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Abstract

Spectroscopy of a Josephson junction device with an embedded quantum dot reveals
the presence of a contribution to level splitting in external magnetic field that is pro-
portional to cosφ, where φ is the gauge-invariant phase difference across the junction.
To elucidate the origin of this unanticipated effect, we systematically study the Zeeman
splitting of spinful subgap states in the superconducting Anderson impurity model. The
magnitude of the splitting is renormalized by the exchange interaction between the lo-
cal moment and the continuum of Bogoliubov quasiparticles in a variant of the Knight
shift phenomenon. The leading term in the shift is linear in the hybridisation strength Γ
(quadratic in electron hopping), while the subleading term is quadratic in Γ (quartic in
electron hopping) and depends on φ due to spin-polarization-dependent corrections to
the Josephson energy of the device. The amplitude of the φ-dependent part is largest for
experimentally relevant parameters beyond the perturbative regime where it is investi-
gated using numerical renormalization group calculations. Such magnetic-field-tunable
coupling between the quantum dot spin and the Josephson current could find wide use
in superconducting spintronics.
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1 Introduction

The phenomenon of Knight shift was first observed as a shift of the nuclear magnetic res-
onance frequencies for atoms in a metal compared with the same atoms in a nonmetallic
compound [1]. The shifts were found to be proportional to the amplitude of the hyperfine
structure splitting and hence to the strength of the nucleus-electron coupling [1, 2]. Knight-
shift measurements have since become one of the principal local probe techniques for studying
condensed-matter systems [3]. Among their many applications we find the studies of magnetic
impurity effects in metals [4] and the testing of the Bardeen-Cooper-Schrieffer (BCS) theory
of superconductivity [5–9].

The Knight shift is due to the nucleus-electron hyperfine interaction [2], which is essentially
an exchange interaction between the nuclear spin and the electron total angular momentum
[10]. By analogy, a similar shift is expected in any system where a local moment is coupled
to itinerant particles by exchange coupling. In quantum impurity models, such as the Kondo
model and the single-impurity Anderson model (SIAM) for a magnetic impurity in a metallic
bath, the Knight shift manifests as a negative shift of the impurity g-factor proportional to the
Kondo exchange coupling J and the host density of states ρ, so that to first order in coupling
one has geff = g

�

1− 1
2ρJ

�

[11, 12],1 where g is the bare impurity g-factor, and ρJ can be
expressed in terms of the SIAM parameters as ρJ = 8Γ/πU with the hybridisation strength Γ
and the electron-electron repulsion U [13].

1This expression holds for the case where the Pauli paramagnetism in the host is neglected and the g-factor
renormalization is a purely dynamic effect due to spin-flip scattering.
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In this work we investigate how the g-factor is renormalized for an impurity described by
the SIAM with a superconducting bath, more specifically for a quantum dot (QD) embedded
in a Josephson junction between two superconductors (SCs) with arbitrary gauge-invariant
phase differenceφ. This is motivated by presented measurements on a QD Josephson junction
device based on a semiconductor nanowire embedded in a transmon circuit. These show the
presence of a phase-dependent contribution to Zeeman splitting.

We focus on the quantity κ, the renormalization (impurity Knight shift) factor, defined
through geff = g (1−κ), which is also a measure of the degree of Kondo screening (degree
of compensation) [14]. The value of κ ranges from 0 for a fully decoupled spin to 1 for a
fully compensated spin [14]. Two key results are presented. First, to lowest order in electron
hopping, κ is found to depend linearly on Γ . This result is at variance with that found for the
Kondo model with a SC bath, where the dependence is quadratic in the exchange coupling
J [14]; we will comment on the origin of this difference in the discussion section. Second, and
more importantly, κ depends on the phase difference between the SCs. This effect is caused by
the pair-hopping processes, the very same ones that also produce the Josephson supercurrent
[15–19], and to lowest order in electron hopping it is quadratic in Γ . For experimentally
relevant parameters beyond the perturbative regime the magnitude of the phase-dependent
term will be quantified using numerical renormalization group (NRG) calculations [20–27].
The physical origin of the φ-dependent contribution to the impurity Knight shift implies the
presence of a field-tunable coupling between the Josephson current and the impurity spin.
The effect is large and could be used for applications in quantum devices and superconducting
spintronics [28–34].

2 Experimental evidence

We first present the experimental evidence as motivation. The phase dependence of the Zee-
man splitting has been observed in recent experiments where the direct spectroscopy of spin-
split Andreev levels has been performed in a QD with SC leads [35]. The device was tuned to
a spin-1/2 ground state with an unpaired quasiparticle and excitations were induced by apply-
ing a microwave drive to the central gate electrode of the QD. This induces direct transitions
between the two branches in the spin doublet subspace described by the following potential
energy [35]:

U(φ) = E0 cosφ − ESOσ · n sinφ +
1
2

g [1−κ(φ)]µBσ ·B , (1)

where n is a unit vector along the polarization direction set by the spin-orbit interaction, and
ESO and E0 are the spin-dependent and spin-independent contributions to the Cooper pair
tunneling rate [35]. If a cosφ term is present in κ, so that κ = κ̄ − ∆κ2 cosφ, we find for
magnetic field applied along n

U(φ) =
�

E0 ±
EZ∆κ

4

�

cosφ ∓ ESO sinφ ±
EZ(1− κ̄)

2
. (2)

The transition frequency is given by the difference:

E↑↓ = EZ(1− κ̄)− 2ESO sinφ +
EZ∆κ

2
cosφ . (3)

The experimental results are presented in Fig. 1(a). The plots show the spin-flip frequency as
a function of the flux through the SQUID which in turn controls the phase difference across
the Josephson junction [35]. The field dependencies of the different contributions are shown
in Fig. 1(b). The average spin-flip frequency increases as a linear function of the magnetic

3
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a) b)

Figure 1: a) Spin-flip spectroscopy in a quantum dot with superconducting leads:
measured flux dependence of the |↓〉↔ |↑〉 transition for a range of applied magnetic
fields. The vertical lines mark the positions of maximal frequency. The field is applied
parallel to the spin-orbit coupling direction. b) Decomposition of the curves into
constant, sine and cosine terms, f = f̄ + Asinφ + B cosφ.

field. The φ-dependent terms have amplitudes that are also linear in field. For the sine term,
associated with the spin-orbit coupling (SOC), this represents a field-dependent correction
that most likely arises from the orbital effects (ESO is generated by cotunneling through high-
energy orbitals in the presence of SOC [35]). For the cosine term, the linear dependence is
the impurity Knight shift which is the topic of this work. It can be noted that the curve has an
offset at zero field. This is due to hysteresis in the flux axis (flux was swept in one direction
for the B > 0 part, and in the opposite direction for the B < 0 part). Nevertheless, the linear
field-dependence is clearly demonstrated.

3 Model

To model the phenomenon described above we consider a Josephson junction QD [36–46], i.e.,
a system composed of three parts: a QD and two SCs, see Fig. 2(a). We split the Hamiltonian as
H = H0+H1, where H0 describes the subsystems in isolation, while H1 describes the coupling

4
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a)

c)

b)

d)

Figure 2: a) Schematic representation of the setup: a quantum dot is embedded
in the Josephson junction between two superconducting contacts with the gauge-
invariant phase difference φ. In the presence of external magnetic field B, the quan-
tum dot spin experiences phase-dependent Zeeman splitting, i.e., there is a coupling
between the local moment and the supercurrent. b) The impurity Knight shift fac-
tor κ quantifies the reduction of the magnitude of the Zeeman splitting due to the
coupling to the contacts Γ . c) For weak and moderate Γ , κ is a harmonic function of
φ: κ(φ) = κ̄

�

1− ∆κ2 cosφ
�

. d) Leading phase-dependent contribution to κ: fourth-

order pair transfer process with the amplitude proportional to eiφ where an electron
pair is transferred from left to right superconducting contact. The blue colored ar-
rows indicate the elements that tunnel in a given step of the process. The amplitude
for the process is the product of the four superconducting coherence factors indicated
next to the grey arrows.

between them. We write

H0 = Himp +H(L)SC +H(R)SC ,

Himp = εn̂+ Un̂↑n̂↓ + EZ
1
2

�

n̂↑ − n̂↓
�

= ε↑n̂↑ + ε↓n̂↓ + Un̂↑n̂↓ ,

H(β)SC =
∑

n,σ

εnσc†
β ,nσcβ ,nσ +

∑

n

�

∆eiφβ c†
β ,n↑c

†
β ,n↓ +H.c.

�

.

(4)

The electron annihilation operators are denoted by dσ for the QD and cβ ,nσ for the SCs. The
index β = L, R enumerates the two SCs, while n ↑ and n ↓ denote the time-reversal-conjugate
pairs of states. In Himp, ε is the impurity energy level, n̂σ = d†

σdσ are the impurity occupancy
operators with n̂ = n̂↑ + n̂↓, and EZ = gµBB is the (bare) impurity Zeeman energy, where g

5
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is the atomic Landé g-factor, µB is the Bohr magneton, and B is the external magnetic field.
In the alternative form, the spin-dependent levels are ε↑ = ε+ gµBB/2 and ε↓ = ε− gµBB/2.

We will mainly focus on the case of a half-filled QD with ε= −U/2. In H(β)SC , the energy levels
in SCs are εn,↑ = εn + gSµBBS/2 and εn,↓ = εn − gSµBBS/2, where gS is the atomic Landé g-
factor of the SC material, and BS is the field inside the SC. In the following, we set BS = 0, i.e.,
we assume that the magnetic field does not penetrate in the SCs due to the Meissner effect.
This is a good approximation for large SC contacts; in Sec. 7.5 we briefly discuss the field
effects in ultrasmall SC islands [47, 48] and thin SC layers with in-plane magnetic field [49].
The magnitude of the order parameter ∆ is taken equal in both SCs, while the phases are
φL = φ/2 and φR = −φ/2. The normal-state density of states is assumed constant and the
band extends from −D to D, so that ρ = 1

2D . The chemical potential is set to µ = 0. In other
words, the occupied states extend from −D to 0, the empty states from 0 to D.

The coupling of the impurity to the SCs is through single-electron hopping:

H1 = H1L +H2R , with H1β =
Vβ
p

N

∑

nσ

d†
σcβ ,nσ +H.c. (5)

Here n ranges over all N levels in each SC. The hybridisation strengths can be expressed as
constants

Γβ = πρV 2
β . (6)

The spectrum of this model has a number of discrete levels below the continuum of exci-
tations. These discrete (subgap) states are known as Yu-Shiba-Rusinov states (in the U ≫ ∆
regime) [50–52] and as proximity-induced states (or Andreev bound states) (in the U ≪ ∆
regime) [53], with a sharp transition between the two at U = 2∆ in the Γ → 0 limit [54] and
generally a smooth crossover between the two regimes for non-zero Γ . In this work we focus
on the spin-doublet Yu-Shiba-Rusinov states (for large U) or odd-parity Andreev states with a
single trapped quasiparticle (for small U), without being concerned with the question whether
these levels are the ground or the excited states of the system; we may, for example, assume
that the parity life-time is long enough for the experiment under discussion [46,55].

It is convenient to rewrite the Hamiltonian in terms of Bogoliubov quasiparticle operators
bβ ,nσ. The Bogoliubov quasiparticle states are excitations above the BCS ground state defined
through

cβ ,n↑ = u∗β ,n bβ ,n↑ + vβ ,n b†
β ,n↓ ,

c†
β ,n↓ = uβ ,n b†

β ,n↓ − v∗β ,n bβ ,n↑ ,
(7)

and

cβ ,n↓ = u∗β ,n bβ ,n↓ − vβ ,n b†
β ,n↑ ,

c†
β ,n↑ = uβ ,n b†

β ,n↑ + v∗β ,n bβ ,n↓ .
(8)

un is the amplitude of the particle-like component of the quasiparticle, vn that of the hole-like
component. We use the following phase convention for these coherence factors:

uβ ,n =

√

√1
2

�

1+
εn

ξn

�

, vβ ,n = eiφβ

√

√1
2

�

1−
εn

ξn

�

, (9)

where the quasiparticle energies are ξn =
Æ

ε2
n +∆2. In this language, the SC Hamiltonians

are
H(β)SC =

∑

nσ

ξn b†
β ,nσbβ ,nσ . (10)

6
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The index n runs over all N levels in each bath, for εn of either sign. We have dropped the
constant terms since only the excitation energies are important for what follows.

The tunneling parts can be rewritten as

H1β/(V/
p

N) =
∑

n

�

d†
↑

�

u∗β ,n bβ ,n↑ + vβ ,n b†
β ,n↓

�

+ d†
↓

�

u∗β ,n bβ ,n↓ − vβ ,n b†
β ,n↑

�

+
�

uβ ,n b†
β ,n↑ + v∗β ,n bβ ,n↓

�

d↑ +
�

uβ ,n b†
β ,n↓ − v∗β ,n bβ ,n↑

�

d↓
�

.
(11)

The hopping processes do not conserve the number of particles, only its parity. An electron
hopping from the impurity level to the bath can either become a quasiparticle, or annihilate
one. The latter process can be understood as the recombination of an existing Bogoliubov
quasiparticle and the hopping electron of the opposite spin into a Cooper pair.

4 Problem formulation

In the presence of magnetic field the lowest-lying doublet splits by E↑ − E↓ and we define the
effective impurity g-factor as

geff =
E↑ − E↓
µBB

. (12)

Here Eσ designate the energies of the eigenstates of the total spin operator with Sz = σ. For
a free impurity, geff = g. The renormalization factor κ is a measure of the negative deviation
of geff from g:

κ=
g − geff

g
. (13)

We thus need to compute the correction∆Eσ to the eigenenergies Eσ due to the impurity-bath
coupling H1 and take their difference scaled by EZ = gµBB:

κ=
∆E↓ −∆E↑

EZ
. (14)

The goal of this work is to calculate this quantity perturbatively and to verify these results (and
extend them to higher values of Γ ) with a numerical solution using the NRG.

In SIAM, there are two microscopic mechanisms which renormalize the Zeeman splitting,
spin and charge fluctuations (see also the discussion in Sec. 7.3). The spin fluctuations increase
the admixture of a wavefunction component where the impurity forms a singlet with a quasi-
particle, with equal contributions of Sz,imp = +1/2 and Sz,imp = −1/2. The charge-fluctuation
mechanism means that in the spin-doublet state there are components of the wavefunction
with configurations where the impurity is unoccupied or doubly occupied (e.g. as virtual
states during spin-flip events), hence Sz,imp = 0. Both mechanisms reduce g, their relative
importance depends on the value of the U/∆ ratio.

The quantity κ is also proportional to the scalar product between the impurity and bath
spin, i.e., it represents the degree of Kondo screening by the particles in the bath [14]. It can
furthermore be related to the expectation value of the impurity spin operator Ŝz,imp [14]:

κ= 1− 2〈ψ|Ŝz,imp|ψ〉= 1− 2 Tr
�

ρ̂impŜz,imp

�

, (15)

where ρ̂imp = Trbath[ρ̂] is the impurity density matrix obtained by tracing out the SC bath
degrees of freedom. The definitions in Eq. (14) and (15) are fully equivalent and both may
be used in numerical calculations using the NRG; see also Sec. 6 for technical details. The
operator Ŝz,imp is diagonal in the impurity basis i ∈ {↑,↓, 0, 2}, thus

κ= 1− P↑ + P↓ , (16)

7
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where Pi are the expectation values of the projection operators P̂i = |i〉〈i| in the total spin-
up doublet ground state of the problem. Note that there is a sum rule

∑

i Pi = 1. The spin
fluctuations are accounted for through non-zero P↓ (at the expense of P↑), and the charge
fluctuations through the reduction of P↑ + P↓ due to non-zero P0 and P2, following the sum
rule. In Sec. 6 we will use this observation to disentangle the various contributions to the
impurity Knight shift.

5 Perturbative calculation

In the following, we treat the hopping H1 as a perturbation to H0. We use the Rayleigh-
Schrödinger perturbation theory (PT) [56] to compute the corrections to second and fourth
order in H1 (odd-order contributions are all zero) [37] using the projector operator approach
with a symbolic algebra system [57,58]. The n-th order correction to κ is defined as

κ(n) =
∆E(n)↓ −∆E(n)↑

EZ
. (17)

5.1 Zeroth order

The ground state of H0 is the Zeeman-split pair

|ψ↑〉= |↑〉 ⊗ |BCS〉= d†
↑ |0〉 ⊗ |BCS〉 ,

|ψ↓〉= |↓〉 ⊗ |BCS〉= d†
↓ |0〉 ⊗ |BCS〉 ,

(18)

with energies E↑ = ε+EZ/2= ε↑ and E↓ = ε−EZ/2= ε↓. Here |0〉 is the empty state of the QD,
|σ〉 = d†

σ|0〉 are the singly occupied states; |BCS〉 is the ground state of both superconductors
in isolation (i.e., a product state of two BCS states, one for each superconductor) which is
annihilated by all Bogoliubov quasiparticle operators: bβ ,nσ|BCS〉 ≡ 0.

5.2 Second order

In the second-order PT, the energy shifts are

∆E(2)σ = −
∑

k

|Vkσ|2

Ekσ
, (19)

with k running over all intermediate states. The electron hopping matrix elements are defined
as Vi j = 〈i|H1| j〉, while Ekσ = Ek − Eσ is the energy of the intermediate state k with respect to
the energy of the initial state ψσ.

Only two types of processes are possible in the second-order PT. Either a Cooper pair splits
and one electron tunnels into the impurity level, or the impurity electron tunnels into the bath
where it materializes as a Bogoliubov quasiparticle. The intermediate states |ψA/B

β ,nσ〉, their
energies, and tunneling matrix elements are:

|ψA
β ,nσ〉= |2〉 ⊗ b†

β ,nσ|BCS〉 , EA,nσ = εσ̄ + U + ξn , 〈ψA
β ,nσ|h1β |ψσ〉= vβ ,n , (20)

|ψB
β ,nσ〉= |0〉 ⊗ b†

β ,nσ|BCS〉 , EB,nσ = −εσ + ξn , 〈ψB
β ,nσ|h1β |ψσ〉= uβ ,n , (21)

where h1β = H1β/(Vβ/
p

N) is the normalized tunneling Hamiltonian of Eq. (11). The sign
convention for the doubly occupied state is |2〉 = d†

↓d
†
↑ |0〉. σ̄ denotes the spin opposite to σ.
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The energy shift is found to be

∆E(2)σ = −
∑

β ,n

V 2
β

N

�

|vn|2

EA,nσ
+
|un|2

EB,nσ

�

. (22)

Each SC contributes independently and additively. We also note that in the second-order PT
the phase factors (contained in vn) play no role, because the result only contains the absolute
values of matrix elements.

At the impurity particle-hole symmetric point, ε = −U/2, we have EA,nσ = EB,nσ ≡ Enσ
with En↑ = U/2− EZ/2+ ξn and En↓ = U/2+ EZ/2+ ξn. Thus

κ(2) =
∆E(2)↓ −∆E(2)↑

EZ
= −

∑

β

V 2
β

EZ N

∑

n

�

|vn|2 + |un|2
�

�

1
En↓
−

1
En↑

�

=
∑

β

V 2
β

EZ N

∑

n

�

1
En↑
−

1
En↓

�

.

(23)

The sum runs over all quasiparticle levels n and can be converted to an integration over the
kinetic energies ε. The prescription is the same as for a metal, because the distribution of
levels is assumed constant:

1
N

∑

n

→ ρ
∫

dε . (24)

The difference E−1
n↑ − E−1

n↓ can be expressed as

E−1
n↑ − E−1

n↓ =
EZ

−E2
Z/4+ (U/2+

p
∆2 + ε)2

. (25)

The E2
Z contribution in the denominator is always negligible and may be dropped. Thus

κ(2) =
∑

β

ρV 2
β I (2)(U ,∆, D) =

1
π

 

∑

β

Γβ

!

I (2)(U ,∆, D) ,

with I (2)(U ,∆, D) =

∫ D

−D

dε

(U/2+
p
∆2 + ε2)2

.

(26)

The renormalization factor κ(2) is proportional to the total hybridisation strength,

Γ = ΓL + ΓR . (27)

The integral may be transformed into dimensionless form by factoring out 1/∆:

I (2)(U ,∆, D) =
1
∆

i(2)(u, d) , (28)

where u = U/∆ and d = D/∆ are the dimensionless interaction strength and the dimension-
less bandwidth, and

i(2)(u, d) =

∫ d

−d

dx
�

u/2+
p

1+ x2
�2 . (29)

The integral can be evaluated in closed form:

i(2)(u, d) =
8

w2

�

4
p
−w

�

arctan
�

u+ 2
p
−w

�

− arctan

�

u+ 2
p

1+ d2 − 2d
p
−w

��

+
duw(2

p
1+ d2 − u)

4d2 −w

�

,

(30)
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1 1000
10- 6

0.001

1

1000

u=U/Δ

i(2
) (u

,d
)

Figure 3: U-dependence of the second-order contribution on log-log scale. The full
black line is i(2)(u, d) from Eq. (30) as a function of u = U/∆ at fixed bandwidth
d = D/∆ = 103. The green dashed line corresponds to the 4/u asymptotic form in
the ∆< U < D regime.

where w= u2 − 4. In the infinite-bandwidth limit, this simplifies to

i(2)(u, d →∞) =
8

w2

§

4
p
−w

�

arctan
�

u+ 2
p
−w

�

− arctan
�

u
p
−w

��

+
uw
2

ª

. (31)

The standard branch cuts apply here. In particular, for u > 2 the following form may be used
instead:

i(2)(u, d →∞) =
4

w3/2

�

u
p

w+ 8atanh

√

√u+ 2
u− 2

− 8atanh
u
p

w

�

. (32)

For small u we find i(2)(u, d →∞)≈ π− 2u, while for large u we find i(2)(u, d →∞)≈ 4/u;
if d is finite, this 4/u scaling holds up to u∼ d. Furthermore, u(2, d →∞) = 4/3. For general
u and finite d, the function i(2)(u, d) is plotted in Fig. 3.

From these expressions, we infer the following asymptotic results. For low U in the infinite
bandwidth limit,

I (2)(U ,∆)≈
1
∆

�

π−
2U
∆

�

. (33)

For U ≪∆, this gives

κ(2) =
∑

β

ρV 2
β

π

∆
=
∑

β

Γβ

∆
=
∑

β

π

8
ρJβ

U
∆

, (34)

where the Kondo coupling constant Jβ for the SC β is defined through ρJβ = 8Γβ/πU .
For ∆≪ U ≪ D, we find

I (2)(U , 0) =

∫ D

−D

1
(U/2+ ε)2

dε=
4D

U(U/2+ D)
≈

4
U

. (35)

In this regime we recover the result for the normal-state case:

κ(2) =
∑

β

V 2
β ρ

4
U
=
∑

β

1
2

8
π

Γβ

U
=
∑

β

1
2
ρJβ . (36)
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Finally, if U exceeds all other energy scales in the problem, U ≫∆, D, we find

I (2)(U , 0) =

∫ D

−D

1
(U/2)2

dε=
8D
U2

, (37)

so that

κ(2) =
∑

β

8
π

DΓβ
U2
=
∑

β

ρJβ
D
U

. (38)

For ∆≪ D, which is always the case in real systems, there are thus three well-separated
regimes depending on the value of the electron-electron repulsion U: 1) the weakly-interacting
regime for U ≪∆ with κ∝ Γ/∆, 2) the cross-over regime for∆≪ U ≪ D with κ∝ Γ/U , 3)
narrow-band limit for D≪ U with κ∝ Γ/U2. The first regime is typical of weakly interacting
junctions [59–66], the second one of strongly interacting ones [35,46,67]; the third is mostly
of academic interest in relation with the Schrieffer-Wolff mapping between the SIAM and the
Kondo models [13,21], but would be relevant for flat-band superconductors.

5.3 Fourth order

The fourth-order correction has two contributions. The first is

∆E(4a)
σ = −

∑

j,i,k;i ̸=σ

Vσ jVjiVikVkσ

E jσEiσEkσ
, (39)

where i, j, k denote the intermediate states. This is a sum of contributions of all hopping
processes which start and end in the initial stateψσ after four electron hopping events, without
passing through the initial state ψσ (this restriction is only relevant for the sum over i). The
second contribution is

∆E(4b)
σ =

∑

k

|Vkσ|2

Ekσ
×
∑

k

|Vkσ|2

E2
kσ

. (40)

The expression (39) simplifies to a double sum which can be transformed into a double integral
by the rule given in Eq. (24). Likewise, Eq. (40) is a product of two energy integrals. We define

I (4a)(U ,∆, D) =∆E(4a)
↓ −∆E(4a)

↑ , I (4b)(U ,∆, D) =∆E(4b)
↓ −∆E(4b)

↑ , (41)

and finally
κ(4) =

∑

ββ ′

V 2
β V 2
β ′ρ

2
�

I (4a)
ββ ′
(U ,∆, D) + I (4b)

ββ ′
(U ,∆, D)

�

. (42)

In this expression we separated the contributions depending on which leads the electron hops
to/from in the process; β and β ′ range over L and R, such that LL and RR contributions involve
two excursions into the same lead, while the more interesting LR and RL involve both leads.
Setting ξi =

q

∆2 + ε2
i , the full expressions for the integrals are:

I (4a)
LL = I (4a)

RR = −
∫ D

−D
dε1

∫ D

−D
dε28

�

U
�

11ξ2
1 + 20ξ1ξ2 + 5ξ2

2

�

+2(ξ1 + ξ2)
�

6U2 + 4ξ2
1 + 3ξ1ξ2 + ξ

2
2

�

+ U3
�

×

×
ε1ε2 − ξ1ξ2 +∆2

ξ1ξ2(ξ1 + ξ2)2(2ξ1 + U)2(2ξ2 + U)3
,

(43)
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I (4a)
LR + I (4a)

RL =−
∫ D

−D
dε1

∫ D

−D
dε216

�

U
�

11ξ2
1 + 20ξ1ξ2 + 5ξ2

2

�

+2(ξ1 + ξ2)
�

6U2 + 4ξ2
1 + 3ξ1ξ2 + ξ

2
2

�

+ U3
�

×

×
ε1ε2 − ξ1ξ2 +∆2 cos(φ)

ξ1ξ2(ξ1 + ξ2)2(2ξ1 + U)2(2ξ2 + U)3
,

(44)

and

I (4b)
ββ ′
= −

∫ D

−D
dε1

∫ D

−D
dε2

16(4ξ1 + 2ξ2 + 3U)
(2ξ1 + U)2(2ξ2 + U)3

. (45)

The most important new feature here is the cos(φ) term in Eq. (44). Its origin are processes
with an amplitude that contains a factor such as vL,i v

∗
R, j = eiφ |vL,i| · |vR, j|. This is only possible

when a pair of electrons is transferred across the junction, see Fig. 1(d) for an illustration. The
conjugate process for the transfer of a pair in the opposite direction contributes a e−iφ term, so
that the sum of both terms then produces the cosφ terms in the final expressions. While I (4a)

encompasses true fourth-order processes, I (4b) is obtained as a product of two second-order
PT terms, thus only I (4a) depends on the phase difference φ.

We introduce x1 = ε1/∆, x2 = ε2/∆ and factor out 1/∆2 in front of the integrals, so that

I (4)(U ,∆, D) =
1
∆2

i(4)(u, d) , (46)

where i(4) are dimensionless functions of u = U/∆ and d = D/∆. In the following we focus
on the wide band limit, d →∞. We single out the φ-dependent part of i(4a), which we denote
i(4,φ). We were unable to find a closed form expression for this function. Noting that for u≪ 1
the function i(4,φ) becomes constant, and that for u≫ 1 it decreases as 1/u2, we write it as

i(4,φ)(u,∞) = −
c

1+ c u2/32
A(u) cos(φ) . (47)

Here

c = 3π2 − 4−
2
p
π

G3,2
3,3

�

1
�

�

�

−1,1/2, 1
0, 0,0

�

≈ 19.7392 (48)

is the u = 0 asymptotic value of the double integral, where G is the Meijer’s G-function. A(u)
is a function with values of order 1 (a “form function”), such that A(0) = A(∞) = 1, that we
plot in Fig. 4(a).

We conclude that the φ-dependent part of the renormalization κ takes the following form
in the wide-bandwidth limit:

κ(4,φ) = −
ΓLΓR
π2∆2

c A(U/∆)

1+ c
32

� U
∆

�2 cos(φ) . (49)

The fourth-order contributions to κ that do not depend on the phaseφ are small compared
with the dominant second-order contribution, thus we discuss them only briefly. We focus on
the symmetric case with VL = VR. We define i(4,x) to be the sum up of all contributions from
i(4a) and i(4b) that do not depend on φ. We symmetrize this expression with respect to x1
to obtain a well-behaved convergent integrand. We denote it i(4,x). For u ≪ 1 it becomes
constant, it changes sign at u= u0 ≈ 2.51, and for u≫ 1 it decreases as a product of 1/u2 and
some approximately logarithmic factor. We hence write i(4,x) as

i(4,x)(u,∞) = −3c/(1+ u2)B(u) . (50)
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Figure 4: Form functions A(u) and B(u) that determine the detailed dependence of
the fourth-order contribution to κ on the scaled interaction strength, u= U/∆, in the
infinite bandwidth limit. Left: Function A(u) for i(4,φ) in Eq. (47). Right: Function
B(u) for i(4,x) in Eq. (50).

Here B(u) is a function such that B(0) = 1, B(u0) = 0, and with approximately logarithmic
asymptotic behavour for large u, as shown in Fig. 4(b). Thus, the fourth order renormalization
κ that does not depend on φ takes the following form:

κ(4,x) = −
(Γ/2)2

π2∆2

3c
1+ (U/∆)2

B(U/∆) , (51)

for the symmetric case of ΓL = ΓR = Γ/2.
All analytical calculations are made available in the form of a Mathematica notebook2 in

an online repository [68]. The notebook contains full expressions for the integrands and it
allows to reproduce all calculations presented in this work, as well as to calculate i(4,φ) and
i(4,x) for arbitrary parameters.

6 Beyond the perturbative regime

Realistic devices are typically operated in the parameter regime where the results of the PT are
not adequate, i.e., Γ is usually not much smaller than all other scales in the problem (U , ∆).
The impurity problem can, however, be solved with high precision for arbitrary parameters
using an impurity solver such as the numerical renormalization group (NRG). The NRG is
based on discretizing the continuum on a logarithmic grid, transforming the Hamiltonian to a
tight-binding-chain representation, and iteratively diagonalizing the chain by adding one site
(per bath) at each step [20,21]. The results are typically within a few percent of the exact ones.
The findings presented here were obtained for the discretization parameter Λ = 2 (at φ = 0)
and Λ = 4 or Λ = 8 (with averaging over two shifted discretization grids – z-averaging) for
general φ, keeping up to 10000 states (or up to a cutoff of 10 units of characteristic energy).
The renormalization factor is extracted by performing the calculation at finite EZ , then taking
the energy difference between the lowest lying doublet states. The value of EZ should be
taken low enough to be well within the linear Zeeman splitting regime (a fraction of ∆ such
as 10−2∆ is a perfectly good choice). The other approach that we employ is to read off κ
from the matrix elements of ŜZ at the end of the iteration performed for EZ = 0 according to
Eq. (15). The two approaches produce almost perfectly overlapping results. This is because
the spin operator ŜZ = (1/2)(n̂↑ − n̂↓) is marginal [35].

2Filename is knight_shift_perturbation_calculation.nb.
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Figure 5: Zeeman renormalisation factor κ as a function of the hybridisation strength
Γ computed using the NRG and compared with the perturbation theory results in-
cluding up to second or fourth order contributions on a) logarithnimc and b) linear
scales. Here U/∆= 104, D = 105∆, and φ = 0.

6.1 Γ -dependence: from perturbative regime to full spin compensation

We check the domain of validity of second and fourth-order PT results by comparing them to
the reference NRG solution. The κ∝ Γ scaling at very small Γ is demonstrated in Fig. 5. The
leading Γ 2 correction captures the deviation from linearity at larger Γ , but we see that more
generally the low-order PT results significantly underestimate κ and high-order terms become
relevant. For very large values of Γ , both doublet states approach the edge of the continuum
and the energy difference E↑ − E↓ tends toward zero, therefore geff → 0 and κ → 1. This
large-Γ asymptotic behaviour holds generally.

For a more systematic overview of the dependence of κ on model parameters, in Fig. 6
we plot κ as a function of Γ for a wide range of U/∆ ratios. Both panels present the same
results, but plotted as a function of Γ/U and Γ/∆, respectively. The small-Γ asymptotics are
clearly visible. In Fig. 6(a) the curves overlap for U ≫ ∆ where κ∝ Γ/U . In Fig. 6(b), the
curves overlap for U ≪ ∆ where κ∝ Γ/∆. In general, the line shape depends on the U/∆
ratio, and there is no universality as in the case of the Kondo model, where κ(J) is a universal
function of TK/∆ with TK(J) the Kondo temperature [14]; for SIAM, such universality at best
holds only in a moderate range of parameters and, in particular, it is not expected for most
experimentally relevant parameter sets where typically U ∼∆ for devices operated in or close
to the YSR regime. This also implies that quantitatively reliable results can only be obtained
by advanced numerics such as NRG; for convenience, the numerical results presented in the
figures of this manuscript are available in tabulated form in a public repository [68].

To estimate the magnitude of the impurity Knight shift in real systems, we recall that
Γ/U in typical devices is of order 0.1 and note that κ(Γ/U = 0.1) ∼ 0.05 for U/∆ = 1 and
κ(Γ/U = 0.1)∼ 0.15 for U/∆∼ 10. It is thus expected that typical values of κ are of order 0.1,
i.e., the effect is appreciable for realistic model parameters of typical experimental devices.

6.2 U-dependence: the three interaction strength regimes

The different parameter regimes with respect to U can be better discerned if the results are
plotted for a set of fixed Γ/U ratios as a function of U , see Fig. 7. For the lowest values
of Γ/U = 10−4, 10−3, the system remains in the deep perturbative regime, and the curves
basically follow the U dependence established using the second-order perturbation theory
in Sec. 5.2: we find 1/U scaling for U > D, a plateau for ∆ < U < D, and U scaling for
U <∆. Non-perturbative effects become manifest for Γ/U ≥ 0.01. The 1/U range is replaced
by a milder decrease followed by saturation, while at still higher Γ the κ(U) curves become
monotonically increasing. The saturation at large U is expected, since for fixed Γ/U , U ≫ D
implies that D rather than U controls the effective bandwidth for the emergence of the local
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Figure 6: Zeeman renormalisation factor κ as a function of Γ at fixed U , for a range
of U spanning from the U ≪ ∆ to the U ≫ ∆ regime. The horizontal axis is scaled
as Γ/U (a) and Γ/∆ (b). The arrows indicate the direction of increasing parameter
U . Here D = 105∆, φ = 0.

moment [21], while the Kondo exchange ρJ = 8Γ/πU is constant [13], hence the factor κ
does not depend on U for U → ∞. The saturation value itself is an increasing function of
Γ/U . The largest value of Γ/U presented, 0.1 (dark blue line in Fig. 7), corresponds to an
experimentally relevant value, thus that curve can serve to estimate κ based on the U/∆ ratio.

10-2 100 102 104 106

U/∆

10-6

10-4

10-2

100

κ

Γ/U=0.1
Γ/U=0.0316
Γ/U=0.01
Γ/U=0.001
Γ/U=0.0001

Figure 7: Zeeman renormalisation factor κ as a function of U/∆ for a range of fixed
Γ/U ratios. Parameters are D = 105∆ and φ = 0.

6.3 ε-dependence: departure from the particle-hole symmetric point

In Fig. 8 we present the dependence of κ on the impurity level position ε. The renormalization
is the lowest at the particle-hole symmetric point where the exchange interaction is the smallest
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Figure 8: Zeeman renormalisation factor κ as a function of δ/U . Here δ = ε+ U/2
measures the deviation from the particle-hole symmetric point of the model. Param-
eters are U/∆= 10, D = 105∆ and φ = 0.

[13], since

ρJ =
2Γ
π

�

1
ε+ U

−
1
ε

�

=
2Γ
π

�

1
U/2+δ

+
1

U/2−δ

�

=
2Γ
π

4U
U2 − 4δ2

. (52)

Here δ = ε+U/2 quantifies the deviation from the particle-hole symmetric point (half-filling)
at δ = 0. As the charge fluctuations increase for δ/U → ±1/2, the local moment is reduced
and κ rapidly increases toward 1 (at the same time, the doublet subgap state is pushed towards
the continuum of free Bogoliubov states).

6.4 φ-dependence

We now turn to the φ-dependence of the factor κ. Except for very strong hybridisation we
expect the dependence to follow a cosφ form to a good approximation. For this reason, we
can obtain a good overview of the behaviour by studying κ for the φ values where κ has
extrema, i.e., φ = 0 and φ = π, see Fig. 9(a). The linear behavior at low Γ is followed by
quadratic corrections that are φ-dependent. The splitting increases up to Γ/U ≈ 0.2, in the
regime where the impurity spin screening becomes sizeable in the doublet ground state. The
splitting then starts to decrease and the κ curves cross at Γ/U ≈ 0.5, which is deep in the
Kondo screened regime at φ = 0, where the doublet states form the excited state multiplet
while the ground state is actually a spin singlet state [39–46]. For very large values of Γ/U ≈ 1
both curves saturate to 1. The emergence of φ-dependence can be better observed in Fig. 9(b)
where we plot the κ/Γ ratio. The non-linearity of κ(Γ ) due to fourth-order hopping processes
is clearly visible as the departure from a constant, which is different for φ = 0 and φ = π.
The magnitude of the φ-dependent part can be quantified through the relative difference

∆κ =
κπ −κ0

(κπ + κ0)/2
, (53)

shown in Fig. 9(c). For a very different perspective, we also plot the results as a function of
the EDS(Γ )/∆ ratio, where EDS = ED − ES is the energy difference between the lowest-lying
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Figure 9: Comparison of the Γ -dependence of Zeeman renormalisation factor κ at
φ = 0 and at φ = π. a) Overview: κ vs. Γ on log-log scale. b) Departures from
linearity: κ/Γ vs. Γ on log-linear scale. c) Normalized difference of κ at φ = 0 and
φ = π. d) κ plotted as a function of θ = (ED−ES)/∆, the ratio of the binding energy
(defined as the energy difference between the lowest-lying spin-singlet state and the
lowest-lying spin-doublet state) over the SC gap, for a range of φ. The parameters
are U/∆= 10 and D = 102∆.

spin-singlet state and the lowest-lying spin-doublet state, which with increasing Γ evolves from
−∆ to ∆ for φ = 0 (this is the well-know behaviour of the subgap states in the SIAM with
a SC bath [23]), from −∆ to 0 for φ = π (this corresponds to the existence of the “doublet
chimney” in the π-junctions [46, 69, 70]), and from −∆ to a φ-dependent upper limit for
general φ. These line-shapes are further discussed in Sec. 6.6 in the context of universal
behaviour (or lack thereof).

Recalling that κ is a measure of the degree of spin compensation [14], the results in Fig. 9
reveal that in most of the experimentally relevant range of Γ (weak and moderately strong
hybridisation) the doublet is more strongly Kondo screened for φ = π compared to φ = 0,
i.e., κ(π) > κ(0). This can be intuitively understood as follows. The exchange interaction
between the impurity spin and the two SCs by itself does not depend on φ. However, the hy-
bridisation matrix in the Nambu space has an out-of-diagonal component that is proportional
to Γ cos(φ/2). This implies that the proximity effect is strongest at φ = 0, where it leads to
a stronger admixture of states where the QD is empty or doubly occupied, at the expense of
the singly-occupied configurations that carry the spin degree of freedom. The doublet state
thus experiences proportionally weaker Kondo exchange coupling at φ = 0 as compared to
φ = π. This reduction is proportional to Γ , while the Kondo coupling J is itself proportional
to Γ , therefore the overall effect is proportional to Γ 2, as expected.

The regime of large Γ can be intuitively understood from the infinite-Γ limit. The unper-
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Figure 10: a) Phase-dependence of κ from weak- to strong-hybridisation regimes.
The amplitudes are normalized to emphasize the changing line shapes. b) Fourier
series coefficients of κ(φ). Parameters are U/∆= 10, D = 102∆.

turbed Hamiltonian in this case is the normal-state metal with a non-interacting impurity level,
while the effects of the Coulomb repulsion on the QD site and of the pairing in the SC leads can
be calculated by expanding in 1/Γ . The φ dependence can be moved from the pairing to the
hopping terms using a gauge transformation cβ ,nσ → e−iφβ/2cβ ,nσ. In the ground state of the
unperturbed Hamiltonian, the impurity is completely absorbed in the continuum and κ = 1.
The expansion in 1/Γ reveals that at φ = 0 the value of 1 − κ grows as 1/Γ 2, while for all
non-zero φ the leading correction is linear in 1/Γ . The difference stems from a cancellation of
contributions that occurs only for φ = 0, and is hence purely an interference effect. It follows
that κ(π)< κ(0).

The change of sign of κ(π)−κ(0) as a function of Γ is universal, it happens at any value of
U/∆, away from the particle-hole symmetric point, and also for left-right asymmetric Joseph-
son junctions. This change can be thought to mark the cross-over from the weak-coupling to
the strong-coupling regimes that have distinct asymptotic behaviours; for U ≫ ∆, the sign
change indeed occurs close to πΓ/U = 1 where the perturbation theory breaks down [71–73].

6.5 Deviations from pure harmonic form

The plots of κ as a function of φ are shown in Fig. 10(a) for a range of Γ . At low Γ , the
φ-dependence of κ is dominated by the lowest-order (quartic in hopping) terms. Indeed, for
weak to moderate Γ , the curves are close to a perfect cosφ function, with only a small de-
viation at Γ/U as large as 0.1. For larger Γ , including in part of the experimentally relevant
regime, the contributions from higher order processes will lead to sizable deviations from the
pure harmonic form for κ. Higher harmonics arise from processes involving the transfer of
multiple Cooper pairs. At Γ/U = 0.316 we observe a 20% admixture of cos(2φ) contribu-
tions transferring two Cooper pairs, which correspond to processes that are eighth order in
electron hopping (the lowest order process where two Cooper pairs hop from one supercon-
ducting contact to another). The line-shape evolves rapidly in this range of Γ/U and shows
very strong deviations from the simple harmonic form. For very large Γ the harmonic form is
eventually largely restored but with the opposite amplitude of the cosφ term. This behaviour
is interesting in light of the recent observation that higher harmonics are required for breaking
the symmetry between the branches of subgap states, leading to a supercurrent diode effect
instead of simple anomalous phase shift in the presence of spin-orbit coupling [74].
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We study the evolution of the φ-dependence of κ more quantitatively by expanding it in
Fourier series up to fourth order:

κ(φ) = κ̄+
4
∑

n=1

κn cos(nφ) . (54)

The coefficients κn are obtained from numerical calculations for φ = 0,π/4,π/2,3π/4,π:

κ1 =
κ0 +
p

2κπ/4 −
p

2κ3π/4 − κπ
4

, κ2 =
κ0 − 2κπ/2 + κπ

4
,

κ3 =
κ0 −
p

2κπ/4 +
p

2κ3π/4 − κπ
4

, κ4 =
κ0 − 2κπ/4 + 2κπ/2 − 2κ3π/4 +κπ

8
.

(55)

We show them in Fig. 10(b) as functions of Γ/U . The higher harmonics become sizable in the
same parameter range where the fundamental changes sign (which happens at Γ/U ≈ 0.5),
explaining the complex line-shapes observed in Fig. 10(a). Interestingly, all harmonics un-
dergo a sign change as a function of Γ in roughly the same parameter range. This is again a
consequence of the crossover from the weak-coupling to the strong-coupling regime.

6.6 Departure from universality for U ∼∆

As opposed to the situation in the Kondo model with no charge degrees of freedom on the
impurity site, in the SIAM there is an additional parameter (the ratio U/∆) that controls the
dominant type of charge fluctuations in the impurity problem. In the particle-hole symmetric
case, for U/2 < ∆ the lowest-energy charge excitations are local on-site impurity valence
changes to zero and double occupancy, while for U/2 >∆ the lowest-energy parity-changing
excitations are Bogoliubov quasiparticles in the SC. For this reason, κ is a universal function
of TK/∆ only in the ∆ ≪ U ≪ D regime. We explore the deviation from the universality
in Fig. 11 where we plot κ as a function of θ = (ED − ES)/∆. With increasing U/∆, the
κ(θ ) curves indeed approach the universal curve. The deviation becomes strong for moderate
values of U/∆ approaching 2, with a qualitative change occurring for U/∆ = 2: across this
transition point the derivative dκ/dθ at θ = −1, κ = 0 changes discontinuously from infinite
to zero. For smaller U , the curves start from the θ = −U/(2∆), κ= 0 point. The non-analytic
behaviour at U/2 = ∆ is a signature of the transition from the regime of proximitized (ABS)
subgap states to the genuine Yu-Shiba-Rusinov regime [54].

6.7 Asymmetric hybridisation

If ΓL and ΓR are taken to be different, but keeping their sum constant, Γ = ΓL + ΓR, the results
for φ = 0 are unchanged, while the φ-dependence is weakened (results not shown). If we
introduce an asymmetry factor a = ΓL

ΓR
, the amplitude of the φ-dependent part is reduced

by a factor that can be established from the mapping presented in Ref. [75]. The results for
the asymmetric case can be obtained from those for the symmetric situation with an effective
phase shift parameter, so that

κ(φ) = κS

�

2arccos

√

√

1−
4a

(a+ 1)2
sin2 φ

2

�

. (56)

Here κS is the impurity Knight shift in the symmetric junction with the same total hybridisation
Γ . In the regime where the phase dependence is harmonic to a good approximation, one can
derive from this expression the reduction factor knowing only the numerical results at φ = 0
and φ = π; in general, especially close to the strongly anharmonic regime at Γ/U ∼ 0.5, one
needs the full φ-dependence.
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Figure 11: Zeeman renormalisation factor κ as a function of the impurity binding
energy ED−ES normalized by the gap, θ = (ED−ES)/∆, for a range of U/∆ showing
deviations from the universal behaviour found in the∆≪ U ≪ D limit (dashed black
line). The universal curve has been computed for U/∆= 1000 and D = 106∆; in all
other cases D = 102∆.

7 Discussion of theory results

7.1 Relation between κ(φ) and Josephson energy

We recall that the potential energy of the quantum dot Josephson junction (ignoring SOC for
simplicity) is [see Eq. (1)]

U(φ) = E0 cosφ ±
1
2
[1−κ(φ)]EZ

= E0 cosφ ±
1
2

�

1− κ̄+
∆κ
2

cosφ
�

EZ

=
�

E0 ±
∆κ
4

EZ

�

cosφ + . . .

(57)

This implies that the phase-dependent part of the Zeeman renormalization factor may equally
be interpreted as a field-dependent correction to the Josephson energy of the junction. One
may hence also write

∆κ = −4
∂ EJ (φ = 0)
∂ EZ

, (58)

where the lower level of the spin-doublet multiplet must be taken. This definition is valid in
the perturbative (low-Γ ) regime.

7.2 SIAM vs. Kondo model

We have shown that the impurity Knight shift factor κ depends linearly on the hybridisation
strength Γ for the single-impurity Anderson model in the weak hybridisation limit. This is in
seeming disagreement with the results for the Kondo model [14], where κ∝ J2 was found
for small J . Both results are actually correct, as can be ascertained with explicit NRG calcu-
lations. The difference demonstrates that some care is needed in applying the Kondo model
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Figure 12: Impurity state (diagonal matrix elements of the impurity density matrix,
Pi , for the doublet state) as a function of Γ . a) Pi vs Γ . b) Pi/Γ vs. Γ . Due to the
particle-hole symmetry, P0 = P2. The parameters are U/∆= 10 and D = 102∆.

as an effective model for the SIAM. When one aims for an accurate description of actual ex-
perimental setups, the starting point should always be the SIAM with a SC bath, which is a
realistic microscopic effective model that adequately describes the low-energy physics of many
devices [25,43,48,76,76–78]. The Kondo model may be used as an effective model following
a small modification of the Hamiltonian, as we discuss next.

7.3 Charge and spin fluctuation mechanisms

To get a more detailed insight into the mechanisms that contribute to the reduction of the Zee-
man splitting in SIAM, we study the diagonal matrix elements of the impurity density matrix,
calculated for the spin-up (Sz = +1/2) doublet ground state; see Fig. 12. These uncover the
nature of the wavefunction contributions that lower the state’s energy through fluctuations.
At Γ = 0, the completely decoupled impurity spin gives P↑ = 1. With increasing Γ , the spin
fluctuations increase the admixture of the doublet excitation with two quasiparticles, where
the impurity forms a singlet with one quasiparticle, while the second quasiparticle remains
free [70]. The singlet component of the wavefunctions has P↑ = P↓. The contribution of
spin fluctuations is thus expressed by the presence of the P↓ contribution. Indeed as shown in
Fig. 12(a) in the large Γ limit we find P↑ = P↓ and a completely screened impurity spin (κ= 1).
The charge fluctuations are different in nature, and involve states where the impurity is empty
or doubly occupied. They are quantified by P0 (which is equal to P2 in case of the particle-hole
symmetry).

The most important observation is that the charge fluctuations reduce the local moment
(quantified by Sz

imp = (P↑ − P↓)/2) by an amount that is linear in Γ , while the renormalization
due to spin fluctuations is quadratic in Γ , as inferred from the slopes in Fig. 12(a). In fact, even
in the YSR regime with U = 10∆ the charge fluctuations constitute the dominant contribution
to κ in a significant part of the parameter range of Γ . In light of this, for a more realistic
description of the effect of the magnetic field in scope of an effective Kondo model for a QD,
one should take into account that the spin degree of freedom σ in the Kondo model is, in
fact, an effective spin variable that labels the two states forming the spin doublet. It is not
the same as the physical spin operator Ŝz =

1
2(n̂↑ − n̂↓) in the SIAM which couples with the

magnetic field. To relate σz and Ŝz , one should transform the operator Ŝz with the same
unitary transformation that is applied to the SIAM Hamiltonian in the Schrieffer-Wolff (SW)
transformation [13]. A quick calculation shows that the SW transformation for a normal-state

21

https://scipost.org
https://scipost.org/SciPostPhys.15.2.070


SciPost Phys. 15, 070 (2023)

system maps the impurity spin operator as

Ŝz → eS Ŝze−S = Ŝz

 

1−
∑

β

ρJβ
D
U

!

+ . . . , (59)

where S is the generator of the SW transformation. We observe that this is precisely the g-factor
renormalization expected in the U ≫ D limit (the limit assumed in the SW transformation
[13, 21]), see Eq. (38). This confirms that the leading κ ∝ J dependence stems from the
charge fluctuations in the SIAM. We also note that the g-factor renormalization to second
order in PT is consistent with the linear order in hopping in the generator of SW transformation
(which leads to an effective Kondo exchange coupling which is quadratic in hopping, J∝ V 2):
both consider the effects of electron excursions from the impurity to the bath to lowest order
in hopping events.

Based on these considerations, a Kondo model with a suitable multiplicative correction
factor to the Zeeman term is an adequate effective model for studying the spin response of a
magnetic impurity. The required correction factor is 1 − κ(2) = 1 − Γ/(π∆)i(2)(U/∆, D/∆).
Usually D≫ ∆, thus one may use the expression from Eq. (31). The effective Kondo Hamil-
tonian is hence

HKondo = Hband + JS · s(rimp) + gµB

�

1−
Γ

π∆
i(2)

�

U
∆

,∞
��

BSz . (60)

Here J = 8Γ
πUρ , S = 1

2σ is the impurity spin, and s(rimp) is the spin density of the conduction
electrons at the position of the impurity. If U < D, as is usually the case, the bandwidth in
Hband should be reduced to an effective bandwidth [21], e.g. Deff = 0.192U for U ≪ D.

7.4 Ising vs. spin-flip terms

For a Kondo model with an XXZ exchange anisotropy in the limit of pure Ising (longitudinal)
exchange coupling, JzSzsz , there is no renormalization at all, κ = 0. It is only the transverse
(fluctuating, spin-flip) part J⊥(Sx sx + Sysy) that leads to the impurity Knight shift. In other
words, the impurity Knight shift discussed so far in this work is a dynamical renormalization
process, rather than a shift that would follow the static polarization of the electron cloud
around the impurity.

7.5 Field effects in bulk

Up to this point we have assumed that the magnetic field in the bulk is fully screened by the
surface currents within the penetration depth of the superconductor. If the field penetrates the
superconductor (e.g. in small SC grains or if the field is applied in plane to a thin SC layer), the
quasiparticles will spin polarize [49, 79–81]. Assuming that the magnetic field has no other
effect than the Zeeman splitting of the quasiparticle levels, the perturbative calculations from
Sec. 5 still apply, but one needs to use spin-dependent quasiparticle energies

ξn,σ =
q

ε2
n +∆2 +σ

1
2

gSµBBS . (61)

Here gS is the atomic Landé g-factor of the SC material, BS the field in the SC baths, and
in the last term σ = 1 for spin up and σ = −1 for spin down. Assuming weak spin-orbit
coupling, all processes conserve Sz , thus a transfer of a particle from the impurity to the bath
costs ±(gB − gSBS)µB in energy. This can be expressed in several alternative forms:

(gB − gSBS)µB =
�

1−
gSBS

gB

�

gµBB = (1−τ) gµBB . (62)
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This implies that all the results derived in this work for BS ≡ 0 remain valid, if g is replaced
by (1−τ)g. In particular, the renormalized g-factor becomes

geff = g(1−τ)(1−κ) . (63)

Thus κ itself is unaffected. This is because κ has the significance of spin compensation by
itinerant electrons, which is by definition a property of the state of the system in the absence of
any applied magnetic field, and hence does not depend on the bare Landé g-factors of various
constituent materials. The measured Knight shift of course does depend on the correction
factor τ= gSBS/gB. If BS ≈ B, as in ultrasmall superconducting grains, τ≈ gS/g. The relative
values of gS and g, and even the signs, vary greatly between devices and even from level to
level due to mesoscopic fluctuations, thus it is difficult to make any general statements. In
particular, τ need not be small and there are known cases of QD-SI devices with |gS|> |g| [48].

8 Significance for applications

Before concluding we estimate the magnitude of the φ-dependent effect in realistic situations.
We take B = 100mT, which is compatible with many superconducting devices, and g = 15,
a typical value for devices made of III-V semiconductors, which gives EZ ≈ 90µeV. In Fig. 13
we plot the amplitudes of the φ-dependent part of the impurity Knight shift for several values
of U/∆. Taking the case of U/∆= 3.16 at Γ/U = 0.2 (red point in the figure), a fairly typical
value at which point the doublet is the ground state of the system (the singlet is at 0.5∆), we
find κπ − κ0 ≈ 0.026, that corresponds to 2.4µeV in energy units or a 580 MHz frequency
shift. This is an experimentally accessible scale using microwave techniques [46, 64]. For
devices with higher values of U/∆, i.e. deeper in the Yu-Shiba-Rusinov regime, even larger
shifts can be achieved with the system still in the doublet ground state (Γ/U up to ≈ 0.2,
blue points in the figure). The maximal values of κπ − κ0 seem to be capped to ≈ 0.06,
which corresponds to frequency shifts well in the GHz range. For low values of U/∆ (in the
proximitized state regime) the shifts are smaller because of the larger charge fluctuation and,
at the same time, the doublet state is expected to be less long-lived because of the smaller
energy differences. Thus for applications aiming to explore the φ-dependent impurity Knight
shift, the most appropriate systems are those with a well-defined local moment at large U/∆.

9 Conclusion

We have systematically explored the impurity Knight shift in the single-impurity Anderson
model for a QD Josephson junction in all parameter regimes, from weak to strong electron-
electron interaction. The leading term in the Zeeman renormalization factor κ, due to charge
fluctuations, is linear in the total hybridisation strength Γ : each SC lead contributes additively.
The subleading term, due to spin fluctuations, contains contributions proportional to cosφ,
where φ is the gauge-invariant phase difference between the SC contacts, due to Cooper pair
transfer processes. This implies a coupling between the operators Ŝz and φ̂, i.e., between the
spin and the Josephson current (or the transmon degrees of freedom in the context of Andreev
spin qubits and gatemon circuits). The exciting feature here is that the coupling constant is
directly proportional to the external magnetic field. This makes the impurity Knight shift useful
for control in superconducting spin qubits [82–85]. In particular, the magnetic field enables
electric manipulation of spin via electric dipole spin resonance (EDSR) [67, 86–90], and this
is the case even in the absence of the spin-orbit coupling because κ depends on gate-tunable
parameters. We have presented evidence that QD Josephson junctions [35, 46] indeed have

23

https://scipost.org
https://scipost.org/SciPostPhys.15.2.070


SciPost Phys. 15, 070 (2023)

0.01 0.1 1 10
Γ/U

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
κ π
−κ

0

U/Δ=2
U/Δ=3.16
U/Δ=10
U/Δ=20

Figure 13: Difference between κ values for φ = π and φ = 0 (i.e., the amplitude of
the phase-dependent part of the impurity Knight shift) for several U/∆ ratios. The
spin-doublet regime extends up to Γ/U ≈ 0.2. Here D = 102∆.

phase-dependent g-factors with a cosφ contribution arising from the Cooper pair transfer.
The range of materials [91] and device designs [33, 92, 93] where the φ-dependence of the
Zeeman splitting could be relevant is wide.

Acknowledgments

Funding information L. P. and R. Ž. acknowledge the support of the Slovenian Research
Agency (ARRS) under P1-0416 and J1-3008. A. B., M. P.-V.: This research is co-funded by the
allowance for Top consortia for Knowledge and Innovation (TKI’s) from the Dutch Ministry
of Economic Affairs, research project Scalable circuits of Majorana qubits with topological pro-
tection (i39, SCMQ) with project number 14SCMQ02, from the Dutch Research Council (NWO),
and the Microsoft Quantum initiative.

References

[1] W. D. Knight, Nuclear magnetic resonance shift in metals, Phys. Rev. 76, 1259 (1949),
doi:10.1103/physrev.76.1259.2.

[2] C. H. Townes, C. Herring and W. D. Knight, The effect of electronic paramagnetism
on nuclear magnetic resonance frequencies in metals, Phys. Rev. 77, 852 (1950),
doi:10.1103/physrev.77.852.

[3] C. P. Slichter, Principles of magnetic resonance, Springer, Berlin, Heidelberg, Germany,
ISBN 9783642080692 (1990), doi:10.1007/978-3-662-09441-9.

24

https://scipost.org
https://scipost.org/SciPostPhys.15.2.070
https://doi.org/10.1103/physrev.76.1259.2
https://doi.org/10.1103/physrev.77.852
https://doi.org/10.1007/978-3-662-09441-9


SciPost Phys. 15, 070 (2023)

[4] J. B. Boyce and C. P. Slichter, Conduction-electron spin density around Fe impuri-
ties in Cu above and below the Kondo temperature, Phys. Rev. B 13, 379 (1976),
doi:10.1103/physrevb.13.379.

[5] J. Bardeen, L. N. Cooper and J. R. Schrieffer, Microscopic theory of superconductivity, Phys.
Rev. 106, 162 (1957), doi:10.1103/PhysRev.106.162.

[6] W. D. Knight, G. M. Androes and R. H. Hammond, Nuclear magnetic resonance in super-
conductor, Phys. Rev. 104, 852 (1956), doi:10.1103/physrev.104.852.

[7] F. Reif, Observation of nuclear magnetic resonance in superconducting mercury, Phys. Rev.
102, 1417 (1956), doi:10.1103/physrev.102.1417.

[8] F. Reif, Study of superconducting Hg by nuclear magnetic resonance techniques, Phys. Rev.
106, 208 (1957), doi:10.1103/PhysRev.106.208.

[9] L. C. Hebel and C. P. Slichter, Nuclear spin relaxation in normal and superconducting alu-
minum, Phys. Rev. 113, 1504 (1959), doi:10.1103/physrev.113.1504.

[10] C. J. Foot, Atomic physics, Oxford University Press, Oxford, UK, ISBN 9780198506966
(2005).

[11] E. L. Wolf and D. L. Losee, g-shifts in the “s-d” exchange theory of zero-bias tunneling
anomalies, Phys. Lett. A 29, 334 (1969), doi:10.1016/0375-9601(69)90156-x.

[12] F. Delgado, C. F. Hirjibehedin and J. Fernández-Rossier, Consequences of Kondo exchange
on quantum spins, Surf. Sci. 630, 337 (2014), doi:10.1016/j.susc.2014.07.009.

[13] J. R. Schrieffer and P. A. Wolff, Relation between the Anderson and Kondo Hamiltonians,
Phys. Rev. 149, 491 (1966), doi:10.1103/physrev.149.491.

[14] C. P. Moca, I. Weymann, M. A. Werner and G. Zaránd, Kondo cloud in a superconductor,
Phys. Rev. Lett. 127, 186804 (2021), doi:10.1103/physrevlett.127.186804.

[15] B. D. Josephson, Possible new effects in superconductive tunnelling, Phys. Lett. 1, 251
(1962), doi:10.1016/0031-9163(62)91369-0.

[16] B. D. Josephson, Supercurrents through barriers, Adv. Phys. 14, 419 (1965),
doi:10.1080/00018736500101091.

[17] B. D. Josephson, The discovery of tunnelling supercurrents, Rev. Mod. Phys. 46, 251
(1974), doi:10.1103/RevModPhys.46.251.

[18] M. Tinkham, Introduction to superconductivity, Dover Publications, Mineola, USA, ISBN
9780070648784 (2004).

[19] Y. V. Nazarov and Y. M. Blanter, Quantum transport, Cambridge University Press, Cam-
bridge, UK, ISBN 9780521832465 (2009), doi:10.1017/CBO9780511626906.

[20] K. G. Wilson, The renormalization group: Critical phenomena and the Kondo problem, Rev.
Mod. Phys. 47, 773 (1975), doi:10.1103/revmodphys.47.773.

[21] H. Krishna-murthy, J. Wilkins and K. Wilson, Renormalization-group approach to the An-
derson model of dilute magnetic alloys. I. Static properties for the symmetric case, Phys. Rev.
B 21, 1003 (1980), doi:10.1103/PhysRevB.21.1003.

25

https://scipost.org
https://scipost.org/SciPostPhys.15.2.070
https://doi.org/10.1103/physrevb.13.379
https://doi.org/10.1103/PhysRev.106.162
https://doi.org/10.1103/physrev.104.852
https://doi.org/10.1103/physrev.102.1417
https://doi.org/10.1103/PhysRev.106.208
https://doi.org/10.1103/physrev.113.1504
https://doi.org/10.1016/0375-9601(69)90156-x
https://doi.org/10.1016/j.susc.2014.07.009
https://doi.org/10.1103/physrev.149.491
https://doi.org/10.1103/physrevlett.127.186804
https://doi.org/10.1016/0031-9163(62)91369-0
https://doi.org/10.1080/00018736500101091
https://doi.org/10.1103/RevModPhys.46.251
https://doi.org/10.1017/CBO9780511626906
https://doi.org/10.1103/revmodphys.47.773
https://doi.org/10.1103/PhysRevB.21.1003


SciPost Phys. 15, 070 (2023)

[22] K. Satori, H. Shiba, O. Sakai and Y. Shimizu, Numerical renormalization group
study of magnetic impurities in superconductors, J. Phys. Soc. Jpn. 61, 3239 (1992),
doi:10.1143/jpsj.61.3239.

[23] T. Yoshioka and Y. Ohashi, Numerical renormalization group studies on single im-
purity Anderson model in superconductivity: A unified treatment of magnetic, non-
magnetic impurities, and resonance scattering, J. Phys. Soc. Jpn. 69, 1812 (2000),
doi:10.1143/jpsj.69.1812.

[24] R. Bulla, T. A. Costi and T. Pruschke, Numerical renormalization group method for quantum
impurity systems, Rev. Mod. Phys. 80, 395 (2008), doi:10.1103/revmodphys.80.395.

[25] E. J. H. Lee et al., Scaling of subgap excitations in a superconductor-semiconductor nanowire
quantum dot, Phys. Rev. B 95, 180502 (2017), doi:10.1103/physrevb.95.180502.

[26] R. Žitko and T. Pruschke, Energy resolution and discretization artifacts in
the numerical renormalization group, Phys. Rev. B 79, 085106 (2009),
doi:10.1103/PhysRevB.79.085106.

[27] R. Zitko, NRG Ljubljana numerical renormalization group code, Zenodo (2021),
doi:10.5281/zenodo.7946403.

[28] S. De Franceschi, L. Kouwenhoven, C. Schönenberger and W. Wernsdorfer, Hy-
brid superconductor-quantum dot devices, Nature Nanotech. 5, 703 (2010),
doi:10.1038/nnano.2010.173.

[29] D. J. van Woerkom et al., Microwave spectroscopy of spinful Andreev bound states in ballistic
semiconductor Josephson junctions, Nat. Phys. 13, 876 (2017), doi:10.1038/nphys4150.

[30] J. Linder and J. W. A. Robinson, Superconducting spintronics, Nat. Phys. 11, 307 (2015),
doi:10.1038/nphys3242.

[31] M. Eschrig, Spin-polarized supercurrents for spintronics: A review of current progress, Rep.
Prog. Phys. 78, 104501 (2015), doi:10.1088/0034-4885/78/10/104501.

[32] R. M. Lutchyn, E. P. A. M. Bakkers, L. P. Kouwenhoven, P. Krogstrup, C. M. Marcus and
Y. Oreg, Majorana zero modes in superconductor-semiconductor heterostructures, Nat. Rev.
Mater. 3, 52 (2018), doi:10.1038/s41578-018-0003-1.

[33] R. Aguado, A perspective on semiconductor-based superconducting qubits, Appl. Phys. Lett.
117, 240501 (2020), doi:10.1063/5.0024124.

[34] M. Amundsen, J. Linder, J. W. A. Robinson, I. Žutić and N. Banerjee, Col-
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[81] W.-V. van Gerven Oei, D. Tanasković and R. Žitko, Magnetic impurities in spin-split super-
conductors, Phys. Rev. B 95, 085115 (2017), doi:10.1103/PhysRevB.95.085115.

[82] N. M. Chtchelkatchev and Yu. V. Nazarov, Andreev quantum dots for spin manipulation,
Phys. Rev. Lett. 90, 226806 (2003), doi:10.1103/PhysRevLett.90.226806.

[83] B. Béri, J. H. Bardarson and C. W. J. Beenakker, Splitting of Andreev levels in
a Josephson junction by spin-orbit coupling, Phys. Rev. B 77, 045311 (2008),
doi:10.1103/PhysRevB.77.045311.

[84] C. Padurariu and Y. V. Nazarov, Theoretical proposal for superconducting spin qubits, Phys.
Rev. B 81, 144519 (2010), doi:10.1103/PhysRevB.81.144519.

[85] S. Park and A. L. Yeyati, Andreev spin qubits in multichannel Rashba nanowires, Phys. Rev.
B 96, 125416 (2017), doi:10.1103/PhysRevB.96.125416.

[86] V. N. Golovach, M. Borhani and D. Loss, Electric-dipole-induced spin resonance in quantum
dots, Phys. Rev. B 74, 165319 (2006), doi:10.1103/PhysRevB.74.165319.

[87] K. C. Nowack, F. H. L. Koppens, Y. V. Nazarov and L. M. K. Vandersypen, Coher-
ent control of a single electron spin with electric fields, Science 318, 1430 (2007),
doi:10.1126/science.1148092.

29

https://scipost.org
https://scipost.org/SciPostPhys.15.2.070
https://doi.org/10.1002/pssb.2220990125
https://doi.org/10.1002/pssb.2221110106
https://doi.org/10.1103/PhysRevB.98.161121
https://doi.org/10.1038/s41565-021-01009-9
https://doi.org/10.1038/s41565-021-01009-9
https://doi.org/10.1103/physrevb.95.195114
https://doi.org/10.1103/physrevlett.108.227001
https://doi.org/10.1038/s41467-018-04683-x
https://doi.org/10.1103/PhysRevLett.121.257701
https://doi.org/10.1103/PhysRevLett.26.192
https://doi.org/10.1016/0370-1573(94)90105-8
https://doi.org/10.1103/PhysRevB.95.085115
https://doi.org/10.1103/PhysRevLett.90.226806
https://doi.org/10.1103/PhysRevB.77.045311
https://doi.org/10.1103/PhysRevB.81.144519
https://doi.org/10.1103/PhysRevB.96.125416
https://doi.org/10.1103/PhysRevB.74.165319
https://doi.org/10.1126/science.1148092


SciPost Phys. 15, 070 (2023)

[88] M. Pioro-Ladrière et al., Electrically driven single-electron spin resonance in a slanting Zee-
man field, Nat. Phys. 4, 776 (2008), doi:10.1038/nphys1053.

[89] S. Nadj-Perge, S. M. Frolov, E. P. A. M. Bakkers and L. P. Kouwenhoven, Spin-orbit qubit
in a semiconductor nanowire, Nature 468, 1084 (2010), doi:10.1038/nature09682.

[90] J. W. G. van den Berg et al., Fast spin-orbit qubit in an indium antimonide nanowire, Phys.
Rev. Lett. 110, 066806 (2013), doi:10.1103/PhysRevLett.110.066806.

[91] N. P. de Leon et al., Materials challenges and opportunities for quantum computing hard-
ware, Science 372, 6539 (2021), doi:10.1126/science.abb2823.

[92] M. H. Devoret and R. J. Schoelkopf, Superconducting circuits for quantum information:
An outlook, Science 339, 1169 (2013), doi:10.1126/science.1231930.

[93] M. Kjaergaard et al., Superconducting qubits: Current state of play, Annu. Rev. Condens.
Matter Phys. 11, 369 (2020), doi:10.1146/annurev-conmatphys-031119-050605.

30

https://scipost.org
https://scipost.org/SciPostPhys.15.2.070
https://doi.org/10.1038/nphys1053
https://doi.org/10.1038/nature09682
https://doi.org/10.1103/PhysRevLett.110.066806
https://doi.org/10.1126/science.abb2823
https://doi.org/10.1126/science.1231930
https://doi.org/10.1146/annurev-conmatphys-031119-050605

	Introduction
	Experimental evidence
	Model
	Problem formulation
	Perturbative calculation
	Zeroth order
	Second order
	Fourth order

	Beyond the perturbative regime
	-dependence: from perturbative regime to full spin compensation
	U-dependence: the three interaction strength regimes
	-dependence: departure from the particle-hole symmetric point
	-dependence
	Deviations from pure harmonic form
	Departure from universality for U 
	Asymmetric hybridisation

	Discussion of theory results
	Relation between () and Josephson energy
	SIAM vs. Kondo model
	Charge and spin fluctuation mechanisms
	Ising vs. spin-flip terms
	Field effects in bulk

	Significance for applications
	Conclusion
	References

