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Abstract

Combining data from Randomized Con-
trolled Trials (RCTs) is a widely used
method to estimate causal treatment ef-
fects. In order to combine data, the
property of transportability, under which
different covariate vectors exhibit similar
treatment benefit, must hold between the
RCTs. However, differences in study de-
sign, execution, and the underlying effect
modifier distributions can violate trans-
portability which could in turn lead to es-
timating incorrect causal treatment effect
estimates. This thesis addresses the chal-
lenge of validating transportability be-
tween multiple RCTs and identifying sub-
sets of RCTs between which transporta-
bility holds. Our contributions include
studying a linear regression-based frame-
work for testing transportability between
multiple RCTs and a clustering-based ap-
proach for identifying transportable RCT
subgroups. Through simulations and
analysis of real-world RCTs concerning
corticosteroid treatment for Community-
acquired pneumonia (CAP), we evaluate
the power, robustness, and limitations of
our proposed framework.

1 Introduction
Causal inference focuses on estimating how changes
in a single variable, the treatment, affect another
variable, the outcome. A key task in this field
is estimating the Conditional Average Treat-
ment Effect (CATE), a function which predicts the
expected treatment benefit given a set of covariates.

The CATE is instrumental for administering
individualized treatment. Hence, it is of practical
use in many spheres, from marketing to medicine
[1–3]. In medicine, specifically, strides have been
made to personalize treatment based on the
patient’s features [4]. For instance, Smit et al. [5]

have recently studied the benefit of corticosteroid
treatment for Community-acquired pneumonia
(CAP).

Randomized Controlled Trials (RCTs) are con-
sidered the gold standard for assessing treatment
effects and developing treatment guidelines [6–9].
Treatment assignments in RCTs are random,
which allows for unbiased estimation of causal
effects from the observed data. RCTs are typically
powered for estimating main effects, but are often
lacking in power for inferring conditional causal
effects, such as the CATE [10].

To address this limitation, researchers often
combine data from multiple sources [3, 11, 12].
For instance, in their analysis, Smit et al. [5]
pooled different RCT data. Such meta-analyses
can grant increased statistical power for estimating
the CATE by increasing the total sample count.
However, combining RCT data ought to be done
carefully.

When combining data from multiple RCTs, es-
timating conditional treatment effects requires
observing all treatment-modulating covariates,
called effect modifiers. In practice, unobserved
effect modifiers could have differing distributions
across RCTs. Pooling data in such circumstances
can result in biased estimates. Additional chal-
lenges arise from study design variations like
treatment protocols or control conditions [13, 14].

When the underlying distributions of effect modi-
fiers and the RCT procedures are compatible, data
from multiple trials can be freely pooled. We then
say that the RCTs populations are transportable.
Thus, to correctly estimate causal effects, vali-
dating transportability between populations is an
important step before combining data.

There have been several proposed methods for
validating transportability. Recently Hussain [15]
introduced a pairwise test that can be used to
validate transportability between an observational
study and an RCT, which is easily adaptable to
testing two RCTs. For validating transportability
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between multiple RCTs, there are options such as
Racine’s significance of categorical variables test
[16] and Luedtke’s omnibus test [17].

However, even if transportability does not hold
between an entire group of tested RCTs, it still
might hold between certain subsets. None of the
listed methods provide the means for identifying
potentially transportable subgroups of RCTs. To
confirm if a subset of RCTs is transportable, we
would have to resort to additional testing which
would increase the chance of observing a false
result.

To address this limitation, we propose a simple
parametric model which allows for transportability
validation, and enables identification of trans-
portable subgroups of RCTs via clustering.

The questions we then pose are; (i) How effectively
does our testing framework detect transportability
violations? (ii) Can clustering reliably recover
transportable RCT subsets when full-group trans-
portability is violated?

The contributions of this work are twofold. (i)
A simple parametric framework for modeling
response surfaces and validating transportability
between multiple RCTs. Using simulations, we
evaluate the power of this approach and showcase
its shortcomings. (ii) Using the proposed model we
develop a clustering scheme for identifying trans-
portable subgroups of RCTs when transportability
is found not to hold within the whole group.

Additionally, we employ our method to analyze
real world data, using a subset of the CAP RCTs
previously analyzed by Smit et al. [5].

In the following sections, we first introduce the rel-
evant terminology and definitions in Section 2. Sec-
tion 3 describes all the relevant methodology used
in our analysis. The conducted experiments are de-
scribed in Section 4. Notable findings, limitations
and possible future work are discussed in Section 5.
Finally the conclusions are outlined in Section 6.

2 Background
Given m RCT datasets. Let X ∈ X denote a
vector of covariates, i.e. features of a subject, with
n dimensions. When administered a treatment
A ∈ {0, 1} the subject exhibits an outcome Y ∈ Y.
Depending on the treatment, we observe one of
the two possible outcomes Y0 or Y1. These are
referred to as counterfactual potential outcomes.
Counterfactual potential outcomes can be either
continuous or binary in nature. Additionally,
assume that observing a higher value corresponds
to a more positive outcome. Finally, let S in the

range of {1, ..., m} indicate which of the RCTs
a data point belongs. We refer to the group of
m RCTs as a family. Data points comprise a
covariate vector X, administered treatment A,
observed outcome Y and S denoting which RCT
the data point is a member of.

To be able to estimate causal relations the following
assumptions must hold for all of the RCT datasets:

1. Ignorability: Ya⊥⊥A|X, S, ∀a ∈ {0, 1}

2. Consistency: A = a ⇒ Ya = Y, ∀a ∈ {0, 1}

3. Positivity: 0 < P (A = 1|X = x, S = s) <
1, ∀x ∈ X , ∀s ∈ {1, ..., m}

Ignorability ensures that for a fixed X the counter-
factual outcomes are independent of the assigned
treatment A. This property follows from the ran-
domized treatment assignment. The consistency
assumption is enforced by strictly defining what is
entailed by receiving treatment A. It ensures that
the observed counterfactual matches the potential
counterfactual outcome for the received treatment.
Positivity ensures that every subject has a non-zero
chance of receiving treatment.

The listed assumptions together lead to the prop-
erty of identifiability; allowing for causal effects to
be identified from observed data.

If identifiability holds, the CATE can be estimated.
It is defined as τ(X) = E[Y1 − Y0|X]. CATE is
a function which predicts the expected benefit of
administering treatment conditioned on X.

Let us now present three possible transportability
conditions, increasing in strength:

1. Mean exchangeability of contrast:
E[Y1 − Y0|X, S] = E[Y1 − Y0|X]

2. Mean exchangeability of counterfactual out-
come: E[Ya|X, S] = E[Ya|X]

3. Conditional exchangeability of RCTs:
Ya⊥⊥S|X

Mean exchangeability of contrast signifies that
two populations adhere to the same CATE func-
tion. It is implied by mean exchangeability of
counterfactual outcome which states that the
expected counterfactual outcome for a fixed X is
the same across all of the sources. Finally, con-
ditional exchangeability of RCTs is the strongest
transportability condition, implying both mean
exchangeability of counterfactual outcome and
exchangeability of contrast.

For combining RCTs based on their perceived
benefit when administering the treatment, mean
exchangeability of contrast is a sufficient condition.
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We would thus, like to validate it directly, since
it could hold even when the stronger conditions
(mean exchangeability of counterfactual outcome
and conditional exchangeability of RCTs) do
not. However validating mean exchangeability of
contrast directly is not trivial as we generally do
not have access to the ground truth values for the
CATE. Because of that limitation, our scheme is
able to validate mean exchangeability of contrast
only indirectly, by validating mean exchangeability
of counterfactual outcome.

As our scheme can only validate mean exchange-
ability of counterfactual outcome, from now on
when referring to two RCTs as transportable we
imply that mean exchangeability of counterfactual
outcome holds between them.

3 Method

3.1 Model
The question of whether transportability holds
between multiple sources can be rephrased in a
different manner. Does conditioning the model on
the trial membership variable S yield statistically
significant predictive value? Formally put this
equates to testing E[Ya|X, S] = E[Ya|X].

To assess the influence of trial membership on out-
come prediction, we estimate two models: one
which conditions on membership and one which
does not. Both models are specified as generalized
linear models (GLMs) for estimating the outcome.
Assume that the covariate vector X includes an in-
tercept term.

1. Stratified Model

η =
m∑

i=1
I{S = i}

(
β⊤

i X + A · γ⊤
i X

)
(1)

2. Unstratified Model

η = β⊤X + A · γ⊤X (2)

In a GLM the relationship between the out-
come Y and the transformed outcome η is
established with the link function g, such that
E[Y |X] = µ = g−1(η).

For continuous outcomes, we assume the out-
come model follows a Gaussian distribution,
Y ∼ N (µ, σ2), with an identity link function
f(µ) = µ. The corresponding response surface is
then given by E[Y | X] = η. This corresponds to
a linear regression model estimated via ordinary
least squares (OLS).

For binary outcomes, we assume Y ∼ B(µ). The
link function in this case is the logit function,
logit(µ) = log

(
µ

1−µ

)
. The corresponding response

surface is given by E[Y | X] = 1
1+e−η , resulting in a

logistic regression model. Model parameters are es-
timated by maximizing the Bernoulli log-likelihood.

Regardless of outcome distribution, we refer to
the first model as the stratified model and to the
second as the unstratified model. The stratified
model incorporates information about trial mem-
bership variable S when predicting the outcome.
The unstratified model is trained on all data by
ignoring the categorical variable S. Furthermore,
we will refer to the β coefficients as the main
effect coefficients, and the γ coefficients as the
treatment-covariate interaction coefficients.

Note that a GLM assumes a linear relationship be-
tween the predictors X and the transformed out-
come η. If said assumption does not hold, the abil-
ity of this framework to correctly model the out-
come, and by extension, validate transportability
is diminished.

3.2 Transportability validation
methods

3.2.1 Chow’s test

In the simplest case of having a family of two
RCTs, one should turn to a pairwise test. One such
test, particularly well-suited for linear regression
models, is Chow’s Test [18].

Chow’s Test assesses whether two independent
linear regression models (e.g., trained on two RCT
datasets) share the same true regression coeffi-
cients. It is commonly used to detect structural
breaks i.e., changes in model parameters across
subgroups. For our purposes, this is equivalent to
validating mean exchangeability of counterfactual
outcome.

Suppose we have two datasets of sizes n1 and n2.
Each dataset is used to fit a linear regression model
equivalent to an unstratified model from Equation
2. Presume that X contains an intercept term:

• Dataset 1: Y1 = β⊤
1 X1 + A1 · γ⊤

1 X1

• Dataset 2: Y2 = β⊤
2 X2 + A2 · γ⊤

2 X2

We then test whether there are any significant dif-
ferences between the parameters of two models.
Under identifiability, this equates to testing:

H0 : E[Ya|X, S] = E[Ya|X]
H1 : E[Ya|X, S] ̸= E[Ya|X]

Rejecting H0 suggests that pooling the two RCTs
may not be valid due to structural differences in
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the outcome prediction.

Finally, we need to calculate the test statistic. To
do so, let us define a pooled dataset combining both
RCTs, fitted with a single model, also equivalent to
an unstratified model:

Y = β⊤X + A · γ⊤X, n = n1 + n2

Let RSSp, RSS1 and RSS2 denote the Residual
Sum of Squares of the pooled model, the model fit
on the first RCT and the model fit on the second
RCT, respectively. Let k denote the number of es-
timated parameters. The Chow test statistic is:

F = (RSSp − (RSS1 + RSS2)) /k

(RSS1 + RSS2)/(n1 + n2 − 2k)

Under H0, the test statistics has an F -distribution
with k and n1 + n2 − 2k degrees of freedom.

The main drawback of Chow’s test is that it can
only test two datasets at a time, meaning that
it requires multiple tests to check a family of
more than two datasets. This is best avoided, as
repeated pairwise testing increases the probability
of observing a false test result. To correct for
having to test multiple hypotheses, the Bonferroni
correction can be used. This, however, comes at
an expense of power.

Note that Chow’s test does not leverage the strat-
ified model, defined in Section 3.1. It is used as a
reference point when evaluating the performance of
ANOVA in the upcoming experiments.

3.2.2 Likelihood-ratio test

Unlike Chow’s test, the Likelihood-ratio test (LRT)
[19] can validate transportability across multiple
RCT datasets by comparing a stratified model
against an unstratified model. It assumes that one
model is a special case of another, i.e. the reduced
model is nested within the full model.

We employ this test when using a maximum
likelihood model, such as logistic regression, where
the outcome Y is binary. In this setting, the
stratified model serves as the full model, and the
unstratified model as the reduced model.

The LRT evaluates whether including group-
specific effects improves the fit of the model. This
again corresponds to testing mean exchangeability
of outcome. For our purposes the hypotheses are
defined as:

H0 : E[Ya|X, S] = E[Ya|X]
H1 : E[Ya|X, S] ̸= E[Ya|X]

Let ℓ0 and ℓ1 denote the log-likelihoods of the re-
duced and full model, respectively. Furthermore,

let k0 and k1 denote the number of parameters in
the reduced model and the full model, respectively.
The LRT statistic is defined as:

Λ = −2(ℓ0 − ℓ1)

Under the null hypothesis H0, the test statistic Λ
follows a χ2 distribution with k1 − k0 degrees of
freedom.

3.2.3 ANOVA

In case the outcome Y is continuous, the LRT can
be simplified to an ANOVA F-test. The setup is
the same as in the LRT. Being a special case of
LRT, ANOVA also validates mean exchangeability
of counterfactual outcome.

For our purposes the null and alternative hypothe-
ses are formulated as follows:

H0 : E[Ya|X, S] = E[Ya|X]
H1 : E[Ya|X, S] ̸= E[Ya|X]

To compute the test statistic let RSS0 and RSS1
denote the Residual Sum of Squares for the re-
stricted and full model, respectively. The total
number of observations is denoted as n. Finally,
let k0 and k1 denote the number of parameters in
the reduced model and the full model, respectively.
The ANOVA F-statistic is calculated as:

F = (RSS0 − RSS1)/(k1 − k0)
RSS1/(n − k1)

Under the null hypothesis H0, the test statistic
follows an F -distribution with (k1 − k0) and
(n − k1) degrees of freedom.

Note, for m = 2, ANOVA is equivalent to Chow’s
test.

3.3 Transportable subgroup detec-
tion

3.3.1 Hierarchical clustering

Unlike Chow’s test, ANOVA and LRT can validate
transportability for a group of RCTs by conducting
a single test. If the test fails however, these
methods lend no information as to which RCT or
RCTs caused us to discard the null hypothesis, nor
if there are transportable RCT subgroups.

In order to detect the transportable RCT sub-
groups, additional testing would be necessary. For
instance, we could check every pair of datasets in
a subgroup. Repeated pairwise testing, especially
when the number of datasets is bigger, significantly
increases the risk of observing a false positive.
A Bonferroni correction should be employed to
address this. However, this comes at the cost of
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lowered power. It would thus be ideal to minimize
or completely eliminate any additional testing in
the process of finding transportable subgroups.

We propose clustering the regression coefficients
obtained from the stratified model described in
Equation 1, in which a separate set of parameters
is estimated for each RCT. Each set of coefficients
corresponds to a point in the clustering space.

Since the outcome is modeled using both main
effect β and treatment-covariate interaction coeffi-
cients γ, clustering based on mean exchangeability
of counterfactual outcomes requires inclusion of
both coefficient sets. In contrast, the CATE de-
pends solely on the treatment-covariate interaction
coefficients γ, so clustering RCTs based on mean
exchangeability of contrasts requires only these
coefficients.

There are three particularly challenging obstacles in
our clustering problem, in the context of the CAP
RCTs dataset application:

1. We have relatively few data points (6 real-
world RCTs)

2. The number of clusters (in the case of our real-
world data) is unknown

3. Clusters may contain only a single point

Determining the number of clusters is a common
challenge in unsupervised learning. It can be
approached using iterative heuristics like the
elbow method [20], which searches for an opti-
mal number based on a chosen metric, typically
the Within-Cluster Sum of Squares (WCSS:∑k

j=1
∑

x∈Cj
(x − µj)2, where µj = 1

|Cj |
∑

x∈Cj
x),

or by using clustering algorithms that infer the
number of clusters automatically.

However, most metrics used to evaluate a clus-
tering, WCSS included, measure the distance
between the elements of a cluster. This makes
singleton clusters a problematic edge case, as their
within-cluster distances equate to 0. They can
artificially inflate the apparent quality of a clus-
tering. Similarly, automatic clustering algorithms
are generally not fit for dealing with singleton
clusters as they can mark outlier points as noise,
or penalize creation of smaller clusters.

To address the listed problems, we employ a
hierarchical bottom-up approach [21]. With no
introduced adjustments, its main downsides are
its time and space complexity, O(n3) and O(n2)
respectively. Due to the data scarce nature of our
setting, these complexities are a non-issue.

The process is a greedy bottom-up grouping
method. At the beginning each data-point is

placed in its own singleton cluster. A pairwise
distance matrix is computed using a chosen
distance metric d(a, b) which quantifies the sim-
ilarity between individual data points. As our
data points are continuous and have the same
importance, we opt for Euclidean distance. At
each iteration, the algorithm selects the two
clusters R and S that are closest to each other
according to a specified linkage criterion l(R, S).
We opt for the complete-clustering linkage cri-
terion l(R, S) = maxr∈R,s∈Sd(r, s) as it creates
compact and distinct clusters. These two clusters
are then merged into a single new cluster. After
the merge, the distance matrix is updated to
reflect the distances between the new cluster and
all remaining clusters. This process is repeated
iteratively: at each step, the algorithm identifies
and merges the most similar pair of clusters and
updates the distances accordingly. The procedure
continues until all data points are contained in
a single cluster, producing a hierarchical tree or
dendrogram.

The end result is a hierarchy of possible clusterings,
which can be cut at any level to obtain a clustering
with a desired number of clusters or to match a
specific cut-off distance. For our purposes, we use
a cut-off distance t, which returns the clustering
such that the distance (according to the linkage
criterion) of no two merged clusters is greater than
t.

The cut-off distance is chosen by arranging the
distances of all of the merged clusters in a list
[d0, ..., dn] and then computing a difference list
[d1 − d0, ..., dn − dn−1]. We set t = di+di+1

2 for i
such that i = argmaxj(dj+1 − dj). The intuition
for this approach is that we cut at the point when
the most dissimilar clusters were joined.

3.3.2 Recursive clustering

Due to the greedy nature of hierarchical clustering,
once joined, there is no way to break up a cluster.
This means there is no way to recover from mistak-
enly grouping points which ought to be apart. To
mitigate this potential issue, we devise a recursive
clustering scheme which combines hierarchical
clustering and transportability validation.

Given a set of RCT datasets, the algorithm first
checks whether the set contains only a single
dataset. If so, it returns a singleton cluster corre-
sponding to that dataset. Otherwise, it proceeds
by fitting a stratified and an unstratified model
on the data as described in Section 3.1. Next,
the algorithm conducts a transportability test, as
described in Section 3.2.2, to validate whether the
trials in the current set are transportable. If the
test concludes that the trials are transportable,
the algorithm returns the entire set as a single

5



cluster. If the set is not transportable and contains
exactly two datasets, it returns two singleton
clusters—one for each dataset. Otherwise, the
algorithm performs hierarchical clustering on the
treatment-interaction coefficients of the stratified
model. It then recursively applies the same
clustering procedure to each identified subgroup
of trials. This process continues until all resulting
subsets are either deemed transportable or reduced
to singleton clusters. The algorithm finally returns
the collection of identified clusters as the output.

This approach repeatedly validates transportabil-
ity and hierarchically clusters the subgroups of
RCTs among which transportability was found not
to hold. This allows the method to recover from
falsely grouping RCTs which are not transportable,
as the algorithm can break up the clusters at fur-
ther depths.

It is important to note however, if two RCTs which
are in the same true group are mistakenly clustered
apart at a lower depth, they can not be joined and
correctly grouped at a greater depth. Put simply,
this algorithm can recover from impure clusters,
but it can not recover from incomplete clusters.

4 Experiments

This work explores the effectiveness of using
the proposed models to validate transportability
using LRT (simplified to ANOVA, for continuous
outcomes), and whether RCTs can correctly be
grouped into transportable subgroups using only
stratified model coefficients, minimizing the need
for additional tests. We present four experiments
to address these questions.

First, in Experiment 4.2, we analyze how the size
of the family of RCTs and the individual RCT
dataset sizes affect our proposed transportability
validation method and compare it to a pairwise
test. Second, we quantify the impact of a misspec-
ified model on our transportability validation tests
in Experiment 4.3.

To analyze the performance of recursive clustering
we also conduct two experiments. In Experiment
4.4 we take a look at how much do the RCT
dataset generation schemes need to differ to
correctly cluster different transportable subgroups.
In Experiment 4.5, we explore how the grouping
structures of transportable RCTs affects our ability
to correctly identify them.

All hypotheses are tested at a significance level of
0.05.

4.1 Experimental setup

4.1.1 Clustering metrics

As we synthesized the data for testing of our
methods, we had access to the ground truth
when clustering. This made metrics such as
pairwise precision, pairwise recall and the Rand
index specifically practical, as they are easily
interpretable and can be calculated only with
knowledge of the ground truth.

To be able to define pairwise precision and pairwise
recall, we must first define the pairwise confusion
matrix.

Given the ground truth clustering G and the esti-
mated clustering S, each pair of data points in S is
evaluated, and counted towards one of the following
groups based on the ground truth clustering G:

1. True positive (TP):
A TP pair is a transportable pair of RCTs cor-
rectly grouped together

2. False positive (FP):
An FP pair is a non-transportable pair of RCTs
falsely grouped together

3. True negative (TN):
A TN pair is a non-transportable pair of RCTs
correctly grouped apart

4. False negative (FN):
An FN pair is a transportable pair of RCTs
falsely grouped apart

We can now define pairwise precision p and and
pairwise recall r as:

p =
{

T P
T P +F P , TP + FP > 0
0, TP + FP = 0

(3)

r =
{

T P
T P +F N , TP + FN > 0
0, TP + FN = 0

(4)

Both pairwise precision and pairwise recall take
values in the domain of R ∈ [0, 1], where 1 is the
perfect score. Intuitively, precision measures the
purity of the clusters, whereas recall measures the
completeness of the clusters. These concepts are
visualized in Figure 1.

As only pairs of points are evaluated in the genera-
tion of the confusion matrix, singleton clusters can
not contribute to the TP count. This becomes an
issue in our setting, where singleton clusters may
appear in the data. To combat this, we introduce
the adjusted confusion matrix calculation which
includes one simple change: if a point is in a sin-
gleton cluster in the ground truth and it is grouped
in a singleton cluster it contributes to the TP count.
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Figure 1: Example (a) is an extreme example of having a recall of 1 at the expense of precision. Recall
is maximized if all members of a true group are placed in the same final cluster, it is not lowered by
having multiple such groups in a single cluster. Recall is thus a measure of completeness. Precision is
maximized by clustering pairs from the same true group in the same cluster, where there are no other
members of a different true group. Precision is not lowered if members of a true group are distributed
between different clusters, so long as there are no members of a different group in said clusters. This can
be seen in example (b) which has precision of 1 at the expense of recall. Precision measures the purity
of the clusters.

Finally, we use the Rand index. Let G be the
ground truth clustering and S the predicted clus-
tering. After generating the confusion matrix. The
Rand index is then defined as:

R = TP + TN

TP + FP + FN + TN

The rand index measures the ratio of agreements
the between the predicted clustering S and the
ground truth G. It takes values on the domain of
[0, 1], where 1 is perfect clustering.

4.1.2 Data generation

We first evaluate our approach on synthesized data.
Each vector in an RCT dataset is formatted as
[S, X1, ...Xn, A, Y ]. The data is generated using the
following model.

Ys(X, A) = Bs(X) + τs(X) · A + ϵ

We will refer to function Bs as the baseline
function. Its effect is always observed regardless of
the treatment assignment. τs represnts the CATE
function of its respective RCT s. The noise factor
ϵ is a mean-zero normally distributed variable,
ϵ ∼ N (0, 1). The outcome is synthesized as a
continuous variable Y ∈ R.

For our purposes the baseline function is always
modeled as linear:

Bs(X) = β⊤
s X

In Experiments 4.2, 4.4 and 4.5 the CATE function
is also linear:

τs(X) = γ⊤
s X (5)

In Experiment 4.3 we use two different CATE func-
tions when synthesizing the data:

τ1(X) = (1 − p)
∑

i

Xi + p
25
3 cos(3

∑
i

Xi) (6)

τ2(X) = (1 − p)
∑

i

Xi + p 5e−
(
∑

i
Xi)2

0.98 (7)

We refer to parameter p as the degree of misspeci-
fication. When p is close to 0, the CATE appears
to be linear. As p reaches 1, the CATE becomes
entirely non-linear.

Unless stated otherwise, the covariate vector X will
contain 8 dimensions independently drawn from a
mean zero multivariate normal distribution, X ∼
N (0, I).

4.2 Dataset and family size analysis
To determine how the size of the individual
datasets and the dataset family we conduct
the following experiment affect our proposed
transportability testing method we conduct the
following experiment. We systematically vary both
family and dataset size. For each combination of
sizes we track either type I error or power, based
on the scenario, averaged over 1000 runs. Since
the data generation scheme is continuous, we use
ANOVA to validate transportability. We compare
it to Chow’s test by testing all in the group.

We examine two scenarios:
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(a) ANOVA power (b) Chow’s test family-wise power

Figure 2: Figures 2a and 2b depict how the power, averaged over 1000 runs, behaves as the sizes of
individual datasets increases for ANOVA and Chow’s test family-wise testing respectively.

1. Transportable scenario: All datasets are
generated from the same distribution, making
them mutually transportable. In this scenario,
we track the type I error rate. For pairwise
testing, all pairs within the family are tested,
and a single false positive renders the entire
run a false positive. The goal of this scenario
is to show that the tests are well calibrated.

2. Non-transportable scenario: No two
datasets in the family are generated from the
same distribution. Here, we measure power,
i.e., the probability of correctly rejecting the
false null hypothesis. For pairwise testing, a
run is considered a false negative if any pair-
wise test fails to reject the null hypothesis.

To account for the accumulation of type I errors,
we use the Bonferroni correction for setting the
significance value of Chow’s test. We hypothesise
that ANOVA will perform better than Chow’s test
on larger families, but the inverse to be true for
smaller families.

The results can be seen in Figure 2. Both ANOVA
and Chow’s test maintain a type I error rate close
to the nominal level of 0.05 as can be seen in Fig-
ure 7. ANOVA exhibits good power for all but the
smallest dataset and family sizes. Chow’s test on
the other hand, exhibits a family-wise power of al-
most 0 for any family size above 2 and dataset size
beneath 100. The power quickly rises to nearly 1
as the RCT dataset sizes rise to 200.

4.3 Misspecified model
Our approach assumes a linear relation between
the covariates and the transformed outcome.
However, this assumption need not be correct and
can result in estimating a misspecified outcome
model. This can hinder our ability to correctly

test transportability and further group the trials.

The goal of this experiment is to quantify how
much the degree of misspecification of our model
affects the reliability of our transportability vali-
dation approach.

Consider the following setting with a family of 6
RCTs.

• Scenario A: All RCTs are transportable, with
the CATE defined in Equation 7. The RCTs
are divided into two equally sized groups,
where covariates are drawn from multivariate
normal distributions with means −0.5 and 0.5,
respectively. The degree of misspecification p
is gradually increased from 0 to 1. As the de-
gree of misspecification grows, the CATE be-
comes increasingly non-linear. We track the
type I error rate over 1000 runs. We hypothe-
size that type I error rate will increase with the
degree of misspecification, as the linear mod-
els will try to approximate different regions of
a non-linear function. This should result in di-
verging estimates of the same true function as
more non-linearity is introduced. This concept
is visualized in the appendix (Figure 8).

• Scenario B: The family is divided into two
non-transportable groups of size 3, with CATE
functions defined by Equations 6 and 7, respec-
tively. As in the first scenario, we incremen-
tally introduce model misspecification. Covari-
ates in both groups are drawn from a mul-
tivariate mean-zero normal distribution. We
evaluate the power of ANOVA over 1000 runs,
which we hypothesize to decrease substantially
as misspecification increases.

Additionally, to confirm that the test is well
calibrated in Scenario B, retaining a nominal type
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(a) Scenario A: type I error rate (b) Scenario B: power

Figure 3: Figure 3a depicts the average type I error when validating transportability on a family of 6
RCTs which have the same CATE, but are split in 2 groups of equal sizes which have different covariate
distributions. Figure 3b depicts the power when testing whether transportability holds on a family of
6 datasets which are split into 2 equally sizes transportable groups. The covariates are sampled from
the same distribution. In both experiments, the CATE is gradually made less linear as the degree of
misspecification is increased.

I error of 0.05, we track the type I error when
testing a group of 6 RCTs. The RCTs follow
same non-linear CATE and sample their covariates
from the exact same mean zero normal distribution.

The results are depicted in Figure 3. In Figure 3a
we observe that having a misspecified model with
different covariate distributions between the RCT
populations will increase the type I error rate of
ANOVA. The type I error rate reaches almost 1 as
the degree of misspecification grows. Furthermore,
ANOVA’s power starts decreasing significantlly af-
ter the degree of misspecification reaches 0.6 as can
be seen in Figure 3b. The power drops to a value
of about 0.25 when the CATE is completely non-
linear. In this case the test retains a nominal type
I error rate of 0.05 no matter the degree of specifi-
cation as visualized in Figure 7.

4.4 Dataset difference analysis
To evaluate the sensitivity of the recursive clus-
tering procedure in detecting non-transportable
datasets, we assess how distinct the data-generating
mechanisms must be for the method to reliably
differentiate between them. While such differences
are difficult to quantify in real-world settings,
synthetic data allow precise control over and
observation of differences in data generation across
datasets.

Suppose we have a family of 6 synthetically gen-
erated RCTs, which form 3 transportable groups.
Suppose s ∈ {1, 2} is group 1, s ∈ {3, 4} group
2, and s ∈ {5, 6} group 3. When generating
the data, we increasingly vary the linear CATE
function, generated as per Equation 5. The

Figure 4: The figure depicts the average recall, pre-
cision and rand index with their respective 95%
confidence intervals averaged over 1000 runs. The
x-axis tracks the number of different parameters in
the treatment effect parameter vector which is de-
scribed in Section 4.1.2.

starting configuration of γs for all of the groups
is a vector of ones, γs ∈ {1}8. Iteratively, we
change the parameter vectors, one element at a
time at the same index, so that in the final iter-
ation γs≤2 ∈ {1}8, γ3≤s≤4 ∈ {0}8, γ5≤s≤6 ∈ {−1}8.

At each iteration, we track how the recall, pre-
cision and Rand index of behave as the outcome
generation schemes become increasingly different.
We hypothesise that the method will perform
better as the datasets start to differ more in the
later iterations. The clustering is performed on the
covariate-treatment interaction coefficients.

9



Figure 5: Mean recall and precision for hierarchical clustering and recursive clustering. For clarification,
{1, 1, 2} signifies the existence of 3 transportable RCT subgroups, two singleton RCTs and one subgroup
with two RCTs

The results can be seen in Figure 4. Precision and
Rand index converge to a value of 1 and 0.98 re-
spectively with very narrow confidence intervals as
is seen in Figure 4, after just 3 differing coefficients.
Recall reaches a stable value of 0.95 after 5 differing
coefficients, but has wider confidence intervals.

4.5 Grouping structures
Aside from the differences in the data-generating
processes, both the number of true clusters and
the underlying grouping structure of transportable
RCTs may influence the algorithm’s ability to
detect violations of transportability and correctly
cluster datasets.

By grouping structure, we refer to the possible
ways to group a set of m RCTs into transportable
subsets. For instance, a family of size 7 partitioned
into 3 clusters can yield the following configura-
tions: {1,1,5}, {1,2,4}, {1,3,3}, and {2,2,3}.

To evaluate the impact of grouping structure
on the performance of the recursive clustering
algorithm, we conduct the following experiment.
For a family of 8 RCT datasets, we incrementally
vary the number of transportable groups from 2

to 8. For each number of clusters, we enumerate
all possible grouping structures and generate
synthetic data accordingly. Recursive clustering is
done on the treatment-covariate interaction coeffi-
cients, repeated 1000 times for each configuration.
For comparison, we repeat the same experiment
using the hierarchical clustering method from
Section 3.3.1.

Results, visualized in Figure 5, show that the recur-
sive clustering overall performs significantly better
than just hierarchical bottom-up clustering, averag-
ing a precision of almost 1 and a recall greater than
0.92 over all grouping structures. Hierarchical clus-
tering performs badly precision-wise as the number
of true groups grows, but exhibits almost perfect
recall in all but a single case. However, when the
true number of transportable RCT groups is 2, hi-
erarchical clustering slightly outperforms recursive
clustering.

4.6 Real world data
This experiment demonstrates the usage of our
method on real data and observing which trans-
portablity trends can be detected on the real
world CAP RCTs. The test includes training a
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Table 1: Transportability test results across preprocessing strategies. RCTs are labeled {1, 2, 3, 4, 5}
with starting sizes: 1 (304), 2 (785), 3 (401), 4 (213), 5 (794). Transportability is tested using ANOVA,
the RCTs are grouped using recursive clustering. In the clustering column, {1, 2} would denote RCTs 1
and 2 being placed in the same cluster.

Method p-value RCTs
Dropped

Total Size Remaining
Features

Clustering

Method 1 0.08 4, 5 908 20 {1, 2, 3}
Method 2 8.2 · 10−10 \ 1649 16 {1}, {2, 3}, {4}, {5}
Method 3 6.75 · 10−7 \ 2497 16 {1}, {2}, {3}, {4}, {5}
Method 4 6.33 · 10−7 \ 2497 20 {1}, {2}, {3}, {4}, {5}

Method 1: Row Dropping Method 2: Column Pruning and Row Dropping Method
3: Column Pruning and Within-RCT Imputation Method 4: Cross-RCT and Within-
RCT Imputation

logistic regression model as described in Section
3.1. Transportability is tested using LRT and
transportable subgroups are identified using recur-
sive clustering, if transportability is found not to
hold.

We have access to 6 real-world RCTs, containing
a total of 2617 samples. Every row contains 20
covariates, some of which can be missing. From
the very beginning, one RCT is excluded from the
analysis due to the stratified model being unable
to converge if it was included during optimization.
This occurred because the model could perfectly
predict the outcomes in said RCT. Since the
likelihood function grows as the coefficients grow,
preventing convergence to a finite solution by
pushing coefficients towards ±∞ during optimiza-
tion.

To handle missing values, we employ four ap-
proaches: (i) Row dropping: Remove all rows
with any missing values. This is the simplest
approach to dealing with missing values. It can,
however, cause severe data loss, which could lead
to biased estimates. (ii) Column pruning row
dropping: Drop columns entirely missing in any
RCT, then drop remaining rows with missing
values. This approach mitigates the severe data
loss of row dropping, however, it can cause us to
ignore important predictors due to them not being
present in a single RCT. (iii) Column pruning and
within-RCT imputation: Drop columns which are
always missing in any RCT. Impute remaining
missing values using a random forest trained on
the same RCT. This method drops columns, but
preserves the total number of samples in the data.
However, it could induce bias by projecting the
distribution of complete rows when filling in the
missing values. (iv) Cross-RCT and within-RCT
imputation: If a column is always missing in an
RCT, impute it using a random forest trained on
other RCTs where it’s observed; otherwise, impute
within-RCT. This method preserves both the total

number of predictors and the total number of
samples. However, similarly to method (iii) it
could induce bias by projecting the distributions
of the fully observed data.

The results are shown in Table 1. Due to miss-
ing values, the row dropping approach removes
two more sources from the analysis as their every
row had at least one missing value. The remain-
ing 3 RCTs are found to be transportable with
a p-value of 0.08. When using column pruning
and row dropping the family is found to be not
transportable with a p-value of 8.2 · 10−10. The
RCTs are clustered into 3 singleton clusters and
one cluster of size 2, indicating that 2 RCTs form a
transportable subgroup. The remaining data pro-
cessing methods both find transportability not to
hold and place all of the RCTs in singleton clus-
ters. Column pruning and within-RCT imputa-
tion rejects the null hypothesis with a p-value of
6.75 · 10−10, whereas cross-RCT and within-RCT
imputation does so with a p-value of 6.33 · 10−7.
The column pruning methods remove four columns
(creatine, cancer indicator, liver disease indicator
and renal disease indicator).

5 Discussion

Our findings suggest that ANOVA generally
outperforms Chow’s test for transportability vali-
dation. However, we did not consider every possible
way that a family of RCTs could be partitioned
into transportable subgroups (when evaluating the
power with a family of 4 RCTs we only look at
the case where none are transportable, we could
also have 2 groups of 2 transportable RCTs). In
cases where most RCTs are transportable and
only a few are outliers (e.g., one out of seven),
a pairwise testing scheme may be more appropriate.

We also find that rejection of the null hypoth-
esis can stem from model misspecification in
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conjunction with a covariate shift between the
RCTs, rather than true differences in their CATEs.
When covariate distributions differ, the stratified
linear model fits hyperplanes around the sampling
region of each RCT. If covariates are sampled
from sufficiently distant regions, the approximated
hyperplanes can differ, potentially leading to false
rejections. This issue is illustrated in the appendix
(Figure 8). Moreover, when non-transportable
RCTs follow different CATE functions but are
locally approximated by similar linear hyperplanes,
our method may fail to reject transportability.
These limitation could be mitigated by trans-
forming covariates before fitting the model when
the relationship between the covariates and the
outcome is suspected to be non-linear. Variable
selection methods like forward selection could be
used to find meaningful transformations. If data
is not transformed, a non-parametric test such as
Racine’s test [16] ought to be utilized to validate
transportability.

Hierarchical clustering performs well only when
there are two transportable groups. In all other
cases it exhibits lowered precision while retaining
almost perfect recall. This indicates that the
method rarely splits RCTs which are in the same
true group, but often groups RCTs which are in
different true groups. Thus, we conclude that
hierarchical clustering generally produces only
two clusters, which may not align with the true
underlying structure.

Recursive clustering consistently demonstrates
high recall and precision and substantially out-
performs hierarchical clustering. However, the
results show that precision is consistently higher
than recall. Interestingly, recursive clustering
is outperformed by hierarchical clustering only
when there are exactly two transportable RCT
subgroups. Both findings can be attributed to
the additional transportability validation step
that recursive clustering performs upon forming
a cluster. Even if a formed cluster contains only
RCTs from the same transportable group, a false
positive will cause the method to unnecessarily
split the cluster. This preserves the precision but
reduces recall.

The previously mentioned finding highlights an
important limitation of recursive clustering. Al-
though it reduces the amount of additional tests
required for identifying transportable subgroups,
it does not eliminate them, making it susceptible
to error accumulation. Ideally, one would want
to cluster all transportable RCTs correctly in a
single pass without employing the recursion. This
could be achieved by improving the robustness of
hierarchical clustering, specifically by designing
a better strategy for choosing the cluster cut-off
distance, allowing it to discover more than two true

subgroups. Alternative clustering strategies could
also be explored. Furthermore, incorporating the
uncertainty of main effect and treatment-covariate
interaction coefficients into the clustering process
could also be explored in future work.

In the real-world experiment, dropping rows with
missing values did not lead to rejecting transporta-
bility. However, this method retained only about
one-third of the original data. Furthermore, all
other data processing methods reject transportabil-
ity, having p-values which are several magnitudes
of order more extreme. We thus conclude that,
in this case, dropping rows with missing values
removes a lot of samples which would invalidate
transportability if present. Methods (iii) and (iv)
differ only in how they handle missing columns,
but produce very similar p-values, leading us to
hypothesize that the dropped columns do not
significantly contribute towards rejecting trans-
portability.

Observing the appendix of Smit et al. [5], we note
that certain distributions of covariates visually
differ between the RCTs (e.g., diabetes and renal
disease). In conjunction with a misspecified
model, the differences between the distributions of
covariates could explain the strong rejection of our
method. To diagnose the covariate shift between
the RCTs explicitly, a test such as Maximum Mean
Discrepancy (MMD) [22] ought to be utilized.

Our method is currently limited to simple para-
metric models. While they do have the upside of
being highly interpretable, their ability to capture
more complex, non-linear relationships is limited.
Future work could explore extensions using more
flexible models such as neural networks, or causal
forests. In such cases, we hypothesize that cluster-
ing could be done on model representations, such
as a vector of CATE estimates.

Another limitation of our approach is that we can
validate mean exchangeability of contrast only
ndirectly, by testing mean exchangeability of coun-
terfactual outcomes which implies it. Although it
may seem intuitive to construct models that esti-
mate the CATE directly, this invalidates likelihood
or RSS based statistical tests, since the model is
no longer fitted to the observed outcome Y . As a
result, likelihood ratio and ANOVA tests become
ill-defined. To directly test mean exchangeability
of contrast, a test such as the method proposed
by Hussain et al. [15] could be utilized. However,
as Hussain’s method is a pairwise test, this would
require repeated testing.

Finally, our experiments relied on synthetic data
generation, including linear CATEs for Experi-
ments 4.2, 4.4, 4.5 and non-linear functions for
Experiment 4.3. While these choices enabled con-
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trolled evaluation of model misspecification, they
may not fully capture the complexity of real-world
treatment effect heterogeneity. Similarly, our co-
variate distributions were limited to multivariate
Gaussians without structured missingness patterns.
Future work could explore more diverse data gen-
eration schemes or sparsity-inducing distributions,
bridging the gap between simulations and reality.

6 Conclusion
This thesis addresses the challenge of validating
transportability across multiple RCT datasets.
Furthermore, it explores an approach for identify-
ing transportable subgroups when transportability
does not hold across an entire family of tested
RCTs. To that end, we proposed a linear mod-
eling framework for testing transportability and
introduced a recursive clustering algorithm that
effectively identifies transportable clusters within
non-transportable families of RCTs.

Through extensive simulations, we demonstrated
the advantages and weaknesses of our transporta-
biltiy validation framework, and the recursive
clustering algorithm. In particular, we showed that
even for smaller families our transportability test-
ing approach which utilizes ANOVA outperforms
pairwise testing power-wise while maintaining a
nominal type I error rate. Furthermore, we found
that our transportability validation scheme is
sensitive to model misspecification, especially so
when there are differences in covariate distributions
between the RCTs. The effect of model misspecifi-
cation could be alleviated by domain expertise or
variable selection techniques in order to recognize
when applying transformations to the data is
required. In case transportability is found not to
hold between a family of RCT datasets, we show
that our recursive clustering can reliably detect
underlying transportable structures, especially
when differences between the CATE functions are
sufficiently pronounced. Finally we employ our
method on a real world family of RCTs and draw
the conclusion that transportablity does not hold
across the entire family. However, the results are
highly dependent on the data processing technique.
Furthermore, the rejections could also be caused
by a misspecification of our model.

In sum, this thesis contributes a simple
hyperparameter-free framework for validating
transportability and detecting transportable sub-
groups between RCT datasets, with promising
results. With further refinement, the proposed
approach could be used to enhance the reliabil-
ity of meta-analyses and advance personalized
healthcare.
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7 Appendix A: Supplementary figures

(a) ANOVA type 1 error rate (b) Chow’s test family-wise type I error rate

Figure 6: Average type I error rates for ANOVA and Chow’s test

Figure 7: Average type I error rate when testing a family of 6 RCT datasets with the same covariate
distribution as the degree of misspecification is increased.

Figure 8: The figure demonstrates how a covariate shift can detrimentally impact the performance of
a misspecified model model on a dummy example. The red and blue lines are the fit on two different
populations which follows the same CATE and have a size one covariate vector X. However, the red
population’s covariate distribution is Xr ∼ N (−0.25, 1), whereas blue’s covariate distribution is Xb ∼
N (0.25, 1). The resulting models then estimate vastly different slopes, even though their true CATE is
the same.
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8 Appendix B: Missing Data Handling Strategies
This appendix provides a detailed description of the four preprocessing methods used to handle missing
values across multiple RCT datasets.

1. Row dropping: Removes all rows that contain any missing values.

2. Column Pruning and Row Dropping: Columns that are completely missing in at least one
RCT are dropped from the dataset. Subsequently, any remaining rows with missing values are also
removed.

3. Column Pruning with Within-RCT Imputation: Columns that are entirely missing within
any RCT are dropped. The remaining missing values are imputed using a supervised machine
learning model (random forest regressor or classifier), trained separately within each RCT using
only the observations which are not missing the value being imputed. When training the random
forest regressor or classifier, any missing values (other than the value being predicted) are filled with
the mean value of the column for that source.

4. Cross-RCT and Within-RCT Imputation: For columns that are entirely missing within a
given RCT, imputation is performed using a model trained on other RCTs where the column is
observed. All other missing values in the training set are filled with the mean value of the value in
that sources. For all other missing values, within-RCT imputation is applied as in method (iii).
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