
 
 

Delft University of Technology

VirtualCrowd
A Simulation Platform for Microtask Crowdsourcing Campaigns
Qiu, Sihang; Bozzon, Alessandro; Houben, Geert Jan

DOI
10.1145/3366424.3383546
Publication date
2020
Document Version
Final published version
Published in
WWW '20

Citation (APA)
Qiu, S., Bozzon, A., & Houben, G. J. (2020). VirtualCrowd: A Simulation Platform for Microtask
Crowdsourcing Campaigns. In A. E. F. Seghtouchni, G. Sukthankar, T. Y. Liu, & M. van Steen (Eds.), WWW
'20: Companion Proceedings of the Web Conference 2020 (pp. 222-225). ACM.
https://doi.org/10.1145/3366424.3383546
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3366424.3383546
https://doi.org/10.1145/3366424.3383546


VirtualCrowd: A Simulation Platform for Microtask
Crowdsourcing Campaigns

Sihang Qiu
Delft University of Technology

Delft, Netherlands
s.qiu-1@tudelft.nl

Alessandro Bozzon
Delft University of Technology

Delft, Netherlands
a.bozzon@tudelft.nl

Geert-Jan Houben
Delft University of Technology

Delft, Netherlands
g.j.p.m.houben@tudelft.nl

ABSTRACT
This demo presents VirtualCrowd, a simulation platform for crowd-
sourcing campaigns. The platform allows the design, configuration,
step-by-step execution, and analysis of customized tasks, worker
profiles, and crowdsourcing strategies. The platform will be demon-
strated through a crowd-mapping example in two cities, which will
highlight the utility of VirtualCrowd for complex crowdsourcing
tasks in real world settings.

KEYWORDS
Crowdsourcing, Simulation, Discrete Event System

ACM Reference Format:
Sihang Qiu, Alessandro Bozzon, and Geert-Jan Houben. 2020. VirtualCrowd:
A Simulation Platform for Microtask Crowdsourcing Campaigns. In Com-
panion Proceedings of the Web Conference 2020 (WWW ’20 Companion),
April 20–24, 2020, Taipei, Taiwan. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3366424.3383546

1 INTRODUCTION
Crowdsourcing has become an important tool for scientific and in-
dustrial research. Despite the advances made in recent years toward
a better theoretical characterization of crowdsourcing processes
and actors, the presence of uncertainties in the output quality, exe-
cution time, and cost of execution campaigns [1, 4] is considered a
main barrier for a more extensive adoption of crowdsourcing as a
a research tool [6]. At the same time, such limitations hinder the
ability to develop and test novel task scheduling and assignment
strategies. In these settings, the need for readily available large
amount of workers makes it difficult (if not impossible) to recre-
ate execution conditions similar enough to allow for meaningful
comparison of execution performance.

With these challenges in mind, we believe that the availability of
tools and processes able to support large-scale crowdsourcing cam-
paigns in a simulated (yet realistic) fashion can support researchers
in the assessment of the cost-benefits trade-offs of different execu-
tion strategies. Simulations provide an algorithmic and systematic
way to evaluate how a crowdsourcing campaign would progress, in
the context of given simulation parameters. By modeling tasks and
workers, and then adapting task and worker models in a discrete-
event simulation systemwith customized parameters and strategies,

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’20 Companion, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-7024-0/20/04.
https://doi.org/10.1145/3366424.3383546

properties such as quality, execution time, and cost could be esti-
mated and compared.

Contribution In this demo, we present VirtualCrowd, a plat-
form that enables the design, configuration, execution, and assess-
ment of crowdsourcing campaigns through simulations. Virtual-
Crowd differs from previous work [2] in its ability to customize
and extend relevant simulation parameters (e.g. worker quality
and execution time) and execution strategies (e.g. worker selection
and task assignment), enabling users to design and test complex
crowdsourcing tasks with novel strategies.

VirtualCrowd is built upon a discrete-event simulation system
that maintains an event queue with entities (e.g. workers and tasks)
and their relations, where events are ordered by the time of the
simulation clock. A Web-based user interface supports the manage-
ment (creation, modification, and removal) of simulation instances.
In each simulation instance, users can set its simulation parameters
or customize strategies via the interface.

In the demonstration, we will showcase the usage of Virtual-
Crowd in the context of two crowdsourcing tasks, where we will
simulate the annotation of urban objects (e.g. trees) in two cities
(New York City and Amsterdam respectively). The simulation re-
sults and task assignment strategies are analyzed.

2 VIRTUALCROWD ARCHITECTURE
The architecture of VirtualCrowd is shown in Figure 1. The system
consists of three main parts.

Event queue

Components

Simulation
Clock

(a) Simulation Settings (b) Simulation Execution

General Settings

Plugins

Visualization

(c) Result Visualization

Data parameters

Worker parameters

Output parameters

Worker model

Other properties
e1 e2 e3 en...

Task Manager

Worker Manager

Results

Customized Output
Properties

Task model

Figure 1: The architecture of the VirtualCrowd simulation
system.

The Simulation Settings is responsible for the configuration of
simulation parameters (constant values or probability distributions),
worker/task models and customized strategies. The Simulation Ex-
ecution manages simulation entities (e.g. tasks and workers) and

1

222

https://doi.org/10.1145/3366424.3383546
https://doi.org/10.1145/3366424.3383546
https://doi.org/10.1145/3366424.3383546


WWW ’20 Companion, April 20–24, 2020, Taipei, Taiwan S. Qiu et al.

(a) General settings (b) Plugins settings (c) Simulation results

Figure 2: Examples of the user interfaces of the simulation platform.

components (e.g. task and worker managers), and executes simu-
lation events according to the simulation clock. The Analysis and
Visualization focuses on the processing and visualization of the
simulation results. The code of VirtualCrowd is available for the
benefit of the community 1.

2.1 Simulation Settings
The Simulation settings is operated on a Web-based interface, to
facilitate the manipulation of configuration files processed by the
Simulation Execution. By parsing these configuration files, the sim-
ulation system could read all the parameters including constant
values, probability distributions, and customized properties. The
welcome page of the interface supports managing simulation in-
stances, where the simulation instances could be created, duplicated
or deleted. Then users can set parameters of each simulation in-
stance on the setting page, as shown in Figure 2.

2.1.1 General Settings. Configuration parameters including con-
stant values and probability distributions that are common in the
most crowdsourcing tasks can be configured via general settings.
These parameters are usually estimated by real pilot tasks on crowd-
sourcing platforms.

The first category isData parameters, i.e. the parameters about
the original data provided to workers for task execution. For in-
stance, original audio data for speech transcription, and original
image data for segment annotation. Data can be uploaded as a
spreadsheet file containing many data rows. Each data row repre-
sents an object to be assessed by workers, and the content of the
data row can include.Price per judgment is the amount of money
given to the worker per judgment. Judgments per data row is a
number that, as the name suggests, indicate the number of unique
worker needed per object.

TypicalWorker configuration parameters are defined by default
in VirtualCrowd, although new parameters can be added and cus-
tomized via Plug-ins. Inter arrival time is the average time between
each worker arrival. As common in queue theory, such parameter
is best modeled as a Poisson distribution. Dropout time is the time
limit given to a worker to finish a task. Classifications is the number
of worker modeling classes that could be used to classify a worker.
1https://github.com/qiusihang/vcrowd

For each class of workers, the system allows the specification of
1) the Class name, the classes’ 2) Distribution, and 3) the Execution
time. Furthermore, quality metrics such as precision and recall can
be added in the setting page as constant values. If the parameter
follows some specific distributions, it should be defined as a plug-in
as well.

ThroughOutput parameters, parameters like the Running time
and Time step of simulation executions can be configured. Running
time defines the total running time (in terms of simulation clock)
of one single execution. Time step is the time (of simulation clock)
between each output action. At each output action, all the quality
metrics will be re-calculated and recorded. The systemwill automat-
ically calculate and visualize the value of relevant quality metrics
defined via Plug-ins.

2.1.2 Plug-ins. Plug-ins allows for the definition of customized
variables and functions written in Python 3. Users could add their
own codes to enable the system become more adaptive and specific
to their simulation needs. The following models or strategies might
be customized.

1)Worker model and Task model. Common constants, distribution
and actions have been configured in General settings part. However,
sometimes parameters provided before cannot sufficiently describe
a worker or a task. For instance, in a crowd sensing task, the mo-
bility model of a worker in a physical space (virtual or real) is of
great importance and it cannot be described by some simple distri-
butions. 2) Worker selection strategies. These strategies evaluate the
quality of the worker, to assess which worker is qualified for task
execution. 3) Task generation strategies. We give users two options,
if the user wants the task generation strategy to be random, only
one parameter Data rows per task needs to be filled. Otherwise, if
the user wants the strategy to be customized, a function should be
specified. 4) Task assignment strategy. In terms of the task assign-
ment, a customized function can also be provided. The queue of
pending workers and the queue of pending tasks are the input of
the function, users need to define the function to find the optimal
task-worker pair(s) and return it as the output. 5) other customized
variables and functions can be defined to support the system output
and visualization.

2

223

https://github.com/qiusihang/vcrowd


VirtualCrowd: A Simulation Platform for Microtask Crowdsourcing Campaigns WWW ’20 Companion, April 20–24, 2020, Taipei, Taiwan

2.2 Simulation Execution
The Simulation Execution is responsible for managing simulation
components/entities, maintaining simulation clock, and executing
simulation events. The simulation components, entities, events, and
the pipeline of simulation execution are shown in Figure 3.

Task Queue

Task Manager

Worker Queue

Worker Manager

Task Worker

Worker SelectionTask Generation

Task Assignment

Judgment

Worker-Task Pair(s)

Arrival of the worker

Submission Timeout

+ inter arrival time

+ execution time + dropout time

The job is
finished?

No

Components

Task execution

+ waiting time

execution time
< dropout time? NoYes

Data

Events
+ t

Note: the start time of the event is current time + t

Strategies Entities

Figure 3: Simulation components, entities, events, and cus-
tomized strategies used in the crowdsourcing simulation
pipeline.

2.2.1 Components. After finishing simulation settings, simulation
components will be created, including data composed by data rows,
a task manager, and a worker manager. The task manager is used
for managing all the tasks, especially for maintaining a task queue
for storing pending tasks. It is also responsible for task generation
and task assignment. Similarly, the worker manager for managing
all the workers (where pending workers are waiting in a worker
queue) is responsible for creating new workers, selecting qualified
workers and disqualifying workers.

2.2.2 Entities. Simulation entities are items being created, updated
and removed during the simulation execution. When the simulation
execution begins, new entities (workers and tasks) will be generated
and respectively pushed into the worker queue and the task queue.
When a pair of task and worker has been assigned, they will be
removed from corresponding queues. When a worker has finished
a task and successfully submit the result, new judgments entities

will be consequently created by generating values randomly drawn
from the given distributions of quality metrics.

2.2.3 Events. While the simulation system attempts to create, up-
date or remove entities, simulation events tell the system when
and how to do it. A simulation event has two common properties.
The first one is the start time, meaning the time of simulation clock
when the event will be triggered; the second one is the type, which
indicates how the simulation entities will be changed. Four types of
simulation events are given. They are arrival, task execution, submis-
sion, and timeout. The task arrival event indicates that a new virtual
worker is created; the task execution event reflects the successful
assignment of a task to a worker, and that the worker is ready to
execute the task; submission event indicates that the worker has
been finished the task within dropout time, and judgments will be
generated; timeout event means the worker does not finish the task
in time and the task will be re-assigned. To ensure all the events
are executed in chronological order, an event queue (realized by a
heap) is used for maintaining pending events.

2.2.4 Pipeline. As can be seen in Figure 3, the pipeline of simula-
tion execution composes of five steps:

1) Arrival of the worker. A new worker is created by the
worker manager and then waits for worker selection. Meanwhile,
the event of the arrival of the next worker will be pushed into the
event queue; the start time is calculated by summing the current
time with the inter arrival time. 2) Worker selection. The quality
of the new worker is evaluated. If the new worker is qualified, the
worker will be push into the worker queue. 3) Task assignment.
The system uses the task assignment strategy to find the optimal
task-worker pair(s) from the worker queue and the task queue. If
the worker queue is empty, the system has to wait for the arrival
of the next qualified worker. However, if the task queue is empty,
the task generation strategy will be applied to generate new task(s).
Once the an optimal task-worker pair is found, a task execution
event will be pushed into the event queue, whose start time is cal-
culated by current time plus waiting time. 4) Task execution. the
system will estimate the execution time according to pre-defined
parameters, distributions and functions. If the execution time is
less than dropout time, a submission event will be created with start
time equaling to current time plus actual execution time. Otherwise,
the worker will be dropped out without giving any judgments (i.e.
timeout event). 5) Submission. Judgments of data rows in the task
will be generated according to the worker model and distributions
of quality metrics.

2.3 Result Visualization
The Result Visualization focuses on the processing and reporting
of the simulation results. Users can define output metrics about
workers, tasks, judgments (quality), execution time, and cost. To
record these metrics for visualization, users need to calculate them
and return all their names with values as a dictionary in customized
output function. During the simulation execution, these output
metrics are recorded at each output time step. As shown in Figure
2, after the execution, line graphs will be plotted on the web-based
interfaces, where execution time is the x-axis; pre-defined output
metrics are the y-axis.

3

224



WWW ’20 Companion, April 20–24, 2020, Taipei, Taiwan S. Qiu et al.

(a) Manhattan (b) Amsterdam

4.86E 4.90E 4.94E 4.98E

52.34N

52.36N

52.38N

52.40N

52.42N

longitude

la
tit

ud
e

longitude
74.00W 73.96W 73.92W

40.70N

40.75N

40.80N

40.85N

Figure 4: The tree maps of (a) Manhattan and (b) Amster-
dam generated after the simulation, where lines are road
networks and green points represent street trees.

As the visualization part of the platform is developed based on
matplotlib2, users can plot not only line graphs, but also any
other types of graphs supported by matplotlib (e.g. scatter plot,
heat map, bar graph, etc.). The customized graphs can be saved and
shown on the platform by using provided functions. Furthermore,
all the output data together with the parameters of simulation
settings can be downloaded as an archive (.zip) file for further
analysis.

3 DEMO HIGHLIGHTS
The We present the demonstration with a crowd-mapping example
conducted in two cities. The crowd-mapping campaigns are usually
conducted through crowdsensing platforms like ParticipAct [3].
This example focus on urban tree mapping in respectively Man-
hattan Borough (New York City) and Amsterdam. In these two
crowdsourcing tasks, workers will be assigned tasks of finding and
geo-locating street trees via street-level imagery platforms (like
Google Street View) rather than exploring cities physically [7].

The source data, i.e. the street network of two cities, are retrieved
from OpenStreetMap3. In each data row, a point and a polygon are
contained, representing the starting point (the initial location) and
the range of street segment (worker should find and locate trees
in the polygon) respectively. Three classifications of workers are
defined, which are low-quality, medium-quality, and high-quality
workers. Parameters of worker model are measured according to a
pilot task on Figure Eight. Annotating Precision, Error and Recall
are measured as quality metrics. When a simulated worker anno-
tates an object, the Precision parameter decides whether the anno-
tation is correct or not; the Error (distance, unit: meter) between
simulated annotations and the object follows normal distribution.
The Recall parameter controls the number of correctly annotated
trees in a segment. Two task assignment strategies (random assign-
ment and quality-aware assignment [5] ) are tested and compared.

2https://matplotlib.org/
3https://www.openstreetmap.org/.

Table 1: Results (µ ± σ ) of five simulation executions.

City Strategy Precision (%) Error (m) Recall (%)

Manhattan Random 0.44 ± 0.00 3.04 ± 0.01 0.87 ± 0.00
Quality-aware 0.67 ± 0.01 2.89 ± 0.01 0.87 ± 0.00

Amsterdam Random 0.55 ± 0.00 2.36 ± 0.01 0.83 ± 0.00
Quality-aware 0.87 ± 0.00 2.18 ± 0.01 0.83 ± 0.00

Quality metrics are calculated using the ground truth data (the
location of trees) collected from the New York City Street Tree Map
project4 and the dataset from the municipality of Amsterdam5. Tree
maps of Manhattan and Amsterdam generated after the simulation
are shown in Figure 4. Quality metrics (µ ± σ ) calculated after five
simulation executions are listed in Table 1. The average precision
gain of quality-aware strategy against random strategy (respec-
tively obtained 23% increase in Manhattan and 32% increase in
Amsterdam) demonstrates the feasibility of applying quality-aware
task assignment strategy in real world tree mapping campaigns.

Limitations. To use the plugins (customization), users need to
understand how the discrete event system works and know how to
use Python 3. Future work could focus on visualization and modular
programming of the customization.
Implications. VirtualCrowd could have important implications in
crowdsourcing task design. Prior crowdsourcing simulation plat-
forms only consider common microtask types with a few param-
eters, where users cannot test their novel strategies. With Virtu-
alCrowd, users are able to not only test traditional microtasking
campaigns (such as image annotation, sentiment analysis, etc.) eas-
ily without plugins, but also customize worker-/task-related models
and corresponding strategies to achieve high flexibility in differ-
ent scenarios. The demo highlights the utility of VirtualCrowd in
complex crowdsourcing settings.

REFERENCES
[1] M. Allahbakhsh, B. Benatallah, A. Ignjatovic, H. R. Motahari-Nezhad, E. Bertino,

and S. Dustdar. 2013. Quality Control in Crowdsourcing Systems: Issues and
Directions. IEEE Internet Computing 17, 2 (mar 2013), 76–81. https://doi.org/10.
1109/MIC.2013.20

[2] Alex Bores Ricart. 2013. CrowdSim: a Crowd Sourcing Simulation System. (2013).
[3] Giuseppe Cardone, Antonio Corradi, Luca Foschini, and Raffaele Ianniello. 2015.

Participact: A large-scale crowdsensing platform. IEEE Transactions on Emerging
Topics in Computing 4, 1 (2015), 21–32.

[4] Hector Garcia-Molina, Manas Joglekar, Adam Marcus, Aditya Parameswaran, and
Vasilis Verroios. 2016. Challenges in Data Crowdsourcing. IEEE Transactions on
Knowledge and Data Engineering 28, 4 (apr 2016), 901–911. https://doi.org/10.
1109/TKDE.2016.2518669

[5] Katsumi Kumai, Masaki Matsubara, Yuhki Shiraishi, Daisuke Wakatsuki, Jianwei
Zhang, Takeaki Shionome, Hiroyuki Kitagawa, and Atsuyuki Morishima. 2018.
Skill-and-Stress-Aware Assignment of Crowd-Worker Groups to Task Streams.
Sixth AAAI Conference on Human Computation and Crowdsourcing (jun 2018).
https://aaai.org/ocs/index.php/HCOMP/HCOMP18/paper/view/17921

[6] Edith Law, Krzysztof Z. Gajos, Andrea Wiggins, Mary L. Gray, and Alex Williams.
2017. Crowdsourcing As a Tool for Research: Implications of Uncertainty. In
Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work
and Social Computing (CSCW ’17). ACM, New York, NY, USA, 1544–1561. https:
//doi.org/10.1145/2998181.2998197

[7] Sihang Qiu, Achilleas Psyllidis, Alessandro Bozzon, and Geert-Jan Houben. 2019.
Crowd-Mapping Urban Objects from Street-Level Imagery. In The World Wide
Web Conference. 1521–1531.

4https://data.cityofnewyork.us/Environment/2015-Street-Tree-Census-Tree-
Data/pi5s-9p35.
5https://maps.amsterdam.nl/open_geodata/.

4

225

https://matplotlib.org/
https://www.openstreetmap.org/
https://doi.org/10.1109/MIC.2013.20
https://doi.org/10.1109/MIC.2013.20
https://doi.org/10.1109/TKDE.2016.2518669
https://doi.org/10.1109/TKDE.2016.2518669
https://aaai.org/ocs/index.php/HCOMP/HCOMP18/paper/view/17921
https://doi.org/10.1145/2998181.2998197
https://doi.org/10.1145/2998181.2998197
https://data.cityofnewyork.us/Environment/2015-Street-Tree-Census-Tree-Data/pi5s-9p35
https://data.cityofnewyork.us/Environment/2015-Street-Tree-Census-Tree-Data/pi5s-9p35
https://maps.amsterdam.nl/open_geodata/

	Abstract
	1 Introduction
	2 VirtualCrowd Architecture
	2.1 Simulation Settings
	2.2 Simulation Execution
	2.3 Result Visualization

	3 Demo Highlights
	References

