
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Software Engineering in the Netherlands:
The State of the Practice

Frens Vonken, Jacob Brunekreef, Andy Zaidman, Frank
Peeters

Report TUD-SERG-2012-022

SERG

TUD-SERG-2012-022

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note:

c© copyright 2012, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

Software Engineering in the Netherlands: The State of

the Practice

Frens Vonkenb, Jacob Brunekreefb, Andy Zaidmana, Frank Peetersb

aDelft University of Technology
a.e.zaidman@tudelft.nl

bFontys University of Applied Sciences
{f.vonken, f.peeters, j.brunekreef}@fontys.nl

Abstract

In order to determine whether there is a gap between the current state-
of-the-practice and state-of-the-art in software engineering, we performed a
broad survey among Dutch software producing organizations. Our survey
covers aspects of the software engineering cycle ranging from requirements
engineering, over design and implementation to testing. From our analysis
of the data that we have obtained from our 99 respondents, we extracted
22 interesting observations, some representing unexpected insights from an
academic point of view. From these observations, we have identified a number
of avenues for future research.

1. Introduction

The term software engineering first appeared in the late 1960s and was
introduced by Bauer to describe ways to develop, manage and maintain soft-
ware so that the resulting products are reliable, correct, efficient and flexi-
ble [1, 2, 3]. Some 15 years later, Zelkowitz et al. performed an in-depth
survey of 30 companies in which they tried to establish the current state of
practice in the software production industry [2]. Their survey revealed that
— at that time — practice was around 10 years behind on software engineer-
ing research. Almost 20 years later, in 2003 to be precise, Reifer observed
that industry is a little behind academia, but industry has the capacity to
close the gap very quickly [4].

Going on a quote from Strachey at the 1969 NATO conference on soft-
ware engineering where he states that “there is a need for a greater mutual

Technical report TU Delft December 7, 2012

SERG Vonken et al. – Software Engineering in the Netherlands: The State of the Practice

TUD-SERG-2012-022 1

understanding between the communities of software development practice
and software research” [5, 1], we can only observe that this gap has existed
for a very long time. In this respect, literature suggests two distinct ways for
reducing the gap that exists between industry and academia: education [6, 7]
and technology transfer [8].

For example, Lethbridge et al. [7] argue that we should better understand
the dimensions of the field so that we can focus education appropriately. Fo-
cussing on education can also have direct benefits on practice, firstly, because
academia is currently educating the next generation of software engineers,
ready to take recent knowledge from academia to industry, and secondly, be-
cause we should also remember to continue educating existing practitioners
to continually increase the level of professionalism in software engineering [9].

Rombach and Achatz have proposed a comprehensive model to transfer
technology from academia to industry, which is very relevant, as Lethbridge
et al. point out “very little of the advanced knowledge developed by the
research community, such as that contained in the papers presented at ICSE1

conferences, will have impact on practitioners.” [7].
Knowing about the gap between academia and industry and its possible

solution, combined with the observation of Ludewig that surveys on the
actual state of software engineering in industry are rare [3], it is our goal
to get a clear picture of current software engineering practices in the Dutch
software production industry, with a particular focus to identify (1) topics
for future/further research, (2) opportunities where existing research can
be transferred to industry and (3) opportunities for fine-tuning educational
programs.

From our survey of the Dutch software production industry, we have gath-
ered 22 observations that characterize the state-of-the-practice and which
could be interesting starting points for future research. We also relate each
of these observations to current research efforts and insights obtained from
literature.

The structure of this paper is as follows. Section 2 details our research
methodology. Section 3 deals with our findings of what developer method-
ologies are being used, after which Section 4 looks at how requirements are
gathered. Section 5 discusses our findings concerning how developers cope
with the design of their software, while Section 6 takes a closer look at im-

1International Conference on Software Engineering

2

Vonken et al. – Software Engineering in the Netherlands: The State of the Practice SERG

2 TUD-SERG-2012-022

plementation. Section 7 focusses on testing. We conclude our paper with
Section 8 that discusses our findings, presents threats to validity and pro-
poses a research agenda.

2. Research methodology

In the spring of 2011 a survey was carried out to get insight into the
state-of-the-practice of Dutch software development organizations. The sur-
vey should be considered as a broad survey that gauges how software develop-
ment organizations work in general and how they ensure the quality of their
software. The survey is meant to be a tour d’horizon with the explicit aim
to gain insights into possible follow-up research initiatives and educational
gaps. We explicitly opted for survey research [10, 11, 12] as our intended
population was too large to observe directly.

2.1. Questionnaire

The survey questionnaire contains 50 questions2. The questions cover a
range of software engineering practices, from questions on (1) the develop-
ment methodology that is currently in use, (2) how requirements are specified,
(3) how architecture and design are handled, (4) how software systems are
realized and (5) testing. Moreover, several questions address the perception
of quality, of the delivered software product and of the development process.

Distribution of the survey. The survey was sent out in distinct ways, namely:

1. Last-year students from Fontys University of Applied Sciences took the
survey to companies where they had done an internship.

2. Emails were sent to companies that both Delft University and Fontys
University of Applied Sciences have worked with in the past.

3. A broad call for participation was sent out using Twitter, including
retweets by colleagues from other universities. A similar broad call was
made through LinkedIn.

For the first category of respondents, they answered the survey on paper
and the paper copy was returned to us. For the latter two categories the
survey could be filled in using Google Forms3.

2The questionnaire can be found at: http://swerl.tudelft.nl/bin/view/Main/

SurveyDutchSoftwareIndustry
3http://www.google.com/google-d-s/forms/

3

SERG Vonken et al. – Software Engineering in the Netherlands: The State of the Practice

TUD-SERG-2012-022 3

In a period of just under two months, we had 99 people participating in
our survey. The responses from both the electronic survey and the paper sur-
vey were collected in an Excel spreadsheet4. We first explored the data using
descriptive statistics and boxplots, after which we used SPPS to compute
correlations to identify statistically relevant observations (unless mentioned
otherwise, we assume significance at the .05 level). During this process we
found some remarkable results, which form the basis for the 22 observations
that we report on in this paper.

2.2. Characterization of the subjects

The 99 people participating in our survey can be characterized as follows.

Function. From the 99 participants, 60 consider themselves developers, while
37 call themselves a teamlead or project manager. Two participants refrained
from answering this question. While entering the company name was not a
requirement, from those participants that did, we could gather that those 99
participants worked for at least 40 different companies.

Education. Figure 1 shows the educational background of the participants.
Most of the participants have a CS educational background with 58 par-
ticipants indicating to have followed a college-level computer science (CS)
curriculum, 33 participants reporting to have followed a university-level CS
curriculum (mind that some participants have followed more than one cur-
riculum).

Experience. Looking at the years of experience of the developers, we see that
the professional experience of the participants of our survey is very mixed.
The largest group of respondents indicates to have 2–5 years of experience,
but other experience groups are also well-represented. Figure 1 provides an
overview.

In the following sections the results of the survey are presented. We have
mirrored our results with findings reported by other scientists, looking for
similarities and differences.

4The scores can be found on the same websites as the questionnaire

4

Vonken et al. – Software Engineering in the Netherlands: The State of the Practice SERG

4 TUD-SERG-2012-022

2

58

10

33

2
8

1

17

36

19

27

0

10

20

30

40

50

60

70

Pa
rt

ic
ip

an
ts

Education Experience

Figure 1: Educational background and experience of the participants.

3. Development Methodology

The history of software development shows an ongoing debate about what
methodology should be used. Starting with a linear (waterfall) approach,
nowadays iterative methods seem to be used more frequently [13]. In order
to get an actual image of what kind of methodologies are currently in use
at Dutch software companies, we have asked our respondents what method-
ology they are using. The results are shown in Figure 2. Also of interest is
the fact that 41 respondents have reported to use some other development
methodology. Analyzing the results indicates that most use a very ad-hoc
development methodology or a company-specific methodology.

Observation 1. Agile development / Scrum is often mentioned as develop-
ment methodology, but the waterfall methodology is still in use.

Looking at the boxplots in Figure 2 we see that many respondents indicate
that they work with an agile development process. Scrum is used much more
than other representatives of agile methodologies like XP and DSDM. On the
other hand, 54 respondents (or more than 50%) indicate that they are still
using a waterfall process (to some degree). Most of the waterfall practitioners
are using this methodology for a longer time (over 3 years), while most of
the agile/Scrum practitioners are using their methodology for a short time
(less than or equal to 3 years).

Iterative development methodologies have been around for a decade now
and carry a lot of interest from companies, as they seek to get their products
to market more quickly [14]. Several empirical studies have been performed

5

SERG Vonken et al. – Software Engineering in the Netherlands: The State of the Practice

TUD-SERG-2012-022 5

XPSCRUMDSDMRUPAgileWaterfalll

4,0

3,5

3,0

2,5

2,0

1,5

1,0

57

98

5099

22

26

45

93

99

15

57

Page 1

Figure 2: Boxplots showing which development methodologies are used and
to what degree. (Scale from 1 (not) to 4 (extensive)).

on the quality of the resulting software and the gains in productivity while
using iterative methodologies.

Dyb̊a and Dingsør [15] present a systematic review of 36 studies, includ-
ing topics like customer perception, product quality, team quality. From
their study we can distil that most studies reported that agile development
practices are easy to adopt in various environments and typically work well.
Another finding is that developers are mostly satisfied with agile methods.
In particular, for companies using XP, it seems that employees are more
satisfied with their job and with the product they are delivering.

Hansson et al. [16] make an interesting observation: many industrial soft-
ware development teams are already working more or less in an agile way,
without knowing it. Companies that indicate that they work in a linear way
all deal with changing requirements. They observe that most companies quite
expertly combine iterative and linear practices and adjust their practices ac-
cording to the situation at hand. They plea for more research concerning the
combination of linear and iterative software development methodologies.

Petersen and Wohlin [17] report on a large industrial case study. They
come up with positive results concerning agile software development. In an-
other large-scale industrial case study, Petersen concludes that the waterfall

6

Vonken et al. – Software Engineering in the Netherlands: The State of the Practice SERG

6 TUD-SERG-2012-022

model is not suitable, mainly due to changing requirements [18].
Our findings are in line with the observations we gathered from literature:

developers that are working in an agile setting are a little bit more satisfied
with the quality of the software they produce and much more satisfied with
the quality of the development process itself than developers that are using
waterfall. See Figure 3.

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5

Agile
Waterfall

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5

Agile
Waterfall

Figure 3: Developer satisfaction wrt Product Quality (left) and Process Qual-
ity (right). 1 = Very Unsatisfied, 5 = Very Satisfied

Layman et al. [19] describe a comparative case study in which the use of
an agile development methodology, in particular XP, is compared to using
a linear methodology. They report a 50% increase in productivity, a 65%
improvement in pre-release quality, and a 35% improvement in post-release
quality.

Several surveys (including ours) show that linear methodologies like wa-
terfall are still in use. About 20% of our respondents still uses the waterfall
methodology. This is less than the 33%, found by Laplante and Neill in a
survey conducted in 2003 [20], but it is still a considerable percentage. We
do not know whether this decrease is caused by ongoing time, or by other
causes like the nature of companies that have been questioned. We also do
not predict the end of the waterfall era. As several authors (like Boehm [21]
and Sliger [14]) suggest, a combined approach with the best of both worlds
may be successful in the future.

Observation 2. Developers using waterfall are less positive about the qual-
ity of the development process and the quality of the software product than
developers using agile methods.

In Table 1 we have applied Kendall’s tau correlation to determine whether
a correlation exists between the use of the waterfall process and three process

7

SERG Vonken et al. – Software Engineering in the Netherlands: The State of the Practice

TUD-SERG-2012-022 7

aspects, namely the satisfaction with the development process, the realiza-
tion of the project planning and the realization of the project budget. We
opted for Kendal’s tau correlation, a non-parametric test that measures rank
correlation, which fits our need as our questionnaire uses a 5-point Likert
scale. As can be seen in Table 1 we found a negative statistical correlation
concerning developers using waterfall and their satisfaction with the develop-
ment process, the realization of the project planning and the project budget.

Process Planning Budget
Satisfaction Realization Realization

Correlation Coeff. -.350 -.227 -.239
Sig. (2-tailed) .001 .025 .018

Table 1: Kendall’s tau correlation between Waterfall developers and three
process aspects.

Surprisingly, we did not find a positive statistical correlation concerning
developers working in an agile manner and their satisfaction with process
quality. Our observation contrasts reports from other studies. In particular,
Cockburn and Highsmith report on an increasing employee morale when
working in an agile manner [22], Mannaro et al. observe diminishing employee
stress, while both Melnim and Maurer and Dyb̊a and Dingsør witnessed an
increasing job satisfaction [23, 15].

As can be seen from literature, software engineers seem to be quite pos-
itive about agile methods, yet our observation on process quality does not
follow suit. Although it seems that agile development processes increase
employee morale, diminish stress and increase job satisfaction, software en-
gineers are not convinced of a better quality of the process.

Observation 3. Agile developers share more team responsibilities with re-
spect to product and process than waterfall developers.

We consider this observation as a to-be-expected consequence of working
agile: when working in short iterations, team members cannot focus for a
longer period on just one activity or responsibility. We have also observed
that sharing team responsibilities with respect to the development process
correlates positively with the satisfaction concerning process quality: devel-
opers like sharing responsibilities. On the other hand, we found that sharing

8

Vonken et al. – Software Engineering in the Netherlands: The State of the Practice SERG

8 TUD-SERG-2012-022

team responsibilities with respect to the product-to-be-delivered correlates
negatively with customer satisfaction and budget realizations. See Table 2.

This might, in part, be explained by the unease of customers with the
unpredictability of the requirements. In particular, Murru et al. describe
the experiences of an Italian internet company with XP [24]. They report
that customers do not readily accept the unpredictability of requirements.
This goes somewhat in the direction of our own observations from Table 2,
where we saw a (weak) negative correlation between customer satisfaction
and sharing responsibilities. On the developer-side they report that devel-
opers using XP have more sense of project control and are more aware of
planning issues and budget issues.

Customer Budget Proc. Quality
Satisfaction Realization Satisfaction

Correlation Coeff. -.191 -.175 .196
Sig. (2-tailed) .032 .042 0.24

Sharing Product Sharing Process
Responsibilities Responsibilities

Table 2: Kendall’s tau correlations between sharing responsibilities and three
process aspects.

4. Requirements specification

The success of a software system depends on how well it fits the needs
of its users and its environment [25]. Software requirements comprise these
needs, and requirements engineering (RE) is the process by which the require-
ments are determined. Successful requirements engineering involves under-
standing the needs of users, customers, and other stakeholders; understand-
ing the context in which the to-be-developed software will be used; mod-
elling, analyzing, negotiating, and documenting the stakeholders’ require-
ments; validating that the documented requirements match the negotiated
requirements; and managing requirements evolution [26].

The quality of software requirements has been repeatedly recognized to
be problematic [27]. In their early empirical study, Bell and Thayer ob-
served that inadequate, inconsistent, incomplete, or ambiguous requirements

9

SERG Vonken et al. – Software Engineering in the Netherlands: The State of the Practice

TUD-SERG-2012-022 9

are numerous and have a critical impact on the quality of the resulting soft-
ware [28]. In particular, the mismanagement of changing requirements or
the lack of customer involvement have been identified as major risks in the
development process [29].

Observation 4. About 70% of the respondents report about direct customer/user
involvement when specifying the requirements. In many cases customers
and/or users are available on-site for consultation purposes.

Observation 4 directly relates to customer involvement during require-
ments engineering: 70% of the respondents report customer involvement. As
customer collaboration is one of the main topics in agile approaches, Obser-
vation 4 is in line with the frequent usage of agile development methodologies
(see Observation 1).

Many authors stress the importance of customer involvement, often re-
lated to an agile way of working. Paetsch et al. [30] describe the role of
customers in all steps of the requirements process, from elicitation up to val-
idation. Cao and Ramesh [31] report about an empirical study concerning
agile requirements engineering. One of their main findings is the importance
of face-to-face communication between customers and the development team.
DeLucia et al. [32] also discuss requirements engineering in an agile context.
They come up with a set of guidelines for agile requirements engineering,
including the importance of customer involvement.

With respect to direct versus indirect customer involvement, in our survey
we found only a slight difference between respondents using agile and respon-
dents using waterfall processes: 70% of the agile respondents and 64% of the
waterfall respondents mention direct customer involvement. However, where
the majority of the agile respondents report on-site customer involvement,
only 20% of the waterfall respondents indicate that they work with their
customers on-site in the requirements process. Our survey shows the impor-
tance of on-site customer involvement with respect to customer satisfaction
and product satisfaction (see Table 3).

From Table 3, we have extracted Observation 5.

Observation 5. On-site involvement of customers correlates positively with
both the customer satisfaction and developer satisfaction concerning the qual-
ity of the delivered software product.

10

Vonken et al. – Software Engineering in the Netherlands: The State of the Practice SERG

10 TUD-SERG-2012-022

Customer Product
Satisfaction Satisfaction

Correlation Coeff. .195 .182
Sig. (2-tailed) .029 .040

Table 3: Kendall’s tau correlation between On-site customer involvement
and Customer satisfaction, Product satisfaction.

Managing the over time changing of requirements is a major issue in
the requirements engineering field. Many authors consider agile methods
as a good solution for this problem: where linear methods focus on fixing
requirements in an early stage, the iterative way of working allows, or even
stimulates, the change of requirements during a project, see, e.g., Eberlein
and Leite [33] and Sillitti et al. [34].

Another issue is the way in which requirements are documented. As the
Agile Manifesto favours working code over comprehensive documentation,
a potential problem with respect to requirements documentation might oc-
cur [31]. Especially in the maintenance phase of the software lifecycle, when
the development team often is out-of-sight, well-documented requirements
are an important factor, amongst others to perform impact analysis [35]. As
such, better tool support for documenting requirements seems like a logi-
cal next step. A first step in this direction has been presented by Mugridge
and Cunningham with the Fit framework that allows to specify requirements
through acceptance tests [36].

Observation 6. Requirements are mainly specified in unstructured text, us-
ing word processors.

More structured descriptions like use cases, acceptance tests and GUI
prototypes are sometimes used, but the textual description of requirements
remains a firm favourite. Figure 4 provides an overview of the specification
methods used for requirements. If we then turn to the tools that are used
for specifying requirements, we see that tools like Enterprise Architect, Vi-
sual Paradigm and Rational Rose are sometimes used, but a word processor
remains the clear favourite. In fact, 56.6% of the respondents indicated that
they extensively used a word processor for specifying requirements.

A striking observation is that what we would describe as a more profes-
sional way of dealing with requirements, i.e., specifying requirements through

11

SERG Vonken et al. – Software Engineering in the Netherlands: The State of the Practice

TUD-SERG-2012-022 11

Formal
Specifications

GUI PrototypeStory BoardsAcceptance
Tests

User StoriesUse CasesTextual

4,0

3,5

3,0

2,5

2,0

1,5

1,0

Page 1

Figure 4: Usage of specification methods for requirements (Scale from 1 (not)
to 4 (extensive).

use cases, resulted in a slightly negative correlation with regard to realizing
projects within time and within budget amongst our respondents (see Ta-
ble 4).

Planning Budget
Realised Realised

Correlation Coeff. -.201 -.191
Sig. (2-tailed) .026 .035

Table 4: Kendall’s tau correlation between applying Use Cases for require-
ments and realisation of planning and budget.

5. Design

Van Vliet states that “software design concerns the decomposition of a
system into its constituent parts” [37]. Many design methods were proposed
in the 1960s and 1970s [38, 39]. This research arose in response to the
unique problems of developing large-scale software systems first recognized

12

Vonken et al. – Software Engineering in the Netherlands: The State of the Practice SERG

12 TUD-SERG-2012-022

in the 1960s [40]. The main aim of these software design methods was to
enforce discipline in addressing the growing complexity of the applications
being developed [38].

Design entails balancing a set of competing requirements. The prod-
ucts of design are models that enable us to reason about structures, make
trade-offs when requirements conflict, and in general, provide a blueprint for
implementation [38]. The above clearly indicates that design is an activity
separate from implementation, requiring special notations, techniques and
tools to ease working with large-scale software.

Towards the 1990s, the term software architecture came into fashion [39].
With systems becoming ever larger and more complex, software architec-
ture is meant to provide a higher level of abstraction for software systems
than software design could. Where software architecture stops and (detailed)
software design starts however, is unclear from literature (e.g., [41, 42]).

When trying to determine which specific activities belong to software de-
sign, the software engineering community is rather ambiguous on this matter.
No clear-cut distinction between the two development phases of analysis and
design is made. Some experts will assign, for instance, a detailed description
of the flow of events of a use case towards the analysis phase, while oth-
ers, like Lauesen, prefer to label this as belonging to the design phase [43].
Lauesen likes to work with task hierarchies, compared to use cases, when
talking about analysing user requirements. The same confusion arises when
referring to usability requirements and other quality attributes (or in more
general terms: non functional requirements). We assume (and hope) that a
requirements engineer specifies only needs, conditions and perhaps wishes.
To our opinion, a requirements engineer should avoid to specify parts of so-
lutions, but we acknowledge that the difference between “what” and “how”
is not always that clear.

Coming back to our own survey, we observed that how people deal with
software design seems to be determined individually, as evidenced by the
small number of observations that we made in this context. We observed a
wide spectrum of answers, without a clear consensus. We are now turning
towards the observations that we made while analysing the results of our
survey.

Observation 7. The majority (76%) of the respondents somehow rely on a
software design, varying from a paper sketch to a class diagram made with
the help of tools like Visio, Rational Rose, Rhapsody, Visual Paradigm or

13

SERG Vonken et al. – Software Engineering in the Netherlands: The State of the Practice

TUD-SERG-2012-022 13

Enterprise Architect. Those who are using a tool are mostly working with
Visio.

Our observation is supported by the boxplots in Figures 5 and 6. Figure 5
shows that our participants use a variety of methods to capture design, how-
ever, sketches and textual descriptions are used the most. Another (equally)
popular way of communicating design is by creating a GUI design. Somewhat
less frequently used are UML class and sequence diagrams.

When turning our attention to the tools that are being used for capturing
the design, we see in Figure 6 that Visio is actually the most used tool, by
far.

Smith makes a distinction between drawing tools (e.g., Visio), code-
centric UML tools (e.g., Rational Rose) and UML framework tools (e.g.,
Rational Rose Real-Time and Rhapsody) [44]. The biggest difference be-
tween these classes of tools lies in the fact that code-centric tools offer fa-
cilities to generate concrete programming code, but mostly restricted to the
static structure of a class diagram. The framework tools are more ambitious
with respect to round trip engineering. Drawing tools on the other hand, of
which Visio is a prime example and according to our results also frequently
used, gives the practitioner the opportunity to make a quick design. Such
a design makes it possible to communicate within the development project
about design issues.

A possible explanation of the relatively low usage of UML tools like En-
terprise Architect, Rational Rose, Rhapsody and Visual Paradigm is that
respondents are not convinced enough of the advantages of the code-centric
or framework tools. In this context, Dobing and Jeffrey performed a survey
in 2006 [45]. One of their questions focused on the reasons for not using a
UML class diagram, see Table 5 for the results.

Problem identified % of respondents agreeing

Not well understood by analysts 50
Not useful for most projects 13
Insufficient value to justify cost 13
Information captured would be redundant 25
Not useful with clients 25
Not useful with programmers 25

Table 5: Reasons for not using a class diagram (% responses) [45]

14

Vonken et al. – Software Engineering in the Netherlands: The State of the Practice SERG

14 TUD-SERG-2012-022

4

3

2

1

15

7981

31

57

65

15

31 79151574862941
60

99

GUI Design

UM
L Collaboration

Diagram

UM
L Activity Diagram

UM
L Sequence

Diagram

UM
L State Diagram

UM
L Object Diagram

UM
L Class Diagram

UM
L Com

ponent

Diagram

Textual

Code tem
plates / code

skeletons

Sketches

Page 1

Figure 5: How is design captured? (1 = not, 2 = somewhat, 3 = average, 4
= extensive)

It is remarkable that 50% of the analysts did not have a good under-
standing of the finesses of a class diagram. Dobing et al suggest “that more
extensive educational programs are needed, both to increase the number of
analysts familiar with UML and to provide ongoing support to help them
make fuller use of its capabilities” [45]. A recent literature research on em-
pirical evidence about the use of the UML by Budgen et al. produced a same
sort of advice with respect to the need of an adequate level of training in the
use of the UML [46].

This observation seems also to be in line with results of a research by
Cherubini et al. [47]. They did a survey at Microsoft about how and why
software developers use drawings. Their research revealed the fact that de-
velopers are using diagram drawings in the first place to discuss about design
issues. Afterwards those sketches are mostly thrown away. They serve mainly
a short term goal: to understand the problem and get more quickly towards a
reasonable solution. Most of the software developers are focused on produc-
ing code. So solutions are eventually captured by code and (unfortunately)
not by design based on diagrams supplemented with explaining text. It seems

15

SERG Vonken et al. – Software Engineering in the Netherlands: The State of the Practice

TUD-SERG-2012-022 15

Enterprise ArchitectVisual ParadigmRhapsodyRational RoseVisio

4,0

3,5

3,0

2,5

2,0

1,5

1,0

50

79

93

17

73

79

74

79

3157

31
39

57

74

Page 1

Figure 6: Which of the mentioned tools are used during design? (1 = not, 2
= somewhat, 3 = average, 4 = extensive)

that in the software industry the following adagium still reigns: “Code is the
king” [48].

Observation 8. Traceability between requirements and software design seems
important, but not to everyone.

The question “To what degree are the requirements coupled with the
design” is only answered by half of the respondents. Which leads us to believe
that either people are not aware of this traceability being implemented or
are not aware of the possible benefits of doing so. The other halve, who
did respond to the question, are relatively strict in applying this form of
traceability with a median score of 4 on a 5-point Likert scale (see Figure 7).
The large deviation in the answers on this question in combination with
absence of 50% of respondents leads us to the impression that the importance
of this form of traceability is underestimated by our respondents.

In this area, De Lucia et al. performed an experiment with their Infor-
mation Retrieval-based traceability recovery tool ADAMS [49]. One of their
findings was that the tool significantly reduces the time spent by the soft-
ware engineer to trace links between decisions in design and requirements.

16

Vonken et al. – Software Engineering in the Netherlands: The State of the Practice SERG

16 TUD-SERG-2012-022

Traceabililty between requirements and
design

5

4

3

2

1
33

47
54

96

Page 1

Figure 7: Coupling between requirements and design (1 = not at all, ..., 5 =
completely).

It especially helps software engineers who are more or less novices in this
field. They also came to another conclusion: the experiment demonstrates
that the use of a traceability recovery tool in general improves the tracing
accuracy of a software engineer, regardless of his ability.

Another reason why traceability is very important, is to do impact anal-
ysis, i.e., determining which parts of a software system are affected when
requirements change [50].

Observation 9. There exists a negative correlation between the use of class
diagrams on the one hand and getting finished on time or within budget on
the other hand.

We observed a rather peculiar negative correlation between certain UML
design activities with respect to the opinion about certain aspects of the
software development process. In particular, the use of a class diagram is
negatively correlated (-0.37) with delivering within time and also negatively
correlated (-0.34) with staying within the (financial) budget (see Table 6).
This is an indication that our respondents do not experience the positive
effect of the use of class diagrams on the project planning. We suppose
that practitioners experience a lot of pressure, to reach the deadline of the

17

SERG Vonken et al. – Software Engineering in the Netherlands: The State of the Practice

TUD-SERG-2012-022 17

project due to the requirement of creating class diagrams. This correlates
with observations from Budgen et al., who have stated that it is clear that
UML does not, in general, reach a sufficient cost-benefit ratio in the minds
of developers to warrant its use [46].

Finished on time Finished within budget

Correlation Coeff. -.371 -.338
Significance (2-tailed) .000 .001

Table 6: Kendall’s tau correlation between the design of a class diagram
versus deadlines and budget.

The observation about the potential contra-productive effects with the
use of class diagrams seems to be in contrast with the research of Nugroho
and Chaudron [51]. They conducted a survey based on 80 respondents who
are responsible for implementing UML models. This survey revealed a pos-
itive correlation between a strict use of UML-models (like a class diagram,
sequence diagram and package diagram) and the perceived productivity in
the implementation phase. In an earlier survey performed by Lange et al., a
result of interest was the fact that software designers do not feel sure enough
about UML descriptions because of four main problem classes [52]:

• Design choices are too much scattered over multiple views;

• Architects focus on what they think is important, there are no objective
criteria on which views really need a detailed elaboration;

• Some system parts that are perceived as being complex, are elaborated
with a disproportional detail;

• UML design products within one team are in some way inconsistent,
because of different styles and different understandings of the system.

Also worth mentioning is the fact that Budgen et al. give advice to
evaluate the UML, because a lot of its artifacts are too complex, not needed
or ill defined. They claim that the UML is nowadays too much an accepted
frozen status quo. Further scientific research is needed, with the ultimate
result that practitioners feel more comfortable when using a simplified and
more usable version of the UML [46].

18

Vonken et al. – Software Engineering in the Netherlands: The State of the Practice SERG

18 TUD-SERG-2012-022

6. Implementation

With the term “implementation” we refer to the software development
phase where the coding is done. During this phase developers concentrate
on specifications of individual components, translating these into executable
code based on the design from the design phase [37].

To get an idea of how software systems are realized, several questions
in our questionnaire revolve around which tools and techniques are applied
during software implementation. The extent of these questions goes from
what programming languages and IDE’s are used, what standards and ways
of working like pair programming, refactoring, etc. are in use, as well as
whether tools like version control and bug tracking are in place during the
implementation phase.

Observation 10. Application of coding standards is common practice and
is related to satisfaction with the development process.

Looking at the application of standards in software development we see
that coding standards are commonly used. More precisely, 80% of the re-
spondents report an average or extensive application of coding standards (see
Table 7). Additionally, the use of coding standards is significantly positively
related to satisfaction with the development process, but not statistically sig-
nificant to the satisfaction of the developers with the product being developed
(see Table 8).

In the same vein, Boogerd and Moonen [53] could not find a straightfor-
ward relation between the application of coding standards and the occurence
of software faults.

Coding standards Documenting standards GUI standards

not 4% 22% 23%
somewhat 15% 31% 29%
average 43% 33% 30%
extensive 37% 14% 18%

Table 7: Percentages of application of coding-, documenting- and GUI stan-
dards.

In contrast to the frequent use of coding standards, respondents answered
that documentation and GUI standards are used in respectively 47% and

19

SERG Vonken et al. – Software Engineering in the Netherlands: The State of the Practice

TUD-SERG-2012-022 19

48% of the respondents’ companies (see Table 7). Interestingly, we observe a
significant positive mutual relation between the application of each of these
standards. An explanation for this might be that the application of standards
in general can become a practice whithin a development team or company.

Application of Application of
coding standards GUI standards

Satisfaction with Correlation .139 .201
product quality Significance (2-tailed) .124 .023

Satisfaction with Correlation .208 .206
process quality Significance (2-tailed) .019 .017

Table 8: Kendall’s tau correlation between application of standards and prod-
uct / process satisfaction.

A similar significant positive mutual relation can be found between the
application of process support systems like version control, bug tracking and
issue management systems (see Table 9). For the latter this may not be sur-
prising because they are often integrated in one tool. Interesting is though
that the application of each of these process support systems is again signifi-
cantly positively related to the application of coding standards (see Table 10).

Application of Application of Application of
bug tracking issue management issue management

systems systems systems

Correlation .252 .225 .642
Significance (2-tailed) .005 .014 .000

Application of version Application of
control systems bug tracking

systems

Table 9: Kendall’s tau correlation between application of version control,
bug tracking and issue management systems.

The positive relation between the application of coding standards and
satisfaction with the development process (see Table 8) may be explained
by the fact that application of these standards implies that the development
process did get explicit attention. The relation between the application of

20

Vonken et al. – Software Engineering in the Netherlands: The State of the Practice SERG

20 TUD-SERG-2012-022

Application of
coding standards

Application of version Correlation .317
control systems Significance (2-tailed) .001

Application of bug Correlation .238
tracking systems Significance (2-tailed) .007

Application of issue Correlation .218
management systems Significance (2-tailed) .015

Table 10: Kendall’s tau correlation between application of version control,
bug tracking and issue management systems on the one hand and coding
standards on the other.

coding standards and the other standards and process support systems men-
tioned above may suggest that the application of coding standards could be
a good starting point in professionalising the process of software realisation.
In a similar context, Paulk describes that the application of coding stan-
dards is one of the XP practices leading to a level 3 process maturity in the
Capability Maturity Model (CMM) [54].

A final remark we want to make, related to the above, concerns the very
common use of version control systems. These systems were reported to be
used in an average or extensive way by 88% of the respondents. On the other
hand we did not find any relation between the use of version control systems
and the reported opinions about product or process quality.

Observation 11. The application of pair programming correlates with the
application of refactoring and unit testing.

Observation 12. The application of refactoring and unit testing do not cor-
relate.

As pair programming, refactoring and unit testing are all mentioned as
extreme programming practices [55], we were not surprised to find that the
application of pair programming correlates positively to the application of
refactoring and unit testing (see Table 11). In contrast, considering the role
of unit testing as a safeguard during refactoring, it is surprising to find that
the application of these two practices turns out to be unrelated.

21

SERG Vonken et al. – Software Engineering in the Netherlands: The State of the Practice

TUD-SERG-2012-022 21

Application of Application of
refactoring unit testing

Application of Correlation .390 .265
pair programming Significance (2-tailed) .000 .003

Application of Correlation .125
refactoring Significance (2-tailed) .150

Application of Correlation .125
unit testing Significance (2-tailed) .150

Table 11: Kendall’s tau correlation between application of Pair programming,
Refactoring and Unit testing.

A possible explanation can be found in the fact that the original refac-
toring guidelines from Fowler [56] do not include guidelines for adapting unit
tests. Additionally, van Deursen and Moonen established that in many cases
refactoring the production code will entail a necessary refactoring of the test
code as well, e.g., due to changes to interfaces [57].

A similar insight comes from the field study that Kim et al. [58] performed
at Microsoft: “developers need a better validation tool that checks correctness
of refactoring, not a better refactoring tool”. Furthermore, developers ac-
knowledge that “the primary risk is regression, mostly from misunderstand-
ing subtle corner cases in the original code and not accounting for them in
the refactored code”. Yet another problem signalled by Kim et al. is the
possible lack of sufficient unit tests, which according to the developers that
they interviewed, would inhibit them to start refactoring.

Building upon that explanation, the fact that the application of refac-
toring and unit testing are unrelated may also explain why we did not find
any relation between the application of refactoring and satisfaction with the
quality of the product (see Table 12). When refactoring is performed with-
out adaptation of test code the refactoring may possibly introduce unnoticed
errors.

Our findings seem to be consistent with findings from Mohammad, who
found no clear positive relation between refactoring and software quality
in terms of adaptability, maintainability, understandability, reusability and
testability [59].

For refactoring to have a clearer effect on product quality, a possible im-
provement may be extending the refactoring guidelines as proposed by Basit

22

Vonken et al. – Software Engineering in the Netherlands: The State of the Practice SERG

22 TUD-SERG-2012-022

Application of
Refactoring

Satisfaction with Correlation .069
Product quality Significance (2-tailed) .439

Table 12: Kendall’s tau correlation between application of refactoring and
satisfaction with the product quality.

et al. [60], such that all entities effected by the refactoring, including the unit
tests, are covered in the description of how to perform the refactoring. An
even further improvement may be the introduction of tools that help to es-
tablish traceability links between production code and test code as proposed
by Hurdugaci and Zaidman [61] and Qusef et al. [62].

Observation 13. Pair programming has a significant positive correlation
with satisfaction with the quality of the development process.

This satisfaction exists irrespective of the development process leading to
more timely delivery. The application of pair programming was unrelated to
the extent to which the original planning was met (see Table 13).

Application of
Pair programming

Satisfaction with quality Correlation .201
of the development process Significance (2-tailed) .024

Degree to which Correlation .053
planning was met Significance (2-tailed) .559

Satisfaction with quality Correlation .082
of the realised product Significance (2-tailed) .367

Table 13: Kendall’s tau correlation between application of pair programming
and satisfaction with the development process and the degree to which the
planning was met.

Satisfaction with the development process seems to be typically based
on personal experiences of the developer. This is for instance confirmed by
studies from Williams et al. [63] who found that pair programmers are more
satisfied with their job, are more confident about the result and admit to

23

SERG Vonken et al. – Software Engineering in the Netherlands: The State of the Practice

TUD-SERG-2012-022 23

work harder and smarter. Bipp et al. [64] observed that pair programmers
rated their pair programming partners as helpful and motivating. Several
other results in this direction can be found in the review study by Dyb̊a and
Dingsøyr [15].

Observation 14. Despite more satisfaction with the development process
there is no positive relation between the application of pair programming and
perceived client satisfaction or product satisfaction.

The data in Table 13 support our Observation 14. Strangely enough, this
observation conflicts with the ambition of pair programming to improve soft-
ware quality [55]. An ambition that is reported to be reached by researchers
like Williams et al. [63] and Begel et al. [65]

On the other hand, other researchers like Bipp et al. [64], Arisholm et
al. [66] and Hannay et al. [67] did not find a simple straightforward positive
effect of pair programming on software quality.

These contradicting results may be explained by variability in the tasks
of the development process which are done in pairs, by characteristics of the
products being developed and by characteristics of the developers themselves.

Observation 15. Quality monitoring and related process adaptation are more
often applied according to project- and teamleaders than according to devel-
opers.

Observation 16. According to the project- and teamleaders the degree of
quality monitoring and related process adaptation has a significant positive
correlation to satisfaction with the development process.

Observation 17. According to developers the degree of quality monitoring
and related process adaptation has a significant positive correlation to satis-
faction with the product developed and with client satisfaction.

The observation that quality monitoring and related process adaptation
are more often performed according to project- and teamleaders than ac-
cording to developers may be explained by the different roles they play in
the development process. As project- and teamleaders have the development
process as their core responsibility they may be more sensible to activities
related to the development process (see Figure 8).

24

Vonken et al. – Software Engineering in the Netherlands: The State of the Practice SERG

24 TUD-SERG-2012-022

Role

TeamleaderDeveloper

Q
u

al
it

yc
h

ec
k

4,0

3,5

3,0

2,5

2,0

1,5

1,0
54

Page 1

Figure 8: Application of quality monitoring and process adaptation according
to developers and teamleaders/projectleaders (1 = not, 2 = somewhat, 3 =
average, 4 = extensive).

The same explanation may hold for the case where there is a statistically
significant positive correlation between applying quality monitoring on the
one hand and satisfaction with the development process on the other hand.
This relation may simply be noticed more by the individuals that are more
involved with or responsible for the development process (see Table 14).

Degree of Degree of quality
quality monitoring monitoring by

by developer project/teamleaders

Satisfaction with the Correlation .266 .159
quality of the Significance (2-tailed) .021 .280
realised product

Satisfaction with the Correlation .170 .328
development process Significance (2-tailed) .133 .026

Satisfaction of Correlation .250 .235
the client Significance (2-tailed) .034 .111

Table 14: Kendall’s tau correlation between degree of quality monitoring and
satisfaction with the developed product, the development proces and client
satisfaction for developers and project- teamleaders.

25

SERG Vonken et al. – Software Engineering in the Netherlands: The State of the Practice

TUD-SERG-2012-022 25

The fact that we found a significant positive relation for developers be-
tween quality monitoring and satisfaction with the product developed, as
well as with client satisfaction, corresponds to findings from the realm of
Test-Driven Development (TDD). In particular, Crispin reports that client
satisfaction increased, when using test-driven development, partly because
of a lower defect rate that she attributed to TDD [68]. Another factor that
Crispin raises is that amongst others TDD allowed the company under study
to implement features that competing companies thought were too complex
to automate. It must be said though, that TDD is just one factor, and other
factors that were used during development might also have played a role here.

We were surprised to observe that according to project- and teamleaders
no significant positive relation was found between quality monitoring on the
one hand and satisfaction with the product developed and client satisfaction
on the other hand. This phenomenon may be explained by the fact that such
a positive effect, if it exists, may not be prominent and recognisable enough
for project- and teamleaders to be noticed.

7. Testing

Studies estimate that software testing can consume fifty percent, or even
more, of the total development costs [69, 70, 71]. Because of these high costs,
and due to the pressure of tight deadlines [71], software testing is sometimes
neglected, resulting in a situation where software potentially affects the lives
of millions of people, yet at the same time is vulnerable to defects. In this
context, Zaidman et al. have shown that sometimes production code and
test code do not evolve together [72].

Garousi and Varma have nevertheless established that between 2004 and
2009 the attention given to (automated) testing in industry has increased [73].
Therefore, understanding the costs, but also the potential benefits of software
testing, we therefore wonder what the current state-of-the practice is.

Observation 18. Team members are more satisfied with the quality of the
software development process when the V model is used.

From Figure 9 we learn that the V model is only averagely used, with a
median score of 3. Yet, at the same time, statistically we observe a positive
significant correlation with the satisfaction of team members of the quality
of the software development process. See Table 15 for details.

26

Vonken et al. – Software Engineering in the Netherlands: The State of the Practice SERG

26 TUD-SERG-2012-022

V model

5

4

3

2

1

Page 1

Figure 9: Degree to which the V
model is applied (1 = not at all,
..., 5 = completely).

Usage of
the V model

Satisfaction Correlation .191
with the Significance

0.025
development (2-tailed)
process

Table 15: Kendall’s tau correlation between
usage of the V model and satisfaction with
the development process.

This observation can be explained through the fact that the V model is a
valuable guideline for software developers and software testers to understand
how and when to test [74]. This corresponds with the observation from Pol et
al. who claim that “There is a real hunger in the software testing world for a
more structured approach for testing. Testing professionals find satisfaction
in knowing that they have done a good job. But how can you do a good job
if you don’t know what to do?” [75].

Observation 19. System and acceptance tests are typically coupled to re-
quirements.

Figure 10 shows that with a median score of 4, most respondents indicate
that system and acceptance tests are coupled to requirements. As defined
in the IEEE Standard 1012-1986 [76], acceptance testing is a “formal test-
ing conducted to determine whether or not a system satisfies its acceptance
criteria and to enable the customer to determine whether or not to accept
the system”. By definition, it seems logical to couple the acceptance tests
to the requirements that they check. This is also confirmed by Uusitalo et
al. who carried out a series of practitioner interviews at five Finnish or-
ganizations and established that organizations are increasingly interested in
binding requirements and testing more closely together [77].

27

SERG Vonken et al. – Software Engineering in the Netherlands: The State of the Practice

TUD-SERG-2012-022 27

Degree to which requirements and tests are coupled

5

4

3

2

1

Page 1

Figure 10: Degree to which requirements are coupled to system and accep-
tance tests (1 = not at all, ..., 5 = completely).

28

Vonken et al. – Software Engineering in the Netherlands: The State of the Practice SERG

28 TUD-SERG-2012-022

However, Young reports that 85% of defects are estimated to originate
from inadequate requirements [78]. In this respect, recent research has fo-
cused on making it easier to define acceptance tests. One of the efforts in
this area is Fit (Framework for Integrated Test), an an open source frame-
work used to express acceptance test cases and a tool for improving the
communication between analysts and developers [36]. In 2007 then, Ricca
et al. performed a controlled experiment that showed that acceptance tests
defined using the Fit framework can help in clarifying requirements [79].

Observation 20. Test-driven development is not frequently used and it seems
to have an adverse effect on implementing all requirements within time.

Test-Driven Development

5

4

3

2

1

Page 1

Figure 11: Degree to which
Test-Driven Development is ap-
plied (1 = not at all, ..., 5 =
completely).

Application of
the V model

Reaching all Correlation -.186
requirements Significance

.032
(2-tailed)

Table 16: Kendall’s tau correlation between
application of Test-Driven Development and
fullfilling all requirements.

Figure 11 shows that although there is quite some variation in the appli-
cation of Test-Driven Development, as evidenced by the spread in answers on
the 5-point Likert scale, the median value remains at 2, indicating that Test-
Driven Development is not frequently used amongst our respondents. Fur-
thermore, we also observed a slight negative correlation between delivering all

29

SERG Vonken et al. – Software Engineering in the Netherlands: The State of the Practice

TUD-SERG-2012-022 29

requirements and applying Test-Driven Development, indicating that Test-
Driven Development might actually slow down development speed, maybe at
the cost of increased quality.

In a study at IBM, Maximilien and Williams observed that the extra
effort to implement TDD is marginal, contradicting our observation [80].

Similarly, Erdogmus et al. performed a controlled experiment in which
they observed that on average the student participants appeared to be more
productive when applying a test-first strategy [81]. One of the underlying
reasons for this phenomenon that Erdogmus et al. identified is that fact that
requirements are better understood when first writing tests.

Contrasting the previous two studies is a study that George and Williams
performed with 24 professional pair programmers. One group developed
a small Java program using TDD, while the other (control) group used a
waterfall-like approach [82]. Their observations are that TDD programmers
produce higher quality code because they passed 18% more functional black-
box test cases. However, the TDD programmers took 16% more time. This
is in sharp contrast with the previous two studies and this result is more in
line with the results of our survey.

Observation 21. A lot of focus is put on the quality of requirements, in
particular:

• 60% of the respondents check the requirements for completeness

• 56% of the respondents check the requirements for unambiguity

• 54% of the respondents check the requirements for consistency

• 32% of the respondents check the requirements for adherence to legisla-
tion

Observation 22. Focussing on the quality of the requirements seems to have
positive effects on the satisfaction of the customer, the satisfaction of devel-
opers towards the development process and the product and the successful
completion of the project within time.

As Table 17 shows there is a significant positive correlation between check-
ing the requirements and customer satisfaction, product satisfaction, satis-
faction with the development process and reaching the requirements.

30

Vonken et al. – Software Engineering in the Netherlands: The State of the Practice SERG

30 TUD-SERG-2012-022

Checking require-
ments against
ambiguity

Checking require-
ments against
consistency

Checking require-
ments against
completeness

Satisfaction
of customer

Correlation .180 .263 .259
Significance .049 .003 .004

Satisfaction
with product

Correlation .181 .259 .246
Significance .045 .003 .006

Satisfaction
with process

Correlation .302 .257 .182
Significance .001 .003 .039

Requirements
reached

Correlation .234 .312 .324
Significance .009 .000 .000

Table 17: Correlations of checking the requirements

A possible explanation of why requirements are important for both cus-
tomers and members of the development team can be sought with Bjarnason
et al.; they established that communication is essential for software develop-
ment [83]. In particular, they argue that efficient communication is a key fac-
tor in developing and releasing successful software products. Requirements
are the single most important vehicle for enabling communication during
development. Through a semi-structured interview with nine practitioners
they found that communication gaps lead to failure to meet the customers’
expectations and quality issues. Furthermore, it was also observed by Nu-
seibeh and Easterbrook that validating the requirements, i.e., the process of
establishing that the requirements and models elicited provide an accurate
account of stakeholder requirements, is very important [84].

Comparing these observations with the results of our survey, we can ob-
serve significant correlations:

• Checking for requirements ambiguity correlates with customer
satisfaction, satisfaction of the developers with both the process and
the product and the successful implementation of all requirements.

• Checking for requirements consistency correlates with customer
satisfaction, satisfaction of the developers with both the process and
the product and the successful implementation of all requirements.

• Checking for requirements completeness correlates with customer
satisfaction, satisfaction of the developers with both the process and the

31

SERG Vonken et al. – Software Engineering in the Netherlands: The State of the Practice

TUD-SERG-2012-022 31

product and the successful implementation of all requirements (both
within time and within budget).

Looking at our results (see Table 17), we can say that validating the re-
quirements seems to pay out clearly with a heightened user satisfaction. This
is in line with observations from Hofmann and Lehner [85], who state that re-
quirements engineering is a critical success factor in software projects. Within
the requirements engineering process, validating the requirements, i.e., cer-
tifying that requirements meet the stakeholders’ intentions, is deemed very
important. This contrasts an observation that Hofman and Lehner made dur-
ing a field study: requirement engineering teams focus significantly more on
eliciting and modelling requirements than on validating and verifying them.
Hofman and Lehner also note that more than half of the projects perform peer
reviews or walk-throughs as a means to verify or validate requirements [85].

Concerning the observation that 32% of the respondents of our survey
check the requirements against the legislation, we refer to the survey per-
formed by Otto and Antoón [86]. Their survey confirms that regulations and
legislation are playing an increasingly important role in requirements engi-
neering and system development. Given the criticalness of more and more
software systems, we can only estimate that legislation will become ever more
important in requirements engineering in the future.

8. Discussion & Research Agenda

8.1. Discussion

With this survey we aimed to get an initial insight into the current state
of the practice of software developing organizations in the Netherlands. In
total, we had 99 respondents for our survey that tried to cover all phases of
the software development lifecycle, going from requirements engineering to
quality assurance. Both the survey and the (anonymized) answers can be
found online5.

We analyzed the data that we thus obtained and from our analysis we
distilled 22 observations. These observations mark insights into the devel-
opment process that we found “unusual”, or surprising, at least from an
academic point of view. This unusualness could either stem from certain

5http://swerl.tudelft.nl/bin/view/Main/SurveyDutchSoftwareIndustry

32

Vonken et al. – Software Engineering in the Netherlands: The State of the Practice SERG

32 TUD-SERG-2012-022

principles being applied less or more frequently than one would expect, or
from unexpected correlations that were observed between factors.

Each of these 22 observations in themselves warrant further research,
but a number of observations – or combinations of observations – seem to
touch important topics that would, ideally, require immediate attention. We
list these in Section 8.3, in which we present our research agenda. Before
presenting our research agenda, we first discuss possible threats to the validity
of our study in Section 8.2.

8.2. Threats to Validity

Internal validity. While we have tried to formulate our questions as neutral
as possible, the topic of a question, e.g., “To what extent do you perform
unit testing”, might have inclined respondents to answer more positively,
resulting in leading question bias. We tried to avoid this by specifically
asking the respondents to answer truthfully and formulate an answer for the
latest project they have been working on.

Construct validity. An important threat in this department is that the factor
“satisfaction of the client”, as used in Observation 5 is not measured directly,
i.e., by asking the client, but indirectly, i.e., by asking the software developer
or team leader. There might be a difference in perception between both
stakeholders. We have no immediate strategy to mitigate this issue, as the
survey research approach that we took did not allow us to raise this question
with the client. We regard gauging the level of satisfaction of software project
results and subsequently comparing these gauges as an interesting avenue of
future research.

External validity. Generalizability of our observations is hard to claim, as
our population of respondents was restricted to the Dutch software engineer-
ing industry. However, through an open call (see Section 2.2 for details),
we managed to gather 99 respondents, working for at least 40 different or-
ganizations (some respondents chose not to fill in their current employer).
We have no way of claiming that the Dutch software engineering industry
itself is representative for how software is produced in general. A mitigating
factor is certainly the high quality education available for IT specialists in
the Netherlands, but confounding factors remain, e.g., cultural aspects that
could explain why certain technologies get adopted more quickly or more
slowly.

33

SERG Vonken et al. – Software Engineering in the Netherlands: The State of the Practice

TUD-SERG-2012-022 33

8.3. Research Agenda

We now present our research agenda that we have distilled from analyzing
and interpreting the results of our survey of the Dutch software industry.
While we are by no means saying that these are the only issues that should
be addressed, we do think that these issues are relevant for practitioners and
could have immediate effect.

We do want to make two notes before we present our research agenda.
Firstly, please be aware that not each of these points on the research agenda
is about performing additional research. In some cases, we, as academia,
should also make sure that existing insights are transferred in a better way
to our students, the software engineers of tomorrow. As such, our students
should be better aware of some of the benefits from the proposed approaches
or become more fluent in some of the latest advances. Secondly, the research
agenda proposed below is not only about design research, it is also about
performing strong empirical research, in which academia tries to get insight
into why and how certain proposed methods improve for example efficiency.
Along the way, this empirical research can also help to convince managers of
the benefits (or drawbacks) of some approaches.

A.1: Investigating better tool-support for requirements engineer-
ing and traceability from requirements When we combine the insights
that we obtained from Observation 8, “Traceability between requirements
and software design seems important, but not to everyone”, and Observa-
tion 6, “requirements are mainly specified in plain text, using word proces-
sors”, we started wondering whether better tool support for requirements en-
gineering would actually drive software engineering teams away from purely
textual requirements specifications. Additionally, these tools should, to our
opinion, also contain facilities to improve traceability from requirements to
other artifacts, because this would greatly help other software engineering
activities. A prime example here being impact analysis, or determining what
the impact of a change request on a particular feature would be. In their
work, Cheng and Atlee also made notice of the fact that “if the transition be-
tween requirements engineering tasks and other development tasks were more
seamless, management would view requirements engineering efforts more pos-
itively, because the resulting requirements knowledge and artifacts would
make more concrete progress towards achieving downstream milestones” [26].

A.2: Methods for validating and verifying requirements Supported
by Observation 22 which indicates that focussing on the quality of the require-

34

Vonken et al. – Software Engineering in the Netherlands: The State of the Practice SERG

34 TUD-SERG-2012-022

ments seems to have positive effects on he satisfaction of the customer, the
satisfaction of developers towards the development process and the product
and the successful completion of the project within time, we started inves-
tigating whether there are methods for attaining high-quality requirements.
As Hofmann and Lehner point out, methods for validating and verifying re-
quirements are relatively scarce [85]. The main approaches for validating
and verifying requirements are peer reviews, inspections, walk-throughs, and
scenarios, but to the best of our knowledge, there are no structured methods.
Additionally, as also pointed out by Hofmann and Lehner, it would be use-
ful to not only record decisions with regard to requirements, but also their
rationales, as this would become useful during validation.

A.3: The value of refactoring Connected to Observation 12, in which we
observed that the application of refactoring and unit testing do not correlate,
we are interested in knowing what the value of refactoring is. More precisely,
how does it improve the code and what is the ultimate return on investment
(ROI) of performing a refactoring. From their field study at Microsoft Kim
et al. note: “The value of refactoring is difficult to measure. How do you
measure the value of a bug that never existed, or the time saved on a later
undetermined feature? How does this value bubble up to management? Be-
cause there is no way to place immediate value on the practice of refactoring,
it makes it difficult to justify to management.

A.4: The value of unit tests during refactoring Related to our previous
item on our research agenda and given the focus that refactoring literature
puts on the value of having unit tests available during refactoring, we also
think it is worthwhile to investigate what unit tests bring into the refactoring
process. Questions that deserve attention in future research are whether unit
tests serve as documentation during refactoring, whether unit tests prevent
regressions and what extra cost there is to maintaining unit tests during
refactoring.

A.5: Measuring stakeholder satisfaction We already noted before that
we suspect that stakeholder satisfaction is quite different when measured
at the client side or at the software engineering side. As such, in order to
better understand both parties it would be a worthwhile exercise to determine
the main commonalities and divergences in the satisfaction of each of the
stakeholders in a software project. Having such knowledge would certainly
serve the software engineering community with a better sense of how client

35

SERG Vonken et al. – Software Engineering in the Netherlands: The State of the Practice

TUD-SERG-2012-022 35

satisfaction can be improved.

A.6: Evidence on Test-Driven Development In Observation 20 we es-
tablished that test-driven development is not frequently used and it seems to
have an adverse effect on implementing all requirements within time. While
we can understand that test-driven development involves extra steps during
the development process, there have been suggestions that test-driven devel-
opment improves the structure of the software [87], thereby reducing the need
to refactor later on, i.e., reducing the technical debt. In this context, it would
indeed be interesting to see how test-driven development might actually have
an initial cost, which is paid back later on.

Acknowledgements

This work was funded by the RAAK-PRO project EQuA (Early Quality
Assurance in Software Production) of the Foundation Innovation Alliance,
the Netherlands. Our gratitude goes out to all participants of our survey.

References

[1] P. Naur, B. Randell, Software Engineering: Report of a conference
sponsored by the NATO Science Committee, Scientific Affairs Division,
NATO, Brussels, 1969.

[2] M. Zelkowitz, R. Yeh, R. Hamlet, J. Gannon, V. Basili, Software engi-
neering practices in the US and Japan, Computer 17 (6) (1984) 57–66.

[3] J. Ludewig, Software engineering in the years 2000 minus and plus ten,
in: R. Wilhelm (Ed.), Informatics, Vol. 2000 of Lecture Notes in Com-
puter Science, Springer Berlin / Heidelberg, 2001, pp. 102–111.

[4] D. Reifer, Is the software engineering state of the practice getting closer
to the of the art?, IEEE Software 20 (6) (2003) 78–83.

[5] L. J. Osterweil, A future for software engineering?, in: Future of Soft-
ware Engineering (FOSE), IEEE Computer Society, 2007, pp. 1–11.

[6] K. Beckman, N. Coulter, S. Khajenoori, N. Mead, Collaborations: clos-
ing the industry-academia gap, IEEE Software 14 (6) (1997) 49–57.

36

Vonken et al. – Software Engineering in the Netherlands: The State of the Practice SERG

36 TUD-SERG-2012-022

[7] T. C. Lethbridge, J. Diaz-Herrera, R. J. J. LeBlanc, J. B. Thompson,
Improving software practice through education: Challenges and future
trends, in: Future of Software Engineering (FOSE), IEEE Computer
Society, 2007, pp. 12–28.

[8] D. Rombach, R. Achatz, Research collaborations between academia and
industry, in: Future of Software Engineering (FOSE), IEEE Computer
Society, 2007, pp. 29–36.

[9] E. Towell, B. Thompson, A further exploration of teaching ethics in the
software engineering curriculum, in: Proceedings of the 17th Confer-
ence on Software Engineering Education and Training (CSEET), IEEE
Computer Society, 2004, pp. 39–44.

[10] E. Babbie, The practice of social research, Wadsworth Belmont, 2007,
11th edition.

[11] S. Easterbrook, J. Singer, M.-A. Storey, D. Damian, Selecting empiri-
cal methods for software engineering research, in: F. Shull, J. Singer,
D. I. K. Sjøberg (Eds.), Guide to Advanced Empirical Software Engi-
neering, Springer London, 2008, pp. 285–311.

[12] B. A. Kitchenham, S. L. Pfleeger, Personal opinion surveys, in: F. Shull,
J. Singer, D. I. K. Sjøberg (Eds.), Guide to Advanced Empirical Software
Engineering, Springer London, 2008, pp. 63–92.

[13] T. Mens, Introduction and roadmap: History and challenges of software
evolution, in: T. Mens, S. Demeyer (Eds.), Software Evolution, Springer,
2008, pp. 1–11.

[14] M. Sliger, Bridging the gap: Agile projects in the waterfall enterprise,
Better Software (2006) 26–31.

[15] T. Dyb̊a, T. Dingsøyr, Empirical studies of agile software development:
A systematic review, Information and Software Technology 50 (9-10)
(2008) 833–859.

[16] C. Hansson, Y. Dittrich, B. Gustafsson, S. Zarnak, How agile are indus-
trial software development practices?, Journal of Systems and Software
79 (9) (2006) 1295–1311.

37

SERG Vonken et al. – Software Engineering in the Netherlands: The State of the Practice

TUD-SERG-2012-022 37

[17] K. Petersen, C. Wohlin, A comparison of issues and advantages in agile
and incremental development between state of the art and an industrial
case, Journal of Systems and Software 82 (9) (2009) 1479–1490.

[18] K. Petersen, C. Wohlin, D. Baca, The waterfall model in large-scale de-
velopment, in: Proceedings of the International Conference on Product-
Focused Software Process Improvement (PROFES), Vol. 32 of Lecture
Notes in Business Information Processing, Springer Verlag, 2009, pp.
386–400.

[19] L. Layman, L. Williams, L. Cunningham, Exploring extreme program-
ming in context: An industrial case study, in: Proceedings of the Agile
Development Conference, IEEE Computer Society, 2004, pp. 32–41.

[20] P. A. Laplante, C. J. Neill, The demise of the waterfall model is imminent
and other urban myths, ACM Queue 1 (10) (2004) 10–15.

[21] B. Boehm, Get ready for agile methods, with care, IEEE Computer
(2002) 64–69.

[22] A. Cockburn, J. Highsmith, Agile software development: The people
factor, Computer 34 (11) (2001) 131–133.

[23] G. Melnik, F. Maurer, Comparative analysis of job satisfaction in agile
and non-agile software development teams, in: Proceedings of the Inter-
national Conference on Extreme Programming and Agile Processes in
Software Engineering (XP), Vol. 4044 of LNCS, Springer Verlag, 2006,
pp. 32–42.

[24] O. Murru, R. Deias, G. Mugheddue, Assessing xp at a european internet
company, IEEE Software 20 (3) (2003) 37–43.

[25] B. Nuseibeh, S. M. Easterbrook, Requirements engineering: a roadmap,
in: Proceedings of the International Conference on on Software Engi-
neering (ICSE) — Future of SE Track, ACM, 2000, pp. 35–46.

[26] B. H. C. Cheng, J. M. Atlee, Research directions in requirements en-
gineering, in: Proceedings of the International Conference on Software
Engineering (ICSE) — Workshop on the Future of Software Engineering
(FOSE), IEEE Computer Society, 2007, pp. 285–303.

38

Vonken et al. – Software Engineering in the Netherlands: The State of the Practice SERG

38 TUD-SERG-2012-022

[27] A. van Lamsweerde, Requirements engineering in the year 00: a research
perspective, in: Proceedings of the international conference on Software
engineering (ICSE), ACM, 2000, pp. 5–19.

[28] T. Bell, T. Thayer, Software requirements: Are they really a problem?,
in: Proceedings of the International Conference on Software Engineering
(ICSE), IEEE Computer Society, 1976, pp. 61–68.

[29] K. Holtzblatt, H. R. Beyer, Requirements gathering: the human factor,
Commun. ACM 38 (5) (1995) 31–32.

[30] F. Paetsch, A. Eberlein, F. Maurer, Requirements engineering and agile
software development, in: International Workshops on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises (WETICE), IEEE
Computer Society, 2003, pp. 308–313.

[31] L. Cao, B. Ramesh, Agile requirements engineering practices: An em-
pirical study, IEEE Software 25 (1) (2008) 60–67.

[32] A. De Lucia, A. Qusef, Requirements engineering in agile software de-
velopment, Journal of Emerging Technologies in Web Intelligence 2 (3)
(2010) 212–220.

[33] A. Eberlein, J. C. S. do Prado Leite, Agile requirements definition:
A view from requirements engineering, in: Proceedings of the In-
ternational Workshop on TimeConstrained Requirements Engineering
(TCRE), 2002.

[34] A. Sillitti, M. Ceschi, B. Russo, G. Succi, Managing uncertainty in re-
quirements: a survey in documentation-driven and agile companies, in:
11th IEEE International Symposium on Software Metrics, IEEE Com-
puter Society, 2005, p. 17.

[35] A. von Knethen, Change-oriented requirements traceability. support for
evolution of embedded systems, in: Proceedings of the International
Conference on Software Maintenance (ICSM), IEEE Computer Society,
2002, pp. 482–485.

[36] R. Mugridge, W. Cunningham, Fit for Developing Software: Framework
for Integrated Tests, Prentice Hall, 2005.

39

SERG Vonken et al. – Software Engineering in the Netherlands: The State of the Practice

TUD-SERG-2012-022 39

[37] H. van Vliet, Software Engineering: Principles and Practice, 3rd Edition,
Springer, 2008.

[38] G. Booch, Object-Oriented Analysis and Design with Applications,
Addison-Wesley, 2011.

[39] D. E. Perry, A. L. Wolf, Foundations for the study of software architec-
ture, SIGSOFT Softw. Eng. Notes 17 (4) (1992) 40–52.

[40] F.P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley, 1972.

[41] C. Hofmeister, R. Nord, D. Soni, Applied Software Architecture,
Addison-Wesley, 1999.

[42] M. Shaw, D. Garlan, Software architecture: perspectives on an emerging
discipline, Prentice Hall, 1996.

[43] S. Lauesen, User Interface Design, a Software Engineering Perspective,
Addison Wesley, 2005.

[44] H. H. Smith, On tool selection for illustrating the use of UML in system
development, Journal of Computing Sciences in Colleges 19 (5) (2004)
53–63.

[45] B. Dobing, J. Parsons, How UML is used, Communications of the ACM
49 (5) (2006) 109–113.

[46] D. Budgen, A. J. Burn, O. P. Brereton, B. A. Kitchenham, R. Preto-
rius, Empirical evidence about the UML: a systematic literature review,
Software: Practice and Experience 41 (4) (2011) 363–392.

[47] M. Cherubini, G. Venolia, R. DeLine, A. J. Ko, Let’s go to the white-
board: how and why software developers use drawings, in: Proceed-
ings of the SIGCHI conference on Human factors in computing systems
(CHI), ACM, 2007, pp. 557–566.

[48] T. D. LaToza, G. Venolia, R. DeLine, Maintaining mental models: a
study of developer work habits, in: Proceedings of the International
Conference on Software Engineering (ICSE), ACM, 2006, pp. 492–501.

40

Vonken et al. – Software Engineering in the Netherlands: The State of the Practice SERG

40 TUD-SERG-2012-022

[49] A. de Lucia, R. Oliveto, G. Tortora, Assessing IR-based traceability
recovery tools through controlled experiments, Empirical Sotware Engi-
neering 14 (1) (2009) 57–92.

[50] M. Lindvall, K. Sandahl, Traceability aspects of impact analysis in
object-oriented systems, Journal of Software Maintenance: Research and
Practice 10 (1) (1998) 37–57.

[51] A. Nugroho, M. R. Chaudron, A survey into the rigor of UML use
and its perceived impact on quality and productivity, in: Proceedings
of the international symposium on Empirical software engineering and
measurement (ESEM), ACM, 2008, pp. 90–99.

[52] C. Lange, M. Chaudron, J. Muskens, In practice: UML software archi-
tecture and deign description, IEEE Software 23 (2006) 40–46.

[53] C. Boogerd, L. Moonen, Evaluating the relation between coding stan-
dard violations and faultswithin and across software versions, in: Pro-
ceedings of the Working Conference on Mining Software Repositories
(MSR), IEEE Computer Society, 2009, pp. 41–50.

[54] M. Paulk, Extreme programming from a CMM perspective, IEEE Soft-
ware 18 (6) (2001) 19 –26.

[55] K. Beck, Extreme programming explained: embrace change, Addison-
Wesley Professional, 2000.

[56] M. Fowler, Refactoring: Improving the Design of Existing Code,
Addison-Wesley, Boston, MA, USA, 1999.

[57] A. Van Deursen, L. Moonen, The video store revisited–thoughts on
refactoring and testing, in: Proc. 3rd Intl Conf. eXtreme Programming
and Flexible Processes in Software Engineering, 2002, pp. 71–76.

[58] M. Kim, T. Zimmermann, N. Nagappan, A field study of refactoring
challenges and benefits, in: Proceedings of the International Symposium
on Foundations of Software Engineering (FSE), ACM, 2012, to appear.

[59] A. Mohammad, Empirical investigation of refactoring effect on software
quality, Information and Software Technology 51 (9) (2009) 1319–1326.

41

SERG Vonken et al. – Software Engineering in the Netherlands: The State of the Practice

TUD-SERG-2012-022 41

[60] W. Basit, F. Lodhi, U. Bhatti, Extending refactoring guidelines to per-
form client and test code adaptation, in: A. Sillitti, A. Martin, X. Wang,
E. Whitworth, W. Aalst, J. Mylopoulos, M. Rosemann, M. J. Shaw,
C. Szyperski (Eds.), Agile Processes in Software Engineering and Ex-
treme Programming, Vol. 48 of Lecture Notes in Business Information
Processing, Springer Berlin Heidelberg, 2010, pp. 1–13.

[61] V. Hurdugaci, A. Zaidman, Aiding developers to maintain developer
tests, in: Proceedings of the European Conference on Software Mainte-
nance and Reengineering (CSMR), IEEE Computer Society, 2012, pp.
11–20.

[62] A. Qusef, R. Oliveto, A. D. Lucia, Recovering traceability links between
unit tests and classes under test: An improved method, in: Proceedings
of the International Conference on Software Maintenance (ICSM), IEEE
Computer Society, 2010, pp. 1–10.

[63] L. Williams, R. Kessler, W. Cunningham, R. Jeffries, Strengthening the
case for pair programming, IEEE Software 17 (4) (2000) 19–25.

[64] T. Bipp, A. Lepper, D. Schmedding, Pair programming in software de-
velopment teams — an empirical study of its benefits, Information and
Software Technology 50 (3) (2008) 231–240.

[65] A. Begel, N. Nagappan, Pair programming: what’s in it for me?, in:
Proceedings of the international symposium on Empirical Software En-
gineering and Measurement (ESEM), ACM, 2008, pp. 120–128.

[66] E. Arisholm, H. Gallis, T. Dyb̊a, D. I. K. Sjøberg, Evaluating pair pro-
gramming with respect to system complexity and programmer expertise,
IEEE Transactions on Software Engineering 33 (2) (2007) 65 –86.

[67] J. E. Hannay, T. Dyb̊a, E. Arisholm, D. I. K. Sjøberg, The effective-
ness of pair programming: A meta-analysis, Information & Software
Technology 51 (7) (2009) 1110–1122.

[68] L. Crispin, Driving software quality: How test-driven development im-
pacts software quality, IEEE Software 23 (6) (2006) 70–71.

42

Vonken et al. – Software Engineering in the Netherlands: The State of the Practice SERG

42 TUD-SERG-2012-022

[69] A. Bertolino, Software testing research: Achievements, challenges,
dreams, in: Future of Software Engineering (FOSE), IEEE Computer
Society, 2007, pp. 85–103.

[70] B. Beizer, Software Testing Techniques (2nd ed.), Van Nostrand Rein-
hold Co., New York, NY, USA, 1990.

[71] G. J. Myers, C. Sandler, T. Badgett, The Art of Software Testing, 3rd
edition, Wiley, 2011.

[72] A. Zaidman, B. Van Rompaey, A. van Deursen, S. Demeyer, Studying
the co-evolution of production and test code in open source and in-
dustrial developer test processes through repository mining, Empirical
Software Engineering 16 (3) (2011) 325–364.

[73] V. Garousi, T. Varma, A replicated survey of software testing practices
in the canadian province of alberta: What has changed from 2004 to
2009?, Journal of Systems and Software 83 (11) (2010) 2251–2262.

[74] R. F. Goldsmith, D. Graham, The forgotten phase, in: Software Devel-
opment, 2002, pp. 45–47.

[75] M. Pol, R. Teunissen, E. van Veenendaal, Software Testing: A Guide to
the TMap Approach, Addison–Wesley, 2001.

[76] IEEE, IEEE Std 1012-1986, IEEE standard for software verification and
validation plans (1986).

[77] E. Uusitalo, M. Komssi, M. Kauppinen, A. Davis, Linking requirements
and testing in practice, in: Proceedings of the International Require-
ments Engineering Conference (RE), IEEE Computer Society, 2008, pp.
265–270.

[78] R. Young, Effective Requirements Practice, Addison-Wesley, 2001.

[79] F. Ricca, M. Torchiano, M. Ceccato, P. Tonella, Talking tests: an em-
pirical assessment of the role of fit acceptance tests in clarifying re-
quirements, in: Ninth international workshop on Principles of software
evolution: in conjunction with the 6th ESEC/FSE joint meeting, ACM,
2007, pp. 51–58.

43

SERG Vonken et al. – Software Engineering in the Netherlands: The State of the Practice

TUD-SERG-2012-022 43

[80] E. M. Maximilien, L. A. Williams, Assessing test-driven development
at ibm, in: Proceedings of the International Conference on Software
Engineering (ICSE), IEEE Computer Society, 2003, pp. 564–569.

[81] H. Erdogmus, M. Morisio, M. Torchiano, On the effectiveness of the
test-first approach to programming, IEEE Transactions on Software En-
gineering 31 (3) (2005) 226–237.

[82] B. George, L. Williams, A structured experiment of test-driven devel-
opment, Information and Software Technology 46 (5) (2004) 337–342.

[83] E. Bjarnason, K. Wnuk, B. Regnell, Requirements are slipping through
the gaps — a case study on causes & effects of communication gaps in
large-scale software development, in: Proceedings of the International
Requirements Engineering Conference (RE), IEEE Computer Society,
2011, pp. 37–46.

[84] B. Nuseibeh, S. Easterbrook, Requirements engineering: a roadmap, in:
Proceedings of the Conference on The Future of Software Engineering
(ICSE), ACM, 2000, pp. 35–46.

[85] H. Hofmann, F. Lehner, Requirements engineering as a success factor in
software projects, IEEE Software 18 (4) (2001) 58–66.

[86] P. Otto, A. Anton, Addressing legal requirements in requirements engi-
neering, in: Proceedings of the International Requirements Engineering
Conference (RE), IEEE Computer Society, 2007, pp. 5–14.

[87] K. Beck, Test-Driven Development: By Example, Addison-Wesley, 2003.

44

Vonken et al. – Software Engineering in the Netherlands: The State of the Practice SERG

44 TUD-SERG-2012-022

TUD-SERG-2012-022
ISSN 1872-5392 SERG

