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Abstract

Legged locomotion is a discrete event system (DES) due to the ever changing contact states
of each leg. As such, it requires a nonlinear modelling method to predict the trajectory of
a legged robot. One such robot has been focused on throughout this thesis; the six legged
“Zebro”. With its half-circular legs, the Zebro is well suited for traversing uneven terrain
and even climbing up small steps, making it the robot of choice for a lunar mission in the
near future. A previous attempt at modelling the trajectory of a Zebro kinematically fell
short when it came to modelling a curved path, with the reasoning behind this being how
the Zebro’s legs can visibly be seen slipping over the ground as it walks, the effect of which
is never taken into account.

A combination of kinematics and dynamics was used for the model in this thesis. The reason
for this is that the Zebro’s legs are actuated using position controlled motors, so the infor-
mation available is the leg’s angle and the speed at which the leg is rotating, rather than the
torque. Therefore, kinematics were used to estimate the vertical motion of the Zebro due to
the rotational speed of each leg, which could then be used to estimate the normal contact
force on each leg. The traction forces could then be estimated using the normal force and
a slippage model which has been experimentally identified in collaboration with a different
research team at the TU Delft. With these forces, and the Newton-Euler equations of motion,
the Zebro’s path could be predicted.

Applying a slippage model to a half-circular leg, rather than a wheel, required a new method
of calculating the slip ratios which was based on Pacejka’s formula, but adapted to also
account for the case where a leg is standing on its toe.

Furthermore, a contact detection algorithm was designed to kinematically predict which leg(s)
lift off of the ground during a touchdown event. This was used to kinematically model
the orientation of the Zebro during a tetrapod gait and was shown to correctly predict the
complicated contact transitions during said gait.

Another product of the research in this thesis is a new and improved algorithm for a turning
tripod gait, which achieves smoother turning than beforehand by guaranteeing a smooth
contact transition between two leg groups. That being said, it cannot yet be applied to the
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tetrapod gait, so the current gait scheduling algorithm is still required for a turning tetrapod
gait.

The results of the simulations showed the Zebro walking as expected, both in a straight line
and when turning, but the simulations could not be validated quantitatively due to current
events regarding COVID-19. For a qualitative review of the model, photographs were taken
of the Zebro during walking gaits to compare to the simulations and showed that, while
straightforward walking was predicted well, the turning circle of the model was significantly
sharper than in reality. The reason for this is most likely a problem in the calculation of the
slip ratios, since they were consistently unrealistically low, therefore requiring further research
in future.
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Chapter 1

Introduction

1-1 Legged Robots

Half of Earth’s surface is inaccessible by wheeled or tracked vehicles [1], making legged lo-
comotion a candidate for traversing broken or unstable terrain. However, one limitation of
legged robots arises from their mechanical complexity since there will always be a trade-off
between freedom of movement and decreased reliability as the number of actuators increases
[2]. That being said, recent developments on the well-known Spot built by Boston Dynamics
has thrust legged robots into the limelight and displayed how far the technology has come.
However, with this advanced technology comes a large price-tag and the demand for simple
and cheap, yet versatile, legged robots will remain.

1-1-1 Method of modelling

In this thesis the path of a legged robot is modelled through kinematically determining vertical
accelerations of the body, which are used to estimate normal contact forces between the legs
and the ground with inverse dynamics. These normal forces are then used to find the traction
between the legs and the ground, making it possible to find the body’s linear and rotational
accelerations using the Newton-Euler framework for equations of motion.

This particular method of combining kinematics to lead to the dynamics of the system was
not found in literature, mainly because dynamic models are usually applied to robots with
torque-controlled motors, since the contact forces are a simple function of the motor torque.
The robot which is handled in this thesis has position-controlled motors, making the contact
forces difficult to estimate without using kinematically determined accelerations.

The robot which this dynamic model is applied to is introduced in the following section.
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2 Introduction

1-2 The Zebro

The name “Zebro” stems from the Dutch words “Zes Benen Robot” [3], meaning “six legged
robot”. The Zebro (Figure 1-1) is an autonomous robot designed on the foundations of RHex
[4] (pronounced “Rex”), and is produced by a start-up on the campus of the TU Delft. The
robot is mechanically simple [5], consisting of six actuated half circular legs. Despite its
simple design it can achieve impressive performance having been able to climb stairs and hills
[6] and even walk on two legs [7]. Its robustness and versatility has made the Zebro a prime
candidate for space exploration, prompting the launch of a team of students at TU Delft
hoping to make the first European lunar rover by operating a Zebro on the moon [8].

Figure 1-1: The Zebro robot. From [9].

With just one actuator per leg, the Zebro has the benefits of the mechanical simplicity of a
six-wheeled vehicle as well as the freedom of movement afforded by legged locomotion.

See Figure 1-2 for some clarification on the nomenclature of the robot. The Zebro consists
of a head and a tail with the head facing the forward direction of walking. The six legs are
numbered in the manner shown in the figure. Each leg has a “hip” at the point of attachment
to the body and a toe at the other end. The motors inside the Zebro’s body rotate the legs
to an angle θi where the subscript i ∈ {1, 2, 3, 4, 5, 6} represents the leg number. The angle
θ2 is shown as an example in the figure below. The four parameters shown in Figure 1-2
are l, the length; w, the width; h, the height of the robot; and r, the radius of a leg. The
final important parameter to note is the mass of the body, mb, which is not shown in the
figure. Two notable angles which will be mentioned often in this thesis are the touchdown
and lift-off angles. The former is the angle at which a leg collides with the ground and the
latter is the angle at which the leg lifts up from the ground. They are referred to as θTD and
θLO respectively.
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1-3 Research objective 3

Figure 1-2: On the left: the leg numbering convention, shown from a bird’s eye view perspective
of the Zebro. On the right: A side view of the Zebro, showing where a leg’s hip and toe are
located, as well as the leg angle θ for leg 2.

1-3 Research objective

The motivation for research on the Zebro’s dynamics stems from the desire to improve the
control software governing how the Zebro walks. In its current state, the Zebro can only walk
in a straight line. To change direction it must first stop walking, turn on-the-spot, and then
continue walking in a straight line. This might be the shortest path from one position to
another, but it is not the fastest. Instead, a smooth, curved path would be advantageous
for travelling between two positions, because the Zebro would no longer be forced to stop
walking.
In recent years, a novel method of designing a gait (walking pattern) has allowed for smooth
turning to be implemented in the Zebro [10]. This technique for designing gaits has the
potential to greatly improve the Zebro’s path planning algorithm, but has not yet been
implemented in the current version of the Zebro’s software due to its complexity and the
lack of understanding within the Zebro team.
One of the problems holding back the development of new path-planning algorithms using
this gait-design technique is the lack of an accurate model of the Zebro’s motion. An MPC
controller, for example, requires a good model in order to predict the Zebro’s path and thus
control it. Only kinematic models have been used to model the robot [10], [11], but these
were deemed insufficient. A portion of the inaccuracy was chalked up to the slip between the
Zebro’s leg and the ground, which is clearly visible by eye when watching the Zebro walk.
As quoted from Suriana in [10]: “The slipping and skidding of the virtual Zebro are not
incorporated in the switching kinematic algorithm”. A kinematic model uses the velocities of
the legs to estimate the motion, but if a portion of this velocity is “lost” through slippage, a
kinematic model will never sufficiently predict the Zebro’s path.
All in all, the research objective is the following.
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4 Introduction

To replace the kinematic model with a dynamic model which incorporates the
dynamic effects of the leg-ground slippage into the Zebro’s equations of motion.

To achieve this, the following three sub-questions must be answered.

1. What are the equations of motion linking the forces on the body to its dynamics?

2. How do the equations of motion change depending on which legs are touching the
ground?

3. How much do the legs slip and what effect does this have on the forces on the body?

1-4 Assumptions made

Some assumptions have been made throughout this thesis in order to simplify the research
and make it realistically possible.

• The ground is assumed to be completely flat and without obstacles.

• The half-circular legs are assumed to be a perfect semicircular shape.

• Contact between a leg and a ground is assumed to be a point contact.

• The legs are completely rigid.

• The leg angle θi can be measured; that is to say, each leg angle is always known.

Using the coordinate frame shown in Figure 1-2, the position of the Zebro’s hips can be seen
from above as a hexagon with the following coordinates:

Leg 1:

 l/2w/2
0

, Leg 2:

 l/2
−w/2

0

 (1-1)

Leg 3:

 0
w/2 + a

0

, Leg 4:

 0
−w/2− a

0

 (1-2)

Leg 5:

−l/2w/2
0

, Leg 6:

−l/2−w/2
0

 (1-3)

with the parameter a denoting how legs 3 and 4 are further from the x-axis than legs 1,2,5
and 6. That being said, for the duration of this thesis the Zebro is simplified to a uniform
cuboid, such that a = 0. Due to the assumed uniformity and the symmetrical shape of the
body, the robot’s Centre of Mass (CoM) is assumed to act at the centre of the cuboid, at
coordinates

[
0, 0, 0

]T
.

Put simply, the Zebro is assumed to be a uniform cuboid with dimensions w, l, h and mass
mb.
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1-5 Impact of the research 5

1-5 Impact of the research

A better model for the leg-ground interaction on a flat surface could pave the way for a future
model which takes uneven ground into account. Non-flat surfaces make it difficult to predict
when a leg will touch the ground because there could be a bump in the ground which will be
touched by the leg earlier than expected. A model which can take these bumps into account
will be required on terrain such as the moon’s surface and the flat-ground model in this thesis
could provide a foundation for this.

Furthermore, considering how one of the use-cases of the Zebro is in disaster-struck areas, any
improvements in speed through better path-planning could result in faster search and rescue
missions, the effect of which could save lives. Better path-planning requires an improved
model.

1-6 Outline of the report

First, in Chapter 2 the current method of trajectory generation is discussed. This includes the
generation of the leg’s rotational velocity reference, as well as the generation of the robot’s
path. An important development with the Zebro is the “Switching Max-Plus-Linear (SMPL)
system” which is used to make the Zebro walk in a smooth circle. Furthermore, a new method
for smooth turning is introduced which is easy to model and requires no switching max-plus
algorithm to implement.

In Chapter 3, the geometry of the Zebro is presented in the form of coordinate frames and
transformations between them. Some important features such as a leg’s “potential contact
point” are introduced and two contact detection algorithms are described.

Next, in Chapter 4, the Newton-Euler equations of motion for the system are found, as well
as a method of estimating the force exerted on a leg by the ground. Using this force estimate,
the traction forces which pull the Zebro forward can be calculated and the accelerations are
then found with the Newton-Euler equations. Furthermore, the slippage between a leg and
the ground is analysed using a method analagous to Pacejka’s magic formula, for which a
physical experiment was designed and performed to identify its parameters.

After this, in Chapter 5, simulations of a walking Zebro using the new dynamic model are
shown. Furthermore, the new smooth turning algorithm is also simulated with the same
dynamic model. In order to complete this research fully, validation of this model was sup-
posed to be performed, however due to the current situation surrounding COVID-19, these
experiments could not go ahead unfortunately.

Finally, conclusions are made and some future work is recommended in Chapter 6.
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Chapter 2

Trajectory Generation

2-1 Introduction

The term “trajectory” here refers to two different things: first, the angle reference for a leg’s
motor to follow, and second, the path and speed of the Zebro when walking.

The research in this thesis builds upon work done over the past several years, some of which
will be mentioned in this chapter. First, in Section 2-2, it is explained what a gait is and how
it can be defined. A recent development in the research on the Zebro is the introduction of a
novel gait scheduling algorithm which is used to make the Zebro walk in a curved trajectory,
as mentioned in Section 1-3. This new gait scheduler is outlined, albeit not in too much detail
since no further work will be done on this scheduling algorithm or the mathematics behind
it. Next, the results of a kinematic model used in previous research is shown in Section 2-4
followed by a short explanation of the biggest problems faced in the model. A solution to
this problem is offered in Section 2-6, which provides a novel turning algorithm which is
significantly easier to model.

2-2 Gaits and their parameterisation

Gaits were briefly mentioned in the introduction as a “walking pattern”. As Hildebrand
explained “A gait is a manner of moving the legs when walking or running” [12]. For example,
there is a clear difference between horse’s trotting gait and galloping gait and these are just two
examples. Hildebrand showed a diagram for 16 “of the many” gait sequences [12], implying
many more possibilities, but for a six legged system this will be even more.

A clear way of displaying a gait graphically is with a Gantt chart, as shown in Figure 2-1 [13].
The Gantt chart shows grey bars which represent a leg touching the ground and white bars
which represent a leg in the air. The gait displayed in the figure is called the “tripod” and
will be the main focus of this thesis. The tripod gait is characterised by the two outer legs
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8 Trajectory Generation

on one side moving synchronously with the middle leg of the other side, always maintaining
three contact points with the ground in the shape of a triangle.

Figure 2-1: Gantt chart representation of a tripod gait, adapted from [13]. Solid bars represent
a leg touching the ground and white bars represent a leg in the air. The time markers t1 and t2
correspond to the Zebro diagrams above with the same label in which the red legs are the legs in
contact with the ground at that time instant.

2-2-1 Gait notation

The gait of an n legged system has been described by Lopes et al. in [13] using a notation
showing groups of legs preceding each other. In general,

{L1,1, . . . , L1,j} ≺ . . . ≺ {Lr,1, . . . , Lr,p} (2-1)

where leg La,b ∈ {1, 2, 3, 4, 5, 6}. All legs in the same group {Ls,1, . . . , Ls,j} rotate syn-
chronously and precede the groups to the right in the notation by only being allowed to
lift-off once the succeeding group has touched down.

This notation can be applied to the aforementioned tripod gait, like so,

{1, 4, 5} ≺ {2, 3, 6} (2-2)

implying that the legs 1,4 and 5 only lift-off from the ground once legs 2,3 and 6 touch the
ground, which is in line with what is shown in the Gantt diagram in Figure 2-1. A different
gait, named the tetrapod uses three different leg groups, like so:

{1, 4} ≺ {2, 5} ≺ {3, 6}. (2-3)

Since a gait is a repeating pattern, it does not matter which leg group is the first in the
sequence, provided order does not change. In other words, {1, 4} ≺ {2, 5} ≺ {3, 6} is the
same gait as {2, 5} ≺ {3, 6} ≺ {1, 4}.
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2-3 Gait scheduling 9

2-3 Gait scheduling

A gait scheduler produces a reference path for the robot’s legs to follow. An existing method
which was used in the software for the RHex is the Buehler clock [14]. In this clock, the leg’s
phase reference at a specific time is modelled as a continuous piecewise linear function [10] as
seen in Figure 2-2.

Figure 2-2: Buehler Clock for the tripod gait. From [10].

In the figure, time constant τg represents the time spent on the ground and τc represents the
cycle time, after which the pattern repeats. The angle θs represents the stance angle, which
in this thesis can be translated to θs = θLO − θTD, and is therefore the angle covered by the
leg whilst it is touching the ground. Let

t̄ = (t+ τc/2)(mod τc)− τc/2 (2-4)

ensuring that −τc/2 < t̄ ≤ τc/2. Now, the mathematical model of the Buehler clock can be
written as follows.

θleft tripod(t) =


θs
τg
t̄ if − τg

2 < t̄ <
τg
2

π−θs
τc−τg (t̄− τg

2 ) + θs
2 if t̄ ≥ τg

2
π−θs
τc−τg (t̄+ τg

2 )− θs
2 if t̄ ≤ τg

2

(2-5)

θright tripod(t) = θleft tripod(t+ τc
2 ) (2-6)

This clock produces a simple reference trajectory for each leg’s angle to follow. However, this
clock works for straightforward walking because τg is equal on both sides of the robot. Focus
in this thesis lies on the turning of a legged robot, so slight alterations must be made. A
Switching Max-Plus Linear (SMPL) system is used by Suriana to schedule the times at which
each leg should touch the ground and lift-off, allowing for different τg per side of the side such
that a turning motion can be made.
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10 Trajectory Generation

2-3-1 Short introduction to max-plus algebra

It is possible to describe a certain class of discrete event systems (DES) as a linear system
with max-plus algebra. The scheduling of the Zebro’s gait falls under this class of system,
where each discrete event is the touching down or lifting off of a leg. It has been shown
that an n-legged system can be described in a 2n-dimensional max-plus linear state space
representation [13].

Without delving too deeply into the mathematics, a short introduction on max-plus algebra
is appropriate. As the name suggests, the algebraic operations allowed in this framework are
max (⊕) and plus (⊗), defined as a⊕ b = max(a, b) and a⊗ b = a + b. Let the identity and
zero element be ε := −∞, e := 0, respectively and let Rmax = R∪ {ε}. Max-plus algebra can
now be denoted by Rmax = (Rmax,⊕,⊗, ε, e) [15].

For matrices, the algebraic functions are defined as

[A⊕B]ij = max(aij + bij) (2-7)

and
[A⊗C]ij = max

k=1,...,m
(aik + ckj), (2-8)

where A,B ∈ Rn×mmax and C ∈ Rm×pmax .

The n × n identity matrix is denoted by En and has e for each element along the diagonal
and ε for all other elements,

E2 =
[
e ε
ε e

]
(2-9)

and Em×n is the m× n max-plus zero matrix and has ε as each element:

E2×2 =
[
ε ε
ε ε

]
. (2-10)

2-3-2 Switching max-plus linear system for straightforward walking

Let the touchdown event time of leg i be ti and the lift-off event time of leg i be li. Let τf be
the amount of time a leg spends in flight and τg be how long the leg should be on the ground.

ti(k) = li(k) + τf

li(k) = ti(k − 1) + τg

The following example is taken from [10] and handles the case of a biped for ease of readability,
since a biped only has two legs, left and right. Please note that this example can be expanded
to the six-legged case of the Zebro.

Let τ∆ be the double-stance time, representing the amount of time both legs spend on the
ground together. The set of equations that can be used to model the times at which touchdown
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2-3 Gait scheduling 11

and lift-off occur are as follows.

tleft(k) = lleft(k) + τf

= lleft(k)⊗ τf
tright(k) = lright(k) + τf

= lright(k)⊗ τf
lleft(k) = max(tleft(k − 1) + τg, tright(k − 1) + τ∆)

= tleft(k − 1)⊗ τg ⊕ tright(k − 1)⊗ τ∆

lright(k) = max(tright(k − 1) + τg, tleft(k) + τ∆)
= tright(k − 1)⊗ τg ⊕ tleft(k)⊗ τ∆

(2-11)

This set of equations can be written in matrix form as a linear system.
tleft(k)
tright(k)
lleft(k)
lright(k)

 =


ε ε τf ε
ε ε ε τf
ε ε ε ε
τ∆ ε ε ε

⊗

tleft(k)
tright(k)
lleft(k)
lright(k)

⊕

ε ε ε ε
ε ε ε ε
τg τ∆ ε ε
τ∆ τg ε ε

⊗

tleft(k − 1)
tright(k − 1)
lleft(k − 1)
lright(k − 1)

 (2-12)

Generalising this for other systems with more legs results in[
t(k)
l(k)

]
=
[
E τf ⊗E
P E

]
⊗
[
t(k)
l(k)

]
⊕
[

E E
τg ⊗E⊕Q E

]
⊗
[
t(k − 1)
l(k − 1)

]
(2-13)

where the vectors t(k) and l(k) contain the kth touchdown and liftoff times of each leg in the
n-legged system.

t(k) =

t1(k)
...

tn(k)

 , l(k) =

l1(k)
...

ln(k)

 (2-14)

The matrices P and Q are unique to the chosen gait and are defined as follows, where li is a
group of legs as shown in Section 2-2-1 and m is the number of unique leg groups in the gait.
In the case of a tripod gait, for example, m = 2, with l1 = {1, 4, 5} and l2 = {2, 3, 6}.

[P ]p,q =
{
τ∆ ∀j ∈ {1, . . .m− 1};∀p ∈ lj+1; ∀q ∈ lj
ε otherwise

[Q]p,q =
{
τ∆ ∀p ∈ l1;∀q ∈ lm
ε otherwise

In summary, the state-space system given in Eq. (2-13) is used to find the times ti(k) and
li(k) at which leg i should touchdown or lift-off.

2-3-3 Switching max-plus linear system for smooth turning

The previous section went into the max-plus framework for modelling legged locomotion for
a robot walking in a straight line. This section concerns itself with gait scheduling of a robot
following a curved path. This work was done by Suriana [10].
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12 Trajectory Generation

A parameter τp is introduced and defined as the difference time between the left and right
legs. By adding τp to the stance time of the “inner” legs, these legs have a longer stance time
and thus a slower angular velocity, producing a turning moment and allowing the robot to
steer using a technique called “skid steering”[16].

Without going too deep into the details, a similar process is followed as in the previous section,
but the different groups of legs are defined by the superscripts i and o signifying inner or
outer. This convention is continued throughout the thesis.

tii(k) = lii(k) + τf

toi (k) = loi (k) + τf + τp

lii(k) = tii(k − 1) + τg + τp

loi (k) = toi (k − 1) + τg

The general form of the max-plus linear state space representation can now be written as
follows. [

t(k)
l(k)

]
=
[
E τf ⊗M
R E

]
⊗
[
t(k)
l(k)

]
⊕
[

E E
(τg ⊗N)⊕T E

]
⊗
[
t(k − 1)
l(k − 1)

]
(2-15)

Building the matrices R, M , N and T is done somewhat similarly to P and Q in the previous
section, but are significantly more complicated. For the interested reader, the process is
described in more detail on pages 22 and 23 of [10].

2-4 Kinematic model

Suriana went on to try and model the Zebro’s path with kinematics as a six-wheeled mobile
robot with non-steered wheels. The assumption was made that each leg was essentially a
wheel of radius 4r, resulting in the forward velocity of a hip being ẋh = 2rθ̇.

2-4-1 Results

The kinematic model was tested by comparing it to the results of a virtual Zebro in V-REP.
As shown in Figure 2-3, with an intended left turn, the results appeared to show the kinematic
model correctly predicting a left turn, whereas the virtual Zebro turned to the right. When
the intended turning direction was to the right, the kinematic model and the virtual Zebro
both appeared to turn in the correct direction.

This result raises the question of whether the virtual Zebro might be incorrectly predicting
the path, but Figure 2-4 shows a very similar scenario with a real Zebro. In both cases, the
Zebro turns to the right. Three explanations were offered by Suriana.

1. The middle-left leg’s angle was 5° less than the middle-right leg, possibly altering the
touchdown and lift-off times and affecting the turning mechanics.

2. The interaction between the leg and the carpet produced an undesired effect.

3. The chosen value for τp is not enough to induce turning to the left.
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2-5 Challenges 13

No concrete explanations for the anomalous results were offered in the report. A dynamic
model which takes the leg-ground interaction into account would offer more insight into the
turning mechanics of the Zebro.

(a) The kinematic model (red) and the virtual Zebro
(blue) with an intended left turn.

(b) The kinematic model (red) and the virtual Zebro
(blue) with an intended right turn.

Figure 2-3: In (a) the result of an attempted left turn is plotted which shows the virtual Zebro
actually turning right. In (b) an attempted right turn is plotted and this time both models do
turn right. Both images are taken from [10].

(a) Photographic result of the Zebro’s path during
an intended left turn.

(b) Photographic result of the Zebro’s path during
an intended right turn.

Figure 2-4: In (a) one can see the Zebro turn to the right, despite the intended direction being
left. In (b) the Zebro does turn to the right, as intended. Note the Zebro starts from the bottle
by the white line in the images. Both images are taken from [10].

2-5 Challenges

As Suriana put it “The interaction between the leg and the carpet produced an undesired
effect”, which could be interpreted as the leg slipping on the carpet. Slip is a non-linear effect
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14 Trajectory Generation

and is not included in a kinematic model, therefore calling for a dynamic model to accurately
take into account the traction forces produced by slippage.

Furthermore, a glaring problem with the current gait scheduling method developed by Suriana
is the fact that constant touchdown and lift-off angles are used. Firstly, in a complicated gait
such as the tetrapod, the Zebro visibly “wobbles”, resulting in legs touching down at a time
which was not scheduled, implying that the touchdown and lift-off angles should actually be a
function of the body’s orientation, since pitching forward will significantly affect these angles.
In the simple tripod gait the assumption of constant touchdown angles can be valid since the
Zebro does not wobble. However, this leads on to a new problem.

The idea that the lift-off and touchdown angle are symmetrical in a tripod gait is simply
false. More detail on this topic is gone into in Section 2-6-1. Essentially, the lift-off angle
is a physically determined parameter which depends on the distance between a hip and the
ground. Suriana’s turning algorithm relies on the presumption that a leg touches the ground
at a time tTD due to it being at an angle θTD, but since this is not necessarily the case in
real-life, simulating it would be incorrect.

2-6 Smoother turning algorithm

To combat the aforementioned challenges, a significantly simpler turning algorithm was de-
vised for the tripod gait using carefully chosen touchdown and lift-off angles, rather than the
max-plus method of calculating touchdown and lift-off times. By increasing the difference
between the TD and LO angles on one side of the robot compared to the other, a larger
distance is travelled by that side, causing the robot to turn. By calculating the LO angles
such that the hip height at this angle is exactly equal to the hip height at the TD angle, a
perfect tripod rhythm is preserved.

2-6-1 Calculating the ideal lift-off angle

In current Zebro software, and in the previous kinematic model, a lift-off angle was assigned
manually. However, this turns out to be a useless parameter to set, since the lift-off angle is a
physically determined function of the touchdown angle. The actual lift-off angle is the angle
at which the hip height is equal to the hip height at the touchdown angle. The reason this
is ideal is because the lift-off angle on one leg will be reached at the exact same time as the
touchdown angle on the other.
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2-6 Smoother turning algorithm 15

Figure 2-5: Equal hip heights at touchdown and lift-off.

The equations for the heights hTD and hLO shown in Figure 2-5 are given in the following
equation.

hTD = r + r sin θTD, hLO = 2r sin θLO (2-16)

Setting the two heights equal to each other obtains the following expression for θLO. Note
that there are infinite solutions for θLO, but the solution required is where π/2 ≤ θLO ≤ π,
hence the appearance of π and the negative sign in Eq. (2-17).

θLO = π − arcsin
(sin θTD + 1

2

)
(2-17)

2-6-2 Steering factor

For the Zebro to steer, one side must have a linear velocity larger than the other. Let s be
the steering factor such that vo = svi, where vo and vi are the outer and inner velocities of
the Zebro, respectively.

Let θiTD and θiLO be the touchdown and lift-off angles for the inner side. Also, let θoTD and
θoLO be the touchdown and lift-off angles for the outer side. The difference in velocities of
each side is achieved by making the distance travelled by each side different. The distance
travelled can be estimated well using the arc length of the circle between θTD and θLO.

θoLO − θoTD = s(θiLO − θiTD) (2-18)

The aim here is to find θiLO, θoTD and θoLO using only a freely chosen angle −π/2 < θiTD < π/2.

First, θiLO is found using Eq. (2-17). Next, by substituting the expression for θLO from
Eq. (2-17) into Eq. (2-18), a formula for θoTD is found.

θoTD = π − arcsin
(sin(θoTD) + 1

2

)
− s(θiLO − θiTD) (2-19)

This non-linear equation can be solved for θoTD numerically, since θiTD and θiLO are already
known. Finally, the ideal lift-off angle for θoTD can also be found using Eq. (2-17).
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16 Trajectory Generation

With these newfound angles, each side of the Zebro will look somewhat like Figure 2-6 at the
touchdown time, where the outer side touches down and lifts off at a lower height than the
inner side, allowing for a larger step.

Figure 2-6: Inner and outer side of the Zebro at the touchdown/lift-off event.

2-6-3 Leg speeds

For the legs to maintain the tripod rhythm, the time spent in flight must be equal to the time
spent on the ground. Let τc be the cycle time (time to complete one full rotation). Now, let
θ̇g and θ̇f be the ground speed and flight speed, respectively. The usual superscripts i and o
again represent “inner” and “outer”.

θ̇ig = θiLO − θiTD
τc/2

, θ̇if = 2π − (θiLO − θiTD)
τc/2

(2-20)

θ̇og = θoLO − θoTD
τc/2

, θ̇of = 2π − (θoLO − θoTD)
τc/2

(2-21)

It follows that {
θ̇j = θ̇g if θTD < θj(mod2π) ≤ θLO
θ̇j = θ̇f else

(2-22)

where the appropriate speed is chosen depending on whether leg j is on the inner or outer
side of the robot.

These leg speeds are in fact the same as the Buehler Clock described earlier, resulting in the
same piecewise linear function for the leg angles, the only difference being that the left and
right tripod differ, unlike in Figure 2-2.

2-7 Summary

To summarise, the notation of a gait is introduced and it is shown how a Buehler Clock is
used to schedule the trajectory of a leg such that it reaches a certain angle at a certain time.
Suriana’s SMPL system for generating the times at which each leg should touchdown and
lift-off in order for the Zebro to make a turning motion is touched upon, although the reader
is encouraged to find more information on pages 22 and 23 of [10]. The Zebro’s trajectory
generated by this gait was modelled kinematically by Suriana, but the results in both a virtual
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Zebro and a real-world Zebro did not appear to match with the predicted trajectory from the
model.

The possible reasons for the ill performance can be summarised as:

1. Slip is not taken into account in a kinematic model

2. Wobbling of the body makes the prescribed touchdown and lift-off times unreliable

3. The lift-off angles should not be used as an input to the gait scheduling system, since it
is a physically determined parameter dependent on the touchdown angle and the body’s
orientation.

Point 1 is a very large topic which will be discussed extensively throughout the thesis. Points
2 and 3 are addressed with a new turning algorithm designed for the tripod gait which uses
variable touchdown angles for each side of the Zebro to allow for steps of different length
on either side, causing the robot to turn. By using the body’s orientation and leg angles it
can be predicted which legs touch the ground, alleviating the problem of the body wobbling.
Point 1 is a very large topic which is discussed extensively throughout the thesis.
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Chapter 3

Kinematics of the Body

3-1 Introduction

This chapter goes through the process of defining and calculating some important kinematic
aspects of the system, step by step, starting with the building blocks of any system: its gen-
eralised coordinates in Section 3-2. Next, the coordinate frames that were used in the system
are introduced in Section 3-3, followed by a section calculating φmin, a defining parameter of
a leg, and explaining how it is used to determine the leg’s state. Next, in Section 3-5, con-
tact events are introduced and the discrete changes in the contact state are modelled in two
ways: a contact detection algorithm in Section 3-5-2 designed for complicated gaits in which
a lot of pitching and rolling occurs such as the tetrapod; and a hybrid automaton governing
prescribed discrete changes in the system which are triggered by certain conditions designed
for a simple gait such as the tripod whose state changes are easily predictable.

3-2 Generalised coordinates of the Zebro

The generalised coordinate values must uniquely define any possible position of the system
relative to the initial position [17]. The minimum number of generalised coordinates required
to specify the position of the system is equal to the number of degrees of freedom of the
system. In the case of the Zebro this is 12: three positional coordinates in Cartesian space,
three rotations of the body (roll, pitch and yaw) and an angle for each of the six legs.
Let the positional coordinates be

xb, yb, zb

and the rotational coordinates be
θr, θp, θy,

where the subscripts represent “body”, “roll”, “pitch” and “yaw” respectively. Finally, as
mentioned in Chapter 1, let the angle of leg i, where i ∈ {1, 2, 3, 4, 5, 6}, be

θi.
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20 Kinematics of the Body

The generalised coordinate vector q of the system is therefore

q =
[
xb yb zb θr θp θy θ1 θ2 θ3 θ4 θ5 θ6

]T
. (3-1)

Figure 3-1: A diagram of the Zebro in which the body’s rotations θr, θp and θy as well as the
leg angles θ2, θ4 and θ6 are shown.

3-3 Coordinate frames and their transformations

Expressing points and vectors in different coordinate frames can be useful when modelling a
dynamic system. To transform a point or vector from one frame to another, a homogeneous
transformation, consisting of a rotation and a translation, is used.

The set of rotation matrices is also called the special orthogonal group SO(3), formally defined
as the set of 3× 3 matrices R that satisfy RTR = I and detR = 1 [18].

A homogeneous transformation matrix H is part of the special Euclidian group SE(3), also
known as the group of rigid-body motions in R3, which is the set of all 4× 4 real matrices of
the form

H =
[
R p
0T 1

]
=


r11 r12 r13 p1
r21 r22 r23 p2
r31 r32 r33 p3
0 0 0 1

 , (3-2)

where R ∈ SO(3) is the rotation matrix between the two frames and p ∈ R3 is a column
vector which describes the translation between the frames. As for notation, let ap be a point
p expressed in coordinate frame a. Let

aP =
[
ap
1

]
(3-3)

The general homogeneous transformation from frame b to a, such that aP = Ha
b
bP , is given

in Eq. (3-4).

Ha
b =

[
Rab

apb
0T3 1

]
(3-4)
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3-3 Coordinate frames and their transformations 21

Where Rab is the rotation matrix from frame b to a and apb is the vector from the origin in
frame a to the origin in frame b, expressed in frame a.

Transformations can be linked such that if there is is a transformation Ha
b from b to a and

another transformation Hb
c from c to b, then a point cP can be expressed in a

aP = Ha
bH

b
c
cP (3-5)

so Ha
c = Ha

bH
b
c . The aim with these transformation matrices is to easily express a point on

the Zebro’s leg in the inertial frame. This can be done by linking several transformations
such as in Eq. (3-5). The links between each frame are shown in the next few sections.

3-3-1 Inertial frame

The inertial coordinate frame I is a stationary coordinate frame attached to the ground. The
position of the robot’s body

[
xb yb zb

]T
is always expressed in the inertial frame.

3-3-2 Body frame

The shape of the body has been simplified to just a cuboid. Let the Body-fixed frame B be
fixed in the centre of this cuboid. The BX-axis points in the direction of the Zebro’s head
and the BY -axis points to its left side. Figure 3-2 shows a diagram of the robot with the
body frame attached. The coordinates of this frame in the inertial frame is the position of
the body and the rotation required is a rotation of θr around the BX-axis, θp around the
BY -axis and θy around the BZ-axis. Each of these rotations will be referred to as Rr, Rp and
Ry respectively.

IpB =

xbyb
zb

 (3-6)

RIB =

1 0 0
0 cos θr − sin θr
0 sin θr cos θr


︸ ︷︷ ︸

Rr

 cos θp 0 sin θp
0 1 0

− sin θp 0 cos θp


︸ ︷︷ ︸

Rp

cos θy − sin θy 0
sin θy cos θy 0

0 0 1


︸ ︷︷ ︸

Ry

(3-7)

Eq. (3-6) and Eq. (3-7) are used to give the homogeneous transformation to transform a point
from the body frame to a point in the inertial frame.

HI
B =


RrRpRy

xbyb
zb

[
0 0 0

]
1

 (3-8)
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22 Kinematics of the Body

Figure 3-2: The Zebro’s body-fixed frame B is shown in the centre of the body, at the position
[xb, yb, zb] relative to the inertial frame.

3-3-3 Hip frame

As explained in Section 1-2, the Zebro’s hip is a point on the body at which a leg is attached.
Each hip frame is located at the hip and rotates with the leg such that the HiX-axis always
points towards the ith leg’s toe. To find a homogeneous transformation from the B frame to
the Hi frame, a rotation of θi around the HiY -axis and a translation to BpHi is required.

BpHi =

xhiyhi
zhi

 (3-9)

The values of xhi , yhi and zhi are essentially just the coordinates given in Section 1-2.

Figure 3-3: Each hip i has a position on the body at [xhi, yhi
, 0], shown in the diagram.

RBHi =

 cos θi 0 sin θi
0 1 0

− sin θi 0 cos θi


︸ ︷︷ ︸

Rθi

(3-10)

These two matrices can be substituted into Eq. (3-4) to produce the homogeneous transfor-
mation HB

Hi
.

HB
Hi =


 cos θi 0 sin θi

0 1 0
− sin θi 0 cos θi


xhiyhi
zhi

[
0 0 0

]
1

 (3-11)
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Figure 3-4: The hip frame of leg 2 is shown at the position [xh2, yh2 , 0], relative to the B-frame.

3-3-4 Contact frame

The contact frame Ci is a coordinate frame located at the point of contact between leg i and
the ground. The CiZ-axis will always be perpendicular to the ground and the CiX-axis will
always point in the direction the Zebro is heading. This configuration was chosen because
the normal force acting on the leg will be purely in the CiZ-direction and any longitudinal
traction force is in the CiX-direction.

Each leg has three different contact states: rolling-contact, toe-contact and hip-contact.
Within the scope of this thesis only rolling and toe-contact are considered, since hip-contact
does not occur during a stable walking gait. Each state requires a different transformation to
define the contact frame, so it is vital to easily detect which state a leg is in. The next two
sections are dedicated to this task.

It is important to note that knowing the leg angle θi is not sufficient to define the contact
frame. This is shown in Figure 3-5, where θp represents a small pitching angle, effectively
shifting the position of the contact frame slightly. An angle φmin is defined as the angle
between the leg’s toe and the minimum of the leg’s full circle. See Figure 3-5 for some
clarification. Note that the angle is taken to be positive in the clockwise direction, meaning
that φmin in toe-contact (the scenario on the right of Figure 3-5) will always be negative.
Using this angle one can find the rotation required to get from the Ci frame to the Hi frame.

It turns out that the value of φmin is not just dependent on the leg angle and the pitch angle,
but also on the roll and yaw of the body, as will be shown in Section 3-4.
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Figure 3-5: Two legs in contact with the ground with the frames Hi and Ci labelled. On the
left the leg is in rolling-contact and on the right the leg is in toe-contact. The body is pitched
forward at an angle of θp.

Homogeneous transformation for rolling-contact

Consider the position of Ci in the Hi frame. This can be deduced from the leg on the left in
Figure 3-5 using some trigonometry.

HipCi =

r + r cosφmin,i
0

−r sinφmin,i

 (3-12)

Two rotations are required from Hi to Ci, the first of which can be deduced from Figure 3-5.
This is a rotation of −(π2 − φmin,i) radians around the HiY -axis, referred to as Rφ.

Rφ =

 cos(−(π2 − φmin,i)) 0 sin(−(π2 − φmin,i))
0 1 0

− sin(−(π2 − φmin,i)) 0 cos(−(π2 − φmin,i))

 (3-13)

The second rotation required is less obvious to see in the figure, but arises from the fact that
the CiZ-axis should point in the inertial vertical direction, which is not the case if the body’s
roll angle θr 6= 0. To counteract the roll angle, the inverse of Rθr from Eq. (3-7) is required.

HHi
Ci

=


RφR

−1
θr

r + r cosφmin,i
0

−r sinφmin,i

[
0 0 0

]
1

 (3-14)
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Homogeneous transformation for toe-contact

The rotation from Hi to Ci is exactly the same as in Eq. (3-13) since φmin is negative in this
case. As for the position of Ci in the Hi frame:

HipCi =

2r
0
0

 (3-15)

This results in the following matrix for HHi
Ci

in toe-contact.

HHi
Ci

=


RφR

−1
θr

2r
0
0

[
0 0 0

]
1

 (3-16)

3-4 Finding the leg’s potential contact point

A leg’s minimum is the lowest point on the leg in the inertial frame. If the leg is in contact
with the ground, this is the point at which contact occurs, hence the name “potential contact
point”. The Ci-frame is located at this position on the leg. The angle φmin which was
mentioned previously is now calculated in this section.

Ignore for now the fact that the legs are half-circular. Instead, imagine them to be a full
circle, much like the grey circle shown in Figure 3-5 and Figure 3-6. All the points on this
circular leg L can be defined in the hip frame using an angle φ.

HiL(φ) =

r + r cosφ
0

−r sinφ

 for − π < φ ≤ π (3-17)

Figure 3-6: The imaginary circular leg is shown with the Hi frame labelled. The blue marker
shows the point HiL(φ) with φ = 0 as can be found in Eq. (3-17). The red marker shows the
general point HiL(φ).
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Taking this a step further, the circle can also be defined in the inertial frame using the
homogeneous transformations found previously.

[
IL(φ)

1

]
= HI

BH
B
Hi


r + r cosφ

0
−r sinφ

1

 for − π ≤ φ ≤ π (3-18)

Or, written out fully:

IL(φ) = RrRpRyRθi

r + r cosφ
0

−r sinφ

+RrRpRy

xhiyhi
zhi

+

xbyb
zb

 . (3-19)

The two points on IL(φ) where the circle is parallel to the ground are the points at which
dz(φ)
dφ = 0.

dIL(φ)
dφ

=


dx(φ)
dφ
dy(φ)
dφ
dz(φ)
dφ

 = RrRpRyRθi

−r sinφ
0

−r cosφ

 (3-20)

It is found that dz(φ)
dφ = 0 is satisfied when

tan(φ) = 1 + tan θi(tan θr sin θy − tan θp cos θy)
tan θi − (tan θr sin θy − tan θp cos θy)

(3-21)

which has two unique solutions for −π ≤ φ ≤ π, one corresponding to the bottom of the
circle (φmin) and one corresponding to the top (φmax). Which one is which? This can be
determined using the second derivative.

d2IL(φ)
dφ2 =


d2x(φ)
dφ2

d2y(φ)
dφ2

d2z(φ)
dφ2

 = RrRpRyRθi

−r cosφ
0

r sinφ

 (3-22)

Substituting φ in Eq. (3-22) with the two results from Eq. (3-21) reveals which result corre-
sponds to the minimum of the circle and which corresponds to the maximum.

d2z(φmin)
dφ2 > 0 and d2z(φmax)

dφ2 < 0 (3-23)

3-4-1 Determining the leg’s state

A leg can be in one of three states depending on where the leg’s minimum is. If the minimum
is anywhere on the leg’s arc, the leg is said to be in the rolling-contact state. If the minimum
is at the toe the leg is said to be in the toe-contact state and finally, if the minimum is at
the hip it is said to be in the hip-contact state. All of these possibilities are illustrated in
Figure 3-7, using four different examples.
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3-4 Finding the leg’s potential contact point 27

The angle φmin has been found in the previous section and the question becomes: if the leg
is in contact with the ground, is it in rolling-, toe- or hip-contact? Despite hip-contact being
an ignored state for the most part, it is important to be able to differentiate between the
three possibilities here. To summarise, the leg state can be determined by finding φmin and
checking the following conditions.

• If φmin,i ≥ 0 then leg i is in rolling-contact

• If −π
2 ≤ φmin,i < 0 then leg i is in toe-contact

• If −π ≤ φmin,i < −π
2 then leg i is in hip-contact

Depending on the result of these checks, HHi
Ci

is chosen from the two options in Eq. (3-14)
and Eq. (3-16).

Figure 3-7: The leg is shown in four different positions, each of which can be defined as either
hip-contact, rolling-contact or toe-contact by checking the value of φmin. The red markers on
each leg represent the lowest point on the leg, or the “potential contact”.

3-4-2 Calculating φ̇min

The speed at which the angle φmin is changing is important to calculate. This is the speed at
which the leg appears to rotate when taking the body’s orientation into account. For example,
if the body is pitching at the exact same speed and opposite direction as the leg speed θ̇i,
then the leg will appear to not be rotating at all and φ̇min = 0.

φ̇min,i = θ̇r sin θy(1 + tan2 θr)− θ̇p cos θy(1 + tan2 θp) + θ̇y(tan θr cos θy + tan θp sin θy)
1 + (tan θr sin θy − tan θp cos θy)2 − θ̇i

(3-24)
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28 Kinematics of the Body

3-5 Contact state and contact events

A contact event occurs whenever a leg touches down or lifts off from the ground. When a leg
touches down, a contact force is present at its point of contact and when a leg lifts off the
contact force becomes 0, hence the dynamic model is heavily dependent on which legs are
touching the ground. This is referred to as the robot’s contact state. Let a contact state be
the set of leg numbers in contact with the ground and is given the symbol C. Since the state
changes with time it is a function of t.

C(t) = {L1 . . . Ln}, (3-25)

where L1 . . . Ln ∈ {1, 2, 3, 4, 5, 6} and n is the number of legs touching the ground. For
example, in the tripod gait, at some point the contact state may be C = {1, 4, 5}, indicating
that legs 1,4 and 5 are touching the ground.

Let the flight set F(t) contain the leg indices of each leg which is in flight at time t.

F(t) = {1, 2, 3, 4, 5, 6}\C(t) (3-26)

3-5-1 Contact polygon

The contact polygon is the shape formed on the ground between all of the contact points.
In three-legged contact this shape is a triangle. If the body’s centre of mass falls within the
contact polygon, the body is stable and balanced. However, as soon as the CoM is outside
the contact polygon, a “toppling” effect can be observed where a leg lifts off of the ground
and the body topples over the two legs closest to the centre of mass.

Figure 3-8: An example of a triangular contact polygon for C = {2, 3, 6}
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3-5-2 Detecting contact events

Assume first that the initial contact state C(0) is known. As the legs rotate, one of two things
can happen:

1. A leg in C lifts off of the ground.

2. A leg in F touches down.

Usually a lift-off event occurs at the same time as a different leg touching down, so it would
be simple to assume that each contact event occurs in a touchdown and lift-off pair. How-
ever, there are two exceptions to this assumption. First, the toppling scenario mentioned in
Section 3-5-1 consists of just a lift-off event, with touchdown occurring once the Zebro has
toppled. Second, in the tetrapod gait it is theoretically possible to have four legs touching
the ground, meaning that a touchdown event occurred without a lift-off.

Detecting a touchdown

Detecting a touchdown event is fairly trivial, one must just check the inertial z-coordinate
of the potential contact position of each leg in F(t). If this value is less than or equal to
0, then at some time between t − dt and t the leg touched the ground. In this model the
assumption is made that dt is small enough such that the touchdown time can be taken to
be t. If touchdown is detected for leg i, then

C(t)← C(t− dt) ∪ i (3-27)
F(t)← F(t− dt)\i (3-28)

As mentioned in the previous section, a touchdown usually occurs alongside a lift-off, so the
next step is to detect which leg (if any) will lift up from the ground.

Detecting a lift-off

Lift-off occurs for two reasons: first, when a leg touches down and effectively replaces a
different leg in C, and second, when the body’s centre of mass exits the contact polygon and
the body topples.
Finding which leg gets replaced when a leg i touches down is done in a few steps.

1. All new contact state possibilities in which i is included are calculated.

2. All legs are rotated to the angle at t+ dt.

3. Each possible contact state found in step 1 is tested by orienting the robot such that
each leg in the possible contact state is touching the ground. If any leg which is not in
the possible contact state is below the ground, this possible state is discarded.

It was found that in some cases, two possible contact states were feasible. Choosing between
the two is done by checking in which state the body’s centre of mass falls within the new
contact polygon as explained in the following section.
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Determining if a point is in the contact polygon

Assume the contact polygon to be a triangle. This is a fair assumption since the only case of
feasible four-legged contact in the tetrapod gait is guaranteed to contain the centre of mass.
Therefore, the contact polygon will be a triangle in the inertial XY -plane, with vertices pi,
pj and pk where i, j, k ∈ C(t). The centre of mass is projected onto the XY -plane by simply
moving it vertically down to z = 0: p0 =

[
xb yb 0

]T
.

Determining whether p0 is within the contact triangle is done following a technique outlined
in a blog post by “blackpawn” [19]. Observe Figure 3-9, the cross product of B − A and
p−A will produce a vector pointing in the opposite direction to the cross product of B −A
and p′ −A, indicating that p and p′ are on different sides of the line.

Figure 3-9: Two points p and p′ on either side of a line AB.

It follows that, for the point p to be in a triangle ABC, it must be on the same side of AB
as point C, see Figure 3-10. Or in other words, (B −A) × (p −A) must point in the same
direction as (B −A)× (C −A). One can confirm that these two vectors point in the same
direction if their dot product is greater than 0.

((B −A)× (p−A)) · ((B −A)× (C −A)) > 0 (3-29)

This must be checked for each vertex of the triangle, since p must be on the “correct” side of
each of the triangle’s edges to be considered inside.

Figure 3-10: A point p inside the triangle ABC

In terms of the previously established coordinates of the points of contact and the body’s
centre of mass, the conditions required for the centre of mass to be in the contact triangle are
the following.
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(IpCi − IpCj )× (

xbyb
0

− IpCj ) · (IpCi − IpCj )× (IpCk −
IpCj ) ≥ 0 (3-30)

(IpCj − IpCk)× (

xbyb
0

− IpCk) · (IpCj − IpCk)× (IpCi − IpCk) ≥ 0 (3-31)

(IpCk −
IpCi)× (

xbyb
0

− IpCi) · (IpCk −
IpCi)× (IpCj − IpCi) ≥ 0 (3-32)

If all three of these conditions are met, it can be concluded that the body’s CoM falls within
the contact triangle produced by legs i, j and k. If the condition in Eq. (3-29) is not met, then
it can be concluded that the leg represented by C will lift off of the ground. This translates
to leg k for Eq. (3-30), i for Eq. (3-31) and j for Eq. (3-32).

3-5-3 Contact transitions in a tetrapod gait

In Suriana’s kinematic model of the tetrapod gait, it was always assumed that the Zebro’s
contact state followed the theoretical tetrapod gait perfectly in the pattern shown in Figure 3-
11. In the figure the colours red, green and blue are used to indicate a pair of legs which are
rotating together and which should be in contact with the ground. The white legs are the
legs which are in the air.

Figure 3-11: The theoretical gait progression in a tetrapod gait as used by Suriana. The separate
leg groups which move synchronously are indicated with colours.

The problem with Suriana’s assumption is that four-legged contact does not always occur.
Rather, the Zebro pitches and rolls due to differences in hip heights for the legs in C, causing
one leg to be in the air, which according to Suriana should be in contact. This is shown in
Figure 3-12, in which the legs are coloured as in the convention in Figure 3-11.
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Figure 3-12: Two possible contact states within one “step” of the tetrapod gait. Left: C =
{2, 5, 6}, right: C = {2, 3, 6}.

Instead of the progression shown in Figure 3-11, through simulation with the previously
mentioned contact detection algorithm the following contact state progression was found.

{2, 5, 6} → {2, 3, 6} → {1, 3, 4, 6} → {1, 4, 5} → {2, 4, 5} → {2, 5, 6} (3-33)

3-5-4 Contact transitions in a tripod gait

In a tripod gait there are two leg pairs which move synchronously: {1, 4, 5} and {2, 3, 6}. If
it is assumed that there is no pitching of the body, which is a reasonable assumption for the
tripod gait, then these leg pairs will always undergo a contact event together.

Generally in robot dynamics, contact is modelled as a kinematic constraint [20]. If pc is the
position of contact, it is not allowed to move anymore:

pc = constant (3-34)
ṗc = Jcq̇ = 0 (3-35)
p̈c = Jcq̈ + J̇cq̇, (3-36)

where Jc is the geometric Jacobian of the contact point. The problem with this contact model
in the case of the Zebro is that it does not allow for any slippage, since slip is by definition
movement of the contact point.

A different method of incorporating contact into the dynamic model of the Zebro was used,
namely a simple hybrid automaton in which two contact sets Ci and Co can change discretely.
Ci is the set of legs in contact with the ground on the inner side of the Zebro and Co is the
set of legs in contact with the ground on the outer side of the Zebro. A left turn is used in
the theory in this thesis, so the legs on the inner side are 1, 3, 5 and the legs on the outer side
are 2, 4, 6. The set of all legs in contact with the ground is C = Ci ∪ Co.

Let żi be the vertical velocity of the inner side of the Zebro and żo the same for the outer
side. These velocities are shown in Figure 3-14. The parameter zh,i is the vertical distance
between a leg’s potential contact point and its hip, shown in Figure 3-13. The following
table describes the discrete transition in the contact state and at which condition this occurs.
Essentially, contact is detected separately per side by looking at the hip heights of the legs in
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flight and comparing them to the legs in contact. These hip heights are found kinematically
in the following section.

Transition Condition Reset
Ci = {1, 5} → Ci = {3} 1

2(zh,1 + zh,5) > zh,3 żi = żh,3

Ci = {3} → Ci = {1, 5} zh,3 >
1
2(zh,1 + zh,5) żi = 1

2(żh,1 + żh,5)

Co = {2, 6} → Co = {4} 1
2(zh,2 + zh,6) > zh,4 żo = żh,4

Co = {4} → Ci = {2, 6} zh,4 >
1
2(zh,2 + zh,6) żo = 1

2(żh,2 + żh,6)

Table 3-1: The table shows the condition which causes a hybrid state transition to occur. Each
transition also incurs a reset of the velocity of the side of the Zebro undergoing a transition. This
is essentially the vertical velocity of the body changing discretely as the Zebro “bounces” up and
down.

3-5-5 Leg kinematics: hip height and its vertical velocity

Calculating the height of hip i is done using some trigonometry. Figure 3-13 shows the hip
height in the leg’s sagittal plane, so a multiplication with cos θr is required to account for the
rolling angle of the body.

Rolling-contact: zh,i = (r + r cosφmin,i) cos θr
Toe-contact: zh,i = 2r cosφmin,i cos θr

(3-37)

Its velocity is simply the time derivative of Eq. (3-37). Note that the assumption θ̇r ≈ 0 is
made, because in a tripod gait the rolling velocity should be minimal.

Rolling-contact: żh,i ≈ −rφ̇min,i sinφmin,i cos θr
Toe-contact: żh,i ≈ −2rφ̇min,i sinφmin cos θr

(3-38)

The acceleration is the time derivative of Eq. (3-38). Note that it is assumed that φ̈min,i ≈ 0
since θ̈i = 0.

Rolling-contact: z̈h,i ≈ −rφ̇2
min,i cosφmin,i cos θr

Toe-contact: z̈h,i ≈ −2rφ̇2
min,i cosφmin cos θr

(3-39)
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Figure 3-13: The vertical distance between the hip and the lowest point on a leg is shown for
both the rolling and toe-contact cases.

3-5-6 Body kinematics: vertical velocity of the body and its roll angle

Using kinematics for the vertical displacement and velocity of the body was deemed accept-
able, because the main problem with Suriana’s kinematic model was the effect of slip, which
only has an effect on the body’s horizontal velocity parallel to the ground and not the vertical
component. It is simply impossible for slip to occur vertically.
The body’s vertical position, velocity and acceleration are shown in the following equation.
The expressions for zi, zo, żi, żo, z̈i and z̈o can be found in the Equations (3-37) to (3-39).
Since the body’s CoM is in the middle between the inner and outer side, the vertical position,
velocity and acceleration of the CoM is simply the average between the two sides.

zb = zo + zi

2 , żb = żo + żi

2 , z̈b = z̈o + z̈i

2 (3-40)

The angle θr can also be found kinematically.

w sin θr = zi − zo, θ̇rw cos θr = żi − żo (3-41)

The values for z̈b and θ̇r will be important in Section 4-4-2.

Figure 3-14: The roll angle θr is shown in red. This angle arises due to a difference in height
between the inner and outer side.
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3-6 Summary

Four coordinate frames have been defined: inertial, body, hip and contact. Each of which has
a homogeneous transformation to translate a point in one frame to the next. This way, the
point [0, 0, 0]T in the C-frame (the position of contact) can be expressed in inertial coordi-
nates. Two leg states have been used: Rolling-contact and Toe-contact, each with a different
transformation between the Hip frame and the Contact frame. The state which a leg is
currently in is a function of φmin where

tan(φmin,i) = 1 + tan θi(tan θr sin θy − tan θp cos θy)
tan θi − (tan θr sin θy − tan θp cos θy)

. (3-42)

If φmin,i ≥ 0 then leg i is in rolling-contact and if −π
2 ≤ φmin,i < 0 then leg i is in toe-contact.

Hip-contact is also a possible state but is ignored throughout this thesis since it is assumed
the body will never touch the ground.

A set of conditions for touchdown and lift-off detection were found by checking if the body’s
CoM is within the contact polygon, resulting in an explanation for the wobbling in the
tetrapod gait and the prediction that the contact state progression in the tetrapod gait is as
follows.

{2, 5, 6} → {2, 3, 6} → {1, 3, 4, 6} → {1, 4, 5} → {2, 4, 5} → {2, 5, 6} (3-43)

Finally, a simpler contact transition algorithm was described for the tripod gait. Since mini-
mal wobbling is expected for the tripod, the contact state transitions are simpler to predict
and can be modelled using a hybrid automaton where a transition occurs as soon as the hip
height of the leg(s) in the air on one side exceeds the hip height of the leg(s) on the ground
on that same side. This is followed up with some of the kinematics used to find these hip
heights, as well as the kinematically determined vertical acceleration of the body.
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Chapter 4

Dynamics of the Body

4-1 Introduction

A dynamic model is a set of equations of motion that govern how a system moves. To model
the Zebro, one must derive an equation that calculates the accelerations of the body as a
result of the forces acting upon the body. This is also known as “forward dynamics”, as
opposed to inverse dynamics which is used to calculate the forces using known accelerations.
A dynamic model differs from a kinematic model since kinematics concerns itself with the
geometry and velocities of a body, rather than forces and torques. In a dynamic model one
can incorporate aspects which have been previously ignored in kinematic models such as slip,
gravity and contact forces.

Contact forces are introduced in Section 4-2, which are subsequently used in the Newton-
Euler framework in Section 4-3. Next, a model for the weight distribution of the Zebro is
looked at, since this gives a good indication of the forces acting on a leg.

Next, in Section 4-5 a model for traction forces is given, namely “Pacejka’s magic formula”.
Generally, this model is used for car tyres, so it is altered slightly to be applicable to the
Zebro’s half-circular legs.

Finally, in Section 4-6 the experimental setup for identifying the slip model mentioned previ-
ously is explained. This is an experiment which was designed and performed in conjunction
with a separate research group at the TU Delft who wrote the following report on their re-
sults: [21]. Data gathered by myself casts some doubt on the accuracy of the results in [21],
but improving their model is left for future work since the experimental setup was no longer
available for more sophisticated experiments.

Master of Science Thesis F.P. Erkelens



38 Dynamics of the Body

4-2 Contact forces

Where there is contact, there is a contact force present. Let the contact force vector exerted
by the ground on leg i be Fc,i which is equal to

[
0 0 0

]T
if i /∈ C.

IFc,i =

Ifx,iIfy,i
Ifz,i

 for i ∈ C (4-1)

Figure 4-1: The general contact force in the inertial frame is shown in red.

In the contact coordinate frame C these forces can be given a more physical context, namely:
the normal force and the traction force. The normal force is the force perpendicular to the
ground and the traction force is the force produced by rotating or sliding over the ground.
The traction force consists of two components, the longitudinal traction which is in the CX-
direction and the lateral traction which is in the CY -direction.

CFc,i =

flon,iflat,i
fn,i

 (4-2)

Both flon,i and flat,i are functions of fn,i, which is a topic that will be explored into further
detail in Section 4-5-2. For now, suffice to say

flon,i = Plon(fn,i) and flat,i = Plat(fn,i) (4-3)
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Figure 4-2: In the Ci frame, the contact force can be split up into a normal force, a lateral
traction force and a longitudinal traction force.

4-3 Newton-Euler framework

The Newton-Euler framework is a method of obtaining the equations of motion by separately
evaluating the linear and rotational dynamics. Since the Zebro is assumed to be a cuboid
with mass mb and massless legs, no complicated multibody dynamics is required. Instead,
the Zebro is analysed as a single rigid body with several forces applied at the contact points.

4-3-1 Newton’s equation

The linear dynamics of a body is simply the forces acting on it equated with the accelerations
of the body multiplied by the mass.

F = ma (4-4)

The vector F is the sum of all the forces acting on the body, which is essentially the sum of
all the contact forces in the inertial frame minus the weight of the body. The vector a is the
acceleration of the body’s Centre of Mass in the inertial x-, y- and z-direction.

∑
i∈C

(IFc,i)−

 0
0
mbg

 =

mbẍb
mbÿb
mbz̈b

 (4-5)

4-3-2 Euler’s equation

Euler’s equation deals with the rotational dynamics of a rigid body. Let M be the moments
acting on the body, Ib be the body’s inertia tensor and ω be the rotational velocity of the
body.

M = Ibω̇ + ω × (Ibω) (4-6)
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The moment acting on the body is simply the summation of the cross products of the distance
from the body’s CoM to the contact point and the force acting on the body at said contact
point.

M =
∑
i∈C

(
(Ipc,i − Ipb)× IFc,i

)
(4-7)

Substituting Eq. (4-7) and some of the generalised coordinates into Eq. (4-6) leads to the
following equation for the Zebro’s rotational motion [22].

∑
i∈C

(
(Ipc,i − Ipb)× IFc,i

)
= Ib

θ̈rθ̈p
θ̈y

+

θ̇rθ̇p
θ̇y

×
Ib

θ̇rθ̇p
θ̇y


 (4-8)

The inertia tensor of a cuboid is

Ib =

Ixx 0 0
0 Iyy 0
0 0 Izz

 (4-9)

where Ixx = mb(w2 + h2)/12, Iyy = mb(l2 + h2)/12 and Izz = mb(w2 + l2)/12, with w, l and
h the dimensions of the body as shown in Figure 1-2.

4-3-3 General form equations of motion

The general form for equations of motion of a legged robot, as given in [20], is

M(q)q̈ + b(q, q̇) + g(q) = τ (4-10)

where τ is a vector containing the forces and moments on the system, M(q) is a generalised
orthogonal mass matrix, b(q, q̇) contains the Coriolis terms and g(q) is the gravitational term.

To arrive at this form, combine Eq. (4-5) and Eq. (4-8) as shown in Eq. (4-11).


mbI3 0T 0 · · · 0
0T Ib 0 · · · 0
0T 0T 0 · · · 0
...

...
... . . . ...

0T 0T 0 · · · 0


︸ ︷︷ ︸

M



ẍb
ÿb
z̈b
θ̈r
θ̈p
θ̈y
θ̈1
...
θ̈6


︸ ︷︷ ︸
q̈

+



0
0
0

θ̇pθ̇y(Izz − Iyy)
θ̇rθ̇y(Ixx − Izz)
θ̇pθ̇r(Iyy − Ixx)

0
...
0


︸ ︷︷ ︸

b

+



0
0
g
0
0
0
0
...
0


︸︷︷︸
g

=



∑
i∈C(IFc,i)∑

i∈C

(
(Ipc,i − Ipb)× IFc,i

)
0
...
0


︸ ︷︷ ︸

τ

(4-11)
Solving this equation to find the body’s accelerations is a simple case of rearranging.

q̈ = M−1(q) (τ − b(q, q̇)− g(q)) (4-12)
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There are a lot of redundant zeroes in M in Eq. (4-11) which can be ignored to simplify the
expression by temporarily using q∗ instead of q.

q∗ =
[
xb yb zb θr θp θy

]T
(4-13)

[
mbI3 0

0 Ib

]
︸ ︷︷ ︸

M



ẍb
ÿb
z̈b
θ̈r
θ̈p
θ̈y


︸ ︷︷ ︸
q̈∗

+



0
0
0

θ̇pθ̇y(Izz − Iyy)
θ̇rθ̇y(Ixx − Izz)
θ̇pθ̇r(Iyy − Ixx)


︸ ︷︷ ︸

b

+



0
0
g
0
0
0


︸︷︷︸
g

=
[ ∑

i∈C(IFc,i)∑
i∈C

(
(Ipc,i − Ipb)× IFc,i

)]
︸ ︷︷ ︸

τ

(4-14)

The only information missing which prevents the body’s accelerations from being calculated
are the contact forces Fc,i for i ∈ C. How these forces are estimated is handled in the following
section.

4-4 Weight distribution estimation

To estimate the normal force on a leg, one can start by finding the weight distribution over
the legs. If the contact point of a leg j is closer to the body’s CoM than the contact point of
leg k, then it makes sense that leg j is carrying more of the robot’s weight than leg k. Exactly
how much more can be estimated using geometry.

Let the line rij be the vector from contact point i to contact point j. Let dk be the perpen-
dicular distance from contact point k to the line rij , where i 6= j 6= k. Finally, dBk is the
distance from the body’s centre of mass to the line rij . Figure 4-3 shows an example in which
i = 1, j = 4 and k = 5.

In static equilibrium, the moment exerted by the normal force on leg 5 (fn,5) around rij
should be equal to the moment exerted by the Zebro’s weight. Of course, when walking the
Zebro is certainly not in static equilibrium, but this gives a reasonable estimate from which
a minimisation function can be used to get a more accurate solution. This is covered in
Section 4-4-2.

f̂n,kdk = mgdBk (4-15)

Master of Science Thesis F.P. Erkelens



42 Dynamics of the Body

Figure 4-3: Bird’s eye view of the Zebro showing the points of contact in red and the CoM as a
black marker in the middle.

4-4-1 Distance between a point and a line defined by two points

Let the inertial x-coordinate of contact point i be xi and the inertial y-coordinate of contact
point i be yi. The distances dk and dBk can be found using the following equations [23].

dk = |(yj − yi)xk − (xj − xi)yk + xjyi − yjxi|√
(yj − yi)2 + (xj − xi)2

(4-16)

dBk = |(yj − yi)xb − (xj − xi)yb + xjyi − yjxi|√
(yj − yi)2 + (xj − xi)2

(4-17)

Rearranging Eq. (4-15) and substituting dk and dBk allows for finding an initial estimate for
the normal force on leg k, as long as legs i, j and k are in contact with the ground.

f̂n,k = mgdBk
dk

(4-18)

4-4-2 Using an optimisation function to improve the estimate

It has already been established that the traction force on a leg is some function of the normal
force, flon,i = Plon(fn,i). This function will be discussed later in Section 4-5-2. Using the
initial estimates for fn,i as found using Eq. (4-18) is not sufficient since these values are
calculated under the premise of static equilibrium. As shown in Figure 4-4 the traction forces
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on the legs will cause a pitching moment on the body, similar to how a motorcycle performs
a wheelie.

This incorrect pitching moment M̂p can be calculated as

M̂p =
∑
i∈C

(
f̂n,ixi + f̂lon,izb

)
(4-19)

where xi is the x-coordinate of the contact point in the B-frame. Figure 4-4 shows the case
in which C = {1, 4, 5}. The rolling moment can be calculated similarly,

M̂r =
∑
i∈C

(
f̂n,iyi + f̂lat,izb

)
(4-20)

where yi is the y-coordinate of the contact point in the B-frame. This can be taken a step
further by using the current estimates for fn,i in the Newton-Euler equations of motion in
Eq. (4-14) resulting in an acceleration vector ˆ̈q. Any unwanted behaviour can now be filtered
out by optimising f̂n,i such that ˆ̈q conforms to some constraints unique to the tripod gait.

The tripod gait constraints are

• Pitching speed θ̇p = 0 because the front and back legs of each side move in unison

• Rolling speed θ̇r is kinematically determined in Section 3-5-6

• The sum of the normal forces is equal to mbz̈b + mbg, where z̈b is kinematically deter-
mined in Section 3-5-6

Note that these constraints are actually on the generalised velocity q̇, whereas q̈ is calculated
in the equations of motion. However, since q̇(t− dt) is known, q̇(t) can be found.

q̇(t) = q̇(t− dt) + q̈dt (4-21)

To optimise the estimates f̂n,i, the following function must be minimised. the values of f̂n,i
for which the equation Eq. (4-22) is 0, are the values which can be used.

arg min
f̂n,i for i∈C

(
(ˆ̇θp − θ̇p)2 + (ˆ̇θr − θ̇r)2

)
s.t.

∑
i∈C

f̂n,i = mbz̈b +mbg
(4-22)
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Figure 4-4: The contact forces are shown in red, along with the x coordinates in the B frame
of the contact points. The forces clearly produce a pitching moment.

4-5 Slip model

Slip is essentially a velocity difference between two surfaces, resulting in a traction force from
the friction. The slip between a Zebro’s leg and the ground plays a huge role in determining
the dynamics of the Zebro, and for this reason a separate Bachelor’s thesis was tasked with
performing an experiment which would help identify a model for the Zebro’s slip. Their results
are pivotal to this thesis. It has been mentioned in the previous chapter how flon = Plon(fn)
and flat = Plat(fn). The aim of this chapter is to determine those functions Plon and Plat.
First, the standard slip model used in most engineering applications, Pacejka’s magic formula,
is introduced in Section 4-5-1. This model is specifically for tyres, so in Section 4-5-2 an
analogous version of Pacejka’s parameter κ is found for the Zebro’s half-circular leg. In
the following sections the experiment that was conducted is introduced and the results and
limitations of it are discussed.

4-5-1 Pacejka’s magic formula and quantifying the slip of a tire

Two types of slip are described by Pacejka [24]: longitudinal and lateral slip. Longitudinal
slip acts in the sagittal plane and can be imagined more colloquially as “wheel spin”, whereas
lateral slip is perpendicular to the sagittal plane and can be seen when a car is drifting around
a corner. When slip occurs a traction force arises because of the friction between the wheel
and the ground. Pacejka’s magic formula is often used to estimate this traction force.

Magic formula

In many engineering cases, Pacejka’s magic formula suffices for an estimation of the longitu-
dinal and lateral traction forces present due to slip. For the longitudinal force a slip ratio κ
is required which can be found in Section 4-5-1.

flon = D sinC arctan(Bκ− E(Bκ− arctan(Bκ))) (4-23)
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The formula for the lateral force is very similar, except a slip angle α is required this time.
The angle is calculated in Section 4-5-1.

flat = D sinC arctan(Bα− E(Bα− arctan(Bα))) (4-24)

The parameters B,C,D and E can all be inferred from a slip curve which looks like the left
image in Figure 4-5, using a step-by-step process [21]. On the right image it is shown how
the parameters D, xm and ya are found in the curve. As for the rest of the parameters:

C = ±
(

1− 2
π

arcsin ya
D

)
(4-25)

next, B can be found using C and the slope H at κ = 0.

B = H

CD
(4-26)

Lastly, E is found using B, C and xm.

E =
Bxm − tan( π2c)

Bxm − arctan(Bxm) (4-27)

After completing these steps, Eq. (4-23) and Eq. (4-24) can be used as a model for traction
forces.

Figure 4-5: An example of a general slip curve for a tire. From [25].

Longitudinal slip

Figure 4-6 is used in [24] to define longitudinal slip. It shows a wheel of radius r and angular
velocity Ω rolling over the ground. The wheel has a forward velocity horizontal to the ground
of Vx. Point S is the point at which contact occurs and has a horizontal velocity Vsx shown
in Eq. (4-28).

Vsx = Vx − rΩ. (4-28)
The longitudinal slip is quantified by the slip ratio, κ, and is defined as the ratio between the
negative velocity of S and the forward velocity of the wheel.

κ = −Vsx
Vx

= rΩ− Vx
Vx

(4-29)
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Figure 4-6: Side view diagram of a tire slipping longitudinally on a flat surface. Adapted from
[24].

Lateral slip

Lateral slip is defined as the ratio of the lateral velocity of the contact point and its longi-
tudinal (forward) speed. An image similar to Figure 4-7 was used in [24] to illustrate lateral
slip. A rolling tire can be seen from above. If it was rolling without lateral slip, it would be
moving in nthe x direction, however, the velocity of the wheel’s centre, Vc, is clearly not on
the x axis. This implies there is some sliding in the negative y direction and, as a result of
friction, a traction force Fy.

The angle used to quantify lateral slip is α and can be calculated as in Eq. (4-29). Note that
Vx is the same horizontal velocity shown in Figure 4-6.

tanα = −Vsy
Vx

(4-30)

Figure 4-7: Bird’s eye view diagram of a tire slipping laterally on a flat surface. Adapted from
[24].
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4-5-2 Quantifying the slip of a half-circular leg

Having shown how to calculate κ and α for a tire, the same must now be done for the Zebro’s
half-circular legs. Doing this results in two complications.

1. The velocity of the contact position is not as trivial to calculate as with a tire due to
the leg’s shape

2. Contrary to a tire, a leg in toe-stance has 0% slip if the contact position is stationary

In the following two sections both the rolling-contact and toe-contact states are considered.

Slip ratio in rolling stance

Two scenarios are shown in Figure 4-8. On the left, where κ ≈ 0, a case in which almost
no slip occurs is shown. The leg can be seen rolling over the ground normally. In the
image on the right the case where κ → ∞ is shown. Here the leg appears to remain almost
stationary, despite the fact that it is rotating. One can deduce from these two scenarios that
the quantifiable characteristic of slippage is the difference between the distance covered over
the ground and the length of the arc covered over the leg by rolling. If the leg arc covered is
equal to the distance covered over the ground then the leg is rolling perfectly without slip. If
the leg arc covered is non-zero whereas the distance over the ground is 0, the leg is spinning
over the ground without any traction.

To summarise: if κ ≈ 0 then x′c − xc ≈ larc and if κ→∞ then x′c − xc → 0, where the points
xc and x′c are shown in Figure 4-8.

Figure 4-8: Scenarios κ ≈ 0 and κ ≈ ∞ are shown for a leg in rolling stance. The contact
positions are marked in red and referred to as xc.

Let the horizontal speed of the contact point be vR and the speed at which the contact point
moves along the ground be vC . Respectively, these speeds are analogous to rΩ and Vx in
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Eq. (4-29), resulting in the following slip ratio formula.

κR = vR − vC
vC

(4-31)

To confirm, the two extreme cases can be checked: if vR = vC then κ = 0 and if vC → 0 then
κ→∞, aligning with the expectations from Figure 4-8.
Calculating the horizontal velocity of the leg’s minimum requires some geometry to show that
∠BCA = φmin/2 and ∠CAB = φmin/2 in the left diagram in Figure 4-9. The distance from
the hip to the contact is therefore l = 2r cos(φmin/2). With the leg rotating clockwise with
velocity −φ̇min, the horizontal speed of the leg’s minimum (point C) is the following.

vR = −φ̇minl cos(φmin/2) = −2φ̇minr cos2(φmin/2) (4-32)

Figure 4-9: Triangle ABC is isosceles since two sides are of length r, therefore implying that
∠BCA = ∠CAB. Since ∠ABC = π − φmin the other angles in the triangle must be φmin/2.

Recall that φ̇min is negative for forward walking, hence the negative expression in Eq. (4-32).
The expression for φ̇min is given in Section 3-4-2
The value of vC is found using the current linear and rotational velocity of the body as well
as the position of the contact point in the inertial frame, Ipc. This position is calculated with
the transformations found in Section 3-3.

[
Ipc
1

]
= HI

BH
B
HH

H
C


0
0
0
1

 (4-33)

The velocity of this point is found in the following equations.
I ṗc = I ṗb + θ̇b × (Ipc − Ipb) (4-34)

Since vR is expressed in the C-frame, the same should be true for vC . This is done by rotating
with a matrix RCI . C ẋcC ẏc

C żc

 = RCI
I ṗc (4-35)

Where vC = C ẋc and RCI = (RIBRBHRHC )−1 as found in Section 3-3.
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Slip ratio in toe stance

The toe stance case will now be considered. See Figure 4-10 for a diagram of the two important
scenarios. If there is almost no slip (κ ≈ 0) one would expect the toe to remain almost
stationary as the hip rotates around it. On the other hand, if there is a lot of slip, one would
expect the toe to be sliding backwards and the hip to be moving almost vertically downwards.
This poses a slight problem since this scenario is not comparable to a slipping tire in which
the exact opposite is true: a stationary contact point usually means κ→∞.

Figure 4-10: Scenarios κ ≈ 0 and κ ≈ ∞ are shown for a leg in toe stance. The contact
positions are marked in red and referred to as xc.

Two conditions can be used to deduce a valid heuristic for κ. The speed vH is the horizontal
speed of the leg’s hip, whereas vT is the horizontal speed of the toe due to the leg’s rotation.
See Figure 4-11 for an illustration.

1. As vH → 0, κ→∞

2. As (vT − vH)→ 0, κ→ 0

An expression for κ which satisfies both conditions is given in Eq. (4-36).

κT = vT − vH
vH

(4-36)

Consider the leg floating in space rather than touching the ground. It is rotating about the
hip with speed −φ̇min, which results in a tangential velocity magnitude of −2rφ̇min. In the
horizontal direction this gives the following result for vT .

vT = −2rφ̇min cos(φmin) (4-37)
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Figure 4-11: Horizontal contact velocity and body velocity shown for the toe stance. For 0%
slip, the two should cancel each other out such that the toe is stationary.

The hip’s horizontal velocity vH is found using the transformations from Section 3-3. Since
the Zebro’s hips are attached in a rigid body, their velocities are simply the summation of
body’s velocity itself and a rotational component.

I ṗh = I ṗb + θ̇b × (Iph − Ipb) (4-38)

Or, written out as matrices:I ẋhI ẏh
I żh

 =

ẋbẏb
żb

+

θ̇rθ̇p
θ̇y

× (
IxhIyh
Izh

−
xbyb
zb

). (4-39)

Finally, notice that vT is purely in the x direction of the C-frame, so vH should also be
expressed in this same frame. C ẋhC ẏh

C żh

 = RCI

I ẋhI ẏh
I żh

 (4-40)

Where vH = C ẋh and RCI = (RIBRBHRHC )−1 as found in Section 3-3.

4-5-3 Model for the lateral traction force

The slip angle α is calculated exactly the same as in Pacejka’s model, so

tanα =
C ẏc
C ẋc

(4-41)

with C ẋc and C ẏc found as in Eq. (4-35). However, during the model identifying stage, no
experiments were performed to determine the lateral slip model. To solve this problem it was
decided to use the general magic formula for longitudinal slip, but replace κ with a function
of α to give a realistic result.
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A heuristic which was deemed valid is to compare the lateral slip to longitudinal slip by
assuming a slip angle α = π/2 is equivalent to a slip ratio of κ = 1 and a slip angle of α = 0 is
equivalent to a slip ratio of κ = 0, resulting in the following formula for the lateral slip ratio
κα.

κα = α

π/2 (4-42)

This value is then used in the general magic formula from Eq. (4-23) to estimate the lateral
traction force.

4-6 Experimental setup for determining the longitudinal slip curve

The experimental setup used was designed in conjunction with a separate research group [21].
The experiment aimed to model a leg rolling over the ground, whilst measuring the traction
force produced by this action. Two rotating discs of differing diameters and materials were
used; the smaller disc represents a leg and is made of the same material as the Zebro’s leg,
and the larger disc represents the ground and has an outer layer of the same material as the
ground. The ground-disc is given a radius significantly larger than the leg-disc to reduce the
curvature at the contact point and simulate a flat surface [21]. Figure 4-12 shows a simple
diagram of the experiment. On the left the two discs are shown, whereas on the right their
physical representations are depicted.

(a) A vertical depiction of the test setup showing the
leg disc on top and the ground disc on the bottom.

(b) A physical representation of the setup shown in
Figure 4-12a.

Figure 4-12: A side-by-side comparison of the test setup and the physical scenario it is supposed
to represent.
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The actual way in which the experiment was built and conducted can be seen in Figure 4-13.
The two discs are mounted to a base and a threaded shaft is used to push the “leg” into the
“ground”, simulating the weight of the Zebro. Results are obtained for a range of different
weights.

The goal of the experiment is to plot the traction force against the slip ratio, producing the
well-known slip curve. In order to achieve this, the slip ratio is varied between 0 and 1 by
controlling the angular velocities of the discs whilst the forces on the “ground” are being
measured using a Schunk FTS-Delta SI-330-30 load cell. The motors are kept at a constant
speed with a simple PD controller.

Let the angular velocity of the smaller disc be ωl and the angular velocity of the larger disc
be ωg. They have radius rl and rg respectively. The linear velocities of the two discs at the
contact point are

vl = ωlrl, vg = ωgrg (4-43)

making the slip ratio at the contact point

κ = ωlrl − ωgrg
ωlrl

. (4-44)

Figure 4-13: A schematic diagram of the experiment setup in the configuration in which it was
manufactured.

4-6-1 Results of the experiment

Four datasets have been plotted in Figure 4-14, each with a different normal force Fn. The
top-left plot is for Fn = 2.13 N, top-right is for Fn = 6.63 N, bottom-left is with Fn = 8.13 N
and finally, the bottom-right plot is for Fn = 12.75 N. Using these results the following values
for B and C were calculated using the method outlined in Section 4-5-1.

B = 34.34 and C = 1.564 (4-45)
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Figure 4-14: Four different experiments performed. Top-left: Fn = 2.13 N, top-right: Fn = 6.63
N, bottom-left: Fn = 8.13 N and bottom-right: Fn = 12.75 N.

4-6-2 Limitations of the experiment

A noticeable problem with the experimental setup was the imperfect circular shape of the
discs, most notably the ground-disc, which had a visible bump despite having to simulate a
flat ground. This bump caused significant fluctuations in Fn which in turn caused fluctuations
in Ft, making the results unreliable.

To make use of this problem and turn it into an advantage, an experiment was conducted in
which κ was kept as constant as possible, and Fn and Ft were recorded and plotted against
time. This meant that the fluctuations in Fn and Ft did not affect the result, since they are
both being recorded. Doing this for several different slip ratios yielded a lot of data which
was filtered and plotted in order to create a three-dimensional slip curve.
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Figure 4-15: Three dimensional plot of the normal force against traction force for 62 separate
values for κ.

It turns out that when plotting the curve produced by Pacejka’s magic formula provided in
[21], the results in Figure 4-15 do not match well with the model, casting significant doubt
on the identified model.

Figure 4-16: The independently found data compared with the previously identified magic for-
mula model.
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An important feature which was missing from the experiment was the possibility to record
the velocities of the discs. Due to the fluctuations from the bump, the velocities would vary
a lot, making the calculated value of the slip ratio unreliable. If the velocities were recorded,
one could calculate the slip ratio instantaneously and plot this against the traction force,
giving much more accurate results.

4-7 Summary

The following block diagram should give a concise overview of how the components outlined
within this chapter should interact with each other to form a complete model of the system.
The blocks Contact Detection and Kinematics were discussed in Chapter 3, but the others
are mentioned in this chapter.

To summarise, kinematic equations of the body are applied to find the velocities of certain
points on the legs in C which are used to find the longitudinal and lateral slip parameters κ
and κα. Two different formulas for the leg’s longitudinal slip ratio are applicable. Which one
is chosen depends on the leg’s state of either rolling-contact or toe-contact. In rolling-contact,
the formula for κR, as found in Eq. (4-31), is used, whereas in toe-contact, the formula for
κT is used.

The vertical acceleration of the body is also found kinematically and inverse dynamics are
used to estimate the vertical contact forces at the contact points which would result in this
acceleration (Fc from the Inverse Dynamics block). These contact forces were initially esti-
mated using a weight distribution model in Section 4-3 and then optimised such that the forces
would produce a vertical motion equal to the kinematically determined vertical acceleration.

This contact force estimation, along with the slip parameters, results in the traction force
at the contact point (Ft from the Traction Model block) using Pacejka’s magic formula in
Section 4-5-1 whose parameters were found experimentally using the setup in Section 4-6.
Both the vertical contact force and the traction force are used in the Forward Dynamics
block to produce the generalised accelerations of the body, q̈, which is the final result of the
model.

Figure 4-17: Block diagram containing each component of the model.
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Chapter 5

Simulations

5-1 Introduction

In this chapter, Section 5-2 shows the approach used to apply Suriana’s max-plus gait to the
dynamic model. The new turning algorithm from Section 2-6 is also modelled using the same
dynamic model, showing a perfectly circular path in Section 5-3. It should be mentioned that
due to current events at the time of writing, regarding COVID-19, any experiments to validate
the model are unfortunately not possible. This will be left for further research. Instead, a
more qualitative approach to experimentation is taken to give a rough idea of the quality of
the results in Section 5-4, using photographs taken of the Zebro in motion.

To conclude this chapter, in Section 5-5 a first look is taken at modelling the more complicated
tetrapod gait, which has been difficult to model due to the complicated “wobbling” motion
observed when walking. This motion is modelled using kinematics, paving the way for a
future dynamic model of walking in the tetrapod gait.

5-2 Simulating the max-plus algorithm

Suriana’s switching max-plus algorithm was not available, so a different approach to model
his gait was required. Following the theory in his thesis, a similar gait was designed, without
the use of max-plus.

5-2-1 Modelling the leg speeds

The three parameters used in the max-plus algorithm were τg, τf and τp. The parameter τp is
used to control how much the Zebro steers. The legs on the inner side spend τg + τp seconds
on the ground and τf seconds in the air, whereas the legs on the outside spend τg seconds on
the ground and τf + τp seconds in the air.
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Using the touchdown and lift-off angles that Suriana chose, the following formulas for the
inner and outer leg velocities can be used to roughly emulate his max-plus algorithm.

θ̇ig = θLO − θTD
τg + τp

(5-1)

θ̇og = θLO − θTD
τg

(5-2)

θ̇if = 2π − (θLO − θTD)
τf

(5-3)

θ̇of = 2π − (θLO − θTD)
τf + τp

(5-4)

These leg speeds were implemented in the model, with legs switching from flight to ground
speed when contact is detected, and vice versa.

5-2-2 Simulating straightforward walking

Five seconds of straightforward walking, with τp = 0 were simulated. The results in Figure 5-
1 show the expected straight line for the path and a total distance covered of roughly one
metre. Unfortunately, there is no way to validate this, but watching the Zebro walk for five
seconds gives the impression that this could be realistic.

Taking a look at Figure 5-2, some behaviours which are to be expected can be confirmed. For
example, the velocity of the body in the x direction shows a sort of asymmetrical parabola
with maximums at the point where the legs are at angle π/2, and the largest x velocity is
to be expected. Again, this cannot be confirmed experimentally, but analytically this makes
sense.

Figure 5-1: Five seconds of straightforward walking using τg = 0.4 and τf = 0.3
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Figure 5-2: The position, velocity and acceleration of the body during 5 seconds of straightfor-
ward walking.

5-2-3 Comparison with real world experiment

In order to perform realistic experiments with the Zebro it was important to choose the right
values for the the touchdown and lift-off angles. Recall that the lift-off angle is used as a free-
to-choose input to the Zebro software, despite it being a physically determined parameter.
Finding the ideal lift-off angle which results in touchdown and lift-off at the same time was
an iterative process of measuring the hip height at certain angles, until the hip height at
touchdown matches the hip height at lift-off.

The touchdown angle was kept the same for both the simulation and the actual robot at 50°.
Eq. (2-17) results in a theoretical lift-off angle of 118° which served as an initial guess for
the actual measured lift-off angle. This turned out to be 130°. The reason for the disparity
between the theoretical value and the actual value is the fact that the Zebro’s leg is slightly
more than a half-circle, actually spanning an angle of roughly 200°, rather than the 180°
which has been assumed for the model. This effect is displayed in Figure 5-9.

It was noted by Suriana that the middle left leg’s angle was smaller by five degrees than
expected [10], so an offset array was introduced in the software to ensure that the desired
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position sent to the motor can be calibrated.

The Zebro was placed at a starting point and was made to walk in a straight line with
τg = τf = 1. A set of photographs was merged together to give an indication of the robot’s
path during the experiment.

Figure 5-3: Simulated straightforward walking with τg = 1 and τf = 1 next to actual results.
Snapshots were taken at t =0s, 4s, 8s, 14s.

5-2-4 Simulating turning

Using the parameters τp = 0.1, τg = 0.8 and τf = 0.8, as well as a touchdown angle θTD = 35°
and lift-off angle θLO = 130°, 4.8 seconds of turning was simulated and produced a clear turn
to the left as expected. Unfortunately, due to problems in the Zebro’s software, this test was
not performed on the actual robot.
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Figure 5-4: 4.8 seconds of turning using τp = 0.1, τg = 0.8 and τf = 0.8

The generalised coordinates x, y, z, θr, θp and θy and their speeds were recorded and plotted
against time, resulting in the graphs shown in Figure 5-5. Important to notice here is the
strange behaviour when a touchdown or lift-off event occurs causing the robot to accelerate
unexpectedly. This can be seen very clearly in the graph of the yaw angle. This result
implies that due to the unsmooth contact transition in the max-plus gait, the model handles
transition incorrectly. It is therefore important to test the new turning algorithm since it
guarantees a smooth contact transition.

Figure 5-5: The position and velocity of the body, as well as the orientation plotted against time
during 4.8 seconds of walking.
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5-2-5 Key insights

A number of key insights were noted. Firstly, the contact state transitions occur as expected,
with the touchdown of one leg group coinciding exactly with the lift-off of the other leg group,
resulting in a smooth motion. That being said, in the Zebro’s software the leg angle is only
accurate to 3.6°, since the angle is defined by an integer from 0 to 100. This leaves room for
improvement when prescribing the touchdown and lift-off angles.

A second point is the distance travelled along the ground. The simulated image and the
photograph show a remarkably similar distances travelled between each snapshot. This is
likely a lucky coincidence, since the slip model was not identified using the same floor material
as in the photograph, but it does give an indication of promising results.

5-3 Simulating the novel turning algorithm

Using the kinematics outlined in Section 3-5-6, estimates for θ̇r and z̈b can be found and used
in the dynamic model of the system in order to model the contact forces. The results of these
simulations show a very smooth walking behaviour, which makes sense since this turning
algorithm is designed with the smooth contact transitions in mind. The path produced is a
near perfect circle and, despite not being able to collect validation data, a simple test of the
algorithm with a real Zebro showed very similar results.

5-3-1 Simulating 4 seconds of walking with steering factor 1.2

A smooth left turn is expected with s = 1.2. This simulation uses τc = 1 and θiTD = π/4 rad
resulting in the following characteristic parameters.

Parameter Value
θiTD π/4 rad
θiLO 2.1188 rad
θoTD 0.6259 rad
θoLO 2.2260 rad

Table 5-1: Characteristic leg angles for steering factor 1.2 and inner TD angle π/4.

Figure 5-6 shows the path and final orientation after 4 seconds. As expected, a left turn
is performed. For a better understanding of the steps taken by the Zebro along this path,
the CoM’s position, velocity and acceleration during one whole cycle are plotted in the left
column of Figure 5-7. Similarly, the roll, pitch and yaw angles are plotted in the right column
of Figure 5-7.
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Figure 5-6: 4 seconds of walking with steering factor 1.2.

Figure 5-7: Left: Positions, velocities and accelerations of the body’s centre of mass in each
direction. Right: Roll, pitch and yaw angles, speeds and accelerations.

The results for position, velocity and acceleration look very similar to the results for straight-
forward walking, with the main difference being the y position increasing due to the fact
that the Zebro turns to the left. It is also interesting to look at the roll angle of the Zebro
showing the expected result of being “slanted” at the time of touchdown and then gradually
straightening out during the step. The oscillating result in the accelerations is caused by the
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model’s slip ratio oscillating and causing the Zebro to continuously accelerate and decelerate
during some parts of a step. More info on this effect is given in Section 5-4-4.

5-3-2 Simulating 40 seconds of walking with steering factor 1.25

Another simulation which illustrates the working model is where the Zebro walks in a full circle
and returns to roughly the same position as where it started. The chosen inner touchdown
angle for this simulation was θiTD = π/4 rad, resulting in the following parameters.

Parameter Value
θiTD π/4 rad
θiLO 2.1188 rad
θoTD 0.5858 rad
θoLO 2.2526 rad

Table 5-2: Characteristic leg angles for steering factor 1.25 and inner TD angle π/4.

A noticeable problem in the model is that the Zebro gradually descends through the ground
with every step. One can see in Figure 5-8 that at the end of the simulation the Zebro is fully
“underground”. This is obviously not correct, and the problem is attributed to the contact
state transitions occurring slightly too late so that the legs appear to be a few millimetres
lower than they should be at the actual impact time. The effect is negligible for a few steps,
but for a simulation lasting more than 10 seconds the Zebro can clearly be seen sinking into
the ground. This problem can be worked around by resetting the body’s z-coordinate at every
contact detection.
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Figure 5-8: 40 seconds of walking with steering factor 1.25.

5-4 Experimental results of novel turning algorithm

To test whether the simulations gave realistic results, the Zebro’s software was altered to
allow for differing touchdown and lift-off angles on each side of the robot. These changes
were made in the file ZebroLeg.cpp. A normal tripod gait was used for the timing since the
rhythm is the same as a straightforward tripod gait.

The method for finding the touchdown and lift-off parameters of the Zebro was by first
noting the theoretical parameters calculated in the simulation, and then iteratively rotating
the Zebro’s leg until the hip heights at lift-off and touchdown were equal. The angles found
with the Zebro turned out to be significantly different to those calculated, as can be seen in
Table 5-3. The reason for this, as mentioned in Section 5-2-3 is that the real Zebro leg has
an arc angle of about 200°whereas the modelled Zebro has an arc angle of 180°.

5-4-1 Steering factor 1.1

The characteristic angles for a simulated steering factor of 1.1 are given in the table below.
The illustration in Figure 5-9 shows how the difference between the simulated angles and the
real angles comes about.
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Parameter Value (simulation) Value (real)
θiTD 50.0 deg 50.0 deg
θiLO 118.0 deg 130.0 deg
θoTD 46.0 deg 46.0 deg
θoLO 120.7 deg 132.0 deg

Table 5-3: Characteristic angles for a steering factor of 1.1. The second column displays the
angles calculated in the model whereas the third column shows the actual angles found.

Figure 5-9: An illustration showing the angle differences between the actual Zebro and the
modelled Zebro.

In Figure 5-10 the Zebro can be seen walking in a curve to the left. Comparing this to the
next image in Figure 5-11, it can be seen that the model gives a very good estimation of
the curve and distance travelled. A snapshot was taken every 5 seconds and each position
corresponds well with the model.

Figure 5-10: A sequence of photographs taken while the Zebro was walking with steering factor
1.1 and merged together.
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Figure 5-11: Simulation of steering factor 1.1 and θi
T D = 50°. Snapshots were taken at t = 0s,

5s, 10s, 15s, 20s and 25s.

5-4-2 Steering factor 1.3

Similarly to the previous experiment, the touchdown and lift-off angles for s = 1.3 were found
and are given in Table 5-4.

Parameter Value (simulation) Value (real)
θiTD 50.0 deg 50.0 deg
θiLO 118.0 deg 130.0 deg
θoTD 37.8 deg 37.8 deg
θoLO 126.2 deg 138.0 deg

Table 5-4: Characteristic angles for a steering factor of 1.3. The second column displays the
angles calculated in the model whereas the third column shows the actual angles found.

The Zebro was made to walk for 30 seconds with these parameters and the resulting path
is shown in Figure 5-12. The same is done in the model and its resulting path is given in
Figure 5-13.
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Figure 5-12: A sequence of photographs taken while the Zebro was walking with steering factor
1.3 and merged together.

Figure 5-13: Simulation of steering factor 1.3 and θi
T D = 50°. Snapshots were taken at t = 0s,

6s, 18s, 24s and 30s.

Unlike in the previous experiment, these results appear a lot less impressive. In the model
a much tighter turning circle is expected which is completely unlike the actual results. A
likely reason for this disparity is the fact that the Zebro’s legs slip more on the laminated
floor than on the modelled material. The reasoning for these bad results is explored further
in Section 5-4-4.
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5-4-3 Steering factor 1.5

The steering factor was increased to 1.5 and the experiment was repeated with a simulation
time of 24 seconds. As expected, the Zebro makes a tighter curve, but again, just as with
s = 1.3, the turning circle in the simulation is much smaller than in reality.

Parameter Value (simulation) Value (real)
θiTD 50.0 deg 50.0 deg
θiLO 118.0 deg 130.0 deg
θoTD 29.7 deg 29.7 deg
θoLO 131.6 deg 143.0 deg

Table 5-5: Characteristic angles for a steering factor of 1.5. The second column displays the
angles calculated in the model whereas the third column shows the actual angles found.

Figure 5-14: A sequence of photographs taken while the Zebro was walking with steering factor
1.5 and merged together.
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Figure 5-15: Simulation of steering factor 1.5 and θi
T D = 50°. Snapshots were taken at t = 0s,

6s, 18s and 24s.

5-4-4 Discussion of the results

The fact that the actual turning circle of the Zebro is so much larger than that in the simu-
lation was an expected result. There are two reasons for this.

1. The actual steering factor of the Zebro became less than the simulated steering factor
due to the shape of the legs not being half circular. Looking at Table 5-3, it can be seen
that the simulated steering factor is (120.7− 46)/(118− 50) = 1.1 as expected, whereas
the actual steering factor is (132 − 46)/(130 − 50) = 1.08, resulting in a slightly less
sharp turn.

2. It is very likely that there is a problem with the slip model. For starters, the model was
identified using a different material to the ground used in the experiments. Furthermore,
plotting the slip ratio of each leg against time reveals that κi is unrealistically close to
0 during each step, implying that the leg always grips the ground perfectly which is
clearly not the case.

Slip ratios The plotted slip ratios are shown in Figure 5-16. When the leg is in contact with
the ground, the slip ratio appears to oscillate around 0, which is not the expected behaviour
and indicates something wrong with the slip model.

This effect can be interpreted as the Zebro accelerating in one time step due to the traction
force, causing the legs to be slipping in the next time step. In this next time step the slip
ratio is therefore negative, causing the Zebro to decelerate enough for the slip ratio in the
next time step to be positive again. This repeats throughout the entire step.
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Figure 5-16: Slip ratios of legs 1 and 2 during one full step. For this simulation a time step of
0.001s was used.

Normal forces The normal forces plotted against time show a realistic result. It can be
seen how the weight carried by each leg increases as its contact point nears the body’s centre,
which makes sense. The transition from rolling to toe contact can also be recognised clearly
in legs 1,2,5 and 6, since the speed at which the leg’s contact point is moving to or from the
centre is greater in toe contact, corresponding to a steeper gradient in the normal force.
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Figure 5-17: The normal force on each of the six legs during one full step.

Traction forces The results for the traction forces on each leg are more difficult to interpret.
The reason for this is because the traction force is a function of the slip ratio, which has been
shown to oscillate around 0, therefore causing the traction force to do the same.

To make sense of this data, a “net” force was found by taking the sum of each consecutive pair
of positive and negative forces. This result is shown in Figure 5-19. Again, it becomes obvious
that something is not right with the slip and traction model since the traction force on legs
1 and 2 should not be negative. Furthermore, the shapes of the curves are very unexpected
and cannot be explained.

F.P. Erkelens Master of Science Thesis



5-5 Simulating tetrapod kinematics 73

Figure 5-18: The traction force on each of the six legs during one full step.

Figure 5-19: The traction force on each of the six legs during one full step.

5-5 Simulating tetrapod kinematics

In the dynamic model of the tripod the simple contact transition model in Table 3-1 was used.
For a tetrapod this is significantly more complicated and the contact detection algorithm needs
to be tested.
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5-5-1 Initial state

For this model, both the touchdown and lift-off angles are assigned manually. This is because,
unlike the tripod, there is less need for a perfect transition since the Zebro will appear
to wobble no matter what. This means that a leg does not necessarily have to be at the
touchdown angle when it touches down.
The initial leg angles are chosen so that each leg group reaches the touchdown angle at the
same time as the subsequent leg group reaches the lift-off angle.

θ1(0) = θ4(0) = θLO (5-5)
θ2(0) = θ5(0) = π/2 (5-6)
θ3(0) = θ6(0) = θTD (5-7)

Since two leg groups are on the ground whilst one group is in flight, the time spent on the
ground should be twice the time spent in flight. Therefore, let τf = τc/3 and τg = 2τc/3,
where τc is the cycle time again. The angular velocities of a leg on the ground is

θ̇g = θLO − θTD
τg

(5-8)

and the angular velocity of a leg in flight is

θ̇f = 2π − (θLO − θTD)
τf

(5-9)

so the initial state for the leg velocities is the following.

θ̇1(0) = θ̇4(0) = θ̇f (5-10)
θ̇2(0) = θ̇5(0) = θ̇g (5-11)
θ̇3(0) = θ̇6(0) = θ̇g (5-12)

Using these initial states and the contact detection algorithm outlined in Section 3-5-2 the
kinematically determined motion of the tetrapod’s “wobbling” effect can be modelled.

5-5-2 Simulation of the tetrapod’s orientation during walking

The results shown are using θTD = π/4, θLO = 3π/4, τf = 1 and τg = 2. It is shown in
Figures 5-20 to 5-22 how the contact state transitions in the following order:

1. C = {2, 5, 6} → C = {2, 3, 6}, (see Figure 5-20)

2. C = {2, 3, 6} → C = {1, 3, 4, 6}, (see Figure 5-21)

3. C = {1, 3, 4, 6} → C = {1, 4, 5}, (see Figure 5-22a)

4. C = {1, 4, 5} → C = {2, 4, 5}, (see Figure 5-22b)

5. Finally, from C = {2, 4, 5} back to the initial contact state C = {1, 4, 5}.
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(a) (b)

Figure 5-20: Starting on its hind legs, with C = {2, 5, 6}, the Zebro transitions to C = {2, 3, 6}
when leg 3 touches down.

Figure 5-21: Legs 1 and 4 touchdown at the same time, making the contact state C = {1, 3, 4, 6}

(a) (b)

Figure 5-22: From C = {1, 3, 4, 6}, both legs 3 and 6 lift up at the same time when leg 5 touches
down making C = {1, 4, 5} (left). Next, leg 2 touches down making C = {2, 4, 5}
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In Figure 5-23 the body’s roll and pitch angles throughout one cycle of the tetrapod gait are
plotted. Note that there are some discontinuous points in the plot, which can be attributed
to contact being detected slightly too late, forcing the angle to “jump” to the correct value
in the next time step. Decreasing this effect could be done by making the time step smaller,
causing the error in transition time to be less.

These results could be validated by attaching two IMUs to the Zebro and tracking its orien-
tation during the gait.

Figure 5-23: The roll and pitch angles of the body throughout one cycle of the tetrapod gait.

5-5-3 Comparison with a real Zebro

For this experiment, The Zebro’s touchdown and lift-off angles were chosen to be 38° and
117° respectively. This was an arbitrary choice since the goal of this experiment is simply
to confirm whether the contact state transitions which were simulated correspond with real
walking data. To achieve this, any combination of feasible touchdown and lift-off angles
should be sufficient, but this choice resulted in a clear visual effect.

The following Figures 5-24 and 5-25 show a series of eight images of the walking robot.
Each image is paired with a snapshot of the simulation at roughly the same time, to give an
indication of the expected contact state.

The photographs match very well with the simulation, confirming that this kinematic method
of finding the body’s orientation works as expected. The only differences between the photos
and the simulation are occasional discrepancies between the position of the legs in flight.
For example, in Figure 5-24, the first and fourth photo show the Zebro’s flight legs lag
slightly behind the flight legs in the simulation. This is attributed to the fact that the Zebro
sometimes pauses shortly before switching a leg to flight speed, whereas the simulation uses
an instantaneous switch.
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Figure 5-24: Snapshots of the simulated tetrapod gait beside photographs of an actual Zebro
at the corresponding point in each step.
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Figure 5-25: Snapshots of the simulated tetrapod gait beside photographs of an actual Zebro
at the corresponding point in each step.
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Chapter 6

Conclusion and Future Work

In this research, the goal of modelling the dynamics of the Zebro has been achieved. Previous
kinematic models have proven to be inaccurate, and it was expected that improvements could
be made by incorporating traction forces into the model. To accomplish this, a slip model
was identified experimentally, resulting in Pacejka’s magic formula with the following constant
characteristic parameters.

B = 34.34, C = 1.564

However, the accuracy of this model is doubtful, since the curve produced does not appear
to overlap with other data collected by myself. The data which was collected opens up the
possibility for using a different curve fitting technique, which might yield a better model, but
for the time being, the previously identified magic formula model is used.

With this model, traction forces between the leg and the ground can be estimated and used
in the dynamic model. This model is built using the Newton-Euler framework for equations
of motion. Newton-Euler was chosen over the Lagrange-Euler equations because of the heavy
focus on traction forces, making the Lagrange-Euler equations less intuitive to use since these
are found using the energy in a system, rather than forces.

The equations of motion are shown again in Eq. (6-1). By rearranging this equation the
accelerations of the generalised coordinates of the body can be found.

[
mbI3 0

0 Ib

]


ẍb
ÿb
z̈b
θ̈r
θ̈p
θ̈y


+



0
0
0

θ̇pθ̇y(Izz − Iyy)
θ̇rθ̇y(Ixx − Izz)
θ̇pθ̇r(Iyy − Ixx)


+



0
0
g
0
0
0


=
[ ∑

i∈C(IFc,i)∑
i∈C

(
(Ipc,i − Ipb)× IFc,i

)] (6-1)

The contact state C which appears in Eq. (6-1) is the set of leg indices which are in contact
with the ground. This state can change discretely when contact is detected using the contact
detection algorithm in Chapter 3. The efficacy of this algorithm is shown in Chapter 5 where
the previously unmodelled contact transitions in the tetrapod gait are clearly shown.
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To display the results of each simulation a GUI was written in Matlab showing a heavily
simplified Zebro walking on the ground. In these results we see the Zebro walk in both a
straight line and a curve using Suriana’s max-plus algorithm.

We then go on to significantly improve and simplify the Zebro’s turning algorithm for a tripod
gait. By differing the touchdown and lift-off angles of each side of the Zebro, rather than the
touchdown and lift-off times, we can preserve a perfect tripod rhythm in which a smooth
transition from one contact state to the next is experienced. The advantages of this are
twofold:

1. Modelling the system becomes much simpler, because contact transitions are guaranteed
to be C = {1, 4, 5} ↔ C = {2, 3, 6}, so contact detection can be simplified.

2. The real-life Zebro experiences much less wobbling while turning because of these
smoother transitions.

This algorithm has been shown to produce a perfectly circular path in simulation as well as in
reality. However, the actual Zebro’s turning circle is significantly larger than predicted. This
has been attributed to the fact that the Zebro slips a lot more than is simulated, therefore
the traction required to make a sharp turn is not present.

However, despite simulations which appear to show realistic behaviour, the strange result for
the slip ratio and the traction forces remains an unexplained problem. It is possible that the
method of applying Pacejka’s slip formula to a half-circular shape is incorrect, in which case
further research is required.

6-1 Future Work

As was previously mentioned, further research on how to apply a slip model to a half-circular
leg could be useful, since the approach used in this report did not appear to yield correct
results.

Furthermore, three types of contact have been mentioned in this report: rolling, toe and hip
contact, where hip contact could be applied to the heavily simplified model of the Zebro,
but in actuality is almost impossible to occur due to the size of the Zebro’s body casing. Its
body will almost always touch the ground before the hip. Adding a state for body contact
should be implemented for a proper model of the system. Expanding on this, a fifth contact
state should also be included, namely the aerial state in which all the legs have left the
ground. The reason this cannot be implemented in this model is because the contact state is
currently calculated under the assumption that the lowest leg is in contact with the ground
and therefore always has a contact force acting on it. In this model the contact forces are
calculated from the contact state and the body orientation, meaning the contact state needs
to estimated before finding the forces. An aerial phase is the result of large contact forces
pushing the Zebro up from the ground, so to implement this possibility in the model, the
forces will need to be calculated before the contact state - when the force on a leg reaches 0,
it is considered in the air.
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A vision for the future model consists of three parts: one model for the motion whilst in the
air; one dynamic model for when the Zebro is moving fast; and one kinematic model for if
the Zebro moves slowly, such that an aerial phase and slippage is impossible.

Another future improvement to be made on this algorithm is to allow for non-flat surfaces. If
the Zebro is ever to walk on the moon, then rocky and uneven ground must be accounted for.
With full knowledge of the Zebro’s surroundings, it is certainly possible to find the leg angle
which will result in touchdown on an uneven surface by using the potential contact points
calculated in Chapter 3. Without full knowledge of the surroundings, however, a closed-loop
system would be required in which motor torque is measured and contact with the ground
can be detected by a spike in the torque required for rotation.

Finally, the completion of the tetrapod model could be achieved in future work. This is
certainly possible using the kinematically modelled orientation of the Zebro during a step
in the tetrapod gait in Section 5-5-2. This can be used to estimate θ̇p and θ̇r which are
subsequently used to find the contact forces responsible for these rotational velocities. With
these contact forces the dynamic model will be complete.
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Appendix A

MATLAB Code

A-1 Parameters

Listing A.1: Important parameters of the Zebro
1 % BODY PARAMETERS %

2 b1 = 0.1156;

3 l = 0.097;

4 L = 2*b1;
5 r = 0.035; % radius of leg

6
7 Bp_H = [l, l, 0, 0, −l, −l; % positions of legs on body

8 b1, −b1, b1, −b1, b1, −b1;
9 0, 0, 0, 0, 0, 0];

10 m = 2.17;

11 g = 9.81;

12
13 h = 0.069; % height

14 w = 0.2512; % width

15 d = 0.194; % depth

16
17 J_x = m*(w^2 + h^2)/12;
18 J_y = m*(d^2 + h^2)/12;
19 J_z = m*(w^2 + d^2)/12;
20 Jb = diag([J_x, J_y, J_z]);

A-2 Plot zebro

Listing A.2: Code to plot the Zebro model
1 function plot_zebro(q, p_hips, r)
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2 p_body = q(1:3);
3 theta_r = q(4);
4 theta_p = q(5);
5 theta_y = q(6);
6 theta = q(7:12);
7
8 H_IB = H_Inertia_to_Body(theta_r, theta_p, theta_y, p_body);
9 body = H_IB*[p_hips; 1,1,1,1,1,1];

10 plot3(body(1,[1,3,5,6,4,2,1]), body(2,[1,3,5,6,4,2,1]), body
(3,[1,3,5,6,4,2,1]), 'k', 'linewidth', 2)

11
12 phi = linspace(0, pi, 20);

13 leg = [r*cos(phi)+r; zeros(1,20); −r*sin(phi); ones(1,20)];
14
15 for i = 1:6

16 % Plot the legs %

17 H_BH = H_Body_to_Hip(theta(i), p_hips(:,i));
18 leg_i = H_IB*H_BH*leg;
19 plot3(leg_i(1,:), leg_i(2,:), leg_i(3,:), 'k', 'linewidth', 2)

20
21 % Plot the minima %

22 alph = find_alpha(theta_r, theta_p, theta_y, theta(i));
23 H_HL = H_Hip_to_Leg(alph(1), r);
24 if alph(2) == 0 % Toe contact

25 H_LC = H_Leg_to_Toe(alph(1), r, q);
26 elseif alph(2) == pi % Hip contact

27 H_LC = H_Leg_to_Hip(alph(1), r);
28 else % Minimum contact

29 H_LC = H_Leg_to_Contact(r,q);
30 end

31
32 coordinate_frame = 0.04*[[1;0;0],[0;0;0],[0;1;0],[0;0;0],[0;0;1]];

33
34 contact_i = H_IB*H_BH*H_HL*H_LC*[0;0;0;1];
35 inertial_coords = [coordinate_frame; [1,1,1,1,1]];

36 body_coords = H_IB*[coordinate_frame; [1,1,1,1,1]];

37 hip_coords = H_IB*H_BH*[coordinate_frame; [1,1,1,1,1]];

38 leg_coords = H_IB*H_BH*H_HL*[coordinate_frame; [1,1,1,1,1]];

39 min_coords = H_IB*H_BH*H_HL*H_LC*[coordinate_frame; [1,1,1,1,1]];

40
41 plot3(contact_i(1,:), contact_i(2,:), contact_i(3,:), 'r.', 'markersize

', 20)

42 plot3(inertial_coords(1,:), inertial_coords(2,:), inertial_coords(3,:),
'r−', 'linewidth', 2)

43 plot3(body_coords(1,:), body_coords(2,:), body_coords(3,:), 'k−', '

linewidth', 2)

44
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45 ground = fill3(10*[−1, −1, 1, 1, −1], 10*[−1, 1, 1, −1, −1],
[0,0,0,0,0], 'g');

46 body_fill = fill3(body(1,[1,3,5,6,4,2,1]), body(2,[1,3,5,6,4,2,1]),
body(3,[1,3,5,6,4,2,1]), 'k');

47
48 alpha(ground, 0.3)

49 alpha(body_fill, 0.3)

50 % plot3(hip_coords(1,:), hip_coords(2,:), hip_coords(3,:), 'r−', '

linewidth', 1)

51 % plot3(leg_coords(1,:), leg_coords(2,:), leg_coords(3,:), 'g−', '

linewidth', 1)

52 % plot3(min_coords(1,:), min_coords(2,:), min_coords(3,:), 'b−', '

linewidth', 1)

53 end

54 end

A-3 Animate zebro

Listing A.3: Code to animate the Zebro model
1 function animate_zebro(Q, dt, speed, p_hips, r, view_angle)
2 for i = 1:length(Q)/speed
3 clf; hold on; grid on; axis equal;
4 view(view_angle(1), view_angle(2));
5
6 xlim([min(Q(1,:))−0.2, max(Q(1,:))+0.2]);
7 ylim([min(Q(2,:))−0.2, max(Q(2,:))+0.2]);
8 zlim([min(Q(3,:))−0.2, max(Q(3,:))+0.2]);
9

10 plot_zebro(Q(:,i*(speed)−2), p_hips, r);
11 plot3(Q(1,1:i*(speed)−2), Q(2,1:i*(speed)−2), zeros(1,i*(speed)−2), 'r

−−')
12 pause(dt);
13 end

14 end

A-4 Main

Listing A.4: Main code to run
1 clear; %close all;

2 clc;
3
4 parameters
5
6 steering_factor = 1.1;

7 direction = left;
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8 tau_f = 0.8;

9 tau_p = 0.1;

10 tau_g = 0.8;

11
12 theta_LO_suri = (90 + 40) * (pi/180);
13 theta_TD_suri = 35 * (pi/180);
14
15 % UNCOMMENT FOR SURIANA TURNING INSTEAD OF TRIPOD TURNING

16 cycle_time = tau_f+tau_g;
17 [theta_i, theta_o, thetad_i, thetad_o] = init_suriana_tripod(tau_f, tau_p,

tau_g, theta_LO_suri, theta_TD_suri);
18 Ip_B = [0;0;r*(sin(theta_TD_suri)+1)];
19
20 % UNCOMMENT FOR TRIPOD TURNING INSTEAD OF SURIANA TURNING

21 % theta_i.TD = deg2rad(125−75);
22 % cycle_time = 2;

23 % [theta_i, theta_o, thetad_i, thetad_o] = init_tripod(theta_i.TD,

steering_factor, cycle_time);

24
25 inner_leg_height = r*(sin(theta_i.TD)+1);
26 outer_leg_height = r*(sin(theta_o.TD)+1);
27 avg_body_height = 0.5*(inner_leg_height + outer_leg_height);
28 Ip_B = [0;0;avg_body_height];
29 roll0 = atan(r*(sin(theta_i.TD) − sin(theta_o.TD))/L);
30
31 if direction == left

32 thetad = [thetad_i.g;
33 thetad_o.f;
34 thetad_i.f;
35 thetad_o.g;
36 thetad_i.g;
37 thetad_o.f];
38 theta = [theta_i.TD;
39 theta_o.LO;
40 theta_i.LO;
41 theta_o.TD;
42 theta_i.TD;
43 theta_o.LO];
44 C = [1,4,5]; C_prev = [2,3,6];

45 C_i = [1,5];

46 C_o = [4];

47 else

48 thetad = [thetad_o.g;
49 thetad_i.f;
50 thetad_o.f;
51 thetad_i.g;
52 thetad_o.g;
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53 thetad_i.f];
54 theta = [theta_o.TD;
55 theta_i.LO;
56 theta_o.LO;
57 theta_i.TD;
58 theta_o.TD;
59 theta_i.LO];
60 C = [1,4,5]; C_prev = [2,3,6];

61 C_i = [2,6];

62 C_o = [3];

63 end

64
65 q = [Ip_B; roll0;0;0; theta];
66 qd = [0;0;0;0;0;0; thetad];
67 qdd = [0;0;0;0;0;0;0;0;0;0;0;0];

68
69 eps = 0.000001;

70 results.q = [];

71 results.qd = [];

72 results.qdd = [];

73 results.f_n = [];

74 results.f_t = [];

75 results.f_g = [];

76 results.IF.x = [];

77 results.IF.y = [];

78 results.IF.z = [];

79 results.phi = [];

80 results.phi_ = [];

81 results.phid = [];

82 results.k = [];

83 results.C = [];

84 results.v_C = [];

85 results.v_R = [];

86 results.v_rot.x = [];

87 results.v_rot.y = [];

88 results.v_rot.z = [];

89 results.v_B = [];

90
91 % SIMULATION PARAMETERS

92 dt = 0.001;

93 tstop = 3*cycle_time;
94 T = 0:dt:tstop;
95 results.T = T;
96 fprintf('Simulating %0.1f seconds \n\n', tstop);
97 tic;
98
99 for t = T
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100 % BODY ROTATION

101 R_IB = R_r(q(4)) * R_p(q(5)) * R_y(q(6));
102
103 % Update leg speeds

104 qd(7:12) = update_leg_speeds(q, theta_i, theta_o, thetad_i, thetad_o,
direction);

105
106 phi = phi_(q); % phi(1,:) is phi, phi(2,:) is phi*
107 phid = phi_d(q, qd);
108 Ip_C = contact_pos(q, phi, R_IB, Bp_H, r);
109 Ip_H = [Ip_B, Ip_B, Ip_B, Ip_B, Ip_B, Ip_B] + R_IB*Bp_H;
110 Ip_B = q(1:3);
111 H_IB = H_Inertia_to_Body(q(4), q(5), q(6), q(1:3));
112 H_BI = inv(H_IB);
113 BP_C = H_BI*[Ip_C; 1,1,1,1,1,1];

114 Bp_C = BP_C(1:3,:);
115
116 [C, C_i, C_o] = update_contact_state2(phi, C_i, direction, r);
117 % IF CONTACT STATE CHANGE

118 if ~isequal(C_prev, C)
119 if length(C) == 2

120 C = C_prev;
121 end

122 fprintf('Contact state change at: t = %0.3f. (Elapsed time is %0.3f

seconds)\n', t, toc);
123 [z, z_i, z_o] = z_estimate(q, C_i, C_o, phi, r);
124 [zd, zd_i, zd_o] = zd_estimate(q, C_i, C_o, phi, phid, thetad_i,

thetad_o, r);
125 theta_rd = theta_rd_estimate(q, zd_i, zd_o, L);
126
127 % Reset kinematically determined parameters

128 qd(3) = zd;
129 qd(4) = theta_rd;
130 q(4) = atan(r*(sin(theta_i.TD) − sin(theta_o.TD))/L);
131 q(4) = theta_r_estimate(q, z_i, z_o, L);
132 q(5) = 0;

133 q(3) = z;
134 end

135 C_prev = C;
136
137 % Weight distribution estimation

138 [f_g, C] = weight_distribution(q, Ip_C, Ip_H, C, m);
139 R_IC = cell(1,6);
140 for i = C
141 if phi(1,i) == 0 % Toe contact

142 R_IC{i} = R_y(q(6)) * R(q(6+i)) * R(phi(2,i) − pi/2);
143 else % Rolling contact
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144 R_IC{i} = R_y(q(6)) * R(q(6+i)) * R(phi(1,i) − pi/2);
145 end

146 end

147
148 % Velocities of the contact points

149 Cv_C = contact_velocities(q,qd,R_IC,Ip_C,C);
150
151 % Slip ratio of the contact legs

152 [k, v_C, v_R, v_rot, v_B] = slip_ratio(q, qd, Ip_C, Ip_H, Bp_C, Bp_H, R_IC,
phi, phid, C, r);

153
154 x0= f_g(C)';
155 opts = optimoptions(@fmincon,'Algorithm','interior−point','Display','off');
156
157 [z, z_i, z_o] = z_estimate(q, C_i, C_o, phi, r);
158 [zd, zd_i, zd_o] = zd_estimate(q, C_i, C_o, phi, phid, thetad_i, thetad_o,

r);
159 theta_r = theta_r_estimate(q, z_i, z_o, L);
160 theta_rd = theta_rd_estimate(q, zd_i, zd_o, L);
161 zdd = zdd_estimate(C, phi, phid, r);
162 zdd = mean([mean(zdd(C_i)), mean(zdd(C_o))]);
163
164 Aeq = [1, 1, 1];

165 Aeq = ones(1,length(C));
166 Beq = m*g+m*zdd;
167 lb = zeros(1, length(C));
168 ub = m*g*ones(1,length(C));
169
170 [x, val] = fmincon(@(x) NE_opt(q, qd, C, R_IC, phi, k, x, Ip_C, Jb, m, dt,

theta_r, 0, theta_rd, 0), x0, [], [], Aeq, Beq, lb,ub,[],opts);
171
172 f_n = [0,0,0,0,0,0];

173 f_n(C) = x;
174 f_t = pacejka(f_n, k);
175 f_t_lat = pacejka_lateral(f_n, qd, R_IC, C);
176
177 IF = zeros(3, 6);

178 for i = C
179 IF(:,i) = R_IC{i} * [f_t(i); f_t_lat(i); f_n(i)];
180 end

181
182
183 % NEWTON EULER EQUATIONS

184 [Ip_Bdd, Iw_Bd] = NE(q, qd, IF, Ip_C, Ip_H, Jb, m);
185
186 % ACCELERATION, VELOCITY and POSITION

187 qdd = [Ip_Bdd; Iw_Bd; 0;0;0;0;0;0];
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188 qd = qd + qdd*dt;
189 q = q + qd*dt;
190
191 % Save the results

192 results = save_results(results, q, qd, qdd, f_n, f_t, f_g, IF, phi, phid, k
, C, v_C, v_R, v_rot, v_B);

193 end

194
195 fprintf('\nFinished simulation\n')

196 toc
197
198 %%

199 figure(1); clf; hold on;
200 view_angle = [60,20];

201 % view_angle = [0,90];

202 % view_angle = [20,50];

203 % view_angle = [90,0];

204 view_angle = [40,10];

205 % speed = 1/dt;

206 speed = 0.1/dt;
207 tic;
208 fprintf('\nAnimating\n')
209 animate_zebro(results.q, dt, speed, Bp_H, r, view_angle);
210
211 toc
212
213 %%

214 f = 2;

215
216 figure(f); clf;
217 subplot(1,3,1)
218 hold on; grid on;
219 plot(results.T, results.IF.x);
220 title('Inertial X forces on each leg');

221
222 subplot(1,3,2)
223 hold on; grid on;
224 plot(results.T, results.IF.y);
225 title('Inertial Y forces on each leg');

226
227 subplot(1,3,3)
228 hold on; grid on;
229 plot(results.T, results.IF.z);
230 title('Inertial Z forces on each leg');

231 legend({'Leg 1', 'Leg 2', 'Leg 3', 'Leg 4', 'Leg 5', 'Leg 6'})

232
233 f = f+1;
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234 figure(f); clf;
235 subplot(2,3,1)
236 hold on; grid on;
237 plot(results.T, results.IF.x(:,[1,4,5]));
238 title('Inertial X forces on each leg');

239 subplot(2,3,4)
240 hold on; grid on;
241 plot(results.T, results.IF.x(:,[2,3,6]));
242 title('Inertial X forces on each leg');

243
244 subplot(2,3,2)
245 hold on; grid on;
246 plot(results.T, results.IF.y(:,[1,4,5]));
247 title('Inertial Y forces on each leg');

248 subplot(2,3,5)
249 hold on; grid on;
250 plot(results.T, results.IF.y(:,[2,3,6]));
251 title('Inertial Y forces on each leg');

252
253 subplot(2,3,3)
254 hold on; grid on;
255 plot(results.T, results.IF.z(:,[1,4,5]));
256 title('Inertial Z forces on each leg');

257 legend({'Leg 1', 'Leg 4', 'Leg 5'})

258 subplot(2,3,6)
259 hold on; grid on;
260 plot(results.T, results.IF.z(:,[2,3,6]));
261 title('Inertial Z forces on each leg');

262 legend({'Leg 2', 'Leg 3', 'Leg 6'})

263
264
265 f = f+1;
266 figure(f); clf;
267 hold on; grid on;
268 f_n_plot = plot(results.T, results.f_n);
269 f_g_plot = plot(results.T, results.f_g);
270
271 for i = 1:6

272 f_g_plot(i).Color = f_n_plot(i).Color;
273 f_g_plot(i).LineStyle = '−−';
274 end

275
276 title('Normal force on the legs');

277 legend({'Leg 1', 'Leg 2', 'Leg 3', 'Leg 4', 'Leg 5', 'Leg 6'})

278
279
280 f=f+1;
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281 figure(f); clf; hold on; grid on;
282 plot(results.T, results.k);
283 legend({'Leg 1', 'Leg 2', 'Leg 3', 'Leg 4', 'Leg 5', 'Leg 6'})

284 title('Slip ratios');

285
286 % figure(100); clf; hold on; grid on;

287 % plot(results.T, results.k(:,[2,3,6]));

288 % legend({'Leg 2', 'Leg 3', 'Leg 6'})

289 % title('Slip ratios');

290
291
292 f=f+1;
293 figure(f); clf;
294 subplot(3,1,1)
295 hold on; grid on;
296 plot(results.T, results.q(1:3, :));

297 legend({'x', 'y', 'z'})

298 title('Position of body');

299 subplot(3,1,2)
300 hold on; grid on;
301 plot(results.T, results.qd(1:3, :));

302 legend({'xd', 'yd', 'zd'})

303 title('Velocity of body');

304 subplot(3,1,3)
305 hold on; grid on;
306 plot(results.T, results.qdd(1:3, :));

307 legend({'xdd', 'ydd', 'zdd'})

308 title('Acceleration of body');

309
310 f=f+1;
311 figure(f); clf;
312 subplot(1,3,1)
313 hold on; grid on;
314 plot(results.T, results.q(4:6, :))

315 legend({'roll', 'pitch', 'yaw'})

316 title('Roll, pitch and yaw angles')

317 subplot(1,3,2)
318 hold on; grid on;
319 plot(results.T, results.qd(4:5, :))

320 legend({'rolld', 'pitchd'})

321 title('Roll, pitch and yaw speeds')

322 subplot(1,3,3)
323 hold on; grid on;
324 plot(results.T, results.qdd(4:5, :))

325 legend({'rolldd', 'pitchdd'})

326 title('Roll, pitch and yaw accelerations')

327
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328 f = f+1;
329 figure(f); clf; hold on; grid on; axis equal;
330 plot(results.q(1,:), results.q(2,:))
331 title('Path');
332
333
334 f = f+1;
335 figure(f); clf;
336
337 for i = 1:6

338 subplot(3,2,i)
339 hold on; grid on;
340 plot(results.T, results.k(:,i));
341 ylim([−1,1])
342 title(sprintf('Slip ratio Leg %i', i))
343 end

344
345 f = f+1;
346 figure(f); clf;
347
348 odds = 3:2:length(results.T);
349 evens = 2:2:length(results.T)−1;
350 f_t_filter = results.f_t(evens,:) + results.f_t(odds,:);
351
352 for i = 1:6

353 subplot(3,2,i)
354 hold on; grid on;
355 plot(linspace(0,results.T(end), size(f_t_filter,1)), f_t_filter(:,i));
356 title(sprintf('Net Traction force Leg %i', i))
357 end

358
359 f = f+1;
360 figure(f); clf;
361
362 for i = 1:6

363 subplot(3,2,i)
364 hold on; grid on;
365 plot(results.T, results.f_n(:,i));
366 title(sprintf('Normal force Leg %i', i))
367 end

368
369 f = f+1;
370 figure(f); clf; grid on; hold on;
371 for i = 1:6

372 subplot(3,2,i)
373 hold on; grid on;
374 plot(results.T, results.v_C(:,i));
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375 plot(results.T, results.v_R(:,i));
376 plot(results.T, results.v_rot.x(i,:));
377 title(sprintf('Contact velocity Leg %i', i))
378 end

379
380 f = f+1;
381 figure(f); clf; grid on; hold on;
382
383 subplot(2,2,1)
384 hold on; grid on;
385 plot(results.T, results.q(1:3, :));

386 legend({'x', 'y', 'z'})

387 title('Position of body');

388 subplot(2,2,3);
389 hold on; grid on;
390 plot(results.T, results.qd(1:3, :));

391 legend({'xd', 'yd', 'zd'})

392 title('Velocity of body');

393
394 subplot(2,2,2)
395 hold on; grid on;
396 plot(results.T, results.q(4:6, :))

397 legend({'roll', 'pitch', 'yaw'})

398 title('Roll, pitch and yaw angles')

399 subplot(2,2,4)
400 hold on; grid on;
401 plot(results.T, results.qd(4:5, :))

402 legend({'rolld', 'pitchd'})

403 title('Roll, pitch and yaw speeds')

404
405 %% Save results to ..\Results\WS_14\

406 % note = 'lateral_force_pacejka';

407 filename = sprintf('time_%0.2f_steer_%0.2f_iTD_%0.4f_tauc_%0.1f_v1.mat', tstop,
steering_factor, theta_i.TD, cycle_time);

408 if exist('note', 'var')

409 filename = strcat(note, '___', filename);
410 clear note
411 end

412 filepath = strcat('C:\Users\Folkert\MATLAB Drive\Thesis\Results\Experiments\',

filename);
413 version = 1;

414 while exist(filepath, 'file')

415 version = version+1;
416 filepath(end−4:end) = [];

417 filepath = strcat(filepath, num2str(version), '.mat');

418 end

419 save(filepath, 'results', 'Bp_H', 'r', 'dt')
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A-5 Gait initiation

A-5-1 Init tripod

Listing A.5: Tripod initiation
1 function [theta_i, theta_o, thetad_i, thetad_o] = init_tripod(theta_i_TD, K, tc

)

2
3
4 tg = tc/2; % tc is cycle time. Ground time and flight time must be equal, so

tg = tf = tc/2

5 tf = tc/2;
6 theta_i.TD = theta_i_TD;
7 theta_i.LO = pi − asin(0.5*sin(theta_i.TD)+0.5); % LO angle where height is

equal to height at TD angle.

8
9 syms x

10 theta_o.TD = vpasolve(pi − asin(0.5*sin(x)+0.5) − x == K*(theta_i.LO−theta_i.TD
)); % Set distance covered on outer side = K * distance on inner side

11 theta_o.TD = double(theta_o.TD); % sym to double

12 theta_o.LO = pi − asin(0.5*sin(theta_o.TD)+0.5);
13
14 thetad_i.g = (theta_i.LO − theta_i.TD) / tg; % rad/s required to get from TD

to LO in tg seconds

15 thetad_o.g = (theta_o.LO − theta_o.TD) / tg;
16 thetad_i.f = (2*pi − (theta_i.LO − theta_i.TD)) / tf; % rad/s required from

LO to TD in tf seconds.

17 thetad_o.f = (2*pi − (theta_o.LO − theta_o.TD)) / tf;
18
19 fprintf('Tripod initialised with steering factor %0.1f. \n\tInner legs: TD =

%0.4f, LO = %0.4f. \n\tOuter legs: TD = %0.4f, LO = %0.4f.\n',...

20 K, theta_i.TD, theta_i.LO, theta_o.TD, theta_o.LO);
21
22 fprintf('Tripod initialised with steering factor %0.1f. \n\tInner legs: TD =

%0.4f, LO = %0.4f. \n\tOuter legs: TD = %0.4f, LO = %0.4f.\n',...

23 K, rad2deg(theta_i.TD), rad2deg(theta_i.LO), rad2deg(theta_o.TD), rad2deg(
theta_o.LO));

24 end

A-5-2 Init Suriana tripod

Listing A.6: Suriana tripod initiation
1 function [theta_i, theta_o, thetad_i, thetad_o] = init_suriana_tripod(tau_f,

tau_p, tau_g, theta_LO, theta_TD)
2
3 theta_d_i_g = (theta_LO − theta_TD) / (tau_g + tau_p);
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4 theta_d_o_g = (theta_LO − theta_TD) / tau_g;
5 theta_d_i_f = (2*pi − (theta_LO − theta_TD)) / tau_f;
6 theta_d_o_f = (2*pi − (theta_LO − theta_TD)) / (tau_f + tau_p);
7
8
9 theta_d = [theta_d_i_g;

10 theta_d_o_f;
11 theta_d_i_f;
12 theta_d_o_g;
13 theta_d_i_g;
14 theta_d_o_f];
15
16 theta = [theta_TD;
17 theta_LO;
18 theta_LO;
19 theta_TD;
20 theta_TD;
21 theta_LO];
22
23 theta_i.TD = theta_TD;
24 theta_i.LO = theta_LO;
25 theta_o.TD = theta_TD;
26 theta_o.LO = theta_LO;
27 thetad_i.f = theta_d_i_f;
28 thetad_i.g = theta_d_i_g;
29 thetad_o.f = theta_d_o_f;
30 thetad_o.g = theta_d_o_g;
31
32
33 fprintf('Suriana−Tripod initialised with tau_f = %0.1f, tau_g = %0.1f and tau_p

= %0.1f. \n\t Touchdown angle = %0.4f, Liftoff angle = %0.4f.\n',...

34 tau_f, tau_g, tau_p, theta_TD, theta_LO);
35
36 end

A-6 Rotation Matrices

Listing A.7: Leg rotation
1 function ret = R(theta)
2 ret = [cos(theta), 0, sin(theta);
3 0, 1, 0;

4 −sin(theta), 0, cos(theta)];
5 end
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Listing A.8: Roll rotation
1 function ret = R_r(theta)
2 ret = [1, 0, 0;

3 0, cos(theta), −sin(theta);
4 0, sin(theta), cos(theta)];
5 end

Listing A.9: Pitch rotation
1 function ret = R_p(theta)
2 ret = [cos(theta), 0, sin(theta);
3 0, 1, 0;

4 −sin(theta), 0, cos(theta)];
5 end

Listing A.10: Yaw rotation
1 function ret = R_y(theta)
2 ret = [cos(theta), −sin(theta), 0;

3 sin(theta), cos(theta), 0;

4 0, 0, 1];

5 end

A-7 Homogeneous Transformations

Listing A.11: Homogeneous transformation inertial to body
1 function ret = H_Inertia_to_Body(theta_r, theta_p, theta_y, p)
2 ret = [R_r(theta_r)*R_p(theta_p)*R_y(theta_y), p; 0,0,0,1];

3 end

Listing A.12: Homogeneous transformation body to hip
1 function ret = H_Body_to_Hip(theta, p)
2 ret = [R(theta), p; 0,0,0,1];

3 end

Listing A.13: Homogeneous transformation hip to leg
1 function ret = H_Hip_to_Leg(alpha, r)
2 ret = [R(alpha−pi/2), [r;0;0]; 0,0,0,1];

3 end

Listing A.14: Homogeneous transformation leg to hip
1 function ret = H_Leg_to_Hip(alpha, r)
2 ret = [eye(3), [r*sin(pi+alpha);0;−r*cos(pi+alpha)]; 0,0,0,1];

3 end
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Listing A.15: Homogeneous transformation leg to toe
1 function ret = H_Leg_to_Toe(alpha, r, q)
2 ret = [R_r(q(4))', [−r*sin(−alpha);0;−r*cos(−alpha)]; 0,0,0,1];

3 end

Listing A.16: Homogeneous transformation leg to contact
1 function ret = H_Leg_to_Contact(r,q)
2 ret = [R_r(q(4))', [0;0;−r]; 0,0,0,1];

3 end

A-8 Dynamics

A-8-1 Newton-Euler

Listing A.17: Newton-Euler equations
1 function [pb_dd, wb_d] = NE(q, qd, f, Ip_C, Ip_H, Jb, m)
2 g = [0; 0; −9.81];
3 pb_mtrx = kron(ones(1,6), q(1:3)); % [Ip_B, Ip_B, ..., Ip_B]

4 wb = qd(4:6);
5
6 pb_dd = sum(f,2)./m + g;
7 wb_d = Jb\(sum(cross(Ip_C − pb_mtrx, f), 2) − cross(wb, Jb*wb));

A-8-2 Newton-Euler for optimisation

Listing A.18: Newton-Euler equations in optimisation function
1 function res = NE_opt(q, qd, C, R_IC, phi, k, f, Ip_C, Jb, m, dt, roll, pitch,

rolld, pitchd)
2 f_n = [0,0,0,0,0,0];

3 f_n(C) = f;
4 f_t = pacejka(f_n, k);
5 f_t_lat = pacejka_lateral(f_n, qd, R_IC, C);
6
7 IF = zeros(3, 6);

8 for i = C
9 IF(:,i) = R_IC{i} * [f_t(i); f_t_lat(i); f_n(i)];

10 end

11
12 g = [0; 0; −9.81];
13 pb_mtrx = kron(ones(1,6), q(1:3)); % [Ip_B, Ip_B, ..., Ip_B]

14 wb = qd(4:6);
15
16 pb_dd = sum(IF,2)./m + g;
17 wb_d = Jb\(sum(cross(Ip_C − pb_mtrx, IF), 2) − cross(wb, Jb*wb));
18
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19 qdd = [pb_dd; wb_d; 0;0;0;0;0;0];

20 qd = qd + qdd*dt;
21 q = q + qd*dt;
22
23 res = (qd(4) − rolld)^2 + (qd(5) − pitchd)^2;

A-9 Slip

A-9-1 Slip ratio

Listing A.19: Slip ratio calculation
1 function [k, v_C_ret, v_R_ret, v_rot_ret, v_B_ret] = slip_ratio(q, qd, Ip_C,

Ip_H, Bp_C, Bp_H, R_IC, phi, phid, C, r)
2 v_C_ret = [0,0,0,0,0,0];

3 v_R_ret = [0,0,0,0,0,0];

4 v_B_ret = [0,0,0,0,0,0];

5 v_rot_ret = zeros(3,6);
6
7 k = [0,0,0,0,0,0];

8 for i = C
9 v_yaw = cross([qd(4);qd(5);qd(6)], Bp_C(:,i));

10 v_R = −r*phid(i);
11
12 v_B = R_IC{i}\qd(1:3);
13 v_H = R_IC{i}\(cross(qd(4:6), Ip_H(:,i)−q(1:3)) + qd(1:3));
14 v_rot = R_IC{i}\cross(qd(4:6), Ip_C(:,i)−q(1:3));
15
16 if phi(1,i) == 0 % Toe contact

17 v_R = −2*r*phid(i)*cos(phi(2,i));
18 v_C = v_B(1) + v_rot(1);
19
20 k(i) = (v_R − v_H(1))/(sign(v_H(1))*v_H(1));
21
22 k(i) = min(100, k(i)); % Avoid Inf answer

23 k(i) = max(−100, k(i));
24 else % Rolling contact

25 v_R = −2*r*phid(i)*cos(phi(1,i)/2)^2;
26 v_C = v_B(1) + v_rot(1);
27 k(i) = sign(v_R)*(v_R − (sign(v_C))*v_C)/((sign(v_C)*v_C));
28 k(i) = min(100, k(i)); % Avoid Inf answer

29 k(i) = max(−100, k(i));
30 end

31 v_C_ret(i) = v_C;
32 v_R_ret(i) = v_R;
33 v_B_ret(i) = v_B(1);
34 v_rot_ret(:,i) = v_rot;
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35
36 if v_R == 0 && v_C == 0

37 k(i) = 0;

38 end

39 end

40 end

A-9-2 Pacejka (longitudinal)

Listing A.20: Pacejka model for longitudinal slip
1 function ret = pacejka(f_n, k)
2 b = 34.34;

3 c = 1.564;

4
5 for i = 1:6

6 if f_n(i) == 0

7 ret(i) = 0;

8 continue

9 end

10 d = 0.3798*f_n(i);
11 e = (b*0.0066*f_n(i) − tan(pi/(2*c)))/(b*0.0066*f_n(i)−atan(b*0.0066*

f_n(i)));
12
13 ret(i) = d*sin(c*atan(b*k(i) − e*(b*k(i)−atan(b*k(i)))));
14 end

15 end

A-9-3 Pacejka (lateral)

Listing A.21: Pacejka model for lateral slip
1 function ret = pacejka_lateral(f_n, qd, R_IC, C)
2 b = 34.34;

3 c = 1.564;

4
5 ret = [0,0,0,0,0,0];

6 for i = C
7 if f_n(i) == 0

8 continue

9 end

10 v_C = R_IC{i}\qd(1:3);
11 if v_C(2) == 0

12 alpha = 0;

13 else

14 alpha = atan(−v_C(2)/v_C(1));
15 end

16
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17 alpha_corr = alpha/(pi/2);
18
19 d = 0.3798*f_n(i);
20 e = (b*0.0066*f_n(i) − tan(pi/(2*c)))/(b*0.0066*f_n(i)−atan(b*0.0066*

f_n(i)));
21
22 ret(i) = d*sin(c*atan(b*alpha_corr − e*(b*alpha_corr−atan(b*alpha_corr)

)));

23 end

24 end

A-10 Kinematics

A-10-1 Leg angles

Listing A.22: Finding the angle φmin

1 function ret = phi_(q)
2 theta_r = q(4);
3 theta_p = q(5);
4 theta_y = q(6);
5 theta = q(7:12);
6
7 ret = zeros(2,6);
8
9 for i = 1:6

10 X1 = sin(theta_r)*sin(theta_y)*cos(theta(i)) − cos(theta_r)*sin(theta_p
)*cos(theta_y)*cos(theta(i)) − cos(theta_r)*cos(theta_p)*sin(theta(
i));

11 X2 = sin(theta_r)*sin(theta_y)*sin(theta(i)) − cos(theta_r)*sin(theta_p
)*cos(theta_y)*sin(theta(i)) + cos(theta_r)*cos(theta_p)*cos(theta(
i));

12
13 a1 = atan(−X2/X1);
14 a2 = a1 − sign(a1)*pi;
15
16 derivative = −cos(a1)*X1 + sin(a1)*X2;
17 if a1 > 0

18 if derivative > 0 % Rolling contact

19 ret(:,i) = [a1; a1];
20 else

21 ret(:,i) = [pi; a2]; % Hip contact

22 end

23 else

24 if derivative > 0

25 ret(:,i) = [0; a1]; % Toe contact

26 else
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27 ret(:,i) = [a2; a2]; % Rolling contact

28 end

29 end

30 end

31 end

Listing A.23: Finding φ̇min

1 function ret = phi_d(q,qd)
2 theta_r = q(4);
3 theta_p = q(5);
4 theta_y = q(6);
5 theta_r_d = qd(4);
6 theta_p_d = qd(5);
7 theta_y_d = qd(6);
8 theta_d = qd(7:12);
9

10 ret = [0,0,0,0,0,0];

11 for i = 1:6

12 X = tan(theta_r)*sin(theta_y) − tan(theta_p*cos(theta_y));
13 X_d = theta_r_d*sin(theta_y)*(1+tan(theta_r)^2) − theta_p_d*cos(theta_y

)*(1+tan(theta_p)^2) + theta_y_d*(tan(theta_r)*cos(theta_y) + tan(
theta_p)*sin(theta_y));

14
15 ret(i) = X_d/(1+X^2) − theta_d(i);
16 end

17 end

A-10-2 Body angles

Listing A.24: Finding the roll angle θr

1 function theta_r = theta_r_estimate(q, z_i, z_o, L)
2 theta_r = asin((z_i − z_o)/L);
3 end

Listing A.25: Finding θ̇r

1 function theta_rd = theta_rd_estimate(q, zd_i, zd_o, L)
2 theta_rd = (mean(zd_i) − mean(zd_o))/(cos(q(4))*L);
3 end

A-10-3 Body height estimates

Listing A.26: Estimating the z coordinate of the body
1 function [z, z_i, z_o] = z_estimate(q, C_i, C_o, phi, r)
2 z = [0,0,0,0,0,0];

3 z_i = [];

4 for i = C_i
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5 if phi(1, i) == 0

6 z_i = [z_i, 2*r*cos(phi(2,i))*cos(q(4))];
7 elseif phi(1,i) == pi
8 z_i = [z_i, 0];

9 else

10 z_i = [z_i, (r+r*cos(phi(1,i)))*cos(q(4))];
11 end

12 end

13 z_o = [];

14 for i = C_o
15 if phi(1, i) == 0

16 z_o = [z_o, 2*r*cos(phi(2,i))*cos(q(4))];
17 elseif phi(1,i) == pi
18 z_o = [z_o, 0];

19 else

20 z_o = [z_o, (r+r*cos(phi(1,i)))*cos(q(4))];
21 end

22 end

23 z = mean([mean(z_i), mean(z_o)]);

Listing A.27: Estimating ż
1 function [zd, zd_i, zd_o] = zd_estimate(q, C_i, C_o, phi, phid, thetad_i,

thetad_o, r)
2 zd = [0,0,0,0,0,0];

3 zd_i = [];

4 for i = C_i
5 if phi(1, i) == 0

6 zd_i = [zd_i, 2*r*thetad_i.g*sin(phi(2,i))];
7 elseif phi(1,i) == pi
8 zd_i = [zd_i, 0];

9 else

10 zd_i = [zd_i, r*thetad_i.g*sin(phi(1,i))];
11 end

12 end

13 zd_o = [];

14 for i = C_o
15 if phi(1, i) == 0

16 zd_o = [zd_o, 2*r*thetad_o.g*sin(phi(2,i))];
17 elseif phi(1,i) == pi
18 zd_o = [zd_o, 0];

19 else

20 zd_o = [zd_o, r*thetad_o.g*sin(phi(1,i))];
21 end

22 end

23 zd = mean([mean(zd_i), mean(zd_o)]);
24 end
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Listing A.28: Estimating z̈
1 function zdd = zdd_estimate(C, phi, phid, r)
2 zdd = [0,0,0,0,0,0];

3 for i = C
4 if phi(1, i) == 0

5 zdd(i) = −2*r*phid(i)^2*cos(phi(2,i));
6 else

7 zdd(i) = −r*phid(i)^2*cos(phi(1,i));
8 end

9 end

10 end

A-10-4 Weight distribution

Listing A.29: Estimating the weight on the legs
1 function [fg, C] = weight_distribution(q, Ip_C, Ip_H, C, m)
2 pb = q(1:2);
3 fg = [0,0,0,0,0,0];

4 g = 9.81;

5 p = {};

6 for i = 1:6

7 p{i} = Ip_C(1:2, i);
8 end

9
10 if length(C) == 1

11 fg(C) = m*g;
12 end

13
14 if length(C) == 2

15
16 d1 = distanceBetweenPointAndPerpLine(p{C(1)}, p{C(1)}, p{C(2)});
17 d2 = distanceBetweenPointAndPerpLine(p{C(2)}, p{C(1)}, p{C(2)});
18 db = distanceBetweenPointAndPerpLine(pb, p{C(1)}, p{C(2)});
19
20 % Distances between centre and contact, to determine which side

21 % of the line the centre is.

22 db1 = distanceBetweenTwoPoints(pb, p{C(1)});
23 db2 = distanceBetweenTwoPoints(pb, p{C(2)});
24
25 if db1 > db2 % then centre is on the side of p2

26 f1 = m*g*(d2−db)/(d1+d2);
27 f2 = m*g*(d1+db)/(d1+d2);
28 else

29 f1 = m*g*(d2+db)/(d1+d2);
30 f2 = m*g*(d1−db)/(d1+d2);
31 end
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32 fg(C) = [f1, f2];
33 end

34
35 if length(C) == 3

36 d1 = distanceBetweenPointAndLine(p{C(1)}, p{C(2)}, p{C(3)});
37 d2 = distanceBetweenPointAndLine(p{C(2)}, p{C(1)}, p{C(3)});
38 d3 = distanceBetweenPointAndLine(p{C(3)}, p{C(1)}, p{C(2)});
39 db1 = distanceBetweenPointAndLine(pb, p{C(2)}, p{C(3)});
40 db2 = distanceBetweenPointAndLine(pb, p{C(1)}, p{C(3)});
41 db3 = distanceBetweenPointAndLine(pb, p{C(1)}, p{C(2)});
42
43 f1 = db1/d1 * m*g;
44 f2 = db2/d2 * m*g;
45 f3 = db3/d3 * m*g;
46
47 fg(C) = [f1, f2, f3];
48 end

49
50 if length(C) > 3

51 r = zeros(1,length(C)); % Distance between centre and contact

52 for i = C
53 r(i) = distanceBetweenTwoPoints(p{i}, pb);
54 end

55 [~, idx] = sort(r);
56 C = sort(idx(end−2:end));
57
58 [fg, C] = weight_distribution(q, Ip_C, Ip_H, C, m);
59 end

60 end

61
62 function d = distanceBetweenPointAndLine(p0, p1, p2)
63 d = abs((p2(2)−p1(2))*p0(1) − (p2(1)−p1(1))*p0(2) + p2(1)*p1(2) − p2(2)*p1(1))/

...

64 sqrt((p2(2)−p1(2))^2 + (p2(1)−p1(1))^2);
65 end

66
67 function d = distanceBetweenTwoPoints(p1,p2)
68 d = sqrt((p1(1)− p2(1))^2 + (p1(2) − p2(2))^2);
69 end

70
71 function d = distanceBetweenPointAndPerpLine(p0, p1, p2)
72 x1 = p1(1);
73 x2 = p2(1);
74 y1 = p1(2);
75 y2 = p2(2);
76 a = x2 − x1;
77 b = y2 − y1;

Master of Science Thesis F.P. Erkelens



106 MATLAB Code

78 c = −(0.5*(y2−y1)^2 + y1*(y2−y1) + (x2−x1)*(0.5*(x2−x1)+x1));
79
80 d = abs(a*p0(1) + b*p0(2) + c)/(sqrt(a^2 + b^2));
81 end

A-11 Contact points

A-11-1 Contact position

Listing A.30: Finds the potential contact position of a leg
1 function Ip_C = contact_pos(q, phi, R_IB, Bp_H, r)
2 Ip_B = q(1:3);
3 Ip_C = zeros(3,6);
4 theta = q(7:12);
5
6 for i = 1:6

7 L = [r*(cos(phi(1,i)) + 1);

8 0;

9 −r*sin(phi(1,i))];
10 Ip_C(:,i) = Ip_B + R_IB*(R(theta(i))*L + Bp_H(:,i));
11 end

12 end

A-11-2 Contact velocities

Listing A.31: Finds the velocities of each contact point
1 function v_C = contact_velocities(q,qd,R_IC,Ip_C,C)
2 v_C = zeros(3,6);
3
4 for i = C
5 v_C_body = R_IC{i}\qd(1:3);
6 v_C_rot = R_IC{i}\(cross(qd(4:6), Ip_C(:,i)−q(1:3)));
7
8 v_C(:,i) = v_C_body + v_C_rot;
9 v_C(3,i) = 0; % Contact is not moving away from the ground.

10 end

11 end

A-11-3 Update contact state

Listing A.32: Finds the current contact state
1 function [C, C_i, C_o] = update_contact_state2(phi, C_i, direction, r)
2 if direction == left

3 inner_legs = [1,3,5];

4 elseif direction == right
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5 inner_legs = [2,4,6];

6 end

7
8 C_i_poss = setdiff(inner_legs, C_i);
9 z_i = hip_height(C_i, phi, r);

10 z_i_poss = hip_height(C_i_poss, phi, r);
11
12 if mean(z_i_poss >= z_i)
13 C_i = C_i_poss;
14 end

15
16 if direction == left

17 if C_i == 3

18 C_o = [2,6];

19 else

20 C_o = 4;

21 end

22 else

23 if C_i == 4

24 C_o = [1,5];

25 else

26 C_o = 3;

27 end

28 end

29
30 C = sort([C_i, C_o]);
31 end

32
33 function z = hip_height(i, phi, r)
34 if phi(1,i) == pi
35 z = 0;

36 elseif phi(1,i) == 0

37 z = 2*r*cos(phi(2,i));
38 else

39 z = (r*cos(phi(1,i)) + r);
40 end

41 end

A-12 Update leg speeds

Listing A.33: Updates leg speeds when touchdown or lift-off angle are reached
1 function thetad = update_leg_speeds(q, theta_i, theta_o, theta_d_i, theta_d_o,

dir)
2 theta = q(7:12);
3 thetad = [0,0,0,0,0,0];

4

Master of Science Thesis F.P. Erkelens



108 MATLAB Code

5 if dir == left

6 inner_legs = [1,3,5];

7 outer_legs = [2,4,6];

8 elseif dir == right

9 inner_legs = [2,4,6];

10 outer_legs = [1,3,5];

11 end

12
13 for i = inner_legs
14 thet = wrapTo2Pi(theta(i));
15 if thet >= theta_i.TD && thet < theta_i.LO
16 thetad(i) = theta_d_i.g;
17 else

18 thetad(i) = theta_d_i.f;
19 end

20 end

21 for i = outer_legs
22 thet = wrapTo2Pi(theta(i));
23 if thet >= theta_o.TD && thet < theta_o.LO
24 thetad(i) = theta_d_o.g;
25 else

26 thetad(i) = theta_d_o.f;
27 end

28 end

29
30 end

A-13 Save results

Listing A.34: Saves the results in a useful structure
1 function results = save_results(results, q, qd, qdd, f_n, f_t, f_g, IF, phi,

phid, k, C, v_C, v_R, v_rot, v_B)
2 results.q(:,end+1) = q;
3 results.qd(:,end+1) = qd;
4 results.qdd(:,end+1) = qdd;
5 results.f_n(end+1, :) = f_n;
6 results.f_t(end+1, :) = f_t;
7 results.f_g(end+1, :) = f_g;
8 results.IF.x(end+1, :) = IF(1,:);
9 results.IF.y(end+1, :) = IF(2,:);

10 results.IF.z(end+1, :) = IF(3,:);
11 results.phi(end+1, :) = phi(1,:);
12 results.phi_(end+1, :) = phi(2,:);
13 results.phid(end+1, :) = phid;
14 results.k(end+1, :) = k;
15
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16 C_ = [0,0,0,0,0,0];

17 C_(C) = 1;

18 results.C(end+1, :) = C_;
19
20 results.v_C(end+1, :) = v_C;
21 results.v_R(end+1, :) = v_R;
22 results.v_rot.x(:, end+1) = v_rot(1,:);
23 results.v_rot.y(:, end+1) = v_rot(2,:);
24 results.v_rot.z(:, end+1) = v_rot(3,:);
25 results.v_B(end+1, :) = v_B;
26 end
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