence-specific
mutational spectra [33, 40, 19], but focused on the screening of known
DSB repair genes. Notably, the first genome-wide study characterizing the
effect of gene perturbation on mutational spectra will soon be released. We
obtained early access to the data from this study, termed Mutational Signature
Catalogue (MUSIC), to be made available upon publication.

Using CRISPR targeting with mutational spectra as readout, the primary
approach to link genes to DSB repair is to quantify how much the mutational
spectrum deviates from the expected wild-type distribution following the
knockout of each individual gene. The larger the deviation, the higher the
confidence that the perturbed gene has an effect on the outcomes and could
thus be involved in DSB repair. Recent work by [19] defined this deviation as
the “overall outcome redistribution activity”, quantified by a chi-squared-like
statistic relying on non-targeting controls to determine the expected wild-type
spectrum.

For genome-wide screens, a limited set of non-targeting controls might not be
suitable. While the majority of genes is not expected to produce an effect on
the mutational spectra, it is unclear if targeting such genes could indirectly
or mildly influence the outcomes, an effect which would not be appropriately
captured by non-targeting controls. At the same time, it would be challenging
to design realistic controls for all levels of variation at play in a genome-wide
screen, while trying to maximize the coverage per mutational spectra and
mitigate batch effects. We explore an alternative approach leveraging the
assumption that most genes in a genome-wide perturbation screen have
minimal impact on the mutational spectra to frame the identification of DSB
repair genes as an outlier detection problem [2], and investigate if it can
forgo the need for conventional controls.

When analyzing mutational spectra, it is also important to consider their com-
positional nature. In other words, each mutational spectrum is a distribution
of relative frequencies over a collection of mutation categories whose overall
sum is one. This composition property introduces a negative correlation bias
caused by dependencies between the different frequencies, where an increase
for one mutation type necessarily causes a reduction in others. Ignoring the
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dependencies in compositional data using standard data analysis techniques
can lead to misleading results and interpretation [3]. Additionally, the co-
variance structure of mutational spectra is likely to be skewed by the outlier
gene knockouts that significantly affect DSB repair, emphasizing the need for
methods tailored for compositional data analysis.

We introduce MUSICiAn (Mutational Signature Catalogue Analysis), a compu-
tational approach to score gene associations with DSB repair via genome-wide
mutational spectra analysis. MUSICiAn operates without non-targeting con-
trols, framing the task as an outlier detection problem under the assumption
that most genes do not influence DSB repair. MUSICiAn uses the composi-
tional data analysis (CoDA) framework to address dependencies and outliers
in genome-wide mutational spectra data, for an improved estimation of
pseudo-controls. By ranking gene knockouts based on their robust devia-
tion from the overall mutational spectra distribution, MUSICiAn provides
a control-free approach for genome-wide discovery of DSB repair-related
genes.

We evaluate the MUSICiAn estimation of pseudo-controls on the Repair-seq
dataset, screening 476 DSB genes and 60 non-targeting controls [19]. We
further apply MUSICiAn to the genome-wide MUSIC mutational spectra
dataset, covering 18,406 genes, to investigate the ability of this control-free
method to recover established repair genes and suggest new candidates for
experimental validation.

3.2 Methods

We introduce the MUSICiAn method using outlier detection to identify DSB re-
pair genes from genome-wide CRISPR mutational spectra without traditional
controls. The aim is to quantify the effect that each gene knockout produces
on the mutational spectra relative to the expected wild-type or control spectra.
In the absence of controls, MUSICiAn leverages the assumption that most
genes are not involved in DSB repair to estimate the center of the mutational
spectra distribution as a representative point, close to which the spectra will
be most alike the expected wild-type. To quantify the deviation, MUSICiAn
calculates a distance between each spectra and the estimated center also
taking the covariance of the spectra distribution into account. This is done
using a combination of data transformation and robust covariance estimation
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designed to address dependencies and outliers in the mutational spectra data.
Finally, MUSICiAn creates a unified gene outlier score based on the distances
obtained across target sites.

3.2.1 Data and preprocessing

Mutational outcome data. We analyzed data from two gene perturbation
screens with CRISPR-induced mutational outcome readout, Repair-seq and
MUSIC (Supplementary Fig. 3.S1 for an illustration of the experimental
setup). The Repair-seq screen used CRISPR interference with each of 1,573
single-guide RNAs (sgRNAs) to individually silence each of 476 DSB repair
genes, and 60 non-targeting control sgRNAs [19]. To generate mutational
outcomes, Repair-seq used CRISPR-Cas9 to create DSBs for a single target
site across the population of cells with and without silenced genes, in two
biological replicates. The genome-wide MUSIC screen was similarly set up,
but used CRISPR knockouts rather than interference, with 89,571 sgRNAs
spanning 18,406 genes, and generated outcomes for three target sites in
two biological replicates each. We downloaded the raw Repair-seq sequence
data [19] from the NCBI Sequence Read Archive, Bioproject PRINA746980,
runs SRR15164738 and SRR15164739. We also obtained early access to the
MUSIC sequence data, to be made available upon publication.

We called mutations from the sequence data using the Sequence Interrogation
and Quantification (SIQ) tool [35] v4.3 with parameters “-m 2 -c -e 0.05”,
specifying a minimum number of 2 reads for counting an event, the collapsing
of identical events to a single record with the sum of counts, and a maximum
permitted base error rate of 0.05. The SIQ tool mapped the reads to the
sgRNAs used for gene perturbation and identified mutations observed at the
CRISPR-Cas9-induced DSB sites.

Mutation aggregation and categorization. To reduce sparsity and improve
statistical power, the fine-grained mutational outcomes output by the SIQ
tool were aggregated into 8 higher-level categories: wild-type, denoting a
sequence without mutations; deletion with 1\2\3+bp\no microhomology, for
a deletion overlapping the cut site with a microhomology (MH) of length
1bp to 3+bp or no MH at all, where an MH is a short homologous sequence
on both sides of the DSB and used for repair by MMEJ [24]; insertion, for a
new sequence added at the cut site; deletion with insertion, for a combination
of deletion and insertion; and homology-directed repair, for any insertion
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matching the donor template DNA (Supplementary Table 3.S3 for SIQ vs.
MUSICiAn categories). Any other rare mutation types, such as single-base
substitutions, were excluded, since they are not typical outcomes of DSB
repair. Wild-type reads were also excluded to avoid confounding by gene
essentiality, as a decrease in wild-type read abundance could indicate that
the gene was essential for survival, but not if it was relevant for DSB repair.
We thus considered a final set of 7 mutation categories.

Quality analysis and filtering of perturbation sgRNAs. For each replicate,
we filtered out perturbation sgRNAs yielding a total read count below 700
across the 7 mutation categories, and excluded genes with less than 3 asso-
ciated perturbation sgRNAs. Additionally, we controlled for inconsistencies
in the effect of the different sgRNAs used for perturbation of the same gene,
which could be indicative of sgRNA off-target effects, less effective gene
perturbation, or any other undesirable effect. We excluded sgRNAs whose
count profiles over the 7 mutation categories showed a median pairwise Pear-
son’s correlation below 0.6 with the profiles for other sgRNAs perturbing the
same gene within the same replicate (and target site), or a median pairwise
Pearson’s correlation below 0.6 with replicate profiles for the same sgRNA
and target site (Supplementary Tables 3.S1 and 3.S2). To avoid numerical
issues with the data transformation applied by MUSICiAn later on, in the
rare cases where some mutation categories had zero counts, we imputed
real values drawn independently from a uniform distribution between the
detection limit DL and 0.1 x DL, where DL = 1. [26].

Generating mutational spectra per gene. We first computed mutational
spectra by dividing the count of each of the 7 mutation categories by the total
per sgRNA and replicate. Then we aggregated across sgRNAs by calculating
the geometric mean of the sgRNAs-associated spectra per gene and replicate,
producing replicate spectra per gene (two for each target site). Finally, we
computed the geometric mean between replicate spectra per target site,
resulting in one mutational spectrum per gene and target site. After every
aggregation step, the frequencies in each mutational spectrum were divided
by the sum to ensure they summed to one.

3.2.2 MUSICIiAn scoring of gene effect on mutational spectra

The MUSICiAn method scores genes for DSB repair association by computing
the distance between the mutational spectrum of each perturbed gene and
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ILR transform +
MCD +
Mahalanobis distance

Standardise +
average across sites

1. Generate mutational spectra 2. Calculate distance of each 3. Combine scores across
for gene knockouts at spectrum to the centre of the target sites to produce final
multiple CRISPR target sites distribution of all spectra scoring

Fig. 3.1: Overview of MUSICiAn scoring of gene effect on mutational spectra. The
method quantifies the effect of gene perturbation using the Mahalanobis
distance of the gene mutational spectrum to the estimated center of the
spectra distribution of all genes, under the assumption that most genes
have a negligible effect. Estimation is improved using ILR-transformed
spectra and robust covariance (MCD) to mitigate biases from data closure
and outliers. Distances are normalized and averaged across target sites to
produce a unified gene effect score.

the estimated center of the distribution of all spectra obtained for a given
target site (Fig. 3.1). For experiments with multiple targets, target-specific
scores can be normalized and averaged to produce one single gene score.
Genes with larger scores have a more prominent effect on the mutational
spectra, thus also a higher likelihood of being involved in DSB repair. Genes
with the lowest scores are assumed to approximate the wild-type or control
distribution. We are interested in both the most outlying and the most central
spectra for downstream analysis.

Gene scoring. To calculate gene effect scores, MUSICiAn computes the
Mahalanobis distance [27] per gene spectrum relative to the overall spectra
distribution per target site, assuming that most genes are not directly involved
in DSB repair and have negligible effect (Fig. 3.1). We chose the Mahalanobis
distance as it takes the distribution and covariation of the data into account,
unlike the Euclidean distance. Informative Mahalanobis distances require
reliable covariance estimation, which is affected by: data closure, where de-
pendencies between spectra categories summing to one introduces a negative
correlation bias [3]; and outlier genes with a significant impact on mutational
spectra and therefore also on the distribution.

To mitigate data closure, MUSICiAn applies an isometric log-ratio (ILR)
transformation [15] to the mutational spectra using the defaults for scikit-bio
0.5.4. The ILR transformation maps the data from a constrained simplex space
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to an unconstrained Euclidean space, allowing for independent statistical
analysis of components. To mitigate outlier effects, MUSICiAn uses the
minimum covariance determinant (MCD) as a robust covariance matrix
estimator [16], using scikit-learn 1.2.1 defaults. The MUSICiAn method
calculates the robust Mahalanobis distances for each ILR-transformed spectra,
and unifies the individual distances into gene scores across target sites by:
(1) selecting the common genes with mutational spectra in all target sites to
act as a reference, (ii) calculating the mean and standard deviation of the
distances of the reference genes per target site, (iii) normalizing all gene
distances per site by subtracting the means and dividing standard deviations
to place them on a common scale, and (iv) averaging the normalized gene
distances across sites, ignoring missing values, to produce a final unified gene
score.

Pseudo-control selection. The target-specific distances and unified gene
scores enable the selection of “pseudo-controls” as the lowest-scoring genes
per target or common across target sites. These pseudo-controls enable com-
parative analyses by estimating the central tendency of traditional controls,
but may not recapitulate their natural variation.

3.2.3 Evaluation

Before applying MUSICiAn to the genome-wide MUSIC dataset, we assessed
the outlier detection and pseudo-control selection on the Repair-seq dataset,
the only other dataset available of CRISPR mutational spectra for multiple
individual gene knockouts. While not a genome-wide dataset, Repair-seq
included non-targeting controls, allowing us to assess if and how well MUSI-
CiAn could estimate the wild-type distribution center. Furthermore, Repair-
seq data focused on genes involved in DNA repair, so we also checked if
MUSICiAn could recover similar mutational patterns for the genes screened
in both studies. We preprocessed the Repair-seq data as described and held
out the non-targeting controls from the scoring for later validation.

Estimation of pseudo-controls. We used PCA to visualize the effect of ILR
transformation and robust MCD covariance, proposed to mitigate composi-
tional data closure and outlier spectra, on the estimation of the mutational
spectra distribution center and selection of pseudo-controls for the Repair-
seq dataset. We applied PCA in four scenarios: Classical Covariance, using
the original mutational spectra with the classical covariance estimation;
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MCD Covariance, using the original spectra with the outlier-robust MCD
covariance estimation; ILR & Classical Covariance, using ILR-transformed
spectra with classical covariance estimation; and ILR & MCD Covariance,
using ILR-transformed spectra with MCD covariance estimation. After ILR
transformation, location and covariance estimation, we back-transformed the
data to centered log-ratio (CLR) space to analyze the relation between PCA
components and mutationcategories [16].

To evaluate pseudo-control selection, we identified 60 pseudo-controls for
each scenario and calculated the Jensen-Shannon distance (JSD) between
the geometric means of the non-targeting control and the pseudo-control
spectra. As a baseline, we also calculated the distance from the non-targeting
control spectra to the geometric mean across all gene-targeting sgRNAs,
without pseudo-control selection. The JSD quantifies the distance between
distributions, where a lower distance indicates greater similarity between
distributions.

Cross-dataset estimation of pseudo-controls. To further assess the selec-
tion of pseudo-controls, we analyzed the consistency in mutational patterns
retrieved for the MUSIC and Repair-seq datasets, using pseudo-controls esti-
mated by MUSICiAn jointly from the two datasets. Specifically, we applied
MUSICiAn to select 60 pseudo-controls for the set of all mutational spectra
associated with the 434 genes shared across both datasets, with four target
sites in total (three for MUSIC, one for Repair-seq). We then calculated the
difference in mutation frequency per category between each gene-related
mutational spectra and the geometric mean of the pseudo-controls. Finally,
we performed hierarchical clustering [46] on the resulting difference matrix,
using Ward cluster linkage and distance between samples based on Pearson’s
correlation.

Gene scoring and ranking performance. To evaluate the quality of the
MUSICiAn-derived gene effect scores for the genome-wide MUSIC dataset,
we examined if MUSICiAn could effectively recover genes with known links
to DSB repair by scoring or ranking them higher than other genes based on
their effect on the mutational spectra. We assessed performance separately
using precision-recall (PR) curves against known DSB repair genes from two
sources: 476 experimentally validated genes curated by Repair-seq for their
AX227 CRISPRI library [19], and 295 genes whose annotations matched the
regex “double-strand break repair|interstrand cross-link repair” (interstrand
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cross-link repair genes often crosstalk with DSB repair pathways such as HR,
[28]) in any field in the Gene Ontology [4, 12]. For baseline comparison, we
calculated PR curves after randomly ranking all genes in the MUSIC dataset.
We preferred PR rather than ROC curves, given that the dataset is highly
imbalanced, where most genes have no known association with DSB repair
and are therefore considered negative for the purpose of the evaluation.

Functional enrichment for top 500 ranked genes. We performed en-
richment analysis for the top 500 genes ranked by MUSICiAn against the
background of all genes in the MUSIC dataset, using the “gseapy” python
package 1.0.4. We employed four sets of annotations, including KEGG path-
ways “KEGG_2019_Mouse” [21], and Gene Ontology terms across the three
ontologies “GO_Biological Process_2023”, “GO_Molecular_Function_2023”,
“GO_Cellular_ Component 2023”. We performed a hypergeometric test per
term within each gene set, and the resulting p-values were FDR corrected
using the Benjamini-Hochberg method. [6]. We further estimated the effect
of the genes annotated with each of the top 10 enriched terms or pathways
on the mutation frequencies separately for the 4 annotation sets. To do this,
we fitted an ordinary least squares (OLS) regression model per term ¢ and
mutation outcome category o to explain the variation in mutation frequency
(Frequency) based on term or pathway membership (Group), according to
the following R-style formula

Frequencyg,o ~ Groupg,, (3.1)

where each sample is a mutational spectra for a given gene knockout g. The
Frequency, , variable denotes the frequency of the given mutation outcome
o for gene g, and Group, ; is a binary variable indicating if gene ¢ is a member
of term or pathway ¢. As case samples, we took the mutational spectra of
all genes annotated with the enriched term in question. As control samples,
we used the set of 100 pseudo-controls or lowest scoring genes, with valid
mutational spectra across all target sites, and that were not members of any of
the enriched pathways. We used the same control samples for the regression
analysis of every annotation set, and report the regression coefficients and
Benjamini-Hochberg corrected p-values for the Group variable.
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3.3 Results

3.3.1 MUSICiAn can estimate absent control mutational spectra

We first assessed the ability of MUSICiAn to estimate pseudo-control mu-
tational spectra in the absence of actual controls. To do this, we applied
MUSICiAn to the Repair-seq dataset, containing mutational spectra for one
target site across knockouts of 476 different genes and 60 actual non-targeting
controls. The actual controls were left out to be able to quantify how well
they could be recovered by MUSICiAn. We also isolated the contributions of
the ILR transformation and robust covariance (MCD) used by MUSICiAn to
investigate if they improved the estimation of the distribution center loca-
tion and covariance, and ultimately the selection of pseudo-controls, in the
presence of outlier spectra and negative correlation bias. To visually examine
the effect of ILR transformation and MCD on the distribution, we applied
PCA to the original and ILR-transformed mutational spectra separately using
classical PCA and a robust variant of PCA based on the MCD.

The estimated center of the distribution appeared to align the best with the
center determined based on the actual controls (geometric mean of the 60
non-targeting controls) when both ILR and MCD were used to respectively ad-
dress data closure and outliers in the mutational spectra data (Fig. 3.2A, “ILR
& MCD Covariance” vs. others). We further observed that the pseudo-controls
selected as the 60 mutational spectra closest to the center of the distribution
estimated by MUSICiAn, using any of the four combinations of spectra and
covariance types, were far more similar to the actual non-targeting controls
than the average across all spectra. Specifically, the Jensen-Shannon (JS)
distances between the geometric means of pseudo-controls and non-targeting
controls were one order of magnitude smaller than those between the geo-
metric means of all spectra and non-targeting controls (respectively < 0.005
and 0.012, Fig. 3.2B). Moreover, the selection of pseudo-controls using the
preferred combination of techniques in MUSICiAn, ILR transformation and
robust MCD covariance, produced the closest match with the actual non-
targeting controls than the other three (JS distances 3.73 x 10~3 against
3.77 x 1073, 4.42 x 1073, and 4.69 x 10~3; Fig. 3.2B). This result supported
our choice to place ILR transformation and MCD at the core of the MUSICiAn
outlier detection algorithm.

3.3 Results
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Fig. 3.2: Evaluation of MUSICiAn-selected pseudo-controls based on the estimated

mutational spectra distribution center for Repair-seq. Effect of ILR transfor-
mation and MCD covariance on (A) the estimated center of the mutational
spectra distribution and (B) the selected pseudo-controls, using the original
or ILR transformed spectra with classical or MCD covariance. For (A), actual
center (black cross) of the mutational spectra distribution as the geometric
mean of the 60 actual controls (yellow points), and center estimated by
MUSICiAn (red cross) based on the mutational spectra under gene-silencing
(blue points), projected onto the two axes of largest variation in the data
(first two principal components). For (B), Jensen-Shannon distances be-
tween the geometric means of the 60 actual non-targeting controls and
either all mutational spectra or the 60 pseudo-controls closest to the center,
estimated using each of the four combinations of spectra and covariance
types.
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We note that the majority of the 476 genes characterized in the Repair-seq
screen are known to be involved in DNA repair, and therefore the assump-
tion that most genes should not have an impact on the mutational spectra
was in theory not necessarily met for this dataset. However, in practice, a
large proportion of DNA repair genes still showed little effect on mutation
frequencies (Fig. 3.2). The fact that MUSICiAn was able to recover controls
in this scenario highlights that it could be applicable to more focused studies
beyond genome-wide screens whenever a similar reasonable assumption can
be made, for instance based on prior knowledge or the actual distribution of
the data.

3.3.2 MUSICIAn controls reveal known repair patterns across studies

We further questioned if MUSICiAn could estimate pseudo-controls for muta-
tional spectra aggregated from different studies, such that consistent muta-
tional repair patterns would be revealed when applying the same controls
as a baseline across the studies. To address this, we jointly analyzed the
mutational spectra for knockouts of the 434 genes screened in both the
genome-wide MUSIC and the focused Repair-seq studies. After selecting
pseudo-controls, we calculated thedifferences between the frequencies in
each mutational spectrum, obtained under silencing or knockout of a specific
gene, and the geometric mean of the pseudo-controls (Fig. 3.3). We also
performed hierarchical clustering of genes and mutation categories based on
those differences (Fig. 3.3). The results revealed consistency in how HDR and
insertion events were influenced by silencing of specific genes across targets
and studies, as well as broadly consistent patterns for other mutation types
with larger variations that could be attributed to differing target site-specific
characteristics within and between studies.
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Fig. 3.3: Heatmap of the difference in mutation frequencies between each spectrum
obtained for the knockout of a specific gene and the geometric mean of the
pseudo-control spectra selected by MUSICiAn, per mutation category and
target site. Shown are the top 100genes with the highest MUSICiAn outlier
score across target sites (3 for MUSIC, denoted T1-T3, and 1 for Repair-seq).
The horizontal axis represents genes. The vertical axis represents mutational
outcomes, coloured by target site. Data was clustered on both dimensions,
genes and mutation categories, using hierarchical clustering with Ward
cluster linkage and distance between spectra based on Pearson’s correlation
coefficient.

Gene clustering also identified meaningful groups, including the Fanconi
anemia core complex and related genes, whose silencing suppressed HDR
events (Fig. 3.3). Interestingly, Helq displayed a mutational pattern similar to
these genes, suggesting a potential association with FA and HDR, a topic of
ongoing debate [20, 44]. Other notable clusters included: mismatch repair
MutS homolog genes (Msh2, Msh6); ring finger protein genes with roles in
DNA damage sensing and repair (Rnf8, Rnf168); NHEJ genes involved in
early recognition of DNA damage and recruitment of additional repair factors
(Xrce5, Xree6), and in the processing of DNA ends (Artemis complex Prkdc
and Dclrelc); and the MRN complex with roles in ATM checkpoint activation
in response to DNA damage and also the tethering of broken DNA ends for
further processing by NHEJ and HDR (Mrella, Rad50, Nbn). The consistency
in gene silencing effects on mutational spectra across the MUSIC and Repair-
seq datasets, along with the identification of groups of genes with related
function in DNA damage response, provided support for the effectiveness of
the MUSICiAn control-free analysis in estimating pseudo-controls, quantifying
effects, and ultimately generating meaningful insights from CRISPR targeting
under gene silencing screens with mutational spectra readout.

3.3.83 MUSICiAn recovers known gene-DSB repair associations

In addition to estimating pseudo-controls, MUSICiAn attributes an outlier
score to each gene, which determines the multivariate effect of gene silencing
on mutational spectra to suggest (novel) associations between the gene
and DNA damage response. In this context, we first applied MUSICiAn to
the genome-wide MUSIC dataset to assess if it could recover known repair
genes. Genes were ranked by their MUSICiAn outlier score, and the ranking
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Fig. 3.4: Performance of MUSICiAn, recovery of known DNA repair genes. Precision-
recall curves using MUSICiAn ranking (orange) or random ranking (blue)
against the following gold standards for evaluation: (left) curated genes
in Repair-seq and (right) genes annotated with DSB repair-related in Gene
Ontology.

was evaluated against the set of 476 genes curated by Repair-seq and an
alternative set of 295 genes retrieved from the Gene Ontology (GO). The
closer to the top of the ranking these genes appeared, the better the results.
We also performed the same evaluation on a randomly shuffled ranking as a
baseline for comparison. The MUSICiAn method showed superior rankings
for known associations with area under the precision-recall curve (AP) of
0.07 and 0.08 for the Repair-seq and GO gene sets, respectively, compared to
an AP of 0.02 for the random baseline (Fig. 3.4).

Pathway enrichment analysis of the top 500 genes using KEGG annotations re-
vealed significant associations with the “Fanconi anaemia” and “Homologous
recombination” pathways (Fig. 3.5). A link with “Nucleotide excision repair”
was also identified, supporting the idea that single and double-strand repair
mechanisms are functionally intertwined [48]. Another enriched pathway,
“Cell Cycle”, is known to influence DNA repair pathway choice [48, 11]. Many
DSB repair genes were also implicated in the “DNA replication” pathway [8,
13].

Functional enrichment analysis of the top 500 genes using GO annotations
revealed links with repair-related biological processes (Fig. 3.5), including
“DNA repair”, “double-strand break repair”, “double-strand break repair via
homologous recombination”, and “interstrand cross-link repair”, further re-
inforcing the ability of MUSICiAn scores to capture and prioritize effects of
genes on mutational spectra following the repair of CRISPR-induced DSB
sites. Regarding molecular function, various binding activities, including
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DNA, damaged DNA, and ubiquitin-like protein ligase binding, as well as
single-strand DNA helicase activity were identified, all functions required for
DNA damage signalling and repair [49, 36, 34] (Fig. 3.5).

Overall, MUSICiAn recovered known patterns and associations relevant to
the repair of double-strand DNA breaks. While the AP performance may
appear modest, it is significantly better than random. Nevertheless, muta-
tional spectra exhibited relatively low coverage per sgRNA (median: MUSIC
2361.08 vs. Repair-seq 565201.97), leading to noisier mutational spectra that
posed additional challenges in differentiating between true repair factors and
noisy samples. Moreover, the assumption that mutational spectra deviating
from the expected wild-type arise upon silencing of genes associated with
DNA repair does not preclude the existence of other genes involved in DNA
repair that do not affect mutational spectra. Such genes may not play a
central role in the pathway, or their loss of function may be compensated by
other genes, resulting in smaller effects and appropriately lower MUSICiAn
rankings, while negatively biasing the AP.

3.3.4 MUSICiAn identifies lesser-appreciated players in DSB repair

After analyzing established genes and pathways, we also examined several
lesser-recognized pathways and processes emerging from the MUSICiAn anal-
ysis of the MUSIC dataset. Intriguingly, “Ribosome biogenesis in eukaryotes”
was the top enriched KEGG pathway (Fig. 3.5), aligning with emerging
literature from the last decade suggesting a potential cross-talk between
ribosome biogenesis and DNA repair pathways [31]. Recent studies have
also implicated the nucleolus, a major site of ribosome synthesis and the top
enriched cellular component, in the regulation of cellular processes, including
DNA repair [25, 37, 22].

The proteasome and spliceosome were additionally identified as enriched
pathways. The proteasome plays a role in the regulation of the Rnf8-Rnf168
pathway, which itself works to recruit repair factors to DSB sites [36, 23],
and the inhibition of which has been previously shown to reduce HDR events
[14]. As for the spliceosome, there is growing evidence of a role in DNA
repair, with studies suggesting that splicing regulates the expression of Rnf8,
further controlling ubiquitin-signaling at DSBs [34].
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Fig. 3.5: Top 10 enriched KEGG pathways and GO terms among the top 500 genes
ranked by MUSICiAn across targets for the genome-wide MUSIC dataset.
Top left to bottom right - KEGG pathways, GO biological processes, GO
molecular functions, and GO cellular components. The horizontal axis
shows the ratio between the numbers of genes annotated with the pathway
or GO term among the top 500 ranked genes vs. all genes. Circle color
denotes the negative log10 of the FDR-corrected p-value, and circle size
indicates the number of genes annotated with a pathway or GO term among
the top 500 ranked genes.

3.3.5 Enriched pathways promote homology-directed repair

We analyzed how the genes in the identified pathways influenced the fre-
quencies of different mutation types by fitting a linear regression model
per pathway, mutation type, and target site, and using the mutation type
frequency per gene knockout and target site as response variable. Some
pathways lacked sufficient gene representation to fit a reliable regression
model (< 3 samples) and were excluded on a per-analysis basis (Fig. 3.6).

Based on the fitted models, we observed that the genes in each of the enriched
pathways promoted HDR events and repressed insertion events across the
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Fig. 3.6: Effect of genes annotated with the top 10 enriched pathways on mutation
frequency. We considered all genes in the top 10 pathways enriched amongst
the top 500 genes ranked by MUSICiAn based on the genome-wide MUSIC
spectra, with the final number of genes available per target dependent
on the quality of the obtained mutational spectra. Each dot denotes a
linear regression analysis of gene effect on mutation frequency per term
or pathway (vertical axis, with gene count), mutation category (horizontal
axis), and target site (panels for targets T1-T3 in MUSIC). Dot color denotes
the regression coefficient, and dot size indicates the negative logl0 of
the FDR-corrected p-value. Points with non-significant corrected p-values
(> 0.05) were excluded.

target sites in the MUSIC genome-wide screen (Fig. 3.6, T1, T2, T3). Since
NHEJ has been associated with introducing insertions at CRISPR-induced DSB
sites [24, 29], we suggest that the rise and fall in the frequency of insertion
and HDR events could reflect a change in the fraction of DSBs repaired via
the NHEJ and HDR pathways. On the other hand, patterns pertaining to the
promotion or inhibition of deletion events with or without MH were more
sequence-context dependent, making it difficult to associate an inhibited
pathway with how it might influence NHEJ and MMEJ. We note that the
additional variation exhibited by MUSIC target site T1 could be an artifact of
the noisier mutational profiles obtained for that target.
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3.3.6 MUSICiAn identifies novel gene-DSB repair associations

T3
Any insertion i oo
Deletion Obp microhomology L ¢
Deletion 1bp microhomology o}
Deletion 2bp microhomology of
Deletion 3+bp microhomology L
Deletion with insertion o]
Homology directed repair w]
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e Atpbvig1l e H2ax e  Xrcch

Fig. 3.7: Mutational spectra of the top 5 genes ranked by MUSICiAn based on the
genome-wide MUSIC screen. Colored dots denote the frequency obtained
under knockout of the indicated gene The vertical axis shows mutation
types. The horizontal axis shows frequency. The grey lines represent 300
randomly sampled genes. The black lines show the geometric mean of the
pseudo-controls. The colored dots show the top genes. Some dots are not
shown for T1, as the sgRNAs were filtered out during quality analysis.

Analysis of the top 5 genes ranked by MUSICiAn for the genome-wide MUSIC
dataset (Fig. 3.7) revealed two well-known DSB repair genes, H2ax [39] and
Xrcch [43]. The others three genes, Atp6v1gl, Metap2, and H2ac18, were not
annotated with the “double-strand break repair” GO term. The top-ranked
gene was Atp6v1gl, for which one other study has reported an effect on HDR
repair frequency after knockdown of Atp6v1gl via RNA interference [1]. The
MUSIC spectra for target sites T2 and T3 showed a relative decrease in the
frequency of HDR events after CRISPR knockout of Atp6v1g1 compared to the
geometric mean of the pseudo-controls. A similar tendency was observed for
Metap2, a gene associated with ribosomal activity, and for H2ac18, a histone
gene. Identifying histones is not surprising, as the chromatin state regulates
DNA damage response by modulating accessibility to DNA damage sites by
repair factors [17]. However, to our knowledge, no previous studies have
identified an influence of Metap2 or H2ac18 on DNA repair pathways or HDR
in particular. Further experimentation will be required to validate the impact
of these top-ranking genes on mutational spectra and to investigate their role
within the DSB repair process.
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3.4 Conclusion

In this work, we introduced MUSICiAn, a control-free method to identify
genes involved in DSB repair from gene perturbation screens with mutational
spectra readout. MUSICiAn is developed for genome-wide perturbation
screens, and leverages the fact that most genes have negligible influence
on DSB repair and mutational spectra to frame the discovery as an outlier
detection task. The goal of MUSICiAn is to both estimate the central tendency
and identify genes with outlying spectra by analyzing the distribution of all
mutational spectra.

Pseudo-controls estimated by MUSICiAn provided a good approximation
of the actual non-targeting controls available for the Repair-seq dataset,
showing that MUSICiAn could also be effective at sub-genome scale, provided
the assumption that most genes have minimal effect on the spectra can
reasonably be made. Notably, the combination of ILR transformation and
robust covariance used by MUSICiAn contributed to an improved estimation
of the central tendency and pseudo-controls.

Further MUSICiAn analysis of the genome-wide MUSIC data demonstrated
an ability to recover known DSB repair genes and suggest candidates for
further investigation, including Atp6vigl, Metap2, and H2ac18. Our findings
indicated that genes involved in ribosome biogenesis, the proteasome, and
the spliceosome could play a significant role in modulating the frequency of
HDR events, suggesting their involvement in DSB repair.

Obtaining sufficient coverage in genome-wide perturbation studies with
sequence-based output remains a challenge that has also been noted in
prior studies [19]. Low coverage could limit the ability to detect subtle
changes in mutagenic activity for rarer outcomes as the data becomes too
sparse. To address this, we chose to aggregate mutational outcomes into
broader categories. However, MUSICiAn could be applied with any collection
of outcomes, as fine-grained as desired, and as the resolution across the
different outcomes allows.

Overall, the results of MUSICiAn on the Repair-seq and the genome-wide
MUSIC datasets highlighted that the method can effectively estimate pseudo-
controls and identify genes with an impact on mutational spectra, enabling

3.4 Conclusion
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analyses of large-scale screens where designing realistic controls may be
challenging.
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3.5 Supplementary Tables

Target Sample Before Stepi Step ii Stepiii  Stepiv
T1 MBO1 89414 75218 74654 64700 60975
MBO02 89423 76352 75789 67200 63347
T2 MBO3 89492 80058 79887 79606 79401
MBO04 89481 82096 81926 80934 80646
T3 MBO5 89477 79296 79042 78796 78675
MBO06 89478 78492 78237 78112 78037

Tab. 3.S1: Breakdown of sgRNA counts after each QA filtering step as described in
“Quality analysis and sgRNA filtering” from the main article. Briefly, we
filtered out sgRNAs per replicate by applying the following criteria in
order: (i) a total mutated read count below 700; (ii) only two sgRNA
representations for the gene; (iii) a median pairwise Pearson correlation
coefficient below 0.6 compared to other sgRNAs for the same gene within
the same replicate; or (iv) a median pairwise Pearson correlation below

0.6 compared to paired replicates at the same target site.

Target Sample Before Stepi Step ii Stepiii  Stepiv
T1 MBO1 18406 18023 17887 17130 17004
MBO02 18405 18025 17889 17251 17135
T2 MBO03 18406 18167 18116 18090 18089
MBO04 18406 18264 18213 18144 18140
T3 MBO5 18406 18224 18149 18134 18133
MBO06 18406 18178 18103 18095 18092

Tab. 3.52: Breakdown of gene counts after each QA filtering step per the steps

outlined in Table S1 above.

3.5 Supplementary Tables
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MUSICiAn Category

SIQ Categories

Description

Wild-type WT No mutation.
Deletion with inser- DELINS Deletion with inser-
tion tion.

TINS Deletion with an in-
sertion where the in-
sert is copied from the
flank.

TANDEMDUPLICATION  Duplication of se-
quence immediately
flanking the cut-site.

TANDEMDUPLICATION- A tandem duplication

_COMPOUND with some additional
inserted sequence.

Insertion INSERTION Any simple insertion
event.

Homology-directed HDR Homology-directed

repair repair event.

Deletion with no/1bp/ DELETION Any simple deletion

2bp/3+bp event. Additional

microhomology details recorded in-

clude the presence
and length of any ho-
mology between one
side of the deleted se-
quence and the oppos-
ing flank of the cut
site.

details.
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3.6 Supplementary Figures

Wild Type Cells

CRISPR target

site Gene knockouts

CRISPR-Cas9
targeting

Cells with knockouts

Mutational
outcomes

Counts of mutations
per target site and
5 knockout sgRNA

Read Count

Mutation

Fig. 3.S1: Ilustration of CRISPR gene perturbation screens with mutational spectra
readout. First, sequences are integrated into the genomes of cells via
lentiviral transduction. Each sequence contains two elements: (i) a sgRNA-
encoding region to knockout (MUSIC) or silence (Repair-seq) a single
gene, and (ii) a region common to all integrated sequences to be targeted
with CRISPR to produce the mutational spectra. After genomic integration,
several days of cell culture are allowed for genes to be knocked out.
Following this, MUSIC again uses lentiviral transduction to introduce
sgRNAs targeting the common region to the Cas9-expressing cells. Repair-
seq uses electroporation to introduce Cas9 RNP complexes to the cells to
induce DSBs at the target site. After allowing time for cell culture for DNA
cleavage and repair, DNA sequencing was performed to capture the final
CRISPR repair products.
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Number of sgRNA with zero counts
per mutation category
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Fig. 3.52: Counts of sgRNAs with zero values per mutation category and replicate.
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Signatures in CRISPR Mutational
Spectra Reveal Role and Interplay
of Genes in DNA Repair

If we understand how mutations are
produced and how they’re repaired and how
they can be manipulated, we are really
dealing with a fundamental aspect of cancer
research.

— Evelyn Witkin
(2015 Lasker Basic Medical Research
Award Acceptance Speech)

Understanding double-strand break (DSB) repair and its disruption is key to
decipher genomic instability driving diseases such as cancer and reveal thera-
peutic avenues. Numerous genes have been linked to DSB repair for the first
time in recent genome-wide perturbation studies assessing effects on mutational
outcomes. However, the functional roles of most such genes remain poorly under-
stood. Evidence from other studies shows that related genes similarly modulate
the frequency of specific mutational outcomes following DSB repair, but analysis
has largely ignored the multiplicity of gene functions and cross-talk between
pathways. Here, we infer functional roles for candidate genes based on knockout
mutational spectra by identifying mutational signatures shared with known
genes and then mapping them to DSB repair functions. Signatures are identified
using non-negative matrix factorization (NMF) to reflect functional multiplicity
and cross-talk. We generated mutational spectra for mouse embryonic stem

Colm Seale, Marco Barazas, Robin van Schendel, Marcel Tijsterman, and Joana P. Gongalves.
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(mES) cells at three target sites across CRISPR knockouts of 307 known and
459 candidate DSB repair genes. Analysis using NMF revealed four mutational
signatures associated with homology-directed repair (HDR), microhomology-
mediated end-joining (MMEJ), and the initiation and ligation components of
non-homologous end-joining (NHEJ). Signatures suggested that candidate genes
Dbrl and Hnrnpk could influence MMEJ and Fanconi anaemia (FA), and that
loss of core NHEJ components (e.g. MRN complex or Ku proteins) could shift
repair preference towards Ku-independent NHEJ. These findings demonstrate the
utility of NMF for characterizing the contribution of genes to repair pathways
and provide a foundation to discover new gene functions in DSB repair.

4.1 Introduction

Effective cellular repair of DNA double-strand breaks (DSBs) is essential
to prevent genomic instability leading to cell death or the development of
diseases such as cancer [6]. Deficiencies in DNA damage response do not
only drive tumor progression, but also expose vulnerabilities of tumor cells
that can be leveraged for treatment. Conventional chemo and radiation
therapies work by inducing substantial DNA damage, from which tumor cells
with compromised repair struggle to recover. However, such therapies also
affect healthy cells, causing debilitating side effects and possibly recurrence.
Targeted treatments mitigate this toxicity by design by selectively exploiting
unique handicaps of tumor cells. For instance, PARP inhibitors trigger the joint
essentiality between PARP and BRCA genes to treat tumors with deficient
BRCA function [8]. While the benefit of targeted therapies can be great,
development requires in-depth knowledge of DSB repair mechanisms and
the functions of individual genes. Advancing the understanding of DSB
repair is therefore essential to reveal mechanistic relationships offering new
therapeutic possibilities to improve patient care and quality of life [1].

The study of DSB repair has been accelerated by the availability of CRISPR
(Clustered Regularly Interspaced Short Palindromic Repeats) technology
to induce DSBs at predefined genomic loci [15]. A growing number of
studies combine CRISPR targeting with DNA sequencing readout to analyze
mutational spectra resulting from DSB repair activity and gain new insights
into repair mechanisms at scale. Specifically, several studies have used
CRISPR targeting across collections of loci to investigate the influence of
sequence context around the DSB within a few different cell types or genomic
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contexts [28, 36, 37]. Others have paired systematic knockouts of individual
DSB repair genes with CRISPR targeting across loci to tease out the function
of each gene and its specific contribution to DSB repair mechanisms [13].
For example, cells harboring knockouts of Polq show significantly fewer long
deletions with microhomologies (MHs) at DSBs post-repair than wild-type
cells, consistent with the key role of the gene in the microhomology-mediated
end-joining repair pathway [41, 13]. Such insights have also recently inspired
genome-wide and follow-up focused screens of gene knockout effects on
mutational spectra aimed at uncovering new gene associations with DSB
repair [3, 35].

Existing studies to elucidate the role of genes in DSB repair take different
approaches to analyze the effects of the gene knockouts on mutational spectra
relative to controls. One strategy is to separately examine the impact on
individual outcomes of interest, such as 1bp insertions or deletions [3]. Such
univariate analysis ignores covariation of outcomes produced by shared un-
derlying mutational processes, whereas repair mechanisms and genes do not
function in isolation. Multivariate methods are also applied to reveal genes
involved in DSB repair through outlier analysis of spectra from genome-wide
knockout screens, resulting in candidate associations of genes with DSB repair
but no further insight into possible functions [35]. Alternative multivariate
strategies are further used to discover relationships between known DSB
repair genes based on similarity of their mutational spectra, relying on con-
ventional clustering or manifold learning. Conventional clustering techniques
such as hierarchical clustering [31] focus on global similarities across the
entire mutational spectra and thus ignore that the same gene or mechanism
can contribute to multiple outcomes, whereas manifold learning methods like
UMAP [23] can capture local relationships between genes based on subsets
of outcomes but are not straightforward to interpret due to their non-linear
nature [29, 19].

Here, we propose using non-negative matrix factorization (NMF) to analyze
mutational spectra of known and candidate DSB repair genes, and identify
relationships offering insight into the functional role of such candidates. The
advantage of NMF is that it captures local patterns while being interpretable
and producing clusters or factors with “soft” gene memberships, reflecting the
fact that genes can operate in multiple DSB repair pathways and that distinct
pathways can produce identical outcomes at varying rates (also co-occurring
with different sets of other outcomes). This is achieved by decomposing the
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mutational spectra of all gene knockouts into mutational signatures capturing
patterns across subsets of knockouts, and signature exposures quantifying
the contribution of each signature to the spectrum of each gene knockout
[22, 20].

In this work, we generate mutational spectra for three target sites under
individual knockouts of 766 genes, including 307 known DSB repair genes
and 459 candidates selected based on outlying spectra from a previous
genome-wide knockout screen [35]. We investigate the ability of NMF to
identify signatures and exposures that recover known mutational patterns and
responsible genes linking signatures to DSB repair pathways. We also leverage
signature depletions to suggest DSB repair mechanisms for candidate genes,
and explore how joint depletion patterns may provide further functional
granularity for genes of the same pathway (Fig 4.1).

controls and biological insights

Mutational Spectra Signatures Exposures
s1 s2 s3 E1  E2 E99
P
Il 50131 0] (30 A — | 5 Hm B
@ 2 100 5 20 60 5 5
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Fig. 4.1: Identifying DSB repair gene function via NMF analysis of mutational
spectra. Mutational spectra, defined as counts over a set of unique muta-
tional outcomes (columns A-D), for cell populations carrying knockouts
of individual genes (rows E1-E99). Estimation of mutational signatures
(S1-S3) and associated exposures (E1-E99) using NMF. Analysis of signa-
ture exposure ratio relative to controls (log2 fold-change) identifies gene
knockouts depleted in signature-specific mutational outcomes, which can
be further linked to other genes and functional mechanisms with impact on
the same signatures.

4.2 Methods

We analyzed two datasets of mutational spectra for mouse embryonic stem
(mES) cells carrying knockouts of individual genes: the primary dataset,
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generated for this study, comprising knockouts of 766 genes and three target
sites; and a published dataset, which we name Barazas2025 (not publicly
available at time of writing, access may be granted upon reasonable request
to the corresponding author), comprising knockouts of 742 genes and one
target site [3]. There were 273 genes in common between the two screens.
We included the Barazas2025 dataset mainly to assess the robustness of the
mutational signatures identified from the primary dataset.

4.2.1 Generating mutational spectra

Selecting genes for the primary screen. The set of 766 genes for the pri-
mary screen consisted of 459 candidate genes and 307 known DSB repair
genes. The candidate genes were based on the analysis of a genome-wide
study quantifying the effect of individual gene knockouts on mutational spec-
tra [35]. While the genome-wide study traded gene coverage for mutational
spectra resolution, here we focused on profiling the more promising genes at
higher resolution to increase the robustness of potential findings. Specifically,
we selected the 459 genes with the largest impact on their knockout muta-
tional spectra according to a multivariate outlier score measuring deviation
relative to the center of the distribution of all mutational spectra.

To be able to relate mutational signatures and candidate genes to established
DSB repair mechanisms, we additionally selected 307 DSB repair genes as the
union of the following three sets of genes: (i) annotated with Gene Ontology
(GO) terms “double-strand break repair” or “interstrand cross-link repair”
[9]1; (ii) annotated with KEGG pathways “Homologous recombination” (ID:
mmu03440), “Non-homologous end joining” (ID: mmu03450), or “Fanconi
anaemia pathway - Mus musculus (house mouse)” (ID: mmu03460) [16];
and (iii) curated as the 118 DSB repair genes with the largest effect in the
Repair-seq study [13].

Screening DSB repair outcomes. To generate mutational spectra, we fol-
lowed the experimental protocol in [3] (Supplementary Fig. 4.S1). Briefly,
paired guide-target DNA sequences were integrated into the genomes of
endogenously Cas9-expressing mouse embryonic stem (mES) cells via lentivi-
ral transduction. Each integrated sequence contained a single-guide RNA
(sgRNA) designed to knock out a specific gene or as a non-targeting control,
and one of three 20bp target sequences with protospacer adjacent motif

4.2 Methods
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(denoted T1-T3). For the primary screen, we used a total of 2,321 knockout
sgRNAs (~3 per gene), and 50 additional non-targeting control sgRNAs. The
Barazas2025 screen included a total of 2,400 knockout sgRNAs for 742 genes,
and 170 non-targeting control sgRNAs. After allowing 5 days for genomic
integration and gene knockout, we split the bulk cell population into nine
samples for the primary screen (3 targets x 3 replicates) or 3 samples for
the Barazas2025 screen (1 target, 3 replicates). Per sample, we performed a
second round of lentiviral transduction to express sgRNAs and induce DSBs
at the integrated target sites. Following ~80h of cell culture for cleavage and
repair, we used paired-end DNA sequencing to characterize repair outcomes
at the integrated sites.

Processing outcome sequences into mutational spectra. We used the SIQ
v4.3 tool [33] to call mutational outcomes from the sequencing data, with
parameters “-m 2 -c -e 0.05” (requiring a minimum number of 2 reads to
count an event, collapsing identical events to a single record with the sum
of counts, and allowing a maximum base error rate of 0.05). The outcomes
were split into four categories: deletion; insertion; templated insertion,
denoting a deletion with an insertion where the inserted sequence matches
a region flanking the cut site; and HDR event, for any insertion matching a
provided donor template DNA. Additionally, we recorded length and location
for both insertions and deletions, as well as microhomology (MH) length
when present for deletions. All templated insertions were collapsed into a
single category, with the respective sum of counts over all observed events.
Wild-type sequences were excluded to produce a final collection of mutational
outcomes with the corresponding counts per sgRNA.

To filter rare outcomes, we excluded outcomes with a geometric mean fre-
quency below 0.002 across the non-targeting controls. This resulted in a
final set of mutational spectra containing 28-44 outcomes per target site
and replicate for the primary screen and 32 outcomes per replicate for the
Barazas2025 screen (Supplementary Table S1 for outcome counts, and Sup-
plementary Tables S2-S5 for mutation details).

Replicate quality analysis and selection. We assessed data quality by
calculating pairwise Pearson’s correlations between replicates of the same
target site, using the sgRNAs and outcomes common to each pair. Average
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correlations were above 0.98, indicating high quality throughout (Supple-
mentary Table S5). We selected the replicate with the largest number of
recovered gene knockouts per target site (T1: 2,291, T2: 2,291, T3: 2,304,
Barazas2025: 2,358; Supplementary Table S1) for downstream analysis.

4.2.2 Identifying co-occurring mutational patterns

Analyzing patterns across target sites. Since mutational spectra are target
site-specific, to characterize patterns across sites for the primary dataset, we
concatenated the mutational spectra of the three target sites per sgRNA into
a single mutational spectrum covering all three sites. We excluded sgRNAs
missing from any of the target sites. To mitigate target-specific batch effects,
we scaled the counts per sgRNA to equalize the ranges of counts across the
different targets. This resulted in a three-target mutational spectra count
matrix of 2,288 sgRNAs x 112 mutational outcomes.

Identifying signatures and exposures. Each mutational spectrum reflects
the aggregated contribution of all mutational processes, including DSB re-
pair mechanisms, active in the cell population from which the spectrum
was derived. Each mutational process tends to produce specific mutational
outcomes at specific rates, resulting in a fingerprint or signature. Our goal is
to decipher the mixture of signatures underlying the collection of mutational
spectra using NMF, and later attempt to link each signature to responsible
genes and pathways.

Formally, the input is a matrix V' € N™*" of n mutational spectra defined
as count distributions over a set M of m mutational outcomes. We aim to
decompose V into the product of two matrices V' ~ S x E: the signature
matrix S € R™** representing a collection of k signatures, each defined as a
frequency distribution over the set of outcomes M ; and the exposure matrix
E € NF*" denoting the contribution of each of the k signatures to every one
of the n mutational spectra.

Signatures S and exposures E can be estimated from V, given a fixed number
of signatures k, using NMF [22]. Here, we used the SigProfilerExtractor [14]
v1.1.23 framework, which includes additional bootstrapping steps to identify
more robust or stable signatures for a fixed k, and an evaluation procedure to
optimize the number of signatures k. We optimized the number of signatures
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between a minimum of 1 and a maximum of 10, and used 30 bootstraps for
signature robustness or stability.

SigProfilerExtractor selects the solution S and F for the number of signatures
k that produces the closest reconstruction of the original mutational spectra
V, with an average stability across bootstraps above a threshold (we used 0.8).
We identified 4 signatures for the primary dataset and 5 for the Barazas2025
dataset (Supplementary Figs. 4.S2 and 4.S3). SigProfilerExtractor assigns a
string identifier to each signature, such as ‘CH112A, where ‘CH’ indicates the
signature is extracted over a set of custom outcomes, ‘112’ is the number of
outcomes in the set, and A is a letter of the alphabet identifying a specific
signature.

4.2.3 Elucidating responsible genes and pathways

Identifying genes responsible for signatures. Given that exposures indicate
the contribution of the signatures to the mutational spectra, changes in
exposures can be used to detect genes with an effect on those signatures.
If a gene is responsible for a signature, knocking it out should weaken the
strength of that pattern and therefore lower the signature exposure compared
to control cells, which we term as signature depletion. To detect this type of
effect, we calculate the change in exposure J; ; for a gene knockout spectrum
t and signature s as:

05 =logy | ———— (4.1)

where e} and e denote exposures of signature s for gene knockout spectrum
t and non-targeting control spectrum c, respectively, and C refers to the set of
all non-targeting control spectra of size |C|. Note that the denominator corre-
sponds to the geometric mean of the exposures of the non-targeting controls.
For the log2 fold change calculations, we handled zeros by applying multi-
plicative replacement, using defaults as implemented in scikit-bio v0.5.9 [32].

Linking signatures to DSB repair functions. To associate signatures with
biological functions, we performed GO enrichment analysis. First, we quan-
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tified the effect of each gene knockout ¢ on the exposures of the different
signatures relative to the non-targeting controls using the change in exposure
formula §; ; (Equation 4.1). Second, we singled out genes “responsible” for
a given signature as those genes whose knockout spectra showed outlying
low change in exposure for that signature (below Q1 - 1.5xIQR, where Q1 is
the first quartile and IQR is the inter-quartile range). Finally, we performed
enrichment analysis for the selected “responsible” genes against the full gene
set as the background, using the GOEnrichmentStudyNS function in “goatools”
v1.2.3 [17]. We corrected the resulting p-values for multiple testing using
the Benjamini-Hochberg method [4].

Visualizing pathway-signature activity. To visualize the influence of gene-
pathway members on exposure profiles, we obtained labels from public
databases [2, 24] and lists curated by major studies [40, 18, 27]. We first
compiled gene sets involved in HDR, NHEJ, and Fanconi anaemia (FA) per
source. Then we used majority voting to assign one single label per gene,
excluding ties to reduce ambiguity.

4.3 Results and Discussion

4.3.1 NMF identifies mutational processes and shared outcomes

Our primary aim with this study was to uncover new functional roles for
genes in DNA repair by leveraging their similarity to known DSB repair
genes, based on the effect of gene knockouts on mutational patterns. To
assess the potential of this approach, we first investigated if we could recover
associations between genes with previously validated DSB repair functions.
In addition, we sought to characterize relationships between mutational
outcomes and describe how related genes might share responsibility for such
outcomes via repair pathway co-membership or upstream co-regulation. We
analyzed global associations between genes or outcomes using hierarchical
clustering and also identified more localized co-occurring mutational patterns
involving subsets of genes and mutational outcomes using NMF.

Hierarchical clustering of the gene knockouts based on changes in the fre-

quency of mutational outcomes relative to controls across the three target
sites revealed functionally related groups (Fig. 4.2, central heatmap), in-
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cluding; MRN complex genes Mrel1la/Nbn/Rad50 involved in DNA damage
sensing and repair, with influence on pathway choice; Lig4 complex genes
involved in DNA ligation Lig4/Xrcc4/Nhej1/Poll, NHEJ-initiating Ku complex
genes Xrcc5/Xrcc6; RING-type E3 ubiquitin ligases Rnf8/Rnf168 involved in
response to DNA damage and recruitment of repair factors with influence
on pathway choice; and Fanconi anemia (FA) core complex genes. These
associations confirmed that knockouts of genes with related roles tended to
cluster together based on changes in the mutational spectra.

Clustering of mutational outcomes based on the same mutational frequency
changes showed consistent effects across the three target sequence contexts
for certain categories of mutations (Fig. 4.2 central heatmap and MT bar):
shorter deletions (<4 bp) frequently co-occurred with insertions, while longer
deletions with microhomologies correlated with templated insertion (TINS)
events. Such co-occurrences suggest that the mutational outcomes could
be influenced by similar repair processes and genes, independent of target
site-specific effects.

Fig. 4.2: Impact of gene knockouts on mutational spectra and identified mutational
signatures (overleaf). (Central heatmap) Effect of the 75 gene knockouts
with the largest outcome redistribution (columns) on every mutational out-
come across three target sites (rows), with outcomes further characterized
by mutation type (MT) and microhomology length (MH). Effect quanti-
fied using the log2 fold-change in outcome frequency between the gene
knockout spectrum and the geometric mean of the non-targeting control
spectra. Gene knockouts and mutational outcomes ordered based on hierar-
chical clustering with Ward linkage and Euclidean distance. (Signature bar
plots) Mutational profiles of the identified signatures, with bars denoting
the frequency of each mutational outcome. (Bottom heatmap) Depletion
in exposure of each identified signature per gene knockout, as the log2
fold-change between the exposure of the gene knockout sample and the
geometric mean exposure of the non-targeting controls. Key DSB repair
genes and complexes highlighted.
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Nevertheless, clustering analysis ignores that genes can be involved in multi-
ple repair pathways, and pathways may share responsibility for producing
specific mutational outcomes. To capture such relationships, we analyzed the
mutational spectra using the NMF-based SigProfiler framework (see Methods).
We identified four distinct and reproducible mutational signatures, CH112A-
CH112D, each with unique mutational profiles (Fig. 4.2 bar plots). Signature
CH112A showed the highest proportion of longer deletions with larger MH
lengths and the highest frequency of templated insertions (Fig. 4.2 bar plots
and Fig. 4.3). Signature CH112B showed a larger fraction of small deletions
and insertions, while CH112C and CH112D were dominated respectively by
HDR events and insertions (Fig. 4.3). We also observed that outcomes such
as HDR events were exclusively linked to one signature (CH112D), whereas
other outcomes like insertions appeared in more than one signature (CH112B
and CH112D) due to co-occurrence with different mutational outcomes in
distinct sets of gene knockout spectra. These results show that NMF has the
ability to capture more granular relationships between mutational outcomes
possibly associated with multiple mutational processes, which could other-
wise be missed using conventional clustering focusing on global similarities
across mutational spectra.

Deletion Length Deletion Length (<4bp) Microhomology Length
CH112A
CH112B
CH112C
CH112D
0.00 0. OJ 0.0 0. 02 0.0 0. Ul
Insertion Length HDR Frequency TINS Frequency
CH112A
CH112B
CH112C
CH112D
0.000 0. 002 0. 004 . 0. U]

Average repair outcome characteristics (weighted by outcome frequency).

Fig. 4.3: Signature deletion and insertion properties. Per signature average of dele-
tion and insertion outcome properties. Outcome properties: deletion length,
small deletion length (< 4bp), deletion microhomology (MH) length, in-
sertion length, homology-directed repair (HDR) frequency, and templated
insertion (TINS) frequency. The first four length properties are weighted by
the signature frequency of the respective outcomes.

We also analyzed the effect of each gene knockout on the contribution of
the different signatures to the observed mutational spectrum, by looking
at changes in the NMF-estimated signature exposures between gene knock-
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Fig. 4.4: Exposure baseline in controls and change in knockouts. Subfigures: (left)
signature exposures of non-targeting controls; (right) impact of every gene
knockout on signature exposures, as the log2 fold change between the
exposure of the knockout and the geometric mean exposure of non-targeting
controls. Black circles highlight Polq knockouts. Boxplot: box delimits the
interquartile range between 1st and 3rd quartiles JQR = Q3 — Q1), with
a line across the box denoting the median; whiskers indicate the smallest
and largest values within [Q1 — 1.5 X IQR, @3 + 1.5 x IQR], and points
beyond them are considered outliers.

out and controls (see Methods). The diverse impact across genes reflected
individual and shared responsibilities for distinct mutational patterns (Fig.
4.2 bottom heatmap). For example, Polg gene knockouts singularly reduced
CH112A exposures, while FA core complex gene knockouts lowered CH112C
exposures. In contrast, members of the MRN complex influenced multiple sig-
natures (CH112A-B), reflecting their broader role as DNA damage checkpoint
genes with an impact on DSB repair pathway choice [21].

Together, this NMF-based analysis of mutational spectra dissected important
biological realities that would be missed by conventional techniques, includ-
ing the multiplicity of roles played by genes and the complexity of shared
mutational outcomes arising via alternative repair mechanisms.

4.3.2 Signature exposures reveal drivers of mutational patterns

We sought to identify mechanisms underlying each mutational signature by
examining the biological functions of genes with a larger impact on signature
exposures. Controls (Fig. 4.4, left) showed a prominent contribution from
signature CH112A (median 52.9%) linked to deletions with longer MH,
followed by CH112C (median 20.3%) associated with HDR events, CH112B
(median 14.4%) producing insertions and small deletions, and CH112D
(median 12.3%) dominated by insertions. As for the gene knockouts, the
largest effects on exposures systematically pointed to a reduction relative to
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controls (Fig. 4.4, right), suggesting that those genes tended to promote the
mutational signature of interest.

CH112B
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Fig. 4.5: Enriched biological processes for genes involved in signature depletions.
Enriched Gene Ontology terms for genes whose knockouts promoted out-
lying depletion in the exposures of signatures CH112B-D (top to bottom).
We analyzed the genes corresponding to outliers below Q1 — 1.5 X IQR
in Fig.4.4. Signature CH112A did not yield significant results. Each plot
shows, for each enriched process (vertical axis): number of genes annotated
with the term among the outliers (circle size), fold enrichment as the ratio
between the proportions of term-annotated genes among the outliers and
among the full set of 766 knocked out genes (horizontal axis) and FDR-
corrected p-value (color gradient). Terms directly related to DSB repair are
highlighted in boldface.

To associate signatures with potential biological functions, we performed a
functional enrichment analysis of Gene Ontology terms focusing on the genes
causing the largest outlying depletion for each signature (see Methods). We
found no significantly enriched terms for signature CH112A; however, its
association with long MH deletions and the large depletion in exposure caused
by Polq knockouts suggested a link with the MMEJ pathway (Figs. 4.3-4.4).
The remaining three signatures, CH112B-D, were enriched for genes involved
in DSB-related processes (Fig. 4.5). Specifically, CH112C was associated with
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interstrand cross-link repair, a function of the FA core complex. Signatures
CH112B and CH112D were both linked to non-homologous end joining
(NHEJ), with CH112D specifically involved in DNA ligation via the ligase IV
complex, and a higher frequency of insertions suggesting a role of the ligase
IV complex in producing these mutations.

We recovered signatures linked to similar functions from the Barazas2025
screen of X genes on one target site (Supplementary Figs. 4.54-4.S7), confirm-
ing the robustness of the NMF-based analysis. Naturally, the signatures were
also similar but not identical across the datasets, as expected given the differ-
ences in gene sets, target sites, and sequencing depth. For instance, signature
CH112C responsible for HDR events and related to the FA core complex and
cross-link repair (Figs. 4.2/4.5), seemed to branch into two Barazas2025 sig-
natures (Supplementary Fig. 4.S4): CH32A, producing HDR events and MH
deletions, and influenced by FA core complex genes; and CH32E, linked to
HDR events and longer MH deletions, influenced by members of the Trp53bp1
pathway only present in the Barazas2025 dataset (Shieldin complex genes
Shld1 and Shld2; CST complex genes Ctcl, Stnl, and Tenl; and genes Rif]l
and Mad212, [25]) . Interestingly, the knockout of genes Rnf8/Rnf168 led
to depletion of both signatures CH32A and CH32E, with larger impact on
CHB32E. This effect was consistent with the role of the Rnf8/Rnf168 genes
as regulators of pathway choice and recruitment of repair factors, including
Trp53bp1 [26].

Overall, the analysis of exposure profiles enabled us to identify key drivers
of mutational signatures, which we further linked to biological functions to
obtain fingerprints of DSB repair activity at CRISPR-induced DSBs.

4.3.3 Exposures suggest DSB repair role for Dbr1 and Hnrnpk genes

We analyzed genes with large knockout signature depletions and no direct
annotations with DSB repair terms to infer their potential roles. In both
datasets, Dbr1 (Debranching RNA Lariats 1) emerged as the top unannotated
gene. Knockouts of Dbrl resulted in a significant depletion of signatures
CH112A and CH112C, respectively linked to MMEJ and FA activity. Similarly,
knockouts of Hnrnpk (Heterogeneous Nuclear Ribonucleoprotein K), present
only in the primary dataset, also showed depletion of CH112A and CH112C.
It has been suggested that Hnrnpk could be a cofactor of p53-mediated DNA
damage response, possibly including activation of Rrm2 as a downstream

4.3 Results and Discussion

111



112

Nontargeting
Rnf8

Rnf168
Mrella

Nbn

Rad50 .

Xreech Signature
Xrec6 BN CH112A
Dclrelc Ea— ] I CH112B
Xrccd I [ CH112C

Lig4 e = CH112D
Nhej1

Poll

Polm

Polq

Dbr1
Hnl’npk' T T T T T

0.0 0.2 0.4 0.6 0.8 1.0

Exposure

Fig. 4.6: Signature exposure profiles of selected genes. Each signature exposure
value was divided by the sum of exposures per knockout and summarized
per gene by taking the geometric mean value across knockouts of that gene.

target involved in nucleotide metabolism [12, 39, 5]. Our findings based on
signature exposures indicated that Dbr1 and Hnrnpk might specifically influ-
ence MMEJ and FA, but further experimental validation would be necessary
to elucidate their precise roles in DSB repair.

4.3.4 Exposure analysis challenges existing repair models

Finally, we investigated if the ability of NMF to capture local co-occurrence
patterns of subsets of mutational outcomes across subsets of gene knockouts
could reveal genes involved in multiple DSB repair pathways. To achieve this,
we analyzed the impact of gene knockouts simultaneously across every pair
of signatures, focusing our interpretation on genes with known DSB repair
pathway associations (Fig. 4.7). We observed that the knockout of key NHEJ
genes and core members of the Lig4 complex (Xrcc4 or Lig4) promoted a large
depletion of signatures CH112B and CH112D, respectively comprising shorter
deletions and primarily 1bp insertions. This finding was consistent with the
role of the Lig4 complex in the final ligation step of NHEJ, whose disruption
would be expected to hamper the overall NHEJ pathway function.

Interestingly, knockout of other NHEJ genes known as members of the Ku
complex and involved in the initiation of repair by NHEJ, Xrcc5 or Xrcc6, led to
the depletion of CH112B but not CH112D. Given the association of CH112D
with the Lig4 complex, these results suggested a shift towards Ku-independent
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Fig. 4.7: Interplay of signatures based on shared depletion patterns. Pairwise signa-
ture depletion scatterplots, with every data point denoting a gene knockout
coloured by the DSB repair pathway. The two axes represent signature
depletion for the pair of signatures of interest, defined as the log2 fold
change in exposure for the gene knockout sample relative to the geometric
mean of the non-targeting controls. Grey dashed lines denote zero change.
Notable gene knockouts are highlighted using ellipses and labelled.

NHEJ as the dominant repair mechanism in the absence of Xrcc5 or Xrcc6.
While classical NHEJ models consider Xrcc5/Xrcc6/Dclrelc required for Lig4
activity, there is growing evidence for alternative NHEJ circumventing this
requirement, though this remains poorly characterized [34, 11, 10, 38].

We also observed some similarity in the exposure profiles of the core Lig4-
Xrce4 heterodimer and its accessory factors Poll and Nhej1, with all four genes
causing a depletion of signature CH112D (Fig. 4.6), suggesting they could
be responsible for NHEJ-related insertions [7]. Other candidate polymerases
typically involved in NHEJ insertions, such as Polm [30], did not show the
same effect on signature CH112D, highlighting the potential of NMF signature
analysis to refine DSB repair function.

4.3 Results and Discussion
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Knockouts of MRN complex genes reduced CH112A and CH112B activity,
indicating the suppression of classical NHEJ and MMEJ pathways. In the
absence of MRN complex genes, the Ku-independent NHEJ signature CH112D
emerged as the predominant repair pathway. Overall, this multi-signature
analysis of depletion patterns suggested a high degree of adaptability and
cross-talk among DSB repair mechanisms. In particular, elements of how
NHEJ compensates for inter- and intra-pathway deficiencies may deserve
greater experimental attention.

4.4 Conclusion

In this work, we proposed a computational strategy to infer functions for
genes in DSB repair based on high-resolution mutational spectra obtained
following gene perturbation screens with CRISPR targeting. Specifically, we
identify signatures of mutational activity influenced by both known and can-
didate DSB repair genes using NMF, attribute these signatures to established
DSB repair mechanisms, and link these functions to new genes.

Our NMF analysis of the mutational spectra we generated for a combined set
of 307 known and 459 candidate genes revealed an influence of Dbr1 and
Hnrnpk knockouts on MMEJ and FA activity, indicating potential roles for
these genes in DSB repair. Additionally, signature contributions to mutational
spectra revealed two signatures with varying dependencies on members of
the Lig4 complex, representing distinct branches of the NHEJ pathway. This
provided evidence of Lig4 complex activity in the absence of upstream NHEJ
factors like Xrcc5 or Xrcc6, suggesting that NHEJ could function independently
of Ku factors.

Overall, our study highlights the potential of computational approaches for
dissecting mutational patterns in CRISPR screens and exploring the genetic
landscape of DSB repair. In particular, NMF enables us to identify mutational
signatures that serve as fingerprints of repair pathway activity, powering
an unsupervised approach to exploring large-scale CRISPR mutational data
with the potential for nuanced interpretations and discovery of functional
relationships between genes and DSB repair pathways.
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4.5 Supplementary Tables

Num. Frequent

Dataset Target Replicate Num. sgRNAs Outcomes
Primary T1 1 2156 29
2 2235 28
3* 2291 28
T2 1 2240 38
2 2249 39
3* 2291 40
T3 1 2304 44
2 2291 44
3* 2304 44
Barazas2025 T1 1 2358 32
2% 2366 32
3 2350 32

Tab. 4.S1: Breakdown of the number of sgRNAs for which mutational spectra were
recovered and the number of frequently occurring outcomes per dataset,
target site, and replicate. * denotes the replicate that was selected for
downstream analysis.

Type Start End Ins MH Repair Product
1 D -10.0 2.0 1.0 CAAGG---------- | -—AGGGCCTATTTC
2 D -10,0 5.0 3.0 CAAGG-------—-- |-=——- GCCTATTTC
3 D -10.0 6.0 2.0 CAAGG---------- | —————- CCTATTTC
4 D -11.0 2.0 3.0 CAAG--------"-"- | -——AGGGCCTATTTC
5 D -13.0 17.0 3.0 CA-——-———-————- [ ===
6 D -14.0 8.0 2.0 C-———=————————- [ === TATTTC
7 D -1.0 5.0 3.0 CAAGGTCGGGCAGG-|----- GCCTATTTC
8 D -1.0 6.0 2.0 CAAGGTCGGGCAGG-|------ CCTATTTC
9 D 240 8.0 50 -—————————————- | —==————- TATTTC
10 D -2.0 2.0 2.0 CAAGGTCGGGCAG--|--AGGGCCTATTTC
11 D -3.0 0.0 1.0 CAAGGTCGGGCA---|AGAGGGCCTATTTC
12 D -3.0 17.0 2.0 CAAGGTCGGGCA---|----=————————-
13 D -4.0 7.0 4.0 CAAGGTCGGGC----|-==—--- CTATTTC
14 D -5.0 5.0 2.0 CAAGGTCGGG----- [-——-- GCCTATTTC
15 D -6.0 6.0 2.0 CAAGGTCGG------ |-————- CCTATTTC
16 D -8.0 7.0 1.0 CAAGGTC-------- |-—————= CTATTTC
17 D -8.0 8.0 1.0 CAAGGTC-———-—---- |-—=————- TATTTC

Continued on next page
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— continued from previous page

Type Start End Ins MH Repair Product

18 D 0.0 10.0 1.0 CAAGGTCGGGCAGGA|---------- TTTC
19 D 0.0 1.0 1.0 CAAGGTCGGGCAGGA |-GAGGGCCTATTTC
20 D 0.0 3.0 2.0 CAAGGTCGGGCAGGA|---GGGCCTATTTC
21 D 0.0 4.0 0.0 CAAGGTCGGGCAGGA|----GGCCTATTTC
22 D 0.0 6.0 0.0 CAAGGTCGGGCAGGA|------ CCTATTTC
23 D/L 0.0 30 G 0.0 CAAGGTCGGGCAGGAG---GGGCCTATTTC
24 HDR AGGTCGGGCAGGAXAGAGGGCCTATT

25 1 0.0 0.0 GG AAGGTCGGGCAGGAGGAGAGGGCCTATTTC
26 1 0.0 0.0 G CAAGGTCGGGCAGGAGAGAGGGCCTATTTC
27 1 0.0 00 T CAAGGTCGGGCAGGATAGAGGGCCTATTTC
28 1 1.0 1.0 A CAAGGTCGGGCAGGAAAGAGGGCCTATTTC
29 TINS GGTCGGGCAGGAXAGAGGGCCTATT

Tab. 4.52: T1 frequently occurring repair outcomes across replicates. Type can be
one of DELETION (D), INSERTION (I), DELINS (D/L), HDR, or TINS.
Start describes the nucleotide position that the deletion begins relative
to the cut site, where the cut site itself is position 0. Negative integer
values indicate the position is upstream of the cut site. End describes the
nucleotide position that the deletion/insertion ends relative to the cut site.
InsSeq describes the inserted sequence. MH describes the microhomology
length for deletions that feature a microhomology, and is 0 otherwise.

Type Start End Ins MH Repair Product
1 D -1.0 2.0 0.0 CCTTGGACGCGTAG-|--CCGGTACTAACC
2 D -1.0 8.0 1.0 CCTTGGACGCGTAG-|-------- CTAACC
3 D -2.0 0.0 0.0 CCTTGGACGCGTA--|GCCCGGTACTAACC
4 D -2.0 2.0 0.0 CCTTGGACGCGTA--|--CCGGTACTAACC
5 D -2.0 3.0 0.0 CCTTGGACGCGTA--|---CGGTACTAACC
6 D -3.0 6.0 2.0 CCTTGGACGCGT---|------ TACTAACC
7 D -3.0 8.0 2.0 CCTTGGACGCGT---|-------- CTAACC
8 D 4.0 11.0 2.0 CCTTGGACGCG----|-========—= Acc
9 D -4.0 1.0 2.0 CCTTGGACGCG----|-CCCGGTACTAACC
10 D -4.0 2.0 2.0 CCTTGGACGCG----|--CCGGTACTAACC
11 D -5.0 129.0 7.0 CCTTGGACGC----- [-—————————

Continued on next page
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— continued from previous page

Type Start End Ins MH Repair Product

12 D -5.0 2.0 1.0 CCTTGGACGC----- | ~—CCGGTACTAACC
13 D -5.0 5.0 3.0 CCTTGGACGC----- [-———- GTACTAACC
14 D -7.0 9.0 2.0 CCTTGGAC------- [-—==——== TAACC
15 D -9.0 0.0 0.0 CCTTGG--------- | GCCCGGTACTAACC
16 D -9.0 1.0 0.0 CCTTGG------—-- | -CCCGGTACTAACC
17 D -9.0 4.0 2.0 CCTTGG--------- | -——-GGTACTAACC
18 D 0.0 11.0 1.0 CCTTGGACGCGTAGG|----—----—-— ACC
19 D 0.0 21.0 5.0 CCTTGGACGCGTAGG|-----——=--———-
20 D 0.0 2.0 1.0 CCTTGGACGCGTAGG|--CCGGTACTAACC
21 D 0.0 3.0 0.0 CCTTGGACGCGTAGG|---CGGTACTAACC
22 D 0.0 5.0 1.0 CCTTGGACGCGTAGG|----- GTACTAACC
23 D 0.0 7.0 2.0 CCTTGGACGCGTAGG|------- ACTAACC
24 D 1.0 11.0 2.0 CCTTGGACGCGTAGG|G---------- ACC
25 D 1.0 2.0 1.0 CCTTGGACGCGTAGG|G-CCGGTACTAACC
26 D 1.0 33.0 5.0 CCTTGGACGCGTAGG|G----——=—===——-
27 D 1.0 5.0 1.0 CCTTGGACGCGTAGG|G----GTACTAACC
28 D 2.0 11.0 2.0 CCTTGGACGCGTAGG|GC--------- ACC
29 D/L -1.0 1.0 TA CTTGGACGCGTAG-TA-CCCGGTACTAACC
30 D/L -2.0 1.0 TA CTTGGACGCGTA--TA-CCCGGTACTAACC
31 D/L 0.0 1.0 GTA CTTGGACGCGTAGGGTA-CCCGGTACTAAC
32 D/L 0.0 20 G CCTTGGACGCGTAGGG--CCGGTACTAACC
33 D/L 0.0 20 T CCTTGGACGCGTAGGT--CCGGTACTAACC
34 HDR TTGGACGCGTAGGXGCCCGGTACTAA

35 1 0.0 0.0 A CCTTGGACGCGTAGGAGCCCGGTACTAACC
36 1 0.0 0.0 GT CTTGGACGCGTAGGGTGCCCGGTACTAACC
37 1 0.0 0.0 G CCTTGGACGCGTAGGGGCCCGGTACTAACC
38 1 0.0 00 T CCTTGGACGCGTAGGTGCCCGGTACTAACC
39 1 2.0 20 ¢ CCTTGGACGCGTAGGGCCCCGGTACTAACC
40 TINS TGGACGCGTAGGXGCCCGGTACTAA

Continued on next page
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— continued from previous page

Type Start End

Ins MH Repair Product

Tab. 4.S3: T2 frequently occurring repair outcomes across replicates. Type can be
one of DELETION (D), INSERTION (I), DELINS (D/L), HDR, or TINS.
Start describes the nucleotide position that the deletion begins relative
to the cut site, where the cut site itself is position 0. Negative integer
values indicate the position is upstream of the cut site. End describes the
nucleotide position that the deletion/insertion ends relative to the cut site.
InsSeq describes the inserted sequence. MH describes the microhomology
length for deletions that feature a microhomology, and is O otherwise.

Type Start End

Ins MH

Repair Product

O 0N O A WON

[E—
= O

NN NDNDMDNRLRRFRR B R R 2 (92
A WODNR O NVOVOWLONOUL A~ WDN

D -12.0 4.0
D -13.0 9.0
D -16.0 11.0
D -1.0  30.0
D -1.0 7.0
D -1.0 8.0
D -23.0 7.0
D -20 0.0
D 20 2.0
D -2.0 4.0
D -3.0 1.0
D -3.0 2.0
D -3.0 5.0
D -3.0 6.0
D -3.0 8.0
D -4.0 12.0
D -4.0 28.0
D -40 2.0
D 40 6.0
D -5.0 16.0
D -5.0 2.0
D -6.0 10.0
D -6.0 3.0
D -7.0 10.0

2.0
2.0
3.0
4.0
1.0
1.0
4.0
0.0
0.0
1.0
0.0
1.0
1.0
2.0
0.0
1.0
5.0
1.0
2.0
5.0
2.0
2.0
1.0
2.0

CCC-—-————————- | ----GGCCCGGTAC
O R GGTAC
——————————————— | --=-—------TAC
CCCGACCTTGGACG- | ——=-=-=--=-=—-
CCCGACCTTGGACG- | -—----~ CCGGTAC
CCCGACCTTGGACG- | -------- CGGTAC
——————————————— | --—----CCGGTAC
CCCGACCTTGGAC-- | GTAGGGCCCGGTAC
CCCGACCTTGGAC-- | -—AGGGCCCGGTAC
CCCGACCTTGGAC-- | ----GGCCCGGTAC
CCCGACCTTGGA--- | ~-TAGGGCCCGGTAC
CCCGACCTTGGA--- | -~AGGGCCCGGTAC
CCCGACCTTGGA--- | -—--- GCCCGGTAC
CCCGACCTTGGA--- | ------ CCCGGTAC
CCCGACCTTGGA--- | --—----- CGGTAC
CCCGACCTTGG---- | -==———====-= AC
CCCGACCTTGG---= | ===—====—=-=—-
CCCGACCTTGG---- | -~AGGGCCCGGTAC
CCCGACCTTGG---- | ------ CCCGGTAC
CCCGACCTTG----- R
CCCGACCTTG----- | -~AGGGCCCGGTAC
CCCGACCTT------ | === GTAC
CCCGACCTT------ | --~GGGCCCGGTAC
CCCGACCT------- | === GTAC

Continued on next page
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— continued from previous page

Type Start End Ins MH Repair Product

25 D -7.0 3.0 1.0 CCCGACCT------- | -—-GGGCCCGGTAC
26 D -8.0 1.0 2.0 CCCGACC-—------ | -TAGGGCCCGGTAC
27 D -8.0 3.0 2.0 CCCGACC-------- | -—-GGGCCCGGTAC
28 D -9.0 1.0 0.0 CCCGAC------—-- | -TAGGGCCCGGTAC
29 D -9.0 6.0 2.0 CCCGAC--------- | —————- CCCGGTAC
30 D 0.0 16.0 1.0 CCCGACCTTGGACGC|--------—-———-
31 D 0.0 1.0 0.0 CCCGACCTTGGACGC|-TAGGGCCCGGTAC
32 D 0.0 5.0 1.0 CCCGACCTTGGACGC|----- GCCCGGTAC
33 D 0.0 6.0 1.0 CCCGACCTTGGACGC|------ CCCGGTAC
34 D 1.0 10.0 1.0 CCCGACCTTGGACGC|G-----—--- GTAC
35 D 1.0 13.0 2.0 CCCGACCTTGGACGC|G------——-——- C
36 D 1.0 3.0 2.0 CCCGACCTTGGACGC|G--GGGCCCGGTAC
37 D 1.0 9.0 1.0 CCCGACCTTGGACGC|G-------- GGTAC
38 D 2.0 6.0 1.0 CCCGACCTTGGACGC|GT----CCCGGTAC
39 D/L -1.0 20 G CCCGACCTTGGACG-G--AGGGCCCGGTAC
40 D/L -3.0 20 G CCCGACCTTGGA---G--AGGGCCCGGTAC
41 D/L 0.0 2.0 CGG CCGACCTTGGACGCCGG--AGGGCCCGGTA
42 HDR CGACCTTGGACGCXGTAGGGCCCGGT

43 1 0.0 00 cC CCCGACCTTGGACGCCGTAGGGCCCGGTAC
44 1 1.0 1.0 G CCCGACCTTGGACGCGGTAGGGCCCGGTAC
45 TINS GACCTTGGACGCXGTAGGGCCCGGT

Tab. 4.S4: T3 frequently occurring repair outcomes across replicates. Type can be
one of DELETION (D), INSERTION (I), DELINS (D/L), HDR, or TINS.
Start describes the nucleotide position that the deletion begins relative
to the cut site, where the cut site itself is position 0. Negative integer
values indicate the position is upstream of the cut site. End describes the
nucleotide position that the deletion/insertion ends relative to the cut site.
InsSeq describes the inserted sequence. MH describes the microhomology
length for deletions that feature a microhomology, and is O otherwise.

Type Start End Ins MH Repair Product

1 D -10.0 2.0 1.0 CAAGG---------- | -—AGGGCCTATTTC
2 D -10.0 5.0 3.0 CAAGG----—-——---- |——-—- GCCTATTTC

Continued on next page
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— continued from previous page

Type Start End Ins MH Repair Product

3 D -10.0 6.0 2.0 CAAGG---------- |-———-- CCTATTTC
4 D -11.0 2.0 3.0 CAAG—-—-------—- | -~AGGGCCTATTTC
5 D -13.0 17.0 3.0 CA-—————-—————- [ ===
6 D -140 8.0 2.0 C-——————-m————- | === TATTTC
7 D -1.0 5.0 3.0 CAAGGTCGGGCAGG-|----- GCCTATTTC
8 D -1.0 6.0 2.0 CAAGGTCGGGCAGG-|------ CCTATTTC
9 D -24.0 8.0 50 -————m————————- | —=—————- TATTTC
10 D -2.0 2.0 2.0 CAAGGTCGGGCAG--|--AGGGCCTATTTC
11 D -3.0 0.0 1.0 CAAGGTCGGGCA---|AGAGGGCCTATTTC
12 D -3.0 17.0 2.0 CAAGGTCGGGCA---|--———————————-
13 D -4.0 7.0 4.0 CAAGGTCGGGC----|-----—- CTATTTC
14 D -5.0 5.0 2.0 CAAGGTCGGG--—--- [-———- GCCTATTTC
15 D -6.0 6.0 2.0 CAAGGTCGG---—-- [-—=———- CCTATTTC
16 D -8.0 7.0 1.0 CAAGGTC-------- |-——=——= CTATTTC
17 D -8.0 8.0 1.0 CAAGGTC--—-—-————- [-===———= TATTTC
18 D -9.0 2.0 0.0 CAAGGT--------- | -~AGGGCCTATTTC
19 D 0.0 10.0 1.0 CAAGGTCGGGCAGGA|---------- TTTC
20 D 0.0 1.0 1.0 CAAGGTCGGGCAGGA |-GAGGGCCTATTTC
21 D 0.0 3.0 2.0 CAAGGTCGGGCAGGA|---GGGCCTATTTC
22 D 0.0 4.0 0.0 CAAGGTCGGGCAGGA|----GGCCTATTTC
23 D 0.0 6.0 0.0 CAAGGTCGGGCAGGA|------ CCTATTTC
24 D 0.0 7.0 0.0 CAAGGTCGGGCAGGA|--—----- CTATTTC
25 D/L -3.0 1.0 AG 0.0 AAGGTCGGGCA---AG-GAGGGCCTATTTC
26 D/L 0.0 30 G CAAGGTCGGGCAGGAG---GGGCCTATTTC
27 HDR AGGTCGGGCAGGAXAGAGGGCCTATT

28 1 0.0 0.0 GG AAGGTCGGGCAGGAGGAGAGGGCCTATTTC
29 1 0.0 0.0 G CAAGGTCGGGCAGGAGAGAGGGCCTATTTC
30 I 0.0 0.0 T CAAGGTCGGGCAGGATAGAGGGCCTATTTC
31 I 1.0 1.0 ATA AAGGTCGGGCAGGAAATAGAGGGCCTATTT
32 1 1.0 1.0 A CAAGGTCGGGCAGGAAAGAGGGCCTATTTC
33 TINS GGTCGGGCAGGAXAGAGGGCCTATT

Continued on next page
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- continued from previous page

Type Start End Ins MH Repair Product

Tab. 4.S5: Barazas2025 frequently occurring repair outcomes across replicates. Type
can be one of DELETION (D), INSERTION (I), DELINS (D/L), HDR, or
TINS. Start describes the nucleotide position that the deletion begins
relative to the cut site, where the cut site itself is position 0. Negative
integer values indicate the position is upstream of the cut site. End
describes the nucleotide position that the deletion/insertion ends relative
to the cut site. InsSeq describes the inserted sequence. MH describes the
microhomology length for deletions that feature a microhomology, and is
0 otherwise.
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Dataset Target Replicate \ 1 2 3

Primary T1 1 1.000 0.982 0.983
2 0.982 1.000 0.984

3 0.983 0.984 1.000

T2 1 1.000 0.981 0.983

2 0.981 1.000 0.982

3 0.982 0.983 1.000

T3 1 1.000 0.990 0.990

2 0.990 1.000 0.990

3 0.990 0.990 1.000

Barazas2025T1 1 1.000 0.993 0.992
2 0.993 1.000 0.992

3 0.992 0.992 1.000

Tab. 4.S5: Mean Pearson’s correlation coefficient across common genes and outcomes
between mutational spectra of replicates for the same target site.
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4.6 Supplementary Figures

Endogenously Cas9-
expressing cell line

of interest CRISPR sgRNA

Target site knockout library

Lentiviral
Transduction

Integrate sequence encoding the sgRNA for gene knockout and
CRISPR repair site targeting.

St

< SgRNA

Cells with gene
knockouts

Lentiviral
Transduction

Introduce sgRNAs to induce DSBs and produce mutations at target
site via CRISPR

Mutational
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Mutation Type

Sequence targeted regions, de-multiplex, and count mutations

Fig. 4.S1: Tllustration of CRISPR gene knockout screens with mutational spectra
readout. First, sequences are integrated into the genomes of cells via
lentiviral transduction. Each sequence contains two elements: (i) a sgRNA-
encoding region to knockout a single gene, and (ii) a region common to all
integrated sequences to be targeted with CRISPR to produce the mutational
spectra. After genomic integration, several days of cell culture are allowed
for genes to be knocked out. Following this, lentiviral transduction is used
to introduce sgRNAs targeting the common region to the Cas9-expressing
cells. After allowing time for cell culture for DNA cleavage and repair, DNA
sequencing was performed to capture the final CRISPR repair products.
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Fig. 4.52: Comparison of NMF solutions for different k values for primary dataset.
The left axis represents the reconstruction error as "Mean Sample Cosine
Distance". Lower error means better reconstruction. The right axis repre-
sents the stability of the solution as the "average silhouette similarity". A
higher stability means the solution does not vary a lot between successive
runs of the SigProfiler algorithm. The horizontal axis represents the differ-
ent values tested under for k.
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Fig. 4.53: Comparison of NMF solutions for different k values for Barazas2025
dataset. The left axis represents the reconstruction error as "Mean Sample
Cosine Distance". Lower error means better reconstruction. The right axis
represents the stability of the solution as the "average silhouette similar-
ity". A higher stability means the solution does not vary a lot between
successive runs of the SigProfiler algorithm. The horizontal axis represents
the different values tested under for k.
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Fig. 4.54: Impact of gene knockouts on mutational spectra and identified mutational
signatures for the Barazas2025 dataset. (Central heatmap) Effect of the
75 gene knockouts with the largest outcome redistribution (columns) on
every mutational outcome across three target sites (rows), with outcomes
further characterized by mutation type (MT) and microhomology length
(MH). Effect quantified using the log2 fold-change in outcome frequency
between the gene knockout spectrum and the geometric mean of the
non-targeting control spectra. Gene knockouts and mutational outcomes
ordered based on hierarchical clustering with Ward linkage and Euclidean
distance. (Signature bar plots) Mutational profiles of the identified sig-
natures, with bars denoting the frequency of each mutational outcome.
(Bottom heatmap) Depletion in exposure of each identified signature per
gene knockout, as the log2 fold-change between the exposure of the gene
knockout sample and the geometric mean exposure of the non-targeting
controls. Key DSB repair genes and complexes highlighted.
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Fig. 4.S5: Barazas2025 signature deletion and insertion properties. Per signature
average of deletion and insertion outcome properties. Outcome properties:
deletion length, small deletion length (< 4bp), deletion microhomology
(MH) length, insertion length, homology-directed repair (HDR) frequency,
and templated insertion (TINS) frequency. The first four length properties
are weighted by the signature frequency of the respective outcomes.
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annotated with the term among the outliers (circle size), fold enrichment
as the ratio between the proportions of term-annotated genes among the
outliers and among the full set of 766 knocked out genes (horizontal axis)
and FDR-corrected p-value (color gradient). Terms directly related to DSB
repair are highlighted in boldface.
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Overcoming Selection Bias in
Synthetic Lethality Prediction

The discovery of many synthetic lethal
interactions between proteins involved in
DNA repair allowed the development of
personalized therapeutic treatments that
target specific DNA repair enzymes to kill
cancer cells.

— Lodovichi et al. 2020
(Inhibition of DNA Repair in Cancer
Therapy: Toward a Multi-Target Approach)

Synthetic lethality (SL) between two genes occurs when simultaneous loss-of-
function leads to cell death. This holds great promise for developing anti-cancer
therapeutics that target synthetic lethal pairs of endogenously disrupted genes.
Identifying novel SL relationships through exhaustive experimental screens is
challenging, due to the vast number of candidate pairs. Computational SL
prediction is therefore sought to identify promising SL gene pairs for further
experimentation. However, current SL prediction methods lack consideration
for generalisability in the presence of selection bias in SL data. We show that
SL data exhibit considerable gene selection bias. Our experiments designed to
assess robustness of SL prediction reveal that models driven by the topology of
known SL interactions (e.g. graph, matrix factorisation) are especially sensitive
to selection bias. We introduce selection bias-resilient synthetic lethality (SBSL)
prediction using regularised logistic regression or random forests. Each gene

Colm Seale, Yasin Tepeli, & Joana P. Gongalves. (2022). “Overcoming selection bias in
synthetic lethality prediction.” Bioinformatics, 38(18), 4360-4368, 10.1093/bioinformat-
ics/btac523.
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pair is described by 27 molecular features derived from cancer cell line, cancer
patient tissue, and healthy donor tissue samples. SBSL models are built and
tested using ~8000 experimentally derived SL pairs across breast, colon, lung,
and ovarian cancers. Compared to other SL prediction methods, SBSL showed
higher predictive performance, better generalisability and robustness to selection
bias. Gene dependency, quantifying the essentiality of a gene for cell survival,
contributed most to SBSL predictions. Random forests were superior to linear
models in the absence of dependency features, highlighting the relevance of
mutual exclusivity of somatic mutations, co-expression in healthy tissue, and
differential expression in tumour samples.

5.1 Introduction

Synthetic lethality (SL) describes a relationship between two genes where si-
multaneous loss-of-function in both genes causes cell death, but independent
disruption of either gene does not affect cell viability. An SL relationship can
be exploited for precision anti-cancer treatment by targeting a gene known
to be synthetic lethal with another gene that is deleteriously mutated in the
tumour cells. This targeted gene disruption not only induces the death of
tumour cells, it is also unlikely to affect healthy cells if they do not carry the
mutation. For instance, PARP inhibitor drugs are preferentially lethal towards
tumour cells with BRCA1 or BRCA2 mutations and were the first SL-based
therapy approved for use in the clinic [40]. Developing SL-based therapies
requires the identification of novel SL interactions through SL loss-of-function
screens, which silence gene pairs of interest and measure the respective
effect on cell viability [47]. However, exhaustive screening is expensive and
becomes impractical due to the vast number of possible gene pairs. This is
where computational SL prediction comes into play to guide experimental
follow-up and reduce screening to only promising SL pairs.

Previous computational approaches have derived SL through the analysis of
gene mutation or expression [27, 63, 62], patient survival [33, 17], metabolic
networks [50, 19], protein-protein interactions [30, 24], signalling pathways
[66], existing SL networks [37, 23, 7], evolutionary conservation within
and between species [9, 64, 41, 13], among others. We categorise existing
SL prediction approaches as either SL topology-based or SL feature-based
methods. Informally, SL topology prediction methods: (i) consider a limited
prediction universe based on a predefined set of genes, usually induced
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by the availability of SL labels; (ii) are explicitly aware of the gene-gene
SL label graph structure, where nodes denote genes and edges denote SL
relationships between pairs of genes. SL topology methods can be further
categorised into matrix factorisation techniques like pca-gCMF [34], SL2MF
[37], GRSMF [23], and graph-based methods like SLant [5], DDGCN [7], and
GCATSL [38]. Conversely, SL feature methods are unaware of gene identity
or the structure defined by the SL relationship labels and rely exclusively on
molecular features of genes for the prediction task. For this reason, feature
models can be used to predict an SL relationship for any pair of genes with
a corresponding feature-based representation. SL feature methods include
statistical techniques like DAISY [27] and BiSEp [63], and supervised learning
models such as [41], DiscoverSL [12], and EXP2SL [62].

Significant challenges remain before existing SL prediction methods can be
routinely used to guide experimental screening. To be effective, they must
rank positive SL gene pairs consistently high across multiple datasets, be
able to make predictions for unseen genes, and generalise to unseen gene
pairs. However, most studies assess prediction performance under limited
scenarios, for instance focusing on a single cancer type and testing of gene
pairs whose genes individually appear in the training set. We hypothesise
that some genes may be overrepresented in existing SL labels while others
remain understudied for historical or academic reasons [56]. The extreme
case, where SL labels are available for many pairs but involving only a few
genes, is also likely to induce SL relationship biases because pairs involving
the same gene are not independent from each other. We argue that the
presence of strong biases in SL labels can lead to performance overestimation,
particularly of SL topology models which are explicitly designed to exploit
them.

In this work, we propose different experiments to assess sensitivity of SL
prediction methods to selection biases. We also introduce SBSL (Selection
Bias-resilient Synthetic Lethality) prediction models, with two main goals
in mind: (i) improving model resilience to biases in SL prediction; and (ii)
bridging the performance gap between SL topology and SL feature methods
currently perceived in the SL prediction literature. To improve bias-resilience,
we propose SL feature models based on supervised ML that explicitly ignore
the structure of the SL label graph. To improve performance, we define novel
features based on molecular data that could be relevant for SL prediction but
remains underexplored in the SL prediction context. Specifically, these are:

5.1 Introduction
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the interaction between gene dependency scores (measuring cell viability
upon gene silencing) and mutations in cancer cell lines [14, 46, 44, 4], as
increased dependency on one gene in cell lines harbouring a deleterious
mutation in another gene may indicate SL between the two; gene expression
from healthy donor tissue, in addition to expression from patient tumour
tissue, which could help identify tumour-specific changes in the relationship
between the pair of genes; measures of mutual exclusivity, quantifying the
non-co-occurrence of mutations in a pair of genes [2, 8]; change in survival
time between cancer patients with and without mutations or aberrant ex-
pression in the pair of genes, both of which may be associated with SL [55,
331.

5.2 Methods

Our proposed models aim to predict if a given pair of genes is synthetically
lethal for a specific cancer type, where the pair is described by a collection of
molecular features. We approach it as a binary classification problem.

5.2.1 Data

Synthetic lethality labels. We obtained cancer-specific SL labels from two
studies, ISLE and DiscoverSL [33, 12]. Together, they included thousands of
SL relationships experimentally-derived by 21 other studies using double gene
knockdown/knockout experiments or targeting of one gene using CRISPR
or RNAI in contexts where the other gene is either endogenously inactive or
rendered inactive through the use of drug compounds. We removed duplicate
gene pair entries from ISLE and DiscoverSL separately by retaining a single
entry if all entries agreed, or removing all duplicate entries if any of them
disagreed on the label. To combine the two datasets, we reduced 63 gene
pairs with duplicate entries across the datasets to a single entry per pair. In
case of disagreement, we chose the label from DiscoverSL, since there was a
lower level of disagreement within DiscoverSL than within ISLE. We ended
up with 7962 labelled gene pairs distributed over the four cancer types that
had at least 200 positive and negative labels after preprocessing, namely
breast (BRCA), colon (COAD), lung (LUAD), and ovarian (OV) (Table 5.1).
The ISLE, DiscoverSL, and combined SL gold standards had differing cancer
type representations and class imbalances. We used the combined SL gold
standard in our experiments except where otherwise specified.
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ISLE DiscoverSL Combined Num.

+ - + - + - Genes Labelled %
BRCA 713 1168 835 72 1548 1240 1072 .39
COAD 859 806 0 0 859 806 1560 .14
LUAD 202 5155 347 312 549 5467 804 1.66
ov 223 449 0 0 223 449 86 18.14

All 1997 7578 1182 384 3179 7962 3072 .05

Tab. 5.1: SL gold standard statistics. Breakdown of labels into positives and negatives,
unique gene count, and percentage of labelled pairs. Columns + and - show
number of positive and negative labels for each dataset. Num. Genes and
Labelled % denote the number of unique genes and percentage of labelled
pairs (of all possible pairs involving genes from the combined dataset).

Cancer cell line data. We used cancer cell line gene dependency scores
based on CRISPR (CERES) [14, 46] and RNA interference (DEMETER2) [44,
4] screens from the 19Q3 DepMap and DEMETER2 Data v6 public releases,
respectively. We also obtained functionally categorised mutation data per
gene [21].

Patient tumour and clinical data. We collected the following patient tumour
sample data from the Broad GDAC Firehose pipeline run stddata_ 2016 _01 28
[59]: mutation data, discrete copy-number variation (CNV) scores from GIS-
TIC [45], patient race, age, sex, and survival time (days). We also obtained
gene expression data from the GEO (accession GSM1536837) as aggregated
read counts [49].

Healthy tissue data. We collected expression data from GTEx for breast, lung,
colon, and ovarian tissue of healthy donors, provided as gene-aggregated
TPM values (dbGaP accession phs000424.v8.p2) [39]. We also included
expression data of TCGA matched normal BRCA and LUAD samples from
GEQ, as described for patient tumours.

Biological pathway data. We downloaded KEGG [28], PID [53] and Reac-
tome [26] pathway gene sets from the molecular signatures database v7.1
[57, 35].

Protein-protein interaction and Gene Ontology data. Protein-protein
interaction data was downloaded from STRINGdb, version 11 [58]. We
selected only interactions supported by curated experimental evidence. GO

5.2 Methods
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biological process and cellular process data were downloaded from GO on
March 18, 2021 [1, 10].

5.2.2 Features

Every example denotes a tissue type-specific relationship between a pair of
genes (A, B), characterized by the following 27 molecular features. (see
Supplementary Table 5.S1 for a summary of all individual features).

Gene dependencies. We calculated five features for each type of gene
dependency, CRISPR or RNAi (10 in total). We performed two two-tailed
Wilcoxon rank-sum tests [42], one for (A, B) and another for the same pair
in reverse order (B, A). Each test quantifies the change in dependency on
the first gene between cell lines with and without a non-silent mutation in
the second gene. We chose as features the test statistic and p-value for the
tested pair (A, B) or (B, A) that yielded the smallest p-value. We defined two
additional features as the Pearson’s correlation coefficient and corresponding
two-tailed t-test p-value between the dependency scores of A and B. The
fifth feature was the average of the means of the dependency scores for
genes A and B. Respectively, the features are termed CRISPR/RNAi_dep_stat,
CRISPR/RNAi_dep pvalue, CRISPR/RNAi_cor_stat, CRISPR/RNAI_cor_pvalue,
CRISPR/RNAi_avg.

Mutual exclusivity. We calculated seven mutual exclusivity features based
on tumour mutation data using three methods: DiscoverSL (four features)
[12], DISCOVER [8], and MUTEX [2]. These features are termed discov-
ersl_mutex_amp, discoversl_mutex_del, discoversl_mutex_mut, discoversl_mutex,
discover_mutex, and MUTEX. We calculated an additional mutual exclusiv-
ity p-value, mutex_alt, by treating every non-silent mutation, amplification
(CNV = 2), and deletion (CNV = -2) as an “alteration” event. We used a
hypergeometric test:

min(na,ng) (nA) (nT*nA)

p=1-— Z Jj/\np—j

(e)
Jj=na.B npg

(5.1)

where n 4 and np are the numbers of tumour samples with an alteration in A
and B, respectively, n 4 p is the number of samples with alterations in both,
and nr is the total number of samples.

Chapter 5



Survival. We modelled patient survival time using Cox proportional hazard
models accounting for the alteration status of gene pair (A, B) in patient
tumours. We defined the status as “altered” if any of the following alterations
occur in both A and B (unaltered otherwise): copy-number amplifications
(CNV = 2) or deletions (CNV = -2), non-silent mutations, or aberrant expres-
sion. We defined aberrant expression as having a gene expression level in the
upper or lower fifth percentile across all patient samples. We also controlled
for age, race, and sex as follows:

In h(t) ~In hg + B1s(A, B) + Basex + Szage + Barace (5.2)

where h(t) is the hazard function defined as the conditional probability of a
patient dying at time ¢ given that the patient has survived to time ¢ [6]. The
indicator variable s(A, B) denotes the alteration status of gene pair (A, B) in
a patient tumour sample. The  values are the regression coefficients. One
feature, logrank_pval, was defined as the two-tailed p-value of 8, # 0 using
the Wald statistic [3].

Co-expression. We determined co-expression between a gene pair for three
types of biological samples: tumour and normal TCGA samples (for BRCA
and LUAD), and healthy donor GTEx samples. We used pairwise Pearson’s
correlations and two-tailed t-test p-values, yielding four to six features: tu-
mour_corr/pvalue, normal_corr/pvalue, gtex_corr/pvalue.

Differential expression. We calculated differential expression using tumour
samples to quantify the variation in expression of one gene given the presence
or absence of non-silent mutations in the other gene. We performed two
differential expression tests per gene pair (A, B), for gene A based on the
mutation status of gene B and vice versa, and used the minimum of the
two p-values and the corresponding log fold-change as features for the gene
pair. These were calculated using edgeR based on the read count data
[52]. Using the edgeR default parameter values, we performed Trimmed
Mean of M-values normalisation (TMM), and calculated gene-wise log2 fold-
changes and p-values as features, respectively termed diff exp logFC and

diff exp_pvalue.

Pathway co-participation. We calculated a pathway coparticipation p-value
denoting the significance of co-occurrence of a pair of genes in a set of
pathways using a hypergeometric test as defined in Eq. 5.1. Here, n4 and npg
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are the number of occurrences of genes A and B in all pathways, respectively,
n a4, p is the number of occurrences of both genes in the same pathway, and
nr is the total number of pathways. The set of pathways was defined as the
union of the KEGG, PID, and Reactome gene sets.

5.2.3 Synthetic Lethality Prediction Models

SBSL prediction models. We trained logistic regression and random for-
est models with regularisation, as representatives of linear and non-linear
models. For logistic regression, we used LO and L2 (LOL2), or L1 and L2
(Elastic Net) regularisation, as implemented respectively in the LOLearn and
glmnet packages [22, 20]. We also tried two regularised random forest im-
plementations: Multivariate random forests with Unbiased Variable selection
in R (MUVR, Shi et al. [54]), and Regularised Random Forests (RRF, Deng
and Runger [15]). MUVR combines a random forest model with feature
selection through repeated, nested, cross-fold validation and backward fea-
ture elimination on the train set. RRF is a random forest variant that uses
two parameters to control model complexity: mtry determining how many
features are randomly sampled at each new node; and coefReg to control the
penalisation of the information gained when adding a new feature to the
model to split at a given node.

Other SL prediction models for comparison. We compared the SBSL
models against five other published methods: statistical approach DAISY
[27], supervised model DiscoverSL [12], graph-based GCATSL [38] and
GRSMF [23], and matrix factorisation pca-gCMF [34].

5.2.4 Training and Evaluation

For each experiment, we created 10 different train/test set splits of the
available dataset(s), so that we could better assess the robustness of the
models. For each pair of train and test sets, which we term run for short,
we performed the following steps: hyperparameter search on the train set
using cross-validation, learning of a final model on the entire train set using
the best parameters, and assessing the final model on the corresponding
disjoint test set. We report the averages and standard deviations of our
performance evaluation metrics across the 10 runs. These steps are further
detailed below.
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Train and test sets. All pairs of train and test sets were created as follows,
unless otherwise specified. To handle class imbalances (Table 5.1), we
uniformly downsampled the dataset to ensure an equal number of SL and
non-SL pairs. We then divided it into train and test sets with a 70/30 split via
uniform sampling. We standardised every feature in both sets by subtracting
the mean and dividing by the standard deviation calculated from the train
set. We also excluded any feature for which at least 95% of the values in its
feature vector were constant.

Hyperparameter tuning. To select model hyperparameters for Elastic Net
and RRF, we defined a search space per model as follows; Elastic Net: lambda
= [0,1], alpha = [0,1]; RRF: mtry = [4,8], coefReg = [.5,1]. For LOL2,
the search space hyperparameters were set to nGamma = 20 and nLambda
= 50. For the Elastic Net, RRF and LOL2 models, we conducted 10-fold
cross-validation on the train set with 5 repeats using the area under the
ROC (AUROC) as performance metric. Results of hyperparameter search
for these three models can be found in Supplementary Fig. 5.S1-5.S3. The
hyperparameters used for the MUVR backwards feature elimination algorithm
were nRep = 5, nOuter = 10, and varRatio = 0.8.

Evaluation. Following hyperparameter tuning, SBSL models were trained
on the entire train set using the best hyperparameters. Performance was
then assessed on the corresponding disjoint test set, using receiver operating
characteristic (ROC) and precision-recall (PR) curves. The curves were
summarised by area under the ROC or PR curve metrics (AUROC, AUPRC).
We report averages and standard deviations of the AUROC and AUPRC across
the 10 runs.

Comparison with other SL prediction methods. We calculated DAISY
scores for all gene pairs, and predicted DiscoverSL scores for test set pairs
using the package provided by the authors. GCATSL, GRSMF, and pca-gCMF
models were trained on the train set using their default parameter settings
(see Supplementary Methods). Scores obtained by all methods for gene pairs
in the test set were used for comparison during evaluation.

Feature importance. We calculated permutation feature importance (FI)
values for SBSL models based on the test set to determine which features
contributed most to the predictions [18]. Interpreting FI scores can be
confounded by multicollinearity, as importance may spread over correlated
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features. For this reason, we assessed multicollinearity using variance infla-
tion factors (VIF) [25].

5.3 Resulis and Discussion

5.3.1 SBSL and SL topology methods are the top performers

We first evaluated the performance of the SL prediction models separately
within each cancer type (BRCA, COAD, LUAD, and OV). We evaluated the
predictive performance of the SBSL logistic regression (LOL2, Elastic Net)
and random forest (MUVR, RRF) models against published methods DAISY,
DiscoverSL, GCATSL, GRSMF and pca-gCMF.

On BRCA and LUAD, the SBSL models and the matrix factorisation methods
GRSMF and pca-gCMF performed most consistently considering the two
metrics, with average AUROC and AUPRC above 0.80 (Tables 5.2 and 5.3,
Supplementary Fig. 5.54 for ROC and PR curves). SBSL models did better
at predicting true SL pairs for BRCA and LUAD than the other approaches
with the exception of pca-gCMF on BRCA (Table 5.3). GRSMF performed
reasonably with average AUPRC above 0.80, but GCATSL performed poorly on
BRCA (average AUPRC of .55) while scoring highest among the SL Topology
methods on LUAD (average AUPRC of .85). On COAD, AUROC performances
were very modest across the board, with SBSL models featuring on the higher
end (.38 < average AUROC < .64).

On OV, the SBSL models predicted poorly whereas GCATSL, GRSMF, and pca-
gCMF showed high AUROC and AUPRC scores above 0.90. We hypothesise
that the low performance of SBSL models in OV could be due to the modest
mutational burden typically observed for this cancer type [61], which could
affect the resolution and informativeness of features relying on mutation data.
We confirmed that OV cell lines contained a much lower average number of
mutations per gene pair than the other cancer types (OV: 1.6, BRCA: 4.33,
LUAD: 11.35, COAD: 5.97). As for the high performance of SL topology
methods on OV, we reasoned that it could be due to selection bias, which we
investigate in a later section.

DAISY and DiscoverSL performed poorly overall and were excluded from
subsequent experiments. We note that DAISY is not an ML approach, and
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does not involve separate training and prediction. For fairness, DAISY was
applied to the entire dataset, per cancer type, and then evaluated on the
same test sets as the other models (see Methods).

Our results suggest that SBSL models and pca-gCMF are the most consistent
and thus may be better suited for pre-selecting SL pairs for experimental
follow-up in BRCA and LUAD. Most methods struggled to predict SL for COAD
according to one or both performance metrics.

We advance that low mutational burden could negatively affect the perfor-
mance of SBSL models on OV, and go on to further investigate a possible link
between selection bias and the high performance of SL topology methods.

5.3.2 Selection bias drives SL topology method predictions

Since SL topology methods are driven by the structure of the SL label graph,
we hypothesised that their predictive performance could be affected by selec-
tion bias in SL screens. We sought to assess the impact of this bias.

Selection bias in SL labels. We examined the coverage and structure of SL
labelled gene pairs. The OV set of labelled pairs stood out from the other
cancer types for three reasons. First, it had limited gene coverage, comprising
only 86 unique genes whereas the other cancer types included 804 to 1560
labelled genes. Second, 18.14% of all possible pairs formed by these 86
genes were labelled in OV, compared to a maximum of 1.66% for the other
cancer types (Table 5.1). Third, the structure of the labels was quite striking:
many rows were nearly identical to one another, showing very consistent
patterns of SL and non-SL relationships with the same genes. These formed
visibly distinct groups, indicative of heavy gene selection bias (Fig. 5.1). For
example, the genes highlighted with red labels in Fig. 5.1 are functionally
related: they mostly consist of tyrosine kinases, which are all reported targets
of the same drug dasatinib [29].

5.3 Results and Discussion
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Fig. 5.1: Structure of SL labels. Adjacency plot showing OV gene pairs. Elements
along horizontal and vertical axes represent unique genes. Each coloured
cell denotes a negative (red) or positive (blue) SL pair. White cells denote
pairs with no label. Rows are ordered according to hierarchical clustering
with complete linkage and Euclidean distance. Columns follow the ordering
of rows. The barplot to the right shows the number of pairs each gene is
involve in. The group of genes highlighted in red consists mostly of tyrosine
kinases.

The high performances of matrix factorisation and graph-based methods
on OV data could be expected, given that they are designed to exploit this
structure. However, the consistency of patterns seen in these OV labels will
not likely generalise well to most randomly selected pairs of genes. The SL
labels for the other cancer types exhibited similar bias, albeit less pronounced
given the larger sample size and gene coverage (Table 5.1, Supplementary
Figs. 5.55-5.S8). As an example, for BRCA the 5 most frequently occurring
genes were involved in 52% of all SL labelled gene pairs (PARP1 18%, BRCA1
12%, PTEN 11%, TP53 7%, BRCA2 4%). We also identified two distinct
groups of genes with visibly coordinated patterns, which also happened to
be functionally related: one group comprised members of cell proliferation
pathways (JAK2, GATA3, PIK3C3, FLI1, MAP2K4, PPARA, BIRC3, CREBBP,
KRAS, MAP3K1, and others), and the other group contained genes involved
in DNA damage response (CHD1, USP6, CANT1, ERCC4, MAML2, DHRS13,
FHIT).

Method BRCA COAD LUAD oV
Elastic Net .84 =+ .01 .60 £ .02 85 £ .02 59 + .03
LOL2 84+ .01 .60 £ .02 85 + .02 59 +.03
MUVR 86 £ .01 .64 + .01 .87 + .01 56+ .07
RRF 86 & .01 63 +.02 87 +.02 57 4.07
DAISY 61+ .02 38 +.02 44+ .03 A1+ .04
DiscoverSL .54 & .02 54 +.02 54 +.03 45 + .04
GCATSL 59 + .04 51+.01 86 £ .03 .99 + .02
GRSMF 82+ .01 57 +.02 87 +.02 .99 + .01
pca-gCMF .90 + .02 54 +.03 87 +.02 94+ .05

Tab. 5.2: Classification performance of SL prediction models within a cancer type,
denoted by the area under the ROC curve (AUROC). Mean and standard
deviations over 10 runs.
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Method BRCA COAD LUAD ov

Elastic Net 87+.01 .59 +.01 .87 £ .02 .58 +.03
LOL2 .88 £ .01 .59 £+ .02 .87 £ .02 .58 +.04
MUVR .89 + .01 .62 £+ .02 .87 £.02 .54 4+ .06
RRF .89 +.01 .63 £+ .02 .87 £+ .02 .55+ .05
DAISY .58 £+ .02 43+ .01 A7 £ .02 48 +.04
DiscoverSL .55 £.02 .53 £.02 .55 £+ .03 49+ .04
GCATSL .55 £.02 .50 £.01 .82+ .04 .98 .03
GRSMF .81+.01 .59 £+ .02 .85+ .02 .97+ .04
pca-gCMF .89 £+ .04 .56 £ .03 .83 +£.03 .93 £ .06

Tab. 5.3: Classification performance of SL prediction models within a cancer type,
denoted by the area under the precision-recall curve (AUPRC). Mean and
standard deviations over 10 runs.

Cross-SL-dataset generalisation. We assessed the impact of selection bias
on the ability of SL prediction methods to generalise across the two datasets
of SL labels. We trained BRCA models on gene pairs from ISLE and tested
them against DiscoverSL. We also trained LUAD models on DiscoverSL and
tested them against ISLE. We focused on these specific combinations, since
the number of available SL pairs was insulfficient for the reverse combinations.
Any labelled pairs present in both datasets were removed from the train
set. Our results showed that SBSL models generalised better across gold
standards (Fig. 5.2, Supplementary Fig. 5.S9), with linear models performing
best overall. The SL topology approaches (GCATSL, GRSMF, and pca-gCMF)
struggled to generalise, and their performances decreased to nearly random
on LUAD data. We found that pca-gCMF did only marginally better than the
graph-based methods on LUAD, but was comparable to our SBSL models on
BRCA.

Contributing to the poor performance of SL topology models is the fact that
these techniques have difficulty making connections to genes that are not
involved in pairs in the train set, an issue that is most prevalent in LUAD SL
data. Specifically, for BRCA, 522 of the 907 pairs in DiscoverSL contained
genes that also appeared in ISLE. However, for LUAD, only 19 out of 659
DiscoverSL pairs shared a gene with ISLE (Supplementary Fig. 5.510-5.511).
SL topology methods would be more affected by this than SBSL models due
to missing prior SL information for the genes in the test set.
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Fig. 5.2: Cross-SL gold standard performances. AUROC values averaged over 10 runs
for: (left) BRCA models trained on ISLE and tested on DiscoverSL; (right)
LUAD models were trained on DiscoverSL and tested on ISLE.

Gene holdout experiments. We further investigated the impact of selection
bias on SL prediction using gene holdout experiments, where train/test sets
were constructed in three different ways, seeking to control the number
of genes shared between the two sets. In our original baseline scenario,
also termed None, we only ensured that there was no overlap in gene pairs
between train and test sets. For Single holdout, we constructed the train and
test sets such that for every gene pair in the test set, only one of the genes
from the pair could be present in the train set. For Double holdout, we created
the train and test sets such that they did not share any genes. Note that there
was not enough OV data to conduct the Double experiment.

The SBSL models were more robust to gene holdouts than SL topology models
on BRCA, COAD, and LUAD. For these cancers, SBSL models showed negligi-
ble decrease between baseline and Single holdout, and a more pronounced
drop to mean AUROC values between 0.60 and 0.75 using Double holdout.
Comparatively, the performance of SL topology models varied more and
became approximately random with Double holdout (Fig. 5.3, Supplementary
Fig. 5.512). OV was the exception, where SL topology methods seemed to
do better, possibly due to the previously described bias in SL labels. We note
that our results are confounded by shrinking of the train set size as we move
through the scenarios from None to Double, and that OV is the smallest of the
datasets.

5.3 Results and Discussion
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Fig. 5.3: Performances of gene holdout experiments, where bias is controlled by
ensuring that none, one, or both genes of pairs in the test set are excluded
from the train set. Shown are AUROC values for each gene-holdout experi-
ment per cancer type (10 runs). For “None”, we only guarantee that train
and test sets are disjoint in terms of gene pairs, not individual genes; for
“Single”, only one gene from a gene pair in the test set can be present in
the train set; for “Double” neither gene of a pair in the test set appears in
the train set. The results for “None” correspond to those also reported in
Table 5.2. Note: there was insufficient data to conduct the OV “Double”
experiment.

5.8.3 Not all cancers are equal in SL prediction

We wondered whether the underlying molecular patterns that allow us to
recognize when two genes are synthetically lethal could be independent of
cancer type and thus generalisable across cancers. To answer this question, we
assessed the potential benefits of training pan-cancer LOL2 and MUVR models,
which could also help mitigate the sparsity and selection bias affecting some
of the cancer types (Supplementary Tables 5.52-5.S3 and Fig. 5.513-5.514
for results including all SBSL models).

First, we trained two pan-cancer models on data from all four cancer types

(Table 5.4). One was an unbalanced model, with gene pairs uniformly
selected from the combined dataset to keep the original cancer type ratios.
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The other model was trained with balanced proportions of cancer types and
class labels by undersampling. Both models were evaluated against held out
data from every cancer type. Model performances improved in almost every
case when training on balanced compared to unbalanced data. However,
training on multiple cancers resulted in a degradation of overall performance
relative to the cancer-specific models. We note that balanced models typically
had less gene pairs to train on.

LoL2 MUVR

Ov 032 048 0.28 0.59 0.37 056 0.39 0.58

(@)
LUAD 069 052 0.86 0.46 0.53 051 0.87 0.51 é
: ¢
§ COAD 041 06 035 0.1 053 064 054 052 3
5 e
'_
BRCA 082 05 0.79 043 086 05 0.73 0.43
0
Others 0.71 05 0.8 0.47 0.57 053 0.69 0.48 8

BRCA COAD LUAD OV BRCA COAD LUAD OV
Tested on

Average AUROC
0.00 0.25 0.50 0.75 1.00

Fig. 5.4: Cross-cancer and leave-one-cancer-out (LOCO) performances. Average
AUROC for LOL2 and MUVR models over 10 runs. Cross-cancer: Vertical and
horizontal axes denote the cancer types used to train and test, respectively.
LOCO: Horizontal axis denotes the cancer type held out for testing. Models
trained on balanced data from all other cancers.

We then assessed the ability of SBSL cancer-specific models to make SL
predictions for other cancer types (Fig. 5.4). As expected, models that
performed poorly within the same cancer type, like COAD and OV, could
not generalise to other cancer types either. The better performing models,
BRCA and LUAD, could not predict well on COAD and OV either. Notably, the
LOL2 linear models generalised reasonably both when trained on BRCA and
tested against LUAD (mean AUROC 0.79) and vice-versa (0.69). The MUVR
random forests could generalise when trained on BRCA and tested against
LUAD (0.73), but not vice-versa (0.53), showing they were more prone to
overfit.
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Method Cancer Pan-cancer One-cancer
Unbalanced Balanced

LOL2 BRCA .64 £ .02 .75+ .01 .83+t .01
COAD .52 £.02 b1 £.02 .60 £ .02
LUAD 73 £.03 .79 £.02 .83 £.02
ov 40 £ .04 b3 £.04 .58 .03

MUVR BRCA .76 £ .01 .82 £.02 .86 £ .01
COAD .62 + .02 .60 £ .01 .64 £ .01
LUAD .81 £.02 .83 £.02 .86 £ .01
ov .55 4+ .06 52+.04 .04 £ .07

Tab. 5.4: Performance of one-cancer and pan-cancer models (AUROC). Mean and
standard deviation calculated over 10 runs. One-cancer and pan-
cancer models trained with unbalanced or balanced cancer representation,
tested on held-out gene pairs.

We also investigated the ability of models trained on multiple cancers to
make SL predictions for unseen cancer types. In this leave-one-cancer-out
experiment (LOCO), we held out one cancer type for testing and trained
models using samples from the other three, with balanced class labels and
cancer types (Fig. 5.4, bottom row). The results were consistent with those
of the cross-cancer experiment (Fig. 5.4). For example, the three-cancer
models trained on COAD, LUAD, and OV generalised to BRCA as well as the
LUAD-specific models. This indicates that training on multiple cancer types is
not necessarily detrimental to cross-cancer generalisation.

5.3.4 Gene dependency-based features are most important

We used permutation feature importance scores (PFI) to quantify the contri-
bution of the 27 features to the predictions of our SBSL models. To obtain
meaningful PFI scores, the models should be reasonably accurate, thus we
excluded the lower performing OV and COAD models (Table 5.2).

Gene dependency-based features were the largest contributors to the perfor-
mance of BRCA and LUAD models (Supplementary Fig. 5.S15-5.516). The
highest ranked feature overall was CRISPR dep_stat, which quantifies the
change in dependency score of one gene between cell lines with and without
a non-silent mutation in the other gene. Specifically, for linear models, the
importance of CRISPR dep_stat was nearly 2-fold greater than the importance
of the second ranked feature. Ranking second were features denoting the
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average of means of gene dependency scores across all cell lines. For all
LUAD models and the BRCA random forest models, the choice went to the
CRISPR-based feature (CRISPR avg), while BRCA logistic regression models
picked the RNAi-based feature (RNAi_avg). Even though CRISPR and RNAi-
based dependency scores exhibit some differences, they are still moderately
to highly correlated (multicollinearity VIF >2, Supplementary Table 5.54),
and thus fairly equivalent in contribution to SL prediction.

To further assess the reliance of our SBSL models on dependency-based
features, we retrained and tested BRCA and LUAD models without these
features. This led to a significant decrease in mean AUROC across all models,
from between 0.83 and 0.85 to between 0.64 and 0.76, for both cancer types
(Fig. 5.5). We also calculated PFI values for these models, which showed
higher variability but also a few clear patterns. The DISCOVER mutual
exclusivity score [8], discover_mutex, ranked first across all BRCA models
(Supplementary Fig. 5.S17). Gene co-expression in healthy tissue samples
(GTEx), gtex_corr, and co-expression in matched normal tissue samples from
cancer patients (TCGA), normal_corr, respectively ranked second and third
for all BRCA models (Supplementary Fig. 5.517). Differential expression
features, diff exp logFC and diff exp_pvalue, were most important for LUAD
random forest models (Supplementary Fig. 5.S18). These results indicate
that features other than those based on gene dependency could also be
informative for SL prediction.

Model BRCA LUAD
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LOL2 } i 5
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Fig. 5.5: Performance of SBSL models with and without gene dependency-based
features (AUROC over 10 runs), respectively labelled “Full Feature Set” and
“No Dep Features”.
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5.4 Conclusion

We proposed synthetic lethality (SL) prediction models with increased re-
silience to selection bias. We used logistic regression and random forest
models based on molecular features characterising genes and gene pair rela-
tionships. Without explicit knowledge of gene or pair identity, SBSL models
generalised better across SL label datasets, and were more robust to gene
holdout compared to methods that predict based on the structure of SL labels.
In addition, SBSL models improved over existing feature-based SL prediction
approaches by focusing on underexplored data such as cancer cell line gene
dependencies with mutation data, gene expression from healthy donors, mu-
tual exclusivity of somatic mutations in patient tumours, and cancer patient
survival. One limitation of our SBSL models is that they rely heavily on gene
dependency scores, which are not available for rarer cancer types. We showed
that other features could partially compensate for the absence of gene depen-
dency scores, but led to a significant decrease in performance. In addition,
we also note that some of the most relevant features in SBSL models are less
effective for cancer types typically characterised by low mutational burden.
Further research is therefore needed into alternative data and strategies to
improve SL prediction. Since the ultimate goal of SL prediction models is
to identify SL partners for drug target genes, systematic validation of SBSL
models should be conducted to assess the therapeutic potential of predicted
pairs.

Analysis of SL label data revealed the presence of strong gene selection
bias. Further experiments showed that SL prediction methods relying on the
structure of SL labels were more sensitive to such bias. This vulnerability
persisted even when the methods incorporated additional data sources. Our
observations align with a study on prediction of protein-protein interactions
by Richoux et al. [51], which showed that including the same proteins in
the train and test set led to performance overestimation. We believe that
performances reported for SL topology methods under these conditions could
be optimistic and should be viewed with caution.

We put forward two recommendations for the evaluation of SL prediction
models. First, inspecting performance across cancer types, SL datasets, and
other variables of interest is crucial to ensure that results are consistent and
reproducible. Second, we advocate that gene selection biases are considered
to avoid that performance metrics report on ability to exploit selection bias
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rather than predict SL interactions. We show that plotting SL label adjacen-
cies and conducting gene holdout experiments are effective ways to assess
selection bias and its impact on SL prediction.
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5.5 Supplementary Figures
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Hyperparameter search for the LOL2 model [22]. Mean logistic loss values
of the optimised local search cross-validation results across each of the 10
folds across all 10 cross-validation runs for each cancer type. Deeper red
values indicate lower mean logistic loss for that combination of gamma
and lambda. LOLearn uses a custom local search algorithm to find the
optimal values for lambda.
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Fig. 5.52: Hyperparameter search for the ElasticNet model [20]. Mean AUROC grid
search cross-validation results across each of the 10 folds across all 10
cross-validation runs for each cancer type. Deeper red values indicate
higher mean AUROC for that combination of alpha and lambda.
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Fig. 5.53: Hyperparameter search for the RRF model [15]. Mean AUROC grid search
cross-validation results across each of the 10 folds across all 10 cross-
validation runs for each cancer type. Deeper red values indicate higher
mean AUROC for that combination of coefReg and mtry.
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Fig. 5.54: Average receiver-operating characteristic (ROC) curves and precision-
recall (PR) curves for each cancer-specific model tested against that same
cancer type. The top plots show ROC curves, the bottom plots show PR
curves, and each column corresponds to a different cancer type. The ROC
and PR curves were averaged across 10 runs using the vertical-averaging
method [16]. The shaded regions represent the standard deviation.
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Fig. 5.5S5: Adjacency matrix plot showing clusters of labelled genes in BRCA. El-
ements along the horizontal and vertical axes represent unique genes.
Each coloured dot corresponds to a negatively (red) or positively (blue)
labelled gene pair. Whitespace denotes a gene pair with no label. Rows are
clustered using complete linkage and Euclidean distance with “No Label”,
“Negative”, and “Positive” encoded as 0.5, 0 and 1, respectively. Both the
rows and columns are ordered based on these clusters. The barplot to the
right shows the number of occurrences of each gene in the BRCA dataset.
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Fig. 5.56: Adjacency matrix plot showing clusters of labelled genes in COAD. El-
ements along the horizontal and vertical axes represent unique genes.
Each coloured dot corresponds to a negatively (red) or positively (blue)
labelled gene pair. Whitespace denotes a gene pair with no label. Rows are
clustered using complete linkage and Euclidean distance with “No Label”,
“Negative”, and “Positive” encoded as 0.5, 0 and 1, respectively. Both the
rows and columns are ordered based on these clusters. The barplot to the
right shows the number of occurrences of each gene in the COAD dataset.
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SL

No Label . Negative . Positive

Fig. 5.S7: Adjacency matrix plot showing clusters of labelled genes in LUAD. Elements
along the horizontal and vertical axes represent unique genes. Each
coloured dot corresponds to a negatively (red) or positively (blue) labelled
gene pair. Whitespace denotes a gene pair with no label. Rows are
clustered using complete linkage and Euclidean distance with “No Label”,
“Negative”, and “Positive” encoded as 0.5, 0 and 1, respectively. Both the
rows and columns are ordered based on these clusters. The barplot to the
right shows the number of occurrences of each gene in the LUAD dataset.
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SL

No Label . Negative . Positive

Fig. 5.58: Adjacency matrix plot showing labelled gene pairs in OV. Elements along
the horizontal and vertical axes represent unique genes. Each coloured dot
corresponds to a negatively (red) or positively (blue) labelled gene pair.
Whitespace denotes a gene pair with no label. Rows are clustered using
complete linkage and Euclidean distance with “No Label”, “Negative”, and
“Positive” encoded as 0.5, 0 and 1, respectively. Both the rows and columns
are ordered based on these clusters. The barplot to the right shows the
number of occurrences of each gene in the OV dataset.
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Fig. 5.59: AUPRC values averaged over 10 runs for: (left) BRCA models trained
on ISLE and tested on DiscoverSL; (right) LUAD models were trained on
DiscoverSL and tested on ISLE.
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SL

No Label . ISLE . DiscoverSL . Both

Fig. 5.510: Structure of BRCA SL labels in the ISLE [33] and DiscoverSL datasets
[12]. Heatmap showing labelled gene pairs from BRCA data from both
the ISLE and DiscoverSL dataset. Elements along the horizontal and
vertical axes represent unique genes. Each coloured dot represents a
gene pair where a label exists in either the ISLE (red), DiscoverSL (blue),
or both (green) datasets. Whitespace denotes a gene pair with no label.
Rows are clustered using complete linkage and Euclidean distance with
“No Label”, “ISLE”, “DiscoverSL”, and “Both” encoded as -1, 0, 1, and
2, respectively. Both the rows and columns are ordered based on these
clusters. The barplot to the right shows the number of occurrences of
each gene in the BRCA dataset.
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No Label . ISLE . DiscoverSL . Both

Fig. 5.511: Structure of LUAD SL labels in the ISLE [33] and DiscoverSL datasets
[12]. Heatmap showing labelled gene pairs from LUAD data from both
the ISLE and DiscoverSL dataset. Elements along the horizontal and
vertical axes represent unique genes. Each coloured dot represents a
gene pair where a label exists in either the ISLE (red), DiscoverSL (blue),
or both (green) datasets. Whitespace denotes a gene pair with no label.
Rows are clustered using complete linkage and Euclidean distance with
“No Label”, “ISLE”, “DiscoverSL”, and “Both” encoded as -1, 0, 1, and
2, respectively. Both the rows and columns are ordered based on these
clusters. The barplot to the right shows the number of occurrences of
each gene in the LUAD dataset.
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train and test sets are disjoint in terms of gene pairs, not individual genes;
for Single, only one gene from a gene pair in the test set can be present
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experiment as Tables 2-3 in the main text. Note: there was insufficient
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Fig. 5.513: Heatmaps of average AUROC performances for the LOL2 [22], Elastic
Net [20], MUVR [54], and RRF [15] models over 10 runs. Cross-cancer:
Vertical and horizontal axes denote the cancer types used to train and
test, respectively. LOCO: Horizontal axis denotes the cancer type held out
for testing. Models trained on balanced data from all other cancers.
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Fig. 5.514: Heatmaps of average AUPRC performances for the LOL2 [22], Elastic

Net [20], MUVR [54], and RRF [15] models over 10 runs. Cross-cancer:

Vertical and horizontal axes denote the cancer types used to train and
test, respectively. LOCO: Horizontal axis denotes the cancer type held out
for testing. Models trained on balanced data from all other cancers.
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scores between the lower and upper 5% quantiles of importance values

from the repetitions.
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Fig. 5.516: Median feature importance scores for the LUAD one-cancer models.These
were scored using 100 repetitions of the model agnostic permutation
feature importance algorithm [18]. The bars represent the distribution of
scores between the lower and upper 5% quantiles of importance values
from the repetitions.
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5.6 Supplementary Tables

Symbol Description Biological Data type Used
sample
CRISPR_dep_stat Change in Cancercell CRISPR Here
CRISPR lines depen-
depen- dency [46,
dency 14]
score  of Mutation
one gene [21]
based on
non-silent
muta-
tions in
the other
(Wilcoxon)
CRISPR _dep pvalue Significance Cancercell CRISPR Here
of change lines depen-
in depen- dency [46,
dency of 14]
one gene Mutation
based on [21]
non-silent
muta-
tions in
the other
(Wilcoxon)
CRISPR_cor_stat Correlation Cancer cell CRISPR Here
of gene- lines depen-
wise dency [46,
CRISPR 14]
depen-
dency
scores
(Pear-
son’s)

Continued on next page
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- continued from previous page

Symbol Description Biological Datatype Used
sample
CRISPR_cor pvalue Significance Cancercell CRISPR Here
of corre- lines depen-
lation of dency [46,
gene-wise 14]
CRISPR
depen-
dencies
(t-test)
CRISPR avg Average of Cancercell CRISPR Here
gene-wise  lines depen-
means of dency [46,
CRISPR 14]
depen-
dency
scores
RNAi dep stat See Cancercell RNAi de- Here
CRISPR lines pendency
equivalent [60, 44]
Mutation
[21]
RNAi dep pvalue See Cancercell RNAi de- [27]
CRISPR lines pendency
equivalent [60, 44]
Mutation
[21]
RNAi cor_stat See Cancercell RNAi de- Here
CRISPR lines pendency
equivalent [60, 44]
RNAi cor pvalue See Cancercell RNAi de- Here
CRISPR lines pendency
equivalent [60, 44]
RNAi_avg See Cancercell RNAi de- Here
CRISPR lines pendency
equivalent [60, 44]

Continued on next page
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— continued from previous page

Symbol

Description

Biological
sample

Data type

Used

discover_mutex

discoversl mutex_amp

discoversl _mutex_del

discoversl mutex mut

discoversl_mutex

Mutual
exclusivity
score [8]
Significance
of non-co-
occurrence
of ampli-
fications
(hyper-
geom.)
Significance
of non-co-
occurrence
of  dele-
tions
(hyper-
geom.)
Significance
of non-co-
occurrence
of  non-
silent
mutations
(hyper-
geom.)
Combined
p-value

of previ-
ous three
scores
using
Fisher’s
method

Patient tu-
mour

Patient tu-
mour

Patient tu-
mour

Patient tu-
mour

Patient tu-
mour

CNV, mu-
tation [45,
32]
CNV [45,
32]

CNV [45,
32]

Mutation
[32]

CNV, mu-
tation [45,
32]

Here

[12]

[12]

[12]

[12]

Continued on next page
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- continued from previous page

Symbol Description Biological Datatype Used
sample

mutex_alt Significance Patient tu- CNV, mu- Here
of non-co- mour tation [45,
occurrence 32]
of ampli-
fications,
deletions
or  non-
silent
mutations

MUTEX Mutual Patient tu- Mutation Here
exclusivity mour [32]
score [2]
(failed to
identify
mutually
exclusive
pairs
in our
datasets
and was
thus not
used in
training)

logrank pval Significance Patient tu- CNV, mu- Here
of change mour tation,
in survival expres-
time [6] sion, [45,
between 32, 49]
patients patient
with (out) clinical
aberrant data [49]
expression
or CNV in
both genes

Continued on next page
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— continued from previous page

Symbol

Description

Biological
sample

Data type

Used

diff exp logFC

diff exp pvalue

gtex_corr

gtex_corr._pvalue

Differential
expression
of a gene
based on
mutations
in other
(log fold-
change)
Significance
of differ-
ential
expression
of a gene
based on
mutations
in the
other
(edgeR
test p-
value,
[52])

Co-
expression
(Pearson’s
correla-
tion)
Significance
of co-
expression
(t-test)

Patient tu-
mour

Patient tu-
mour

Healthy
donor

Healthy
donor

Mutation,
expression
[32, 49]

Mutation,
expression
[32, 49]

Expression
[39]

Expression

[391]

[12]

[12]

Here

Here

Continued on next page
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- continued from previous page

Symbol Description Biological Datatype Used
sample
tumour_corr Co- Patient tu- Expression [12]
expression mour [49]
(Pearson’s
correla-
tion)
tumour_corr._pvalue Significance Patient tu- Expression [12]
of co- mour [49]
expression
(t-test)
normal corr Co- Patient Expression Here
expression normal [49]
(Pearson’s
correla-
tion)
normal_corr._pvalue Significance Patient Expression Here
of co- normal [49]
expression
(t-test)
pathway coparticipation Significance Pathway Pathway [12]
of co- databases gene sets
occurrence [35]
in  path-
ways
(hyper-
geom.)

Tab. 5.S1: Features used in SBSL prediction models. Columns “Biological sample”
and “Data type” indicate the type of biological samples and the kind of
data (e.g. molecular profiles) acquired for those samples, respectively.
Descriptions of how each feature was calculated, and sources of the data,
are provided in the main manuscript (Methods). The “Used” column
indicates where this specific feature was first used in the context of
computational SL prediction.
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Pan-cancer

Cancer-specific

Held-out Cancer Unbalanced Balanced
Type

BRCA BRCA .64 £+ .02 75 £ .01 .83 + .01
COAD 52+ .02 .51 + .02 .60 + .02
LUAD 73+ .03 79 £ .02 .83 £+ .02
oV 40 £+ .04 .53 +.04 .58 +.03

COAD BRCA .65 £+ .02 ST+ .02 .84 + .01
COAD .52 £+ .02 .53 £.02 .60 + .02
LUAD 74 £+ .02 .80 £+ .02 .85 + .02
oV 40 £+ .04 .50 £ .04 .59 + .03

LUAD BRCA .76 £+ .01 .82 £.02 .86 + .01
COAD .62 £+ .02 .60 £ .01 .64 + .01
LUAD .81 + .02 .83 £+ .02 .86 + .01
oV .55 + .06 .52+ .04 .54 £+ .07

oV BRCA .75 £+ .02 .80 £ .02 .86 £+ .01
COAD .62 £+ .02 .61 £.02 .63 + .02
LUAD .80 £ .02 .83 £.02 .87 £+ .02
oV .55 £ .04 .53 £.05 57 +.07

Tab. 5.52: Performance of one-cancer and pan-cancer SL prediction models (with
unbalanced and balanced cancer representation) tested on heldout exam-
ples of each cancer type. Mean and standard deviation of AUROC for 10

repetitions.
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Pan-cancer Cancer-specific

Held-out Cancer Unbalanced Balanced
Type

BRCA BRCA .68 £ .02 78 + .01 .88 £+ .01
COAD .53 £+ .02 52+ .02 .59 + .02
LUAD 78 .02 .84 £+ .01 .87 £+ .02
oV 46 £+ .02 .51 £+.03 .58 + .05

LUAD BRCA .68 £+ .02 .81 £+.03 .87 £+ .01
COAD .53 £.02 .52 £ .02 .59 + .01
LUAD .79 + .02 .83 £ .02 .87 £+ .02
oV 45+ .03 .50 £ .02 .58 + .04

COAD BRCA .82 £+ .01 .85 £+ .01 .89 + .01
COAD .61 £.03 .60 £ .02 .62 + .01
LUAD .84 £+ .03 .84 £+ .02 .87 £+ .01
oV .54 + .05 .52 + .05 .51 +.05

oV BRCA .81 £.01 .84 £+ .02 .89 1+ .01
COAD .60 £+ .02 .60 + .03 .63 £+ .02
LUAD .81 £.03 .83 £.02 .87 £+ .02
(0)Y .55 + .05 52+ .05 .54 £+ .05

Tab. 5.S3: Performance of one-cancer and pan-cancer SL prediction models (with
unbalanced and balanced cancer representation) tested on heldout exam-
ples of each cancer type. Mean and standard deviation of AUPRC for 10
repetitions.
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Feature VIF

discoversl mutex_amp 1.388619555
discover_mutex 1.039665442
mutex_alt 1.381683071
RNAi avg 2.224074149
RNAi_cor_pvalue 1.011676996
RNAI cor_stat 1.013070426
RNAi_dep pvalue 1.109236607
RNAi dep stat 4.917394579
CRISPR_avg 2.247942347
CRISPR_cor_pvalue 1.007564922
CRISPR cor_stat 1.006988081
CRISPR dep pvalue 1.141351776
CRISPR_dep_stat 4.953596929
gtex_corr 1.334004715
gtex_corr.pvalue 1.071894916
tumour_corr 1.170333149
tumour_corr.pvalue 1.048525217
normal corr 1.289831761
normal corr.pvalue 1.430066751
diff exp logFC 1.023954926
diff exp pvalue 1.072218472
pathway coparticipation 1.018279983
logrank pvals 1.347337851

Tab. 5.S4: Variance inflation factors (VIF) [25] per feature for the combined dataset.
The variance inflation factor indicates how many times higher the vari-
ance of the feature coefficient is than one would expect if there was no
collinearity. A VIF of 1 indicates that a feature does not correlate with
any other features. A VIF of 2 indicates that the variance of a particular
feature coefficient is two times higher than one would expect if there was
no collinearity, indicating moderate correlation with other features. A VIF
value larger than 5 is considered to indicate high correlation with other
features.
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Cancer Type Gene Pair

Functional Association

BRCA TP53/BOP1 BOP1 is a regulator of p53 pathway
function. [48]
TP53/CRYGS CRYGS is a target gene of the TP53 tran-
scription factor. [31]
TP53/EEF1D Not found.
TP53/AKAP8L  Physical interaction between AKAPSL
and TP53 proteins. [36]
TP53/CPSF1 Not found.
LUAD KRAS/ANAPC4 ANAPC4 is synthetic lethal with KRAS.
[43]
KRAS/FBL Not found.
KRAS/PSMA1  PSMAL is synthetic lethal with KRAS.
[11]
KRAS/PSMA5  Not found.
KRAS/RRM2 KRAS is a regulator of RRM2. [65]

Tab. 5.S5: Functional associations found for the top 5 ranked SBSL-LOL2 predictions
for BRCA and LUAD. As evidence for functional associations specific to the
cancer type in question was rarely available, we instead report functional
associations in general. We report the top 5 ranked SL pairs as predicted
by the LOL2 model, as the SBSL linear models generalised better across
SL gold standard datasets and cancer types. There were no significant
differences between the predictions of the LOL2 and Elastic Net models.
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Discussion

DNA repair is one of the fundamental functions of the genome, essential for
maintaining stability and integrity. Without it, mutations would accumulate,
genes would be disrupted, and chromosomes would fragment, ultimately
leading to premature cellular aging, failure to replicate, and death. Such
aberrations would be unavoidable, as DNA repair protects the genome from
pervasive mutagenic threats, ranging from intrinsic processes at subcellular
level to galactic cosmic rays originating from the distinct reaches of our
universe [5].

Perhaps less catastrophic, but more immediately problematic, defective DNA
repair can lead to an increased risk of contracting diseases like cancer due to
unchecked spontaneous mutagenesis. However, current cancer treatments
like chemotherapy and radiation therapy can also exploit this link between
cancer cells and compromised DNA repair to selectively kill cancer cells.
Defective DNA repair thus represents a “double-edged sword”: increasing
the risk factor for developing cancer, yet offering a mechanism to treat the
disease. However, some of these therapies are still toxic to healthy cells, with
significant side effects for patients. Therefore, advancing our understanding
of DNA repair mechanisms is crucial for refining cancer therapeutics, reducing
treatment toxicity, and improving patient quality of life. Understanding
DNA repair and the associated pathways is an ambitious task; the pathways
are highly complex, constituting an intricate network of redundancies and
interconnected machinery that address different types of DNA damage. This
dissertation has focused on the critical DNA double-strand break (DSB) repair
pathways, each responsible for producing distinct mutational patterns during
repair —from the high-fidelity repairs of homologous recombination to the
rapid and direct ligations of non-homologous end joining, or the sequence-
selective characteristics of microhomology-mediated end joining.
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Due to the highly interconnected nature of the DNA repair pathways and the
overlap in the mutations they produce, it is difficult to isolate mutational
patterns and reverse engineer the causal mechanisms and behaviours, requir-
ing vast quantities of mutational data covering different sequence contexts
and genotypes. This dissertation takes advantage of the fact that each repair
pathway leaves unique mutational signatures, which can now be examined
across a large data landscape through CRISPR technology. By integrating
large-scale CRISPR datasets with novel computational approaches, we aimed
to maximise insights while addressing specific challenges inherent to this
new data type. The dissertation explored four main aspects: (1) predicting
CRISPR repair outcomes in data-rich cell lines and adapting these predictions
to data-scarce contexts; (2) identifying novel genes involved in DSB repair
through outlier analysis of genome-wide CRISPR knockout mutational screens
without using traditional controls; (3) elucidating functions of candidate DSB
repair genes using knockout mutational spectra by identifying signatures
shared with known DSB repair genes and attributing functions based on guilt-
by-association approach.; and (4) identifying synthetic lethality interactions
through genome-wide functional CRISPR screens, and further presenting ex-
perimental methods to assess synthetic lethality-prediction model robustness
to selection bias in current gold standard label sets.

6.1 Challenges in detailed CRISPR repair outcome
prediction modeling

Predicting detailed CRISPR repair outcome distributions, as we do in Chapter
2, poses unique challenges to computational modelling. The first challenge is
that the set of outcomes comprising a valid outcome distribution differs per
input target sequence, in contrast to classic multi-label problems where the
set of output labels would be the same across all possible input sequences.
Complex rules define the possible outcomes for each sequence (discussed in
Chapter 2), and most current models — including our proposed X-CRISP model
— circumvent explicitly incorporating these rules into the model. Instead,
they assume independence between each indel and score them separately,
aggregating across all possible indels to produce the final distribution. Yet,
this independence assumption is inherently flawed, as outcome frequencies
are interdependent based on the input sequence.
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Ignoring this interdependence and interactions between outcomes may be a
limiting factor on predictive performances. As noted in Chapter 2, while the
average predictive performances are quite good across current models, there
is yet a large amount of variability in performance across different target
sites, and perhaps modeling approaches would benefit from predicting the
entire distribution and considering these interactions. Currently, only one
model predicts the entire distribution, Lindel, yielding good yet sub-state-of-
the-art performances. The reason Lindel does not achieve top performances
even while considering the entire distribution may be due to the second
challenge of predictive modeling of CRISPR repair outcomes — engineering
input features.

When designing repair outcome prediction models, it is difficult to avoid
coupling input features to the output labels, as both their cardinalities vary
according to the target sequence. If one tries to model the entire distribution
(hundreds of repair outcomes), adding a new feature to describe an outcome
results in an explosion in dimensionality as a feature is replicated for each
possible outcome. To avoid the curse of dimensionality (having far more
features than samples to train on), popular choices have been to limit the
number of features used to describe each outcome as Lindel does, or take the
X-CRISP approach and model each outcome independently. One consequence
is that current models may not encode sequence characteristics or interactions
important for predicting repair outcome likelihood, again potentially limiting
performance.

Another consequence is that, by missing certain features or interactions be-
tween potential outcomes, these models are not capable of fully describing
what sequence characteristics are indicative of repair outcome likelihood.
Furthermore, as the features in use are typically engineered from domain
expertise and not derived from data, their ability to capture novel sequence
characteristics that influence outcome prediction is limited. None of the cur-
rent detailed repair outcome prediction models encode the sequence directly
as input, which itself presents an opportunity for the next advancement in
repair outcome prediction. Transformer-based architectures could enhance
CRISPR modeling by extracting sequence features in a data-driven manner
while leveraging the attention mechanism to provide interpretable explana-
tions for model decisions at the sequence level. Hybridising transformer-
based neural network models with external domain knowledge to manage
sequence-specific outcome possibilities may allow us to build interpretable,

6.1 Challenges in detailed CRISPR repair outcome prediction modeling
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data-driven models that are not based on faulty assumptions and address the
key challenges of repair outcome interdependence and feature engineering
described above.

6.2 Clinical potential of DSB-induced mutational spectra

Studies have shown that precision therapies targeting specific tumor vulnera-
bilities can be more effective than broader DNA-damage inducing treatments
that affect healthy cells as well. One such vulnerability is deficiency in DSB
repair, for which multiple drugs are already in clinical use. For instance,
patients with BRCA-deficient or HDR-compromised tumors can reportedly
benefit from PARP-inhibitor therapy exploiting synthetic lethality between
the PARP and BRCA genes [1].

To identify further vulnerabilities leading to opportunities for targeted treat-
ments, computational models have been proposed to infer repair deficiencies
from mutational signatures based on somatic mutations throughout the
genome, such as HRDetect [4] and CHORD [6]. For example, HRDetect
has demonstrated predictive capabilities on patient tumours in laboratory
settings, identifying breast cancer sensitivity to anthracyclines [4] and be-
ing prognostic of platinum therapy duration in thoracic and gastrointestinal
cancers [7]. However, these models are not yet validated for routine clinical
use, and we anticipate that they face a key limitation should they advance
to the clinical stage: analysing mutational signatures based on WGS/WES
mutational catalogue requires the accumulation of a substantial mutational
burden to generate a reliable signal, which may limit the detection of recently
acquired but clinically relevant repair deficiencies. Given the time-sensitive
nature of cancer treatment, early detection of repair deficiencies could be
crucial.

CRISPR-induced mutational spectra may offer a more targeted, immediate
alternative. Our transfer learning approaches in Chapter 2 demonstrated
how repair outcome prediction models could be tuned to predict mutational
spectra in DSB repair-deficient cells. Thus, developing models to reverse the
prediction task, (i.e. predict cellular DSB repair deficiencies from observed
mutational spectra) should be feasible. Furthermore, our NMF signature anal-
ysis in Chapter 4 revealed how available repair mechanisms shape mutational
spectra, thus it may even be possible to model the DSB repair capabilities of
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the cell in some continuous multidimensional latent space. By inducing DSBs
at specific loci and sequencing tumour cells before and after induction, we
could directly model and assess DSB repair capabilities by analyzing the mu-
tational outcomes. This strategy promises a cleaner signal, possibly allowing
easier capture of rare or subtle repair patterns often missed in whole-genome
analyses. Further, mutational spectra analysis of tumours in the clinic could
enable on-demand assessment of repair status, potentially making it more ef-
fective for timely clinical decision-making when compared to whole-genome
somatic mutation analysis.

6.3 Controls for mutational spectra

These studies highlight key considerations for researchers using large-scale
CRISPR mutational data in DNA repair research. A primary challenge is
selecting appropriate controls, as the datasets in Chapters 3 and 4 either
lacked controls or relied on non-targeting sgRNAs. While non-targeting
sgRNAs approximate baseline mutational distributions, they typically exhibit
lower variance than targeting sgRNAs (knockouts). This discrepancy may
arise from DDR stress responses induced by gene knockouts, which perturb
cells before DSB induction. Known variations in sgRNA efficacy [3] within
multi-guide knockout strategies may further contribute to increased variability
in knockout mutational spectra. Other factors may also play a role, but it
is clear that non-targeting controls do not fully account for the variability
introduced by gene knockouts and subsequent DSB induction.

Recognizing these inherent differences in variance is essential for guiding
data-driven research questions and methodological decisions. For instance,
statistical analyses that assume homoscedasticity (equal variance) may yield
misleading results when comparing knockout and non-targeting control
groups.

Until all hidden sources of variability between groups can be identified, the
extent to which this variability can be controlled or accounted for experimen-
tally may be limited. Future experiments generating mutational spectra could
incorporate a well-designed panel of sgRNAs targeting non-essential intronic
regions [2] to better capture mutational variability by inducing similar DDR
stress as knockouts while avoiding genotypic alterations. This approach may
improve statistical robustness, though variability due to other factors — such

6.3 Controls for mutational spectra
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as the differences in sgRNA efficacy across knockout guides — may remain.
Therefore, while experimental strategies may help reduce these discrepancies,
accounting for residual variability will remain necessary in future studies and
analyses.

6.4 Sequencing depth for mutational spectra

Another consideration that warrants discussion is the sequencing depth for
mutational spectra analysis. Our outlier detection and non-negative matrix
factorisation signatures analyses draw on CRISPR knockout screens with
targeted loci for DSB induction. These screens vary in scope: one covers
knockouts across the entire genome (Chapter 3), while the other examines
about 750 genes with substantially greater read depth (Chapter 4). This depth
provides finer resolution for detecting rare mutations and local relationships,
capturing details that broader but shallower genome-wide screens miss.
Therefore, sequencing depth emerges as a critical factor in capturing robust
mutational signatures over broad coverage.

Another challenge to consider when approaching large-scale CRISPR screen-
ing as the tool of choice for examining the minutiae of DNA repair processes.
Broad, well-documented patterns tend to be representative of the more un-
derstood aspects of these mechanisms. To identify novel genes or functional
nuances, the focus shifts from global patterns to smaller, localised deviations
in mutational behaviour. Our algorithmic approaches to analyse this data
from Chapters 3 and 4 reflect this, with capabilities to identify highly cor-
related and highly localized patterns in the dataset taking precedence, over
identifying singular and globally occurring mutations. This shift underscores,
again, the importance of high sequencing depth in studies aimed at charac-
terizing mutational spectra, as deeper data enable better differentiation of
rare but informative mutations.

In general, when considering resource allocation in experimental designs fo-
cused on generating CRISPR mutational spectra, we suggest that researchers
face two main trade-offs when allocating their sequencing read budget: depth
versus breadth concerning (i) gene knockouts and (ii) targeted loci for mu-
tational spectra generation. This introduces the problem of selection bias,
which was tackled in Chapter 5, albeit within the domain of synthetic lethality
prediction. First, reducing the number of targeted loci can bias results toward

Chapter 6



repair processes that are most active or yield the most distinct signatures
in those specific sequence contexts. Second, limiting the number of gene
knockouts may restrict the detection of certain latent signatures or could lead
to the misattribution of mutations to particular repair processes. In either
case, analyses should carefully account for the selection bias introduced
by narrowing the scope to sub-genome levels or restricting the number of
targeted loci.

6.5 Final remarks

In summary, this dissertation contributes to the field of DNA repair by de-
veloping and applying computational approaches tailored to the challenges
of CRISPR-generated mutational data. By refining predictive models and
exploring methods to identify gene associations and repair signatures, this
work offers practical tools for analyzing DSB repair at a greater level of
specificity. These methods underscore the value of deep sequencing and
thoughtful control selection in experimental designs, offering guidance for
future research aiming to characterize DNA repair pathways more accurately.
Altogether, this work advances our ability to interpret complex CRISPR data,
adding insights that can support broader efforts in DNA repair research and
therapeutic development.

6.5 Final remarks
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