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Analytical prediction model for non-symmetric fatigue crack growth in
Fibre Metal Laminates

Wandong Wanga,∗, Calvin Ransa, Rinze Benedictusa

aStructural Integrity & Composites Group, Faculty of Aerospace Engineering, Delft University of Technology, P.O. Box
5058, 2600 GB Delft, The Netherlands

Abstract

This paper proposes an analytical model for predicting the non-symmetric crack growth and accompanying
delamination growth in FMLs. The general approach of this model applies Linear Elastic Fracture Mechanics,
the principle of superposition, and displacement compatibility based on the understanding of deformation
behaviour in eccentrically cracked metal panels. The non-symmetric crack growth behaviour of two crack
tips and accompanying asymmetric load transfer from the eccentrically cracked metal layers to the intact
bridging fibres are successfully predicted with the model. The predicted crack growth rates and delamination
evolution are compared to test data, good correlation is observed.

Keywords: non-symmetric crack, fibre metal laminates, crack opening displacement, stress intensity factor

1. Introduction

Fibre Metal Laminates (FMLs) are composed of alternating metallic layers and fibre-reinforced polymer
layers. The fatigue resistant fibre layers remain intact in the wake of fatigue cracks in metal layers in FMLs
under cyclic loading, restraining the crack opening and acting as a second load path for the cracked metal
layers. This bridging mechanism, shown in Fig. 1, dramatically reduces the stress severity at the crack tip
and thus the crack growth in metal layers [1–4]. One variant of FMLs, Glare, has been successfully applied
as fuselage skin material on Airbus A380. Its superior damage tolerance in comparison with monolithic
metal panels significantly contributes to the successful application.

Alderliesten has studied symmetric crack growth in FMLs under Mode I fatigue loading based on Linear
Elastic Fracture Mechanics (LEFM) [2, 3]. The fatigue damage mechanisms in FMLs involve fatigue crack
growth in the metal layers and accompanying delamination at metal/composite interfaces. These two coupled
damage mechanisms are investigated by Alderliesten through applying the principle of superposition and
estimating the load transfer between the cracked metal layers and intact fibre layers with the principle of
displacement compatibility. The load transfer can be attributed to the fact that the intact bridging fibres
restrain the crack opening in the metal layers, which reduces the stresses experienced at the crack tip and
introduces interface delamination. The Alderliesten model has been refined for variable amplitude loading
[5–7] and for part-through cracks [8].

One limitation of the Alderliesten model is that it cannot be applied to analyse non-symmetric crack
cases in FMLs. However, non-symmetric fatigue crack cases can arise in FMLs in practice for several reasons,
such as the scatter of crack initiation at hole edges and crack interaction in case of Multiple-site Damage
(MSD) scenario [10] etc. One tip of a non-symmetric crack can grow faster than the other tip under fatigue
loading. Therefore a prediction model is needed to extend the ability to analyse non-symmetric crack growth
behaviour in FML structures, which is required to meet the damage tolerance requirement. In addition,
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Figure 1: Illustration of bridging mechanism [9]

another motivation for developing such a model is to analyse MSD crack growth behaviour in FMLs [10, 11].
As a result of crack interaction in an FML with MSD, a single crack may have asymmetric configuration
involving crack tip asymmetry and delamination asymmetry (see Fig. 2). The ability to calculate the non-
symmetry effects on the states of a single crack, such as stress intensity factors and load transfer between
cracked metal layers and intact bridging fibres, in an FML is therefore needed. The effects of adjacent MSD
cracks on the state of the single crack in an FML can be estimated with the load redistribution mechanism
according to the philosophy in [10, 11]. All crack states can be calculated by analysing each single crack in
an FML with MSD scenario [10, 11].

Many attempts to address non-symmetric crack growth in finite metallic structures can be found in
open literature [12–19], but no analytical prediction model for non-symmetric crack growth in FMLs has
been found in open literature. One obstacle for developing such an analytical model is to understand the
deformation behaviour of an eccentrically cracked panel. The crack opening displacement of a non-symmetric
crack is of particular importance in analysing the load transfer between the cracked layers to intact bridging
fibres in an FML.

This paper proposes an analytical model for predicting the fatigue crack growth of non-symmetric cracks
in FMLs. The model is built upon the success of Alderliesten by applying LEFM, the principles of superpo-
sition and displacement compatibility. The implications of non-symmetry on fatigue cracking behaviour in
FMLs are highlighted in comparison with the symmetric crack scenario in Section 2. The model development
is detailed in Section 3 with focuses on the analysis of non-symmetry effects on stress intensity factors and
crack opening displacement, and on the analysis of non-symmetric bridging calculation. Section 5 provides
the validation of the proposed model with the test program detailed in Section 4.

2. Comparison of symmetric and non-symmetric crack growth behaviour in FMLs

In FMLs, fatigue crack growth in metal layers and delamination propagation at composite/metal inter-
faces take place simultaneously and interact with each other through the bridging mechanism. The growth
behaviour of the two crack tips is affected not only by the free edge boundary conditions, but also the differ-
ence in delamination shapes for the tips. A symmetric fatigue crack configuration in an FML means crack
tip symmetry (same boundary conditions) and delamination symmetry (no difference in delamination shapes
for two crack tips), illustrated in Fig. 2(a). A non-symmetric crack configuration can be either delamination
asymmetry (Fig. 2(b)), crack tip asymmetry (Fig. 2(c)), or a combination of both (Fig. 2(d))

The effects of non-symmetry on the crack state and delamination growth of a non-symmetric crack in
an FML are discussed in comparison with the symmetric crack configuration in the following subsections.

2.1. Effects on stress intensity factors of two crack tips

The stress state at a crack tip in a metallic panel can be characterized with the stress intensity factor
experienced at the crack tip. According to Alderliesten [2, 3], the total stress intensity factor of the crack
tip (Ktotal) in the metal layers of FMLs can be expressed based on the principle of superposition:

Ktotal = Kff +Kbr (1)
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Figure 2: Comparison of symmetric and non-symmetric crack configurations in FMLs

in which Kff is the stress intensity factor due to far-field stresses in metal layers and Kbr is due to the
bridging stress in intact bridging fibres. In other words, the load transfer from the cracked metal layer to
the intact bridging fibres leads to a negative Kbr, resulting in a smaller superposed stress intensity factor
(Ktotal) experienced at the crack tip.

For two symmetric crack tips, the influence of free edge boundary conditions are the same, which leads
to Kff,1 = Kff,2. This symmetry is valid for the crack cases in Fig. 2(a) and Fig. 2(b). On the contrary,
Kff,1 6= Kff,2 is valid for the cases of asymmetric crack tips in Fig. 2(c) and Fig. 2(d) [12, 20].

The symmetric delamination shapes for the symmetric crack tips in Fig. 2(a) lead to Kbr,1 = Kbr,2

according to the study of Alderliesten [2]. Even though the Kbr solution for non-symmetric delamination
shapes are unknown yet, Kbr,1 6= Kbr,2 is expected as the difference in delamination shapes can lead to
non-symmetric bridging stress distribution along the crack. Despite the symmetric delamination shapes in
Fig. 2(c), Kbr,1 6= Kbr,2, as a result of non-symmetric crack opening displacement, which is explained in next
subsections.

It is then obvious that Ktotal is only the same for two tips if there is both crack tip and delamination
symmetry. Either crack tip asymmetry or delamination asymmetry could lead to different total stress
intensity factors for two tips. Thus different crack growth behaviour of two tips of a non-symmetric crack
is expected in an FML. The proposed model should be capable of analysing these phenomena.

2.2. Effects on crack opening displacement

It is well known that a symmetric crack in a metal panel possesses a symmetric crack opening displace-
ment with respect to its crack centre under uniform tensile loading, and that the maximum crack opening
occurs at the crack centre. For an FML under Mode I far-field loading, the stresses in the metal layers
can be calculated with Classical Laminate Theory (CLT). The symmetric crack opening displacement of a
central crack under applied load can then be determined [2, 3].

However, the crack opening of a non-symmetric crack in an FML under Model I loading needs to be
re-analysed. The study in [20] found that a non-symmetric crack in a finite metallic panel has a larger
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Figure 3: Illustration of bridging stress distributions for symmetric and non-symmetric crack cases [20]

crack opening displacement than a central crack with the same length. In addition, the presence of a non-
symmetric crack eliminates the symmetry possessed by a centrally cracked panel, the crack opening contour
of a non-symmetric crack is asymmetric.

The difference in the crack opening displacements of a symmetric crack and a non-symmetric crack in
FMLs due to far-field stresses implies different bridging stress distributions in the intact bridging fibres along
the crack, which affects both the delamination growth at the metal/composite interfaces and crack growth
in the metal layers. The effects are discussed in detail in the next subsection.

2.3. Effects on load transfer from cracked metal layers to bridging fibres

The intact fibres in the wake of fatigue cracks restrain the crack opening in the metal layers in FMLs,
which introduces load transfer from the cracked metal layers to the fibre layers. The load transfer is achieved
by shear at the metal/composite interfaces resulting in interface delamination growth.

The load transfer between the two adherent substances is estimated by Alderliesten using the principle
of displacement compatibility, i.e. the sum of the crack opening due to far-field load (Vff ) and crack closing
due to the load transfer (Vbr) should be equal to the deformation of fibre prepreg layers including shear
deformation (δpp) and fibre elongation (δf ) [2, 3]. See the following equation:

Vff (x)− Vbr(x) = δpp(x) + δf (x) (2)

where Vbr and δf are functions of bridging stress distribution in bridging fibres (Sbr(x)) and Vff and δpp
are functions of far-field stresses in metal layers [2, 3].

The bridging stress distributions for a symmetric case and a non-symmetric case are compared in Fig. 3
in order to illustrate how the difference in the crack opening displacements of both crack scenarios affects
the load transfer [20]. For the symmetric crack case with symmetric delamination shapes, all the variables in
Eq. 2 are symmetric with respect to the crack centre, a symmetric bridging stress distribution in the bridging
fibres can be calculated with Eq. 2 [2]. Symmetric crack growth and symmetric delamination growth in FMLs
can be predicted as well with the approach in [2].

In contrast, the non-symmetric case with the same delamination shapes has asymmetric Vff , see Fig. 3.
A relatively larger crack opening for one crack tip than another results in higher bridging stress according to
the principle of displacement compatibility, as illustrated in Fig. 3. The higher bridging stress distribution
indicates a larger Kbr for the corresponding crack tip. Meanwhile the higher bridging stress distribution
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could promote larger delamination growth under fatigue loading, eventually resulting in a non-symmetric
delamination shape. It is notable that the resultant Kbr and Kff are different, non-symmetric crack growth
behaviours are therefore expected.

Based on the analysis, it can be argued that the crack tip asymmetry and delamination asymmetry
interact with one another. A general crack configuration illustrated in Fig. 2(d) could be expected. The
proposed model should be able to deal with the influence of non-symmetry resulting from both crack tip
non-symmetry and the difference in delamination shapes.
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Figure 4: Decomposition of loads in FMLs system
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Figure 5: Illustration of equivalent loads for actual stress distributions

3. Model derivation

The general methodology that is based on LEFM, the principle of superposition and displacement com-
patibility used in [2, 3] for analysing symmetric cracks in FMLs can also be used for non-symmetric cracks. In
comparison to symmetric cracks in FMLs, the physically different crack growth behaviour of non-symmetric
cracks resulting from the asymmetric boundary conditions and difference in delamination shapes, however,
need to be re-analysed. The core to this analysis is to calculate Kff and Kbr for each crack tip, and to derive
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the asymmetric crack opening displacement and the corresponding load transfer (Sbr) which associates the
crack growth and delamination growth.

In order to aid in calculating Kff and Kbr for each crack tip, the far-field applied load is decomposed
using the principle of superposition, see Fig. 4. The stresses carried by metal layers, σm,app, and composite
layers, σf,app, of an FML under total applied load Ptotal or applied stress σlam can be calculated with CLT
[9, 21]. Then the load transmitted by the metal layers, Pm, and loads transmitted by fibres over the total
crack length, Pf,1, and the rest fibres, Pf,2, can be respectively expressed as:

Pm = nmtmσm,appW (3)

Pf,1 = nf tfσf,app2a (4)

Pf,2 = nf tfσf,app(W − 2a) (5)

where W is the width of the panel and 2a is the total crack length. The subscripts m and f refer to metal
layer and fibre layer respectively. n and t indicate the number of layers and their thickness.

3.1. Kff calculation

It is assumed that the stress distribution in front of a crack tip can be described with the Westergaard
stress distribution in FMLs [11]. Since the non-symmetry results in different stress states at two crack tips
of a non-symmetric crack, it is argued that the Westergaard stress distributions ahead of the two crack tips
are different. [20]. The different stress distributions are illustrated in Fig. 5(a).

The Westergaard stress distribution artificially defines a half crack length with a maximum opening
displacement at the root [20]. In order to achieve a continuous crack opening displacement for a non-
symmetric crack calculated with two different Westergaard stress distributions, two different crack lengths
(a1, a2) are assumed, instead of using the half crack length a of a crack with the length of 2a (Eqs. 6-7).
This method has been applied for calculating stress intensity factors and crack opening of an eccentric crack
in a metal strip and is explained in detail in [20]. Thus the corresponding stress distributions in front of two
crack tips in an eccentrically cracked FML can be given by:

σyy,1 =
σ1√

1− (a1/x1)2
(6)

σyy,2 =
σ2√

1− (a2/x2)2
(7)

where σ1 and σ2 are laminate stresses to be determined for the two crack tips. a1 and a2 are the assumed two
crack lengths whose sum should be the total crack length (Eq. 8) and the corresponding x1, x2 coordinates
are illustrated in Fig. 5(a).

a1 + a2 = 2a (8)

Additionally, the crack opening at the root of two half crack lengths described with the Westergaard
stress distribution should be the same in order to fulfil the physics of the crack problem, which is given
analytically by[20]:

σ1S

Em
a1 =

σ2S

Em
a2 (9)

where S is the matrix for calculating the stresses in the metal layers for a given laminate stress. This matrix
for an FML with a symmetric layup subjected to uniform tensile far-field loading can be given by:

S = Qm[A]tlam (10)

with Qm being the stiffness matrix of the metal layers in laminate coordinates, [A] being the extensional
matrix of the ABD-matrix for a specific FML laminate and tlam is the thickness [9, 21].
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At the cracked section of the panel, the loads carried by the intact materials are then given by:

P1 =

∫ a1+L1

a1

σyy,1dx1 · tlam (11)

P2 =

∫ a2+L2

a2

σyy,2dx2 · tlam (12)

where L1 and L2 are the lengths of intact strips as illustrated in Fig. 5(a).
These two loads and the far-field load (Fig. 5(b)) should not only satisfy load equilibrium but also moment

equilibrium [20]:
P1 + P2 = Pm + Pf,2 (13)

(Pm + Pf,2)dff + P1d1 = P2d2 (14)

with dff , d1 and d2 being the distances between the corresponding equivalent loads and the vertical sym-
metric line of the laminate panel as illustrated in Fig.5(b). These distances can be calculated based on their
geometric relations.

The equivalent loads (P1, P2) of the Westergaard stress distributions (σyy,1, σyy,2) illustrated in Fig. 5
should be located at their centroids, respectively (xc,1, xc,2) [20]:

xc,1 =

∫ a1+L1

a1
σyy,1x1dx1∫ w1

a1
σyy,1dx1

(15)

xc,2 =

∫ a2+L2

a2
σyy,2x2dx2∫ w2

a2
σyy,2dx2

(16)

According to their geometrical relationship, d1 and d2 can be given by:

d1 =
W

2
− (L1 + a1 − xc,1) (17)

d2 =
W

2
− (L2 + a2 − xc,2) (18)

The location of the equivalent load of the far-field stress after decomposition can also be calculated by:

dff =
W

2
−
∫ L2

0
σlamxdx+

∫ L2+2a

L2
ϕσm,appxdx+

∫W
L2+2a

σlamxdx∫ L2

0
σlamdx+

∫ L2+2a

L2
ϕσm,appdx+

∫W
L2+2a

σlamdx
(19)

where ϕσm,app denotes that σm,app is recalculated based on the whole laminate thinkness, with ϕ being
expressed as:

ϕ =
nmtm
tlam

(20)

Solving the system of Eqs. 6-19 provides the results for all the relevant unknown parameters. This pre-
diction model is implemented in a numerical calculation model in the MATLAB language. After derivation
the system of Eqs. 6-19 can be written as a nonlinear function of a1. Although an analytical solution is
extremely hard to obtain for the nonlinear function, a numerical method with a combination of bisection,
secant and inverse quadratic interpolation methods is adopted to solve for the value of a1. Then all other
variables can be calculated.

The curing process for manufacturing FMLs causes thermal residual stresses in the laminate due to the
mismatching thermal expansion coefficients between the metal sheets and fibre layers. The tensile thermal
residual stress for metal layers (σm,cur) is regarded as far-field stress when the crack is present [2, 3]. It is
therefore assumed in this paper that the boundary condition has the same effects on the crack behaviour
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due to curing stress in metal layers as on the stress intensity factor due to far-field applied stress. Then the
resultant stress intensity factors for the two crack tips can be expressed as:

Kff,1 = (σ1S +
σ1
σlam

σm,cur)
√
πa1 (21)

Kff,2 = (σ2S +
σ2
σlam

σm,cur)
√
πa2 (22)

3.2. Crack opening displacement derivation

The use of the Westergaard method provides the possibility of direct calculation of crack opening dis-
placement [22, 23]. For a non-symmetric crack, the crack opening is calculated with two Westergaard
functions defining two half crack lengths that is illustrated in Fig. 6 [20].

a
1

a-a

a
2

x
1

0 x

y*

y

x
2

v
ff,1

v
ff,2

uniform coordinates

local coordinates

Figure 6: Illustration of crack opening displacement

The crack opening displacements for the two half cracks (Fig. 6) due to the applied far-field stress and
curing stress can be given by:

vff,1 =
2(σ1S + σ1

σlam
σm,cur)

Em

√
a21 − x21 (23)

vff,2 =
2(σ2S + σ2

σlam
σm,cur)

Em

√
a22 − x22 (24)

It is notable that the derived crack opening displacements are in local coordinates (Fig. 6). They need to
be mapped to a uniform coordinates with x = 0 located at the crack centre in order to calculate the bridging
stress distribution with the Westergaard method, see Fig. 6. As the mapped COD cannot be expressed by
one analytical equation, it is denoted as Vff (x) in this paper.

3.3. Sbr calculation

It is believed that the same displacement compatibility between cracked metal layers and intact bridging
fibre layers used by Alderliesten for the symmetric crack configuration [2, 3] can be used to calculate the
bridging stress distribution for the non-symmetric crack configuration. Consider a generic damage config-
uration, illustrated in Fig. 7, where the delamination shape b(x) and crack opening Vff (x) are asymmetric
with respect to the crack centre. The dashed line in Fig. 7 represents a symmetric crack opening given as a
reference.

Similar to the method in [8], the delamination shape is divided into bar elements. Due to the known
issue that the magnitude of the calculated Kbr is much more sensitive to the bridging stresses in the bridging
fibres very close to the crack tip than those in other elements, the elements next to the crack tips are refined
by assigning gradually smaller width, as shown in Fig. 7. Node xi is the centre point of ith bar element
where the bridging stress over width wi is approximated by Sbr(xi)wi with Sbr(xi) being the bridging stress
at the node xi.
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Eq. 2 can be used to calculate the Sbr distribution along the crack flank. Vff (x) for any location x in
a uniform coordinates with its origin at the crack centre has been calculated in the preceding subsection.
Vbr(x) can be calculated with the equation as follows:

Vbr(x) =
∑

−a<xi<a

V (x, xi) (25)

where V (x, xi) denotes the crack opening at x due to a pair of point loads at xi of the ith element (Fig. 7).
For a cracked panel under a pair of point loads illustrated in Fig. 8, the analytical solution has been provided
by Tata et al. [23].

V (x, xi) =
1

G(1 + v)
ImZ̄I −

b(xi)

2G
ReZI (26)

where ZI and Z̄I are the Westergaad stress functions and b(xi) is the delamination length at xi, detailed
information is given in Appendix A.
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Figure 8: Two point bridging loads
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The shear deformations of fibre layers for unidirectional plies and cross-ply layers have been calculated in
[3], however the stress in the metal layers, Sal in the equations derived by Alderliesten, needs to be replaced
by σ1S + σ1

σlam
σm,cur or σ2S + σ2

σlam
σm,cur for each half crack (a1, a2).

The fibre elongation can be calculated by

δf (x) =
Sf + Sbr

E
b(x) (27)

where Sf is the sum of σf,app and σf,cur that is the curing stress in the fibre layers.
Due to the fact that Vbr(x) is related to the bridging stresses at all the elements, Eq. 2 has to be solved

for all the bar elements simultaneously. A numerical solution can therefore be obtained [3].

Sbr(x) = H−1Q (28)

where

H =
∑

−a<xi<a

V (x, xi)

Sbr(xi)
+
b(x)

Ef
(29)

Q = Vff (x)− δpp(x)− Sf
Ef

b(x) (30)

3.4. Kbr calculation

The bridging stress is defined in this paper as the stress acting in the fibre layers. However, this bridging
stress needs to be recalculated for the stress acting in each metal layer in order to calculate the Kbr for each
crack tip. The recalculation is given as [3]:

Sbr,m(x) = Sbr(x)
nf tf
nmtm

(31)

Then the stress intensity factor for each crack tip due to the bridging stress distribution can be calculated
by:

Kbr,1 =
∑

−a<xi<a

Sbr,m(xi)w(xi)

2
√
πa

[√a+ z0
a− z0

+

√
a+ z̄0
a− z̄0

−αb(xi)
(
−
√
a+ z0
a− z0

a · i
(a+ z0)2

+

√
a+ z̄0
a− z̄0

a · i
(a+ z̄0)2

)]

Kbr,2 =
∑

−a<xi<a

Sbr,m(xi)w(xi)

2
√
πa

[√a− z0
a+ z0

+

√
a− z̄0
a+ z̄0

− αb(xi)
(√a− z0

a+ z0

a · i
(a− z0)2

−
√
a− z̄0
a+ z̄0

a · i
(a− z̄0)2

)]
(32)

3.5. Crack growth model and delamination growth model

The fatigue crack growth rate in metal is predicted with the Paris relation after the stress intensity factor
for each crack tip is obtained [3]:

da

dN
= Ccg(Keff )ncg (33)

where Ccg and ncg are equation constants for Paris equation. For thin 2024− T3 aluminium, the values are
Ccg = 2.17 · 10−12 and ncg = 2.94 [2, 3]. Keff is related to the range of Ktotal and the stress ratio R [24]:

Keff = (0.55 + 0.33R+ 0.12R2)(1−R) ·∆Ktotal (34)

For delamination growth at the interface between metal layers and fibre layers, the strain energy release
rate G instead of K is employed as the driving force, simply because it is easier to calculate G at the interface
of dissimilar materials [2, 3]. The strain energy release rate for each delamination column can be given in
terms of stresses in bridging fibres:
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G =
nf tf
2jEf

(
nmtmEm

nmtmEm + nf tfEf
)(Sf (x) + Sbr(x))2 (35)

Then the interface delamination can also be calculated using the Paris relation [3]:

db

dN
= Cd(

√
Gmax −

√
Gmin)nd (36)

with Cd and nd being the Paris parameters. For the fibre metal laminate Glare, the values are Cd = 0.05
and nd = 7.5 [2, 3].

4. Experimental procedure

4.1. Material and manufacturing

The FML materials used for validation tests are composed of layers of S2-glass fibres reinforced FM94
epoxy resin prepreg and 2024-T3 aluminium, which is known as Glare. The lay-up of the specimens is
[Al/0/90/Al/90/0/Al] with 90 and 0 referring to the orientation of the prepreg layers with respect to the
rolling direction of the aluminium. Table 1 provides the properties of the constituents.

Table 1: Material properties [11]

Al Prepreg
Young’s modulus Ex[GPa] 72.4 48.9
Young’s modulus Ey[GPa] 72.4 5.5
Shear modulus Gxy[GPa] 27.6 5.55
Poisson’s ratio vxy 0.33 0.33
Poisson’s ratio vyx 0.33 0.0371
Thickness of single layer[mm] 0.4 0.133
Thermal expansion

22 · 10−6 6.1 · 10−6(0◦)
coefficient[1/℃] 26.2 · 10−6(90◦)

The aluminium layers and cross-plies were stacked together according to the lay-up, and then were put
into an autoclave for curing. The curing process was carried out with a maximum temperature of 120 ℃ and
maximum pressure of 6 bars. Then the Glare laminates were milled into the specimen size described in
Fig. 9.

4.2. Test matrix

In order to validate the proposed model for predicting non-symmetric fatigue crack growth in FMLs,
the specimen configuration with initial non-symmetric saw-cuts that is illustrated in Fig. 9 was adopted. A
circular hole with radius of 1.5 mm was applied to obtain saw-cuts from where the crack growth starts. The
parameters of respective specimen configurations are given in Table. 2, which comprise the test matrix. That
the length of a saw-cut is equal to the hole radius means no initial saw-cut is applied at the corresponding
hole edge in order to get a delayed crack growth and corresponding delamination growth. A symmetric
crack configuration (sym-1) was tested as a reference for comparison.

Table 2: Test matrix

Specimen Shc (mm) a1,s (mm) a2,s (mm)
sym-1 0 3 3
asym-1 0 7 1.5
asym-2 30 3 3
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4.3. Fatigue test

The test set-up is shown in Fig. 10. A MTS 810 servo hydraulic test frame with a 250 kN load-cell
(model 661.22D-01) was used. The specimen was mounted on the test frame with pin-hole grips such that
no rotation constraints were applied. All the fatigue tests were done under constant amplitude cyclic loading
under force control. The maximum applied stress level was 120 MPa, the stress ratio was R = 0.05 and the
frequency was f = 10 Hz.

Cameras were used during the fatigue tests to take pictures which were post-processed to obtain the
crack length and delamination shape evolution. The test was suspended after a certain number of fatigue
cycles and the maximum stress was applied in order to get the maximum displacement of the crack opening
and maximum deformation of the specimen. After that cameras took pictures of both sides of the specimen
(see Fig. 10). The test was then resumed. This process was iterated until enough crack lengths were obtained
in the specimen.

DIC cameras

pin-hole grips

camera

DIC cameras

camera

pin hole

grips

Figure 10: Test set up

A strip of millimeter paper was bonded to the surface of the specimen facing a high resolution camera.
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The pictures captured by this camera were post-processed with ImageJ to obtain the crack lengths. The
7-point incremental polynomial method recommended in the ASTM E647-00 [25] was applied to derive crack
growth rates with the crack lengths and corresponding cycles known.

The detection technique of the delamination shape adopted was the Digital Image Correlation (DIC)
method [26–28]. The DIC method is known for measuring the strain distribution [26]. The DIC method
obtains the deformation distribution by tracking the displacement of the random speckle patterns in the
image of a deformed specimen under applied load and in the reference image of the specimen without any
deformation. This displacement distribution is then processed to acquire the strain field. Due to the fact
that the pieces of debonded aluminium carry negligible load while the bonded part still bears much more
load, the evident difference in the strain distribution measured with DIC method between the delaminated
part and bonded part makes the delamination front visible [27, 28].

In order to facilitate the correlation in the DIC method, the surface of the specimen had been painted
random airbrushed black speckles with white background base coat of paint before the specimen was tested.
The VIC-3D DIC system offered by Correlated Solutions was used to make the strain measurements. Two
DIC cameras took the reference image and deformed images during fatigue testing. The image correlation
was made with the subset size of 21 · 21 pixels and step of 5.

5. Model validation

The test data is used to validate the proposed model in this paper. Both the crack growth rates and the
delamination shapes from the test and prediction are compared.

First the predicted crack growth rates are compared to the test results of specimen asym-1 (see Table. 2)
in Fig. 11. The crack length is measured from the hole centre to the crack tip respectively. As can be seen
the prediction correlates well with test data. The initial over prediction is due to the imprecise delamination
shape assumed as input for the model [2, 3]. However, this over prediction vanishes after several cycles.
Due to the non-symmetry, different crack lengths are obtained after fatigue test, this phenomenon is also
captured by the prediction model as can be seen from the final predicted and tested crack lengths in Fig.
11.
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Figure 11: comparison of crack growth rates for specimen asym-1

Then the predicted and measured delamination shapes are compared for asym-1 in Fig. 12. The delami-
nation shapes obtained with the DIC method at the end of testing are compared to the results obtained from
etching the aluminium layers away to validate the DIC method, and the corresponding prediction results
are also presented in Fig. 12. An image of the delamination shape and asymmetric crack lengths of specimen
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asym-1 is shown in Fig. 13. The predicted delamination shapes are compared to the DIC measurements
during the growth. Good correlation is observed.

The crack tip of a1 in asym-1 started growing at first from the saw-cut tip, another crack initiated at
the hole edge after a while. Therefore the delamination shape for a1 (b1) is larger than that for a2 (b2)
in the beginning. The difference in the delamination shapes decreases with fatigue life N until N is around
125500 cycles. Then the crack lengths are long enough so that the boundary condition affects more the crack
growth and corresponding delamination growth. b1 is becoming bigger than b2 after this cycle number. This
phenomenon is discussed in detail in Section 6.
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Figure 12: Delamination evolution for asym-1
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Figure 13: Delamination shape of specimen asym-1 after testing

Specific data comparison between the experiment and prediction is made to quantify the precision of the
prediction model. This comparison is made in Table 3 for asym-1 specimen. As can be seen, for the crack
growth prediction the average relative error is −0.168, which is quite acceptable. The high relative error
can be attributed to the high scatter in experimental fatigue crack growth. For the delamination prediction
the average relative error is −0.057. It can be conclude that the prediction method is quite accurate for the
tested FML configurations.

The symmetric crack configuration, sym-1, is a special case of non-symmetric crack scenario. The
prediction results together with test data for the symmetric case are given in Fig. 14. The corresponding
data for asym-2 is also presented to highlight the effects of non-symmetric boundary condition on crack
growth in FMLs. The crack length is measured from the hole centre to the crack tip as well. The cracks
initiate at the two saw-cut tips simultaneously for two cases. Symmetric Sym-1 has same crack growth
behaviour for the two crack tips. For asym-2, the crack growth rates of the two crack tips are the same for
the crack length less than 10 mm where the boundary condition hardly affects the crack growth. Then the
effects of boundary condition prevail. The crack tip relatively closer to the free edge grows faster than the
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Table 3: Data comparison between the experiment and prediction for asym-1 specimen

category length experimental data prediction relative error
a1 15.5612381 0.000167866 0.000111 -0.338758577

25.74909524 0.000215804 0.000163 -0.244683492
30.23714286 0.00023775 0.000193 -0.188222923
40.2356606 0.000341709 0.000304 -0.110353866

a2 8.116238095 0.000137232 0.000113 -0.176577749
18.99190476 0.000167813 0.000156 -0.070391061
28.26885714 0.000228018 0.000214 -0.061477015
35.55468831 0.000350618 0.000296 -0.155775815

average: -0.168
b1 7.157 7.2455 7.8807 0.087668208

17.981 6.092 6.4747 0.062820092
33.137 2.841 3.3114 0.165575502

b2 7.988 7.0565 7.4321 0.053227521
18.906 5.6805 5.7007 0.003556025
25.699 4.438 4.305 -0.029968454

average: -0.057

other one.
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Figure 14: Comparison of crack growth rates for sym-1 and asym-2

6. Discussion

6.1. The catch-up phenomenon for non-symmetric crack growth in FMLs

From Fig. 12 it can be seen that the size of delamination shape b2 catches up with b1 during the short
crack growth where the boundary condition effects are limited. This evolution of delamination damage
interacts with the crack growth in metal layers. It can also be seen that the crack length bridged by b2
also catches up with the crack length bridged by b1 from Fig. 15 where the crack length measured from
the saw-cut tip is plotted against the crack growth life N . The predicted crack growth rates presented in
the same figure showed higher crack growth rate for a2∗ with smaller delamination b2 than a1∗ with lager
delamination b1 in the beginning phase of the crack growth life.
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As can be read from Table. 4, the calculated far-field stress intensity factors for the two crack tips
are very close for the life period from N = 2000 to N = 33000. This is attributed to the fact that the
crack lengths are still small enough so that the boundary condition effects are almost absent. Whereas the
stress intensity factor due to bridging for a2∗ is smaller, because the smaller delamination shape b2 provides
smaller bridging compared to the larger b1 for a1∗. This results in a higher total stress intensity factor for
a2∗ according to Eq. 1, resulting in a faster crack growth and accompanying delamination growth.
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Figure 15: Illustration of catch-up phenomenon

Table 4: Variation of stress intensity factors

N Kff,1 Kff,2 Kbr,1 Kbr,2

2000 702.96 703.24 237.95 227.74
33000 876.33 876.39 459.87 444.23
125500 1324.06 1318.76 848.61 843.67
174000 1622.4 1603.17 1089.86 1082.81
222600 2200.68 2085.52 1506.81 1468.67

As can be seen in Fig. 15 a1∗ grows faster than a2∗ after the crack length exceeds 10 mm, where the
effects of boundary conditions override the effects of the bridging mechanism on the crack growth behaviour.
The calculated stress intensity factors in Table. 4 further explain this.

6.2. Implementation of the proposed model for predicting MSD in FMLs

The present authors of this paper have already detailed a philosophy for predicting multiple-site damage
growth behaviour in FMLs in [10]. The philosophy requires the ability to predict the crack interaction effects
in terms of the load redistribution mechanism, and the ability to predict the crack growth with asymmetric
delamination shapes and asymmetric boundary conditions for two crack tips in metal layers in FMLs. The
load redistribution mechanism in FMLs as a result of stiffness variation has been studied with the precursor
model proposed in [11], and the prediction model of non-symmetric crack growth in FMLs is proposed in
this paper. Since the model proposed in this paper uses the Westergaard stress distributions to characterize
the stress distribution ahead of a crack tip, the load redistribution due to stiffness variation caused by the
presence of another crack can therefore be modelled [11]. These two models will be integrated to predict
the crack growth behaviour in FMLs with MSD scenario.
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6.3. Limitations of the proposed model

From Fig. 14, it is observed that the predicted crack growth rate for the tip very close to the free edge
is a little over predicted at the last period of fatigue crack growth in asym-2, while the prediction for the
other tip relatively far away from the free edge ahead is underestimated. This inaccuracy originates from
the methodology used in Section 3 to calculate the far-field stress induced stress intensity factors for two
crack tips and the asymmetric crack opening contour of a non-symmetric crack. The methodology is based
on the model proposed in [20], which anaylses the deformation behaviour in a 2-dimensional metallic panel
damaged by an eccentric crack.

The model in [20] has assumed that the Westergaard stress distribution and associated crack opening
solution are applicable to non-symmetric crack tips. And two half crack lengths are defined as the lengths
between the maximum crack opening location and the crack tips respectively. These assumptions are valid
for most eccentric crack scenarios. For a crack case with a normalized crack length, the ratio of half crack
length to the sum of half crack length and the ligament length, larger than 0.7, the assumptions lead to
percent errors larger than 10% in predicted correction factors for stress intensity factors. The relative errors
are obtained by comparing the prediction results with the results from the Isida method [12, 23]. The trend
of the inaccuracy is already shown in [20]. This calculation error could result in a cumulative error in terms
of fatigue crack growth life.

7. Conclusion

An analytical model has been developed to analyse the non-symmetric crack growth in FMLs. The non-
symmetric crack growth in the metal layers and induced non-symmetric growth of delamination shapes at
the composites/metal interfaces in FMLs were investigated in detail. The accuracy of the analytical model
has been validated through comparing predictions with experimental data for several non-symmetric crack
cases. Good correlation is observed.

Both the stress intensity factor due to the far-field loading (Kff ) and the stress intensity factor due to
the bridging stress distributions (Kbr) determine the non-symmetric fatigue crack growth in metal layers
of FMLs. Implementation of these two stress intensity factor solutions requires analysis of two sorts of
non-symmetries: crack tip non-symmetry and delamination shape non-symmetry. For small cracks, the
delamination shape non-symmetry dominates the crack growth behaviour. When the crack length is long
enough, the free edge boundary conditions will prevail and the crack growth behaviour is then dominated
by the crack tip non-symmetry.

The load redistribution from the cracked metal layers to the intact fibre layers can only be solved on the
condition of knowing the far-field loading induced crack opening behaviour of the eccentrically cracked metal
layers. The proposed model is capable of analysing the deformation behaviour and calculating the bridging
stress distribution of arbitrary delamination shape for non-symmetric fatigue crack growth in FMLs. The
proposed model also provides the stress distribution in front of the crack tip, which can be utilized to analyse
the effects of load redistribution due to stiffness variation in front of the crack tip on the crack state, such
as the presence of other collinear cracks.
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Appendix A.

The Westergaard stress functions for cracked body under two-point loads (see Fig. 8) are given by:

ZI =
P

2π
√
z2 − a2

(Part1− i · αy0Part2) (A.1)
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where

Part1 =

√
a2 − z20
z − z0

+

√
a2 − z̄20
z − z̄0

(A.2)

Part2 =

√
a2 − z20

(z − z0)2
−
√
a2 − z̄20

(z − z̄0)2
− z0√

a2 − z20(z − z0)
+

z̄0√
a2 − z̄20(z − z̄0)

(A.3)

α =
1

2
(1 + v) (A.4)

and

Z̄I =
P

π
(Part3− αy0Part4) (A.5)

where

Part3 = tan−1(

√
a+ z0
a− z0

√
z − a
z + a

) + tan−1(

√
a+ z̄0
a− z̄0

√
z − a
z + a

) (A.6)

Part4 =
1

1 +
a+ z0

a− z0
z − a
z + a

√
z − a
z + a

√
a− z0
a+ z0

i · a
(a− z0)2

−
1

1 +
a+ z̄0

a− z̄0
z − a
z + a

√
z − a
z + a

√
a− z̄0
a+ z̄0

i · a
(a− z̄0)2

(A.7)

In these functions, P represents the point load per unit thickness, and the complex numbers z0 (x0+i·y0),
z̄0 (x0 − i · y0) indicate the locations of the applied point loads in a xy-coordinates; z (x + i · y) indicates
the location of interest in the same coordinates (Fig. 8).

For the application in this paper, the following substitutions are needed:

z = x+ i · 0 (A.8)

z0 = xi + i · b(xi) (A.9)

z̄0 = xi − i · b(xi) (A.10)
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