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Abstract
This paper presents a comprehensive evaluation
and comparison of encoding methods for categor-
ical data in the context of machine learning. The
study focuses on five popular encoding techniques:
one-hot, ordinal, target, catboost, and count en-
coders. These methods are evaluated using lin-
ear models, decision trees, and support vector ma-
chines (SVMs).
The results demonstrate that one-hot encoding con-
sistently achieves the highest accuracy across all
evaluated machine learning algorithms. However,
it also incurs a higher runtime, especially when fea-
ture cardinality is high. Catboost encoding emerges
as a promising alternative, striking a balance be-
tween accuracy and runtime efficiency. The or-
dinal, target, and catboost encoders perform simi-
larly, with small variations depending on the spe-
cific machine learning algorithm used.
Based on the findings, practitioners are advised to
select one-hot encoding when accuracy is of utmost
importance and computational resources are suf-
ficient. For scenarios where runtime efficiency is
critical, the catboost encoder offers competitive ac-
curacy while minimizing training time. The ordinal
encoder can be a suitable alternative when dealing
with high feature cardinality.

1 Introduction
The transformation of categorical data into numerical data is
an essential pre-processing step in many machine learning
(ML) applications. Categorical data poses challenges when
used in machine learning models, as they are often not di-
rectly comparable or measurable. To address this issue, a
common approach is to convert categorical data into numer-
ical data [1]. Various encoding techniques are available for
this purpose, each with its own strengths and weaknesses de-
pending on specific use cases [2].

Existing literature has explored different encoding tech-
niques on various machine learning algorithms, but there
is still much to be learned about which encoding tech-
nique is most effective for different types of models [2; 3;
4]. For example, one-hot encoding is more effective for tree-
based algorithms [2], while target encoding works better for
linear models and support vector machine (SVMs) [5]. This
variation in results indicates that there is a need for further
research on the comparative study of different encoding tech-
niques on multiple machine learning algorithms.

The primary motivation for this research is to provide the
reader with an understanding of when to choose a specific en-
coding method. To gain this knowledge, this paper analyses
the following five encoders: One-Hot, Ordinal, Target, Cat-
boost, and Count. Factors such as dataset properties, task (re-
gression or classification), and ML model will also be taken
into account.

Therefore, this paper will focus on the following research
questions:

• What is the impact of encoding categorical data into nu-
merical data on the performance (accuracy and runtime)
of machine learning algorithms?

• Is there an encoding technique that is most effective for
a certain ML algorithm?

• Can multiple encoding methods be combined to obtain
better metrics?

This study’s findings shed light on the efficacy of different
encoding methods and offer insights into selecting the opti-
mal technique for a given scenario. The main contribution of
this research can be summarised as follows:

• Creating a baseline for evaluating the efficacy of dif-
ferent encoding techniques across a range of scenarios.
This is carried out by encoding categorical data and sub-
sequently training the models. Then, a comparison of
the results for each method is performed.

• The use of multiple encoding methods on a single
dataset is investigated. This involves defining a separate
encoder for each categorical feature.

• The research determines whether the investment of re-
sources to discover an appropriate encoding method for
a specific use case is worthwhile compared to utilizing
automated machine learning (AutoML) libraries, such as
AutoGluon.

• Finally, the research investigates whether the results
of this study can enhance existing data preprocessing
pipeline designs. By examining the performance of cur-
rent implementations, it is possible to assess whether in-
vesting resources in engineering a data encoding method
when developing a new model is beneficial.

The findings expand upon the existing literature on data
preprocessing, as presented in Section 2. Section 3 introduces
the models and techniques used to compare encoding meth-
ods. Subsequently, the research methodology is described in
Section 4. The experiments are summarized in Section 5,
where the setup and results are presented. Moving forward,
Section 6 concludes the paper, providing insights into the sig-
nificance of the results and suggesting solutions for specific
use cases. Section 7 offers an overview of the limitations of
the research. Finally, in Section 8, the ethical implications of
our findings are discussed.

2 Related Work
There has been research on methods for transforming cate-
gorical data into numerical data, since the data preprocess-
ing step of encoding categorical variables plays a significant
role in the quality of predictions [6]. Previous studies have
briefly evaluated the performance of multiple methods on var-
ious machine learning algorithms, including decision trees,
linear models, and neural networks. However, the lack of a
thorough analysis that includes a wide variety of ML models,
datasets and encoding techniques motivates this paper.

2.1 Encoding Methods on Neural Networks
A comparative study shows that target encoding and leave-
one-out (LOO) encoding outperform other methods in terms



of classification accuracy, while binary encoding and count
encoding are the most efficient in terms of training time
[7]. Various techniques for encoding categorical variables
in neural network classifiers were evaluated. The study ex-
amined six encoding methods, namely one-hot encoding, la-
bel encoding, binary encoding, count encoding, target encod-
ing, and leave-one-out encoding, using multiple classification
datasets. The authors compare the accuracy and training time
of each encoding technique. The paper also discusses the
advantages and disadvantages of each encoding method and
provides insights on when to use each method based on the
nature of the categorical variables and the classification task.

2.2 Comparative Analysis of Encoding Techniques

Encoders such as binary encoding, one-hot encoding, and fea-
ture hashing were analyzed in terms of predictive accuracy,
model interpretability, and computational efficiency. Both
simulated and real-world datasets were used to evaluate the
performance of each encoding technique. The findings sug-
gest that one-hot encoding and feature hashing perform bet-
ter than binary encoding in terms of predictive accuracy and
model interpretability, with feature hashing being the most
computationally efficient technique [4].

Also, comprehensive surveys of data management tech-
niques for machine learning have been performed, including
data preprocessing techniques such as feature selection and
data encoding. These surveys discuss the advantages and dis-
advantages of various encoding methods, such as one-hot en-
coding and label encoding, and highlight the importance of
selecting an appropriate encoding method based on the char-
acteristics of the data and the requirements of the ML algo-
rithm [8; 9].

2.3 Feature selection and responsible data
integration

Surveys have been conducted not only for comparing encod-
ing techniques, but also for feature selection when working
with categorical data. They also discuss the impact of feature
selection on the performance of ML algorithms, highlighting
the need for careful feature selection to avoid overfitting and
improve model interpretability [9].

Lastly, the literature also focuses on the emerging
challenges and ethical considerations in responsible data
integration, such as data privacy, transparency, and fairness
[10]. Frameworks have been developed for responsible data
integration, incorporating these considerations to promote
responsible data practices and mitigate potential harms.

In conclusion, despite extensive research on categorical
data encoding methods, there is still a gap in understanding
the optimal transformation technique for different machine
learning algorithms. To address this gap, our research evalu-
ates the effectiveness of multiple encoding methods on these
specific machine learning algorithms. Through this evalua-
tion, we aim to contribute to the development of a comprehen-
sive understanding of the most suitable encoding techniques
for different machine learning models.

3 Preliminaries
This section presents the models and techniques utilized in
the research. Section 3.1 provides an overview of machine
learning models, followed by the introduction of categorical
data encoding methods in Section 3.2.

3.1 Machine Learning Models
Throughout this study, the machine learning models we use
are linear models (linear and logistic regression), decision
trees (XGBoost, LightGBM and random forests), and sup-
port vector machines. We chose these models for their sim-
plicity and explainability. Also, these models offer different
trade-offs and can help in making informed decisions when
encoding categorical data for various machine learning tasks.

Linear models include logistic regression, linear discrim-
inant analysis, and linear support vector machines, are a
widely used class of machine learning algorithms. These
models employ a linear function of the input features to pre-
dict the output variable [11].

Decision trees are used for classification and regression
tasks. The model creates a tree-like structure where each in-
ternal node represents a decision based on a feature, and each
leaf node represents a class or a value. Decision trees are
popular due to their ability to handle non-linear relationships
between features and target variables and their interpretabil-
ity [11]. The decision tree algorithm has been improved over
the years, with variations like random forests, boosting, and
bagging algorithms that have been developed to improve its
performance [12].

Random forests are a type of decision tree algorithm that
builds a multitude of decision trees and combines them to
get more accurate and stable predictions. Each tree is trained
on a randomly sampled subset of the data and a subset of
the features, which reduces overfitting and increases diversity
among the trees.

Boosting is a family of algorithms that combine weak
learners to create a strong learner. It works by iteratively
training a sequence of weak models on re-weighted versions
of the data, with each model attempting to correct the mis-
takes of its predecessor. The final prediction is a weighted
combination of the predictions of all the models [13].

Support Vector Machines (SVMs) are a class of machine
learning algorithms that are widely used for classification and
regression tasks. The algorithm aims to find a hyperplane in a
high-dimensional feature space that separates the data points
into two or more classes, with the maximum margin between
the classes. The maximum margin classifier is often referred
to as the linear SVM. However, the algorithm can be extended
to a non-linear form by using the kernel trick, allowing it
to handle complex relationships between features and targets
[11]. SVMs have been shown to perform well in many appli-
cations such as image classification, text categorization, and
bioinformatics.

3.2 Encoding Methods
We specifically selected methods to ensure a broad coverage
of both qualitative and quantitative approaches. Given the
scale of this research, five of the most popular encoding meth-
ods were picked: one-hot, ordinal, target, catboost, and count.



One-Hot encoding involves creating a new binary feature
for each category in the categorical variable. This technique
is suitable for categorical variables with a small number of
unique categories and is widely used in linear models, deci-
sion trees, and neural networks. The main drawback of one-
hot encoding is that it can lead to a high-dimensional feature
space, which can negatively impact the performance of some
models and increase the computational cost [14]. The result-
ing feature matrix is sparse, where each column represents a
category in the categorical variable, and each row represents
a sample in the dataset.

Ordinal encoding assigns a unique integer value to each
category in a categorical variable based on the order or rank
of the categories, with lower integer values assigned to cat-
egories that are considered "lower" or "earlier" in the order.
After encoding, we normalized the data, as some algorithms
are sensitive to differences in scale between features [15].
One potential issue with ordinal encoding is that the integer
values can introduce a numerical ordering to the categories
that may not reflect the true relationships between the cat-
egories. This can be especially problematic for categorical
variables with no inherent order or where the order is not
well-defined.

Target encoding, also known as mean encoding, involves
replacing each category with the mean (or some other aggre-
gation) of the target variable for that category. The target vari-
able is the variable we are trying to predict in our machine-
learning model. The main advantage of target encoding is that
it can provide a more informative representation of the data
than one-hot encoding or ordinal encoding. By encoding the
categories based on their relationship with the target variable,
we can potentially capture more of the underlying structure in
the data. However, target encoding can also introduce bias if
the relationship between the categorical variable and the tar-
get variable is spurious or if there is overfitting. It is important
to note that when using target encoding, it is essential to split
the data into training and validation sets before encoding and
computing the means using only the training set. Otherwise,
there is a risk of data leakage, which can lead to overfitting
and poor generalization performance.

Catboost encoding is similar to target encoding but also
involves an ordering principle to overcome the problem of
target leakage[16]. It uses a principle similar to the time se-
ries data validation. The values of the target statistic rely on
the observed history, i.e. the target probability for the current
feature is calculated only from the rows (observations) before
it. With this approach, the first few observations in the dataset
always have target statistics with much higher variance than
the successive ones. To reduce this effect, many random per-
mutations of the same data are used to calculate target statis-
tics, and the final encoding is calculated by averaging across
these permutations.

Count encoding, also known as frequency encoding, re-
places each category in the categorical variable with its fre-
quency or count in the dataset. This technique can be useful
for variables with many categories, providing a more infor-
mative representation than One-Hot Encoding. However, it
can introduce bias if the frequencies are not representative
of the true underlying distributions of the categories. Addi-

tionally, it may not be suitable for variables with very few
categories, as the frequency values may be too similar to one
another.

4 Methodology
In the preliminaries chapter, we discussed the different en-
coding methods and machine learning algorithms used in this
study. In the methodology chapter, we will provide a detailed
outline of our experimental approach, including dataset selec-
tion, the data preprocessing steps and experimental design.

4.1 Hypotheses
Let us define two variables: independent variable as the
encoding method and dependent variable as the evaluation
metrics. The experiments are conducted by altering the inde-
pendent variable, such as employing different encoding meth-
ods (one or multiple) for each dataset. This approach allows
us to assess the performance of the machine learning models,
our dependent variable. Performance is defined as a trade-
off between accuracy/error and runtime. Given that we es-
tablished what the variables in the experiments are, we can
define hypotheses. For hypotheses that involve feature cardi-
nality, a threshold of 5 has been set. Preliminary experiments
have shown that when cardinality is higher than 5, the run-
time grows exponentially in case of one-hot encoding. The
hypotheses are:

• H1: One-Hot encoding performs better than the other
encoders when the feature cardinality is lower than 5.

• H2: When cardinality is higher than 5, training a model
using one-hot encoding takes significantly longer (more
than 10%) than using other encoders.

• H3: Ordinal, Target or Catboost encodings should be
selected instead One-Hot encoding when feature cardi-
nality is higher than 5.

• H4: Combining encoding methods will improve perfor-
mance.

• H5: The allocation of time and resources towards the
design of an encoding method is justified compared to
using solutions such as AutoML data preprocessing.

The research aims to validate the aforementioned hypothe-
ses. Subsequently, the following subsection will outline the
experimental methodology employed for this purpose.

4.2 Experiment Pipeline
The research is organized in a sequential manner, where the
set of steps in the evaluation process can be envisioned as a
pipeline, as in Figure 1.

Figure 1: Experiment Pipeline



Dataset Source Task #rows #features(num., cat.)
Census Income UCI binary classification 48,842 14 (6, 8)
Bank Marketing UCI binary classification 45,211 17 (10, 7)

Nursery UCI binary classification 12,960 8 (0, 8)
Connect-4 UCI multiclass classification 67,557 42 (0, 42)

Housing prices Kaggle regression 4,378 80 (36, 44)
Nasa Numeric OpenML regression 101 24 (4, 20)

Table 1: Overview of the datasets used in the evaluation

The experiment works as follows. A dataset is loaded.
Then, a series of preprocessing steps are applied: first, we
deal with missing values by applying simple imputation.
This approach entails replacing missing values with the mean
value of the available values. This method is frequently used
in many studies due to its convenient nature as a reference
technique [17]. Next, we apply the preprocessing step of en-
coding categorical values. This will be performed in five dif-
ferent ways, one for each encoding method. Again, this is our
independent variable. Finally, the data is split into train and
test sets, with 20% of the dataset to be used in testing.

To train the models, we first choose hyperparameters using
grid search to ensure the quality of our results [18]. Then, the
model is trained and finally, the resulting predictions on the
test set are evaluated.

4.3 Datasets
We chose multiple datasets representing different types of
data and classification tasks to evaluate the performance of
encoding techniques in diverse scenarios. These publicly
available datasets make it easy for other researchers to repro-
duce our experiments and compare their results.The datasets
were gathered from Kaggle1, OpenML2, and UCI’s machine
learning repository3.

Table 1 presents an overview of the selected datasets, in-
cluding the dataset name, source, target variable, task, num-
ber of rows and features, and number of numerical and cat-
egorical features. We chose datasets with a mix of low to
high numbers of total features, categorical features, and rows.
Each type of instance was analyzed separately, and a compar-
ison was made.

4.4 ML Models
Similarly to encoding methods, machine learning mod-
els from popular libraries were used for their reliability
and efficiency. For linear models and decision trees, we
used AutoGluon’s TabularPredictor 4. AutoGluon handles
hyperparameter tuning. For SVMs, we used Sk-learn5’s im-
plementation with grid search for choosing hyperparameters.

Linear Models. The linear models used are:

(i) Linear regression - for regression tasks.

1www.kaggle.com
2www.openml.org
3https://archive.ics.uci.edu/ml/index.php
4https://auto.gluon.ai/0.4.2/api/autogluon.predictor.html
5https://scikit-learn.org/stable/modules/svm.html

(ii) Logistic regression - for classification tasks.
Decision Trees. The decision tree used (both for regression
and classification) are:

(i) XGBoost - a distributed gradient-boosted decision tree.
(ii) LightGBM - a light gradient-boosting machine based on

decision trees.
(iii) Random Forest - a meta estimator that fits a number of

decision tree classifiers on various sub-samples of the
dataset

Support Vector Machines. The SVMs used are:
(i) SVR - for regression tasks.

(ii) SVC - for classification tasks.
The tuned hyperparameters for SVMs are C, gamma, ker-

nel and degree (when the kernel was a polynomial) [19].

5 Evaluation
The section describes the evaluation setup and results. It also
highlights the best-performing encoders and discusses the im-
plications of combining encoding methods.

5.1 Metrics
We evaluated the performance of the encoding methods on
classification and regression tasks. To accommodate these
types of tasks, we chose the most suitable metrics per use
case [20]. For classification tasks, the following metrics were
used:

(i) Accuracy: percentage of correctly classified predictions
on test data.

(ii) Area under ROC curve: the tradeoff between the true
positive rate (TPR) and the false positive rate (FPR).

(iii) F1-Score: harmonic mean of precision and recall.
(iv) Precision: proportion of true positives among all pre-

dicted positives.
(v) Recall: proportion of true positives among all actual

positives.
(vi) Matthews Correlation Coefficient (MCC): takes into

account true positives, true negatives, false positives,
and false negatives to provide an overall measure of clas-
sification performance.

For regression tasks, the following metrics were used:
(i) Mean Squared Error (MSE): the average squared dif-

ference between the predicted and actual values.

www.kaggle.com
www.openml.org
https://archive.ics.uci.edu/ml/index.php
https://auto.gluon.ai/0.4.2/api/autogluon.predictor.html
https://scikit-learn.org/stable/modules/svm.html


feature
cardinality

Encoder

one-hot ordinal target catboost count

0-2 ✔

3 ✔

4 ✔ ✔

5-10 ✔

10-15 ✔ ✔

15+ ✔ ✔

feature
characteristics

Encoder

one-hot ordinal target catboost count
no

relationship ✔

hierarchy ✔

correlation
to target ✔ ✔

rare features ✔

Table 2: Quantitative (left) and Qualitative (right) approaches of encoding categorical columns

(ii) Root Mean Squared Error (RMSE): the square root of
the MSE, which makes it more interpretable since it is in
the same unit as the predicted values.

(iii) Mean Absolute Error (MAE): the average magnitude
of the differences between the actual and predicted val-
ues. It represents the average absolute deviation from
the true values.

(iv) R2 score (R2): measures the proportion of the variance
in the dependent variable that is predictable from the in-
dependent variables.

Additionally, we measured the runtime, CPU usage, and
memory usage of encoding the data, as well as training the
ML model.

Overall, we evaluated the encoding methods based on their
performance and efficiency, considering both the quality of
the predictions and the computational resources required to
obtain them.

5.2 Setup
This subsection details the evaluation setup such that the
reader is able to reproduce the performed tests. The code is
publicly available on a GitHub repository6.

The experiments were performed using the datasets pre-
sented in Table 1. The code was run using Python 3.9, on an
i5 9600K CPU and RTX2060 GPU. Missing data was han-
dled using imputation, as described in Section 4.2.

Baseline Benchmark
To establish a performance baseline for the comparison, we
employed AutoGluon’s data preprocessing pipeline, which
includes categorical data encoding. After the data is pro-
cessed, the models are trained and evaluated. We do not per-
form any other data preprocessing.

Encoder Benchmark
The performance of five encoding methods will be compared.
The process is similar for all encoders. Firstly, the categorical
data is encoded using one of the methods. Then, the data
is normalized to avoid differences in the scale of features.
Next, five ML models are trained with the resulting dataset,
as described in Section 4.4. Finally, the models are evaluated
using the metrics in Section 5.1.

6https://github.com/delftdata/bsc_research_project_q4_2023

Combining Encoders
In addition to evaluating individual categorical data encoding
methods, we also designed a test setup to assess the perfor-
mance of combining multiple encoding methods on the same
dataset. The objective of this setup is to explore the potential
benefits of leveraging different encoding techniques in syn-
ergy to improve the predictive accuracy of machine learning
models. The method used to define how to encode which
column is the following. For every column in the dataset,
each of the five encoders mentioned in Section 3.2 was ap-
plied, while employing one-hot encoding for the remaining
columns. This process facilitated the variance of the encod-
ing methods on a single column while keeping the encoding
method constant for the other columns. This method resulted
in two approaches to encoding the categorical data: a quanti-
tative approach, based on the cardinality of the features, and
a qualitative approach, based on the relationship between the
features, both presented in Table 2. A tick illustrates that an
encoder is suitable to use in the depicted case.

Notably, the one-hot encoder demonstrated superior per-
formance when the feature cardinality was below 5. In cases
where the cardinality ranged between 5 and 10, the ordinal
encoder exhibited the best performance. Moreover, for cat-
egorical features with a cardinality exceeding 10, the target
encoder emerged as the most effective encoding method in
terms of performance.

Regarding the qualitative approach, we defined the 4 cate-
gories in Table 2. The one-hot encoder performed best when
no relationship existed between the categories. The ordi-
nal encoder was more effective for hierarchical relationships,
such as education levels. The catboost and target encoders
performed better when a correlation was present between the
feature and the target value. In cases involving rare values,
the count encoder outperformed other methods.

5.3 Results
A summary of the results will be presented and analyzed in
this section, while Appendix A contains full results.

One-Hot encoding performs best overall.
Depending on use case, other encoders should be used.
The five encoding methods were compared against Auto-
Gluon as a baseline. The red dotted horizontal line in Figure 2
shows the performance of AutoGluon’s automatic encoding.

https://github.com/delftdata/bsc_research_project_q4_2023


Encoding Method Linear LightGBM XGBoost RandomForest SVM
Accuracy Runtime (s) Accuracy Runtime (s) Accuracy Runtime (s) Accuracy Runtime (s) Accuracy Runtime (s)

Onehot 84.81 57 85.91 39 85.78 32 84.24 5 79.88 33
Ordinal 80.78 23 87.53 30 85.28 30 83.98 4 79.88 10
Target 83.07 22 85.39 34 85.27 28 84.76 5 79.88 11
CatBoost 83.04 30 85.44 30 85.35 35 85.08 4 79.88 10
Count 79.02 22 85.24 35 85.32 29 84.36 6 82.50 111

Table 3: Evaluation results on Census Income dataset

(a) Prediction accuracy (%) of each encoder (b) Runtime (s) of each encoder

Figure 2: Results summary on all classification datasets
The figures show boxplots of the accuracy and runtime of each encoder. The data was derived by computing the mean of the

results across all ML algorithms analyzed. The dotted red line represents the results obtained when using AutoGluon to
encode categorical data and serves as a baseline to compare to the encoders used by this study.

The y-axis represents the accuracy of the encoders tested in
this experiment.

The results are consistent across all datasets. However,
for simplicity, we will use the U.S. census income estima-
tion dataset to present the results. A summary is visible in
Table 3. On this specific dataset, the cardinality of the fea-
tures is high, with only one feature having a cardinality lower
than 5. As shown in Figure 2, one-hot encoding performed
the best, outperforming both the other four encoders and the
baseline. This proves hypothesis 1. At the same time, the
runtime when using the one-hot encoder is 15% higher than
using the ordinal encoder and up to 36% higher, compared to
using the catboost encoder. This result proves hypothesis 2.

One should not be solely interested in finding the absolute
best-performing encoder in terms of accuracy. When seeking
a balance between runtime and performance, the most effi-
cient approach is the implementation of catboost encoding.
It achieves 0.62% accuracy per second spent training, while
also being the second-best performer purely based on accu-
racy. On the opposite pole, the count encoder obtains 0.42%
accuracy every second used for model training. Given that
the other two encoding methods, namely ordinal and target,
outperform one-hot encoding in this department, we can con-
clude that hypothesis 3 has been proven.

An interesting observation is that, in general, the ordinal,

target, and catboost encoders perform similarly. Differences
arise when comparing the results on individual ML algo-
rithms. The results that we obtained are the following:

(i) Linear Models: One-Hot encoding performs best.
However, when feature cardinality is high, target and
catboost encoders are a better option as the accuracy
drop is low compared with the gain in saved runtime.

(ii) Decision Trees: The best-performing encoder is also
one-hot. However, the ordinal encoder performs be-
tween 0 and 1% worse, with a significantly lower run-
time.

(iii) SVMs: One-Hot encoding has the highest accuracy, but
that comes with the downside of a 3-times higher run-
time. When considering the runtime, catboost encoding
performs best, with target encoding being a close runner-
up. This result was specifically expected since the in-
crease of data dimensionality influences the runtime on
SVMs the most.

Another observation is that in the context of the Nursery
dataset, the utilization of the Count Encoder proved ineffec-
tive due to the presence of an equal number of instances for
each category. Consequently, the resulting encoded columns
exhibited identical values, thereby diminishing the utility of
this particular encoding technique.



In general, using an implementation of an encoding method
performs better than relying on AutoML alternatives, with
performance gaps of at most 3% in accuracy compared to the
best alternative.

Combining encoders does not improve performance.
Combining multiple encoding methods did not lead to im-
proved results. The accuracy obtained was lower for classi-
fication and the root mean squared error was higher for re-
gression tasks when compared to using a single encoder on
the whole dataset. This result disproves hypothesis 4. We
identified three main problems with this approach:

(i) Inconsistency: Inconsistent encoding schemes can in-
troduce noise or confusion for the models. This is
mainly visible for linear models and SVMs.

(ii) Information loss: Different encoding methods capture
and represent categorical information differently. By ap-
plying different encoders to different columns, informa-
tion loss might be inadvertently introduced or the origi-
nal relationships between features may be distorted.

(iii) Correlations and interactions: Combining encoding
methods across columns can make it challenging for the
model to identify correlations or interactions between
the encoded features. Some models, such as decision
trees, can struggle to recognize patterns effectively if the
encoding schemes vary across features.

This result was consistent for both the quantitative and
qualitative approaches to defining encoders for each column.
Figure 3 shows the results for each ML model tested.

Figure 3: Results summary on combining encoders

6 Discussion and Conclusion
The results of the evaluation shed light on the performance
and efficiency of different encoding methods for categorical
data, providing valuable insights for selecting an appropri-
ate encoder. In this subsection, we will provide a personal
perspective and opinion on the results, while addressing the
hypotheses set forth in this study.

Hypothesis 1 stated that one-hot encoding would outper-
form the other encoders. The results confirmed this hypoth-
esis, demonstrating that one-hot encoding achieved the high-
est accuracy across linear models, decision trees and SVMs.
Therefore, when accuracy is of paramount importance and
the computational resources are sufficient, one-hot encoding
should be the encoder of choice.

Hypothesis 2 suggested that one-hot encoding would have
higher runtime compared to other encoders. The results sup-
ported this hypothesis, revealing that one-hot encoding in-
curred a significant runtime cost, particularly when the fea-
ture cardinality was high. This was clearly visible in the
case of SVMs. This trade-off between accuracy and runtime
highlights the importance of considering computational con-
straints and time limitations. In scenarios where runtime effi-
ciency is a priority and a slight decrease in accuracy is accept-
able, the ordinal or catboost encoders would be more suitable
choices.

Hypothesis 3 posited that catboost encoding would pro-
vide the most efficient approach in terms of both accuracy
and runtime. The results partially supported this hypothe-
sis, as catboost encoding exhibited competitive accuracy lev-
els while requiring less training time compared to one-hot
encoding. This result was supported mostly in the case of
SVMs. However, it did not consistently outperform other en-
coders in terms of accuracy. Nevertheless, catboost encod-
ing emerges as a strong contender, striking a balance between
performance and efficiency, making it an appealing choice in
situations where runtime is a critical factor.

Hypothesis 4 examined the possibility of combining multi-
ple encoding methods for improved results. However, the re-
sults disproved this hypothesis, revealing that combining en-
coders led to lower classification accuracy and higher regres-
sion root mean squared error. This finding emphasizes the im-
portance of consistency and preserving the original relation-
ships between features. It also underscores the challenges as-
sociated with incorporating diverse encoding schemes, which
can hinder the model’s ability to recognize patterns effec-
tively, especially for decision trees. Thus, it is advisable
to use a single encoding method across the entire dataset to
avoid introducing noise and confusion.

Hypothesis 5 suggests that investing time and resources in
designing an encoding method is justified compared to rely-
ing on solutions such as AutoML for data preprocessing. The
results consistently showed that using an implementation of
an encoding method outperformed the AutoML alternative.
This finding supports hypothesis 5 and highlights the impor-
tance of carefully designing and selecting encoding methods
tailored to the specific dataset and machine learning task at
hand. While AutoML solutions offer convenience and au-
tomation, they may not always capture the nuances of the
data and the underlying relationships between features as ef-
fectively as custom encoding methods.

Conclusion. Considering the trade-offs between accuracy
and runtime, as well as the challenges associated with com-
bining encoders, our recommendation would be to use one-
hot encoding when the priority is maximizing accuracy and
computational resources are not a limiting factor. However,
in real-world scenarios where runtime efficiency is critical,



the catboost encoder stands out as a pragmatic choice, of-
fering competitive accuracy while minimizing training time.
The ordinal encoder can be a suitable alternative when feature
cardinality is high, as it demonstrates comparable accuracy to
one-hot encoding but with a significantly lower runtime.

It is important to acknowledge the limitations of this study.
The findings are not universally applicable and depend on
the specific dataset characteristics, feature distributions, and
modelling objectives. The choice of encoding method should
be made based on these considerations and the available
computational resources. Future research should explore ad-
vanced encoding techniques, ensemble strategies, and evalu-
ate the performance of encoding methods on larger and more
diverse datasets.

In conclusion, the results provide valuable guidance for se-
lecting encoding methods for categorical data. By consider-
ing the trade-offs between accuracy and runtime, researchers
and practitioners can make informed decisions on which en-
coder to use based on their specific requirements and con-
straints.

7 Limitations and Future work
There are several avenues for further exploration and im-
provement in the field of encoding methods for categorical
data:

Investigate advanced encoding techniques. This study
focused on widely-used encoding methods, but there are
emerging techniques that could be explored further. Tech-
niques such as entity embedding, target encoding with
smoothing, and other novel approaches may offer improved
performance or efficiency.

Explore ensemble encoding strategies. Instead of using
a single encoding method, ensemble techniques that combine
multiple encoders or dynamically select the most suitable en-
coder for each feature could be investigated. Machine learn-
ing could be employed to do this [21]. This could potentially
address the challenges associated with combining encoders
observed in this study.

Evaluate on larger and diverse datasets. The evaluation
of encoding methods can be extended to larger and more di-
verse datasets to assess their generalizability. Additionally,
considering different application domains and datasets with
varying characteristics could provide deeper insights into the
strengths and weaknesses of different encoding methods.

Consider other machine learning algorithms. This study
focused on linear models, decision trees, and SVMs. Evalu-
ating the performance of encoding methods on other algo-
rithms, such as neural networks, ensemble models, or gradi-
ent boosting machines, could provide a more comprehensive
understanding of their effectiveness across a broader range of
models.

Conduct a comprehensive analysis of computational
costs. While this study considered runtime, cpu and mem-
ory usage as a measure of efficiency, a more comprehensive
analysis of computational costs, including scalability, could
provide a more nuanced understanding of the trade-offs asso-
ciated with different encoding methods.

By addressing these future research directions, we can con-
tinue to enhance the understanding and utilization of encod-
ing methods for categorical data, ultimately leading to more
accurate and efficient machine learning models in real-world
applications.

8 Responsible Research
Ethical Considerations
We acknowledge that our research involves working with sen-
sitive personal data, as the datasets used in our experiments
may contain features linked to individuals. To ensure pri-
vacy and confidentiality we took several measures. Firstly,
we obtained datasets from reliable sources that had already
anonymized the data (OpenML, UCI Repository, Kaggle).
Secondly, we only used the data for research purposes and did
not share it with third parties. Lastly, we followed standard
data protection regulations and guidelines while working with
the data. We believe that our research meets ethical standards
for conducting research with sensitive personal data.

Limitations
The limitations of the research were explicitly addressed in
the corresponding section. These limitations include the spe-
cific encoding methods and machine learning algorithms con-
sidered and the characteristics of the datasets used. It is es-
sential for future research to expand upon these limitations
by exploring additional encoding methods, diverse datasets,
and real-world applications. By acknowledging these limita-
tions, the research encourages further investigation and im-
provement in the field

Reproducibility
To ensure the reproducibility of our methods, we provide
detailed descriptions of our methodology and experimental
work sections. We have also made our code and dataset pub-
licly available on a code-sharing platform. In addition, we
have used standard machine learning algorithms and evalua-
tion metrics that are commonly used in the literature, which
enhances the reproducibility of our results.
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A Detailed experiment results
A.1 U.S. Census Income Estimation

Encoder Model Metrics
Accuracy AUC F1 Precision Recall Time(s)

AutoML

Linear 84.55 0.90 0.63 0.70 0.57 30
XGB 87.55 0.92 0.70 0.78 0.64 30
GBM 87.62 0.92 0.71 0.78 0.65 35

RF 86.11 0.91 0.67 0.74 0.62 3
SVM 79.88 0.58 0.30 0.80 0.18 10

Onehot

Linear 84.81 0.90 0.64 0.71 0.58 57
XGB 85.78 0.91 0.66 0.74 0.60 32
GBM 85.91 0.91 0.67 0.73 0.61 39

RF 84.24 0.89 0.63 0.69 0.57 5
SVM 79.88 0.58 0.30 0.80 0.18 33

Ordinal

Linear 80.78 0.82 0.43 0.69 0.31 23
XGB 85.28 0.90 0.64 0.74 0.58 30
GBM 87.53 0.93 0.70 0.78 0.64 30

RF 83.98 0.89 0.61 0.70 0.54 4
SVM 79.88 0.58 0.30 0.80 0.18 10

Target

Linear 83.07 0.86 0.57 0.69 0.49 22
XGB 85.27 0.90 0.64 0.74 0.56 28
GBM 85.39 0.90 0.64 0.64 0.57 34

RF 84.76 0.89 0.61 0.74 0.52 5
SVM 79.88 0.58 0.30 0.80 0.18 11

CatBoost

Linear 83.04 0.90 0.63 0.70 0.57 30
XGB 85.35 0.90 0.64 0.74 0.57 35
GBM 85.44 0.90 0.65 0.74 0.58 30

RF 85.08 0.89 0.62 0.75 0.54 4
SVM 79.88 0.58 0.30 0.80 0.18 10

Count

Linear 79.92 0.80 0.42 0.64 0.31 22
XGB 85.32 0.90 0.64 0.73 0.56 29
GBM 85.24 0.90 0.64 0.74 0.56 35

RF 84.36 0.89 0.62 0.71 0.55 6
SVM 82.50 0.68 0.53 0.70 0.42 111

Table 4: Summary of results for U.S. Census Income Dataset Results



A.2 Bank Marketing

Encoder Model Metrics
accuracy AUC F1 Precision Recall Time(s)

AutoML

Linear 88.99 0.86 0.29 0.57 0.20 34
XGB 90.27 0.90 0.46 0.64 0.36 70
GBM 90.12 0.90 0.43 0.64 0.32 110

RF 90.24 0.90 0.45 0.64 0.35 123
SVM 88.39 0.5 0.94 0.88 1.0 19

Onehot

Linear 89.77 89.69 41.71 0.61 0.31 53
XGB 90.77 0.92 0.51 0.67 0.41 74
GBM 90.51 0.92 0.49 0.65 0.4 111

RF 90.41 0.92 0.47 0.65 0.37 122
SVM 88.39 0.5 0.94 0.88 1.0 28

Ordinal

Linear 88.99 0.86 0.3 0.57 0.2 23
XGB 90.31 0.9 0.46 0.65 0.36 54
GBM 90.12 0.9 0.43 0.65 0.33 89

RF 89.97 0.9 0.45 0.62 0.35 100
SVM 88.39 0.5 0.94 0.88 1.0 19

Target

Linear 89.33 0.88 0.36 0.59 0.26 24
XGB 90.36 0.91 0.46 0.66 0.35 55
GBM 90.38 0.91 0.47 0.65 0.37 90

RF 90.3 0.91 0.48 0.64 0.39 101
SVM 88.39 0.5 0.94 0.88 1.0 20

CatBoost

Linear 89.34 0.88 0.36 0.59 0.26 23
XGB 90.41 0.91 0.47 0.66 0.36 53
GBM 90.35 0.91 0.45 0.66 0.34 88

RF 90.31 0.91 0.48 0.64 0.39 99
SVM 88.39 0.5 0.94 0.88 1.0 20

Count

Linear 89.52 0.88 0.4 0.6 0.3 23
XGB 90.66 0.93 0.52 0.64 0.44 54
GBM 90.88 0.93 0.54 0.65 0.45 90

RF 90.56 0.92 0.52 0.63 0.44 103
SVM 88.39 0.5 0.94 0.88 1.0 20

Table 5: Bank Marketing Dataset Results



A.3 Nasa Numeric

Encoder Model Metrics
RMSE MSE MAE R2 Runtime(s)

AutoML

Linear 635 404089 -457.3 -0.46 22
XGB 536 287755 -324.7 -0.04 57
GBM 517 268010 -402.91 0.03 74

RF 614 377247 -385.88 -0.37 75
SVM 427 182450 273.61 0.34 0.1

Onehot

Linear 1939 3761158 -1459.4 -12.62 14
XGB 377 142633 -234.22 0.48 34
GBM 486 236310 -382.8 0.14 516

RF 621 386877 -403.77 -0.4 52
SVM 427 182587 273.28 0.34 0

Ordinal

Linear 681 464400 -479.74 -0.68 13
XGB 490 240237 -306.84 0.13 34
GBM 533 284167 -409.13 -0.03 51

RF 600 360350 -380.06 -0.3 51
SVM 427 182450 273.6 0.34 0.1

Target

Linear 767 588880 -526.14 -1.13 13
XGB 521 271774 -296.86 0.02 32
GBM 568 323342 -384.64 -0.17 53

RF 482 232650 -309.29 0.16 53
SVM 409 0.1

CatBoost

Linear 650 423651 -531.71 -0.53 13
XGB 452 204408 -283.79 0.26 33
GBM 581 337999 -414.74 -0.22 52

RF 403 162941 -272.87 0.41 53
SVM 428 183650 308.84 0.34 0.1

Count

Linear 1091 1192006 -734.23 -3.31 13
XGB 410 168920 -254.76 0.39 32
GBM 683 466555 -440.17 -0.69 56

RF 435 190071 -272.86 0.31 57
SVM 407 166259 243.53 0.4 0.1

Table 6: Nasa Numeric Dataset Results



A.4 Nursery

Encoder Model Metrics
accuracy Matth. Corr. Coef. Runtime(s)

AutoML

Linear 78.01 0.68 53
XGB 98.96 0.98 162
GBM 98.88 0.98 309

RF 97.49 0.96 314
SVM 89.0 0.84 1

Onehot

Linear 92.4 0.89 73
XGB 99.96 1.0 157
GBM 100.0 1.0 272

RF 99.61 0.99 275
SVM 100.0 1.0 6

Ordinal

Linear 78.01 0.68 51
XGB 98.88 0.98 159
GBM 98.88 0.98 307

RF 97.3 0.96 313
SVM 89.0 0.84 1

Target

Linear 85.69 0.79 48
XGB 99.5 0.99 137
GBM 99.58 0.99 258

RF 99.07 0.99 263
SVM 86.5 0.8 1

CatBoost

Linear 85.69 0.79 47
XGB 99.61 0.99 138
GBM 99.65 0.99 261

RF 99.07 0.99 266
SVM 86.5 0.8 1

Table 7: Nursery Dataset Results (multiclass)



A.5 Housing Prices

Encoder Model Metrics
RMSE MSE MAE R2 Runtime(s)

AutoML

Linear 40004 1600369404 -24040.09 0.78 48
XGB 35148 1235448683 -20127.86 0.83 186
GBM 38537 1485149547 -20623.46 0.79 297

RF 42217 1782353377 -23399.35 0.75 306
SVM 73846 5453298867 47058.24 0.24 1

Onehot

Linear 32874 1080751629 -19753.14 0.85 50
XGB 33344 1111853870 -19183.52 0.84 152
GBM 35850 1285246298 -19576.9 0.82 277

RF 36848 1357803130 -21179.99 0.81 289
SVM 76183 5803912840 49096.77 0.19 1

Ordinal

Linear 40229 1618435088 -23946.43 0.77 44
XGB 35439 1255958853 -20450.94 0.82 122
GBM 38008 1444610351 -20584.67 0.8 347

RF 43009 1849819925 -23816.99 0.74 356
SVM 73846 5453359326 47058.5 0.24 1

Target

Linear 32691 1068733614 -19901.42 0.85 44
XGB 33705 1136048000 -16789.13 0.84 114
GBM 32958 1086254201 -16978.21 0.85 201

RF 35556 1264289761 -18260.46 0.82 209
SVM 84246 7097495749 55638.82 0.0 1

CatBoost

LR 36600 1339592091 -21005.31 0.81 42
XGB 33377 1114078686 -16824.02 0.84 144
GBM 32631 1064789991 -16727.33 0.85 229

RF 33904 1149534789 -18090.82 0.84 237
SVM 54970 3021725343 30769.19 0.58 0.1

Count

Linear 36500 1332256859 -22641.89 0.81 44
XGB 35030 1227123673 -20137.92 0.83 121
GBM 37087 1375488953 -20324.23 0.81 249

RF 42762 1828628600 -23890.4 0.74 258
SVM 40179 1614426300 22357.49 0.77 0.1

Table 8: Housing Prices Dataset Results (regression)



A.6 Connect-4

Encoder Model Metrics
accuracy Matth. Corr. Coeff. Runtime(s)

AutoML

Linear 65.97 0.1 188
XGB 86.55 0.72 429
GBM 86.43 0.72 1145

RF 82.9 0.64 1196
SVM 83.05 0.6 155

Onehot

Linear 75.71 0.47 233
XGB 86.89 0.73 494
GBM 87.06 0.73 1132

RF 84.51 0.68 1189
SVM 88.85 0.73 176

Ordinal

Linear 65.98 0.1 174
XGB 86.55 0.72 406
GBM 86.67 0.72 1083

RF 82.9 0.64 1132
SVM 83.85 0.61 153

Target

Linear 74.58 0.44 72
XGB 84.78 0.68 250
GBM 84.72 0.68 831

RF 78.72 0.54 905
SVM 80.78 0.58 121

CatBoost

Linear 74.5 0.43 68
XGB 84.65 0.68 228
GBM 84.57 0.68 635

RF 78.95 0.55 703
SVM 80.78 0.58 133

Count

Linear 65.92 0.06 66
XGB 82.53 0.63 256
GBM 82.82 0.64 799

RF 74.4 0.44 877
SVM 66.12 0.0 242

Table 9: Connect-4 Dataset Results (multiclass)
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