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12.1 Introduction

In recent years, the rising number of extreme weathers caused by global warming

due to increased carbon emissions from various sectors has posed a considerable

threat to the survival and safety of humans (Jafarinejad et al., 2021; Liu, Xing,

et al., 2022; You et al., 2023; Zhou & Liu, 2023). The science-based rational nexus

of renewable energy (RE), water, and environment (REWE) is essential for sustain-

able development and carbon neutrality to decrease the occurrence of these disasters

(Majeed & Luni, 2019). With the increase in population, the change of climate, and

rapid urbanization processes, it becomes more difficult to predict future energy con-

sumption, water use, and environmental changes in terms of their nexus. Extreme

climatology events (e.g., floods and droughts) have occurred more frequently under

climate change, which strongly affects the regeneration of RE and water resources

(Zhou, 2023a, 2023b). For instance, extreme droughts have largely affected the pro-

duction of energy due to the lack of available water for power generation plants

(Luskova et al., 2018; Van Vliet et al., 2016). Thereby, there is an increase interest

in exploring the REWE nexus (Zaidi et al., 2018).

In the last decade, many researchers have conducted research in modeling indi-

vidual RE or water resource systems (Eftelioglu et al., 2016; Halstead et al., 2014).

Regarding RE, the studies mainly focus on the integration and optimization of solar

energy (He et al., 2021; Zhou, 2022c), geothermal energy (Liu et al., 2023; Liu,

Qian, et al., 2022; Zhou et al., 2022), wind energy (Msigwa et al., 2022), and their

applications with energy storage systems (Zhou et al., 2020, 2021). Compared to

other RE sources, geothermal energy refers to energy sources that are contained

underground and generally have more consistent thermal properties (Liu, Sun,

et al., 2019; Liu et al., 2017; Liu et al., 2019; Qin et al., 2021). With the purpose of

making more accurate and reliable predictions to support decision-making, invest-

ments, and planning on energy and water resources, different modeling approaches

are adopted for simulating and forecasting the nexus of water and energy resources.
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These modeling approaches can be classified as process-based or data-driven-based. The

process-based modeling approach is based on mathematics that provides a detailed repre-

sentation and interpretation of the underlying physical processes between variables within

a system through scientific principles (Oyebode et al., 2014). Concerning the advantages

of the process-based modeling approach, it can increase the validity and utility of models

because they are based on the physical processes within the system (Oyebode et al.,

2014; Solomatine & Ostfeld, 2008). However, the process-based modeling approach is

usually highly computationally expensive, and it has uncertainties in parameterization

and calibration (Oyebode et al., 2014). Qiu et al. (2021) indicated that the process-based

models have large uncertainties in prediction, especially concerning spatiotemporal vari-

ability (Qiu et al., 2021).

The development of artificial intelligence (AI), like machine learning (ML) and

deep learning (DL), has surprisingly produced very high accuracy simulations for

RE and water resources (Feng et al., 2020, 2022), opening up a plethora of opportu-

nities to progress research in their nexus. The AI-based models are considered as

the data-driven-based modeling approach. Unlike process-based models, AI-based

models use data to obtain the relationships between variables of the system without

including any form of physical processes within the system (Zhou, 2021, 2022a,

2022b). In addition, the AI-based models have a relatively higher computational

efficiency and higher prediction accuracy that reduced the uncertainties presented

in the processed-based models (Mentch & Hooker, 2016; Tiwari & Adamowski,

2015; Wani et al., 2017). However, AI-based models still need to be developed. For

instance, as the AI-based models are data-driven-based, it requires sufficient train-

ing data or uneven class balance within the datasets to train and test the model to

get accurate predictions. Thereby, the AI-based model is difficult to be applied in a

field where there is a lack of complete input data. With this respect, many research-

ers have proposed some data augmentation techniques (Wen et al., 2021). As the

energy, water, and environment-related data are highly accessible through global

databases (Brockway et al., 2019; Sheffield et al., 2018), there is a high potential to

apply AI-based models to the REWE nexus. More precisely, AI techniques can be

adopted in modeling the interaction of resources in the REWE nexus.

Overall, this chapter aims to comprehensively and systematically review the recent

applications of AI techniques to the REWE nexus. Following the introduction, the rest of

this chapter is organized as follows: Section 12.2 presents and analyzes the common AI

technologies/algorithms that are applied in REWE fields. Section 12.3 summarizes

AI applications in the REWE nexus. Section 12.4 analyzes the application feasibility of

AI techniques in the city-level REWE nexus. Then, the challenges and barriers to their

implementations are identified in Section 12.5. Finally, Section 12.6 presents the future

perspectives for the applications of AI to the nexus of REWE.

12.2 Common AI techniques for the REWE nexus

This section aims to present different AI techniques that have been applied

within the framework of REWE. These AI techniques will be discussed in
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three types: (1) supervised learning (SL); (2) unsupervised learning (UL), and (3)

reinforcement learning (RL). Here, two interlinked organizations are provided. The

first organization follows the typical categories of AI approaches, and the second

organization follows the application of different AI algorithms in the field of

REWE. Fig. 12.1 presents the overview of general AI techniques that have been

used within the framework of REWE.

12.2.1 Supervised learning

SL is an ML paradigm that has been widely used in various scientific fields (Verma

et al., 2021), is used for the available data containing labeled examples. Namely,

each data point consists of features and a corresponding label. The SL aims to learn

a function f : x ! yð Þ that maps the independent variables (inputs: x) and the depen-

dent variables (outputs: y). The SL is used by applying ML algorithms on the

“training data” by which the learned model will be obtained as the output. Then,

this model will be tested on the new dataset (i.e., “test data” or “unseen data”) for

the purpose of predicting outputs or target variables for that data. The application

of SL in the field of REWE mainly includes the algorithms of regression analysis

(RA), artificial neural network (ANN), support vector machine (SVM), and decision

tree (DT).

AI techniques
Unsupervised

learning

K-means clustering

Hierarchical clustering

Principal component

Deep RL

Multi-agent DRL

Markov decision process

K-medoids clustering

Decision trees

Support vector machines

Artificial Neural Networks

Regression analysis

Reinforcement

learning

Supervised

learning

Figure 12.1 Overview of general artificial intelligence techniques that have been applied for

analyzing renewable energy, water, and the environment.

401Artificial intelligence application to the nexus of renewable energy, water, and the environment



12.2.1.1 Regression analysis

RA is a typical SL algorithm that is used for mapping the relationship between one

or various independent variables (x) with one dependent variable (y). In the water-

energy nexus studies, RA is employed for forecasting regional energy use and water

demand (Cook et al., 2015; Wang et al., 2022). Amiri et al. (2015) used stepwise

regression to select the most effective parameter for modeling and predicting energy

consumption in commercial buildings. Vilları́n (2019) employed a multivariate lin-

ear regression model to study domestic water consumption at a fine spatial scale,

and the obtained results provided suggestions for urban planning and management

(Vilları́n, 2019).

RA accompanied by time series has been widely used for forecasting short-term

water demand. For instance, Sebri (2016) forecasted urban water demand with a

meta-analytical approach. Fumo and Rafe Biswas (2015) performed simple and

multiple linear regression analysis accompanied by quadratic regression analysis on

the data from a research house with different temporal resolutions, from hourly to

daily (Fumo & Rafe Biswas, 2015).

12.2.1.2 Artificial neural networks

ANNs are also powerful SL algorithms that have been used for forecasting energy

generation, consumption, water demand, and environment changes. ANNs can

effectively learn from nonlinear data by using activation functions, like sigmoid,

ReLU, and tanh. Fig. 12.2 shows a typical ANN architecture consisting of one input

layer, one hidden layer, and one output layer.

For the aspect of energy generation and consumption, the first application of the

ANNs was found by Kalogirou et al. (1998), who modeled the transient heat-up

response of a steam generation system. Then, it has been widely used for predicting

energy extraction (Kalogirou et al., 1999; Manohar et al., 2006). Bugała and

Bednarek (2018) forecasted the electric energy from photovoltaic (PV) conversion

by using ANN. It is notable that ANN has many advantages in forecasting vari-

ables. However, the ANN model depends on several initial parameters, like weights

and biases (Kolen & Pollack, 1990). Hence, in order to improve the performance of

ANN-based models, many studies developed hybrid models by integrating them

with optimization algorithms. For instance, Bui et al. (2020) developed a hybrid

model to forecast the energy consumption in buildings based on the combination of

the electromagnetism-based firefly algorithm and ANN (Bui et al., 2020).

In terms of the water and environment aspect, ANN has proved to be useful in

accurately estimating the hydrological variables (e.g., groundwater levels) com-

pared to traditional hydrological/hydrodynamic models (Dash et al., 2010; Derbela

& Nouiri, 2020). ANN models present nonlinear relationships among the hydrologi-

cal variables that can be represented and reproduced. Jain and Kumar (2007) devel-

oped a hybrid ANN model to predict hydrologic time series by using monthly

streamflow data. They indicated that the new hybrid approach can capture the
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nonlinear nature of the complex time series and thus generate more accurate fore-

casts (Jain & Kumar, 2007).

12.2.1.3 Support vector machines

SVM is a powerful SL algorithm that has been successfully applied for classifica-

tion and regression. SVM uses three different kernels, namely, linear kernel, poly-

nomial kernel, and radial basis function kernel (Hossain et al., 2012). Zendehboudi

et al. (2018) comprehensively reviewed the SVM models for forecasting solar and

wind energy resources. They indicated that the SVM is more effective with the

experimental data samples, and the hybrid SVM with evolutionary algorithms has

higher accuracy than other models for predicting both solar and wind energy for

various locations (Zendehboudi et al., 2018). Furthermore, SVM has been largely

applied to forecast short-term wind power (Liu et al., 2017; Zhang et al., 2012),

water levels of lakes or dams (Hipni et al., 2013; Khan & Coulibaly, 2006), and air

and water quality prediction (Yunrong & Liangzhong, 2009).

12.2.1.4 Decision trees

DTs are the nonparametric SL algorithms used for classification and regression.

The DT algorithms are easy to understand, interpret, and visualize, while their high

variance may lead to an overfitting problem. DT has been used for predicting

energy use by many researchers (Mikučioniene et al., 2014; Yu et al., 2010). DT

Figure 12.2 The general architecture of an artificial neural network model.

Source: Modified from Silva, C., Ribeiro, V., Coelho, P., Magalhães, V. & Neto, P. (2017).

Job shop flow time prediction using neural networks. Procedia Manufacturing, 11,

1767�1773. https://doi.org/10.1016/j.promfg.2017.07.309. With permission from Elsevier,

License Number: 5475910621502.
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algorithms can generate rules or logic statements that are easy to be interpreted.

Saghebian et al. (2014) proposed a DT-based approach to predict groundwater qual-

ity. The results showed the suitability of the DT-based classification approach for

the used datasets (Saghebian et al., 2014). Lu and Ma (2020) proposed two hybrid

DT-based models to predict the water quality and applied the models to the most

polluted river of Tualatin River in Oregon, United States (Lu & Ma, 2020).

12.2.2 Unsupervised learning

With the increase of a large number of unlabeled data, UL algorithms provided

more opportunities for advancing research associated with automatically discover-

ing useful patterns in such data. Unlike SL algorithms, UL algorithms are based on

discovering hidden structures from unlabeled data. Commonly used UL algorithms

in the REWE field comprise of K-means clustering (Aytaç, 2020; Manohar et al.,

2006), hierarchical clustering, and principal component analysis (Alloghani et al.,

2019). Fig. 12.1 presents several typical unsupervised algorithms adopted for the

REWE fields. Noiva et al. (2016) applied a hierarchical cluster analysis to investi-

gate the water supply and demand for 142 cities globally. Helmbrecht et al. (2017)

used hierarchical clustering in conjunction with business rule techniques for moni-

toring water supply systems and management of water resources to increase energy

efficiency. Indeed, these UL algorithms have shown good performances in energy

use disaggregation, but they have some limitations in terms of handling appliances

in multiple operating modes simultaneously. Thereby, some researchers proposed a

novel sparse-based optimization approach (Piga et al., 2016) to address this limita-

tion. He et al. (2020) adopted unsupervised deep learning for extracting energy con-

sumption features, and the results show that the energy prediction performance was

improved by the proposed method (He et al., 2020).

In terms of the UL algorithms used for water resources, several studies combined

different ML techniques (e.g., hidden Markov models, dynamic time warping, and

ANN) for the classification of water consumption (Nguyen et al., 2013). Principal

component analysis (PCA) is another UL-based feature transformation technique

that is adopted to explore variations of inputs or independent variables. In recent

years, PCA and the PCA mixed-precision neural networks have been widely applied

in the energy and water sectors (Chakraborty et al., 2020; McManamay, 2014).

12.2.3 Reinforcement learning

RL is one of the three basic ML paradigms alongside SL and UL (Sutton & Barto,

2018), which is based on learning the behavior of agents by obtaining feedback

from the environment. In terms of SL, the labeled training datasets are learned

based on limited inputs that may not be able to consider various situations that are

unseen in the future. Andrew (1999) indicated that the SL might not be an appropri-

ate approach for addressing interactive problems, and RL tends to perform better

because it constantly interacts with the environment in getting responses for its

actions. In terms of UL, it also has some limitations in detecting structural patterns
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within the examples in the data, but RL can maximize the reward signals regarding

interactions of the agent with its environment. The typical RL algorithms include

the Markov decision process (MDP), advanced deep RL, and multi-agent DRL

(Cao et al., 2020).

Misra et al. (2013) presented an MDP-based scheduling mechanism for manag-

ing residential energy in a smart grid. Li and Sun (2013) developed an analytical

model based on MDP to analyze the complex interactions between the adopted

energy control decisions and system state evolutions. Huong et al. (2018) proposed

a generic irrigation model based on MDP for energy- and water-efficient farming.

To support the sustainable development of the river ecological environment, Chen

et al. (2023) developed a multi-objective coupled water and sediment regulation

model based on a reinforcement Q-learning algorithm to minimize sedimentation

and inundation loss, and maximize ecological value in the lower Yellow River

basin. Overall, the application of RL in the water and energy fields enlightened the

possibility of further applications of developing AI-based models in addressing

optimization and forecast problems.

12.3 Literature review on the AI application in the REWE
nexus

Due to their ability to solve nonlinear and complex data structures, AI techniques

have been extensively used to solve issues related to individual elements of REWE

nexus (i.e., RE (Zhang et al., 2022), water (Danish, 2022), and the environment

(Nti et al., 2022)). For instance, Magazzino et al. (2021) studied an ML approach to

the causal relationship among solar and wind energy production, coal consumption,

economic growth, and CO2 emissions in the United States, China, and India. Also,

Chen et al. (2021) presented an AI-based useful evaluation model for predicting RE

technologies and energy efficiency impact on the economy and reported 97.32%

energy efficiency and increased use of RE using the model (Chen et al., 2021).

Furthermore, Zhang et al. (2022) comprehensively reviewed AI applications in

solving issues related to RE. A review of AI applications in water resources engi-

neering can be found in Danish (2022). Nti et al. (2022) summarized AI applica-

tions in environmental sustainability issues such as biodiversity, energy,

transportation, and water management (Nti et al., 2022). However, few studies can

be found in the literature on the application of AI in the REWE nexus.

AI can be applied in RE-driven desalination systems for expert decision-making

(e.g., site selection, desalination technology selection), operating parameter optimi-

zation (e.g., energy parameters, structure or size parameters, feed parameters, and

surrounding parameters), parameter prediction, and control by sequence. He et al.

(2022) reviewed AI applications in seawater desalination systems based on RE.

They concluded that ANN and genetic algorithm (GA) are the most utilized intelli-

gent algorithms in these systems. Because of their features, ANN is preferred in the
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prediction process of RE-driven desalination systems, and GA is useful in the opti-

mization process (He et al., 2022).

High penetration levels of RE sources such as wind energy and PV generation

can create some challenges in the power grids (e.g., the duck curve and unreliabil-

ity) because of their intermittent nature. Electric water heaters (EWHs) can be con-

sidered as a candidate for demand response because of their energy storage

capability. Mabina et al. (2021) reviewed ML models for energy optimization and

scheduling of EWHs in smart grids and smart building environments. Based on the

review of the existing studies, they concluded that the proposed ML models in the

literature do not present a solution that fully provides ancillary services under high

penetration of RE sources, and this field can be a trending future research topic

(Mabina et al., 2021).

Surface evaporation from reservoirs wastes water, and shading the surface of

pond can prevent evaporation. Soltani et al. (2022) used an AI technique to study

the effect of a floating PV system on water loss through surface evaporation in the

Yazd wastewater pond near the city of Yazd, Iran. The evaporation reduction

change due to the floating PV system from 272.7 ha in January 2021 to 413.9 ha in

November 2025 was reported. Overall, up to 70% evaporation decrease from the

pond was predicted (Soltani et al., 2022).

12.4 Application feasibility of AI for city-level REWE
nexus

Interactions among RE, water, and the environment have considerable variations

across regions due to factors of climate, population density, and economic develop-

ment level, among others (Bauer et al., 2014). Moreover, the nexus of REWE is

inherently impacting urban development, and thereby, it is necessary to get useful

insights into the function of REWE at the city level. With the rapid development of

AI techniques, it is feasible to develop AI-based models to predict the REWE ele-

ments (Zaidi et al., 2018).

Predicting variables in advance by using historical data is a significant task in

analyzing the behavior and trends of variables related to the REWE. For example,

Worland et al. (2018) compared the performances of eight ML-based models and

four baseline models to predict the annual minimum 7-day mean streamflow at 224

unregulated sites in South Carolina, Georgia, and Alabama, United States. The

results showed that the ML-based models have higher accuracy compared to the

baseline models. Furthermore, concerning the datasets used for modeling, it some-

times contains missing data or unobserved variables. There is an increasing interest

in using AI-based models for modeling these variables. For instance, Thanh et al.

(2022) employed six ML models, that is, random forest (RF), Gaussian process

regression, support vector regression, DT, least squares support vector machine, and

multivariate adaptive regression spline (MARS) models, to reconstruct the missing

daily-averaged discharge in a mega-delta from 1980 to 2015. The results indicated
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that the ML model outperformed the rating curve (RC) model, and that the MARS

model and RF model were the most reliable algorithms, although the MARS model

performed slightly better than the RF model. Compared to the RC model, the

MARS model and RF model achieved a 135% and 141% reduction in root mean

square error and a 194% and 179% reduction in mean absolute error, respectively,

by using a whole year of available data (Thanh et al., 2022).

Nakhaei et al. (2022) used micro-hydro power (MHP) in the water distribution

network (WDN) for energy recovery to recover wasted energy in the infrastructure,

as shown in Fig. 12.3. This study was the first to design an AI-based framework for

WDN energy harvesting assessment. After using the Environmental Protection

Agency Network Evaluation Tool (EPANET) software to develop the modeling of

WDN in Mashhad, Iran, this study improved the model prediction capability by

applying the design of experiments methods including Taguchi and response sur-

face methodology (RSM) followed by ANN techniques. Results presented from this

investigation indicated that the combination of Taguchi and RSM methods can suc-

cessfully optimize the energy recovery potential considering the improved hydraulic

parameters of the WDN. By using RSM and Taguchi, high potential capacity for

MHP placement was detected and analyzed based on high-performance operational

decision-making methods. Based on AI calculations, energy harvesting and hydrau-

lic response can be estimated with a correlation coefficient of more than 99%. The

results showed that the MHP collected more than 400 kW of energy during the

operation time considering the hydraulic parameters in this study (Nakhaei et al.,

2022).

Tariq et al. (2021) proposed an AI-assisted techno-economic optimization sce-

nario of hybrid energy systems for water management in isolated communities, as

shown in Fig. 12.4. This study first used commercial software (hybrid optimization

of multiple energy sources) and a spreadsheet algorithm to scale various hybrid

energy systems and conducted a multi-objective optimization of the system using

non-dominating sorting genetic algorithm II. The multi-objective optimization also

involved environmental (CO2 emissions) and water cost indices. A multi-criteria

decision tool trumpet solution using the technique for order preference by similarity

to an ideal solution is applied to the Pareto front to obtain the final optimization

results. The analysis is further explored in depth by generating numerical twins

(alternative models or metamodels) of hybrid RE systems data using AI techniques.

In addition, calculus and statistical sensitivity analysis assisted in identifying impor-

tant variables for the design process. The study showed that best-case scenarios

included PV systems, diesel generators, and Li-ion battery storage technologies

with capacities of B17 kW, B5 kW, and 44�48 kWh, corresponding to net present

costs of $70,000 (USD) to $79,000 and electricity costs of $0.205 to $0.229/kWh,

respectively. The results obtained from the multi-objective optimization showed

that the cost of electricity and the net present cost could be further reduced by

0.86% and 0.73%, respectively, compared to the single-objective optimization sce-

nario, with only a 0.4% reduction in the renewable component. The findings can

provide a science-based explanation for national energy policymakers (Tariq et al.,

2021).
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In practice, for investigating the REWE fields, it is difficult to use a single

model for constructing relationships among variables for various resource systems

within the nexus of REWE. With this respect, it is important to develop the model

by integrating process-based models and data-driven-based models (Feng et al.,

2022; Wang et al., 2019). For instance, Lin et al. (2021) proposed a hybrid model,

namely, the DIFF (first-order difference)-FFNN (feedforward neural network)-

LSTM (long short-term memory network), to predict hourly streamflow. This

hybrid model was applied to the Andun Basin, China. The results showed that the

Figure 12.3 Research roadmap for technical performance assessment of water distribution

networks based on the concept of water�energy nexus.

Source: From Nakhaei, M., Akrami, M., Gheibi, M., Daniel Urbina Coronado, P.,

Hajiaghaei-Keshteli, M. & Mahlknecht, J. (2022). A novel framework for technical

performance evaluation of water distribution networks based on the water-energy nexus

concept. Energy Conversion and Management, 273, 116422. https://doi.org/10.1016/j.

enconman.2022.116422. Reproduced with permission from Elsevier, License Number:

5475910809386.
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hybrid model has good performance in predicting hourly streamflow for all the

flood events in the testing period. For predicting energy consumption, Jogunola

et al. (2022) proposed a hybrid deep learning framework in which the model is

structured comprising a convolutional neural network (CNN), an autoencoder with

bidirectional LSTM. The results showed that this hybrid model can accurately pre-

dict the energy consumption of different types of buildings (e.g., commercial and

domestic) across different countries. They suggested extending the proposed frame-

work for price estimation in an energy market, while evaluating the impact of RE

sources (e.g., solar, wind) integration on the energy demand and price estimation

(Jogunola et al., 2022). Overall, integrating process-based models and data-driven-

based models brings new opportunities for predicting the nexus of REWE.

DL, as one part of ML methods, has been applied to the field of REWE at the

city level (Sit et al., 2020; Wang et al., 2019). The typical DL algorithms include

CNNs, LSTMs, recurrent neural networks, generative adversarial networks, radial

basis function networks, multilayer perceptrons, and self-organizing maps. CNNs

have been applied for image segmentation (Mosaffa et al., 2022) and mapping

(Panahi et al., 2020). LSTMs have been applied for predicting time series data

(Widiasari et al., 2018). Some studies also combined CNN with LSTM. For exam-

ple, Deng et al. (2022) proposed a daily runoff forecasting model on the basis of

the combination of CNN and LSTM models. They applied this model in the

Feilaixia catchment and investigated the influence of various input parameters. The

results showed that the CNN�LSTM model has better performance than that of the

LSTM model in runoff forecasting. Besides integrating different DL models, some

researchers also developed some hybrid models based on the combination of the

Figure 12.4 Research framework of AI-assisted techno-economic optimization scenario of

hybrid energy systems for water management.

Source: From Tariq, R., Cetina-Quiñones, A. J., Cardoso-Fernández, V., Daniela-Abigail, H.

L., Soberanis, M. A. E., Bassam, A. & De Lille, M. V. (2021). Artificial intelligence assisted

technoeconomic optimization scenarios of hybrid energy systems for water management of

an isolated community. Sustainable Energy Technologies and Assessments, 48, 101561.

https://doi.org/10.1016/j.seta.2021.101561. Reproduced with permission from Elsevier,

License Number: 5475911137730.
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DL model and physically based process model. For instance, Feng et al. (2022)

developed a hybrid model by integrating LSTM and a process-based hydrological

model. The hybrid model was applied to 671 basins across the United States and

showed a good performance in the prediction of hydrological variables (Feng et al.,

2022). Nevertheless, the development of DL algorithms brings larger feasibility for

analyzing REWE fields.

12.5 Challenges and barriers for AI application to the
REWE nexus

In recent years, the rapid advancement of information technology with AI as the

core has provided new opportunities for disruptive development in the field of

REWE from traditional empirical and qualitative decision-based strategies to pre-

cise and quantitative intelligent decision-making (Elyasichamazkoti & Khajehpoor,

2021; McMillan & Varga, 2022). Meanwhile, it also creates the possibility for

future-oriented reconfiguration of healthy, sustainable, highly resilient, and intelli-

gent systems in the nexus of REWE. The rapid advancement of AI technology has

injected new vitality into the development and application of technologies from

micro- to meso- and macro-scales for risk prevention and control, safety and secu-

rity, and optimal management of systems in the nexus of REWE, thereby bringing a

series of positive effects to accelerate the process of achieving the carbon neutrality

target. Nevertheless, many new challenges remain to be faced in achieving this

objective. Throughout the scientific exploration and practice described in the previ-

ous sections, there are still several key issues that need to be addressed in the future

applications of AI techniques/technologies in the REWE nexus:

1. Integration with existing systems in the nexus of REWE: One of the challenges in apply-

ing AI in REWE nexus is the integration of AI solutions with existing systems and their

processes. To be effective, AI solutions require seamless integration with the systems and

processes that they are intended to enhance. However, this may be a challenge as it

requires a deep understanding of how these systems work and how they can be augmented

with AI. In practice, AI needs to be compatible with the hardware, software, and protocols

used in existing REWE systems, which may be difficult because it commonly requires

specialized hardware or software that is not compatible with existing systems (Kelly

et al., 2023).

2. Data availability and quality: To effectively train and evaluate AI models, a substantial

amount of high-quality data is required (Torregrossa et al., 2016). However, the data in

the REWE nexus are often scarce, unstructured, and/or of poor quality, which may make

it difficult to develop accurate and reliable AI models. The main factors affecting the

availability and quality of data in the REWE nexus include: (1) Data in the REWE nexus

may be collected from a variety of sources, including governmental agencies, research

institutions, and industry. Accessing these data sources may be limited or require special

permission, which may hinder the development of AI models. (2) There can be different

formats and structures of data from different sources, which may make the integration and

analysis of data related to the REWE nexus very problematic. (3) It is critical for the
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accuracy and completeness of data to develop accurate and reliable AI models, and miss-

ing, incomplete, or incorrect data can lead to deviations or deficiencies in AI models

(Edwards et al., 2017).

3. Interdisciplinary professional knowledge: the study of the REWE nexus involves complex

interactions of physical, chemical, biological, and social systems. Therefore, the develop-

ment of AI solutions in this field requires a multidisciplinary team with expertise in multi-

ple disciplines, including engineering, environmental science, computer science, and

social science (Langer et al., 2021; Skowronek et al., 2022), as follows: (1) Designing and

implementing AI solutions that can address the challenges in the REWE nexus require

specialized engineering knowledge, which may include knowledge in electrical engineer-

ing, mechanical engineering, chemical engineering, and materials science. (2) This spe-

cialized knowledge is required to understand the impacts on the natural environment, as

well as to identify and address potential environmental risks, which may include expertise

in areas such as hydrology, meteorology, and ecology. (3) Designing and implementing

AI algorithms and systems require computer science-specialized knowledge, which may

include specialized knowledge in ML, data science, and software engineering. (4) This

professional knowledge is required to understand the social and cultural implications of

AI solutions in the context of REWE, which may include professional knowledge in areas

such as psychology, sociology, and economics.

4. Regulatory and policy issues: In the REWE nexus, AI deployment tends to be subject to

regulatory and policy constraints, which may vary depending on the location and nature

of the AI applications, and can be complex and time-consuming. Navigating these con-

straints may be challenging and requires a thorough understanding of the relevant regula-

tions. The collection and usage of data in a REWE nexus may involve sensitive

information, such as personal or proprietary data. Ensuring the privacy and security of

these data is critical to the responsible usage of AI in this field. This may involve compli-

ance with laws and regulations related to data privacy and security, such as the EU’s

General Data Protection Regulation (GDPR) (Tamburri, 2020). AI solutions in the REWE

nexus may be governed by environmental regulations, such as those related to air and

water quality, waste management, and resource protection. In general, it is important to

ensure that AI is developed and used in compliance with relevant laws and regulations,

considering ethical guidelines and government policies (Belli et al., 2023; Qerimi &

Sergi, 2022). This will contribute to ensuring that AI is used in a responsible and benefi-

cial manner in the REWE nexus.

5. Cost of solutions: The cost of developing and deploying AI solutions is probably a major

barrier to their application in the REWE nexus. First, AI solutions require large amounts

of high-quality data for training and evaluation, and acquiring and preprocessing this data

can be time-consuming and expensive. Then, integrating AI solutions with existing sys-

tems and processes can be challenging and time-consuming, which can increase the cost

of deployment. In addition, AI solutions require continual maintenance and updates to

remain accurate and effective, which may involve ongoing costs for data collection, train-

ing, and evaluation. In the context of the REWE nexus, decreasing the cost of an AI solu-

tion may involve finding approaches to minimize data collection, hardware and software,

expertise and integration with existing systems, and optimizing the continued maintenance

of AI solutions.

6. Ethical considerations: AI solutions in this area have the potential to create significant

impacts on humans and the environment, and therefore it is important to consider the ethi-

cal implications of these impacts and to develop AI solutions that are equitable, transpar-

ent, and accountable (John-Mathews, 2022; Mark & Anya, 2019; Mezgár & Váncza,
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2022). AI algorithms may be biased if the available data used to train them are biased,

which can lead to unfair and inequitable outcomes, such as the exclusion of certain groups

or the perpetuation of existing inequalities (Gevaert et al., 2021). It is important to ensure

that AI solutions are trained on diverse and representative data to minimize bias, which

may involve considering the distribution of benefits and harms and ensuring that the

demands and interests of all stakeholders are considered.

7. Cultural and social acceptance: Widespread adoption of AI in the REWE nexus may be

limited by cultural and social factors, and these barriers can affect the development and

deployment of AI applications. The public may have misconceptions or misperceptions

about AI, which may lead to distrust or resistance to its use. Some public may not have

sufficient understanding of how AI works, which may make them cautious about its use.

There may be concerns that the adoption of AI will lead to job loss or other negative

effects on employment. To address these cultural and social acceptance barriers, it is

important to communicate transparently and openly about the development and usage of

AI and to address concerns and misconceptions about this technology (Pelau et al., 2021;

Yuan et al., 2022). It is also important to ensure that AI is developed and used responsi-

bly, ethically, and for the benefit of society.

12.6 Conclusions and future perspectives

AI has been rapidly developing in recent years, and it is already used in the REWE

fields and its related industries (Doshi & Varghese, 2022; Leal Filho et al., 2022;

Ouafiq et al., 2022). This chapter presented and analyzed the AI technologies that

are applicable to RE, water, and the environment fields, respectively, and catego-

rized and integrated them. Also, the chapter summarized the AI application in the

REWE nexus. Furthermore, the chapter analyzed the application feasibility of AI

for establishing city-level REWE nexus studies from the different application sce-

narios. In addition, the chapter identified some promoting challenges and barriers to

the application of AI technologies to the REWE nexus.

To enable AI to better contribute to the REWE nexus, some targeted develop-

ment recommendations and future research perspectives are presented below:

1. AI can be used to optimize the operation of RE systems, such as solar panels and wind

turbines. This may involve the application of ML algorithms to predict energy production

and optimize energy storage systems, as well as the usage of sensors and other monitoring

technologies to track the performance of RE systems in real-time (Al-Othman et al.,

2022; Liu, Sun, et al., 2022; Zhou, 2022a, 2022b). Within the REWE nexus, AI can be

used to predict the amount of energy that will be produced by an RE system, which can

contribute to optimizing the usage of the energy generated, ensuring that the energy will

be used when it is most needed or when it is most efficient.

2. AI can be used to monitor and optimize water use in agriculture, industry, and other sec-

tors. This may involve using ML algorithms to predict water demand and optimize irriga-

tion systems, as well as using sensors and other monitoring technologies to track water

usage in real-time. AI can be used to predict water demand and optimize irrigation sys-

tems to minimize water waste, which may involve using data on factors such as weather
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conditions, soil moisture, and plant growth to predict the amount of water required at dif-

ferent times and adjust irrigation systems accordingly.

3. AI can be used to design and optimize sustainable infrastructure, such as smart cities, that

are designed to be more energy- and water-efficient and minimize their environmental

impacts. This may involve the usage of ML algorithms to analyze data from sensors and

other monitoring systems to identify patterns and trends that can be used to optimize the

design and operation of infrastructure. In the REWE nexus, there are several ways in

which AI can be used to design and optimize sustainable infrastructure, for example, by

analyzing performance data from existing infrastructure and using this information to

inform the design of new infrastructure that is more energy- and water-efficient.

4. AI can be used to optimize the usage of natural resources, such as predicting and manag-

ing demand for resources like water and energy, and to assist in identifying and prioritiz-

ing conservation and restoration efforts, which may involve using ML algorithms to

analyze data from sensors and other monitoring systems to identify patterns and trends

that can be used to optimize resource usage. Some methods for optimizing natural

resource use are available for AI applications related to the REWE nexus.
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