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De tocnemende nauwkeurigheid waarmee satellietbanen kunnen worden berekend
maakt de toepassing van analytische lineaire baanverstoringstheorién, bijvoorbeeld de
Lagrange lineaire baanverstoringstheorie, in het aanpassen en uitbreiden van bestaande
modellen voor het zwaartekrachtveld weer concurrerend met numerieke integratietech-
nieken.

Het gebruik van radar-hoogtemeter kruispuntverschillen in de geintegreerde benade-
ring, waarin gelijktijdig een bestaand model voor het zwaartekrachtveld wordt
aangepast en een model voor de grootschalige oceaanstromingen wordt geschat uit
satelliet radar-hoogtemetingen, leidt tot een betere scheiding en daarmede een meer
stabiele aanpassing en schatting van deze twee modellen. Het feit dat kruispuntver-
schillen geen informatie leveren over de geografisch gecorreleerde baanfout is onvol-
doende reden om deze waarnemingen niet te gebruiken in de geintegreerde benadering.

De betekenis van de huidige hoogtemeter-satellieten (ERS-1 en TOPEX/Poseidon) en
tockomstige hoogtemeter-satellieten voor de oceanografie, geofysica en geodesie zal
aanzienlijk toenemen indien de ARISTOTELES missie daadwerkelijk doorgang vindt.

Het oorspronkelijk voor militaire doeleinden ontworpen satelliet-navigatiesysteem GPS
("Global Positioning System") zal uiteindelijk meer civiele dan militaire gebruikers
kennen.

De voltooiing van de complete GPS configuratie (24 satellieten) opent de mogelijkheid
de baan van een satelliet die uitgerust is met een kwalitatief goede GPS ontvanger te
bepalen met ongeévenaarde nauwkeurigheid en continuiteit.

De doelstellingen van de ARISTOTELES missie op het gebied van het modelleren van
het zwaartekrachtveld kunnen alleen worden gehaald indien deze satelliet wordt uit-
gerust met zowel een zeer goede GPS ontvanger als een gradiometer. De grote
mogelijkheden die de implementatie van een GPS ontvanger aan boord van ARISTO-
TELES leveren, mogen echter niet tot de misvatting leiden dat de metingen van deze
GPS ontvanger alleen voldoende zijn om de missie-doelstellingen te realiseren.

De brandstof benodigd voor het wijzigen van de baan-inclinatie van ARISTOTELES
van 96° naar 92°, met als doel waarnemingen boven de poolkappen te verkrijgen, kan
beter worden aangewend voor een verlenging van de ARISTOTELES gravitatiemissie
in de baan met een inclinatie van 96°.




Het is niet reéel een exacte voorspelling te willen geven van de wetenschappelijke
opbrengst van een toekomstige satelliet-missie. De resultaten die zijn behaald met
bijvoorbeeld de hoogtemeter-satellieten SEASAT en GEOSAT op het gebied van de
geofysica en de oceanografie overtroffen alle verwachtingen. Alleen al dit feit zou een
enorme stimulans moeten zijn voor het realiseren van de ARISTOTELES missie.

Bij het toekennen van budgetten aan ruimtevaart-projecten speelt het prestige veelal
een grotere rol dan de mogelijke wetenschappelijke en maatschappelijke opbrengst. Als
voorbeeld moge dienen het feit dat grote budgetten worden gereserveerd voor de
ontwikkeling van bemande ruimtevaart, terwijl er grote moeilijkheden zijn bij het
financieren van een relatief goedkope en veelbelovende missie als ARISTOTELES.

De kans op een computerstoring neemt meer dan recht evenredig toe met het aantal
gebruikers.

De aanschaf van steeds krachtiger computers vermindert de stimulans bij de gebruikers
tot het maken van efficiénte software.

De verkoop van Fokker aan DASA zal leiden tot een verdergaande afkalving van het
Nederlandse industrieel en technologisch potentieel, en mogelijk tot afkalving van het
wetenschappelijk potentieel.

De korting op het salaris van de assistent-in-opleiding (AIO) heeft niet alleen negatieve
consequenties voor de financi€le draagkracht van de betreffende persoon, maar brengt
ook het gevaar van een uitholling van zijn/haar status en motivatie met zich mee.
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Samenvatting ’

Titel: Het gebruik van satellieten bij het bepalen van het gravitatieveld en het aan-
passen van gravitatiemodellen

Dit proefschrift beschrijft het onderzoek van de auteur verricht in het kader van de
postdoctorale 4-jarige AIO-opleiding. Doel van dit onderzoek was het ontwikkelen en
verbeteren van methoden op het gebied van de modellering van het aardse gravita-
tieveld. Dit aardse gravitatieveld speelt een belangrijke rol in de beschrijving en bepa-
ling van satellietbanen, in de geodesie, oceanografie, geofysica, etc.

De nadruk van dit proefschrift ligt op het bepalen en/of verbeteren van gravita- .
tieveldmodellen met behulp van waamemingen verricht door of naar satellicten. De
onderzochte waarnemingstypen zijn satelliet radar hoogtemetingen ("satellite
altimetry”), satelliet laser afstandsmetingen (SLR) tussen een station op de aarde en
een satelliet, metingen van de afstand en/of afstandsveranderingen tussen twee satel-
licten ("satellite-to-satellite tracking”) en metingen van de zogenaamde gravitatietensor
("satellite gradiometry”). Deze waarnemingen waren beschikbaar, ofwel als aktuele
metingen ofwel in gesimuleerde vorm. Met name de laser afstandsmetingen en de
radar hoogtemetingen waren in ruime mate bij de Technische Universiteit Delft
voorhanden. In de studies beschreven in dit proefschrift is voornamelijk gebruik
gemaakt van laser afstandsmetingen en radar hoogtemetingen van de SEASAT- en
GEOSAT-missies. De andere waarnemingstypen, “satellite-to-satellite tracking” en
"satellite gradiometry”, waren in gesimuleerde vorm door de auteur gegenereerd.

Dit proefschrift bestaat uit vier delen. In het eerste deel wordt beschreven hoe het
aardse gravitatieveld kan worden gemodelleerd. Bovendien wordt een analytische
theorie, de "Lagrange Linear Perturbation Theory", gepresenteerd, die het verband
geeft tussen het model voor het het aardse gravitatieveld en de verstoringen van een
satellietbaan. Aangetoond wordt dat deze analytische theorie de baanverstoringen zeer
goed kan beschrijven.

In het tweede deel wordt beschreven hoe deze analytische baanverstorings-theorie
werd toegepast op echte satelliet waarnemingen en wordt beschreven hoe een bestaand
gravitatieveldmodel kon worden aangepast met behulp van deze waamemingen.
Aangetoond wordt dat deze aanpassing leidt tot een aanzienlijke verbetering in de
beschrijving van de satellietbaan (in dit geval van de SEASAT-baan). Allereerst werd
een experiment tot verbetering van een bestaand gravitatieveldmodel uitgevoerd met
behulp van SEASAT laser afstandsmetingen en radar hoogtemetingen. Deze aanpassing
werd vergeleken met een aanpassing berekend met gebruikmaking van een numeriek
baanberekenings- en parameter-schattingsprogramma ("GEODYN").

Daama werd een uitgebreid onderzoek gedaan naar een totale aanpassing van een
bestaand gravitatieveldmodel met behulp van GEOSAT radar hoogtemetingen. Dit
leidde tot een zodanige nauwkeurigheid in de beschrijving van het aardse gravita-
tieveld, en daarmede tot een dermate nauwkeurige bepaling van de satellietbaan, dat
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het mogelijk bleck gelijktijdig een model te genereren voor de beschrijving van de
grote oceaanstromingen. Aangezien twee jaar van GEOSAT radar hoogtemetingen
beschikbaar waren, werd tevens een onderzoek verricht naar veranderingen in deze
oceaanstromingen. Hierbij kon duidelijk een jaarlijkse cyclus worden onderscheiden,
hetgeen de grote mogelijkheden aangeeft van satelliet-missies als ERS-1 (1991) en
TOPEX/Poseidon (1992) op het gebied van de fysische oceanografie en klimatologie.

Het derde deel van dit proefschrift beschrijft de resultaten van simulatiestudies in het
kader van de tockomstige geodetische satelliet ARISTOTELES (1997). Deze satelliet
zal worden uitgerust met zowel een zogenaamde GPS ontvanger ("satellite-to-satellite
tracking") als een "gradiometer”. De GPS ontvanger maakt het mogelijk dat kontinu
simultane afstands- en doppler-metingen naar 6-8 satellieten van het Amerikaanse Glo-
bal Positioning System (GPS) worden verkregen. Gezien de enorme hoeveelheid waar-
nemingen die deze instrumenten op de satelliet zullen leveren, werd in eerste instantie
gekozen voor een simulatic waarin alleen lokaal (West-Europa) het gravitatieveld werd
bepaald. Indien echter sprake is van een speciale geometrie van de waamemingen, dan
kunnen bepaalde vereenvoudigingen worden toegepast, waardoor het mogelijk wordt
ook simulaties uit te voeren voor het bepalen van het gravitatieveld voor de hele aarde.
Hierdoor kon worden aangetoond dat het mogelijk zal zijn om uit de door ARISTO-
TELES vergaarde GPS en gradiometer signalen het aardse gravitatieveld met grote
nauwkeurigheid en met hoge resolutic te modelleren. Ook zal het met een dergelijke
missiec mogelijk worden om de mariene geoide, die een representatie van het aardse
zwaartekrachtveld boven zee is, en het gemiddelde zeeoppervlak, dat uit radar
hoogtemetingen vanuit satellieten kan worden bepaald, te scheiden. Hierdoor kunnen
de radar hoogtemetingen worden gebruikt om allerlei grootschalige oceaan-stromingen
in detail te bepalen. :

Het laatste deel van dit proefschrift geeft een samenvatting van de onderzoeksresul-
taten en conclusies. Bovendien omvat dit deel een literatuuroverzicht en aanvullende
achtergrondinformatie.

Gesteld kan worden dat reeds met bestaande satellietwaarnemingen zeer waardevolle
resultaten kunnen worden behaald op het gebied van de baanberekening van satellieten,
gravitatieveldmodellering en oceanografie. Bovendien is door de beschreven simulatie
studies geverificerd dat met de ontwikkeling en toenemende toepassing van "satellite-
to-satellite tracking" (GPS), de toekomstige implementatie van een GPS ontvanger en
gradiometer op ARISTOTELES (1997) en de lanceringen van de ERS-1 (1991) en
TOPEX/Poseidon (1992), onze kennis en begrip van de planeet aarde aanzienlijk zul-
len kunnen worden verbeterd en uitgebreid.
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Introduction

Since the launch of the first artificial satellite, the Soviet "Sputnik” in 1957, much
attention has been paid to extracting gravity field information of the Earth from satel-
lite observations. Although already a huge amount of (accurate) satellite ground-
tracking data are available, current models for the Earth’s gravity field are not accurate
enough to fully exploit the information content of satellite observations acquired in a
number of geodetic, geophysical and oceanographic satellite missions. Examples of
these missions are the geodetic LAGEOS satellite and the ERS-1 and
TOPEX/Poseidon altimetric missions. Both types of missions require very precise
orbits, and this requires the availability of accurate gravity field models. In addition,
altimetry satellites also require the availability of a precise geoid which is an equipo-
tential surface for the Earth’s gravity field potential.

Although current gravity field models can still be improved by reprocessing the
available satellite tracking data, the accuracy and resolution of these models is limited
because of the non-global coverage of this data set. However, with the advent of future
satellite missions like the solid Earth satellite ARISTOTELES (Rummel, 1989a and
1989b) and Gravity Probe B (Smith et al., 1988) and the ongoing deployment of the
Global Positioning System (GPS), it will be possible to obtain a data set of satellite
observations with high accuracy and almost perfect global coverage. With such a data
set it will be possible to improve and enlarge current gravity field models drastically,
especially for short-wavelength gravity field variations. These models are expected to
have an unprecedented accuracy and resolution. With these new models it seems possi-
ble to answer many questions in the field of geophysics, oceanography, geodesy and
orbit determination and prediction.

In this thesis, methods will be proposed and discussed to improve gravity field
models with the presently available data of satellite observations and with observations
coming from future satellites. Essentially, a distinction will be made into three
categories of satellite observations. The first category consists of observations between
a fixed station on the surface of the Earth and an orbiting satellite. Examples of this
category are satellite laser range (SLR) measurements, doppler observations and cam-
era optical observations. Although observations of this category can be, and in many
cases are, very accurate, they generally do not provide a fine global data set due to the
non-global coverage of the ground stations.

Observations acquired by Earth remote-sensing satellites belong to the second
category of satellite observations. The most important example of this category are the
satellite altimeter measurements, which are produced by an orbiting satellite that meas-
ures its height above the ocean’s surface. In principle, observations of this type can
cover two-thirds of the Earth. However, these observations do not really have the capa-
bility of improving current gravity field models dramatically, because they do not only
provide information about the Earth’s geoid and radial orbit perturbations, but they
also provide information about oceanographic phenomena. In other words, in the
description of an altimeter measurement both the gravity field and ocean dynamics
play a role and parts of these features behave the same mathematically. This means



that a separation of these features requires sophisticated mathematical methods and is
not always possible, and the latter implies that oceanic features will be aliased into a
gravity field solution if these measurements are used to determine the gravity field.
Huge amounts of altimeter observations of the GEOS-3 (1975-1978), SEASAT (1978)
and GEOSAT (1985-1990) are available, and have been the subject of many studies.

The third and last category of satellite observations is defined as satellite-to-satellite
tracking (SST) and satellite gravity gradiometry (SGG). The first concept produces
observations of the range or range-rate between two orbiting satellites. Although today
small data sets of SST observations are available from e.g. ATS-6/GEOS-3 (Schmid et
al., 1975), ATS-6/Apollo (Vonbun et al, 1980) and Landsat-5/GPS (Bertiger et al.,
1986), these observations have not yet contributed significantly to the development of
gravity field models. However, with the ongoing deployment of the GPS system and
the future launch of TOPEX/Poseidon and low Earth satellites, like ARISTOTELES
and Gravity Probe B, that will be equipped with a GPS receiver, the importance of this
category of observations in gravity field determination will grow. Moreover, because of
the spatial distribution of the GPS-satellites a perfect global coverage of satellite obser-
vations will be possible.

Satellite gradiometry is based on the measurement of the differences of the accelera-
tion experienced by a number of test masses which are placed very close together (on
the order of a few meters) and thus delivering information about the second derivative
of the Earth’s gravity potential, i.e. the gravity tensor. In other words, because the
masses are so close together, the difference between their accelerations divided by
their distance is very close to the local gradient of the gravity field force. A gradiome-
ter will be implemented on the ARISTOTELES satellite. This satellite, which will
encircle the Earth in a low-altitude (about 200 km) almost polar orbit, will be capable
of providing a global data set of observations for the entire spectrum of gravity field
variations over the Earth up to a resolution of about 100 km because of its low altitude
(Visser et al., 1990).

This thesis is concerned with the question of how to use all the different types of
satellite observations in gravity field adjustment and improvement. In principle, all
types of satellite observations mentioned give information of the satellite orbit pertur-
bations and in conjunction the Earth’s gravity field, because the satellite orbits are
affected most by the Earth’s gravity field. Therefore, the first part of this thesis con-
sists of two subjects: representation forms of the gravity field of the Earth and the
theory of satellite orbit perturbations. An analytical orbit perturbation theory is
presented and shown to be sufficiently accurate for describing satellite orbit perturba-
tions if certain conditions are fulfilled.

In the second part of this thesis, gravity field adjustment experiments using the
analytical orbit perturbation theory are discussed using real satellite observations.
These observations consisted of SEASAT laser range measurements and crossover
differences, and of GEOSAT altimeter measurements and crossover differences. A
crossover difference is the difference between two altimeter measurements made at the
same geographical position, one when the satellite orbit was ascending and one when
the satellite orbit was descending. The treatment of the GEOSAT radar altimeter
height measurements required special attention, because this type of measurements



does not only deliver information about the gravity field and satellite orbit perturba-
tions but also about other phenomena, like ocean currents. The gravity field adjustment
experiments with the GEOSAT observations will show the possibility of determining a
long-wavelength stationary ocean circulation model and of adjusting a gravity field
model simultaneously. With this integrated approach, satellite altimetry can be used to
really improve gravity field models, while providing an attractive by-product.

The third part of this thesis is more or less a look into the future. This part is
mainly related to the question of the possible impact of future satellite missions on
gravity field modeling. Studies are presented which investigate the possibility of grav-
ity field model adjustment and enlargement using observations of the third category,
i.e. SST observations and gradiometer measurements. These studies are for the larger
part related to the ARISTOTELES mission. Because the instruments on board of the
ARISTOTELES satellite are assumed to deliver a very dense set of observations with
high accuracy and perfect global distribution, it is expected that the gravity field can
be determined to a high resolution and with a high accuracy.

The determination of a high-resolution and high-accuracy global gravity field model
requires the determination of a huge amount of (unknown) gravity field coefficients.
Therefore, first a local approach of gravity field determination was investigated. In this
way, the number of gravity field unknowns could be kept within limits. This analysis
consisted of two parts: a covariance analysis based on least-squares collocation and a
deterministic gravity field recovery from simulated ARISTOTELES gradiometer and
GPS SST observations.

However, if certain simplifications are made and certain conditions are met, it is
possible to extend this type of analysis and to study also global gravity field recovery
experiments from large amounts of satellite observations. The results from this study
will be compared with the results from the local experiments. It will be demonstrated
that the ARISTOTELES mission can contribute to a major improvement in gravity
field modeling and to a better understanding of a number of topics in the field of geo-
desy, geophysics and oceanography.

Finally, in part IV of this thesis all results obtained in the first three parts will be
summarized and conclusions will be drawn.
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Part I. Theory of gravity field modeling and orbit
perturbations

1. The representation of the Earth’s gravity field

1.1 Introduction

The Earth’s gravity field can be represented in many ways. However, not all of
these representations are suitable for gravity field recovery and adjustment from satel-
lite observations. Therefore, a selection of representations will be made: only those
representations are described that will be used in the gravity field recovery and adjust-
ment experiments and simulations in parts II and III of this thesis.

In this Chapter, first a description of the selected gravity field representations is
presented. In the following, these representations will be called gravity field models.
This will be followed by a discussion of the current (i.e. 1991) status of gravity field
modeling.

1.2 Mathematical formulation of gravity field models

This Section will give an overview of the types of Earth gravity field models to be
used in this thesis. A distinction will be made between global and local gravity field
models.

As a starting point in describing the gravity field of the Earth may serve the well-
known equation of Laplace (Kaula, 1966). The potential U of the Earth’s gravitational
field is known to satisfy this equation, that reads for a position "in vacuo" for a rec-
tangular coordinate frame x, y and z:

IU U U _
ox? 3y? az?
The solution of this equation can be represented by an infinite series of so-called
spherical harmonics, which reads:

AU =

0. (1.1)

1

oo [ - — —_

v=4u3y [aT‘] (CpmcosmA+S,, sinmA)P,, (sing) (12)
1=2m=0

In this equation ) denotes the gravity parameter of the Earth, a , the mean equatorial
radius of the Earth, le the fully normalized Legendre polynomial of degree ! and
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order m, Clm and Slm denote the fully normalized gravity field harmonic coefficients.
The position in a geocentric coordinate frame is denoted by the radius r, the longitude
A and the geocentric latitude ¢. The constituents of the solution can be divided into
three groups:

1- zonals: m=0. The zonal harmonics divide the Earth’s sphere into zones. These har-
monics change sign / times from the North (¢= 90°) to the South pole (¢=-90°);

2- sectorials: I=m#0. The sectorials divide the Earth’s sphere into sectors. They change
sign 2m times for 0<A<360°;

3- tesserals: I#m=#0. The tesseral harmonics divide the Earth’s sphere into compart-
ments (blocks) and change sign [-m times for -90° < ¢ < 90° and 2m times for
0<A<360°.

Global gravity field models used in this thesis are of this form and consist of values
for the normalized harmonic coefficients C;, and S, . In practice, the series of har-
monic coefficients are truncated at a certain degree I" This truncation can be justified
by several effects. Firstly, the effect of these coefficients on the total potential U
decreases with increasing /. In (Kaula, 1966), it is shown that this decrease can
roughly be written as:

-5

TS + —1%- . (1.3)
This equation is called Kaula’s rule of thumb. Secondly, the term (a e/r)’ in equation
" (1.2) decreases with increasing !/ (for satellite orbits r > a g). The latter explains the
choice of the low altitude for the future ARISTOTELES orbit. One of the objectives of
this satellite is to determine a high-degree gravity field model (Rummel, 1986a and
1989a). The latter effect and Kaula’s rule of thumb indicate that for a high degree /,
the corresponding terms of the gravitational potential have a very small effect on the
satellite orbit. This means that their signals are not detectable from satellite tracking
data. Finally, the truncation is justified by the fact that the data sets of observations
used to determine current gravity field models have a poor global coverage. For exam-
ple, satellite tracking observations are only made in the vicinity of ground stations and
the Earth is generally not covered completely with such stations. For such a data set
of observations, the resolution, which means the maximum degree [ of the gravity field
harmonic expansion, is limited.

The field of the potential U is called the gravitational field. If the potential of the
centrifugal force, caused by the Earth’s rotation rate w_, is added to this potential, the
gravity field potential is obtained (Moritz, 1980):

W=U+ —;—w,zrzcoszcb . (1.4)

The surfaces, for which W=constant, are called equipotential surfaces. One of these
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surfaces, which gives a best approximation of the average surface of the oceans, is
called the geoid. This surface plays an important role in the processing of altimeter
measurements (Chapters 4, 5 and 6).

In comparison to global gravity field models, local gravity field models are in the
form of point values or mean values over a certain surface on the Earth of functionals
of the gravity field potential W. Examples are gravity anomalies Ag and geoid undula-
tions N. Values for these functionals are most often computed by using a so-called dis-
turbing potential T. This is a residual potential after subtracting a reference gravity
field potential Wr from the potential W (T=W-Wr ). In most cases, the reference
potential is defined as the gravity field potential with a best-fitting ellipsoid as an equi-
potential surface, which includes a mass distribution with a mass equal to the mass of
the Earth (including the atmosphere). Then, a geoid undulation is defined as the height
of the geoid above this ellipse and a gravity anomaly as the difference between the
norms of the gravity force vector on the geoid and on the surface of this ellipse, where

the gravity force vector is defined as:
g =(grad W). (1.5)

It has been found that gravity anomalies and geoid heights can be approximated very
well by the following equations (Moritz, 1980):

Ag = —¥—2—r- . (16)
T

=—. 1.7

Y (L7)

In this equation, 7y represents the norm of the gravity force on the reference ellipsoid
mentioned above, and the disturbing potential T can be written as:

1
° 1l |a - — —
T = -EZ > [—e-] (AC),,cosm A+AS,,, sinm A)P,, (sing) . (1.8)
Ti22m=0l 7
This thesis will describe methods to adjust or determine harmonic coefficients in
global gravity field recovery experiments or values of gravity anomalies and geoid
undulations in local gravity field recovery experiments.

1.3 Status of Earth gravity field models

Before the launch of the Soviet "Sputnik” in 1957, Earth gravity field models were
based on measurements on the surface of the Earth (Wakker et al.,, 1987a). Because
this data set of measurements had a poor global coverage - most measurements were
made in the more readily accessible land areas - spherical harmonic representations of
the gravity field consisted of only very low degree and order terms. Even these terms
were determined with a low accuracy compared to the accuracy of these terms of
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recently determined gravity field models.

However, with the launch of more and more Earth orbiting satellites and the
development and deployment of satellite tracking systems, like camera, doppler, and
satellite laser range (SLR) measurement systems, it became possible to determine the
orbits and the orbit perturbations of these satellites. These data have been used by
many researchers to determine series of gravity field models with increasing accuracy
and resolution. For example, the Smithonian Astrophysical Observatory (SAO) pro-
duced a series of models referred to as Standard Earth models followed by a number
(SE-models). In the determination of these models, use was made of analytical
representations of the perturbed satellite motion. However, for high-precision orbits,
these analytical representations became unmanageable complex and therefore the last
SE-model was produced around 1978.

In Europe, the Groupe de Recherches de Geodesie Spatiale (GRGS) and the
Deutsches Geodatisches Forschungs-Institut (DGFI) were involved in the determination
of a series of gravity field models indicated by the acronym GRIM and a number. In
the development of these models, an alternative approach was used. In this approach,
the satellite equations of motion were solved by numerical integration. This approach
is still applied and the most recent model available at Delft University of Technology
(DUT), Faculty of Aerospace Engineering (FAE), is GRIM4S1, complete to degree
and order 50 (private comm., DGFI, Munich, FRG). _

The same approach was used by the NASA Goddard Space Flight Center (GSFC).
This center has produced a series of gravity field models called Goddard Earth models
(GEM). These models have been used many times at DUT/FAE. The most recent
GEM-model available at our University is the PGS4591 model, complete to degree and
order 50 (private comm., GSFC, Greenbelt, USA). This model is a preliminary GEM-
T3 model. The GEM-T-series are computed to be used in the determination of the
TOPEX satellite orbit.

Other series of gravity field models that have to be mentioned are the TEG-series
(TOPEX Earth gravity field models) computed at the University of Texas, Austin, and
the OSU-series at the Ohio State University, Columbus. Although the preceding over-
view is not complete, it will be obvious that at the moment many global gravity field
models are available. These models can be divided into three types: satellite-only, so-
called combined models, and geoid models.

The satellite-only models are computed from satellite tracking data only. These
observations consist of laser range, doppler and camera measurements and deliver
information about the satellite orbit perturbations For example, the models computed
from these observations are used in satclhtc orbit determination and prcdlcnon
Because of the presence of the factor (a r) in equation (1.2) and with in mind
Kaula’s rule of thumb (equation (1.3)), the maximum degree of gravity terms that can
be modeled is limited. Another reason for this limitation, is the amount of computing
time necessary for a precise orbit determination. For example, if the maximum degree
of a gravity field model is doubled, it takes about four times as much computing time
(CPU-time) to compute the gravity field force at a certain geographical location. At
the moment this maximum degree is equal to 36-50 for the latest models developed at
GFSC, e.g. the the GEM-T1 and GEM-T2 models (Marsh, 1988 and 1989a). The



resolution on the surface of the Earth of a gravity field model complete to degree and
order 50 is equal to about 400 km. Together with the determination of GEM-T1 and
GEM-T2, their accuracy has been estimated. For example, GEOSAT orbits (about 800
km altitude) computed with the GEM-T2 model are claimed to have a gravity field
induced radial orbit error of about 20 cm for the radial position (Haines et al., 1990).
For the future TOPEX/Poseidon satellite orbit this precision is claimed to be about 10
cm (Marsh et al., 1989a). The maximum degree of satellite-only models is limited by
the spatial distribution of the observations that are used in the determination of these
models and by the altitude of the satellites that have been tracked. Therefore, it is not
expected that these models can be improved or enlarged significantly any further from
existing sets of "satellite-only" observations.

The so-called combined models use in addition to satellite tracking observations also
satellite altimeter measurements and gravimetric measurements made on the surface on
the Earth. Also these models are used in the computation and determination of high-
precision satellite orbits, and also the maximum degree at the moment is equal to 36-
50. Thus, the difference between these models and the satellite-only models is the
incorporation of non-tracking data. Because the altimeter measurements are affected to
a great extent by oceanic phenomena and also by the gravity field, mostly ocean height
models are computed simultaneously with gravity field models from these measure-
ments. Despite the better global coverage of the Earth with altimeter data, this
approach may have the disadvantage of aliasing oceanic phenomena in the gravity
fields models and vice-versa. However, this approach has led to gravity field models
complete to degree and order 50 and long-wavelength dynamic sea surface topography
models complete to degree and order 10 that look very promising (Nerem et al., 1988;
Engelis and Knudsen, 1989; Denker and Rapp, 1990; Marsh et al., 1990). The errors
made in satellite orbit determination when using these models are claimed to be some-
what less than those of the satellite-only models. For example, a preliminary GEM-T3
model is a model computed from both tracking, gravimetric measurements and altime-
ter observations and has a predicted accuracy of about 8 cm for the radial position of
the TOPEX/Poseidon satellite orbit (Marsh, 1988).

The availability of huge amounts of altimeter measurements offers the possibility of
determining a gravity field model with a much finer resolution than the 400 km of
models complete to degree and order 50. Available satellite altimeter data cover two-
thirds of the surface of the Earth with a resolution much smaller than 400 km, There-
fore, gravity field models have been developed up to degree and order 360. However,
instead of using these models in precise orbit determinations, these models are espe-
cially used in computing high-resolution geoids (i.e. with a resolution of about 50 km
for a model complete to degree and order 360) that fit best to the ocean surface and
therefore will be referred to as geoid models. An example of such a model is the
OSU89b model complete to degree and order 360 (Rapp and Pavlis, 1990). This model
is claimed to have an accuracy of about 65 cm over the oceans. The geoid models are
not used for orbit determination and prediction because of their size (leading to very

_time-consuming computer runs) and because of their aliasing of various non-gravity
phenomena (e.g. oceanic features) in the gravity field terms. Especially the aliasing of
long-wavelength oceanic features might lead to satellite orbit errors when using these
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models.

The accuracy of current gravity field models can be compared with the accuracy
required for the recovery of important phenomena in geophysics, oceanography and
geodesy. In Figure 1.1, the gravity signal (in the form of gravity anomalies) of various
features of different spatial scales is sketched (Gravity Workshop, 1987). Also indi-
cated is the cumulative error of two recent gravity field models, the GEM-T2 and
OSUB9a gravity field models. The cumulative errors of these models have been com-
puted from available error estimates of the several terms of these models (Marsh et al.,
1989a; Rapp and Pavlis, 1990). It will be obvious that recent models have to be
improved significantly before they can be used to study these phenomena. This is par-
ticularly true, since the errors indicated in Figure 1.1 for the OSU89a model are prob-
ably too optimistic, because oceanographic signals are aliased into this model.
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2. Satellite orbit linear perturbation theory

2.1 Introduction

Many types of satellite observations, e.g. satellite ground tracking observations,
deliver information about the satellite orbit perturbations, i.e. the changes in satellite
position and velocity relative to a reference Kepler orbit. Therefore, in order to be able
to process these observations their relation to orbit perturbations must be known. For
the greater part, these variations are caused by the gravity field of the Earth.

In this Chapter a theory is presented, the so-called Lagrange linear perturbation
theory (LPT), that gives relations between terms of the Earth’s gravity field potential
and satellite orbit perturbations. Two methods to derive these relations will be dis-
cussed. These two methods consist of a method based on equations derived by Kaula
(Kaula, 1966) and a method originating from the Hill equations (Dunning, 1973).
These two methods yield the same numerical results.

2.2 Kaula solution

In (Kaula, 1966) relations are derived for the satellite orbital element variations
caused by a disturbing potential T of the gravity field of the Earth. These elements, the
Kepler elements, are the satellite’s orbital semi-major axis a, eccentricity e, argument
of perigee o, inclination i, right ascension of ascending node Q and the mean anomaly
M. The first step in deriving these relations was the establishment of the Lagrange
planetary equations (Kaula, 1966):

da _ 2 dT
" na oM @1
de _ 1-e? 3T _(1-e) ar 2.1b)
dt naze oM naze Jw )
do _ _ cosi oT , (1-e%)V2 a1 2.10)
dt  na¥(1-e)VZsini 9 pale Oe '
: , 1
di _ cosi aT aT 2.1d)

dt ~ na%(1-e?)V%ini 00 na’(1-e2)V%sini 0Q
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aQ _ 1 oT

de na*(1-e%)2sini 9 @19
daM 1-e2or 2 OT

_ o 1
dt nale 9¢ na da 219

where n is the orbital angular velocity.

In order to be able to solve these equations with the Earth’s disturbing potential T as
input (equation (1.8)), this potential was rewritten as a function of orbital elements
(Kaula, 1966):
I
T = E Z Z Z F,,,,pG,pqS (.M ,Q,0),,, (2.2a)
_2)n—()p=()q_—eo

where F;  is a function depending only on the satellite’s orbital inclination i, in the
following referred to as inclination function, G,,, is a function depending only on the
eccentricity e, in the following referred to as eccentricity function, p and g are summa-
tion indices, © is the Greenwhich sidereal angle of the Earth’s rotation, and Sl
satisfies:

ACyn |1-m even
Simpq = [__ ASZ,,] 1-m odd SOV (2.2b)

+A5,,,, I-m odd siny .

As_lm]l -m even

The argument  is defined as:
= (I-2p J(@+M y+m (Q-8)+qM = [, u+mh,+gM (2.2¢)

where u is the argument of latitude, A is the longitude at an ascending node passage,
and,

A —2+0
=1-2p-2 | (2.2d)

flmp =1=2p-m o+M nr

where nr is the number of satellite orbital revolutions per day. It can be shown that the
eccentricity functions G,,, are of order O(:,&) (Kaula, 1966). This characteristic will be
used explicitly in the folqumg

Inserting the disturbing potential (equations (2.2a)-(2.2d)) in the Lagrange Planetary
Equations (equations (2.1a)-(2.1f)), the linearized solution for the perturbations of the
Kepler elements due to one term Impq of the disturbing potential (equation (2.2a))
reads:

1



X121 a
Aeimpg = ‘—1:‘-’;)—[—0-] FinpGipa [a-eZ)"z(z—zp +q)-(-2p )] %S,m @3b)

! , .
A ~ %] | oety2p Cipa _ CO%F impGipg g (2.3¢)
Oimpg = | | [(1-€) Fimp— (1—e)2 |~ e :

i
1 ae n
Ay = KA [z-z cosi—m] g 2.3d)
lmpq Sini(l—e2)1/2 a] b"p Ipq( p) \V [mpq
l
a ’ 1 n .
AQ, . =|—|F, G, ————L5§ (2.3e)
Impq [a] Imp™'lpq sini (1-)12 Impq
M, = |2 IF 2(1+1 1-e? 3Gy, (1-2 n(Ls* 2.3
impq = | | Fimp |20+ 1D)Gpg=———GC 1pq=3G g (I - p+q)$ v (2.39)
where

» oF
F =-§ (2.3g)

+ oG
= e (2.3h)
. dy ]
y= dt (2.31)

and

* _ AEIm l-m even . .
S impq = [-AE, m] I-m odd S™Y 2.3))

AC,,|1-m odd cosy .

All the satellites that will be considered in this thesis have near-circular orbits, i.e.
the eccentricity e is almost equal to zero. To calculate the first-order perturbations for
such orbits only eccentricity functions for g=-1,0,+1 have to be calculated. As can be
seen from the solution of the Lagrange planetary equations, the eccentricity e is only
present until first order in the denominator, thus only eccentricity functions that behave
as O(e 5 with -2<g<2 will introduce significant orbital element variations for an eccen-
tricity close to zero. It can be shown that (Schrama, 1986a):

GIpO =1 (243)

_[Aglm]l —-m even

Gp_1 = (1+4p +1)§+o (ed) (2.4b)
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Gppe1 = (314p +1)-;—+o %) 2.4¢)

Often satellite observations deliver information about the position and/or velocity
perturbations that are a combination of perturbations in the direction along the vector
connecting the Earth’s geocenter with the satellite (radial direction), in the direction
perpendicular to this direction but in the satellite’s orbital plane (along-track direction)
and in the direction perpendicular to this plane (cross-track direction). Therefore, it is
convenient to transform the satellite orbital element variations into perturbations in the
satellite radial (upward), along-track (in the direction of the satellite’s velocity vector)
and cross-track (completing a right-hand coordinate system) directions for a circular
reference orbit.

For near-circular satellite orbits, the radial, along-track and cross-track perturbations
can be written as a function of Kepler element perturbations (Rosborough, 1986):

Ar = Aa—aAe cosM +ae AM sinM (2.5a)
At = a (Ao+AQcosi +AM +2sinM Ae +2e cosM AM) (2.5b)
Ac = a(Aisin(w+M )-AQsini cos(w+M )). (2.5¢)

Relations for the radial (r), along-track (t), and cross-track (c), orbit perturbations
for near-circular orbits are now found by combining the equations (2.3), (2.4) and (2.5)
and neglecting all terms of O(e). In this case, the summation over the index g reduces
to only one term and only summations over the degree /, order m and index p remain.
For one combination of /, m, and p, the solution reads:

Ay

a, 21-2p) | 4p-31-1 . 4p—i+1
Ay, =a|—| F + + S .
i “[aJ W) e 2t 2fpyD | e (26D

mp_ 4p-31-1 1-4p-1
Fimp Fimptl  fimp~1

(2.6b)

1
a, l 2(1+1)-3(1-2p )7— .
a Fimp S mpo

\!
1 a 1 F ) .
s = o ] i S0 e a0

Flﬂlp R ’ *
i, ((I-2p)cosi=mHF 1y IS (1_1ympo|-

It must be noted that the equations (2.6a)-(2.6¢) are not valid for f, == 0 or 1 (reso-
nance). In that case, some denominators in the equations (2.6a)-(2.l6'8 become equal to
zero. This may occur for certain combinations of the order m and degree I, but
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certainly will occur for so-called zonal orbit perturbations (order m = 0). Further atten-
tion to these cases will be paid in the next Section.

2.3 Hill equations

Equivalent mathematical relations for the satellite orbit perturbations can be derived
by using the Hill equations (Dunning, 1973). The Hill equations (HE) were derived to
describe the perturbations of the Moon’s orbit around the Earth with the gravity field
potential of the Sun as disturbing potential. However, these equations can also be
applied to determine the linearized satellite orbit perturbations caused by the Earth’s
gravity field variations relative to a near-circular reference orbit. The orbit perturba-
tions are computed in a local orthogonal coordinate system with the u-, v- and w- axes
in respectively the satellite radial, along-track and cross-track directions. With the
Earth’s disturbing potential, represented by T, these equations are (Schrama, 1989):

oT

W-2mv-3n%u = f, = =— (2.72)
ou
V42mi = f, = %{- (2.7b)
wanlw = f,, = ar . (2.7¢)
ow

In these equations, the terms f, f, and f denote the disturbing gravity force vector.
The w-equation (cross-track direction) is uncoupled from the others and can therefore
be treated independently. This equation describes the well-known mass-spring system
oscillating at frequency n.

To enable the solution of the equations (2.7a)-(2.7c) the disturbing forces fu, fv, fw
must be known. The disturbing potential T can be expressed as a function of orbit
parameters (equation (2.2a)). Therefore, the partial derivatives of this potential with
respect to u, v and w may be translated to partial derivatives with respect to the orbit
parameters. With the equations (2.5a)-(2.5¢), the following relations can be derived for
circular reference orbits (¢ = 0), with the radius r of the satellite orbit equal to the
semi-major axis a:

Au = Ar (2.10a)
Av = At = r (A(o+M }+AQcosi) (2.10b)
Aw = Ac = r (Ai sin(c>+M )—AQsini cos(w+M)) . (2.10¢)

For a circular reference orbit, two independent sets of orbital elements can be chosen:
a set consisting of r, (0+M) and Q, and a set consisting of r, (0+M) and i (Schrama,
1990). Using the first set, i.e. with the inclination i kept constant, the disturbing forces
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become:

%5' - %% (2.92)
of _1_dT
v r M) (2.9b)
aT _ 1 f of . oT
ow  rcos(o+M )sinila((m-M) cost ag}' (2.9¢)

Using the second set, i.e. with the right ascension of ascending node 2 kept constant,
equation (2.9¢) must be replaced by:
oT _ 1 oT
ow  rsin(@+M) 0i
The equations (2.9¢c) and (2.9d) are singular at arguments of latitudes of respectively

90° and 0°. In order to overcome these singularities, these equations are combined
into:

(2.9d)

_a_Z. = [COSZ(O)*}-M )+Sin2(0)+M )] —al = (2096)
aw aw
cos(+M ) J’ of . oT . oT
rsini | o(@HM) aa} + sin(@+M) o -

For circular reference orbits the combination of the equations (2.2a)- (2.2b) and
(2.9a)-(2.9e) yields:

1
na
fuimp = r—.,fz—(—l~1)F,,,,,,S,,,,,,0 (2.10a)
uael *
foimp = _7;?(1 =20 F impS  mpo (2.10b)

!
1 Ha,” ([ F ] .
Fwimp =—% rl:2 H s;’:; ((1=2p )eosi -m )-F W]S*(Hl)'npo

F imp . ’ *
+[ Sini ((I-2p )cosi—m H+F ,,,,p]S (1_1),",,0:| (2.10c)

Inserting the equations (2.10a)-(2.10c) in the Hill equations and applying the
Laplace transformation, expressions can be derived which describe the radial, along-
track and cross-track perturbations (Schrama, 1989). These formula’s can be split into
a particular and a homogeneous solution. For perturbations in the radial and along-
track direction, the particular solution is equal to the formula’s derived in Section 2.2
(equations (2.6a)-(2.6b)) for non-resonance gravity field perturbations. For perturba-
tions in the cross-track solution, the particular solution of equation (2.7c) reads:
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The equations (2.6¢) and (2.11) have been tested numerically and equivalent results
were obtained if the total perturbation of one harmonic coefficient (summation over p)
was computed. The homogeneous solution represents the orbit perturbations caused by
epoch-vector errors (or errors in the initial conditions) and is of the form (Schrama,
1989):

u = (ad+alt)cosnt+(b2+b}t)sinnt+¢,2 (2.12a)
v = (a,2+a, t)cosnt+(b.2+b, ¢ )sinnt +(c +c,'t) (2.12b)
w = afcosnt+b£sinnt (2.12¢)

For resonance gravity field perturbations the solution takes a different form. This reso-
nance occurs when f, = 0 or x1 and this is always the case for part of the zonal
gravity field perturbations. In (Schrama, 1989) expressions have been derived for reso-
nance orbit perturbations. As an example, the resonance radial orbit perturbations
caused by zonal constituents for which f, = 0 or £1 can be found by inserting these
constituents in those expressions. This procedure yields:

ACy (I+1)ua,’
n2 rl+

l even: ujgn = Fo12(cosnt—1) (2.13a)

_ pa,’

I odd: ujgq11y2 = ACyo T2

[F 1og-1y2—F zo(1+1)/2] %(t cosm——nl—sinnt ) (2.13b)

Comparing the equations (2.12a) and (2.13a)-(2.13b), it can be seen that the resonance
perturbations can be "absorbed" by the homogeneous solution. In other words, orbit
perturbations caused by resonance zonal terms can be "absorbed" by adjusting the
satellite epoch-vector. This statement is, of course, only true as long as the orbit per-
turbations are small and in addition to this, the linearization of the orbit perturbation
equations is justified.

In the next Chapter attention will be paid to the accuracy of the orbit perturbations
derived by the linearized theories described in this Chapter.
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3. Comparison between the linear perturbation theory and
numerical orbit integration

3.1 Introduction

Considering the accuracy of recent gravity field models, it becomes possible to com-
pute high-precision satellite orbits. This has as a result that the orbit perturbations
caused by gravity field model errors become very small. Therefore, in order to model
these perturbations, it will be justified to linearize the equations of motion relative to
the high-precision orbits and the errors due to this linearization will be small. In that
case, the linear perturbation theory described in the previous Chapter can be used to
model satellite orbit perturbations caused by gravity field model errors. In order to sup-
port this statement, a test was performed in which the results of a numerical orbit
integration were compared with the results of the linear perturbation theory, as
described in Chapter 2.

The test started with the computation of a satellite orbit with two different gravity
field models by numerical integration. The differences between the satellite orbits that
were obtained in this way were compared with the differences predicted by the appli-
cation of the linear perturbation theory. In the latter case, the differences between the
coefficients of the two gravity field models were used in the LPT to model the orbit
differences.

The two selected gravity field models were GEM-T1 and GEM-T2, truncated at
degree and order 36. The selected orbit was an ERS-1 like satellite orbit, with an incli-
nation of 98.5162° and a semi-major axis of 7158741.2 m. The application of these
orbit parameters led to a repeat period of 3 days, comprising 43 orbital revolutions. A
repeat orbit is defined as a satellite orbit that repeats exactly after an integer number of
orbital revolutions, i.e. after this number of revolutions the satellite is at the same geo-
graphical position. For the test, the orbit was integrated over a period of 6 days, i.e.
two repeat periods, centered at the epoch for which the orbital elements were assumed
to be known. So, the orbit was integrated 3 days backward in time and 3 days forward
in time. Using this procedure, the orbit differences in the center of the 6-day orbit
were equal to zero.

Having a satellite orbit with a repeat period has one very specific advantage over
"ordinary" satellite orbits: the orbit perturbations as predicted by the LPT (equations
(2.6a)-(2.6c)) become true Fourier series. In that case, the amplitudes of the orbit per-
turbations predicted by the LPT can be compared with the amplitudes computed by
applying a discrete Fourier transformation on the orbit differences derived from numer-
ically integrated orbits. To be able to use the discrete Fourier transformation, orbit
differences with a constant sampling interval are necessary for an integer number of
repeat periods (Colombo, 1984). Fourier series were computed from the orbit
differences computed from the numerically integrated satellite orbits and were
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predicted by the LPT. This means that the orbit differences were represented as:

nmax
Aorbit = Y, a;cos(iu/nrev y+b;sin(iu/nrev) (3.1)
i=1
where g; and b, are the Fourier amplitudes, and u the argument of latitude.

In the first part of this Chapter, the computation of orbit differences by subtracting
two numerically integrated orbits is described. After this, the modeling of these orbit
differences by the LPT is discussed, followed by a comparison between the orbit
differences computed by both techniques.

3.2 Orbit differences by numerical orbit integration

In order to be able to numerically integrate satellite orbits with high accuracy and
stability, an Adams-Moulton integrator was developed and applied (Boyce and
DiPrima, 1986). The characteristics of this integrator are described in Appendix F. The
order of this integrator can be chosen freely. For the computations to be presented in
this Chapter this order was taken equal to 10. The time step used was taken equal to
75 s. The selection of this time step was based on the following arguments. The grav-
ity fields used are complete to degree and order 36. This means that the resolution of
the gravity field variations, defined as half the smallest wavelength of a gravity field
model, was equal to 5°. The satellite traverses an orbital arc of about 5° in 75 s.
Therefore with an integration step of 75 s the gravity field variations modeled can be
"followed", leading to a stable orbit integration. In order to support the preceding
assumption, 3-day ERS-1 orbits were computed with time steps equal to 150 s, 75 s
and 37.5 s with the integration order equal to 10 using the GEM-T1 gravity field
model. The integration took place in an inertial rectangular coordinate frame, with its
origin coinciding with the Earth’s geocenter. It was found that the rms of the orbit
differences betwecn the orbits computed w1th a time step of 150 s and 75 s were on
the order of 10’ m in orbital position and 10* my/s in orbital velocity. The rms of these
orbit differences were on the same order of magnitude for the orbits computed with
time steps equal to 150 s and 37.5 s. In contrast, the rms of these orbit differences
were on the order of 1 m in position and 1 mm/s in velocity for the orbits computed
with time steps equal to 75 and 37.5 s. In order to justify the choice of 10 for the
integration order, 3-day ERS-1 orbits were computed with this order equal to 9, 10 and
11 with the time step equal to 75 s, again with the GEM-T1 gravity field model. The
increase of the integration order from 9 to 10 resulted in an rms of orbit differences
equal to about 10 m in position, and 1 cm/s in velocity. For an increase of this order
from 10 to 11, the rms of orbit differences was equal to about 1 m in position and 1
mm/s in velocity. Therefore, it is concluded that with an integration order equal to 10
and a time step of 75 s, the numerical orbit integration has an accuracy of about 1 m
in orbital position and 1 mm/s in orbital velocity.

After this, ERS-1-like satellite orbits were computed with the GEM-T1 and GEM-
T2 (truncated at degree 36) models for a 6-day period. The resulting GEM-T1 and

-22-



GEM-T2 orbit ephemerides were transformed into orbit differences in the satellite
radial, cross-track and along-track directions. The rms of these differences was respec-
tively equal to 3.49 m, 3.02 m and 97.76 m for the radial, cross-track and along-track
directions. The mean of these differences was equal to respectively -0.41 m, -7.80 m
and 0.02 m for the radial, along-track and cross-track directions.

In order to be able to perform a discrete Fourier transformation on the orbit
differences, non-periodic and resonant orbit differences were filtered out by estimating
epoch state-vector terms of the form indicated by the equations (2.12a)-(2.12c). Sub-
tracting these terms from the orbit differences, new orbit differences were formed.
These were found to have an rms of respectively 1.90 m, 1.90 m and 7.86 m for the
radial, cross-track and along-track direction. By estimating the epoch state-vector
terms, the orbit computed with GEM-T2 was "fitted" to the orbit computed with
GEM-T1.

After this, a discrete Fourier transformation was applied to these new orbit
differences. This resulted in spectra displayed in the top of the Figures 3.1, 3.2 and
3.3. As can be seen, the larger part of the orbit differences is concentrated at 0 and 1
cpr. This concentration can be explained by considering the equations (2.6a)-(2.6c).
The denominator of these equations becomes zero for orbit perturbations with a fre-
quency equal to 0 and/or 1 cpr (resonance). Thus, for orbit perturbations with a fre-
quency close to 0 or 1 cpr, the amplitudes of the Fourier spectra will be relatively
large.

3.3 Orbit differences predicted by linear perturbation theory

The orbit differences in the radial, cross-track and along-track directions caused by
the GEM-T1 and GEM-T2 coefficient differences were also computed with the LPT
described in the previous Chapter. As indicated in Section 3.1, the orbit perturbations
can be represented by a Fourier series for a repeat period, and by epoch state-vector
terms. As explained in the previous Section, the state-vector terms have been filtered
out of the orbit differences of the numerically integrated orbits. Therefore only atten-
tion will be paid to the Fourier series. The application of the LPT to the GEM-
T1/GEM-T2 coefficient differences led to frequency spectra displayed in the middle of
the Figures 3.1, 3.2 and 3.3. The power of these spectra, which is defined as the rss
(root-sum-square) of the amplitudes of these spectra divided by the square root of 2,
was equal to respectively 1.94 m, 1.89 m and 7.62 m for the radial, cross-track and
along-track directions. These values compare very well with the rms-values of the orbit
differences of the previous Section (after the subtraction of the epoch state-vector and
resonance terms). As can be seen from the Figures, again the greater part of the orbit
differences is concentrated at 0 and 1 cpr. .
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3.4 Comparison between numerical orbit integration and LPT

The frequency spectra obtained with the two techniques described above, were com-
pared by subtracting the coefficients a; and bi (equation (3.1)), which resulted in
"difference” frequency spectra. These spectra are displayed at the bottom of the Fig-
ures 3.1, 3.2 and 3.3. The power of these spectra was respectively 0.19 m, 0.24 m and
1.05 m for the radial, cross-track and along-track directions. These power values are
only a fraction (~ 10 %) of the power values of the orbit differences of the numeri-
cally integrated orbits (Section 3.2). Therefore, it can be concluded that the LPT is an
appropriate tool for modeling orbit errors. Moreover, it must be noted that the GEM-
T1 and GEM-T2 models are known to behave relatively poorly for the chosen orbital
inclination of about 98° (Marsh et al., 1986 and 1989a). This means that for other
orbital inclinations the differences between the orbit differences computed by numeri-
cal orbit integration and by the LPT are expected to be smaller.
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Part II. Application of LPT to real satellite observations

4. The satellite altimeter measurement

4.1 Introduction

In part II of this thesis the LPT will be used in the analysis of real satellite observa-
tions. The observations used in this analysis consisted of satellite laser range measure-
ments and satellite altimeter measurements of the altimeter satellites SEASAT and
GEOSAT. This Chapter will give a description of the satellite altimeter measurement
together with error sources that affect such a measurement. An assessment of the mag-
nitude of these error sources for the SEASAT and GEOSAT altimeter measurements
will be included. This description will be the basis for the analysis and the mathemati-
cal modeling of these measurements. This Chapter will conclude with the description
of a special type of difference between two altimeter measurements, the so-called
crossover difference.

4.2 The altimeter measurement

In the ideal case, a satellite altimeter measurement is equal to the instantaneous dis-
tance between the satellite’s geocenter and the ocean surface. However, an altimeter
measurement is subject to many disturbances which have to be accounted for (Figure
4.1). An altimeter measurement may be written in the following form (Tapley et al.,
1982):

h* = h+hogthith,+ho+thy+h+hgte (4.1)

All the individual terms will be explained briefly, together with an accuracy assess-
ment for the SEASAT and GEOSAT altimeter measurements (a more extensive
analysis of these terms is given in (Tapley et al., 1982) and (Zandbergen, 1990)). The
left-hand side 4* represents the distance between the satellite’s geocenter and a chosen
reference ellipsoid and is a result of a precise orbit computation. For example, using
the GEM-T2 gravity field model, the error of this term for GEOSAT is approximately
40 cm compared to a value for h* of about 800 km (Haines et al., 1990). Because
SEASAT is in a comparable orbit, the error of this term for SEASAT will be of the
same order of magnitude (in Chapter 5 it will be shown that this is the case). The
actual measurement is represented by h, with a value of about 800 km and a
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measurement noise € of 2-5 cm. The measurements have to be corrected for the posi-
tion offset of the altimeter instrument from the satellite’s geocenter: h,. This value
can be determined very accurately before launch. Furthermore, correcnons have to be
applied to account for instrumental delays: h These corrections are on the order of a
few decimeters with subdecimeter accuracy. "The correction term h represents atmos-
pheric path length delays, i.e. the altimeter measurement has to Be reduced by this
correction. This term can be divided into a tropospheric correction, on the order of 2.5
m with an error of 3-6 cm, and an ionospheric correction, on the order of 30 cm with
an error of 2-3 cm. An additional instrument correction, h, has to be applied to
account for the interaction between the radar pulse and the ocean surface. This correc-
tion is mostly a few percent of the so-called significant wave height (SWH). This
SWH is on the order of a few meter, but in extreme circumstances this SWH may be
as big as 20 m. The error of this correction is 1-2 % of the SWH, i.e. 1-40 cm. How-
ever, on the average the SWH will be below 4 m, thus the error below 4-8 cm.

The geoid height and the height induced by the solid Earth and ocean tides are
represented by respectively 4 and h,. For the long-wavelength part of the geoid, i.e.
for wavelengths above 4000 km, the error of recent gravity field models is on the
order of 50 cm. For example, the error in the long-wavelength geoid computed with
GEM-T2 is expected to have a magnitude of 52 cm using the GEM-T2 gravity field
model. This is the so-called geoid commission error of the GEM-T2 gravity field. This
commission error was found by taking into account the error estimates of the GEM-T2
coefficients (Marsh et al., 1989a). The errors in modeling of solid-Earth and ocean
tides are typically about 2 and 10 cm respectively for the large ocean basins. Finally,
h, represents the ocean surface topography. This topography is the elevation of the
surface of the ocean above the geoid caused by ocean dynamics. This ocean topogra-
phy consists of a permanent and a variable part. The permanent part is defined as the
dynamic sea surface topography. This topography has an rms of about 65 cm. In
Chapter 6, it will be described how a long-wavelength dynamic sea surface topography
model is determined together with a gravity field model adjustment. The variable part
of the ocean surface topography is known to have an rms of about 15 cm.

If all corrections have been applied and the reference models have been used, the
result is the so-called sea height residual. This sea height residual can be represented
as:

Ah = Ahg—Ar +hsr+o 4.2)

The right-hand side of this equation consists of the geoid error Ak , the radial orbit
error Ar, the dynamic sea surface topography heor and a term © rcprcsentmg the errors
in all corrections, ocean surface variability and measurement noise. This ¢ has an
rms-value of about 21 cm, which has been obtained by taking the rss of the error
terms and ocean surface variability described above.
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4.3 The crossover difference

Considering all the different phenomena that affect an altimeter measurement, it will
be obvious that it is hazardous to use the altimeter measurement in the original form
(equation (4.1)) as satellite tracking data in a precise orbit determination. In addition, it
will also be difficult to use these observations in a gravity field model adjustment. In
Chapter 6, it will be shown that for the use of these measurements in gravity field
modeling, special procedures must be followed. For example, errors in the geoid A g
and the ocean topography h , are completely correlated with the radial position of the
satellite, i.e. these errors can be completely compensated by a radial orbit error, and in
addition, errors in the modeling of the ocean topography can be compensated by a
geoid error. However, a special type of tracking observation can be formed in which
most of these errors are canceled. This measurement is defined as the satellite altimeter
height crossover difference, in the following referred to as crossover difference. A
crossover difference is formed by subtracting two altimeter measurements made at the
same geographical location, one of these measurements being made when the satellite
was in a descending (southbound) pass, and the other being made when the satellite
was in” an ascending (northbound) pass (Zandbergen, 1990). A residual crossover
difference is formed by subtracting the respective sea height residuals at these loca-
tions. In this way, all permanent components, like the geoid and permanent ocean
topography, are canceled and with them errors in modeling these components. It can
be shown that a crossover difference is for the greater part a representation of radial
orbit differences and a residual crossover difference of the difference in radial orbit
errors along the descending and ascending passes (Wakker et al., 1987a). It must be
mentioned that, by forming a (residual) crossover difference, part of the information of
the radial orbit differences (errors) gets lost. This is the part of the orbit difference
(error) that is equal both for the ascending and descending pass and is referred to as
the geographically correlated orbit difference (error). However, in Chapter 5, it will be
shown that crossover differences can contribute to a precise orbit determination and
gravity field modeling in a straightforward way.
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Chaptér 5. Gravity field recovery experiments with SEASAT

5.1 Introduction

The objective of the experiments described in this Chapter is to show and justify the
application of the LPT in processing real satellite observations to adjust gravity field
models. It will be demonstrated that the LPT is a powerful tool both for gravity field
adjustment from satellite observations and for a quantitative analysis of the impact of
future missions in this field. Much attention to these subjects will be paid in Chapter 6
and Part IIT of this thesis. The satellite observations used in the experiments described
in this Chapter consisted of laser range measurements and crossover differences of the
SEASAT satellite (1978). These observations were first used as input to the GEODYN
program (Martin et al., 1980) together with suitable a priori models to compute the
orbit of this satellite in such a way that this orbit fitted the observations best in a
least-squares way. In fact, this means that the rms of differences between the real and
modeled observations, the so-called observation residuals, was minimized. From the
information content of these residuals, the gravity field model was to be adjusted.

The first part of this Chapter describes the concept of gravity field tailoring. Tailor-
ing of a gravity field model means that only a certain amount of selected gravity field
harmonic coefficients is adjusted. The gravity field adjustment process is a so-called
least-squares adjustment, which basically comes down to the formation of the so-called
observation equations and solution of the related normal equations. The concepts of
least-squares and observation equations are explained in the second part of this
Chapter.

Finally, gravity field tailoring experiments are described using the SEASAT satellite
observations. These experiments included both gravity field adjustments by numerical
integration and by implementing the LPT.

5.2 Concept of gravity field tailoring

From the LPT and the Figures 3.1 to 3.3, it may be concluded that the major part of
the orbit perturbations are concentrated at frequencies below 2 cpr. It can also be
shown that gravity field induced orbit errors can be modeled for the larger part by ord-
ers m of the geopotential running from 1 to the number of satellite orbital revolutions
per day incremented with one (Rosborough, 1987b). From equation (2.2d), it follows
that for every order m, 4 frequencies in the 0-2 cpr band are possible. For example,
these frequencies are -1-(5/nr),-(5/nr),1-(5/nr) and 2-(5/nr) for m = 5. Therefore, for
each order m, 8 harmonic coefficients must be selected to model orbit errors. In addi-
tion, it has been shown in Chapter 2 that the linearized orbit perturbations in the
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cross-track direction are decoupled from the perturbations in the radial and along-track
directions. With the preceding statements, it seems possible to model orbit errors by
adjusting the following number of gravity field harmonic coefficients:

denepec (5.1
where,

d=2, because of the decoupling cross-track and radial-along-track;
n=number of revolutions per day + 1 (15 for SEASAT);

p=4 frequencies for each order m, take 4 degrees /;

c=2 harmonic coefficients per order m and degree /.

For the SEASAT orbit, with 14 1/3 orbital revolutions per day, the application of
equation (5.1) means the adjustment of 240 harmonic coefficients. However, because
the greater part of the satellite observations that will be used in the gravity field tailor-
ing experiments (Section 5.5), the altimeter crossover differences, deliver only infor-
mation about the radial orbit perturbations, only half of this number (the cross-track
direction has not to be accounted for), i.e. 120 harmonic coefficients, will be adjusted.

The advantage of the concept of gravity field tailoring is that by this procedure the
necessary computer time is limited. In addition to this, only a relatively small set of
SEASAT observations will be used (Section 5.5). With such a small data set, there is
not enough information for the adjustment of a complete gravity field model.

5.3 Least-squares parameter adjustment

In the first part of this Section, the concept of the least-squares solution of so-called
observation equations is described. Added to this solution may be a priori information
of the quality of the parameters that are adjusted in the least-squares solution. The
second part of this Section describes the inclusion of this information, leading to a so-
called minimum-variance solution with a priori information or Bayesian least-squares.

Assume an a priori model for the satellite observations, so that each observation 0;
can be modeled as C i

C;=FX,  X,Cpp - SymiP1 "~ Ppsk) (5.2)

where the elements X are orbit epoch state-vector elements, Clm and Slm are gravity
field harmonic coefficients and P are several other model parameters, e.g. ground
tracking station coordinates, non-conservative force model parameters, etc. The vari-
able ¢; represents the time at which the observation was made.

In the least-squares method the residual is modeled by a first-order Taylor-series
expansion of equation (5.2):



0,-—C,v =

oF oF oF
| AX, -+ AC, AP; -
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If i is summed over all observations, equation (5.3) reads in matrix notation:

AAX =R

where,

r 3

oF oF

] -

A= 1ok oF_
] -

AX=(AX_,"',AC_'-I,,,,°",AP,~,"')Tand

(5.3)

5.4)

(5.5)

(5.6)

6.7

In general, more observations than parameters to be adjusted are available so that the
system (5.4) is overdetermined, provided that the observations are not linearly depen-

dent. The least-squares solution is obtained by minimizing:
ele = R-AAX) (R-AAX).
The solution of this minimization is:
AX = (ATAYTATR

(5.8)

(5.9)

where (ATA )" = V is called the (formal) variance-covariance matrix of the solution for
the parameters AX for uncorrelated observation errors, if all observations would have a

variance

o2 = 1. Otherwise, this matrix must be multiplied with this variance. The for-

mal standard deviations o; of and correlations Pjj between different adjusted parame-

ters can be calculated from this matrix V:

c; =\V;
p-. = Vij
v G,'Gj

(5.10)

(5.11)

In addition to the observation equations (5.4), information may be available about
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the (co-)variances of parameters of the a priori models that were used in the computa-
tion of the Ci. This information is most often represented by a (calibrated) covariance
matrix V,. Also information of the accuracy of the observations may be available. In
that case, the contribution of each observation equation is scaled by this accuracy. This
is equivalent to multiplying the matrix A and vector of residuals R with a weight
matrix W. In this case the so-called minimum-variance solution with a priori informa-
tion is obtained by minimizing (Kendal and Alan, 1961):

Q = WR-WAAX)T (WR-WAAX) + AXTv,"1AX (5.12)
The solution of this minimization leads to:
AX = ATWTwA+v, )y 1 ATWTWR) (5.13)

In this case the matrix (ATWTWA+VA'1 )'1 represents the a posteriori covariance matrix
of the solution. It can readily be seen that in the case of uniform data weights (W=[)
and no a priori information about the quality of the a priori parameter values (V A'I =
0), equation (5.13) reduces to (5.9).

5.4 Observation equations

As mentioned in the previous Section, the observation residuals are modeled by a
first-order Taylor-series expansion (i.e. by linearization). This leads to the so-called
observation equations (5.4)-(5.7), which are solved by the least-squares method. In
order to be able to compute the observation equations, the partial derivatives of the
function F, that models the relation between the observations and the parameters to be
adjusted, must be known. This Section describes the derivation of the partial deriva-
tives of SEASAT altimeter crossover differences and laser range measurements to
gravity field harmonic coefficients by applying the LPT.

As explained in Section 4.3, a residual crossover difference is for the greater part
caused by radial orbit errors. In that case, a residual crossover difference can be
modeled by subtracting the radial orbit error of the sea heigh residual (equation (4.2)
of the descending pass from the radial orbit error of the sea height residual of the
ascending pass. If these orbit errors are caused by gravity field modeling errors, a resi-
dual crossover difference AXover can be modeled by using equation (2.6a):

Imax | 1

AXover = Z Z E{(A' Imp)asc_(Ar Imp)des} (5.14)
1=2m=0p=0

The partial derivative of this residual crossover difference to a gravity field harmonic
coefficient is easily found by inserting the equations (2.2b) and (2.6a) in equation
(5.14).

For satellite laser range measurements the derivation of the partial derivatives to
gravity field harmonic coefficients is more complicated. This kind of measurement
gives the instantaneous range between the orbiting satellite and a ground station. Laser



range residuals are formed by subtracting the laser range measurements computed with
a priori models from the real laser range measurements. Assuming that these residuals
are the result of orbit errors (in general the position of ground stations is known with
high precision), orbit errors in the radial, along-track and cross-track direction must be
considered. The partial derivatives of laser range measurements to gravity field har-
monic coefficients by applying the LPT are then found by taking the partial derivative
of a combination of the equations (2.6a)-(2.6¢c) to the harmonic coefficients. The com-
putation of this partial derivative is quite laborious. The procedure to compute this par-
tial derivative is described in Appendix B.

5.5 Gravity field tailoring experiments

Gravity field tailoring experiments were performed using SEASAT residual cross-
over differences and laser range residuals from 4 three-day periods (from 15th of Sep-
tember to 28th of September 1978). These observations were first processed by the
GEODYN software package (Martin et al., 1980). This means that with a priori force
models the SEASAT orbit was integrated numerically in such a way that the rms of
the observation residuals (obtained by subtracting the computed observations along the
computed SEASAT orbit from the real observations) was minimized. In other words,
the SEASAT orbit parameters were determined by the method of least-squares adjust-
ment. The same set of observations was used in (Zandbergen, 1990). The a priori grav-
ity field model consisted of the GEM-T1 gravity field model complete to degree and
order 36. In addition to this gravity model, other a priori models were used. An over-
view of these models is given in Table 5.1 (Zandbergen, 1990). The most important
models listed in this Table may be summarized as follows. Solid-Earth tides were
taken into account in the force modeling, but also in the displacement of the position
of the laser stations. The laser station coordinates were taken from the general-purpose
UT/CSR 8402 global station coordinates set. The atmospheric drag was modeled using
the MSIS atmospheric model (Hedin et al, 1977) with daily estimated drag
coefficients. In addition, a solar radiation parameter was estimated for each 3-day
period to model the radiation pressure. Thus, for each 3-day period a number of 10
state-vector parameters had to be estimated, 3 daily drag parameters, 1 solar radiation
parameter and 6 orbit epoch state-vector parameters consisting of the 6 Kepler ele-
ments. The orbit parameters of the SEASAT orbit are listed in Table 5.2. This Table
shows that the SEASAT orbit is a so-called repeat one: the orbit repeats after 3.01
solar days or 3 satellite nodal days (called an arc), or 43 orbital revolutions.

The GEODYN computations led to SEASAT reference orbits and computed laser
range measurements and crossover differences. These computed measurements were
subtracted from the real measurements to form measurement residuals. In the computa-
tions, measurements for which the residual was greater than 3.5 times the mms of all
residuals were edited out. This was done automatically by GEODYN to exclude spuri-
ous measurements. This procedure was repeated until convergence. It was found that
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Table 5.1 Summary of the main a priori models and other parameters used in the com-
putation of the SEASAT orbits with GEODYN.

Gravity model

Other

modeling

information

Constants

Integration

GEM-T1 complete to degree and order 36

MSIS (1983) atmospheric drag, daily drag parameters
Solar radiation pressure, 3-day parameters

Area tables for drag and solar radiation

Ocean tides: none

Luni-solar attraction, JPL DE-96 ephemerides

Wahr solid Earth tides, station tidal displacements
Precession, nutation, polar motion, UT1

Indirect moon-J2 effect

a,=6,378,137 m; flattening=298. 257
gravxty parameter=398600.436 km3/s?
speed of light=299792.5 m/s; SEASAT mass=2213.6 kg

11-th order Cowell integration, step size 75 s

Table 5.2 SEASAT orbit characteristics.

Semi-major axis (km) 7172.3
Eccentricity 0.0008
Inclination (deg) 108.0
Mean altitude (km) 797
Nodal period (min) 100.8
Ground track repetition period (day) 3.01
Equatorial spacing successive tracks (km) 2796
Spacing adjacent tracks the equator (km) 932
Rotation rate of the right

ascension of ascending node (deg/day) 2.044




1.3 % of the measurements were edited out. The statistics of the so-obtained measure-
ment residuals are listed in Table 5.3. The GEODYN computations led to 893 laser
range residuals with an rms of 56 cm and 2806 residual crossover differences with an
rms of 62 cm. The larger part of the residuals was assumed to be caused by geopoten-
tial mismodeling, i.e. by errors in the harmonic coefficients of the GEM-T1 model.
The rms-value of the residual crossover differences indicates that the SEASAT refer-
ence orbits have an accuracy of about 45 cm in the radial position. This value was
obtained by dividing the rms of the residual crossover differences by the square root of
2. However, as discussed in Section 4.3 of the preceding Chapter, a residual crossover
difference only gives information of the non-geographically correlated orbit error. In
(Rosborough, 1986 and 1988) it has been shown that this non-geographically corre-
lated orbit error is of the same order of magnitude as the geographically correlated
orbit error for orbit errors caused by geopotential mismodeling. In (Zandbergen, 1990)
the most reliable estimate for the radial orbit accuracy for the SEASAT orbits using
GEM-T1 was about 55 cm. However, this value was obtained for the case in which the
SEASAT reference orbits were determined from only laser range measurements. The
incorporation of crossover differences as tracking data may explain this poorer accu-
racy of 55 cm compared to the accuracy of 45 cm obtained above for the SEASAT
reference orbits.

The laser range residuals and residual crossover differences were used in a GEM-T1
tailoring experiment. As discussed in Section 5.2, 120 harmonic coefficients will be
selected, 8 harmonic coefficients for each order m from 1 to 15. Therefore, for each
order m, 4 degrees ! have been chosen. The selected harmonic coefficients are listed in
Table 5.4. The choice of the 4 degrees for each order m was rather arbitrary, but it
will be shown that very satisfactory results were obtained with this set of harmonic
coefficients. Moreover, the most important objective of the tailoring experiments was
to serve as a test bed for the LPT in gravity field adjustment compared to numerical
integration, not to determine the most optimal set of 4 degrees / for each order m. The
selected harmonic coefficients were estimated in a least-squares adjustment process as
explained in Section 5.3. This estimation was done by computing the partial deriva-
tives of the measurement residuals to the selected harmonic coefficients both by using
the LPT and by numerical integration (GEODYN). In this way, two sets of 120 har-
monic coefficient adjustments were obtained. By adding these adjustments to the a
priori GEM-T1 coefficients, new tailored GEM-T1 models were obtained. With these
new models, new SEASAT orbits and in conjunction new computed measurements,
leading to new measurement residuals were computed with GEODYN. When the par-
tial derivatives were computed by numerical integration, the rms of the residual cross-
over differences was reduced from an initial value of 62 cm (Table 5.3) to 43 cm
(Table 5.5). Almost the same reduction was obtained when using the LPT in the com-
putation of the partial derivatives. In this case, the rms of the residual crossover
differences was reduced to 40 cm (Table 5.6, page 42). For the first case, the rms of
the laser range residuals was reduced from 56 cm (Table 5.3) to 36 cm (Table 5.5).
However, for the latter case, this value was reduced only to 50 cm (Table 5.6). This
may be explained by the fact that in the GEODYN gravity field tailoring also a 10-
element state-vector (see above) was estimated, together with the 120 selected
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Table 5.3 Statistics of the laser range residuals and residual crossover differences for
the reference SEASAT orbits.

laser range res. residual crossover diff.
number rmms (cm) number rms (cm)
arcl 208 65 736 63
arc2 242 47 701 62
arc3 232 49 643 59
arc4 211 62 726 62
total 893 56 2806 62

Table 5.4 Set of 120 harmonic coefficients selected for the gravity field model adjust-
ment.

order degree number of coef.
1,2,34,5 5,6,7,8 40
6,7,8,9,10 10,11,12,13 40
11 12,13,14,15 8
12 13,14,15,16 8
13,14 14,15,16,17 16
15 15,16,17,18 8

Table 5.5 Improvement in the statistics of the laser range residuals and residual cross-
over differences of the SEASAT reference orbits by adjusting 120 harmonic
coefficients by numerical integration.

laser range res. residual crossover diff.
number rmms (cm) number rms (cm)
arcl 207 49 735 48
arc2 241 34 698 43
arc3 231 36 634 39
arc4 210 41 724 41
total 889 36 2791 43




harmonic coefficients. This state-vector was not estimated in the LPT-technique. Espe-
cially the daily drag parameters can absorb a significant part of along-track orbit errors
and thus reduce the laser range residuals. When the harmonic coefficients were
adjusted with the LPT-technique, the state-vector terms were not taken into account.
The harmonic coefficient adjustments with GEODYN and with the LPT-technique have
been compared and the results are shown in the Figures 5.1-5.3 (page 43). Both
methods led to harmonic coefficient adjustments that were of comparable and realistic
magnitude (only a fraction of the magnitude indicated by Kaula’s rule of thumb, equa-
tion (1.3)). Moreover, the spectra of the harmonic coefficient adjustments as a function
of the order m were of the same form (Figures 5.1 and 5.2).

In Figure 5.3, the rms of harmonic coefficient adjustment differences between the
two solutions are displayed as a function of the order m. These differences may have
been caused by the included state-vector adjustments in the GEODYN computations
and the exclusion of these adjustments in the LPT-technique. Especially, the
differences between the harmonic coefficient adjustments of orders m close to 14 can
be explained by aliasing of resonant state-vector terms in the LPT solution, because
the SEASAT satellite makes about 14 orbital revolutions per day. The latter has as a
result that the SEASAT orbit is in near-resonance with gravity field terms with the
order m close to 14. In the GEODYN solution, the state-vector adjustments may have
absorbed the resonance effects.

In addition to the preceding reflections, it may be argued that the greater part of the
observation residuals, i.e. the crossover residuals, only deliver information of the radial
orbit error. Therefore, there may be not enough information of the along-track and
cross-track orbit errors to sufficiently constrain state-vector terms and 120 harmonic
coefficients. Therefore, it is expected that the two solutions behave the same for
modeling the radial orbit error, but may behave differently for modeling errors in the
along-track and cross-track directions. In order to support this, the LPT was applied to
compute frequency spectra for orbit perturbations in the radial, along-track and cross-
track directions with the two solved sets of 120 harmonic coefficients, and the correla-
tions between these spectra was computed. As can be seen in Table 5.7, the correlation
for the radial direction is 0.71 and the correlation for the other two directions are nega-
tive, supporting the preceding reflections. Also the values for the power of the spectra
for the radial direction, 44 cm for the LPT-solution and 54 cm for the GEODYN solu-
tion, are in agreement with the reduction of the apriori rms of the crossover residuals
from 62 cm to approximately 40 cm. The high values for the power of the frequency
spectra for the along-track and cross-track direction are caused by high values of the
amplitudes close to the 0 and 1 cpr frequency. Perturbations with a frequency close to
0 and 1 cpr can be absorbed for a great part by state-vector terms.

It is concluded that tailoring the GEM-T1 gravity field model by using the LPT and
by using GEODYN both led to new tailored GEM-T1 gravity field models that behave
better in modeling the laser range measurements and crossover differences. Both
methods led to harmonic coefficient adjustments of comparable magnitude and led to
comparable reductions of the measurement residuals. It is therefore concluded that the
LPT can serve as an appropriate tool in gravity field adjustments using satellite obser-
vations.
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Table 5.6 Improvement in the statistics of the laser range residuals and residual cross-

over differences of the SEASAT reference orbits by adjusting 120 harmonic
coefficients by the LPT.

laser range res. residual crossover diff.
number rmms (cm) number rms (cm)
arcl 203 56 735 41
arc2 241 41 699 40
arc3 232 48 640 38
arc4 209 54 723 39
total 885 50 2797 40

Table 5.7 Frequency analysis of SEASAT orbit perturbations using the coefficient
adjustments of both techniques.

LPT solution GEODYN solution

direction power (cm) power (cm) correlation
radial 44 54 0.71
along-track 449 407 -0.61
cross-track 91 66 -0.08
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6. Simultaneous adjustment of the gravity field and determination
of the dynamic sea surface topography from satellite altimetry

6.1 Introduction

The GEOSAT satellite has delivered a huge data set of satellite altimeter measure-
ments with a high measurement precision. The continuous improvement in the accu-
racy of gravity field models has led to the possibility of computing GEOSAT satellite
orbits with a radial accuracy of approximately 40 cm. This accuracy is achieved using
the GEM-T2 gravity field model (Haines et al., 1990). This model has been used at the
NASA Goddard Space Flight Center in the computation of GEOSAT orbits for the
period from November 8, 1986, to November 7, 1988, ie. a period of two years.
These orbits will be used in the analysis of GEOSAT altimeter measurements, which is
described in this Chapter. An accuracy of 40 cm in the radial position of the GEOSAT
altimeter satellite offers the possibility to separate the signals of the dynamic sea sur-
face topography, i.e. the permanent ocean topography produced by ocean currents, and
of the gravity field. This is especially true since the main features of the dynamic sea
surface topography are of a long-wavelength nature and the errors in the GEM-T2
geoid for these wavelengths are claimed to be very small, in any case smaller than the
long-wavelength signals of the dynamic sea surface topography. For example, the
dynamic sea surface topography is assumed to have an rms of approximately 65 cm
for wavelengths greater than 4000 km (Engelis, 1987). From the calibrated GEM-T2
covariance matrix (Marsh et al., 1989a), it can be computed that the geoid error of this
model for wavelengths longer than 4000 km has an rms-value of 52 cm for the geoid
along the GEOSAT ground track, if the covariances of the complete GEM-T2 model
are propagated. This is smaller than the rms-value of the dynamic sea surface topogra-
phy. However, for smaller wavelengths down to 500 km the GEM-T2 geoid has an
error of more than 114 cm and improvements can be made using satellite altimetry. It
is emphasized that in this thesis the GEM-T2 gravity field model, and not a more
recent model, will be used to model the long-wavelength geoid. The reason is that
GEM-T2 is a so-called satellite only model (see Section 1.3), that has been constructed
from satellite tracking data only. In the development of many other gravity field
models, altimeter measurements have been used which means that oceanographic sig-
nals may be aliased into the geoid computed with such gravity field models.

In the following, the simultaneous adjustment of a gravity field model and the deter-
mination of a long-wavelength model for the dynamic sea surface topography from
satellite altimetry will be referred to as the integrated approach. This integrated
approach is a least-squares adjustment process. This integrated approach was also dis-
cussed and applied to altimeter measurements in (Nerem et al., 1988; Marsh et al.,
1989b and 1990; Denker and Rapp, 1990; Engelis and Knudsen, 1989). In (Nerem et
al., 1988) and (Marsh et al., 1989b and 1990) use was made of numerical integration
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techniques to determine a high-precision GEOSAT orbit together with the adjustment
of a gravity field model and the determination of a model for the long-wavelength
dynamic sea surface topography. In (Engelis and Knudsen, 1989; Denker and Rapp,
1990) use was made of analytical techniques. The latter technique is in close agree-
ment with the technique to be described in this Chapter.

This Chapter starts with a description of the mathematical modeling of sea height
residuals, based on the description of the altimeter measurement given in Section 4.2,
and the set-up of the measurement equations for sea height residuals and residual
crossover differences. This is followed by a simulation study to show the possibilities
and limits of the integrated approach based on the theory of formal error estimates of
harmonic coefficients, both of the gravity field and the semi-permanent dynamic sea
surface topography (Appendix D). After this, the principles and consecutive steps of
the integrated approach are presented. This part includes the identification of problems
related to forming the observation equations and computing a least-squares solution,
the description of methods to solve these problems, the development of methods to test
the accuracy of the newly obtained models for the gravity field and dynamic sea sur-
face topography, and the implementation of these methods.

The integrated approach was applied to two 17-day repeat periods of real GEOSAT
altimeter measurements combined with GEM-T2 orbits, computed at the NASA God-
dard Space Flight Center, resulting in an adjusted GEM-T2 gravity field model and a
model for the large-scale dynamic sea surface topography. The accuracy of these new
models is tested by several methods and a comparison of these new models with other
published models is presented.

Finally, the adjusted gravity field model and the new model for the dynamic sea sur-
face topography were used to correct two years of GEOSAT altimeter residual sea
heights. The resulting data set of two years of corrected altimeter data was used in the
determination of the variability of the long-wavelength dynamic ocean surface topogra-
phy. It is shown that this variability displays a clear annual cycle.

6.2 Mathematical model

The objective of the investigations described in this Chapter was to determine a new
model for the dynamic sea surface topography as well as to adjust the gravity field to
absorb the greater part of the long-wavelength radial orbit and geoid errors from the
sea height residuals. A sea height residual can be represented by equation (4.2) (Sec-
tion 4.2). The term G in this equation is relatively small compared to the other terms in
this equation and has a predominantly high-frequency signature (Zandbergen, 1990).
Therefore, this o-term will not be modeled.

To establish the observation equations for the unknowns of the dynamic sea surface
topography model and for the gravity field coefficients, representation forms for the
radial orbit and geoid errors, as well as for the dynamic sea surface topography are



required. Use will be made of spherical harmonic expansions. It must be noted that
alternative representations are possible, e.g. based on functions orthogonal over the
oceans (Hwang, 1991), but the investigation of these functions is outside the scope of
this thesis.

The dynamic sea surface topography hcc will be represented by a spherical har-
monic expansion complete to degree and o er Isst (Engelis and Knudsen, 1989):

hsst = a, E 2{5 g,,,,cosm K+§§,,,, sinm k}ﬁlm (sind) 6.1)
I=1 m=0

where the superscript § denotes dynamic sea surface topography. The zero degree

term, i.e. a constant, is not included in this expansion. The reason for this is that a

constant will be included in the estimation of a state-vector. This will be shown in the

following (equation (6.11)). The GEOSAT satellite is in a near-circular orbit. For such

an orbit, this expansion can be rewritten as (Schrama, 1989):

Isst 1 ] g
hsst =6, Y, X X FimpS®imp 6.2)
I=1 m=0 p=0
where
Cg 5t _ )
S 5 [—S‘ﬁ :,COS\'H.[C'—{’”J siny "':1 ?;; 6.3

Both the radial orbit error Ar and the geoid error Ah , are functions of the disturbing
potential T of the gravity field. This disturbing potential can also be represented by a
spherical harmonic expansion (see equation (1.8)):

1+1
a — ~ _
b5 [ "J [Ac,,,,cosm A+AS,, sinm x]p,,,, (sing) 6.4)
%lﬂmﬂ r

where Imax represents the maximum degree of the spherical harmonic expansion used
to model the disturbing potential T. For a spherical approximation for the Earth’s
shape, the normal gravity y can be written as:

Y= —‘;Lz : 6.5)

Combining the equations (1.7), (6.4) and (6.5) yields the following representation for

the geoid error Ah g

1+1
Ahy = a, % ;o[ ] [AC'-,,,,cosm 1+A§bnsmml]l7,m(sin¢) . (6.6)

For a circular orbit, a similar expression as for the dynamic sea surface topography can
be obtained:

Imax 1| |1
Ahy=8,% 3 Y FipySimy 6.7)
1=2m=0p=0

The equations (6.4) and (6.7) show that the geoid error and permanent part of the



ocean surface are represented by similar mathematical expressions and therefore are
unseparable from altimeter measurements, unless additional information is available.
However, at long wavelengths, the error in the geoid is claimed to be smaller than the
signal of the dynamic sea surface topography, if current accurate gravity field models
are used. Moreover, the disturbing potential T also causes radial orbit errors, which
may have another signature than heor and therefore decorrelate the gravity field signal
and the dynamic sea surface topography. It must be noted that in the mathematical
modeling it was assumed that the gravity force of the dynamic sea surface topography,
which represents a certain amount of water, on the satellite orbit could be neglected.
The same approach was followed in (Engelis and Knudsen, 1989).

The radial orbit errors can be modeled with great precision by the LPT for circular
reference orbits as shown in Chapter 3. The GEOSAT satellite is in such an orbit. For
these orbits, the radial orbit errors can be written as a function of the disturbing poten-
tial T. After manipulating equation (2.6a), the following relation has been derived for
the non-resonant orbit errors (Schrama, 1989):

Imax | |
Ar =3 3 3 HipmySimp 6.8)
1=2m=0p=0
where
1l
a, BU+1)-2(1-2p)
H, =al—|F 6.9
g a[a] "’"’[ B(B>-1) ] ©9
B=I-2p-m % . (6.10)

The term nday is the number of nodal satellite days that is necessary for the satellite to
make nrev nodal orbital revolutions. For an exact repeat mission (ERM), and GEQSAT
has been in an exact repeat mission, nrev and nday are the smallest integer numbers
possible. For the GEOSAT ERM, nday and nrev are equal to 17 and 244, respectively.
The term B is the term Jimp (€quation (2.2d)) for repeat orbits. It is noted that for an
ERM the series in equation (6.8) become true Fourier series: only perturbations with
frequencies equal to a multiple of (1/nrev) cpr occur (equation (6.10)).

The equations (6.8)-(6.10) are only valid for B # 0 and B # 1. For B=0orp ==l
(resonance), which only occurs for zonals (provided nrev>Imax, equation (6.10)), the
radial orbit error for a certain resonance zonal term can be written as described in Sec-
tion 2.3 (equations (2.13a) and (2.13b)).

The radial orbit errors represented by equation (6.8) are only the particular solution
of the LPT for the radial direction. The homogeneous solution (equation (2.12a)) must
be added to these radial orbit errors. To this homogeneous solution is added an extra
term representing the interaction of this homogeneous solution with the relatively large
Czo-coefﬁcient (Engelis and Knudsen, 1989). The combination of this term and the
homogeneous solution will be referred to as the state-vector radial orbit error Ar o

Arg = agta coswt+b sinwt+a ,wt coswt +b wisinwt +asin2wt . (6.11)

The state-vector can also absorb radial epoch state-vector uncertainties (i.e. the uncer-
tainty of the radial position and velocity of the satellite at a certain epoch).
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Now, the observation equations for sea height residuals can be established by com-
bining the equations (6.2), (6.7), (6.8), (6.11) and (2.13a)-(2.13b):

Isst 1 l . § Imax 1 l .
Bh=3 3 36,Fum@)SSmty 3 z[aep,,,,p(z)-ﬂw]s,”,,,
I1=1 m=0 p=0 1=2 m=0 p:()

+Arg+resonance terms (6.12)

In this equation the resonance terms are given by the equations (2.13a)-(2.13b).

A residual crossover difference is nothing else than the difference between two sea
height residuals at the same geographical location, one for an ascending and one for a
descending orbital track. Therefore, the geographical constant terms, i.e. the dynamic
sea surface topography Ahgor and the geoid error Ak, vanish in the observation equa-
tions for the residual crossover differences. Therefore, the only terms that remain in
the modeling of a residual crossover difference are the non-resonant radial orbit error
Ar, the state-vector term Ar_and the resonance terms, all evaluated both for the
ascending (asc) and descending (des) pass. This results in the following equation for a
residual crossover difference AXover (see also: equation (5.14)):

Imax 1 1
AXover = Ahgy~Bhys = 3 3 3 Himp [(s,,,,,, Yase—Simp ),,es]
1=2m=0p=0

HAr) g5 (A1) gos +resonance terms (asc —des) (6.13)

For the dynamic sea surface topography the maximum degree Isst is taken equal to 10
and for the gravity field Imax equal to 36. In (Nerem et al., 1988; Engelis and Knud-
sen, 1989; Marsh et al., 1989b and 1990; Denker and Rapp, 1990) it was shown that
the choice of 10 for the maximum degree of spherical harmonic expansion of the
dynamic sea surface topography can be justified. For higher degrees, it is expected that
the error in the determined geoid will be larger than the signal of the dynamic sea sur-
face topography for these degrees. In (Nerem et al.,, 1988) this was the case for
degrees beyond 9, and in (Marsh et al., 1989b and 1990) for degrees beyond 7. The
truncation of the spherical harmonic expansion for the disturbing potential entails the
introduction of omission errors in the observation equations. However, with a gravity
field model complete to degree and order 36, a geoid with a resolution of about 500
km can be modeled. Therefore, omission errors with a wavelength smaller than 500
km are not expected to be aliased seriously in the dynamic sea surface topography,
because of the abundance of observations over the oceanic regions which cover two-
thirds of the Earth’s surface. Moreover, the models that will be used to compute the
geoid (Section 6.5) are expected to have small errors for the long wavelengths. More-
over, it can be shown that the effect of gravity terms above degree 36 on the GEOSAT
radial orbit perturbations decreases rapidly.

The equation (6.12) will be used in the next Section in a simulation study to show
the principles and problems associated with the integrated approach. After this, the
equations (6.12) and (6.13) will be used to process real GEOSAT measurements and
will be implemented in the integrated approach.



6.3 Formal harmonic coefficient error estimates in the integrated approach

A simulation study was performed to gain insight in the concept of the integrated
approach. The starting point in this study was the assumption that the GEOSAT altim-
eter could deliver measurements with a constant measurement interval along its orbit.
The first question that arose was whether it would be possible to solve for the
coefficients of a gravity field complete to degree and order 36 and for the coefficients
of a model for the dynamic sea surface topography complete to degree and order 10
from these measurements simultaneously. It will be shown that this is not a trivial
problem. After this, a second assumption was made: the availability of satellite track-
ing observations from which it is possible to determine the GEOSAT satellite orbit
accurately in the radial, cross-track and along-track directions, again with a constant
measurement interval along the complete orbit. The question that had to be answered
was whether with the addition of such a data set the earlier mentioned problems could
be overcome.

With a constant measurement interval along a satellite orbit, the data set of measure-
ments will satisfy the conditions for the estimation of formal errors of harmonic
coefficients of the gravity field and dynamic sea surface topography models from the
theory developed by O.L. Colombo if the satellite is at least in a repeat orbit. This
theory of formal error estimates has been developed by O.L. Colombo for gravity field
recovery from satellite-to-satellite tracking between two low Earth orbiting satellites
(Colombo, 1984 and 1990; Schrama, 1990). The principles are explained in Appendix
D. In this appendix, it is explained that in the simulations that are described in this
Section an actual recovery of gravity field coefficients and coefficients for the dynamic
sea surface topography does not take place, but that formal error estimates for these
coefficients are produced if they are to be determined from the previously described
special geometry of observations.

In the simulation study described in this Section, orbit parameters of the GEOSAT
satellite were used, leading to a repeat period of 17 days in which the satellite makes
244 orbital revolutions. The inclination was equal to 108° and the semi-major axis
equal to 7166376.2 m (about 800 km altitude). It was assumed that one repeat period
of altimeter measurements was available. The sampling rate was taken equal to 20 s
(equal to the batch interval for the computation of altimeter normal point measure-
ments, see Section 6.5) and the globe was assumed to be completely covered by oce-
ans. The standard deviation of the altimeter measurement was taken equal to 50 cm,
which represents that part of the measurement errors in the modeling of these measure-
ments that will not be corrected in the integrated approach (for the greater part high-
frequency errors, see Section 6.2). In this way, a data set satisfying the special
geometry described in Appendix D was obtained, i.e. a data set of observations cover-
ing the whole Earth along the GEOSAT ground tracks (thus for latitudes above 72° S
and below 72° N).

For these observations, normal equations were derived analytically for a gravity field
model complete from degree 2 to 36 and a model for the dynamic sea surface topogra-
phy complete to degree and order 10. The normal matrix was computed using the
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equation (6.12) without the resonance terms and the equations (D.1)-(D.7) of Appendix
D.

The inverse of the so obtained block-diagonal matrix should deliver the formal error
estimates of the harmonic coefficients. However, the normal matrix was singular, indi-
cating that even for a perfect coverage of the Earth along the GEOSAT ground tracks
with altimeter measurements, the gravity field and dynamic sea surface topography
cannot be determined separately. This is in agreement with the discussion of Section
6.2. In order to overcome the singularity problem, additional information is necessary.

Because it was assumed that the GEOSAT satellite orbit can be computed from
tracking observations very accurately (as indicated in Section 4.2, the GEOSAT orbit
could be computed with a radial accuracy of about 40 cm using GEM-T2, and the
ground tracking observations deliver also information of the along-track and cross-
track perturbations), it was assumed that this additional information consisted of satel-
lite position components in the radial, along-track and cross-track directions with the
same sampling-rate and standard deviation as the altimeter measurements. In other
words, it was assumed that it is possible to compute the GEOSAT orbit with an accu-
racy of 50 cm in all three directions. Also for these components, block-diagonal nor-
mal matrices were computed, however only for gravity field harmonic coefficients. It
was assumed that the satellite tracking observations do not deliver information of the
dynamic sea surface topography and therefore nothing was added to that part of the
normal equations associated with the dynamic sea surface topography coefficients. The
normal equations for the 3 position components were added to the normal equations of
the altimeter measurements.

The inverse of these combined normal equations led to formal error estimates as
displayed in the Figures 6.1 and 6.2. The standard deviations of the gravity field har-
monic coefficients (solid line, Figure 6.1) were well below Kaula’s rule of thumb. The
standard deviations of the coefficients of the dynamic sea surface topography were on
the order of a few cm (solid line, Figure 6.2). The rss of the coefficient errors of the
dynamic sea surface topography solution was 14.6 cm. Also indicated in Figure 6.2 is
the formal geoid error computed with the formal error estimates of the gravity field
coefficients (dotted line). It can be seen in Figure 6.2 that this geoid error is smaller
than the formal error of the dynamic sea surface topography for degrees up to 7. For
degrees from 8 up to 10 this geoid error is almost equal to the formal dynamic sea sur-
face topography error. This justifies the choice of 10 for the maximum degree of the
spherical harmonic expansion of the dynamic sea surface topography. A remarkable
characteristic in the Figures 6.1 and 6.2 is the saw-tooth pattern. This may be
explained by the decoupling of formal error estimates for coefficients of even and odd
degrees (Appendix D). The formal error estimates for a certain odd degree are a little
bit smaller than the error estimates of the even degrees next to this odd degree. The
maximum errors of the gravity field coefficients are found for degrees close to 25. This
can be explained by the fact that non-zero correlations exist between the gravity field
coefficients and coefficients for the dynamic sea surface topography. Although only
coefficients of the dynamic sea surface topography for degrees below 10 were con-
sidered, they did have an effect on the error estimates for gravity field coefficients of
degrees above 10. This can be explained by the fact that, besides correlations between
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Figure 6.1 Formal gravity harmonic coefficient error
estimates in an integrated approach covariance analysis
(solid line: correlations included, dashed line:
correlations not included)

degree of harmonic expansion

Figure 6.2 Formal SST harmonic coefficient error
estimates in an integrated approach covariance analysis
(solid line: correlations included, dashed line:
correlations not included, dotted line: formal

geoid error)
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dynamic sea surface topography coefficients and gravity field coefficients below degree
10, also correlations exist between dynamic sea surface topography coefficients below
degree 10 and gravity field coefficients above 10. In addition, the correlations between
the dynamic sea surface topography coefficients and gravity field coefficients below
degree 10 have an indirect effect on the formal error estimates of gravity field
coefficients above degree 10, because of the correlations between gravity field
coefficients of degrees below and above 10. Correlations between gravity field
coefficients above degree 25 and dynamic sea surface topography coefficients below
degree 10 become very small. For these degrees, the formal etror estimates of gravity
field coefficients become close to the case in which the gravity field coefficients are
thought to be estimated separately from the dynamic sea surface topography
coefficients, ie. if the cormelations between the dynamic sea surface topography
coefficients and gravity field coefficients are made equal to zero. The latter case is
indicated by the dashed lines in the Figures 6.1 and 6.2. In this case, the rss of the
coefficient errors of the dynamic sea surface topography solution was found to be
equal to 1.7 cm. Thus, if in theory the gravity field would be known exactly and
would not have to be adjusted, a very high-accuracy dynamic sea surface topography
model to degree and order 10 could be obtained, given the described geometry of
satellite measurements. Unfortunately, at this moment, this is not the case.

In agreement with the discussion in Section 6.3, the results of this Section indicate
that it is impossible to simultaneously adjust a gravity field model and determine a
model of the dynamic sea surface topography from satellite altimetry alone, especially
since in reality the effect of no measurements over land areas must also be accounted
for. This will further destabilize the normal equations. However, if additional informa-
tion is available, e.g. satellite tracking data from which the satellite’s position may be
computed with an accuracy of about 50 cm (which is certainly feasible nowadays) or
an equivalent information source like a quality gravity field model together with a cali-
brated covariance matrix, very good results may be obtained. Therefore, with the
current knowledge in gravity field modeling (the additional information) the investiga-
tion of applying the integrated approach to GEOSAT altimetry is certainly justified.

6.4 Solution strategy

In general, many more observations are available than coefficients to be determined
or adjusted. If these observations do not form a linearly dependent system, an over-
determined system of observation equations has to be solved. A method to solve such
an overdetermined system of observation equations is the concept of least-squares. In
other words, the observation equations are solved by the method of least-squares
parameter adjustment: the observation equations are transformed to normal equations.
This has been explained in Chapter 5.

Considering the observation equation (6.12) for sea height residuals, it is obvious
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that problems will occur: some coefficients to be determined or adjusted have the same
signal characteristics for altimeter measurements and are therefore unseparable if no
other information is available. For example, the zero-degree term C=,, of the dynamic
sea surface topography spherical harmonic expansion and the term a, of the state-
vector (equation (6.11)), and cs 0 and a,, b] are unseparable, or linearly dependent.
Moreover, the spherical harmonic functions are only orthogonal for a global set of
observations. However, altimeter measurements only cover the oceans below a latitude
determined by the satellite orbital inclination and only over the oceans. These restric-
tions and correlations result in an instable set of normal equations.

A better separation of the gravity field and the dynamic sea surface topography solu-
tion is expected if normal equations for residual crossover differences are added to the
normal equations for sea height residuals. In principle, residual crossover differences
deliver no information of the semi-permanent dynamic sea surface topography and
therefore the inclusion of this type of residuals leads to a better separation of the grav-
ity field adjustment and the solution for the dynamic sea surface topography.

However, the addition of the normal equations for the residual crossover differences
does not completely overcome the problem of instability of the normal equations. Only
measurements made by one satellite altimeter instrument are used, which implies that
information for the radial orbit perturbations and geoid errors for only one orbital incli-
nation is used. In addition, as mentioned before, only measurements over the ocean’s
surface are available. Such a set of measurements leaves a high degree of freedom in a
gravity field solution if a model complete to degree and order 36 is to be adjusted.
Moreover, after the addition of normal equations for residual crossover differences,
high correlations will still exist between coefficients of the gravity field and of the
dynamic sea surface topography, and state-vector terms and coefficients of the dynamic
sea surface topography are still unseparable.

The solution of the instability problem of the normal equations is to include a priori
information. The state-vector terms may be constrained by using the covariance matrix
of the state-vector, obtained in the orbit determination process. Also information of the
accuracy of the gravity field coefficients is available and can be included in the solu-
tion. This information consists of a calibrated covariance matrix, computed along with
the determination of the gravity field model. In this study, the calibrated GEM-T2
covariance matrix (Marsh et al, 1989a) was used, because the GEM-T2 gravity field
model was used in the computation of the GEOSAT orbits and the long-wavelength
geoid (for wavelengths longer than 1000 km). Finally, from spectral analysis, the mag-
nitude of the coefficients of the dynamic sea surface topography as a function of the
degree of the spherical harmonic expansion can be estimated and used as constraints.
This spectral analysis can be summarized by the following formula (Marsh et al.,
1989b and 1990):

o5, = —0.01344*140.13959 (m) (6.14)

The a priori information is used in a minimum-variance analysis which consists of
the minimization of (see also: Section 5.3):
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In this equation, Woap Weer and wo e denote the weight of the calibrated gravity
field matrix G (i.e. mverse of the covariance matrix), the weight of the signal con-
straints of the dynamic sea surface topography, and the weight of the inverse S of the
covariance matrix of the state-vector x rate YeSPectively. The vector x represents all
unknowns to be determined, which includes the vector x_, which is the subset of grav-
ity field harmonic coefficients to be adjusted, the state-vector X ae 30d the unknowns
for the dynamic sea surface topography m a0 Calm

The solution of equation (6.15) is:
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Ay Ayt WS AgTAg AgTAg,
AgTAp  ApTAptw. G AgTAg, ATr

T T T
Asg Asg A Agr  Agg AggtwssrD
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where V, -1 represents the a priori mformatlon The matrix D is a diagonal variance
matrix, w1th clements equal to (1/ Im) These elemcnts are computed with equation
(6.14). In the following, the normal matrix (A A+V ) will be referred to as N. This
matrix has been divided in sub-matrices indicated by the indices s, denoting state-
vector, g, denoting gravity field, and &, denoting dynamic sea surface topography. For
example the sub-matrix (A7A +w_,G) represents the part of the normal equations for
the gravity field coefficients to be adjusted

An important question then is: what values must be assigned to the weight factors
Wonter Wear @04 weer 7 In the first place, these factors must be chosen such that the
adjustments of the gravity field unknowns are below the 30-level as indicated by the
variances in the a priori information, i.e. the calibrated covariance matrix of the grav-
ity field model used. Moreover, the rms of the coefficient values of the dynamic sea
surface topography solution per degree must be below the 3c-level indicated by the
signal variances of equation (6.14).

The correctness of the selected values for the weight factors can be tested by the
following procedure: using the inverse of the normal matrix N in equation (6.16), rela-
tions can be derived for the standard deviation of (sub)sets of the unknowns x and for
the correlation between (sub)sets of the unknowns. These standard deviations are in the
same unit as the observations (e.g. cm) and are valid for the set of observations (altim-
eter measurements) used. For the subset § (dynamic sea surface topography), the stan-
dard deviation o(hSST) becomes (Appendix C):

172
o(hger) ={WC“IZE.[N_1§§A §§TA €§];j} Nnobs (6.17)
ij
In this equation, nobs is the number of observations used in the least-squares

-§5.



adjustment process. The multiplication by w ] 15 NECESSATY, provided a proper calibra-
tion of the matrix G has taken place, i.e. the inverse of the calibrated GEM-T2 covari-
ance matrix (Lerch, 1989). This can be explained as follows: if the observations are
weighted properly, they can be added directly to the calibrated covariance matrix. In
that case, the value w ol In equation (6.16) must be equal to 1. However, the weight
for all observations was taken equal to 1. As discussed in Section 5.3, these observa-
tions must be scaled by their accuracy and by their information content (for example,
two identical measurements deliver the same information and in that case a scale factor
of 1/2 is necessary). This scaling is realized by the factor w g FOr the subset g (grav-
ity field unknowns) a similar formula for the standard deviation can be derived:

172
o(gravity) ={WcaIZZ[N _lggAgsTAgs]ij} Nnobs . (6.18)
i

The equations (6.17) and (6.18) thus represent the standard deviation in observation
units (cm for altimeter measurements) of the complete solution of the dynamic sea sur-
face topography and of the complete solution of the gravity field averaged over all
observations, respectively. The values O(hger) and o(gravity) give an indication of the
quality of the solution and the correctness of the weight factors. Also the correlation
between the subsets g and § is a measure of the quality of the solution:

-1 T
Weal ;2}: [N b4 §A8 3 Ag &j] ij

nobs G(hSST)G(graVit)’)

(6.19)

corr gt =
For a stable solution, it is desired to separate the gravity field adjustments and the
solution for the dynamic sea surface topography coefficients as much as possible. A
low absolute value for the correlation indicates a good separation.

The choice of the weight factors can further be tested by subtracting the radial orbit
and geoid corrections and the dynamic sea surface topography, implied by the gravity
field coefficient adjustments and coefficient solutions of the dynamic sea surface topog-
raphy, from the original sea height residuals and residual crossover differences. The
extent to which the sea height residuals or residual crossover differences are reduced
by subtracting the radial orbit and geoid corrections or the dynamic sea heights must
agree with the power of the coefficient adjustments and solutions. For example, if the
dynamic sea surface topography solution has an rms-value of 65 cm over the oceans,
the rms of the sea height residuals must be reduced accordingly if the dynamic sea
heights are subtracted. Of course, this must also be valid for the corrections implied by
the gravity field adjustments.

0.5 Processing of GEOSAT altimeter observations

The integrated approach has been applied to 34 days of GEOSAT altimeter

-56-



observations, when the GEOSAT satellite was in the Exact Repeat Mission (ERM), i.e.
two 17-day repeat periods of observations were used to adjust a gravity field model
complete to degree and order 36 and a model for the dynamic sea surface topography
complete to degree and order 10. This 34-day period extended from November 25 to
December 28, 1986. The combination of these two 17-day periods of altimeter meas-
urements gathered by GEOSAT showed very few data gaps. This means that a better
coverage of the oceans with GEOSAT altimeter measurements is hardly possible by
extending the 34-day period.

After the subtraction of the height of the orbit with respect to the reference elllpsmd
(semi-major axis = 6,378,137 m, flattening = 1/298.257), altimeter normal points were
computed. This computation consisted of fitting a third-order polynomial through suc-
cessive batches of 20 seconds of observations. In 20 seconds, the GEOSAT ground
track traverses an arc with a length of about 130 km. This means that the third-order
polynomial gives a smoothed representation of the altimeter measurement variations
for such an arc. By taking a third-order polynomial, a great part of variations with a
wavelength smaller than half this arc-length, i.e. 65 km, are filtered out. This 65 km
corresponds to the resolution of the OSU89b model (Rapp and Pavlis, 1990) that will
be used to model the geoid above degree 36. This will be discussed in the second part
of this Section. Observations with a difference between its value and the value indi-
cated by the third-order polynomial greater than three times the rms (root-mean-square)
of fit were eliminated until convergence. After this, the third-order polynomial was
evaluated in the middle of each batch, if the rms of fit of the polynomial was better
than 20 cm (the power of ¢ in equation (4.2)) and if more than 15 observations were
left for the polynomial fit. This procedure led to 32,980 normal points for the first 17-
day period and 33,529 for the second period. The rms of fit was equal to about 5.5 cm.
Thus, in the normal point computation, a signal with an rms of 5.5 cm could not be
modeled by the third-order polynomial. This signal consists partly of measurement
noise and will be for the greater part of a very high-frequency nature. Thus, by this
normal point computation, the problem of aliasing very high-frequency signals in the
dynamic sea surface topography solution and gravity field adjustments is partly
prevented. Moreover, with this concept spurious observations were eliminated.

Sea height residuals were computed by subtracting all corrections described in Sec-
tion 4.2 from the normal point values. The geoid was computed with the GEM-T2
gravity field model, which was also used in the orbit computation at the NASA God-
dard Space Flight Center (Haines et al.,, 1990). Although this model has values for
coefficients above degree 36, the geoid was computed using only GEM-T2 coefficients
complete to degree and order 36. The remaining GEM-T2 coefficients are coefficients
that absorbed part of resonance satellite orbit perturbations. These coefficients behave
badly in geoid computations. In addition, a high-frequency geoid was subtracted from
the normal point values to reduce the possible aliasing of these signals in the dynamic
sea surface topography solution and gravity field adjustments. This geoid was com-
puted with the OSU89b gravity field model from degree 37 to 360. The advantage of
using the GEM-T2 model to compute the geoid for the lower degrees (up to 36) is that
in this model no altimetry is aliased: it is a so-called satellite-only model in contrast to
the OSU89b model. This combination of two different types of geoids is allowable
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since the dynamic sea surface topography is determined only for the lower degrees.

Part of the so obtained sea height residuals were edited out by applying three cri-
teria. Firstly, if the observations were made at a geodetic latitude above 70° North or
below 70° South, the observations were edited out to prevent assigning too high a
weight to the polar regions (this means that only a band of maximally 2 degrees of
observations was eliminated: the orbital inclination of GEOSAT is 108°). Second, if
the sea height residuals had an absolute value above 450 cm, the observations were
edited out. This is a sort of 3c-level criterion, because the rms of the residual sea
heights was on the order of 150 cm, as will be shown. Finally, if the values for the
high-frequency geoid corrections (OSU89b geoid for degrees greater than 36) were
greater than 3.5 m, the observations were edited out to prevent using observations in
geoid trench areas. In these trench areas, the accuracy of the OSU89b geoid
deteriorates rapidly and because of this, high-frequency geoid errors are introduced. It
must be prevented that these high-frequency errors are aliased in the long-wavelength
dynamic sea surface topography and gravity field. The result of the normal point com-
putations and the editing criteria was a data set consisting of 64,831 sea height residu-
als with an rms value of 146 cm (Table 6.1).

In addition to this data set, residual crossover differences were computed. This com-
putation was performed by a procedure that can be summarized by the following. The
original set of GEOSAT altimeter measurements was used, the same set that was used
in the normal point computation, however without the altimeter measurements elim-
inated in this normal point computation. The geographical location of a crossover
difference was determined by computing the intersection point of the ground track: of
an ascending and descending GEOSAT pass. The crossover difference was computed
by a linear interpolation of two altimeter measurements on both passes closest to the
intersection point. The crossover differences computed with this procedure were com-
pared with crossover differences used in (Wakker et al., 1990a). It was found that
these crossover differences compared very well with the crossover differences com-
puted with the procedure described above (the agreement was always better than 1
cm). This procedure led to a data set of 35,907 observations with an rms-value of 51
cm (Table 6.1). The first two editing criteria were applied for residual crossover
differences. The rms-value indicated a radial orbit error on the order of 35-40 cm. The
rms of the residual crossover differences as a function of geographical location is
displayed in Figure 6.3. These rms-values are relatively small for certain regions. This
can be explained by considering the tracking network of ground stations that delivered
the tracking data used to compute the GEOSAT orbits. The rms-values will be low for
areas covered by these ground stations (Haines et al., 1990).

6.6 Results

Normal equations were computed for each 17-day period of sea height residuals and
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Table 6.1 Statistics of a priori sea height residuals and residual crossover differences
and corrections applied to them.

nobs ERM observation a priori rms  -grav -SST  -grav-SST -all

type (cm) (cm) (cm) (cm) (cm)
32174 2 sea heights 144.59 102.13 135.68 86.34 33.73
17735 2 Crossovers 55.12 46.55 25.73
32657 3 sea heights 148.42 107.92 135.57 86.65 33.73
18172 3 CrOSSOvers 47.45 37.28 22.80

Explanation of columns:

(1) nobs : number of observations

(2) -grav : rms after subtraction of gravity field corrections

(3) -SST : rms after subtraction of dynamic sea heights

(4) -grav-SST : ms after subtraction of both gravity field corrections and
dynamic sea heights

(5) -all : rms after subtraction of all corrections including state-vector
corrections
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residual crossover differences. The set of unknowns consisted of 1,365 gravity field
parameters and 120 coefficients for the dynamic sea surface topography plus one set of
6 state-vector parameters for each 17-day period. The normal equations were combined
by the method of partitioning to account for the state-vector parameters.

This Section describes the choice of and weights assigned to the a priori information
included in the solution of the normal equations, the application of the theory
described in Section 6.4 to test these weights, the comparison of the solved-for gravity
field adjustments and dynamic sea surface topography with results from the literature,
and the discussion and graphical representations of the dynamic sea surface topography
solution.

For the state-vector parameter adjustments, simple constraints were applied: only the
amplitudes @, and b, (1 cpr radial orbit error, equation (6.11)) were constrained by
adding a constant to the corresponding diagonal elements of the normal equations.
These constants were chosen such that these amplitudes were constrained to about 40
cm, i.e. the predicted radial orbit error for GEOSAT using the GEM-T2 gravity field
model. The necessity of constraining a ; and b, lies in the 100 % correlation with the

term.

The values for w ca A4 Weor (equation (6.15)) were chosen equal to 5.0 and 30.0
respectively. These values were found by applying the theory described in Section 6.4.
Using these values, all criteria described in that Section were met. Firstly, the rms of
the gravity parameter adjustments divided by the a priori sigmas of the calibrated
GEM-T2 covariance matrix was equal to 0.84, with minimum and maximum values of
-2.66 and 3.61 respectively. For the coefficient solutions of the dynamic sea surface
topography (listed in Table 6.2), these values were respectively 0.57 (rms for complete
solution), -3.72 and 2.59 (rms per degree). Thus, most of the adjustments and
coefficient solutions were below the a priori 36-level.

Secondly, using the equations (6.17)-(6.19), it was found that the sum of the remain-
ing gravity field induced errors for sea height residuals and residual crossover
differences has a standard deviation of 20 cm for the ocean areas (equation (6.17)). For
the dynamic sea surface topography solution a standard deviation of 9 cm was found
(equation (6.18)). The correlation between the gravity field adjustments and dynamic
sea surface topography solution was equal to -0.18 (equation (6.19)). These standard
deviations were compared with the a priori standard deviations implied by the a priori
information. Using the calibrated GEM-T2 covariance matrix and the degree variances
of equation (6.14), the standard deviations for the sum of the radial orbit and geoid
errors, O(Ah_+Ar), and for the dynamic sea heights are respectively 124 and 64 cm.
Thus, these a priori standard deviations were reduced significantly. A remaining ques-
tion is the significance of the correlation of -0.18 between the gravity field and
dynamic sea surface topography solution. An answer to this question was found by
solving separately for the gravity field and dynamic sea surface topography, i.e. the
off-diagonal matrices in equation (6.16) were set to zero. The gravity field solution
obtained in this way led to a geoid differing 37 cm globally (rms-wise) from the origi-
nal solution. For the dynamic sea surface topography this value was 23 cm. These
numbers show that a significant aliasing of dynamic sea surface topography in the
gravity field solution takes place if the dynamic sea surface topography would not have
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Table 6.2. Coefficients of the new dynamic sea surface topography model (in cm).

aeS

e Im Im e Im e“Im
1 0 0.70 7 6 -0.24 1.41
1 1 -8.61 -3.89 7 7 0.96 -0.55
2 0 -41.97 8 0 3.21
2 1 -4.41 10.36 8 1 -4.17 -1.73
2 2 2.99 3.14 8 2 -0.33 -0.62
3 0 25.74 8 3 1.47 0.22
3 1 8.29 2.95 8 4 0.57 0.20
3 2 1.19 -4.37 8 5 -1.61 -0.39
3 3 -3.20 -1.15 8 6 -0.76 0.82
4 0 -10.97 8 7 -0.74 0.17
4 1 0.25 4.05 8 8 -0.40 0.54
4 2 -3.17 2.49 9 0 -1.54
4 3 3.15 -0.81 9 1 0.66 0.63
4 4 -0.07 -3.79 9 2 -0.29 0.14
5 0 4.58 9 3 -0.87 0.21
5 1 -1.08 -2.78 9 4 0.52 0.58
5 2 -0.60 3.57 9 5 0.45 -0.71
5 3 -0.62 0.73 9 6 -0.46 0.33
5 4 -4.88 271 9 7 0.01 -0.11
5 5 -0.34 -0.82 9 8 0.28 0.22
6 0 7.80 9 9 0.39 -0.08
6 1 -5.21 1.33 10 0 0.05
6 2 -3.42 0.97 10 1 0.13 -0.04
6 3 1.48 -1.73 10 2 -0.03 0.01
6 4 -1.93 -1.14 10 3 0.05 0.05
6 5 -0.72 0.12 10 4 -0.02 -0.05
6 6 -1.59 -1.55 10 5 -0.08 -0.07
7 0 -4.26 10 6 -0.06 0.02
7 1 321 0.06 10 7 0.02 0.05
7 2 2.53 2.26 10 8 -0.04 0.05
7 3 0.39 -2.54 10 9 -0.04 0.02
7 4 0.54 -0.59 10 10 0.01 -0.01
7 5 0.55 -1.23
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been included in the solution, indicating the strength of the integrated approach.

Thirdly, the radial orbit and geoid corrections implied by the gravity field parameter
adjustments and the dynamic sea heights implied by the dynamic sea surface topogra-
phy solution were subtracted from the residual sea heights. It was found that the
dynamic sea surface topography solution had an rms-value of 65 cm over the oceans.
As can be seen from Table 6.1, this solution reduced the rms of the residual sea
heights for the two ERM’s from respectively 145 and 148 cm to 136 and 136 cm,
meaning a decrease of 50 and 60 cm rms-wise, respectively. These values indicate that
indeed the rms of the residual sea heights were reduced by a value that is in good
agreement with the rms-value of the solution. A similar procedure was performed for
the gravity field sea height corrections: the predicted rms-value of the adjustments was
99 cm for the geoid plus orbit error corrections. This value was obtained by computing
the Fourier series of the corrections by combining the equation (6.12) and the gravity
field harmonic coefficient adjustments. The value of 99 cm equals the rss of the ampli-
tudes of this series divided by the square root of 2 (the so-called power). The rms of
the sea height residuals was reduced from 145 to 102 cm and from 148 to 108 c¢m for
ERM’s 2 and 3, respectively. These values are equivalent to a decrease of respectively
102 and 102 cm, rms-wise, values comparing quite well with the predicted value of 99
cm. Finally, for residual crossover differences the predicted reduction in radial orbit
error using the gravity field adjustments has an rms-value of 27 cm. This value was
obtained in the same way as for the residual sea height corrections, but in this case for
the radial orbit corrections multiplied by the square root of 2, because a crossover
difference has two (radial orbit error) constituents. These residual crossover differences
were reduced rms-wise by respectively 30 and 30 cm for ERM’s 2 and 3, which is in
good agreement with the predicted value.

One final conclusion can be made from Table 6.1: the state-vector parameter adjust-
ments had a significant effect on reducing the radial orbit errors. The term a, in equa-
tion (6.11) was equal to about 55 cm. If this term is attributed to an error in the semi-
major axis of the reference ellipsoid (a priori value equal to 6,378,137 m), a new value
for this axis is obtained: 6,378,136.45 m. This value is in good agreement with the
value obtained in (Rapp and Pavlis, 1990).

The implementation of all corrections reduced the rms of the a priori sea height resi-
duals and residual crossover differences from initial values of 146 and 51 c¢m to 34
and 24 cm, respectively. In the analysis described in (Nerem et al., 1988), a gravity
field model complete to degree and order 50 was determined together with a model for
the dynamic sea surface topography complete to degree and order 15, from 30 days of
SEASAT altimeter data (7/28-8/15, 9/15-9/27, 1978) and 54 days of GEOSAT altime-
ter data (11/17/86-12/4/86, 12/21/86-1/24/87). The mms of the a posteriori GEOSAT
residual crossover differences and sea height residuals was equal to about 20 cm and
about 30 cm respectively, values comparing very well with the values mentioned
above, whereas in (Nerem et al., 1988) many more gravity field coefficients (about
2500) and dynamic sea surface topography coefficients (255) were estimated. In
(Marsh et al., 1989b and 1990), a gravity field model complete to degree and order 50
(PGS-3337) was determined together with a model for the dynamic sea surface topog-
raphy complete to degree and order 10. In this analysis use was made of three months
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of SEASAT altimeter data (7/27-10/10, 1978). Both the rms of the a posteriori
SEASAT residual crossover differences and for sea height residuals was equal to about
30 cm. It may be concluded that, although in (Nerem et al., 1988) and (Marsh et al.,
1989b and 1990) use was made of numerical integration techniques, reductions in the
residual crossover differences and sea height residuals were obtained that were of com-
parable magnitude with the reductions obtained by using the analytical technique
described in this Chapter. In (Engelis and Knudsen, 1989) a gravity field model com-
plete to degree and order 36 and a model for the dynamic sea surface topography com-
plete to degree and order 10 were determined, from 17 days of SEASAT altimeter
measurements (7/26-8/13,1978). The rms-values of the a posteriori residual crossover
differences and sea height residuals were about 20 cm. In this analysis, the 17-day
period was divided into 4 arcs, and for each arc a 6-element state-vector (equation
(6.11)) was estimated. This may explain the lower rms-value obtained for the sea
height residuals and the slightly lower rms-value for the residual crossover differences.
Residual crossover differences were not included in the computation of the normal
equations. In (Denker and Rapp, 1990), also a gravity field model complete to degree
and order 36, however with selected terms above degree 36 to model resonance orbit
perturbations, and a dynamic sea surface topography model complete to degree and
order 10 was estimated, from one year of GEOSAT altimeter data (11/8/86-
11/10/1987). The rms-values of the a posteriori residual crossover differences and sea
height residuals were about 22 cm and 37 cm respectively, comparing very well with
the values displayed in Table 6.1. In this analysis, a state-vector including, besides the
terms displayed in equation (6.11), also quadratic terms, was estimated for each 6-day
arc. Residual crossover differences were not used in the computation of the normal
equations.

The adjusted GEM-T2 gravity field model and the model for the dynamic sea sur-
face topography were compared with other published models. Firstly, the geoid com-
puted with the GEM-T2 model and with the adjusted GEM-T2 model (truncated at
degree 36) were compared with the geoid computed with the OSU89b model (trun-
cated at degree 36). This OSU89b geoid is expected to model the geoid in the oceanic
regions better than the GEM-T2 geoid, also for terms with a degree below 37 (Rapp
and Pavlis, 1990) although oceanic features may be aliased in this model. The rms of
differences between the GEM-T2 geoid and the OSU89b geoid was found to be 119
cm. This value decreased to 65 cm when taking the differences between the adjusted
GEM-T2 geoid and the OSU89b geoid. This is an improvement of 99 cm rms-wise, a
value that compared very well with the global rms of the geoid adjustments which was
found to be equal to 103 cm. Secondly, the dynamic sea surface topography model
was compared with models computed by (Marsh et al., 1989b and 1990) from
SEASAT altimetry and by (Engelis, 1987) from Levitus hydrography. These models
are available at Delft University of Technology. It must be noted that for the com-
parison with the Engelis model, the C"t’ 0 coefficient had to be corrected for the per-
manent zero frequency tides (Denker and Rapp, 1990):

C%0a4 = Co0 + 10.52 (cm) (6.20)
Over the oceans, the rms of differences between the model described in this thesis
(color plate I) and the models published in (Marsh et al., 1989b; color plate II) and
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(Engelis, 1987) are respectively 25 and 34 cm. Compared to an rms-value for the
dynamic sea heights of about 65 cm, the new model for the dynamic sea surface
topography is in good agreement with the models published in (Marsh et al., 1989b
and 1990) and (Engelis, 1987). This agreement is also clearly shown in the Color
Plates I and II. Moreover, Engelis computed his model from several decades of hydro-
graphic data and the model described in this thesis was computed from only 34 days
of data in the year 1986. In (Marsh et al., 1989b and 1990) use was made of 3 months
of SEASAT data in the year 1978. Thus, part of the differences may be explained by
changes in the ocean currents and by the application of differences in time scales and
periods. It must also be noted that the standard deviations of the dynamic sea heights
computed with the model described in this thesis are equal to about 10 cm. Therefore,
it is concluded that the differences between the new model and the earlier published
models are on the order of 20 to 30. Therefore, it is concluded that the new model is
a meaningful representation of the long-wavelength dynamic sea surface topography.

It has been shown that an adjusted gravity field model has been determined with
which it is possible to reduce geoid and radial orbit errors for the GEOSAT altimeter
observations. However, so far, it has only been shown that this is the case for the
selected 34-day period. In Section 6.7, it will be shown that by using the adjusted
gravity field model and model for the dynamic sea surface topography also a
significant reduction in the sea height residuals and residual crossover differences for a
two-year period can be obtained, although these models are "tailored" to a 34-day
period.

In addition to the numerical experiments, it was analyzed how well the GEM-T2
calibrated covariance matrix and the covariance matrix of the adjusted GEM-T2 grav-
ity field model (i.e. w p a,N' 1 ), equation (6.16)) predicted the radial orbit error (combin-
ing the equations (6.8) and (C.10), Appendix C) and the residual crossover differences
(equations (6.13) and (C.10)). In this prediction, no state-vector errors and secular
effects were taken into account. The results are displayed in the Figures 6.4-6.9. The
Figures 6.4 and 6.5 show the rms of the radial orbit errors as a function of the order,
summed over all degrees, of the gravity field harmonic expansion for the GEM-T2 and
the adjusted GEM-T2 gravity field. A clear peak can be distinguished at order 43 in
Figure 6.4. The GEOSAT satellite makes approximately 14 1/3 orbital revolutions per
day and 43 is an exact multiple of this. Therefore, this peak is a near-resonance peak,
after each orbital revolution the satellite "senses" the same gravity field disturbing
force. With a closer look to the Figures 6.4 and 6.5 the same phenomena can be dis-
tinguished at the orders 14-15 and 28-29, although less pronounced. The Figures
clearly reveal that the radial orbit errors of the GEM-T2 gravity field were reduced
significantly after the adjustment. The Figures 6.6 and 6.7 corroborate this statement
and show that the orbit errors are concentrated around the 1 cpr frequency. Also this
can be explained by the concept of near-resonance (see also: equation (2.6a)).

The Figures 6.8 and 6.9 show the crossover difference errors as a function of the
geographical location. Again it is clear that radial orbit errors were reduced
significantly. This is especially the case for the ocean areas, which could be expected
by the fact that only observations over the oceans were used in the gravity field adjust-
ment. Comparing the predicted GEM-T2 crossover difference errors (Figure 6.8) with
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the real rms-values (Figure 6.3), the latter are significantly larger. This may be
explained by the fact that in addition to gravity field modeling errors, errors must be
added due to mismodeling of non-conservative forces (e.g. atmospheric drag, solar
radiation) and due to mismodeling of the altimeter observations (instrument correction
errors, atmospheric delay correction errors, ocean surface variability, tide modeling
errors, etc.).

Graphical representations of the new model for the dynamic sea surface topography
can be found in the Figures 6.10 and 6.11, displaying contour levels of the dynamic
sea heights and velocity vectors according to the geostrophic relations (see also: color
plate I). The geostrophic relations read (Marsh et al., 1990):

oh
uy = _?Y_ asy” (6.21a)
c
oh
v, = fi . (6.21b)
[

where 7y is the local gravitational acceleration, f, is the Coriolis parameter, u, and v
are the east-west and north-south geostrophic currents, and x and y are the local east-
west and north-south coordinates. So, the gradients in the dynamic sea surface topogra-
phy are a measure of the ocean current velocity in a direction perpendicular to the gra-
dient. The Figures and the Color Plate I clearly reveal the circumpolar current at the
Antarctic, the Agulhas current at South-Africa, the Gulf-Stream from Mexico to
Western-Europe, and the Kuro-Shio current at Japan. The new topography model
proves to be capable of modeling these known large-scale ocean currents very well.
Graphical representations of the standard deviations of the adjusted GEM-T2 geoid and
dynamic sea heights as a function of the geocentrical position are displayed in the
color plates IIT and IV. As expected, the standard deviations are the largest over the
land areas where no altimeter observations are available.

0.7 Analysis of two years of GEOSAT data with the adjusted gravity
field model and the new model for the dynamic sea surface topography

The adjusted gravity field model and new model for the dynamic sea surface topog-
raphy were used to analyze 43 17-day repeat periods (ERM’s) of GEOSAT altimeter
observations. These 43 periods range from November 8, 1986, to November 7, 1988,
i.e. a period of exactly two years. Sea height residuals and residual crossover
differences were computed and corrected by the procedures described in Section 6.5.

A number of additional corrections were applied to these sea height residuals and
residual crossover differences. Firstly, orbit error corrections implied by the GEM-T2
coefficient adjustments obtained in the integrated approach were subtracted from the
residual crossover differences and the sea height residuals. In addition, geoid correc-
tions and dynamic sea heights computed with the new model for the dynamic sea
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surface topography, also obtained in the integrated approach, were subtracted. Of
course, the latter was only necessary for the sea height residuals. After this and finally,
state-vector errors were estimated and also subtracted from the remaining sea height
residuals and residual crossover differences. In this way, 43 17-day periods of fully
corrected sea height residuals and residual crossover differences were obtained. The
statistics of these sea height residuals and residual crossover differences are listed in
the last columns of the Tables 6.3 and 6.4. As shown in these Tables, the rms of the a
priori sea height residuals was reduced from about 140 cm to about 40-45 cm and the
rms of the residual crossover differences from about 50-60 cm to about 35-40 cm. The
a posteriori rms-values for the last three 17-day periods are relatively high, but this is
probably caused by a deteriorated quality of the GEM-T2 orbits computed for these
periods. Also the a priori rms-values for these three periods are relatively high. Espe-
cially, the rms-value of the a priori residual crossover differences of the last 17-day
period, which is equal to 145 cm, is very high, indicating a poor orbit determination
for this period. In general, it is concluded that the adjusted gravity field model and the
new model for the dynamic sea surface topography behave very well for the 2-year
period of GEOSAT observations.

The value of 40-45 cm for the rms of the a posteriori, or fully-corrected, sea height
residuals represents for the greater part high-frequency geoid errors, altimeter measure-
ment correction errors and ocean surface variability. By analyzing Table 6.3 in further
detail, a 1-year cycle (about 21 17-day periods) can be distinguished for the rms-
values, although the rms-values of the last 3 17-day periods are deviating. An interest-
ing question that arises is whether part of this 1-year cycle can be attributed to varia-
tions in the long-wavelength ocean surface. In order to answer this question, the fully-
corrected set of sea height residuals was used to determine variations in the long-
wavelength ocean surface topography. This was done by applying a sort of long-
wavelength filtering to this data set.

This filtering was performed in the following way: for each ERM normal equations
were computed for a long-wavelength model, represented by a spherical harmonic
expansion complete to degree and order 10. These models will be referred to as resi-
dual ocean surface topography solutions. Similar to the integrated approach, sea height
residuals with an absolute value greater than 450 cm, residual sea heights in trench
areas and residual sea heights in polar regions above 70° North or below 70° South
were edited out.

It was possible to add and to solve any combination of normal equations of the 17-
day periods. For example, normal equations could be combined and solved per 17-day
period, per month (approximately 2 ERM’s), per season (5-6 ERM’s) or per year (21-
22 ERM’s). Constraints were added to keep the power of the residual sea surface
topography within reasonable limits: the power of the solution must match the reduc-
tion of the a priori rms of the fully-corrected sea height residuals. Constraints were
applied by adding degree variances of the ocean surface topography coefficients to the
corresponding diagonal elements of the normal matrix (equation (6.14)). The power of
the residual ocean surface topography solution was defined as:
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Table 6.3 Statistics of two years of sea height residuals.

ERM-nr  nobs apriorirms  -grav -SST  -grav-SST  -all

(cm) (cm) (cm) (cm) (cm)

1 30521 140.89 96.19 13497 8543 37.60
2 32109 144.54 101.55 136.32 87.20 35.20
3 32586 148.50 10736  136.33 87.49 35.37
4 33269 151.03 111,10 13542 86.63 38.67
5 33564 153.69 11488 135.66 87.38 40.33
6 32966 156.00 11660 136.30 87.67 42.15
7 33005 159.12 12125 13746 89.60 43.86
8 32390 15549 116.51 13493 86.06 53.98
9 31646 155.65 11550 137.10 87.72 43.18
10 30618 151.06 109.21 135.88 85.48 42.16
11 30983 148.75 105.70 13540 84.26 43.52
12 29017 147.56 10291 135.69 83.46 4441
13 29448 146.25 100.79 135.71 83.46 4393
14 29050 144,42 9847 135.11 82.99 43.19
15 25678 142,87 97.61 133.76 82.57 41.04
16 29272 141.50 95.04 133.80 82.23 45.29
17 31066 136.96 91.17 132.19 79.26 44.10
18 29375 138.51 9166 132.18 80.68 4542
19 28968 138.40 9234 133.56 83.16 45.20
20 29306 139.18 9234 13473 84.07 40.71
21 28538 137.43 89.95 132.83 81.56 37.34
22 30473 14047 94.11 135.67 8547 36.54
23 16556 14348 98.80 137.03 87.25 37.44
24 30104 143.66 99.51 135.73 85.99 31.77
25 32394 149.18 10697 137.30 88.20 40.89
26 30877 152.96 11243 136.61 88.04 45.29
27 29298 158.77 120.77 140.39 93.60 46.10
28 31136 157.54 11966 137.38 90.04 4554
29 31738 158.33 12000 13845 90.64 472
30 30664 156.13 11623  138.58 89.81 4391
31 27266 151.96 11428  136.24 89.95 46.15
32 30880 152.59 11236 137.73 89.55 4445
33 28285 150.66 11041  136.97 89.00 47.06
34 25720 145.00 10434 13298 85.53 43.39
35 25159 141.81 100.25 13033 81.88 43.60
36 24794 139.80 97.19 129.65 80.94 45.14
37 22958 139.31 9570 129.28 80.60 48.62
38 23045 138.31 9547 130.21 83.01 53.37
39 17737 138.83 9225 13226 80.88 48.23
40 27465 141.63 95.56 136.32 86.55 47.44
41 26790 145.29 10257 140.82 95.13 59.66
42 26387 147.19 10585 14235 98.12 54.49
43 26771 157.87 119.53  152.88 112.36 62.45
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Table 6.4 Statistics of two years of residual crossover differences.

ERM nobs apriorirms  -grav -all

(cm) (cm) (cm)

1 16121 54.46 4568 2940
2 17735 55.12 4655 2624
3 18172 4745 3728 2342
4 19534 43.00 3238 2340
5 16964 43.59 3319 25.57
6 18926 49.59 40.74 26.06
7 18230 41.45 3222 28.60
8 18398 41.77 3222 2832
9 17788 36.81 2587 26.03
10 16468 40.32 29.18 28.73
11 16514 41.72 2988 28.66
12 14418 48.65 3720 3592
13 14835 49.56 4007 3644
14 14641 50.78 41.10 3234
15 11916 43.68 3185 28.82
16 15531 48.57 3848 3861
17 17007 44 61 3542 3531
18 15381 55.26 4855 40.10
19 14616 62.12 5480 41.03
20 14630 61.77 5489 2592
21 13930 60.07 5202 2630
22 15864 63.13 5562 25.58
23 4761 60.28 5123 2343
24 15417 51.64 4256 23.57
25 18262 44 .53 3426 2695
26 16349 50.33 4181 39.80
27 14961 50.57 4332 3841
28 16452 41.04 3180 3192
29 18152 38.59 2772  26.87
30 16297 40.32 29.37 28.7
31 12900 51.04 4217 3405
32 16562 53.74 4571  30.12
33 13868 52.29 4418 3740
34 11705 4471 3394 3334
35 11602 46.36 3595 3587
36 11673 53.02 4419 4405
37 10151 58.20 50.29 48.85
38 10320 63.59 5742 5339
39 5833 65.91 5966 4300
40 13438 84.25 7997 45.14
41 12799 104.30 100.69 65.53
42 11858 118.79 11434 56.78
43 12163 145.56 14250 6931
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Table 6.5 Statistics of 17-day residual ocean surface topography solutions.

ERM nobs power SST a priori rms a posteriori rms
(cm) sea heights (cm) sea heights (cm)

1 30308 18.096 35.04 3240
2 32002 18.186 33.69 31.10

3 32387 16.233 33.16 30.04
4 32886 17.876 34.33 30.84

5 33081 17931 35.68 32.05

6 32494 22.548 36.95 32.77

7 32449 21.241 38.39 34.31

8 31773 23.599 38.07 33.88

9 31185 26.230 36.73 32.46
10 30275 23.561 36.94 32.98
11 30575 21.543 36.92 33.18
12 28737 21.548 39.93 36.42
13 29123 19.705 39.45 36.19
14 28697 18.957 38.17 34.38
15 25343 19.513 36.28 32.11
16 28865 24450 39.81 36.27
17 30678 23.565 39.58 36.54
18 29033 22.388 41.82 38.80
19 28655 24414 4225 39.61
20 29006 23.012 38.00 3549
21 28227 20.666 34.23 31.03
22 30246 20.005 33.78 30.63
23 16411 18.160 33.74 30.05
24 29837 18.221 33.66 30.33
25 32043 19417 35.41 31.93
26 30543 20.641 40.53 37.25
27 28928 22,017 41.12 37.72
28 30683 23.092 40.25 36.14
29 31231 26.874 38.09 33.58
30 30238 23.117 38.08 33.86
31 26912 23.079 40.35 36.09
32 30525 21.319 38.23 3452
33 27922 22.508 40.97 37.07
34 25407 16.610 38.12 34.84
35 24814 18.654 38.04 34.61
36 24575 19.079 41.39 38.23
37 22717 20.434 45.85 4290
38 22823 24.326 50.89 47.66
39 17514 22938 44.30 40.69
40 27256 18.546 45.36 42.64
41 26619 19.693 57.98 55.49
42 26132 21450 51.31 48.21
43 26469 22.288 59.25 56.81

78



10 1 (_, 2 2|12
power (SST) = a, [E ) [Cglm] + [S'-g,m] ] . 6.22)
I=1m=0

The normal equations were solved per ERM: the statistics of the obtained residual
ocean surface topography solutions are listed in Table 6.5. As can be seen, the rms-
values of the sea height residuals were not reduced dramatically (absolutely 3-4 cm,
about 18 cm rms-wise). This can be explained by the long-wavelength filtering tech-
nique applied: only long-wavelength variations were estimated, which did not absorb
the high-frequency geoid errors (although of course aliasing may occur but with a
good global coverage of the oceans with observations and by the application of con-
straints this is not expected to be a serious problem).

After the determination of the residual ocean surface topography solutions, varia-
tions in these solutions were computed. This was performed by first computing for
each period the sea heights (hgo) over the oceans from the residual ocean surface
topography solution of that period. Afterwards, in each point over the oceans the mean
was computed. Finally, these mean values were subtracted from the sea heights for
each period to obtain the variations. For the solutions listed in Table 6.5, the long-
wavelength variability over the oceans has an rms-value of about 7 cm. A comparable
value can be found in (Koblinsky et al., 1989), in which this variability was in good
agreement with seasonal variations in the long-wavelength ocean currents determined
from climatological data.

In addition, the correlations between the variations of Ahger with respect to the
mean of all solutions were computed. The correlation p;, of the variations of two
solutions 1 and 2 was defined as:

Y Ahgery Y, Ahgsra

. oceans oceans
correlation |5 = 7 -

Y Ahgri? Y Ahgsr

oceans oceans

(6.23)

A correlation of 1 means that two solutions are equivalent (apart from a possible scale
factor).

The correlations between all 17-day solutions are shown in Figure 6.12. Analyzing
this Figure, it can be seen that bands of positive and negative correlations occur. These
bands have a period of approximately 21 17-day periods, i.e. 1 year. In other words,
the variations in the individual 17-day long-wavelength models exhibit a clear annual
cycle.

The question now arises if this annual cycle can be attributed to seasonal ocean
height variations or by other phenomena. For example, it is known that errors in the
modeling of the ocean tides may exhibit an annual cycle. Another possibility is an
annual cycle in the atmospheric delay corrections, e.g. the tropospheric and ionospheric
corrections. With respect to the ocean-tides modeling, it is known that the M2-ocean
tide causes an almost yearly variation in the sea heights at a fixed geographical posi-

tion under the GEOSAT ground track (Cartwright and Ray, 1990). This variation can
be written as:
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Figure 6.12 Correlations, multiplied by 10, between variations
of 17—-day solutions for the long—wavelength ocean surface

topography
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height (M 2~tide) = A* cos([2* n*time (days )/16.18]+¢) 6.24)

where A and ¢ are constants. The GEOSAT repeat period is equal to 17.05 days. After
about 19 repeat periods (close to 1 year), the satellite is at the same geographical posi-
tion and the M2-tide height indicated by equation (6.24) has the same value. However,
it can be shown that only a very small aliasing of the heights indicated by equation
(6.24) occurs in the long-wavelength model solution, because geographically the tides-
induced sea height indicated by this equation behaves as a short-wavelength function
in each 17-day period. This wavelength is equal to 7.6° and the smallest wavelength in
the residual ocean sea surface topography solutions was equal to 36°. As has been
shown before (Section 4.2), the estimated error of the ocean-tide modeling was on the
order of 10 cm for the large ocean basins spread over all tidal constituents. A very
small part of this 10 cm is aliased in the long-wavelength solutions, whereas the varia-
tions in the long-wavelength ocean surface solutions have been shown to be on the
order of 7 cm. In addition, the errors of the atmospheric path length corrections are
expected to be very small (Section 4.2). In summary, a clear annual cycle in the long-
wavelength solutions was determined. The mechanism behind this annual periodicity
may be an annual cycle in the ocean surface height.

The results presented in this Section are very promising for the concept of satellite
altimetry in relation to oceanographic and climatological studies. It seems very
interesting to compare the results presented in this Section with independent climato-
logical and oceanographic data. However, this comparison is outside the scope of this
thesis.

6.8 Conclusions

The GEM-T2 model was adjusted by applying an integrated approach to two 17-day
repeat periods of GEOSAT altimeter observations. Together with this adjustment, a
new model for the long-wavelength dynamic sea surface topography was determined.

From a comparison with results published earlier (Nerem et al., 1988; Marsh et al.,
1989b and 1990; Denker and Rapp, 1990; Engelis and Knudsen, 1989) and by con-
ducting the procedures described in Section 6.4, it is concluded that the geoid com-
puted with the adjusted GEM-T2 gravity field model is significantly more accurate
than the geoid computed with the a priori GEM-T2 model. Moreover, residual cross-
over differences were reduced significantly: the gravity field induced radial orbit error
was decreased by about 20 cm. In addition, the new model for the dynamic sea surface
topography behaves quite well in comparison with earlier published models. The new
model is in good agreement with other models computed from satellite altimetry or
from hydrographical information. The error in the new model seems to be between 10
and 30 cm for the dynamic sea heights compared to an rms-value of about 65 cm over
the oceans for these heights. Moreover, the new model displays clearly well-known
long-wavelength oceanic features, like the circumpolar current, the Agulhas current,
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the Gulf-Sream and the Kuro-Shio current. Therefore, it is concluded that the
integrated approach leads to valuable results.

The integrated approach was applied to only two 17-day repeat periods of GEOSAT
observations. However, the adjusted GEM-T2 model and the new model for the
dynamic sea surface topography were used to analyze two years of GEOSAT altimeter
data. This analysis showed the possibility to determine systematic variations in long-
wavelength ocean surface topography models. The most appealing result of this
analysis was the determination of a clear annual cycle in the long-wavelength solu-
tions.

The analysis in this Chapter has clearly shown the possibility of gravity field
improvement and determination of the dynamic sea surface topography from satellite
altimetry. In addition, also the possibility to study seasonal oceanographic or climato-
logical phenomena has been indicated. With the altimeter missions ERS-1, which was
launched in 1991, and TOPEX/Poseidon, which will be launched in 1992, the
integrated approach is a very promising tool in gravity field related and oceanographic
studies.
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Part III. Gravity field recovery and adjustment from
satellite-to-satellite tracking and gradiometry

7. Covariance analysis to a local gravity field recovery from
satellite-to-satellite tracking and gradiometry

7.1 Introduction

With the advent and the ongoing deployment of the Global Positioning System
(GPS), it becomes more and more interesting to implement GPS receivers on board of
low Earth orbiting (LEO) satellites. This is especially true since these GPS receivers
will be capable of delivering measurements of the range and/or range-rates between the
LEO satellites and the GPS satellites. With these measurements, the orbits of the LEO
satellites can be determined with great precision. In conjunction with this orbit recon-
stitution, it is also possible to improve our knowledge of the Earth’s gravity field
significantly. As already mentioned before, the altitude of the LEO satellite must be as
low as possible to be able to determine a gravity field model with a fine resolution:
only very low Earth satellite orbits are sensitive to high-frequency gravity field varia-
tions, because these variations are attenuated very quickly with increasing altitude. A
dedicated satellite mission to improve our knowledge of the Earth’s gravity field will
be the ARISTOTELES mission, which is scheduled to be flown in 1997 (Rummel,
1989a). The primary objective of the ARISTOTELES mission is to determine a high-
accuracy gravity field model with a resolution of about 100 km, which is equivalent to
a spherical harmonic expansion complete to degree and order 180. For this resolution,
the accuracy strived for is 5 mgal for gravity anomalies and 10 cm for geoid undula-
tions. As shown in the previous Chapter, a high-accuracy gravity field model is a very
important prerequisite for the correction of the altimeter measurements and opens the
possibility to separate oceanographic features from gravity. Although already gravity
field models complete to degree and order 360 exist (Rapp and Cruz, 1986; Rapp and
Pavlis, 1990), these models are not very accurate for the shorter wavelengths and give
for these shorter wavelengths merely a good representation of the mean sea surface,
rather than of the gravity field (see section 1.3). If all mission objectives of ARISTO-
TELES are fulfilled, a gravity field model will be obtained that will not only behave
nicely for the very long wavelengths (longer than 1000 km) but also for the shorter
wavelengths (100 km - 1000 km). In that case, the ARISTOTELES mission will also
facilitate the detection of oceanic features with shorter wavelengths than the long-
wavelength dynamic sea surface topography that can be distinguished from satellite
altimetry (see also: Figure 1.1).
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The primary measurement device to be implemented on board of the ARISTO-
TELES satellite, will be a gravity gradiometer "sensing" the gravity tensor of the Earth
at the satellite altitude. This gradiometer will consist of electrostatically suspended
proof-masses which are separated by a distance on the order of 1 m. The differences
between the accelerations of these proof-masses will be measured. These differential
measurements will have an accuracy on the order of 0.01 EU (CIGAR, 1990) for grav-
ity tensor components in the so-called sensitive axes, i.e. axes in a direction perpendic-
ular to the satellite flight direction. Measurements in the flight direction are expected to
be less accurate, because these measurement channels must have a greater dynamic
range in order to accommodate atmospheric drag, compromising their sensitivity. The
gradiometer will be implemented on a satellite which will fly in a low orbit and there-
fore the effect of atmospheric drag will be significant. Because of the limited
bandwidth of the gradiometer, i.e. the gradiometer can only observe signals with a fre-
quency between 0.005 and 5 Hz, the gradiometer is unable to deliver information
about the low-frequency part of the gravity field, i.e. until degree 20-27, and about par-
ticular medium and high-degree gravity field spherical harmonics, i.e. from degree 28
to 180. The reason for this is that, especially for a polar orbit, also high-degree sec-
torial gravity field constituents cause for a significant part low-frequency orbit pertur-
bations. This will be shown in Chapter 9. In that Chapter, also problems associated
with the gradiometer bandwidth will be investigated.

A supplementary and complementary device to obtain gravity field information will
be an on-board GPS receiver, yielding SST pseudo-range and carrier phase measure-
ments. A pseudo-range measurement is obtained by measuring the transit time of
coded radio-frequency signals transmitted by the GPS satellites and recorded by the
GPS receiver, and by multiplying this transit time with the speed of light (Ambrosius
et al.,, 1990). There are two types of pseudo-random noise codes modulated on carrier
signals at the L-band frequencies (L1=1.575 and L2=1.227 GHz). The first code is the
so-called "civilian access" (C/A) code, which is primarily intended to ease the acquisi-
tion of the second, more precise, P-code. The first code is the only code officially
available to "civilian" users. This code has a "chip-rate” of about 1 MHz, and in con-
junction with this, the highest accuracy of these measurements that can be achieved
nowadays is on the order of 5 m. The P-code has a "chip-rate" of about 10 MHz, and
therefore the accuracy of these measurements can be on the order of 1 m nowadays.
Moreover, if P-code measurements are available in addition to C/A-code measure-
ments, the so-called first order ionospheric propagation delay can be modeled (Gurtner,
1985). Apart from the C/A-code and P-code signals, the carrier itself may also be used
for ranging. Although the system was not designed for this application, it was soon
realized that the highly stable oscillators on board of the GPS satellites would allow
very precise range measurements on this signal. The precision of these measurements
can be as high as 0.5 cm.

The most important functions of the GPS receiver could be the support of a precise
orbit determination of ARISTOTELES and the contribution of additional information
about the low- and medium-degree part of the gravity field of the Earth. This could
help to improve the accuracy of current (low-degree) spherical harmonic expansions of
the gravity field to a higher level, so that low-degree errors will not obscure the
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modeling of the higher degree field by the gradiometer measurements.

The capability of GPS to achieve this complementary objective has been shown
extensively in several studies, especially the studies related to the Gravity Probe B and
TOPEX/Poseidon mission (Wu and Yunk, 1986a and 1986b; Smith et al., 1988). In the
study described in Part III, it will be investigated whether a GPS receiver has the capa-
bility to also provide information of the high-degree part of the gravity field of the
Earth, thus serving as a supplementary device to the gradiometer. The expected accu-
racy of carrier phase measurements by future space-borne GPS receivers seems to open
the possibility to achieve this objective (Ambrosius et al., 1990).

Because of the expected abundance of gradiometer measurements and GPS SST
measurements from the full 21 (including 3 spares, proposed configuration as of 1988,
the final configuration will include 3 more satellites making a total of 24) satellite
configuration and a sampling rate of the order of a few seconds, and the huge amount
of unknowns if a high-degree and -order spherical harmonic expansion of the gravity
field is solved for, it was decided to first investigate the possibility of a local gravity
field recovery. This means that the possibility of using GPS SST measurements to the
ARISTOTELES satellite and ARISTOTELES gradiometer measurements for gravity
anomaly/geoid undulation recovery with a resolution of 1° in longitude and latitude
will be investigated for a restricted geographical area. The selected area extends from
0° to 20° longitude and from 40° to 60° northern latitude, thereby covering a large part
of Western-Europe. Figure 7.1 gives an overview of the selected area. This Figure also
displays the ground track pattern of a 30-day, 200 km altitude, ARISTOTELES orbital
arc (CIGAR, 1989). In addition to the local gravity field recovery study, global gravity
field recovery error analyses will be discussed in Chapter 9.

The study to a local gravity field recovery from satellite-to-satellite tracking (GPS)
and gradiometry described in this thesis, can be divided into two parts. In this Chapter,
a local gravity field recovery covariance analysis, based on the concept of least-squares
collocation (Heiskanen and Moritz, 1967; Moritz, 1980; Rummel et al., 1976) is
presented. This covariance analysis will give an insight in the requirements for the
GPS receiver and gradiometer on board of ARISTOTELES to enable a high-precision,
high-resolution gravity field recovery. The results of the covariance analysis can be
compared with the results of the study described in Chapter 8. In that Chapter, a deter-
ministic study to the possibility of a local gravity field recovery from ARISTOTELES
GPS measurements is described. In the first part of this Chapter, the concept of least-
squares collocation will be introduced. This will be followed by a description of the
models used in the covariance analysis and the assumptions made in that analysis.
Finally, results will be presented of the local gravity field recovery covariance analysis.

7.2 Least-squares collocation

The collocation formula for gravity anomaly (Ag) or geoid undulation (Ak) recovery
from measurements at satellite altitude can be written in the following form (Moritz,
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latitude (deg)

Figure 7.1 ARISTOTELES groundtracks over test area
for a 30—days period
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1980):
AgIAh = Cpgipp (Cu+D Yt (7.1)

where C Ag/Aht is the row of correlations between the gravity anomaly/geoid undulation
solved for and the column of measurements ¢, C,, is the covariance matrix of the meas-
urements f, and D is the noise variance matrix of these measurements. In the local
gravity field recovery covariance analysis, the matrix D will be represented by a diago-
nal matrix. The elements of this matrix are equal to the variance of the noise. This
means that the measurements are assumed to be corrupted by uncorrelated measure-
ment errors. The measurements that will be considered, include gradiometer measure-
ments for the sensitive axes, and ARISTOTELES satellite accelerations. The gradiome-
ter measurements are represented by the tensor components Fzz, I‘zy and I'_, where the
subscripts z and y denote components in the satellite radial and cross-tragz directions,
respectively. For the ARISTOTELES orbit, which will be almost polar, the latter direc-
tion is almost equivalent with the West-East direction. In the local gravity field
recovery covariance analysis described in this Chapter, the ARISTOTELES orbit was
assumed to be polar. The tensor components of a disturbing potential T are defined by:

0T

rZZ = EZ— (7.2a)
_ 9T

I, = % (7.2b)
9T

r, =<2— (7.2c)
yy ayZ

The GPS range measurements contain the information from which accelerations of the
ARISTOTELES satellite can be derived in the radial, along-track and cross-track direc-
tions. This will be discussed in Chapter 8.

The covariances, elements of the covariance row C Ape and the matrix C,, can be
derived if the covariance functions for the gravity ﬁeklﬁlunétionals investigatcé, i.e. the
gradiometer measurements, satellite accelerations, and gravity anomalies and geoid
undulations, are known. Let U(P) and U(Q) be the potential from degree Imin to Imax
of two points P and Q in space, with radii r, and r,; then the covariance function
K(U(P),U(Q)) for this potential can be modeled by a spherical harmonic expansion
from degree Imin to Imax (Moritz, 1980):

2 Imax a 2 Y(I+1)
KUPHLUQ) = [LJ Y [ ‘ ] kPi(cosy) (7.3)
{

a, =Imin rprQ

where  is the spherical distance between the points P and Q, and k; the degree vari-
ance defined as:
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[ - -
ky = z{c,,,, 2+s,,,,2}. (1.4)

m=0

The covariance function of functionals L and L2 (e.g. gravity anomalies, geoid
undulations, gradiometer measurements or satellite accelerations) of the potential U
follows from the relation:

KCUPWLUQ) =L'LARUP)UQ)) . (1.5)
As an example, the Rapp 79 anomaly degree variance model reads (Rapp, 1979):

o2(Ag;) = 1ﬂ w2, 14003 .5 035042 2.
gy = (- 0.998006"* T 3242l meal? . (7.6)

where cz(Agl) is the anomaly variance for degree /. From this model, the degree vari-
ances k; can be computed by combining the equations (1.6), (7.3) and (7.5).

An important aspect of the method of collocation is that it can also provide accuracy
estimates of recovered gravity anomalles/gemd undulations. For gravity anomalies, for
example, the error estimate o, (Ag) reads:

Gurr (A8) = C(0)pg—C ag 4(Co+D)'CT 1.7)

where C(0), , is the variance, or square of the power, of the a priori gravity anomalies.
This variance is found by inserting y=0 in the covariance function of the gravity
anomalies.

The importance of the last formula lies in the possibility to estimate the accuracy of
recovered gravity anomalies/geoid undulations, given a certain set of measurements ¢
with a specified accuracy from which these gravity anomalies/geoid undulations are
estimated. Equation (7.7) holds for accuracy estimates of point gravity anomalies. A
similar equation can be derived for point geoid undulations. In addition to these accu-
racy estimates, also accuracy estimates for mean 1° x 1° gravity anomalies and geoid
undulations will be computed, because the resolution of the gravity field recovery
strived for is 1.0°. In the local gravity field recovery study described in this thesis,
mean 1° x 1° values were computed by taking the mean of a large number of point
values in a 1° x 1° block. The principles for the estimation of the accuracy of these
mean values are described in Appendix E.

The computation of the covariance functions, the core of the collocation process,
requires some special attention. The optimum (isotropic and homogeneous) covariance
functions are obtained by using the same coefficients of the spherical harmonic expan-
sions of the gravity field used to compute the accelerations, gradiometer measurements
and gravity anomalies/geoid undulations for the degree variances (equation (7.4)). A
covariance function value for certain gravity field induced signals is obtained by a
summation of Legendre polynomials (equations (7.3) and (7.5)). A very efficient way
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to perform these summations is the recursive method known as Horner’s procedure
(Tscherning, 1972), which starts with the smallest terms in the summation and is stable
for computer applications.

7.3 Simulation set-up for the covariance analysis

Both in the local gravity field recovery covariance analysis and the deterministic
gravity field recovery study (Chapter 8), the "real-world" gravity field was simulated
by an existing high-degree and -order gravity field model: the OSUS6F gravity field
model complete to degree and order 360 (Rapp and Cruz, 1986). The resolution of this
model is 0.5°, whereas the resolution of the gravity field strived for is 1.0° for the
ARISTOTELES mission. A resolution of 1.0° is equivalent to a gravity field model
complete to degree and order 180. Therefore, to study the effect of gravity field terms
- above degree 180, a gravity field model has been chosen with a maximum degree deli-
berately above 180 to represent the "real-world". Of course, even gravity field terms
with a degree above 360 exist, but it will be shown that it can be expected that these
terms will have a minor effect in the recovery of gravity field terms with a degree
below 180.

It was assumed that the gravity anomalies and geoid undulations have to be
estimated on the surface of the Earth from a regular grid of satellite accelerations and
gradiometer measurements at the ARISTOTELES satellite altitude (Figure 7.2), i.e. the
measurements at satellite altitude have to be continued downward to gravity anomalies
and geoid undulations on the Earth’s surface. This downward continuation is an
instable process in which small errors in the measurements may lead to large errors in
the recovered gravity anomalies and geoid undulations (Tikhonov, 1963). This will be
shown in the covariance analysis described in this Chapter. The gravity anomaly or
geoid undulation to be recovered is positioned at the projection of the center of the
regular grid on the Earth’s surface. This surface was represented by a sphere with a
radius a, equal to 6,378,137 m. All measurements were assumed to be made at a satel-
lite altitude of 200 km. This will be the average altitude above the Earth’s surface of
the ARISTOTELES orbit (CIGAR, 1989). In addition, also an altitude of 160 will be
considered briefly to study the effect of the measurement altitude. More attention to
this will be paid in the next Chapter. The measurements were assumed to be distri-
buted in a regular grid with a resolution (grid maze, Figure 7.2) of 1.0 degree both in
the latitude and longitude directions, comparable to the resolution of the gravity field
strived for. The size of this grid could be be varied.

In the covariance analysis, it was assumed that the low-degree part of the gravity
field was subtracted from the measurements. Two cases were investigated. In the first
case (in the following referred to as case 1), it was assumed that the gravity field part
complete to degree and order 36 could be modeled exactly. In that case, this part of
the gravity field was subtracted from the "real-world" gravity field. This means that the
OSUBGF gravity field model from degree 37 complete to degree and order 360 was
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used to model the degree variances (equation (7.4)). In the second case (in the follow-
ing referred to as case 2), the low-degree part of the gravity field was modeled by the
GEM-T1 model: The differences between OSUS6F and GEM-T1 for low degrees and
orders may be considered to reflect the accuracy of current gravity field models for
low degrees and orders, and were used to simulate low-degree gravity field modeling
error. This was done to study the effect of low-degree terms in a local gravity field
recovery. In case 2, the OSU86F model, complete to degree and order 360, minus the
GEM-T1 model, complete to degree and order 36, was used to compute the degree
variances (equation (7.4)). In other words, in case 1, all measurements were assumed
to be caused by the OSUSGF gravity field above degree 36, and in case 2, by OSU86F
minus GEM-T1.

Accuracy estimates for gravity anomalies and geoid undulations were computed for
several combinations of measurements. Firstly, accuracy estimates were computed for
different combinations of satellite accelerations. Secondly, this was done for different
combinations of gradiometer measurements. Finally, accuracy estimates were computed
for combinations of satellite accelerations and gradiometer measurements, and a few
additional computations were performed to study the effect of the satellite altitude and
to study the effect of the gravity field omission error, which is caused by truncating
the “real-world" gravity field to degree 360.

As indicated in the previous Section, a distinction was made between point gravity
anomalies/geoid undulations and mean gravity anomalies/geoid undulations, where
mean gravity anomalies/geoid undulations were defined as the mean of a large number
of point gravity anomalies/geoid undulations, which were distributed regularly in a 1°
x 1° block, i.e. 1° in latitude and 1° in longitude, on the Earth’s surface. It was found
that a number of 25 was sufficient; taking the mean of more than 25 point values did
not change the mean values significantly. The selected block was located at 50° north-
e latitude, i.e. in the middle of the selected area (Figure 7.1). In all cases investi-
gated, both accuracy estimates for point values and mean values were computed. Accu-
racy estimates for mean gravity anomalies/geoid undulations for a 1° x 1° block area
were computed to filter out the effect of gravity field terms with a resolution smaller
than 1.0°,

In Table 7.1 power estimates of gravity anomalies, geoid undulations, satellite
accelerations and gradiometer measurements are listed for case 1 and case 2. It can be
seen that the power estimates for mean 1° x 1° gravity anomalies and geoid undula-
tions are smaller than these estimates for point gravity anomalies and geoid undula-
tions. As indicated above, this could be expected, because gravity field terms with a
resolution smaller than 1.0° were filtered out. By analyzing Table 7.1, it is also con-
cluded that the low-degree gravity field modeling errors have a significant effect on the
power of the geoid undulations: the power estimate increases from 1.56 m (case 1) to
2.36 m (case 2) for point geoid undulations. The power estimate for point gravity
anomalies only increases from 19.0 mgal to 19.9 mgal. The latter can be explained by
considering the degree variances for gravity anomalies (oz(Agl)) and geoid undulations
(oz(Ah )). These degree variances are obtained by combining equations (1.6)-(1.7) and
€7.3)-(7.5). The degree variances read, if the Earth is approximated by a sphere with
radius a ,:
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Table 7.1 Power estimates for gravity anomalies, geoid undulations, satellite accelera-
tions, and gradiometer measurements. The power estimates for the satellite accelera-
tions and gradiometer measurements hold for a satellite altitude of 200 km.

power
case 1 case2

point anomalies (mgal) 19.0 199
mean 1° x 1° anomalies (mgal) 16.3 17.4
geoid undulations (m) 1.56 2.36
mean 1° x 1° undulations (m) 1.49 2.31
radial accelerations (mgal) 2.11 3.52
latitudinal/

longitudinal acc. (mgal) 1.48 2.44
r,, (EU) 0.18 0.21
I‘zy (EU) 0.12 0.15
I‘yy (EU) 0.12 0.14

case 1: OSUSGF above degree 36;
case 2: OSU86F minus GEM-T1.



2
o%(Ag)) = [L_zl‘)&] k; (7.8a)

a.

cX(Aky) = a,%k; . (7.8b)

The most important difference between the gravity anomaly and geoid undulation
degree variances is the term (I-/ )2, which indicates that relatively a greater part of the
gravity anomaly spectrum is concentrated at higher degrees compared to the geoid
undulation spectrum. Therefore, the inclusion of low-degree gravity field modeling
errors causes relatively a greater increase of the power estimate of the geoid undula-
tions. Finally, it can be concluded from Table 7.1 that the power of measurements with
all components in the radial accelerations, respectively radial satellite accelerations and
the gravity tensor component I, . is relatively high, about 40-45 % higher than the
power of respectively satellite accelerations and gradiometer measurements with com-
ponents in non-radial directions.

74 Accuracy estimates for gravity field recovery from accelerations

Accuracy estimates for gravity anomalies and geoid undulations were computed
assuming grids of satellite accelerations at the mean ARISTOTELES satellite altitude.
The mean ARISTOTELES satellite altitude is defined as the average altitude of the
ARISTOTELES satellite above the Earth’s surface for the selected geographical area.
As indicated in Section 7.3 two cases have been investigated. In the first case (case 1),
it was assumed that the gravity field can be modeled exactly to degree and order 36. In
the second case (case 2), low-degree gravity field modeling errors were introduced by
taking the differences between the OSU8S6F and GEM-T1 gravity field models. For
both cases, two different combinations of satellite accelerations were studied. The first
combination consisted of radial satellite accelerations alone, and in the second combi-
nation, satellite accelerations in the West-East and Nort-South directions were added.

In Chapter 8, it will be shown that ARISTOTELES satellite accelerations can be
computed from very precise GPS range measurements with an accuracy of about 1.0
mgal and a resolution of 1.0° in latitude and longitude. Therefore, accuracy estimates
of gravity anomalies and geoid undulations, that have to be determined from these
accelerations, were computed for the case that the satellite accelerations have an accu-
racy of 1.0 mgal. In that case, the satellite accelerations were assumed to be corrupted
with uncorrelated measurement errors with a standard deviation of 1.0 mgal and an
expectancy of 0.0 mgal. This case was compared with the "ideal" case, in which the
satellite accelerations can be determined exactly, i.e. with an accuracy of 0.0 mgal.

The accuracy estimates for gravity anomalies and geoid undulations are listed in the
Tables 7.2 and 7.3. As to be expected, the accuracy of recovered gravity anomalies
and geoid undulations improves if the grid size increases, but it can also be concluded
that it is not necessary to keep expanding this grid size. Taking more than 49 grid
positions (i.e. a 7° x 7° area at satellite altitude) does not decrease the value of the
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Table 7.2 Gravity anomaly recovery from satellite accelerations.

grid size case  noise (mgal) accuracy (mgal)

°x ° radial direction 3 directions
1x1 1 0.0/1.0 144/ 153 144 /153
1 x 1 mean 1 0.0/1.0 11.3/124 11.3/124
3x3 1 0.0/1.0 9.1/149 7.4/ 14.1
3 x 3 mean 1 0.0/1.0 57/12.0 42/11.1
5x5 1 0.0/1.0 6.6/ 14.1 3.5/133
5 x 5 mean 1 0.0/1.0 35/11.1 1.4/10.2
7x7 1 0.0/1.0 56/138 2.0/13.1
7 x 7 mean 1 0.0/1.0 2.5/10.7 0.6/10.0
9x9 1 0.0/1.0 5.1/13.7 1.2/13.1
1x1 2 0.0/1.0 15.8/ 16.1 15.8/16.1
1 x 1 mean 2 0.0/1.0 129/133 129 /133
3x3 2 0.0/1.0 92/15.6 7.8/14.2
3 x 3 mean 2 0.0/1.0 597127 46/11.1
5x5 2 0.0/1.0 6.8/14.1 39/134
5 x 5 mean 2 0.0/1.0 3.6/11.1 1.7/103
7x17 2 0.0/1.0 56/138 23/13.1
7 x 7 mean 2 0.0/1.0 2.6/10.7 0.7 /100

mean: mean of 25 point values in a 1° x 1° block.
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Table 7.3 Geoid undulation recovery from satellite accelerations.

grid size case  noise (mgal) accuracy (cm)

°x° radial direction 3 directions
1x1 1 0.0/1.0 56/ 84 56 / 84
1 x 1 mean 1 0.0/1.0 46 /76 46 / 76
3x3 1 0.0/1.0 277172 19/ 64
3 x 3 mean 1 0.0/1.0 18 /63 11/55
5x5 1 0.0/1.0 16 / 68 71759
5 x 5 mean 1 0.0/1.0 9/59 3/50
7x7 1 0.0/1.0 13/65 4 /58
7 x 7 mean 1 0.0/1.0 6/56 1/49
9x9 1 0.0/1.0 12/ 65 3/58
1x1 1 0.0/1.0 63 /89 63/ 89
1 x 1 mean 1 0.0/1.0 54/ 82 54 / 82
3x3 1 0.0/1.0 45 /177 23/73
3 x 3 mean 1 0.0/1.0 39/68 18/ 64
5x5 1 0.0/1.0 28/175 10/ 69
5 x 5 mean 1 0.0/1.0 25/ 66 8/60
7x7 1 0.0/1.0 26/71 6/63
7 x 7 mean 1 0.0/1.0 23/63 5/55
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accuracy estimates significantly. In all cases, the values of the accuracy estimates for
mean gravity anomalies and geoid undulations are smaller than these values for point
gravity anomalies and geoid undulations. As indicated before, this can be explained by
the fact that by taking the mean of a large number (i.c. 25) of point values, high-
frequency errors, in this case errors with wavelengths smaller than 2°, i.e. with a reso-
lution of 1°, are filtered out. With faultless accelerations in 3 directions, mean 1° x 1°
gravity anomalies and geoid undulations can be recovered with an accuracy of 0.6
mgal (Table 7.2) and 1 cm (Table 7.3) for case 1, respectively. For case 2, these
values are 0.7 mgal and 5 cm, respectively. From the Tables 7.2 and 7.3, it can be
seen that the inclusion of low-degree gravity field modeling errors (case 2) is not
expected to be a severe problem: the accuracy estimates for both case 1 and case 2 are
almost identical. This is especially true for a grid size equal to 7° x 7°: the accuracy
estimates for point gravity anomalies and geoid anomalies, which are to be determined
from faultless accelerations in three directions, are 2.0 mgal and 4 cm for case 1, and
2.3 mgal and 6 cm for case 2. The effect of the inclusion of low-degree gravity field
modeling errors on the accuracy estimates of the gravity anomalies is relatively smaller
than on the accuracy estimates of the geoid undulations. As indicated before, this may
be explained by the fact that relatively a greater part of the gravity anomaly spectrum
is concentrated at the higher degrees compared to the spectrum of geoid undulations
(equations (7.8a)-(7.8b)). With an accuracy of 1.0 mgal of the accelerations, which are
expected to be recovered from GPS measurements to ARISTOTELES (Chapter 8), the
ARISTOTELES mission objectives (5 mgal and 10 cm accuracy for mean 1° x 1°
gravity anomalies and geoid undulations, respectively) can not be reached. With an
accuracy of 1.0 mgal of accelerations in 3 directions and a grid size of 7° x 7°, the
accuracy estimates are 10.0 mgal (case 1 and case 2) for mean 1° x 1° gravity
anomalies, and 49 cm (case 1) and 55 cm (case 2) for mean 1° x 1° geoid undulations,
respectively. For point values these estimates were 13.1 mgal (case 1 and case 2) and
58 cm (case 1) and 63 cm (case 2). Thus, a noise of 1.0 mgal on the satellite accelera-
tions is expected to cause errors in recovered gravity anomalies that are an order of
magnitude larger. This phenomenon is characteristic for the concept of downward con-
tinuation, in which small errors of measurements, which are made at satellite altitude,
may lead to large errors in the recovered gravity field on the Earth’s surface (Tikho-
nov, 1963). The values of the accuracy estimates are significantly smaller than the
power estimates for point and mean gravity anomalies (Table 7.1), respectively
19.0/19.9 mgal (case 1/case 2) and 16.3/17.4 mgal (case 1/case 2), and the power esti-
mates for point and mean geoid undulations, respectively 156/149 cm mgal (case
1/case 2) and 236/231 cm (case 1l/case 2). This indicates that a large part of the (resi-
dual) gravity field can be recovered.

The estimates obtained by assuming the availability of accelerations in 3 directions
are comparable to the accuracy estimates for which it was assumed that only radial
accelerations are available, for the case where the noise of the accelerations is 1.0
mgal. For example, for case 2 and a grid size of 7° x 7°, the accuracy estimates of
mean 1° x 1° gravity anomalies and geoid undulations are 10.0 mgal and 55 cm, if
accelerations in 3 directions are available, and 10.7 mgal and 63 cm, if only radial
accelerations are available. This can be explained by considering the power estimates



in Table 7.1 for radial accelerations and accelerations in directions perpendicular to the
radial. As indicated before, the power estimates of radial accelerations are about 40-45
% higher (for case 1 and case 2). This means that the power of the radial accelerations
is about equal to the power of the combination of accelerations in the West-East and
North-South directions.

7.5 Accuracy estimates for gravity field recovery from gradiometry

The same configurations as used in Section 7.4 were used for the estimation of
accuracy estimates for gravity anomalies and geoid undulations from satellite gra-
diometry. These estimates are listed in the Tables 7.4 and 7.5. With faultless observa-
tions, the accuracy estimates for mean 1° x 1° gravity anomalies and geoid undulations
for case 1 are respectively 0.8 mgal and 3 cm, for a grid size equal to 7° x 7° and
when using all three components I, T, and I' . For case 2 these estimates are equal
to 0.8 mgal and 39 cm, respccnvely For pom{ygravny anomalies and geoid undula-
tions, these estimates are respectively 2.0 mgal and 5 cm for case 1, and 2.1 mgal and
40 cm for case 2. By comparing the results of case 1 and case 2, it can be concluded
that low-degree modeling errors have a small effect on the recovery of gravity
anomalies, but a significant effect on the recovery of geoid undulations. This can be
explained by the fact that a relatively great part of the signal content of gradiometer
measurements is concentrated at the high degrees (this will be shown in Chapter 9 in
the global gravity field recovery error analyses), even in comparison with satellite
accelerations. Therefore, a relatively large error will be made in the low-degree part of
geoid undulations, that are recovered from gradiometer measurements. However, in the
preceding Section, it was shown that this problem can be reduced by using satellite
accelerations in the estimation process. The concept of combining satellite accelera-
tions and gradiometer measurements in the local gravity field covariance analysis will
be discussed in the next Section.

With the projected accuracy of 0.01 EU of gradiometer measurements for com-
ponents in the sensitive directions (perpendicular to the ARISTOTELES flight direc-
tion), the mission objectives can almost be reached for case 1: mean 1° x 1° anomalies
and undulations can be recovered from all three gradiometer components, with an
estimated accuracy of respectively 4.4 mgal and 14 cm. For point gravity anomalies
and geoid undulations, these estimates are 7.6 mgal and 22 cm. If only I, is used,
these values are respectively 8.0 mgal and 24 cm for case 1. If also low-degrcc gravity
field modeling errors are included (case 2), the mission objectives can only partly be
reached: for mean 1° x 1° gravity anomalies, the predicted accuracy is 4.5 mgal, but
for mean 1° x 1° geoid undulations, the predicted accuracy is 52 cm. However, as
indicated before, the larger part of the geoid undulation error will be concentrated at
the low degrees. It will be shown that the low-degree gravity field modeling errors will
be reduced significantly and will become much smaller than the differences between
OSUB6F and GEM-T1, if future GPS observations to ARISTOTELES are used to
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Table 7.4 Gravity anomaly recovery from | I‘zy, I“yy.

grid size case noise (0.01 EU) accuracy (mgal)

°x ° r, 3 components
1x1 1 0.0/1.0 12.0/12.1 12.0/12.1
1 x 1 mean 1 0.0/1.0 8.7/8.8 8.7/88
3x3 1 0.0/1.0 1.719.1 52/86
3 x 3 mean 1 0.0/1.0 44/5.8 26/53
5x5 1 0.0/1.0 58/84 30/7.8
5 x 5 mean 1 0.0/1.0 27/53 1.3/4.6
7x7 1 0.0/1.0 5.1/80 20/17.6
7 x 7 mean 1 0.0/1.0 2.1/49 08/44
1x1 2 0.0/1.0 124 /124 124/ 124
Ix1mean 2 0.0/1.0 9.1/9.1 9.1/9.1
3x3 2 0.0/1.0 79/9.3 54/87
3 x 3 mean 2 0.0/1.0 46/6.0 28/54
5x5 2 0.0/1.0 58/84 31/178
5 x 5 mean 2 0.0/1.0 27/54 14/4.6
7x7 2 0.0/1.0 5.1/8.0 21/176
7 x 7 mean 2 0.0/1.0 22/49 0.8/45




Table 7.5 Geoid undulation recovery from

I

22’

r .,.r .
zy’ " yy

grid size case noise (0.01 EU) accuracy (cm)
°x° r,, 3 components
1x1 1 0.0/1.0 33/34 33/34
1 x 1 mean 1 0.0/1.0 24 /25 24 /25
3x3 1 0.0/1.0 26/32 15729
3 x 3 mean 1 0.0/1.0 19/24 10/ 21
5x5 1 0.0/1.0 14 /27 7/22
5 X 5 mean 1 0.0/1.0 7/20 3/15
7x17 1 0.0/1.0 13/24 5/22
7 x 7 mean 1 0.0/1.0 7/16 3/14
1x1 1 0.0/1.0 97197 97 /97
1 x 1 mean 1 0.0/1.0 95 /96 95/96
3x3 1 0.0/1.0 90 /93 69 / 81
3 x 3 mean 1 0.0/1.0 87 /90 68 /79
5x5 1 0.0/1.0 71 /78 50/63
5 X 5 mean 1 0.0/1.0 71/76 50/ 62
7x7 1 0.0/1.0 64 / 68 40/ 55
7 x 7 mean 1 0.0/1.0 63 /65 39 /52
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determine this low-degree gravity field part (Chapters 8 and 9).

With only the radial gradiometer component I"_, it is expected that already the grav-
ity field can be recovered on a local basis with high accuracy: the inclusion of the
components I'__ and I'__ leads to comparable accuracy estimates for the 0.01 EU noise
case. Again, tﬁs can B’g explained by considering the power estimates for these meas-
urements (Table 7.1). The component I', has an estimated power of 0.18/0.21 EU
(case 1/case 2) compared to an estimated power of 0.12-0.12/0.14-0.15 EU (case
1/case 2) for the other two components. Finally, it must be noted that the values of the
accuracy estimates for mean gravity anomalies and geoid undulations are smaller than
these values for point gravity anomalies and geoid undulations for all cases, which is
in agreement with the discussions of Section 7.4.

7.6 Accuracy estimates for gravity field recovery from combinations of
accelerations and gradiometry

It is also possible to compute accuracy estimates for gravity anomalies and geoid
undulations from combinations of accelerations and gradiometer measurements. Accu-
racy estimates were computed for the combination of radial accelerations and I, and
the combination of accelerations in three directions and all three gradiometer com-
ponents. These computations led to the values listed in the Tables 7.6 and 7.7.

With faultless observations and a grid size of only 3° x 3° and using all measure-
ments (Table 7.7), the accuracy estimates for mean 1° x 1° gravity anomalies and
geoid undulations are respectively 1.0 mgal and 2 cm, for case 1. For case 2, these
values are 1.1 mgal and 9 cm. For point values these estimates are 2.8 mgal and 5 cm
for case 1 and 2.9 mgal and 10 cm for case 2. With the projected accuracy of 0.01 EU
of I, and 1.0 mgal of radial satellite accelerations, mean 1° x 1° anomalies and undu-
lations can be determined with an accuracy of respectively 4.9/4.9 mgal (case 1/case 2)
and 16/26 cm (case 1/case 2), respectively (Table 7.6). The results indicate that in the
computations described in this Section, the inclusion of residual ARISTOTELES
accelerations only yield marginally improved gravity field recovery covariance results
for the high-degree part (case 1) compared to the computations where only gradiometer
measurements are available (compare Tables 7.4 and 7.5 with Tables 7.6 and 7.7), but
the inclusion of these measurements will be necessary to overcome the problem of
low-degree gravity field modeling errors (included in case 2). '

7.7 Additional tests

A few additional gravity field recovery covariance analysis computations were per-
formed to answer the question of the effect of the satellite altitude and the question of



Table 7.6 Gravity field recovery from I, and radial accelerations.

grid size noise I'" noise radial  accuracy anomalies  accuracy geoid
°x° (0.01 EU) acc. (mgal) (mgal) (mgal) (cm) (cm)
case 1 case 2 case 1 case 2
1x1 0 0 10.2 11.7 33 58
1 x 1 mean 0 0 6.9 8.3 24 50
1x1 1 1 117 - 119 - 34 72
1 x 1 mean 1 1 84 8.6 25 67
7x7 0 0 20 2.5 4 8
7 x 7 mean 0 0 0.6 0.7 1 S
7x7 1 1 8.0 8.0 24 31
7 x 7 mean 1 1 49 49 16 26

Table 7.7 Gravity field recovery from accelerations and L, I‘zy, r -

grid size noise grad. noise acc. accuracy anomalies  accuracy geoid
°x° (0.01 EU)  acc. (mgal) (mgal) (mgal) (cm) (cm)
case 1 case 2 case ] case2
1x1 0 0 10.2 116 33 58
1 x 1 mean 0 0 6.9 - 83 23 50
1x1 1 1 11.7 11.9 34 72
1 x 1 mean 1 1 84 8.6 25 67
3x3 0 0 2.8 29 5 10
3 x 3 mean 0 0 1.0 1.1 2 9
3x3 1 1 8.5 8.6 27 39
3 x 3 mean 1 1 5.2 5.3 20 35




the omission error, caused by considering that the gravity field of the Earth can be
represented by a gravity field model complete to degree and order 360. Accuracy esti-
mates were computed for gravity anomaly and geoid undulation recovery from satellite
accelerations and gradiometer measurements at an altitude of 160 km, for the case
were low-degree gravity field modeling errors were included (case 2). These estimates
are listed in Table 7.8. Comparing these estimates with the estimates listed in the
Tables 7.2-7.5, which hold for an altitude of 200 km, it is concluded that a satellite
orbit must be selected with an altitude as low as possible. For example, mean 1° x 1°
gravity anomalies and geoid undulations can be recovered from accelerations in 3
directions, which are made at 160 km altitude and which have an accuracy of 1.0
mgal, with an estimated accuracy of 8.4 mgal and 45 cm (Table 7.8), compared to
10.3 mgal (Table 7.2) and 60 cm (Table 7.3) for a satellite altitude of 200 km, if the
grid size is 5° x 5° If mean 1° x 1° gravity anomalies are determined from the 3 gra-
diometer components, which have an accuracy of 0.01 EU, these estimates are equal to
2.9 mgal and 56 cm (Table 7.8) compared to 4.6 mgal (Table 7.4) and 62 cm (Table
7.5). '

The omission error due to the truncation of the "real-world" gravity field to degree
and order 360, was estimated by using the Rapp’79 anomaly degree variance model
(equation (7.6)) to represent the "real-world". Firstly, accuracy estimates for gravity
anomaly and geoid undulation recovery from radial satellite accelerations were com-
puted by assuming that the "real-world" could be represented by this model from
degree 37 to 360 (case A). Secondly, these estimates were computed by assuming that
the "real-world" could be represented by the Rapp’79 model from degree 37 to infinity
(case B, in this case the maximum degree was taken equal to 5000, taking a higher
value did not alter the results). The accuracy estimates are listed in Table 7.9. The
values listed in this Table show that the gravity field part above degree 360 has a
significant effect on the accuracy estimates for point gravity anomalies and point geoid
undulations. For faultless radial satellite accelerations, the accuracy estimates for these
point gravity anomalies and geoid undulations change from 15.4 mgal (case A) to 32.0
mgal (case B), and from 35 cm (case A) to 46 cm (case B), respectively. However, for
mean 1° x 1° gravity anomalies and geoid undulations, the accuracy estimates are
almost the same for case A and case B. For faultless radial satellite accelerations, the
accuracy estimates for mean 1° x 1° gravity anomalies and geoid undulations are 7.1
mgal (case A) and 8.2 mgal (case B), and 16 cm (case A) and 17 cm (case B), respec-
tively. If the noise of the radial accelerations is equal to 1.0 mgal, the differences
between accuracy estimates for mean 1° x 1° gravity anomalies and geoid undulations
are even smaller. As mentioned before, the resolution strived for of the gravity field,
which has to be determined from ARISTOTELES observations, is equal to 1.0°.
Therefore, the choice for a gravity field model complete to degree and order 360 to
represent the "real-world" (OSUS8GF) is justified by this analysis.
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Table 7.8 Gravity field recovery from satellite accelerations and gradiometer
measurements. The accuracy estimates hold for a satellite altitude of 160 km
and low-degree gravity field modeling errors are included.

grid size case noise  accuracy Ag  accuracy Ah
[} o]

X (mgal) (mgal) (cm)
5x5 (a) 0.0/1.0 1.8/11.6 71752
Sx5mean (a) 0.0/1.0 05/84 7 /45
5x5 (b) 0.0/1.0 1.8/5.8 46 / 57
5 x 5 mean (b) 0.0/1.0 0.7/29 46 / 56

case (a): from accelerations in three directions;

case (b): from I‘ZZ; I‘zy, and l'yy.

Table 7.9 Gravity field recovery from radial accelerations. The accuracy estimates hold
for a satellite altitude of 200 km and are based on the Rapp’79 anomaly degree vari-
ance model.

grid size case  noise  accuracy Ag  accuracy Ah
[+] o]

X (mgal) (mgal) (cm)
5x5 A 00/10 154/235 35/88
5x5 B 0.0/1.0 32.0/36.7 46 /93

5 x 5 mean A 0.0/1.0 7.1/ 157 16 /70
5 x 5 mean B 0.0/1.0 82/16.3 17 /171

case A: Rapp’79 from degree 37 to 360.
case B: Rapp’79 above degree 36.

-101-



7.8 Conclusions

It has been shown that with satellite accelerations with an accuracy of 1.0 mgal, the
ARISTOTELES gravity mission objectives can not be reached, but that an important
part of the gravity field above degree 36 can be recovered, and that low-degree gravity
field modeling errors can be reduced. With gradiometer measurements with an accu-
racy of 0.01 EU, the mission objectives can partly be reached. For the gravity field
part above degree 36, mean 1° x 1° gravity anomalies and geoid undulations can be
recovered with an accuracy of about 5 mgal and 10 cm, respectively. However,
significant errors in the low-degree gravity field recovery will be made. A great part of
this problem can be overcome by combining satellite accelerations and gradiometer
measurements. This combination has been investigated and has shown to be very
powerful.
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8. Deterministic study to a local gravity field recovery from
satellite-to-satellite tracking

8.1 Introduction

-

In the previous Chapter, a covariance analysis was performed to investigate the pos-
sibility of a local gravity field recovery from ARISTOTELES satellite accelerations
and gradiometer measurements. It was indicated, that the GPS range measurements
were assumed to contain the information from which accelerations of the ARISTO-
TELES satellite can be derived. Already extensive deterministic studies to a local grav-
ity field recovery from gradiometer measurements have been performed (Arabelos and
Tscherning, 1990; CIGAR, 1990). In (Arabelos and Tscherning, 1990; CIGAR, 1990),
simulations are described in which gravity gradient measurements along a simulated
ARISTOTELES orbit were continued downward by least-squares collocation to gravity -
anomalies and geoid undulations. These gravity anomalies and geoid undulations were
compared with a priori values computed with the same gravity field model used to
compute the ARISTOTELES orbit and gradiometer measurements. This model was the
OSUS8G6F gravity field model, which was also used in the analysis described in Chapter
7. The results presented in (Arabelos and Tscherning, 1990; CIGAR, 1990) were in
good agreement with the results of the covariance analysis described in the previous
Chapter. Therefore, the deterministic study, which is described in this Chapter, concen-
trated on a local gravity field recovery from GPS satellite-to-satellite tracking measure-
ments to ARISTOTELES (Visser et al., 1990; Visser et al., 1991).

As indicated in the previous Chapter, one of the problems encountered is the prob-
lem of downward continuation: the mapping of the observed accelerations at the ARIS-
TOTELES altitude to the Earth’s surface (Tikhonov, 1963). This will be the first prob-
lem investigated in this study. Two techniques have been considered, both minimum-
norm techniques:

e Using the equations as derived by Stokes (Heiskanen and Moritz, 1967), i.e. the
observed ARISTOTELES accelerations are modeled by gravity anomalies at the
Earth’s surface using these equations, and the so obtained set of measurement equa-
tions is solved by the method of least-squares;

o Least-squares collocation (Moritz, 1980), this concept was introduced in the preced-
ing Chapter. In this Chapter, this concept will be used to recover gravity anomalies
and geoid undulations from simulated GPS measurements to ARISTOTELES.

Although the downward continuation of ARISTOTELES accelerations is actually the
last step in the gravity field recovery from GPS SST measurements to ARISTOTELES,
this step was investigated first. In other words, first local gravity field recovery experi-
ments were performed, in which gravity anomalies and geoid undulations were
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recovered from simulated ARISTOTELES accelerations. This approach prevented
unnecessary, and costly, simulations of GPS SST measurements and ARISTOTELES
orbits. These results gave, together with the results of the local gravity field recovery
covariance analysis, a first indication of the accuracy of the GPS SST measurements to
the ARISTOTELES satellite required to recover gravity anomalies/geoid undulations
with sufficient precision. As indicated before, the mission objective is to recover mean
1° x 1° gravity anomalies with an accuracy of 5 mgal and geoid undulations with an
accuracy of 10 cm. .

The investigation of the downward continuation techniques was followed by the
computation of GPS and ARISTOTELES orbits using available high-degree and -order
spherical harmonic expansions of the Earth’s gravity field (although truncated for the
high-altitude GPS satellites) to simulate GPS SST range measurements. The ARISTO-
TELES accelerations were recovered from these measurements along the ARISTO-
TELES orbit. Only those parts of the ARISTOTELES orbits that passed over a res-
tricted geographical area were selected (Figure 7.1), and the accelerations along these
tracks were transformed to a regular grid suitable for downward continuation. This
implied the investigation of gridding techniques, i.e. the transformation of an irregular
grid of observed ARISTOTELES accelerations to a regular grid of accelerations at a
mean ARISTOTELES satellite altitude. This gridding was performed by the method of
least-squares collocation.

The effect of two error sources affecting the GPS SST measurements on the gravity
anomaly/geoid undulation recovery was investigated. These are uncorrelated measure-
ment noise with a normal distribution and the first-order ionospheric effect. This
Chapter will be concluded by a discussion of the results and some recommendations.

8.2 Minimum-norm techniques

The purpose of this Section is to establish the measurement equations and solution
techniques for downward continuation of observed accelerations at a specified altitude
to gravity anomalies and geoid undulations on the surface of the Earth. Two
minimum-norm techniques will be discussed:

e least-squares solution of measurement equations using the equations ag derived by

Stokes (Heiskanen and Moritz, 1967);

o the method of least-squares collocation (Rummel et al., 1976).

8.2.1 Minimum-norm technique using the equations of Stokes

The accelerations of a satellite orbiting in a circular orbit in the radial, East-West
(longitude) and North-South (latitude) direction, can be deduced from gravity
anomalies on the Earth’s surface (which is represented by a sphere with radius a e)
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using the equations derived by Stokes (Heiskanen and Moritz, 1967):

a
oy — dS (r ’ )
r0) = = LY ——‘l’—ar ds (8.1a)
NS (w)_ = [fas M%{-dg (8.1b)
7 — a. aS(r ¥) a\I/
EW (Lo)= 4xrcosd HAg oy axds 8.1c)
2 2 !
st = 2002 2 s ) g
r r
1
l ={r2+ae2—2raecosw}2 8.1e)
cosy = singsing’+cosdpcosd’cos(A-A") 8.19)

where S, (05/0r) and (9S/0y) are the Stokes kernel functions; 7, NS and EW denote the
satellite accelerations in the radial, latitude and longitude directions, respectively; r, A
and ¢ denote the geocentrical coordinates of the satellite; and A’ and ¢’ denote the
geocentrical position of the gravity anomaly Ag on the Earth’s surface.

In principle, the integration in the preceding formulae should encompass the surface
of the entire Earth. However, in this study the observed satellite accelerations were
considered to be residual satellite accelerations, i.e. they were formed after subtracting
a low-degree reference gravity field model. Thus, the observed accelerations were con-
sidered to be caused by the high-frequency part of the gravity field, and possibly by
small errors in the low-degree part. Therefore, it was expected that with the anomalies
in the selected geographical area, it is possible to model an acceleration above this
area with satisfactory accuracy. This is also justified by the quick damping of the
Stokes kernel functions. The latter implies that the perturbations on a satellite orbit that
are caused by a gravity anomaly, decrease very rapidly with increasing distance
between that anomaly and the satellite. Because mean 1° x 1° gravity anomalies were
to be determined, the integration in the above formulae transforms to a summation of
block anomalies:

r(\¢) = Z:—;Ag (x',¢’)§S—(a’7""lAs (8.2a)
NS (h9) = ):%Ag(wﬁsfw""—%m (8.2)
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EW(\0) = Zﬁ;z&g (X’,¢')as—g';ﬂ%‘{—m (8.2c)

where As denotes a 1° x 1° block area. These formulae form the observation equations
for the gravity anomalies in a selected local area, and these equations are solved by the
method of least-squares.

Unfortunately, as mentioned before, it can be shown that this downward continua-
tion process is an ill-posed problem, i.e. small fluctuations in the accelerations at satel-
lite altitude may lead to large fluctuations in recovered anomalies (Tikhonov, 1963).
This is reflected in the least-squares solution, which is based on an ill-conditioned nor-
mal matrix, leading to high correlations between recovered adjacent gravity anomalies.
A possibility to overcome this problem is the method of regularization. The principle
of regularization is equal to the addition of a priori information in the form of meas-
urements with expectancy zero. The method of regularization requires the minimization
of the following formula (compare with the minimum-variance solution with a priori
information, as expressed in equation (5.12)):

NAx-R I12+oxT v, "1x (8.3)

where x denotes the vector of unknowns (in this case gravity anomalies), R the meas-
urements (satellite accelerations), o the regularization parameter, and VA an a priori
covariance matrix for the unknowns. The most rudimentary form of regularization is
the addition of a diagonal matrix V, reflecting the variances of the parameters to be
determined (gravity anomalies) to the left-hand side of the normal equations (see also:
Chapter 5). The solution of the preceding equation is:

x = ATA+av, ") 1ATR. (8.4)

The second minimum-norm technique that will be used in the downward continua-
tion of satellite accelerations, is the concept of least-squares collocation. This concept
was introduced in Chapter 7 (equation (7.1)).

8.2.2 Comparison of the two minimum-norm techniques

Important characteristics of the method using the equations of Stokes, are:

® truncation errors arise due to the limited geographical area used in the fitting of satel-
lite accelerations;

e errors arise due to the block averaging in the integration;

¢ instability of the normal equations (ill-posed problem);

o the size of the normal equations is equal to the number of gravity anomalies to be
solved for;
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e the matrix is full.

The first characteristic is not considered to be a severe problem, especially for the
higher-frequency part of a spherical harmonic expansion of the Earth’s gravity field.
Because high-frequency gravity field induced signals attenuate very quickly with
increasing altitude, also the second characteristic is not considered to be a problem.
Studies have indicated (Smith et al., 1988) that the finest resolution of a gravity field
that can be solved for is equal to about half the altitude of the satellite. In this thesis,
this altitude is of the order of 200 km. Thus, the finest resolution achievable is equal to
100 km. This is equal to 1° at the equator and compares to the 1° resolution in longi-
tude and latitude of 1° x 1° gravity anomalies to be solved for. Regularization is a tool
to overcome the instability of the normal equations. The problem is to find optimal
regularization parameters o, but several studies (DGFI-TUM-TH Delft, 1987) have
shown, and also this thesis will show, that the solution of the normal equations is not
very sensitive to a change of these parameters around the optimal value for o. The last
two characteristics have as a consequence that when a larger area of block anomalies
is taken, this leads to a quadratic increase in the volume of computations to set up and
solve the normal equations.

A few characteristics of the method of least-squares collocation are:

e a priori information can be implemented in the solution in the form of degree vari-
ance models of the gravity field;

e each gravity anomaly/geoid undulation can be determined separately;

e the possibility exists to obtain accuracy estimates, which was shown extensively in

Chapter 7.

Possible degree variance models are the already mentioned Rapp ’79 anomaly
degree variance model (equation (7.6)), or current spherical harmonic expansion
models of the Earth’s gravity field, like the OSU8SGF gravity field model. A quick
method to compute covariance functions up to high-degree terms is Horner’s procedure
(Section 7.2). With this method, a grid of covariance functions for the gravity field
induced signals to be investigated was computed. The grid had such a resolution (0.01°
in spherical distance, approximately equal to 1 km on the Earth’s surface) that linear
interpolation can be assumed to be of sufficient accuracy. When the method of colloca-
tion was applied in this thesis, each gravity anomaly/geoid undulation, using the
method of collocation was estimated from a small area of observed satellite accelera-
tions above that particular gravity anomaly/geoid undulation (see also: Figure 7.2). It is
therefore easy to expand to a larger area because of the separate recovery of each
gravity anomaly/geoid undulation.

The comparison of both methods leads to the conclusion that the method of colloca-
tion offers more possibilities. Accuracy estimates can be easily obtained (Chapter 7)
and the geoid undulation can be recovered directly. Because of the instability of the
first method and the necessity to perform regularization, it is difficult to interpret and
calibrate the normal equations for an accuracy estimate of the recovered mean 1° x 1°
gravity anomalies. In principle, it is possible to compute geoid undulations in a second
step from recovered gravity anomalies using the equations of Stokes. However, this
method leads to an accumulation of errors. Errors arise during the recovery of gravity
anomalies to which are added the integration and truncation errors in the integration of
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these gravity anomalies to obtain geoid undulations. A disadvantage of the method of
least-squares collocation is that an extra effort is required to obtain averaged block
values of gravity anomalies/geoid undulations. Mean 1° x 1° gravity anomalies/geoid
undulations are determined by recovering for each 1° x 1° block a grid of point gravity
anomalies/undulations and by taking the average of this grid.

8.3 Simulation set-up of gravity anomaly/geoid undulation
recovery from acceleration data at a certain satellite altitude

This Section will give a short description of the following subjects:

e computation of gravity field derived quantities, e.g. gravity anomalies, using high-
degree and -order spherical harmonic expansions;

e simulation set-up for the method using the equations of Stokes;

e simulation set-up for the least-squares collocation method.

8.3.1 Computation of high-degree and -order spherical harmonics

The expected resolution of the gravity field to be solved for from the GPS SST data
is 1° both in latitude and longitude, which is equivalent to a spherical harmonic expan-
sion to degree and order 180. In the simulations described in this Chapter, use was
made of a spherical expansion of the Earth’s gravity field up to degree and order 360,
the already mentioned OSUSGF gravity field model. It was shown in the local gravity
field recovery covariance analysis that in a gravity field recovery from satellite
accelerations, the part of the gravity field above degree 360 is expected to be aliased
only for a very small part in gravity field terms below degree 180. Therefore, the
results in this thesis for mean 1° x 1° gravity anomalies are considered to give a realis-
tic estimate of the possibilities of the ARISTOTELES mission to recover the gravity
field with a resolution of 1.0°,

The choice for a gravity field model complete to degree and order 360, requires the
computation of spherical harmonics up to this degree and order 360. To prevent
numerical problems due to computer round-off (VAX 3100 work station/CONVEX
240), use was made of normalized recurrence relations of the Legendre polynomials
(Schrama, 1986b). It must be noted that also Horner’s procedure can be applied. In
that case it is not necessary to determine the spherical harmonics explicitly (Tscheming
et al., 1983). Appropriate software was provided by the Faculty of Geodesy, Delft
University of Technology, and this software is capable of manipulating high-degree
and -order spherical harmonics. It has been modified to adapt it for the investigations
described in this study. This software is capable of computing geoid undulations, grav-
ity anomalies and accelerations at an arbitrary geographical location, either given in
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geocentric or geodetic coordinates.

8.3.2 Simulation set-up for downward continuation using Stokes’ equations

The starting point of the simulations was a rectangular grid of accelerations in the
radial, East-West and North-South directions at a specific altitude. These accelerations
were computed with the mentioned OSUSG6F gravity field model, complete to degree
and order 360. The selected geographical test area extends from 0° to 20° in longitude
and from 40° to 60° in latitude (covering a great part of Western-Europe, Figure 7.1).
Because the main interest is in the high-frequency part of the gravity field, a low-
degree and -order spherical expansion was subtracted from the full OSUS6F gravity
field. The same approach was followed in the local gravity field recovery covariance
analysis (Chapter 7). The low-degree gravity field model was either the OSU8S6F grav-
ity field itself up to degree and order 36 or a different model, GEM-T1, which is an
expansion complete up ‘to degree and order 36. As indicated before, the differences
between OSU86F and GEM-T1 for low degrees and orders may be considered to
reflect the accuracy of current gravity field models for low degrees and orders, and
were used to simulate the low-degree gravity field modeling error.

The resolution of the grid of accelerations was chosen to be consistent with the
expected real data coverage. In North-South direction, the grid-spacing is equal to 0.2°,
based on a GPS receiver measurement interval of 2.5 s and an orbital velocity of the
ARISTOTELES satellite of about 8 km/s. The selected resolution in the East-West
direction is equal to 0.33 degree. The maximum width of the holes in the ground track
pattern of the 91-days ARISTOTELES is about 0.25°, so that this number is a bit con-
servative. i

Using the same spherical harmonic expansions of the gravity field, also point
anomalies at the Earth’s surface within the test area were computed. Mean 1° x 1°
gravity anomalies were subsequently computed by taking the arithmetic mean of a grid
of point anomalies in each 1° x 1° block. These anomalies are the a priori values that
represent the "real-world" and should be recovered from the acceleration data.

From the grid of simulated accelerations, normal equations for the mean 1° x 1°
gravity anomalies were formed using Stokes’ formulae (equations (8.2a)-(8.2c)). With
such a regular data set the existence of several symmetries can be exploited and the
normal equations can be built up very efficiently. If the test area is divided in longi-
tude in 20 geographical subareas, each 1° wide (equal to the resolution in this direction
of the gravity anomalies to be solved for), and the overall data set is divided in 20
subsets corresponding to these subareas, then the contribution of the k-th subset to the
normal submatrix of the correlations between the anomalies in the areas i and j (20 x
20 matrix) will be denoted by N i/k)‘ These submatrices satisfy the following symmetry
relations:
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These symmetry relations led to a reduction in the number of computations of approxi-
mately a factor 27 (about 20*4/3). The normal equations were solved using the Chole-
sky decomposition method.

To reduce the numerical instability of the normal equations obtained in this way,
regularization can be applied in the form of adding a diagonal matrix with variable
weight to the normal equations. This will particularly be necessary when the accelera-
tions are corrupted with noise. This was simulated by adding uncorrelated measure-
ment noise, with a power that can be selected, to the accelerations. The possibility
existed to use the accelerations in all three directions (radial, East-West and North-
South) independently. The normal equations could be built up separately for each
direction, and then combined afterwards. The solution of the normal equations was of

course compared with the a priori values to give an estimate of the accuracy of the
recovered anomalies.

8.3.3 Simulation set-up for downward continuation using least-squares collocation

For these simulations the same spherical harmonic expansions of the gravity field
and the same test area as described in the previous Section were used. In addition to
accelerations at a specific altitude and gravity anomalies, also the geoid undulations
were now computed. This is because the method of collocation is capable of recover-
ing geoid undulations in a similar way as gravity anomalies.

Each gravity anomaly/geoid undulation was recovered separately (which does not
mean that they were not correlated) from a regular grid of accelerations at a selected
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satellite altitude. The size of this grid in latitude and longitude direction and the den-
sity of the accelerations in this grid (grid maze) could be varied (Figure 7.2). However,
it will be obvious that the grid maze must compare with the expected resolution of the
observed accelerations, which was also indicated in the previous Section, and the reso-
lution of the gravity field to be solved for. From Figure 7.2, it follows that for adjacent
gravity anomalies/geoid undulations a certain overlap exists in the accelerations used to
estimate them. It will also be obvious that the geographical area of satellite accelera-
tion observations must be slightly larger than the area of gravity anomalies/geoid undu-
lations to be solved for.

Also in the method of collocation the existence of symmetry can be exploited, pro-
vided that a regular grid of accelerations is available. In that case, for each parallel
(i.e. constant latitude) only one single covariance matrix must be constructed and
inverted (equations (7.1)). It is stressed that the use of symmetry was possible because
of the isotropy and homogeneity of the applied covariance functions.

Also in the case of collocation the possibility existed to use the accelerations in the
three directions independently or in combinations. Uncorrelated measurement noise
could be added to the accelerations and the collocation process could be "regularized”
by adding a "noise-variance (diagonal) matrix" to the covariance matrix of accelera-
tions (i.e. the matrix D in equation (7.1)).

8.4 Results of the downward continuation simulations

This Section contains a description of the computations of gravity anomalies/geoid
undulations from a grid of accelerations at a mean satellite altitude by the two
minimum-norm techniques discussed in Section 8.2 and according to the simulation
set-ups described in Section 8.3. Firstly, a short summary is given of the configurations
tested and the characteristics of the gravity field induced signals. Subsequent Sections
contain results of the tests.

8.4.1 Test configurations

The primary objective of this study was to investigate the possibility of using GPS
for high-resolution gravity field recovery from the ARISTOTELES mission. There-
fore, the tests that have been performed concentrated on the higher-degree part of the
OSUBGF gravity field. As indicated before, in reality, the GPS SST range measure-
ments to ARISTOTELES will also contain information of the low-degree terms of the
gravity field and hence will be affected by errors in these terms. Therefore, also the
effect of errors in this part of the spherical harmonic expansion of the gravity field was
simulated, as has been shown by taking the differences between the OSUS6F and
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GEM-T1 gravity field models.

An important parameter in the downward continuation process was the satellite alti-
tude: the higher the satellite altitude, the more difficult it will be to recover the gravity
field, especially the high-frequency part. To study this effect, simulations were per-
formed for different altitudes.

The following cases have been investigated:

e case 1: accelerations at 160 km altitude using OSUS8G6F above degree 36;
e case 2: accelerations at 200 km altitude using OSUSG6F above degree 36;
e case 3: accelerations at 160 km altitude using OSU86F minus GEM-T1.

In Table 8.1 (see also: Table 7.1), the magnitude of gravity field induced signals for
these cases are listed. These results were computed in two ways:

e by taking the rms of the grid values in the selected geographical area for a certain
gravity field induced signal;

e by computing the covariance function for that gravity induced signal using the same
spherical harmonic expansion that was used to compute the regular grid (mean 1° x
1° values of the covariance functions were computed using the method described in
Appendix E).

Included in Table 8.1 are power estimates computed with the Rapp 79 anomaly
degree variance model for a satellite altitude of 160 km (denoted by case 4). Studying
Table 8.1, the following conclusions can be drawn:

e The power estimates from the covariance functions appear to agree with the rms of
the simulated signals, showing the consistency of the applied algorithms;

e The rms of the geoid undulations increases from 1.60 m to 2.29 m if low-degree
gravity field modeling errors are included. For gravity anomalies, this increase is
much less pronounced. This is in agreement with the statements made in the local
gravity field recovery covariance analysis (Chapter 7);

¢ The mean of all gravity field induced signals are very small compared to the rms of
these signals, except the mean of geoid undulations for case 3 has a relatively large
value (0.47 cm compared to an rms-value of 2.29 m), which is caused by low-degree
gravity field error terms that do not average out over the selected area; in all compu-
tations to be described in this Chapter, it was found that the mean of the differences
between a priori and recovered gravity anomalies and geoid undulations was below 1
mgal and 5 cm, respectively;

e The empirical model of Rapp’ 79 gives relatively high powers for the gravity field
induced signals; the Rapp *79 model probably gives too high estimates for the high-
degree gravity field part (Rapp, 1979);

® The gravity field induced signals rapidly attenuate when going from a satellite alti-
tude of 160 km to 200 km; for example, the rms-value for radial satellite accelera-
tions is 3.29 mgal for case 1 and 2.37 mgal for case 2.
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Table 8.1 Characteristics of gravity field induced signals over a 20° x 20° test area.

case mean of rms of power estimate from
grid values  grid values  covariance function

point anomalies (mgal) 1 -0.04 18.33 18.96
3 1.15 19.04 19.89
4 - - 27.23
mean anomalies (mgal) 1 -0.05 15.90 16.30
3 1.13 16.72 17.35
4 - - 20.28
geoid undulations (m) 1 0.01 1.60 1.56
3 0.47 2.29 2.36
4 - - 1.73
radial acc. (mgal) 1 0.16 3.29 295
2 0.12 2.37 2.11
3 0.22 4.87 4.42
4 - - 3.09
longitudinal acc. (mgal) 1 0.05 2.51 2.06
2 0.03 1.83 1.48
3 0.40 3.84 3.07
4 - - 2.17
latitudinal acc. (mgal) 1 0.08 2.17 2.06
2 0.06 1.54 1.48
3 0.09 2.90 3.07
4 - - 2.17

case 1: OSUSGF above degree 36, 160 km satellite altitude;
case 2: OSUS8GF above degree 36, 200 km satellite altitude;
case 3: OSU86F minus GEM-T1, 160 km satellite altitude;
case 4: Rapp’79 from degree 37 to 360, 160 km satellite altitude.
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8.4.2 Gravity anomaly recovery by the method using the equations of Stokes

The simulation set-up as described in Section 8.3.2 was used to form the normal
equations for the 400 mean 1° x 1° gravity anomalies in the test area from the simu-
lated satellite accelerations above this area. These normal equations were solved using
the Cholesky decomposition method and regularization was applied with different
weight factors. -

During the tests, it was discovered that the accelerations in the directions perpendic-
ular to the radial direction hardly improved the solutions of the gravity anomalies, and
did not help to stabilize the normal equations. This can be explained by the structure
of the equations of Stokes: gravity anomalies that are located close to the projection of
satellite accelerations on the Earth’s surface are correlated most with accelerations in
the radial direction and hardly with accelerations in a direction perpendicular to this.
Therefore, in this Section only results from radial satellite accelerations are displayed
and discussed.

In the top of Table 8.2, the results are listed when the OSUSGF gravity field model
above degree 36 for a satellite at 160 km altitude was used. What strikes first is that
even with "perfect” accelerations, the difference between the a priori model and the
solution is quite large. This is apparently due to the instability of the set of normal
equations, since the recovered anomalies compare much better with their a priori
values when regularization is applied. Still, the rms of differences does not become
close to zero, because of the errors mentioned in Section 8.2.2. However, an rms of
differences of mean 1° x 1° gravity anomalies close to 5 mgal seems possible if the
noise of the observed satellite accelerations is below 1 mgal. Because it is likely that
the recovered gravity anomalies in the central area (i.e. 5°-15° longitude, 45°-55° lati-
tude) will be of better quality, due to truncation effects at the border of the area, some
tests were performed where only these recovered anomalies were compared with their
a priori values. The top of Table 8.3 (case 1) shows the results that seem to confirm
the previous assumption. Recovered anomalies close to the border are less accurate
because only a partial grid of accelerations is surrounding these anomalies, yielding a
significant smaller amount of information.

In the middle of the Tables 8.2 and 8.3, the results for case 2, i.e. using a different
satellite altitude of 200 km, are listed. The rms of differences of the recovered
anomalies with their a priori values for this case is worse than for the 160 km satellite
altitude. The rms of differences deteriorates from 6.84 mgal for the first case to 8.02
mgal for the second, assuming a noise of 1 mgal in both simulations.

In the bottom of the Table 8.2 and 8.3, the results are listed for the case of a satel-
lite at 160 km altitude where the low-degree effects are also included (case 3). In case
of a 1 mgal noise on the satellite accelerations the rms of differences of the recovered
anomalies with their a priori values is equal to 7.95 mgal. This value is comparable to
the value of the rms of differences for case 1, which is 6.84 mgal. Thus, the addition
of low-degree gravity field modeling errors is not considered to be a severe problem.

As already mentioned above, the rms of differences for inner subareas is smaller
than for the entire area. For example, the rs of differences for the first case becomes
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Table 8.2 Gravity anomaly recovery for the test area (400 anomalies), using the equa-
tions of Stokes.

noise case sig. mag. rms of dif. corr. add.

(mgal) (mgal) (mgal)
0.0 1 22.92 14.44 0.78  0.000
0.0 1 16.18 6.14 093 0.008
1.0 1 16.51 6.84 091 0.008
2.0 1 17.48 8.83 0.86 0.008
20 1 14.86 7.22 0.89 0.023
2.0 1 12.98 7.48 0.89 0.052
0.0 2 46.62 43.14 0.38 0.000
0.0 2 14.44 7.64 0.88  0.008
0.0 2 13.22 7.99 0.87 0.016
1.0 2 14.63 8.02 0.87 0.008
1.0 2 13.29 8.17 0.86 0.016
2.0 2 15.29 9.18 0.83  0.008
2.0 2 13.61 8.73 0.84 0.016
0.0 3 40.31 35.30 049 0.000
0.0 3 18.45 8.35 0.89 0.008
0.0 3 16.21 7.79 0.89 0.028
1.0 3 16.90 7.95 0.890  0.020
2.0 3 19.55 10.39 0.85 0.008
2.0 3 17.20 8.57 0.87 0.020
20 3 16.47 8.31 0.87 0.028

noise = uncorrelated measurement noise added to the satellite accelerations

sig. mag. = signal magnitude of recovered anomalies (rms-wise)

rms of dif. = root-mean-square of differences between recovered and a priori
mean gravity anomalies

corr. = correlation between recovered and a priori mean gravity anomalies

add. = constant added to the diagonal of the normal equations (regularization)
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Table 8.3 Gravity anomaly recovery for the central part of the selected geographical
area (100 gravity anomalies), using the conditions of Table 8.2.

noise case sig. mag. rmmsof dif. corr. add.

(mgal) (mgal) (mgal)
0.0 1 11.36 449 094 0.008
1.0 1 11.70 491 092 0.008
2.0 1 12.46 6.73 0.86 0.008
2.0 1 10.44 6.48 0.86 0.023
2.0 1 9.19 7.42 0.82 0.052
0.0 2 10.00 6.71 0.85 0.008
0.0 2 9.27 7.64 0.80 0.016
1.0 2 10.00 7.14 0.83  0.008
1.0 2 924 7.93 0.78 0.016
2.0 2 10.53 8.23 0.73  0.008
2.0 2 9.51 8.55 0.74 0.016
0.0 3 11.52 4.26 094 0.008
0.0 3 9.94 6.01 0.89 0.028
1.0 3 10.36 5.72 090 0.020
2.0 3 10.62 6.39 0.87 0.020
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4.91 mgal for the inner 100 gravity anomalies compared to 6.84 mgal for the whole
area if the noise on the satellite accelerations is equal to 1 mgal (Tables 8.2 and 8.3).
The results seem to suggest that in order to obtain gravity anomalies with high accu-
racy, one must solve for an area of gravity anomalies and take only the results of the
central part of this area. However, for the first case, the ratio of the rms of differences
and the rms of the recovered anomalies is 6.84/16.51 = 0.41 for the whole area (top of
Table 8.2) and 4.91/11.70 = 0.42 for the "inner" area (Table 8.3), assuming a noise
equal to 1 mgal. Thus this ratio remains approximately the same. But the noise of 1
mgal of the accelerations is equal for both the whole area and the "inner" area, thus
the ratio of the rms of the accelerations and this noise (the signal to noise ratio) is
smaller for the "inner" area, whereas this does not lead to a higher relative error in the
recovery (about 0.4 for both areas). It is therefore conclude that for the "inner" area
the gravity anomaly recovery is indeed better.

All the Tables show that it is not trivial to find the optimal regularization parame-
ters, but that the solution is not very sensitive to (small) deviations from the (ima-
ginary) optimal value. All results discussed in this Section indicate that it is difficult to
recover mean 1° x 1° gravity anomalies with an accuracy of 5 mgal for the simulated
cases, using the equations of Stokes. However, for the central part of the test area and
for the first test case with a satellite altitude of 160 km, it is possible to reach an rms
of differences smaller than 5 mgal, if the noise on the accelerations is below 1.0 mgal.
If the satellite altitude is increased to 200 km, this accuracy does not seem to be
achievable. Also the inclusion of errors in the low-degree part of the gravity field
deteriorates the rms of differences. However, the results indicate that this effect is not
a severe problem. Moreover, as indicated before (Chapter 7), especially the GPS sys-
tem is considered to have the ability to improve the low-degree part of current gravity
field models to a precision far better than the differences in the low-degree coefficients
of OSU86F and GEM-T1 (Wu and Yunk, 1986a and 1986b; Smith et al., 1988).

8.4.3 Gravity anomaly/geoid undulation recovery by least-squares collocation

This Section contains the results of point gravity anomaly/geoid undulation recovery
using collocation for the cases described in Section 8.4.1, and applying two types of
degree variance models in the computation of the covariance functions. The first type
is determined by the models that were used to compute the satellite accelerations and
the a priori point gravity anomalies/geoid undulations, and the other uses the empirical
Rapp ’79 anomaly degree variance model (equation (7.6)). The choice for the grid size
and grid maze of the grid of accelerations from which a gravity anomaly/geoid undula-
tion is estimated by least-squares collocation, (Figure 7.2) was discussed in Chapter 7.

Results of the first case are displayed at the top of the Tables 8.4-8.7. The OSUS6F
gravity field above degree 36 was used both for simulating the satellite accelerations at
160 km altitude and for simulating the a priori point gravity anomalies/geoid undula-
tions. Moreover, the OSU8B6F gravity field was used in the computation of the
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Table 8.4 Point gravity anomaly recovery from radial accelerations, using least-squares
collocation.

step case  noise  noise col. grid size sig. mag. mms of dif. corr.

° (mgal)  (mgal) °x° (mgal) (mgal)
1.0 1 0.0 0.0 5x5 17.83 4.16 0.97
1.0 1 1.0 1.0 5x5 13.62 11.18 0.79
1.0 1 0.0 0.0 7x7 18.20 4.34 0.97
1.0 1 1.0 1.0 7x7 13.95 10.77 0.81
1.0 2 0.0 0.0 5x5 17.58 4.98 0.96
1.0 2 1.0 1.0 5x5 11.96 12.81 0.72
1.0 2 0.0 0.0 7x7 24.96 16.76 0.74
1.0 2 0.0 0.25 7x7 14.74 8.14 0.90
1.0 2 1.0 1.0 7x7 12.15 12.45 0.74
0.5 3 0.0 0.0 5x5 19.20 4.05 0.98
1.0 3 0.0 0.0 5x5 18.43 4.32 0.97
0.5 3 1.0 1.0 5x5 15.28 11.03 0.82
1.0 3 1.0 1.0 5x5 14.59 11.20 0.81
0.5 3 0.0 0.0 7x7 65.90 62.22 0.33
1.0 3 0.0 0.0 7x7 18.74 3.77 0.98
0.5 3 1.0 1.0 7x7 15.64 10.08 0.85
1.0 3 1.0 1.0 7x7 15.13 10.76 0.83
1.0 4 0.0 0.0 5x5 18.01 421 0.97
1.0 4 1.0 1.0 5x5 13.87 11.23 0.79
1.0 4 0.0 0.0 7x7 19.62 8.00 0.91
1.0 4 1.0 1.0 7x7 14.23 10.80 0.81

step = grid maze
noise col. = input parameter for the collocation process

case 4: OSUBGF above degree 36, 160 km satellite altitude; the Rapp’79
model was used in the computation of the covariance functions.

-118.



Table 8.5 Point gravity anomaly recovery from accelerations in three directions, using
least-squares collocation.

step case noise noise col. grid size sig. mag. rmms of dif. corr.

° (mgal) (mgal) °x° (mgal) (mgal)

10 1 0.0 0.0 3x3 17.86 4.36 0.97
10 1 1.0 1.0 3x3 14.25 10.79 0.81
10 1 0.0 0.0 5x5 21.30 11.69 0.84
10 1 0.0 0.25 5x5 16.19 5.92 0.95
10 1 1.0 1.0 5x5 14.49 10.03 0.84
10 2 0.0 0.0 3x3 17.53 5.25 0.96
10 2 1.0 1.0 3x3 12.60 12.71 0.72
10 2 0.0 0.0 5x5 118.00 4.63 0.97
10 2 1.0 1.0 5x5 13.06 11.81 0.77
10 3 0.0 0.0 3x3 18.39 4.79 0.97
10 3 1.0 1.0 3x3 15.17 10.89 0.82
10 3 0.0 0.0 ~ 5x5 20.00 8.12 0.91
10 3 0.0 025 = 5x5 16.88 6.01 0.95
10 3 1.0 1.0 5x5 15.64 10.05 0.85
10 4 0.0 0.0 3x3 18.08 4.41 0.97
10 4 1.0 10 3x3 14.40 10.86 0.81
10 4 0.0 0.0 5%5 22.66 14.26 0.78
10 4 0.0 0.25 5%5 16.36 571 0.95
10 4 1.0 1.0 5x5 14.69 10.08 0.84
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Table 8.6 Geoid undulation recovery from radial accelerations, using least-squares col-
location.

step case noise noise col. grid size sig. mag. mmsof dif. corr. -

° (mgal)  (mgal)  °x° (m) (m)

1.0 1 0.0 0.0 3x3 1.56 0.18 0.99
1.0 1 0.0 0.0 5x5 1.60 0.10 1.00
1.0 1 0.0 0.0 - 7x7 1.60 0.10 1.00
1.0 1 0.5 0.0 5x5 3.22 2.82 0.48
1.0 1 0.5 0.5 5x5 1.50 0.39 0.97
1.0 1 1.0 0.0 5x5 5.84 5.64 0.26
1.0 1 1.0 1.0 5x5 1.44 0.51 0.95
1.0 2 0.0 0.0 5x5 1.60 0.13 1.00
1.0 2 0.5 0.5 5x5 1.44 0.52 0.95
1.0 2 1.0 1.0 5x5 1.37 0.64 0.92
1.0 3 0.0 0.0 3x3 224 0.33 0.99
1.0 3 0.0 0.0 - 5x5 2.29 0.18 1.00
1.0 3 0.0 0.0 Tx7 2.29 0.17 1.00
1.0 3 0.5 0.5 5x5 2.25 0.44 0.98
1.0 3 1.0 1.0 5x5 2.20 0.54 0.97
1.0 4 0.0 0.0 5x5 1.60 0.10 1.00
1.0 4 0.0 0.0 7x7 1.61 0.18 1.00
1.0 4 0.5 0.5 5x5 1.52 0.39 0.97
1.0 4 1.0 1.0 5x5 1.45 0.51 0.95




Table 8.7 Geoid undulation recovery from accelerations in three directions, using
least-squares collocation.

step case  noise  noise col. grid size sig. mag. rms of dif. corr.
(o]

(mgal)  (mgal) °x° (m) (m)
1.0 1 0.0 0.00 5x5 1.61 0.24 0.99
1.0 1 0.0 0.25 5x5 1.56 0.17 0.99
1.0 1 0.0 0.50 5x5 1.53 0.24 0.99
2.0 1 0.0 0.0 5x5 1.59 0.13 1.00
2.0 1 1.0 1.0 5x5 1.43 0.56 0.94
1.0 2 0.0 0.0 5x5 1.60 0.1 1.00
1.0 2 0.0 0.25 5x5 1.53 0.27 0.99
2.0 2 0.0 0.0 5x5 1.59 0.14 1.00
2.0 2 1.0 1.0 5x5 1.36 0.70 0.90
1.0 3 0.0 0.0 5x5 2.29 0.24 0.99
1.0 3 0.0 0.25 5x5 2.26 0.20 1.00
2.0 3 0.0 0.0 5x5 2.26 0.14 1.00
2.0 3 1.0 1.0 5x5 2.22 0.59 0.97
1.0 4 0.0 0.0 5x5 1.62 0.31 0.98
1.0 4 0.0 0.25 5x5 1.56 0.17 0.99
2.0 4 0.0 0.0 5x5 1.59 0.13 1.00
2.0 4 1.0 1.0 5x5 1.46 0.56 0.94
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covariance functions. The rms of differences for point gravity anomalies deteriorates
from about 4 mgal to about 10 mgal, if the magnitude of the uncorrelated measure-
ment noise on the satellite accelerations increases from 0.0 mgal to 1.0 mgal. For
geoid undulations these numbers are respectively about 10 cm and 51 cm. From the
results displayed in the top of the Tables 8.4-8.7 (case 1), it can be concluded that the
addition of accelerations in directions perpendicular to the radial one does not really
contribute to an improved gravity field recovery. Improvements are only made for
noise values unequal to zero mgal. This indicates that the addition of these accelera-
tions to the radial leads to an instable C -matnx (equation (7.1)). This instability
shows the ill-conditioning of the downward commuanon process and explains why the
addition of a diagonal matrix D, whose elements are equal to the variance of the noise,
to this matrix improves the recovery ("regularization"). For example, for faultless
radial satellite accelerations and a grid size of 7° x 7°, the rms of dlffcrences reduces
from 16.76 mgal, if the elements of the matrix D are eci ual to 0.0 mgal to 8.14 mgal,
if the elements of the matrix D are equal to 0. 252 mgal“ (case 2, Table 8.4). The accu-
racy of recovered point gravity anomalies/geoid undulations deteriorates quickly with
increasing magnitude of the uncorrelated measurement noise.

Similar results are shown at the bottom of the Tables 8.4-8.7 for the same case, but
now the empirical Rapp 79 anomaly degree variance model was used in the computa-
tion of the covariance functions (denoted by case 4). Comparing these results with
those of case 1, it may be concluded that the method of collocation has some flexibil-
ity in the choice of degree variance models in the computation of covariance functions,
because the values for the rms of differences are almost identical with those listed at
the top of these Tables.

In the middle of the Tables 8.4-8.7, results are displayed for the second case, again
using OSUBG6F above degree 36, but for a different satellite altitude of 200 km. The
rms of differences for point gravity anomalies ranges from about 5 mgal to about 13
mgal and for geoid undulations from about 12 cm to about 65 cm, if the magnitude of
the uncorrelated measurement noise on the accelerations grows from 0.0 mgal to 1.0
mgal. Finally, Tables 8.4-8.7 show the results for case 3, using the OSU8G6F gravity
field model minus the GEM-T1 gravity field model, both for computing the gravity
field induced signals and the covariance functions, and for a satellite altitude of 160
km. Compared to the first case, there is a slight deterioration in the rms of differences
of geoid undulations, but for gravity anomalies there is hardly any difference. Thus,
the part of the gravity anomaly signal caused by the differences in the low-degree
terms of the OSU86F and GEM-T1 gravity field models seems to be recoverable for
the larger part.

The results indicate that the rms of differences for point gravity anomalies/geoid
undulations grows quickly with increasing noise on the satellite accelerations. The
results show that for a noise of 1 mgal on the satellite accelerations a value of 12 mgal
for the rms of differences between a priori and recovered point gravity anomalies is
reached for a satellite altitude of 200 km, and this value is almost reached for a satel-
lite altitude of 160 km. This is significantly above the 5.0 mgal accuracy strived for,
although the latter value refers to mean 1° x 1° gravity anomalies. The question that
now arises is how the value of 12 mgal for the accuracy of point gravity anomalies
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relates to the accuracy of mean 1° x 1° gravity anomalies. From Table 8.1, it can be
seen that the OSUBGF gravity field model above degree 36 has a power of 18.96 mgal
for point gravity anomalies and 16.30 mgal for mean 1° x 1° gravity anomalies. The
difference between these two values can be considered to represent the power of the
point gravity anomalies due to gravity field terms with a resolution smaller than 1.0°,
and is equal to 9.68 mgal in rms sense. If this term is subtracted rms-wise from 12
mgal, a new estimate for the accuracy of mean 1° x 1° can be found equal to 7 mgal.
This is still above the 5.0 mgal strived for. Moreover, also the rms of differences for
geoid undulations is above the 0.10 m strived for, if this noise is equal to 1.0 mgal.
Thus, it seems that, in order to meet the mission objectives, the satellite accelerations
should have an accuracy on the order of 1.0 mgal or better.

The results also indicate that the radial accelerations have the largest contribution in
the gravity field/geoid undulation recovery for the configurations discussed in this Sec-
tion. Besides the remarks made in Chapter 7, this can be explained with the help of the
Figures 8.1-8.4. These Figures show the small correlations for accelerations in direc-
tions perpendicular to the radial direction with gravity anomalies/geoid undulations,
which is why they add little information for their recovery.

The conclusions from Section 8.4.2 are corroborated by the results of the least-
squares collocation technique. An altitude of 200 km seems the maximum satellite alti-
tude to recover the gravity field with the desired accuracy and resolution, on the condi-
tion that the satellite accelerations have an accuracy of 1.0 mgal or better. Errors in the
low-degree part of the gravity field do not seem to hamper the recovery of the higher
degree part. It must be mentioned that in all simulations, the results are in good agree-
ment with the results of the local gravity field recovery covariance analysis (Chapter
7), showing the consistency of all the computations.

Looking at all Tables, it seems strange that "perfect” accelerations do not yield per-
fect recovered point anomalies/geoid undulations. An explanation is the limited grid
size of satellite accelerations used for downward continuation to a point gravity
anomaly/geoid undulation. For a grid size of 5° x 5° and a grid maze of 1.0° this
effect is below 5 mgal, and it is even less for mean 1° x 1° gravity anomalies (this has
been shown in Chapter 7).

8.4 4 Additional tests

A question that arises when using collocation is what is the effect of the limit of the
maximum degree of the harmonic expansion used in the computation of the covariance
functions. A possible answer to this question might be to use as a criterion the magni-
tude of the noise in the observations used to estimate the gravity field. It seems reason-
able to truncate the expansion if the power of the omitted part is less than the noise of
the observed accelerations. To investigate this, the following test was performed. This
test consisted of a rerun of the second case (OSUSGF above degree 36 and 200 km
satellite altitude), but now the covariance functions were computed with the model

-123-



covariance (mgaltmgal)

covariance (mgal*mgal)

-10

-10

-20

2 4 6 8 10

spherical distance (degree)

Figure 8.1 Covariance function for gravity anomalies
and radial accelerations using OSUB6F above degree 36
(200 km altitude)

2 4 6 8 10

spherical distance (degree)

Figure 8.2 Covariance function for gravity anomalies
and accelerations perpendicular to the radial directiony
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Table 8.8 Point gravity anomaly/geoid undulation recovery from radial accelerations,
using least-squares collocation and applying the OSU86F gravity field model above
degree 36. The results hold for a satellite altitude of 200 km. In the computation of
covariances, only use is made of the OSU8GF gravity field from degree 37 to 180. The
grid maze is equal to 1.0°. The values between brackets denote the original values.

Gravity anomalies L
noise  noise col.  grid size sig. mag. rms of dif. corr.
(mgal)  (mgal) °x° (mgal) (mgal)
0.0 0.0 5x5 17.38 5.15(4.98) 0.96(0.96)
1.0 1.0 5x5 11.96 12.80(12.81)  0.72(0.72)
0.0 0.0 7x7 18.02 7.09(8.14)  0.92(0.90)
1.0 1.0 7x7 12.15 12.44(12.45) 0.74(0.74)

Geoid undulations

noise  noise col.  grid size  sig. mag. mms of dif. corr.
(mgal)  (mgal) °x° (m) (m)
0.0 0.0 5x5 1.60 0.14(0.13) - 1.00(1.00)
1.0 1.0 5x5 1.37 0.64(0.64) 0.92(0.92)




truncated at degree and order 180 instead of 360. The power of satellite accelerations
of the OSUSGF gravity field above degree 180 is less than 1 mgal. The results of this
test are listed in Table 8.8. In case of zero noise the recovery compares well with the
“original" solution, i.e. using the full OSUSGF gravity field model above degree 36 in
the covariance computation. If uncorrelated measurement noise with a magnitude of 1
mgal is applied on the accelerations, the results are almost identical, giving support to
the assumption that it is not necessary to apply an infinite number of terms in the com-
putation of the covariance functions.

A second important question to be answered is for which domain of the gravity
field, the recovery gives the worst results. In order to give an answer to this question,
additional tests were performed where only a certain domain of the OSU86F minus
GEM-T1 gravity fields was used in the simulation of gravity anomalies/geoid undula-
tions and satellite accelerations at 200 km altitude. The gravity anomalies/geoid undu-
lations were recovered from these accelerations by means of collocation and using the
OSUB6F minus GEM-T1 gravity fields in the computation of the covariance function-
als. The results are listed in Table 8.9. The error in the recovery of the gravity field
above degree 200 for a noise-level of 1 mgal on the accelerations is exceeding the
magnitude of the recovered signal, in this case point gravity anomalies. The part of the
gravity field until degree 100 seems very well recoverable, even if the noise on the
satellite accelerations is equal to 1.0 mgal. In all cases listed in Table 8.9, the noise
was concentrated in the domain to be solved for, thus yielding pessimistic results.
When solving for a complete gravity field up to degree 360, the noise will be spread
over the entire range of degrees to be solved for.

8.4.5 Summary

The two minimum-norm techniques investigated here, both indicate that it is possi-
ble to recover high-resolution and high-accuracy gravity field information from satellite
accelerations with a precision of 1 mgal. It was also found that errors in the low-
degree part of the gravity field (below degree 37) are not a severe problem. Moreover,
it is expected that these errors will be reduced for the larger part from global analysis
of the same GPS SST tracking data that are the subject of the study described in this
Chapter. Several studies on this subject have demonstrated the enormous potential of
GPS SST for reducing the low-degree gravity field errors of current gravity field
models by orders of magnitude (Schrama, 1990; Wu and Yunk, 1986a and 1986b:
Smith et al., 1988). This will also be shown in Chapter 9.

The least-squares collocation technique seems to be the most attractive one of the
two minimum-norm techniques analyzed. Three reasons for this are that it has the
capability of providing accuracy estimates, it can handle gravity anomalies as well as
geoid undulations, and it provides a "constant quality" over the recovery area when a
regular grid of observed accelerations is available. The other technique has the prob-
lem that the recovered anomalies close to the border of the test area seem to be of
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Table 8.9 Gravity field recovery for different domains of the gravity field. The results
hold for a satellite altitude of 200 km and a grid size of 5°x5°. Use was made of the
full OSU86F model minus GEM-T1 in the computation of the covariance functions.

a) noise=0.0 mgal
domain of the gravity

field spectrum sig. mag.  rms of dif. corr. sig. mag. rms of dif.  corr.

upper lower anomaly anomaly . geoid geoid
degree degree (mgal) (mgal) anomaly (m) (m) geoid
36 5 6.07 044 0.998 1.75 0.10 0.998
50 37 6.01 0.83 0.995 1.06 0.04 1.000
100 51 11.02 1.52 0.992 091 0.06 0.998
200 101 11.71 331 0.960 0.64 0.11 0.986
360 201 2.49 435 0.685 0.09 0.11 0.731

b) noise=1.0 mgal
domain of the gravity

field spectrum sig. mag. rms of dif. corr, sig. mag. mms of dif.  corr.

upper lower anomaly anomaly geoid geoid
degree degree (mgal) (mgal) anomaly (m) (m) geoid
36 5 7.50 4.81 0.77 1.80 032 0.98
50 37 8.09 4.80 0.81 1.11 0.31 096
100 51 9.21 5.66 0.84 0.78 041 0.90
200 101 5.21 11.22 0.29 0.34 0.59 0.31
360 201 4.76 1.37 0.01 0.31 0.35 0.01

¢) a priori magnitudes

domain of the gravity

field spectrum sig. mag.  sig. mag.
upper lower anomaly geoid
degree degree (mgal) (m)
36 5 585 1.73
50 37 6.59 1.05
100 51 1043 0.93
200 101 11.53 0.60
360 201 5.65 0.15

anomaly = point gravity anomalies, geoid = point geoid undulations
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inferior quality. Another problem using this method is the determination of the optimal
regularization parameter and in combination with this the difficulty in the interpretation
of results. ‘

In the next Sections, an investigation will be described to establish the required
characteristics of GPS SST measurements to ARISTOTELES in order to be able to
compute ARISTOTELES accelerations with a 1-mgal accuracy. '

8.5 Computation of GPS and ARISTOTELES orbits and SST measurements

In the previous Section, only the last step in the gravity field recovery process has
been discussed: the downward continuation of (residual) satellite accelerations at a
mean satellite altitude to the Earth’s surface in the form of gravity anomalies/geoid
undulations. In reality, the accelerations will be derived from very precise GPS range
measurements, which will actually consist of phase measurements of the carrier signals
broadcast by the GPS satellites. To simulate these measurements, the orbits of the GPS
satellites and ARISTOTELES have to be integrated with a very high accuracy, using a
spherical harmonic expansion of the Earth’s gravity field to high degree and order.
Also, it must be shown that it is possible to extract sufficiently accurate acceleration
observations (better than 1 mgal for a 1° resolution in latitude and longitude) from the
range measurements. These subjects will be discussed in the Sections 8.5.1 and 8.5.2.

8.5.1 Orbit integration

For the very accurate integration of orbits of the GPS satellites and ARISTOTELES,
an Adams-Moulton integrator was used (Appendix F) with a Runge-Kutta initializa-
tion. This integrator was also used in the orbit computations described in Chapter 3.
The order of the integration could be chosen freely and the possibility existed to
integrate relative to a Keplerian reference ellipse. In that case only the perturbations
relative to this Keplerian ellipse are integrated. For this study, the order of the integra-
tion was taken equal to 11. A higher value for this order did not change the computed
orbits significantly.

For ARISTOTELES, only orbit segments covering a selected geographical area,
extending from -5° to 25° longitude and from 35° to 65° latitude (thus overlapping the
area solved for in the downward continuation), were integrated for a 30-days period.
The only force model used in the orbit integration was the OSUS6F gravity field,
which represents the "real-world”. Although in reality the ARISTOTELES orbit will
also be perturbed by other forces, for example luni-solar attraction, non-conservative
forces like atmospheric drag (which will be significant for the low-altitude ARISTO-
TELES satellite) and solar radiation, these forces can either be modeled very
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accurately or will be measured. For example, the atmospheric drag can be reconstituted
very accurately from measurements of accelerations of the gradiometer in the "less-
sensitive” flight direction. The interest of the simulations described in this thesis lies in
the determination of the gravity field of the Earth, and it was assumed that the pertur-
bations caused by this gravity field can be separated from other orbit perturbations.
The initial state-vector of each orbit segment was taken from the 30-days orbit com-
puted in the CIGAR Phase I study (CIGAR, 1989). GPS orbits were generated only for
the periods of the ARISTOTELES orbit segments, starting from state-vectors listed in
the CIGAR Phase I study for the 18-satellite configuration. The initial state-vector of
each GPS satellite orbit segment was obtained by a simple Keplerian propagation of
the state-vector from CIGAR Phase 1.

Since the GPS orbits are, because of their high altitude, not expected to be affected
by terms of spherical harmonic expansions of the gravity field above degree 36
significantly, all GPS orbits were computed with the OSUS6F gravity field model trun-
cated at degree and order 36. The simulated "real-world" ARISTOTELES orbit was
obtained using the full 360 x 360 OSUS6F gravity field model. In addition, two
different ARISTOTELES reference orbits were computed, the first with the GEM-T1
gravity field model and the second with the OSUS6F gravity field model up to degree
and order 36. These reference orbits were assumed to represent the outcome of a pre-
cise orbit determination using low-degree (until degree 36) state-of-the-art gravity field
models during the first part of the ARISTOTELES mission.

An important variable in the simulations is the data rate of the GPS receiver. In this
study it was taken equal to the time step of the integration of the ARISTOTELES
orbit, which was 2.5 s. This 2.5 s integration step is also small enough to "follow" the
variations of the 360 x 360 OSUSGF gravity field. A gravity field of this size has a
resolution of about 50 km, whereas 2.5 s amounts to an ARISTOTELES orbital arc of
about 20 km. Future GPS receivers are expected to have the possibility to provide 1
observation per second, so that the number used in this study is conservative.

The GPS SST range measurements were obtained by subtracting the ARISTO-
TELES positions from the GPS positions, but only if the elevation angle of a GPS
satellite as seen from ARISTOTELES was greater than 0°. The GPS measurements to
the . "real-world" ARISTOTELES orbit were considered to represent the "real-world"
GPS observations. The GPS measurements to the ARISTOTELES reference orbits then -
represent the "computed” observations derived from a priori models. The differences
between the "real-world" and "computed" observations are the residuals, which may be
considered to be caused by the "unknown" gravity anomalies that are to be recovered.
However, in these simulations, they are known and caused by the difference between
the full OSU86F model and that model truncated at degree and order 36, or they are
caused by the difference between the full OSUS6F model and GEM-T1. For the case
of the truncated OSU86F ARISTOTELES reference orbit, only the high-frequency part
of the gravity field represented the source of the GPS SST range residuals, whereas in
the case of the GEM-T1 ARISTOTELES reference orbit also low-degree effects were
included.



8.5.2 Results

From the GPS SST range residuals, the residual accelerations of the ARISTOTELES
satellite can be obtained in the following way. Firstly, a second-order polynomial is
fitted through successive range residuals of one GPS satellite. The second derivative of
this polynomial is closely related to the residual acceleration of ARISTOTELES in the
direction of that satellite. If three or more GPS satellites are in view at the same time,
which will always be the case after the full GPS-configuration has been established,
ARISTOTELES residual accelerations in the radial, East-West and North-South direc-
tion are computed geometrically from these residual accelerations by a least-squares fit.
An advantage of this method of fitting a polynomial and taking the second derivative
to obtain the accelerations is that the effect of biases and linear drifts in the ranges or
errors which vary slowly with time are filtered out. Examples are GPS clock drift and
ephemeris errors, but in particular the ambiguities associated with carrier phase meas-
urements drop out as a problem.

In the next Section, it will be discussed how the irregular grid of ARISTOTELES
residual accelerations obtained this way is transformed to a regular grid at a mean
satellite altitude. This simplifies the downward continuation and makes it possible to
use the software and algorithms described in Section 8.3.

An important question with the second-order polynomial fit of the GPS SST residu-
als is how many points should be used. This choice is a trade-off between two effects.
Increasing the number of points will help to reduce the noise in the data due to averag-
ing. On the other hand, the variations in the residuals will become more difficult to fit
by a second-order polynomial which leads to discretization errors. To investigate this
problem, experiments with different numbers of points were performed.

Table 8.10 summarizes the results of various experiments to fit a second-order poly-
nomial through successive GPS SST measurement residuals to obtain residual accelera-
tions and velocities. What is displayed in this Table, is the rms of differences between
the accelerations obtained by discretization and the accelerations by subtracting the
accelerations along the ARISTOTELES "reference" orbit computed with the "refer-
ence" gravity field (Er at r_, Figure 8.5) from the "real-world" accelerations com-
puted with the "real-world" gravity field (c_zrw at r_, Figure 8.5). The difference
between these two accelerations can be linearly approximated by:

&',w—a",ef =a,—a 2+G (T)Ap . (8.6)

where a; is the acceleration at r,, computed with the "real-world" gravity field, a, is
the acceleration at the same position computed with the "reference" gravity field, Ap is
the orbit error and G(T) is the gravity tensor at that position. The listed errors will be
referred to as the "discretization effect" and were obtained for noise-free GPS SST
range residuals. Part of these errors are caused by the fact that each batch of 9 GPS
SST range residuals is modeled as a second-order polynomial and this second-order
polynomial can not follow these residuals exactly. To these errors must be added cen-
trifugal and Coriolis terms caused by the orbit differences Ap (Figure 8.5) between the
"reference” and "real-world" orbits and its time derivative dAp/dt. These orbit
differences reflect the errors due to integrating with a reference gravity field model
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Table 8.10 Rms of differences between the accelerations obtained by discretization of
the GPS SST range residuals and the accelerations obtained directly from the gravity
field.

nr. of points case position velocity acceleration
in discretization (um) (mm/s) (mgal)
3 a 0.01 0.07 0.08
5 a 0.01 0.07 0.08
7 a 0.01 0.07 0.08
9 a 0.01 0.07 0.09
3 b 0.06 0.18 0.19
9 b 0.06 0.18 0.20
9-3 b 0.00 0.02 0.06

case a: OSU8G6F above degree 36;
case b: OSU86F minus GEM-T1.
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instead of with the "real-world" gravity field. It can be shown that the centrifugal and
Coriolis terms are smaller than 0.05 mgal. These terms are part of the errors displayed
in Table 8.10.

In the downward continuation, a second acceleration error is included due to the
position offset Ap. The residual acceleration obtained should reflect the residual gravity
field along the "real-world" ARISTOTELES orbit (‘11'“2)' However, this acceleration
value is positioned along the "reference” orbit. Thus an error equal to G(T)Ap is made
(equation (8.6)). For example, if it is assumed that the only acceleration of the ARIS-
TOTELES orbit is produced by the central term of the Earth’s gravity field, the error
in modeling the radial acceleration due to a satellite radial position error Ap (m) is
equal to:

2
r—l:Ap ~ 0.3Ap mgal . - (8.7)

This equation indicates that for a 1 mgal radial acceleration accuracy, the ARISTO-
TELES orbit must be determined with a radial accuracy of better than 3 m.

The maximum number of points used in the polynomial fit was nine, which
corresponds to a distance covered by ARISTOTELES of approximately 150 km at a
data rate of 1 observation per 2.5 s. This is of the same order of magnitude as the
block size of the anomalies that are to be recovered from the data. Because of this, it
may be argued that when further increasing the number of points, the polynomial fit
would absorb the effects of more than one anomaly. This may degrade the accuracy of
the fit, since the signal will become more complex and therefore harder to fit by a
second-order polynomial. From Table 8.10 it can be seen that the discretization error
for the accelerations is always much smaller than 1 mgal, so that it will cause only
minor errors in the gravity field recovery.

To obtain some insight in the effect of measurement noise and different discretiza-
tion strategies on the accuracy of the derived accelerations, the following approach was
adopted:

e uncorrelated measurement noise was generated in the radial direction at an altitude of
200 km above the selected test area;

e residual radial accelerations were computed by discretization of this noise using
different numbers of points; the standard deviation of the noise was chosen such, that
the residual accelerations that were computed from this noise had a standard devia-
tion of 1.0 mgal; it was assumed that in each 1° x 1° block only one such accelera-
tion can be determined;

¢ from these radial accelerations gravity anomalies/geoid undulations were recovered
by means of least-squares collocation, in which the matrix D (equation (7.1)) was
rcpregented by a diagonal matrix; the elements of this matrix were equal to 1.0
mgal”.

The results are displayed in Table 8.11. From this Table, it may be concluded that the
accuracy of the GPS SST measurements must be at the millimeter level for a max-
imum of 9 points in the polynomial fit, because the magnitudes of the recovered
anomalies and geoid undulations were about 5.0 mgal and 25 cm, respectively. If only
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Table 8.11 Point gravity anomaly and geoid undulation recovery from the radial com-
ponent of GPS SST range measurements. These measurements consisted of uncorre-
lated measurement noise. From these observations, radial satellite accelerations were
estimated and continued downward to gravity anomalies and geoid undulations on the
Earth’s surface. The results hold for a satellite altitude of 200 km, and the Rapp’79
anomaly degree variance model was used to compute the covariance functions.

grid maze = 1.0°
grid size = 5°x5°
sampling rate = 2.5 s

noise nr. of points noise col. rms of rms of
(mm) in discretization (mgal) Ag (mgal) h 2 (m)

0.0255 3 1.0 6.16 0.38
0.1169 5 1.0 4.18 0.24
0.2864 7 1.0 4.81 0.27
0.5484 9 1.0 5.29 0.30

Table 8.12 Effect of different domains of the OSUSGF gravity field on the position and
velocity perturbations along the short arcs over the selected local area.

domain of the gravity rms of position rms of velocity
field spectrum (cm) (mny/s)

upper lower

degree degree

20 10 63.73 3.86
36 20 38.76 2.02
50 36 27.56 1.56
100 50 21.46 0.97
360 100 1.94 0.11
36 10 80.64 4.59
50 10 88.91 4.89
100 36 35.54 1.86
360 36 3591 1.87
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one acceleration in a 1° x 1° block can be determined by the second-order polynomial
fit, an accuracy of even 0.5 mm would be required. However, in reality, many more
satellite observations will be available in such an area so that the demand of a 0.5 mm
GPS SST measurement accuracy may be relaxed; this will be shown in Section 8.6.
Another indication for the requirement of millimeter accuracy of GPS SST measure-
ments is shown in Table 8.12, which lists the effect of different domains of the
OSUB86F gravity field on the position and velocity of the ARISTOTELES satellite
along the short arcs. The values listed in this Table were obtained by integrating the
ARISTOTELES orbit with the OSUS6F gravity field model truncated at different
degrees, and by computing the rms of differences of the position and velocity between
the orbits computed with the different truncated OSUSGF gravity field models. Above
degree 100 the effect in orbital position is below 2.0 cm for the orbit segments.

8.5.3 Summary

The concept of discretization, where a second-order polynomial fit is applied to GPS
SST range residuals to obtain satellite acceleration observations in the desired direc-
tions, was shown to be applicable to recover gravity field information from ARISTO-
TELES orbit perturbations. To achieve an acceleration-accuracy-level of 1 mgal along
the ARISTOTELES orbit segments, at least 9 residuals should be used for the polyno-
mial fit when a sampling rate of 2.5 s and a GPS SST carrier phase measurement
accuracy at the millimeter level are assumed. Using less data points increases the error
due to measurement noise; using more points jeopardizes a high-resolution gravity field
recovery. Any bias/linear drift and/or carrier phase cycle ambiguity cancel in the
approach of fitting a second-order polynomial and taking the second derivative.

8.6 Gridding

After having processed the GPS SST measurements as described in the previous
Sections, an irregular grid of accelerations along the ARISTOTELES orbit segments
has been obtained. The downward continuation techniques, as developed and proposed
in this study, make use of a regular grid of accelerations at a mean satellite altitude.
This constant satellite altitude yields the opportunity to make use of several symmetry
considerations. Therefore, a technique has been developed to transform the irregular
grid of accelerations into a regular grid at a mean satellite altitude. The first part of
this Section gives a description of this gridding technique, while in the second part
some results will be presented.



8.6.1 Gridding technique

The algorithms described in Section 8.2 and the software that has been developed
make use of a regular grid of accelerations at a constant altitude from which gravity
anomalies/geoid undulations are computed. The resolution of this grid of accelerations
was taken equal to 1° if the method of least-squares collocation was applied and equal
to 0.33°/0.2° (longitude/latitude) if the equations of Stokes were used. Therefore, the
irregular grids of satellite accelerations obtained by discretization of the GPS SST resi-
duals, had to be transformed to regular grids with the specified resolutions. This
transformation consisted of the following steps:

e Assigning recovered ARISTOTELES accelerations along the ARISTOTELES orbits
within a "block of influence” to a grid point at the center of that block. This implies
that one observed ARISTOTELES acceleration may be assigned to more than one
grid point;

e The value of the grid point at the center of the block is predicted by means of
least-squares collocation from the accelerations assigned to that grid point at a
selected mean ARISTOTELES altitude.

In case of downward continuation by the method of least-squares collocation, the
"block of influence” was chosen such that each recovered ARISTOTELES acceleration
was assigned to only one grid point. This means that the obtained regular grids con-
sisted of grid points which were determined independently. Using the equations of
Stokes for downward continuation, a block of influence of 1° x 1° in spherical distance
was applied.

The covariance function for the ARISTOTELES accelerations, necessary to build up
the covariance matrix in the least-squares collocation process, was tabulated in a data
set on the VAX3100/CONVEX 240 for several altitudes with a resolution of 1 km and
for several spherical distances with a resolution of 0.01° (approximately 1 km). The
reason for this is that the ARISTOTELES accelerations were scattered in altitude and
also in longitude and latitude, so that it must be possible to interpolate both in the
radial and longitude/latitude directions. The covariance functions were computed using
the same spherical harmonic expansions of the orbit integration. It was found that the
altitude variations of the ARISTOTELES orbits in the selected geographical area had a
range of 21 km, thus all recovered ARISTOTELES accelerations were situated in a
shell of 21 km around a mean altitude of 191 km, thus the measurements were made
at altitudes ranging from about 180 to 200 km. This variation can be explained by the
adopted orbit parameters of the ARISTOTELES orbit (CIGAR, 1989). At the epoch of
the 30-days period, a semi-major axis equal to 6577.05 km, an eccentricity equal to
0.001, an inclination equal to 96.3° and an argument of perigee equal to 0.0° were
selected. It was found that the (osculating) eccentricity varied from 2%10°5 10 3*1073
and together with the variation of the (osculating) argument of perigee the variation of
21 km in altitude can be explained.

Taking as gravity field signal to be recovered the difference between the OSUSGF
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and GEM-T1 gravity field models and adopting a nominal 191 km satellite altitude, a
change in altitude of 1 km means a change in satellite residual acceleration on the
order of 0.02 mgal. When this value is compared with the 1 mgal accuracy require-
ment, the resolution of the covariance function of 1 km indeed seems to be sufficient.

8.6.2 Results

Results of the gridding process, both for simulations including and for simulations
excluding errors in the low-degree and -order terms of the gravity field, are listed in
Table 8.13. The accelerations that were obtained in the gridding process, were com-
pared with the accelerations that were computed directly from the gravity field models.
For a resolution of the regular grid equal to 1°, the accuracy of these accelerations
drops from 0.22-0.36 mgal to 0.89-0.96 mgal, if the noise on the GPS SST measure-
ments increases from 0.0 mm to 2.0 mm. The lower limits of these numbers hold for
the simulations excluding low-degree effects and the higher limit for the simulations
including low-degree effects. When the measurement noise is equal to 5.0 mm, the
error in the recovered residual accelerations is significantly larger than 1.0 mgal (top of
Table 8.13). For a resolution of 0.33/0.2° (longitude/latitude), the accuracy of the
radial accelerations dropped from 1.02-1.41 mgal to 1.41-1.70 mgal. Further attention
to this deterioration will be paid in Section 8.7.1.1. It is concluded that, if a resolution
of 1° of the grid of accelerations is strived for, equal to the resolution of the gravity
field recovery, an accuracy of the satellite accelerations of 1 mgal seems possible for a
noise on the GPS carrier phase measurements at the millimeter-level, provided a data
rate of one observation per 2.5 s.

8.6.3 Summary

The least-squares collocation process is an appropriate method for the transformation
of an irregular grid of satellite accelerations at varying altitudes to a regular grid at a
mean satellite altitude. With a GPS SST range measurement accuracy of 2 mm, a 1
mgal precision of the accelerations in the regular grid with a resolution of 1° is possi-
ble. This conclusion is strongly supported by the fact that in the analysis only a 30-
days period has been simulated, i.e. 1/3 of a full ARISTOTELES repeat period. Thus,
the coverage of the ARISTOTELES orbits above the selected geographical area is far
from ideal considering the resolution of the gravity field to be determined. Due to
computer limitations no simulations for a full repeat period have been performed.
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Table 8.13 Accuracy of recovered radial ARISTOTELES accelerations in a regular
grid at a mean satellite altitude of 191 km. The accelerations in this regular grid are
derived from radial accelerations along the ARISTOTELES orbit by means of colloca-
tion. These values are subsequently compared with the accelerations in a regular grid
which are computed directly from the gravity field models.

I: resolution of grid is equal to 1° in latitude and longitude direction.

a) OSUSGF gravity field above degree 36.

noise noise in collocation  precision estimate  rms of difference
GPS SST (mm) (mgal) (mgal) (mgal)
0.0 0.5 0.20 0.22
1.0 20 0.58 049
20 40 1.01 0.89
5.0 8.0 1.57 1.63

b) OSU86F minus GEM-T1 gravity fields.

noise noise in collocation  precision estimate  rms of difference
GPS SST (mm) (mgal) (mgal) (mgal)
0.0 0.5 021 0.36
1.0 20 0.59 0.56
2.0 40 1.09 0.96

II: resolution of grid is equal to 0.2° in latitude and 0.33° in longitude direction.

a) OSUSGF gravity field above degree 36.

noise noise in collocation  precision estimate  rms of difference
GPS SST (mm) (mgal) (mgal) (mgal)
0.0 0.5 048 1.02
1.0 20 0.85 1.20
2.0 4.0 1.24 141

b) OSU86F minus GEM-T1 gravity fields.

noise noise in collocation  precision estimate  rms of difference
GPS SST (mm) (mgal) (mgal) (mgal)
0.0 05 0.58 141
1.0 2.0 0.95 1.48
2.0 40 1.44 1.70
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8.7 Gravity field recovery from GPS SST range measurements

The final step in the processing of the GPS SST range measurements consisted of
the downward continuation of the regular grid of accelerations computed from the
simulated GPS SST range measurements. In the major part of the simulations only
radial satellite accelerations were recovered, because it was proven that accelerations in
directions perpendicular to the radial do not add much information for the recovery of
gravity anomalies/geoid undulations. However, in Section 8.7.1.4 a few results will be
displayed where, besides radial, also accelerations in two directions perpendicular to
the radial were recovered from the simulated GPS SST range measurements and used
in the downward continuation. This in order to support the preceding reflections and to
support the discussions in Section 8.4.3. In the last Part of this Section a short discus-
sion of possible error sources on the GPS SST measurements and their effect on the
gravity field recovery is presented.

8.7.1 Downward continuation results

The two minimum-norm techniques proposed in this study will be investigated and
compared for the downward continuation of the regular grids of radial accelerations.
The regular grids used in this Section satisfy the requirements on the resolution of the
grids as specified in Section 8.3 (see also Section 8.6). Thus, the resolutions were
accommodated to the simulation set-ups as described in that Section.

8.7.1.1 Downward continuation using the equations of Stokes

Tests were performed using the GPS SST range measurements as computed and
described in Section 8.5. These tests hold for the cases where errors in the low-degree
part of the gravity field were included or excluded. In the simulations of Section 8.3, a
regular grid of accelerations with a resolution of 0.2% in latitude and 0.33° in longitude
was applied. Therefore, the irregular grid of recovered radial accelerations along the
ARISTOTELES orbits was first transformed to a regular grid with this resolution by
means of least-squares collocation. As shown in Table 8.13, this led to a somewhat
deteriorated quality of the accelerations in the obtained regular grid when compared to
the accelerations in the regular grid with a resolution of 1° in both directions, which
grid maze size will be used in the next Section. This deterioration can be explained by
analyzing the ground track pattern of the 30-day ARISTOTELES orbit over the
selected area (Figure 7.1). This ground track pattern shows some "holes", and if a
resolution of 0.2%/0.33° is selected, relatively many accelerations of the regular grids
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Table 8.14 Mean 1° x 1° gravity anomaly recovery from GPS SST range measurement
residuals.

residuals caused by OSUS6F gravity field model above degree 36

noise sig. mag. mmmsof dif. corr.  add.
GPS SST (mm) (mgal) (mgal)
0.0 10.18 10.66 0.75 0.040
0.0 10.91 10.70 074 0.028
1.0 9.04 11.20 0.73  0.040
1.0 9.78 11.28 071  0.028
20 7.69 11.86 070 0.040
20 8.41 11.93 0.68 0.028

residuals caused by OSU86F minus GEM-T1 gravity fields

noise sig. mag. mmsof dif. corr. add.
GPS SST (mm) (mgal) (mgal)

0.0 15.20 12.87 0.68 0.016
0.0 13.07 11.63 072  0.040
0.0 12.14 11.51 0.72  0.063
1.0 12.36 11.76 0.71  0.040
1.0 11.44 11.66 0.72  0.063
2.0 12.17 12.38 0.67 0.028
2.0 12.94 12.83 0.65 0.020

¢ 9 point second-order polynomial fit through residuals;

e transformation of all the radial accelerations to a regular grid at a mean satellite alti-
tude of 191 km;

e downward continuation by means of the Stokes’ equations.
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with this resolution are located in such "holes". These accelerations will be less accu-
rate. However, per 1° x 1° block 15 accelerations were estimated instead of 1, so the
effect of the deteriorated quality will be filtered out using this greater amount of
accelerations in the mean 1° x 1° gravity anomaly recovery.

The top-half of Table 8.14 shows the results for the case where only the OSU86F
gravity field was used both in the computation of the "real-world" ARISTOTELES
orbit segments (full field) and the reference orbits (truncated field). In this case, it is
expected that the recovered residual ARISTOTELES accelerations will not be affected
by the errors in the low-degree part of the gravity field. The rms of differences of
recovered mean 1° x 1° gravity anomalies with their a priori values deteriorates from
10.66 mgal to 11.86 mgal for an increase of the noise on the GPS measurements from
0.0 to 2.0 mm. The accuracy of the radial accelerations used in the downward con-
tinuation was in the range of 1.0 to 1.5 mgal (Table 8.13). For a noise-level of the
radial accelerations below 2.0 mgal the results listed in Table 8.2 (case 2) indicate that
an rms of differences equal to about 8.5 mgal seems possible.

Similar results are listed in the bottom-half of Table 8.14 for the case where also
errors in the low-degree part of the gravity field were simulated, i.e. the GEM-T1
gravity field model was used in the computation of the ARISTOTELES reference
orbits. The rms of differences deteriorates slightly compared to the rms of differences
of the previous case (top-half of Table 8.14). For example, if a noise of 2.0 mm is
applied to the GPS measurements, the rms of differences becomes 12.38 instead of
11.86 mgal.

In summary, the results listed in Table 8.14 indicate that the larger part of the high-
frequency gravity field can be recovered using the equations of Stokes, but the results
are not very satisfactory compared to the results of Section 8.4. An explanation for the
deterioration of e.g. the 8.5 mgal value of Table 8.2 to 10.66-11.86 mgal of Table 8.14
may be the non-perfect coverage of the selected geographical test area by the 30-days
ARISTOTELES orbital arc analyzed. For some gravity anomalies there is hardly any
information in the 30-days ARISTOTELES arc (approximately 1/3 of a full repeat
period, (CIGAR, 1989)). This can also be seen by studying Figure 7.1. More attention
to this phenomenon will be paid in the next Section.

The results indicate again that the inclusion of errors in the low-degree part of the
gravity field does not seem to be a severe problem. The minimum-norm technique that
was used in this Section, shows that the rms of differences in the recovered mean 1° x
1° gravity anomalies exceeds the rms of the recovered anomalies themselves, if the
noise on the GPS SST measurements is above 2.0 mm (Table 8.14).

8.7.1.2 Downward continuation by least-squares collocation

The same tests were performed as in Section 8.7.1.1, but now also geoid undulation
recovery was investigated. Table 8.15 shows the results for the gravity anomaly/geoid
undulation recovery, both for tests including and tests excluding errors in the low-
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Table 8.15 Point gravity anomaly/geoid undulation recovery from GPS SST range
measurement residuals.

residuals caused by OSUSGF gravity field model above degree 36

noise  sig. mag. rms of dif. COIT. sig. mag. rms of dif.  corr.
noise col. anomaly anomaly geoid geoid _
(mm) (mgal) (mgal) (mgal) anomaly (m) (m) geoid
0.0 0.20 13.89 9.11 0.88 1.48 0.37 0.97
1.0 0.58 11.78 11.28 0.80 1.35 0.52 0.95
1.0 0.49 12.21 11.15 0.81 1.37 0.51 0.95
2.0 1.01 9.42 12.71 0.76 1.14 0.68 0.93
20 0.89 9.71 12.57 0.77 1.15 0.66 0.94
50 1.57 5.97 14.67 0.71 0.72 0.98 0.92
5.0 1.63 5.90 1471 0.71 0.71 0.99 0.92
residuals caused by OSUS6F minus GEM-T1 gravity fields;
noise  sig. mag. rms of dif. COIT. sig. mag. rmms of dif.  corr.
noise col. anomaly anomaly geoid geoid
(mm)  (mgal) (mgal) (mgal) anomaly (m) (m) geoid
0.0 0.21 15.13 9.54 0.87 231 047 0.98
0.0 0.36 14.19 10.18 0.85 2.28 0.50 0.98
0.0mn 0.21 14.25 7.04 091 - - -
1.0 0.59 13.34 11.42 0.81 221 0.59 0.97
1.0 0.56 13.48 11.38 0.81 222 0.58 0.97
20 1.09 11.45 12.58 0.77 2.05 0.67 0.96
20 0.96 11.78 12.44 0.77 2.06 0.66 0.96
2.0mn 1.09 11.05 9.94 0.82 - - -

¢ 9 point second-order polynomial fit through residuals;

e transformation of all the radial accelerations to a regular grid at a mean satellite alti-

tude of 191 km;

e downward continuation by means of least-squares collocation.

e grid maze = 1.0%

e grid size = 5x5 points;
e mn = mean 1° x 1°.



degree part of the gravity field. If the errors in the low-degree part of the gravity field
are not included, an increase of the noise on the GPS SST measurements from 0 to 2
mm results in a deterioration of the accuracy of the recovered point gravity anomalies
from 9.11 to 12.57 mgal. For geoid undulations this decrease in accuracy is from 0.37
to 0.66 m. For comparison, also results are listed in Table 8.15 for the case that a
noise of 5.0 mm was added to the GPS range measurements. For that case, the rms of
differences for gravity anomalies is equal to 14.67 mgal, much above the rms of the a
posteriori (recovered) gravity anomalies, which is equal to 5.97 mgal. Results of the
case where the GEM-T1 model was used to compute the ARISTOTELES reference
orbit are displayed in the bottom-half of Table 8.15. Thus, this case refers to a situa-
tion where errors are present in the low-degree part of the gravity field. For a GPS
SST measurement noise of 0-2 mm, the point gravity anomaly accuracy ranges from
9.54 to 12.44 mgal and the geoid undulation accuracy from 0.47 to 0.66 m. These
results show the minor change in accuracy of recovered point gravity anomalies and
geoid undulations if errors in the low-degree part of the gravity field are also simu-
lated.

One of the mission objectives is to recover mean 1° x 1° gravity anomalies with an
accuracy of 5.0 mgal. To verify the discussions on the relation between the accuracy
of point gravity anomalies and of mean 1° x 1° gravity anomalies (Section 8.4), addi-
tional tests were performed. A finer grid of point gravity anomalies was determined,
from which mean 1° x 1° gravity anomalies were derived. The resolution of this grid
was such that 16 point gravity anomalies in each 1° x 1° block were recovered and
averaged to be compared with the a priori mean 1° x 1° gravity anomalies (taking
more than 16 points did not alter the results significantly). The results are shown in the
bottom-half of Table 8.15. The rms of differences improves from 12.44 mgal for point
gravity anomalies to 9.94 mgal for mean 1° x 1° gravity anomalies. Thus a signal with
an rms value of 7.5 mgal (rms-wise) was filtered out. What may seem strange in the
results is the rms of differences of approximately 9 mgal for point gravity anomalies,
if there is no noise on the GPS SST range measurements. Why not approximately 5
mgal as in the simulations of Section 8.4 where a regular grid of perfect accelerations
was used ? At least three effects are important that may clearify the deterioration in
the rms of differences. Firstly, the errors made due to discretization of the GPS SST
range residuals in determining the residual accelerations. Secondly, errors caused by
the differences between the "real-world” and reference orbits (equations (8.6) and
(8.7)). Finally, the inappropriate coverage: only 1/3 of a repeat period was simulated,
meaning that certain 1° x 1° gravity anomaly blocks were not yet covered by ARIS-
TOTELES orbits (Figure 7.1).

For GPS SST observations with zero noise, the rms of differences is on the order of
9 mgal, whereas for accelerations with zero noise and perfect coverage, the results of
Section 8.4 indicate that a value of 5 mgal is possible. This is probably for the greater
part due to the non-perfect coverage for only a 1/3 repeat period. For higher noise-
levels of the GPS SST observations, the "noise-effect" exceeds the "non-perfect-
coverage-effect”, and the results compare well to those of Section 8.4. This result can
be explained by the fact that for certain noise-levels of observed accelerations the reso-
lution of the solved-for gravity field is limited and this resolution will approach the



resolution of the ground track pattern of even the 1/3 repeat period.

The first effect, that is the discretization effect, has been shown to be small and of
the order of 0.1 mgal in the determination of radial ARISTOTELES accelerations. The
magnitude of the second effect can be estimated by inserting the value of the orbit
differences in equations (8.7). The rms for these differences is on the order of 35 cm
(Table 8.12), yielding an acceleration error of about 0.1 mgal. However, the third
effect may be substantial. Tests have been performed where, instead of the accelera-
tions obtained by discretization of the GPS SST measurements, the real accelerations
along the ARISTOTELES orbits as computed from the spherical harmonic expansions
of the gravity field were used. This irregular grid of perfect accelerations was subse-
quently transformed to a regular grid as used in Section 8.4 by means of least-squares
collocation. Point gravity anomalies were recovered with this grid and were compared
with the results of Section 8.4. The results have shown that the effect due to the cover-
age limitation has an rms level on the order of 7 mgal, i.e. the rms of these additional
errors in the point gravity anomalies recovered is equal to about 7 mgal. Subtracting
this rms-level from the 9.11 mgal rms of differences of Table 8.15 leads to a value for
the rms equal to 5.8 mgal, for the case where errors in the low-degree part of the grav-
ity field were excluded. This is in good agreement with the results discussed in Section
8.4.

8.7.1.3 Possibilities for improvement

An important part of the errors in the recovered gravity anomalies/geoid undulations
was shown to be caused by a non-perfect coverage of the selected geographical area
by the 30-days ARISTOTELES orbital arc. Without any doubt a simulation for the full
repeat ARISTOTELES orbital arc of 91 days would have led to better results. More-
over, the entire ARISTOTELES gravity mission will have a period of at least 6
months, i.e. 2 repeat periods, so that the gravity field recovery will improve further.
Also, the gridding can be improved. In the gridding applied in this thesis, a constant
uncorrelated measurement noise on the recovered ARISTOTELES accelerations along
the orbit segments was assumed in the least-squares collocation approach. A better
technique is probably to scale the noise value in the collocation process (not the actual
measurement noise but the noise value as input parameter for the least-squares colloca-
tion) with a geometric quantity determined by the actual instantaneous GPS-
ARISTOTELES configuration. For example, this parameter may be the PDOP-factor
(Position-Dilution-of-Precision). This PDOP-factor is a measure of the spatial distribu-
tion and the number of GPS satellites in view of the ARISTOTELES satellite. The
PDOP-factors may be computed in the transformation of the ARISTOTELES accelera-
tions in the direction of a GPS satellite to the accelerations in the appropriate coordi-
nate frame. In addition, in the gridding process no account has been taken of the fact
that subsequent observed accelerations along the orbit segments are correlated because
they partly use the same GPS observations. It is recalled that each observed
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acceleration was determined from batches of 9 subsequent GPS observations. Taking
into account these correlations may lead to better results. The same argument holds for
the downward continuation. Again, a constant uncorrelated measurement noise for the
radial accelerations in the regular grid was applied, whereas, in principle, the gridding
technique has the possibility to give a precision estimate of each radial acceleration in
the regular grid separately. However, implementation of these precision estimates in
the downward continuation will significantly slow down the downward continuation
computation process, because no use of symmetry can be made anymore. In that case,
for each gravity anomaly/geoid undulation to be recovered, a new inversion of the
covariance matrix of accelerations has to be performed, using the algorithms described
in Sections 7.2 and 8.3. Nevertheless, the results from all simulations presented in this
thesis show that, even without the implementation of these more refined methods, the
major part of the high-frequency gravity field can be recovered if the GPS SST meas-
urements have a noise-level below 2 mm.

It will be shown in the next Section that only small improvements in the gravity
field recovery can be realized if residual ARISTOTFELES accelerations are recovered
also in the South-North and West-East directions, perpendicular to the radial direction.

8.7.1.4 Extension to three directions

A few tests have been performed, where besides residual ARISTOTELES accelera-
tions in the radial direction, also accelerations in the South-North and West-East direc-
tions were recovered. This was done to support the discussion in Section 8.4.3. The
accelerations in the South-North and West-East directions were determined using the
same procedure as for the radial accelerations. Thus a second-order polynomial was
fitted through successive GPS SST range residuals and the second derivative represents
the residual acceleration in the direction of that GPS satellite, and these accelerations
were transformed geometrically to accelerations in the radial and the two other direc-
tions. Hereafter, a regular grid of accelerations at a mean satellite altitude was deter-
mined by means of least-squares collocation for each direction separately. Thus, the
regular grids of radial accelerations were identical to the grids used in Section 8.7.1.2,
regular grids of residual ARISTOTELES accelerations in the other two directions were
simply added to the regular grid of radial accelerations. Only the method of least-
squares collocation was applied in the downward continuation of these grids.

Table 8.16 shows the quality of the recovered accelerations for all three directions,
the radial, longitude (West-East) and latitude (South-North), for an uncorrelated meas-
urement noise of 0.0, 2.0 and 5.0 mm, excluding and including low-degree effects. It
may be concluded that it is possible to recover residual ARISTOTELES accelerations
in any direction with an accuracy of better than 1.0 mgal at 191 km altitude for a
measurement -noise of 2.0 mm or less on the GPS SST range measurements. For a
measurement noise above 2.0 mm, the recovery of satellite accelerations deteriorates
quickly. It may also be concluded that the grids of accelerations for all three directions
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Table 8.16 Accuracy of recovered ARISTOTELES accelerations, for three directions,
in a regular grid at a mean satellite altitude of 191 km. The accelerations in this regu-
lar grid are derived from accelerations along the ARISTOTELES orbit by means of
collocation. These values are subsequently compared with the accelerations in a regular
grid which are computed directly from the gravity field models. The differences from
this comparison are listed in the last column. The resolution of grid is equal to 1° in
latitude and longitude directions.

a) OSUSGF gravity field above degree 36.

direc- noise noise in collocation  precision estimate  rms of dif.
tion GPS SST (mm) (mgal) (mgal) (mgal)
radial 0.0 0.5 0.20 0.22
long. 0.0 0.5 0.17 0.15
lat. 0.0 ' 0.5 0.18 0.20
radial 20 4.0 1.01 0.89
long. 2.0 4.0 0.90 091
lat. 20 4.0 091 0.90
radial 5.0 8.0 1.57 1.63
long. 5.0 8.0 1.27 1.44
lat. 5.0 8.0 1.28 1.31

b) OSU86F minus GEM-T1 gravity fields.

direct- noise noise in collocation  precision estimate  mms of dif.
tion GPS SST (mm) (mgal) (mgal) (mgal)
radial 0.0 0.5 0.21 0.36
long. 0.0 0.5 0.18 0.23
lat. 0.0 0.5 0.19 0.27
radial 2.0 4.0 1.09 0.96
long. 20 4.0 1.02 0.96
lat. 20 4.0 1.03 0.92
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Table 8.17 Point gravity anomaly/geoid undulation recovery from the regular grids of
Table 8.16. The accelerations in all three directions were weighted equally in the
least-squares collocation downward continuation.

a) OSUSGF gravity field above degree 36.

noise

sig. mag. mms of dif. corr. sig. mag. rms of dif. |

COIT.

noise col. anomaly anomaly geoid geoid
(mm) (mgal)  (mgal) (mgal) ano (m) (m) geoid
0.0 0.20 14.28 8.16 0.90 1.49 0.32 0.98
20 0.95 941 12.41 0.78 1.08 0.68 0.94
5.0 1.40 5.46 14.70 0.75 0.63 1.04 0.93

b) OSU86F minus GEM-T1 gravity fields.

noise  sig. mag. rmms of dif. corr. sig. mag. rms of dif. corr..

noise col. anomaly anomaly geoid geoid
(mm) (mgal) (mgal) (mgal) ano (m) - (m) geoid
0.0 0.30 14.71 8.90 0.89 2.33 0.45 0.98
20 1.00 12.40 12.03 0.79 2.12 0.63 0.96




have approximately the same quality. Therefore, the accelerations in all three directions
have been assigned equal weights in the downward continuation. The results of this
downward continuation are listed in Table 8.17. Comparison with the results listed in
Tables 8.15 fully supports the idea that the accelerations in the longitude and latitude
directions do not contribute much extra information for the gravity anomaly/geoid
undulation recovery: the improvements are less than 1.0 mgal for gravity anomalies
and only a few centimeters for geoid undulations.

8.7.2 Error sources of GPS SST measurements

In the simulations performed so far, the only error source that has been accounted
for is uncorrelated measurement noise on the GPS SST range measurements plus errors
caused by the difference in position of the "real-world" and reference orbits. The latter
represents a part of the orbit error that will be made when computing the reference
orbits. The method of simulation assumes that the epoch-vector of each orbit segment
is correct, but that due to errors in and truncation of the reference gravity field models
applied to compute the reference orbits, orbit errors will arise. This error is on the 1-m
level and was assumed to be realistic. In reality, an epoch-vector will be determined
that results in a best fit of the orbit through the tracking data, using a certain reference
gravity field model. Thus, in reality orbit errors due to gravity field modeling errors
and epoch-vector uncertainties will arise. But these two error sources will produce
orbit errors that are partly of opposite sign, so that the net effect is limited. In this
study, the epoch-vector errors for each orbit segment are zero, and for a long integra-
tion period this may result in very large orbit errors, using a reference gravity field
model and not adjusting the epoch-vector to obtain a best orbit compared to the "real-
world" orbit. However, the orbit segments are short (of the order of a few minutes in
time) and the orbit errors of approximately 1 m (rms-wise over the orbit segments)
were assumed to be realistic, as stated before. Because it was assumed that carrier
phase measurements are available, a measurement noise at the millimeter level was
adopted.

Other significant error sources are: GPS orbit errors, ARISTOTELES orbit errors
due to modeling errors of non-gravitational perturbing forces, such as drag and solar
radiation, perturbations caused, by solid-Earth tides and ocean tides, the effect of the
ionosphere on GPS signals, linear drifts and biases of the GPS measurements, mul-
tipath, etc.

The orbit errors caused by epoch-vector uncertainties are not considered to be a
severe constraint in the gravity field recovery: these errors are for the major part of a
long-wavelength nature. As an example, an error of 2 m with a frequency of one cycle
per revolution leads to an ARISTOTELES radial acceleration error of approximately
0.2 mgal (WZAr). The non-gravitational perturbing forces are expected to be measured
by the accelerometers of the gradiometer. In this approach, measured accelerations are
used when processing the GPS SST and gradiometer measurements. As shown in the
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POPSAT/GRM-study (DGFI-TUM-TH Delft, 1987), the perturbations caused by
solid-Earth and ocean tides are of a long-wavelength nature with small power. Linear
drifts and biases of the GPS SST range measurements are effectively eliminated by the
processing method adopted in this study, in which the second derivative of a second-
order polynomial, fitted through successive range residuals, is computed.

Therefore, the major problem in the high-frequency gravity field recovery is
expected to be caused by multipath and the ionosphere. The multipath effect is very
dependent on the antenna configuration and with a proper configuration this effect can
be limited to a few mm (private comm., European Space Technology Center,
Noordwijk). A few small tests have been performed, in which the ionospheric error
contribution is modeled as 5 % of the first-order ionospheric effect on the GPS SST
carrier phase measurements. The first order ionospheric propagation delay was
modeled by the following equation (Gurtner, 1985):

delay = Ap = %{e(ﬁe lcos((tloc—14)1tl12)} (m) (8.8a)

cosd = V1—sinZe (8.8b)

where,

Ty

sing = athy sinz . (8.8¢)
Equation (8.8a) is valid for 8 am.<r; < 8 p.m., otherwise:
4180
= — (8.8d)
f “coso

In these equations, Yoc is the local solar time, r_, is the geocentric distance of the GPS
receiver, in this case equal to the radius of the RRISTOTELES satellite orbit, 4 is the
hel%ht of the 1onosphcr1c layer (350.0 km), e, is the total night-time electron content
(10 elcctrons/m ), € +e; the maximum electron content at 2 p.m. (50*10
elcctrons/m ), [ the frequency of the carrier of the GPS measurements (1227.60 Hz)
and z is equal to 90° minus the elevation of the GPS satellite as seen from ARISTO-
TELES.

The error level of 5 % holds for a situation where a two-frequency GPS receiver is
on board of ARISTOTELES, and the measurements received on both frequencies are
used to eliminate the first-order propagation effect. Only the method of least-squares
collocation was applied in the downward continuation of the satellite accelerations to
analyze the effects of this error source on the recovered gravity anomalies/geoid undu-
lations.

The results of these tests are listed in Table 8.18. In all simulations, a 30-days
ARISTOTELES orbital arc was taken into consideration. Only radial accelerations
were used in the downward continuation. As can be seen from the equations (8.8a)-
(8.8d), the ionospheric delay has its greatest effect on measurements when the GPS
satellite is low above the ARISTOTELES horizon and the signal path through the
ionosphere is relatively long. Therefore, the accuracy of accelerations in the longitude
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Table 8.18 Effect of measurement noise and ionospheric propagation on the gravity
field recovery (OSU86F minus GEM-T1 gravity field).

noise range percentage of elevation rms of dif. rms of dif.
measurements first-order cut-off angle  radial acc.  recovered ano./geoid
(mm) ion. (%) (deg.) (mgal) (mgal)/(m)
0.0 0 0 0.36 9.54/0.47
1.0 0 0 0.59 11.42/0.59
2.0 0 0 0.96 12.58/0.67
0.0 5 10 0.38 10.29/0.51
2.0 5 10 1.14 13.14/0.72
2.0mn 5 10 1.14 10.53/--
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and latitude directions will be deteriorated more than the accuracy of radial accelera-
tions. Thus, the effect of including the accelerations in the longitude and latitude direc-
tions on the gravity field recovery will even be more reduced. For the worst case simu-
lation, the rms of differences between point gravity anomalies and their a priori values
is equal to 13.14 mgal, compared to a power of the a priori point anomalies of 19.89
mgal (Table 8.1). For 16-point mean 1° x 1° gravity anomalies the rms of differences
of the recovered anomalies with the a priori values is equal to 10.53 mgal, compared
to a signal magnitude of the a priori values of 17.35 mgal. If the SST GPS measure-
ments have a noise level of 2.0 mm, the rms of differences for geoid undulations -
increases from 67 cm to 72 cm, if first-order ionospheric delay errors are included,
whereas the power of the a priori geoid undulations is equal to 2.36 m. Thus, still a
large part of the gravity field above degree 36 may be recovered in the regional
approach. As stated before, improvements can be made if GPS SST measurements dur-
ing a full ARISTOTELES repeat period can be used.

8.8 Conclusions

In the downward continuation of satellite accelerations measured at an altitude of
160-200 km to gravity anomalies/geoid undulations on the Earth’s surface, three
parameters play an important role: the resolution of the distribution of the accelera-
tions, their altitude above the Earth’s surface and their accuracy. The simulations show
that the resolution must be at least equal to the required resolution of the gravity
anomalies/geoid undulations on the Earth’s surface. With an altitude range of 160 to
200 km above the Earth, the accuracy of the measured satellite accelerations must be
of the order of 1 mgal, if mean 1° x 1° gravity anomalies are to be recovered with an
accuracy of 5 mgal and point geoid undulations with an accuracy of 0.5 m. The 200
km altitude seems to be the maximum allowable altitude, if a resolution of gravity
anomalies/geoid undulations of 1° in both the longitude and latitude directions on the
Earth’s surface is strived for.

The simulations performed in this study demonstrate the capability of a GPS
receiver on board of the ARISTOTELES satellite to recover regional information about
the high-frequency gravity field (above degree 36) of the Earth. The simulations have
demonstrated that through SST valuable information can be determined up to degree
and order 100 of a spherical harmonic expansion of the gravity field of the Earth. Two
very important parameters used in the simulations are the sampling rate of 2.5 s and a
measurement noise of 0-2 mm for the GPS SST range measurements. Current ground-
based GPS receivers have shown the ability to perform GPS carrier phase measure-
ments with a 1 s sampling rate and a precision of better than 0.5 cm. If this precision
can be represented by uncorrelated measurement noise with a standard deviation of 0.5
cm, it can be shown that this is equivalent to a sampling rate of 2.5 s with a noise of
3.2 mm. If future space-borne GPS receivers can achieve a comparable accuracy, the
assumptions made about these parameters seem to be realistic. However, to achieve the
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precision of 0.5 cm in the carrier phase measurements, a two-frequency receiver is
required on board of ARISTOTELES.

Using only GPS, it seems difficult to meet the mission objectives of ARISTO-
TELES: a 5 mgal mean 1° x 1° gravity anomaly accuracy and a 0.10 m geoid undula-
tion accuracy. However, this study does show the ability of a GPS receiver on board
of ARISTOTELES to significantly support the gradiometer mission. In this context it
is recalled that in this study only 1/3 of a repeat period of the ARISTOTELES orbit
has been simulated, leading to a far from perfect coverage of the investigated geo-
graphical area. A GPS receiver can definitely contribute to the improvement of our
knowledge of the low-degree part of the gravity field, and by that in higher quality
ARISTOTELES orbits.
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9. Global gravity field recovery error analyses from satellite-to-
satellite tracking and gradiometry

9.1 Introduction

In the previous Chapters, local gravity field recovery from gradiometry and GPS
SST tracking of ARISTOTELES was investigated. This Chapter describes a method to
estimate the formal error of the global gravity field harmonic coefficients from data
acquired on board of the Low Earth Orbiter ARISTOTELES. These data were assumed
to consist of gradiometer data or precise GPS SST range measurements. It must be
noted that in the local gravity field recovery, first satellite accelerations were deter-
mined from the GPS SST measurements, and these accelerations were continued
downward to gravity anomalies/geoid undulations on the Earth’s surface. However, in
the global gravity field recovery error analyses, the GPS SST measurements were
assumed to deliver precise information of the ARISTOTELES position perturbations in
the radial, along-track and cross-track perturbations. These perturbations can be con-
nected with the (global) gravity field harmonic coefficients by the linear perturbation
theory, which was introduced in Chapter 2. »

One of the ARISTOTELES mission goals is to solve for the gravity field with a
resolution of 100 km. For a global gravity field recovery, this implies the set up of
normal equations for more than 30,000 harmonic coefficients. With the expected abun-
dance of gradiometer and GPS SST range measurements, it will be obvious that it is
an immense task to compute and solve the normal equations for this number of unk-
nown harmonic coefficients in a straightforward manner.

Therefore, various simplifying assumptions are usually introduced. The starting point
in all simulations of formal error estimates was a circular reference repeat orbit. For
the GPS SST range measurements, it was assumed in this study that the measurements
to each GPS satellite in view of ARISTOTELES (with the full GPS configuration
always at least 5 GPS satellites will be in view of the ARISTOTELES satellite) will be
transformed to measurements in the satellite along-track, cross-track and radial direc-
tion (the x, y and z directions of the satellite local-horizontal, local-vertical triad). Also
the gradiometer measurements were assumed to be available in this local triad. The
time interval between successive measurements was taken constant during a complete
repeat period.

With the preceding assumptions it can be shown that the normal matrix has a special
structure (Colombo, 1984; Schrama, 1990; see also: Section 6.3 and Appendix D).
Attention to this phenomenon will be paid in the first part of this Chapter, together
with an investigation of the signal contents of ARISTOTELES orbit perturbations and
gradiometer measurements. After this, the concept of global gravity field recovery error
analyses will be described.

In addition, attention will be paid to the required specifications of the
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ARISTOTELES GPS receiver in order to satisfy the mission objectives. In the first
place, this GPS receiver must deliver the information for a precise orbit computation
and in the second place for an accurate modeling of the gravity field for the low
degrees. In the third place, a GPS receiver will be necessary to deliver the low-
frequency gravity field information that will be missing in the gradiometer measure-
ments due to the bandwidth limitation of the gradiometer instrument. As indicated
before, the bandwidth limitation of the gradiometer hinders this gradiometer to observe
signals with a frequency below 0.005 Hz. Thus, with gradiometer measurements alone,
the low-frequency gravity field can not be determined. Therefore, gravity field recovery
error analyses were performed for several combinations of ARISTOTELES orbit per-
turbations (derived from the GPS SST range measurements) and gradiometer measure-
ments. The effect of the gradiometer bandwidth limitation was included in the investi-
gations.

In the analyses described in this Chapter, it was assumed that the ARISTOTELES
satellite will fly in a polar orbit at about 200 km altitude. However, in reality, this alti-
tude will be slightly non-polar (the inclination will be 96.3°, (CIGAR, 1989)). In that
case, no ARISTOTELES measurements will be available for the polar caps. To
analyze the effect of a non-polar ARISTOTELES orbit, also a few gravity field
recovery error analyses were performed, in which the inclination of the ARISTO-
TELES orbit was unequal to 90°.

9.2 Modeling of the ARISTOTELES measurements

If the gravity field potential is described by a spherical harmonic expansion, the
unknown part of the gravity field potential may be expressed by equation (1.8). From
this equation, any other gravity field induced signal along a near-circular satellite orbit,
in this Chapter the gravity tensor AT, or orbit perturbations Ar;, can be derived, where
the indices i and j denote the radlal along-track or cross-track direction. In order to
find these relations, equation (1.8) can be transformed into an equation using orbital
elements (equation (2.2a)). The chosen ARISTOTELES orbit is a circular repeat orbit,
i.e. the eccentricity e is equal to zero. For such an orbit, the combination of the equa-
tions (2.2a)-(2.2c) and (2.4a)-(2.4c), and the fact that the functions G q € of order
0D, yields:

e Jd uae
T=$33 % —i+1 Finp Clpg Simpg (@M 2.6) =

1+1
anax&. [
=3 ] Y 3 Fimp Simp (@+M ,Q-8) (9.12)

where



_ Aam l-m even
S,,,,p (o+M Q-0) = [__ A§Im] I-m odd cos((I-2p Y(o+M Y+m (Q2-0)) +

AC,, |1-m odd S(U-2p) @M )+m (Q-8)) . (9.1b)

In the following two parts of this Section linear relations will be discussed that con-
nect the unknown gravity field harmonic coefficients with the orbit perturbations or the
gradiometer measurements. In the last part of this Section, the structure of the normal
matrix is discussed that is obtained if gravity field harmonic coefficients are estimated
from a global set of gradiometer and orbit perturbations, which are derived from GPS
SST range measurements.

A-g_m]l -m even

9.2.1 Orbit perturbations

The Hill equations describe the linearized equations of motion along a circular refer-
ence orbit (Dunning, 1973). If T (equations (9.1a)-(9.1b)) is used as the disturbing
potential, the equations are the ones already derived in Chapter 2, i.e. the equations
(2.6a)-(2.6c). These equations establish the relation between the disturbing potential T
and the orbit perturbations in the radial, along-track and cross-track directions. These
perturbations were assumed to be recovered with great precision from the GPS-
measurements. Use will be made of the characteristic that for an exact repeat orbit,
these equations become true Fourier series (Colombo, 1984).

9.2.2 Gradiometer measurements

In this Section, the linear relations connecting the unknown C, , S, and the gravity
Im

tensor components I';. are established for a circular reference orbit. Because it is
expected that no precise gradiometer measurements with a component in the along-
track (the so-called less-sensitive axis) direction are obtained, because this is the direc-
tion of the relatively large and fluctuating drag, only relations have to be established
for I‘ I‘ and F . In (Schrama, 1990; Rummel, 1990) the following relations were
denved

r, =T 9.22)

ar

r - cos@M)| 1 T 1 9T
24 sini roroQ ,20Q
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Combining the equations (9.1a)-(9.1b) and (9.2a)-(9.2¢) yields:
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where

S mp (0+M Q-0) = sin((/ ~2p Y(@+M Y+m (Q-8)) —
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In addition to the equations (2.6a)-(2.6¢) for the orbit perturbations, also the equations
(9.3a)-(9.3c) become true Fourier series for an exact repeat orbit.

9.2.3 Structure of the normal matrix

It has been stated that for a circular repeat orbit, the linear relations connecting the
unknown harmonic coefficients with the gradiometer and GPS observations (or orbit
perturbations) can be represented by Fourier series. If many observations are made
during a complete repeat period and a constant sampling-rate is applied, it can be
shown that the normal matrix becomes block-diagonal if organized per order
(Colombo, 1984; Schrama, 1990; Rummel, 1990; see also: Appendix D). The measure-
ments behave as true Fourier series, and for different orders m of the gravity field
coefficients, the frequencies of the orbit perturbations or gradiometer signal caused by
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such coefficients become decorrelated (provided a perfect coverage). The greatest
dimension of these blocks is equal to approximately half the maximum degree of the
gravity field harmonic expansion that is to be determined (Appendix D). The inversion
of the total normal matrix transforms to an inversion of block-matrices with dimen-
sions much smaller than the total number of unknowns for harmonic expansions up to
high degree and order. This prevents very costly computer runs and, in addition, only a
small part of the total normal matrix (only the blocks on the diagonal) has to be
stored.

9.3 Orbit perturbations and tensor signal

A quantitative analysis was performed showing the information content of orbit per-
turbations in the satellite orbit frame (radial, along-track and cross-track directions) and
of the gradiometric signal along the circular reference repeat orbit. Use was made of
the equations (9.3a)-(9.3d) and (2.6a)-(2.6¢c), giving the relations between orbit pertur-
bations and gradiometer components and a certain gravity field harmonic coefficient.

The OSUBGF gravity field model truncated at degree 180 was used to compute the
Fourier series of the orbit perturbations and of the gradiometric signal along the satel-
lite orbit. The cut-off at degree 180 is justified by considering the resolution of 100 km
of the gravity field strived for with the ARISTOTELES mission.

The effect of the gradiometer bandwidth, i.e. certain frequencies are not observable,
on the signal content was also investigated. The ARISTOTELES satellite was assumed
to be in a 200 km altitude polar orbit (i = 90°). The repeat period was taken equal to
91 days, in which the satellite completes 1479 revolutions.

9.3.1 Orbit perturbations

The frequency spectrum of the orbit perturbations as described by the linear pertur-
bation theory (LPT) was computed using the OSU86F gravity field model from degree
37 to 180. The part of the OSU8GF gravity field below degree 37 was neglected,
because it has been shown extensively in other studies that the GPS measurements
acquired on board of ARISTOTELES can be used to solve this part of the gravity field
to great precision (Smith et al.,, 1988; Wu and Yunk, 1986a and 1986b; Colombo,
1990). Attention to low-degree gravity field recovery from orbit perturbations will be
paid in Section 9.4.1. Another important question that will be addressed is whether it
is possible to recover the gravity field for degrees above degree 36 from GPS SST
measurements to ARISTOTELES.

In the Figures 9.1-9.3, the frequency spectra of the orbit perturbations for this part
of the gravity field are displayed. The rss of the amplitudes of these spectra are listed
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in Table 9.1. The rss-value for the cross-track perturbations is 12.16 m compared to
14.28 m and 778.07 m for the radial and along-track perturbations. The high value for
the along-track perturbations is caused by very high peaks close to O cpr, with ampli-
tudes up to 766.42 m. As can be seen in the Figures 9.1-9.3, the frequency spectrum
of the radial orbit perturbations is more spread over the higher frequencies compared
to the frequency spectra of the along-track and cross-track perturbations. Above about
30 cpr, the amplitudes of the cross-track perturbations (Figure 9.2) are smaller than
those of the radial perturbations (Figure 9.1), and amplitudes of the along-track pertur-
bations drop very quickly for frequencies above 10 cpr (Figure 9.3). Therefore, it is
expected that if a gravity field is recovered from radial orbit perturbations, the errors
of this recovered gravity field, especially of the high-degree part, will be smaller than
the errors of gravity fields that have to be recovered from either along-track or cross-
track perturbations.

9.3.2 Gradiometer measurements

The Fourier series for I',, I',  and I'yy were computed using the OSUS6F gravity
field model to degree and order "180. Thé frequency spectra are displayed in the Fig-
ures 9.4-9.6. Studying these Figures, it is directly obvious that, compared to orbit per-
turbations, the larger part of the power of the gradiometric signal can be found at
higher orbital frequencies (note that the vertical scale of the Figures 9.1-9.3 is loga-
rithmic and of the Figures 9.4-9.6 linear). This concentration at the higher frequencies
becomes even more pronounced if, as in the computation of the frequency spectra of
the ARISTOTELES orbit perturbations, only the part of the OSUS6F gravity field
above degree 36 is used in the computation of the gradiometer frequency spectra.
Thus, the gradiometric signal is expected to deliver more information about the high-
degree terms of the gravity field than the orbit perturbations of the ARISTOTELES
satellite. Comparing the Figures 9.4-9.6, it can be seen that the amplitudes of the gra-
diometer component I' are higher than those of the other displayed in these Figures.
In reality, the gradiometer can not observe signals with a frequency below about 27
cpr due to the limited gradiometer bandwidth (0.005-5 Hz). Because gravity field terms
with a degree below 28 almost only cause gradiometer signals with a frequency below
28 cpr (equations (9.3a)-(9.3d) and (2.2d)), the part of the gravity field below degree
28 is unobservable using the gradiometer measurements. To study the effect of the
limited gradiometer bandwidth, the rss of the amplitudes of the frequency spectrum
was computed both for excluding and including the part of the OSU8GF gravity field
model below degree 28. However, not only the part of the gravity field below degree
28 is unobservable, also a part of the gravity field above degree 28 is unobservable,
because gravity field terms with a degree above 28 also produce gradiometer signals
with a frequency below 27 cpr. This effect was studied by applying a frequency cut-
off equal to 27 cpr, i.e. in the computation of the rss-values of the amplitudes of the
gradiometer spectra, those amplitudes that belong to a frequency below 27 cpr were
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Table 9.1 Frequency analysis of ARISTOTELES orbit perturbations using
OSUB86F from degree 37 to 180.

radial (cm) along-track (m)  cross-track (m)
ISS 14.28 778.07 12.16

Table 9.2 Frequency analysis of gravity tensor components measured at the ARIS-
TOTELES altitude.

OSUS8G6F from degree 1 to 180

cof I'zz r 2y I‘yy

(cpr) (EU) (EU) (EU)

Iss 0.0 0.40 0.28 0.24
rss  27.0 0.21 0.11 0.08

OSUS8GF from degree 28 to 180

cof

r r r
cm €O B @&

1SS 0.0 0.27 0.20 0.17
rss  27.0 0.21 0.11 0.08

cof = frequency cut-off.
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not included.

For example, sectorial coefficients almost only cause a gradiometric signal in the
very low frequency band (at least below 27 cpr) for a polar orbit. Figure 9.7 supports
this conclusion. In this Figure the average ratio of the gradiometric signal above 27 cpr
and the complete signal caused by harmonic coefficients is displayed as a function of
the degree minus order (I-m). It is concluded that for coefficients close to the sectorial
band the largest part of the gradiometric signal content is below 27 cpr.

The rss-values for the several cases are listed in Table 9.2. The exclusion of the
gravity field part below degree 28 reduces the rss-values by about 30 %, if the cut-off
frequency is not applied. For example, the rss-value for I'  reduces from 0.40 EU to
0.27 EU. If also the frequency cut-off is applied, the rss-values drop an extra 30 to 50
%, from 0.27 EU to 0.21 EU for I’ , from 0.20 EU to 0.11 EU for I', , and from 0.17
EU to 0.08 EU for I‘yy If the frequency cut-off is apphcd the rss-v?lucs of the case
where the part of the gravity field below degree 28 is included are equal to the rss-
values where this part of the gravity field is excluded. This is in agreement with the
assumption that the gravity field part below degree 28 almost does not produce signals
with a frequency above 27 cpr. Therefore, it is concluded that the GPS SST range
measurements will be necessary to improve our knowledge of the low-degree gravity
field and to deliver the low-frequency information of the higher degree, especially sec-
torial, gravity field terms.

9.4 Global gravity field recovery error analyses

In this Section, results of global gravity field recovery error analyses will be dis-
cussed. In the first part of this Section, attention will be paid to gravity field recovery
error analyses from orbit perturbations which are assumed to be determined from GPS
SST range measurements. In the analyses described in the second part, gradiometer
measurements were the input of the gravity field recovery error analyses and the effect
of the gradiometer bandwidth limitation will be studied. It will be shown that this limi-
tation will prevent a stable gravity field solution. In addition, the orbit inclination will
be varied. In the last part, recovery experiments from combinations of orbit perturba-
tions and gradiometer measurements are described. It will be shown that the latter
combination is a very powerful concept that seems capable of solving bandwidth-
related problems.

In the simulations, it was assumed that the ARISTOTELES satellite was in a circu-
lar orbit at 200 km altitude and a nominal inclination equal to 90°, unless if another
value for the inclination is specified. As indicated before, this orbit has a repeat period
of 91 days, in which the satellite completes 1479 orbital revolutions. It was assumed
that one complete repeat period of observations will be available.



remaining power (%)

40 60 80 100

20

0 50 100 150

degree minus order |-m

Figure 9.7 Effect of gradiometer bandwidth on the power
of the I'zz gradiometer term, per harmonic coefficient

-165—-




9.4.1 Orbit perturbations

In the first place, the question is addressed whether it is possible to determine high-
accuracy low-degree gravity field models from GPS SST range measurements. Four
cases will be investigated. These four cases show the effect of the accuracy of
recovered orbit perturbations and the addition of a priori information on the gravity
field recovery. The accuracy of the recovered orbit perturbations will depend on the
availability of the several GPS SST measurement types. For example the precision of
C/A-code measurements is on the order of 5-10 m (Ambrosius et al., 1990). However,
if also P-code measurements will be available to the scientific community, this com-
munity will have GPS SST measurements with a precision on the order of 1 m. The
precision of carrier phase measurements may be on the millimeter-level (see also: Sec-
tion 7.1).

Case 1. It was assumed that future GPS receivers can deliver P-code/CA-code meas-
urements from which it is possible to determine the ARISTOTELES orbit with an
accuracy of 3 m in both the radial, along-track and cross-track directions. It was
assumed that this accuracy-level holds for all state-vectors which are separated each 60
s during a complete repeat period. From this data set of orbit perturbations, a gravity
field model complete to degree and order 36 is to be recovered. For this configuration,
the rms of the formal harmonic coefficient error estimates per degree are displayed in
Figure 9.8. Studying this Figure, it is obvious that an accuracy of 3 m for the orbit
perturbations is not sufficient to determine a high-accuracy low-degree gravity field
model if no additional information is available. Already for degrees above 20, the
estimated errors of the gravity field harmonic coefficients become greater than their
magnitude as predicted by Kaula’s rule of thumb (equation (1.3)).

Case 2. To show the current status of gravity field modeling, the normal equations
were used that led to the GEM-T2 gravity field model (Marsh et al., 1989a). This is
the inverse of the calibrated GEM-T2 covariance matrix that was also used in compu-
tations of Chapter 6. The part of this matrix that holds for the gravity field complete to
degree and order 36 was used to compute the formal error estimates of the gravity
field harmonic coefficients. As shown in Figure 9.8, these error estimates are well
below the error estimates of case 1.

Case 3. The question now arises whether the data set of case 1 can improve the
current status of gravity field modeling. To give an answer to this question, this data
set was added to the GEM-T2 normal matrix and new error estimates for the gravity
field harmonic coefficients were computed. These error estimates are only a little bit
smaller than those of case 2, i.c. with an accuracy of 3 m of the ARISTOTELES orbit
perturbations the accuracy of current gravity field models can not be improved dramat-
ically. With C/A-code measurements it will be difficult to determine an ARISTO-
TELES orbit with a precision of 3 m, and therefore the availability of P-code measure-
ments is highly desirable.
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Case 4. The state of the art in gravity field modeling can improve dramatically if also
accurate carrier phase measurements will be available that can deliver information
from which it is possible to compute ARISTOTELES orbit perturbations with an accu-
racy of 10 cm, with intervals of 1 min (this accuracy and time interval is anticipated
for the TOPEX/Poseidon mission, (Wu and Yunk, 1986a)). With only such a data set
of 10-cm accurate ARISTOTELES orbit perturbations (i.e. no a priori information), the
accuracy of current gravity field models can be improved by an order of magnitude
(Figure 9.8). It is therefore concluded that if the entire spectrum of GPS SST measure-
ments will be available, current low-degree gravity field models can be improved
significantly.

The question that arises now is whether it is possible to recover a gravity field
model for degrees above 36 if really accurate GPS SST range measurements become
available, for example carrier phase measurements with an accuracy of 1 cm. For that
purpose, gravity field recovery error analyses were performed in which it was assumed
that a gravity field model complete from degree 3 to degree and order 180 has to be
recovered. In these analyses, it was assumed that it will be possible to determine
ARISTOTELES orbit perturbations with an accuracy of 1 cm and with a state-vector
interval of 1 s. Comparable values were used in (Colombo, 1990; Schrama, 1990). It
was also assumed that high-accuracy orbit perturbations with a frequency below 2 cpr
will not be observable because of the basic low-frequency orbit errors. This was imple-
mented by assigning zero weight to orbit perturbations with a frequency below 2 cpr.
These major orbit errors are known to be for the greater part of a low frequency nature
(Chapter 3).

Formal error estimates of gravity field harmonic coefficients were computed using
orbit perturbations in the radial, along-track and cross-track directions separately, or all
together. Of course, the smallest error estimates are expected to be made if orbit per-
turbations in all three directions are combined. The result of the computations is
displayed in Figure 9.9. The decreasing line denotes the spectrum of the gravity field
as predicted by Kaula’s rule of thumb (equation (1.3)). The other four lines denote,
from above to below, the formal error estimates using only cross-track, along-track or
radial perturbations, or perturbations in all three directions in a combined solution. As
predicted in Section 9.3.1, indeed the error estimates are smaller for the case where
radial perturbations are used separately, compared to the cases where along-track or
cross-track perturbations are used separately. As indicated before, the combined solu-
tion will be the best one, but for higher degrees the results are close to the solution
using only the radial or along-track perturbations. For the combined solution, it seems
possible to obtain significant harmonic coefficient values for degrees up to 120, if the
previously described conditions are fulfilled.

The results displayed in Figure 9.9 hold for a measurement interval of 1 s and an
accuracy of the orbit perturbations equal to 1 cm. However, it may be interesting to
know how the error estimates change if these parameters are varied. It can be shown
that the following relation exists between the error estimates of the gravity field har-

monic coefficients C;, , S, and the sampling-rate and accuracy of the orbit perturba-
tions:
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oZ(orbit)At
62(CinsSim)

where o(orbit) is the orbit accuracy, At the measurement interval, and G(CI , Sl ) the
formal error estimate for the gravity field harmonic coefficients. Gravity,"ﬁcldm error
analyses were performed for several values of 62At and the results are displayed in
Figure 9.10. For example, if the orbit accuracy is 100 cm and the measurement inter-
val 100 s (o-zAt = 10 cm2s), the most upper line intersects the line of Kaula’s rule of
thumb at a degree equal to about 30. The lowest line is valid for 6%At = 1 cm?s. This
line is identical to the lowest line of Figure 9.9.

= constant (9.4)

9.4.2 Gradiometer measurements

Gravity field error analyses from gradiometer measurements for models complete to
degree and order 180 were performed. In the simulations related to the gradiometer
measurements, it was assumed first that frequencies below 2 cpr are not observable,
just as in the experiments of the Section 9.4.1. Gravity field recovery from gradiometer
measurements will also be corrupted by orbit errors. For example, if an orbit error Ar
(m) in the radial direction is made, the interaction of this error with the central term of
the Earth’s gravity field leads to a gradiometer I"_-error equal to (compare with equa-
tion (8.7)):

AT, = A - 10784 EU). ©.5)
r
For a 0.01 EU measurement accuracy, the consequence of equation (9.5) is that the
orbit must be reconstituted with an accuracy of 10 m, which is much above the 3 m
(Section 8.5.2) accuracy constraint necessary to fully exploit the GPS-carrier phase
information content.

With a measurement noise of 0.01 EU and a measurement interval of 4 s the simu-
lations led to results as displayed in Figure 9.11. The monotonously decreasing line
again shows the spectrum of the gravity field as predicted by Kaula. The other four
lines denote, from above to below, the formal error estimates using respectively ',
I‘zy, ', and these three components in a combined solution. The fluctuations at i
low degrees are caused by the frequency truncation at 2 cpr. This truncation causes an
ill-conditioning of the normal matrix, especially for coefficients close to the sectorial
band. As expected, the use of I'_ yields the lowest formal error estimates compared to
the use of ' or I" . The solution in which all the three gradiometer components are
combined lecziz' of course, to the smallest error estimates. It can be concluded that with
this simulation set-up the gravity field can be solved to at least degree 180.

Additional simulations (with a frequency cut-off of 2 cpr) were performed for incli-
nations of 92°, 93° and 94°. For inclinations of 92° and 93°, the formal error estimates
are almost identical to the formal error estimates for an inclination of 90°, with the
exception of formal error estimates in the "saw-tooth" area. The saw-tooth pattern has
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of a gravity field recovery analysis from the ARISTOTELES gradiometer
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almost disappeared (Figures 9.12 and 9.13). This is caused by the better sampling of
fluctuations caused by coefficients close to the sectorial band for the low degrees,
which results in a better conditioning of the normal equations. This also leads to
smaller fluctuations in the rms error spectrum for the low degrees. For an inclination
of 94°, the normal equations blew up and no significant results were obtained. This
may be explained by the fact that it is tried to solve for harmonic coefficients up to
degree 180, i.e. a resolution of 1°, whereas a polar cap of 4° is not covered by the
ground track of the ARISTOTELES orbit. Although in reality the ARISTOTELES
satellite will be in an orbit with an inclination of approximately 96°, the problem of an
instable normal matrix may and will be overcome by including additional information
in the normal equations. For example, the spectrum of the magnitude of gravity field
coefficients as a function of the degree / as predicted by Kaula’s rule of thumb (equa-
tion (1.3)) may be added (regularization, (Schrama, 1990)), or separate observations
over the polar cap or even simulated polar observations with a value equal to zero may
be added to the normal equations. In these cases, the gravity field model obtained will
be accurate over the entire globe covered by ARISTOTELES orbits, but with a
deterioration of the accuracy over the polar caps.

As indicated before, gradiometer signals with a frequency below 27 cpr will be
unobservable. If a frequency cut-off of 27 cpr was applied, the normal equations, in
this case for a gravity field from degree 37 to 180, blew up and no significant error
estimates were obtained. This result indicates that even with the normal matrix of a
high-accuracy gravity field model complete to degree and order 36 added to the normal
matrix of the gradiometer measurements, the bandwidth-limitation related problems can
not be solved. In the next Section, attention will be paid to the question whether the
addition of normal equations computed from precise ARISTOTELES orbit perturba-
tions can help to solve this problem.

9.4.3 Combination of orbit perturbations and gradiometer measurements

As stated in the previous Section, problems arise in the gravity field recovery from
gradiometer measurements, if frequencies below 27 cpr are not observable. The addi-
tion of normal equations computed from precise orbit perturbations might help to over-
come these problems. To investigate this, first a simulation was performed in which
the normal equations, computed from orbit perturbations in all three directions with a 1
cm accuracy and 1 s measurement interval (i.e. the configuration that led to Figure 9.9)
were added to the normal equations from the gradiometer measurements (all three
components) with a frequency truncation at 27 cpr. This led to a stable solution and a
highly-accurate gravity field model can be determined (lowest line in Figure 9.14).
Also cases in which the accuracy of the orbit perturbations is equal to 10 cm (second
line from below in Figure 9.14) and equal to 3 m (third line from below in Figure
9.14) with measurement intervals equal to 60 s were included in the investigations. In
the latter two cases it was assumed that also the orbit perturbations below 2 cpr could
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Figure 9.13 Propagated error spectrum from gradiometer measurements
if the orbit inclination is equal to 93° (compare with Figure 9.11)

-173—-




rms formal error

10~"07'30 M0 %10 21081077

1 1 i

50 100 150

degree |

Figure 9.14 Propagated error spectrum of gravity field recovery
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be determined with this accuracy. For the higher degrees, all the three solutions con-
verge to each other, and the gradiometer signal contents determines the quality of the
solution. However, for the lower degrees great differences in gravity field accuracy
may be distinguished. The quality of the low-degree gravity field recovery is for the
greater part determined by the accuracy of the orbit perturbations. It is obvious that a
high-quality GPS receiver will be necessary to fully exploit the information content of
the gradiometer measurements and to facilitate a high-accuracy low- to medium-degree
gravity field recovery. It may be concluded that the gradiometer really needs an addi-
tional measurement device in the form of a GPS receiver, which can deliver precise
information of the ARISTOTELES orbit perturbations, especially in the low-frequency
band. Similar conclusions were also drawn in (Schrama, 1990).

9.5 Comparison with local gravity field recovery

The formal error estimates for the gravity field harmonic coefficients can be used to
determine the accuracy of gravity anomalies and geoid undulations on the Earth’s sur-
face. Variances can be computed as a function of the harmonic degree and these
values can be used as input for the covariance function computing algorithms
described in Chapter 7. In this way the results of the global gravity field recovery error
analyses with the GPS-ARISTOTELES configuration can be compared with those of
the local recovery. In the local recovery, the measurement time interval was equal to
2.5 s and the nominal noise equal to 2.0 mm, while in the global error analyses values
of respectively 1.0 s and 1.0 cm were used. However, with equation (9.4), it can be
shown that in the global gravity field recovery error analyses a measurement interval
equal to 2.5 s and a noise of 6 mm leads to equivalent results. This equation indicates
that in the global gravity field recovery error analyses, the formal harmonic coefficient
error estimates are obtained by multiplying the inverse of the normal matrix with a
factor equal to oz(orbit)At. Thus the degree variances computed from the formal error
estimates are based on less accurate measurements than the measurements used in the
deterministic local gravity field recovery simulations. However, this is partially com-
pensated by the fact that in the global gravity field recovery error analyses it was
assumed that measurements will be available for a complete repeat period, i.e. 3 times
as long as the simulated 30-days period in the local gravity field recovery simulations.

The standard deviations for the gravity anomalies and geoid undulations computed
from the formal error estimates of the global gravity field error analyses become as
specified in Table 9.3. With the GPS-ARISTOTELES configuration, the gravity field
can be recovered complete to degree and order 120 with an accuracy of 4.15 mgal for
gravity anomalies and 24.8 cm for geoid undulations (commission errors of the gravity
field part complete to degree and order 120). Above degree 120, the degree variances
become greater than Kaula’s rule of thumb. In the local recovery, the rms of
differences between the a priori and recovered gravity anomalies and geoid undulations
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Table 9.3 Standard deviation of (point) gravity anomalies and geoid undulations
with the formal harmonic coefficient error estimates.

Figure minimum maximum Ag (mgal) N (cm)
degree degree

9.9 1 120 4.15 24.8
99 1 180 70.16 2744
9.11 1 180 0.21 1.5
9.11 28 180 0.21 09
9.12 1 180 0.21 14
9.13 1 180 0.21 14
9.14 1 180 0.21 0.9
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were respectively about 12 mgal and about 65 cm (Table 8.15). However, in the local
gravity field recovery, the a priori values were computed with a gravity field model
complete to degree and order 360. If the (omission) effect of the gravity field from
degree 121 to 360 is added, the standard deviations of the gravity anomalies and the
geoid undulations for the global recovery become 12.9 mgal and 53.5 cm. These
values compare very well with those of the local recovery. The geoid undulations seem
to be better recoverable on a global basis. This can be explained by the fact that these
undulations have a more pronounced long-wavelength nature than gravity anomalies.
In a global gravity field recovery, the "missing information” for the long-wavelength
terms will be available.

As was to be expected, the addition of gradiometer measurements improves the
accuracy of the gravity field drastically, especially for the higher degrees. The commis-
sion errors for gravity anomalies and geoid undulations for a gravity field solution
complete to degree and order 180 are 0.21 mgal and 0.9 cm, respectively, if gra-
diometry and GPS SST are combined (best solution, lowest line in Figure 9.14). How-
ever, these numbers are based only on pure formal error estimates, i.e. the gravity field
model complete to degree and order 180 describes the "real-world". In reality, omis-
sion errors and errors due to mismodeling of e.g. non-conservative forces, errors in
modeling the gradiometer measurements due to uncertainties in the ARISTOTELES
attitude, orbit errors (equation (9.5)), etc., must be added.

9.6 Conclusions

Although a number of simplifications was applied in the theory of formal error esti-
mates, this theory is a valuable tool to gain insight in the gravity field recovery from
ARISTOTELES gradiometer measurements and satellite orbit perturbations derived
from GPS SST range measurements. In addition, the global gravity field recovery
simulation results are in agreement with the results of the local gravity field recovery
simulation results (Chapters 7 and 8).

It was shown that with the implementation of a high-quality GPS receiver on board
of ARISTOTELES it is possible to improve current low-degree gravity field models
drastically, if such a receiver is capable of delivering information from which it is pos-
sible to determine ARISTOTELES orbit perturbations with an accuracy on the order of
10 cm at measurement intervals of 60 s. If this accuracy is 1 cm and the measurement
interval 1 s, even valuable information of the gravity field can be obtained up to
degree and order 120. The effect of several parameters has been studied, including the
inclination of the satellite orbit and the limited gradiometer bandwidth. An inclination
of the satellite orbit close to 90° (polar orbit) leads to the best monitoring of the
Earth’s global gravity field. If the inclination differs too much from 90°, extra informa-
tion of the gravity field above the polar caps is necessary to stabilize the normal equa-
tions for a high-degree gravity field recovery. It was found that a deviation of 4° from
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the true polar inclination already resulted in a very instable set of normal equations.

The gradiometer bandwidth limitation, i.e. the fact that the low-frequency band (<27
cpr) of the gravity tensor is not observable, requires additional information of some
gravity field induced signal in the low-frequency band. A GPS receiver seems capable
of delivering this information in the form of precise SST range measurements to the
ARISTOTELES satellite, from which precise orbit perturbations can be derived. The
combination of a high-quality GPS receiver and a gradiometer on board of ARISTO-
TELES seems to be the optimum solution to achieve a gravity field recovery with the
resolution and accuracy strived for.
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Part IV. Conclusions, bibliography, appendices

10. Conclusions

In the time period 1988-1992, the author of this thesis has performed various studies
on the application of tracking data to compute precise satellite orbits and on the appli-
cation of satellite observations to determine the gravity field, the marine geoid and the
dynamic sea surface topography. These studies have demonstrated the feasibility to use
existing satellite data sets to further improve the gravity field modeling, satellite pre-
cise orbit determination and the modeling of oceanic phenomena. Moreover, the possi-
bilities in these fields of new satellite altimeter missions, satellite-to-satellite tracking
and gradiometry have been addressed.

This Chapter will present a summary of the techniques developed and applied in the
first three parts of this thesis and the results obtained. Conclusions will be made based
on the results obtained in each part separately.

In the first part of this thesis, an analytical theory for the modeling of satellite orbit
perturbations and orbit errors was presented: the Linear Perturbation Theory (LPT).
Orbit perturbations computed with this theory were compared with perturbations
obtained from a numerical orbit integration process for an ERS-1-like satellite orbit. It
was shown that these perturbations were in very good agreement with each other: 90%
of the orbit perturbations found from the numerical integration could be modeled with
the analytical theory, both for the radial, along-track and cross-track directions. More-
over, it was shown that the remaining analytical modeling errors were for the greater
part concentrated at the zero and one cycle-per-orbital-revolution (cpr) frequency (reso-
nance). In a real precise orbit determination process, these errors will be absorbed for
the larger part by the adjustment of the satellite epoch state-vector. Therefore, it was
concluded that the LPT is an appropriate tool for modeling orbit errors. Advantages of
the LPT in comparison to numerical orbit integration are that the LPT is computation-
ally very efficient and can predict and explain the effect of individual gravity field
terms very easily.

In the second part of this thesis, the application of the LPT to satellite altimeter
measurements led to very promising results in the field of orbit error modeling, gravity
field model adjustment and modeling of the long-wavelength semi-permanent dynamic
sea surface topography.

In Chapter S it was described how the LPT was applied to SEASAT laser range
measurement residuals and residual altimeter crossover differences. These residuals
were reduced from initial rms-values of 56 and 62 cm for the GEM-T1 gravity field
model, to 50 and 40 cm with the LPT. These improvements were obtained by adjust-
ing only a limited set of gravity field coefficients (120 unknowns) and were
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comparable to the improvements obtained by the numerical orbit integration and
parameter estimation program GEODYN. This again demonstrated the strength of the
LPT and also justified the use of the LPT in gravity field parameter estimation. More-
over, the implementation of the LPT in this estimation process was computationally
more efficient than the parameter estimation process of GEODYN.

In Chapter 6, a so-called integrated approach was formulated to achieve simultane-
ously a gravity field model adjustment and a solution for the long-wavelength dynamic
sea surface topography from satellite altimetry. Also in this approach the LPT was
implemented successfully to model radial orbit errors and gravity field induced geoid
errors. The approach led to very promising results in the fields of orbit error modeling,
gravity field improvement and the modeling of the dynamic sea surface topography
and the large-scale ocean circulation. For the GEOSAT satellite, the rms of the radial
orbit errors was reduced from an initial level of about 35 cm for GEM-T2 orbits to
about 16 cm. Moreover, differences between the GEM-T2 geoid and the OSU89b
geoid were reduced by about 100 cm. The differences between the dynamic sea
heights computed with the "new" model and other published models were on the order
of 30 cm, within the range of the predicted standard deviation of the "new" model.

It was found that an important parameter for the success of the integrated approach,
i.e. the successful separation of ocean and gravity field signals from altimetry, was the
weight assigned to the a priori information about the input gravity field model. By
using the known accuracy of the GEM-T2 model (available calibrated covariance
matrix), which was the a priori gravity field model in the integrated approach, the
long-wavelength terms of this model could be constrained and separated from the
long-wavelength dynamic sea surface topography terms. Moreover, this separation was
strengthened by the addition of residual crossover differences, which added in principle
only information about radial orbit errors. Also, a priori information about the magni-
tude of long-wavelength dynamic sea surface topography terms was implemented suc-
cessfully. Finally, it was found that the last problem encountered in the integrated
approach, i.e. the high correlations between the 1 cpr state-vector error and the term of
the dynamic sea surface topography with /=1 and m=0, could be solved by assigning
constraints with a magnitude comparable to the known radial orbit modeling accuracy
to these state-vector terms.

All these procedures led to a separation of the gravity field and dynamic sea surface
topography solutions of better than 80 % (the correlation between the two solutions
was equal to -0.18). The rms of the standard deviation of the dynamic sea heights was
equal to 10 cm for the oceans, and of the geoid computed with the adjusted GEM-T2
model equal to 20 cm. The rms of these dynamic sea heights was equal to 65 cm,
about 7 times the rms of their standard deviations. Further tests with the covariance
matrix of the adjusted GEM-T2 model showed the consistency of the approach. In the
first place, the calibrated GEM-T2 radial orbit error decreased from 20 cm to 10 cm,
consistent with the decrease of the rms-values of the a priori residual crossover
differences to the rms-values of the a posteriori residual crossover differences.
Secondly, the standard deviation of the geoid undulations of the new model was equal
to 54 cm, comparing very well with the rms of differences of 65 cm between the
OSU89b (truncated at degree and order 36) and adjusted GEM-T2 geoid (complete to



degree and order 36). Finally, it was found that the magnitudes of both the dynamic
sea surface topography coefficients and gravity field model adjustments were consistent
with the reduction of the rms-values of the residual crossover differences and sea
height residuals when subtracting corrections using these coefficients and adjustments.

In addition, variations in the long-wavelength models fitted through successive 17-
day periods (ERM’s) of two years of fully-corrected GEOSAT sea height residuals
(using the adjusted gravity field model and the "new" dynamic sea surface topography
model) were determined. This analysis led to 43 17-day long-wavelength residual
ocean surface topography solutions. The variability of these solutions was equal to 7
cm. The variations of these solutions exhibited a clear annual cycle, demonstrating the
enormous potential of satellite altimetry to study oceanographic and climatological
phenomena. With ERS-1, launched in July 1991, and TOPEX/Poseidon, to be launched
in mid 1992, and the ongoing development in gravity field modeling and orbit determi-
nation, the impact of altimetry in geodesy, geophysics, oceanography and related sub-
jects, such as climatology, will grow and grow. Especially the ERS-1 will deliver a
wide variety of observations, e.g. altimeter height observations, wind-speed measure-
ments and sea surface temperature measurements. These measurements can be used in
the development of ocean circulation models and climatological models. The variety of
measurements will enable the answering of the basic question of what mechanism is
behind the observed cycles in the sea height residuals obtained from the GEOSAT
altimeter measurements.

In the third part of this thesis, simulation studies have shown the enormous potential
of the concepts of satellite-to-satellite tracking (SST) and satellite gradiometry in
extending our knowledge of the gravity field of the Earth, both on a local and global
scale. Especially the combination of these two concepts will undoubtedly lead to very
promising results in this field. The first mentioned concept will be very important for
improving the modeling of low- and medium-degree gravity field terms, i.e. to degree
and order 80-120, and the second concept will be essential for improving medium- and
high-degree terms, i.e. from degree 30 up to greater than 180. This would mean that
gravity on Earth can be modeled with a resolution better than 100 km.

Local gravity field recovery using satellite-to-satellite tracking of ARISTOTELES
with the GPS system was investigated in the Chapters 7 and 8. This concept was
assumed to be capable of delivering carrier phase measurements with a sampling rate
of 2.5 s and an accuracy on the order of a few millimeters. It is expected that this pre-
cision level will be achieved with future high-quality space-borne GPS receivers. With
these values it seems possible to determine the ARISTOTELES orbital accelerations
with an accuracy of 1.0 mgal. That accuracy will allow the modeling of gravity
anomalies and geoid undulations on the Earth’s surface with a precision of respectively
about 10 mgal and 65 cm, with a resolution on the order of 100 km. This means that
the objectives of the ARISTOTELES mission can not be achieved with measurements
from a GPS receiver alone, but that a great part of the high-degree gravity field up to
degree 100 can be recovered with highly-accurate GPS measurements to ARISTO-
TELES. Moreover, it was indicated in the local gravity field recovery covariance
analysis described in Chapter 7, that with the combination of precise ARISTOTELES
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satellite accelerations determined from GPS measurements and gradiometer measure-
ments, the ARISTOTELES objectives can be achieved. With gradiometer measure-
ments alone this will be very difficult, if not impossible. As will be concluded later,
the picture will even improve if a global data set of GPS measurements of the ARIS-
TOTELES orbit is available.

The determination of gravity anomalies and geoid undulations from the GPS-
ARISTOTELES range measurements consisted of a number of consecutive processing
steps. The first step was the computation of so-called "reference ARISTOTELES
orbits" and "computed” GPS SST range measurements with a low-degree and -order
gravity field model. The differences between the reference orbits and "real-world" .
ARISTOTELES orbits, simulated with a high-degree and -order gravity field model,
were on the order of 1 m. The "computed” range measurements were subtracted from
the "real-world" measurements to obtain range residuals. These residuals were also on
the order of 1 m.

The second step consisted of fitting a second-order polynomial through a number of
successive range residuals. The second-derivative of this polynomial was the so-called
residual acceleration. With a sampling rate of 2.5 s, the accuracy of this concept was
found to be equal to 0.08-0.20 mgal. Therefore, the concept using the second-order
polynomial was found to be appropriate. The residual accelerations were transformed
successfully to residual accelerations in the satellite radial, along-track and cross-track
direction by means of a geometrical method.

These residual accelerations were irregularly distributed over the selected local geo-
graphical area. A gridding procedure was developed that converted in the third step
this irregular grid of accelerations to a regular grid. This procedure was based on the
concept of least-squares collocation, a concept that has the capability of reducing the
effect of measurement noise and of estimating the accuracy of the accelerations in the
regular grid. With a measurement noise of 2.0 mm for the GPS SST range measure-
ments, it was possible to obtain regular grids of accelerations with an accuracy of 1.0
mgal for a resolution of 1° in the longitude and latitude directions. The altitude of this
grid was approximately 200 km and the resolution approximately 70 km at 50° lati-
tude. If the resolution was made smaller, the accuracy deteriorated.

In the fourth and final step, the regular grid of accelerations was continued down-
ward to gravity anomalies and geoid undulations by using the equations of Stokes or
by using the method of least-squares collocation. In this downward continuation of
satellite accelerations measured at an altitude of 160-200 km to gravity
anomalies/geoid heights on the Earth’s surface, three parameters were found to play an
important role: the resolution of the distribution of accelerations, their altitude above
the Earth’s surface and their accuracy. The simulations showed that the resolution must
be at least equal to the required resolution of the gravity anomalies/geoid heights on
the Earth’s surface. With an altitude range of 160 to 200 km above the Earth, the
accuracy of the measured satellite accelerations had to be on the order of 1 mgal, if
mean 1° x 1° gravity anomalies were to be recovered with an accuracy of 5 mgal, and
point geoid heights with an accuracy of 50 cm. The 200 km altitude seems to be the
maximum allowable altitude, if a resolution of gravity anomalies/geoid heights of 1° in
both the longitude and latitude directions on the Earth’s surface is strived for.
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The simulations performed showed the capability of a GPS receiver on board of the
ARISTOTELES satellite to recover information about the high-frequency gravity field
(above degree 36) of the Earth on a regional basis. The simulations demonstrated that
through SST valuable information can be obtained up to about degree 100 of a spheri-
cal harmonic expansion of the gravity field of the Earth. Two very important parame-
ters used in the simulations were the sampling rate of 2.5 s and a measurement noise
of 0-2 mm for the GPS SST range measurements. Current ground-based GPS receivers
have shown the ability to measure the GPS carrier phase with a 1 s sampling rate and
a precision of better than 0.5 cm. If future space-borne GPS receivers have comparable
capabilities, the assumptions made about these parameters seem to be realistic. How-
ever, to achieve the precision of 0.5 cm in the 1 s carrier phase measurements, a two-
frequency high-quality receiver is required on board of ARISTOTELES, in order to be
able to eliminate the first-order ionospheric propagation effect on the GPS measure-
ments.

Using only GPS on a regional basis, it seems difficult to meet the mission objectives
of ARISTOTELES: a 5 mgal mean 1° x 1° gravity anomaly accuracy and a 10 cm
geoid height accuracy. However, in the deterministic local gravity field recovery
experiments only 1/3 of a repeat period of the ARISTOTELES orbit was simulated,
leading to a far from perfect coverage of the investigated geographical area. The
results obtained in the deterministic local gravity field recovery experiments were
found to be in agreement with the results of a local gravity field recovery covariance
analysis. '

The concept of formal harmonic coefficient error estimation was applied to a global
satellite-to-satellite tracking and gradiometry numerical experiment. For the case that
the GPS receiver and gradiometer on board of ARISTOTELES deliver a data set of
observations with global coverage, it was possible to compute and invert normal equa-
tions for gravity field harmonic coefficients very efficiently. The simulations using this
concept indicated the possibility to determine a gravity field model with a high accu-
racy and a small resolution (<100 km), if a high-quality GPS receiver and gradiometer
are implemented on board of the ARISTOTELES satellite. Moreover, the combination
of GPS measurements with gradiometer measurements offers the possibility to over-
come problems associated with the gradiometer bandwidth limitation. It was also
shown that a high-quality GPS receiver is necessary to improve the current state-of-
the-art in low-degree gravity field modeling (i.e. up to degree and order 36).

The effect of several parameters was studied. These parameters included the orbital
inclination of ARISTOTELES and the gradiometer bandwidth. As to be expected, a
polar orbit leads to the best monitoring of the Earth’s global gravity field. If the incli-
nation differs too much from 90° (polar orbit), additional information of the gravity
field at the polar caps is necessary to stabilize the normal equations for a high-degree
gravity field recovery. Already for an inclination of 94°, the normal equations for a
gravity field recovery complete to degree and order 180 become singular without this
additional information.

The gradiometer bandwidth, i.e. the low-frequency band (<27 cpr) of the gravity
tensor is not observable, leads to singular normal equations if no additional
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information is added. However, a GPS receiver on board of ARISTOTELES seems to
be capable of delivering this information. Combining these two data types, a very
accurate and high-resolution gravity field recovery seems possibly, up to at least
degree and order 180. Using only GPS observations, a maximum degree and order
equal to 120 is the ultimate achievable. The assumptions made in the simulations were
a measurement noise of 1.0 cm and 0.01 EU for GPS and gradiometer measurements,
respectively, and a measurement time interval of 1.0 and 4.0 s, respectively. The glo-
bal gravity field recovery error analyses were in good agreement with the local gravity
field recovery simulation results.

In summary, the analyses described in this thesis have shown the tremendous possi-
bilities of altimetry (both past, SEASAT and GEOSAT, today, ERS-1, and future mis-
sions, TOPEX/Poseidon) and gradiometry/GPS-tracking (ARISTOTELES, Gravity
Probe B) in the field of geophysics, geodesy, oceanography and even climatology.
Especially the combination of altimetry and gravity field products from the ARISTO-
TELES mission seem to be very promising, because of the possibility to separate grav-
ity from oceanographic signals.
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Appendix A. Short description of satellite missions

- The most important satellite missions referenced in this thesis are the SEASAT,
GEOSAT and ERS-1 satellites and the future TOPEX/Poseidon and ARISTOTELES
satellites. In this Appendix, some characteristics of these satellites will be presented. In
addition, a short description will be given of the GPS navigation satellite system.

SEASAT. The US SEASAT satellite was launched in June 1978. One of the objectives
of this mission was to map the oceans with a radar altimeter. The noise level of this
instrument was claimed to be less than 10 cm. Unfortunately, this instrument has
delivered only three months of observations, but already with this data set very
encouraging results were obtained in the field of orbit determination, oceanography and
gravity field modeling. The SEASAT orbit had an average altitude of 800 km and an
inclination of 108°. The latter means that no altimeter measurements could be made
above 72° North latitude or below 72° South latitude. SEASAT has flown two orbits
with different ground track patterns. The data set used in this thesis, refers to an orbit
for which the ground track repeated itself after 3 days, in which the satellite completed
43 orbital revolutions.

GEOSAT. The US Navy satellite GEOSAT, a dedicated altimetry satellite, was
launched in 1985 and has delivered accurate altimeter observations for a period of
almost 5 years, until the satellite failed in January 1990. The first two years of this
mission were classified. After these two years, the satellite was maneuvered into a 17-
day repeat orbit and three years of altimeter observations have been made available to
the scientific community. The GEOSAT satellite was in an orbit comparable to the
SEASAT orbit: 800 km altitude and with an orbital inclination of 108°. For the
GEOSAT altimeter measurements used in this thesis, the repeat period was equal to 17
days, in which the satellite completed 244 orbital revolutions.

ERS-1. The European Remote-Sensing satellite ERS-1 was launched in July 1991 and
is equipped with a wide spectrum of Earth-observing instruments, one of them being a
radar altimeter. The Section Orbital Mechanics of the Delft University of Technology
(DUT/SOM) has been and still is involved in this mission. The ERS-1 satellite is in a
sun-synchronous orbit with an average altitude of 780 km an an inclination of 98°. The
ERS-1 satellite will be maneuvered into several repeat orbits, respectively a 3-day, 35-
day and 176-day repeat orbit. The selection of these repeat orbits was a trade-off
between temporal and spatial resolution of ocean phenomena.

TOPEX/Poseidon. The TOPEX/Poseidon satellite is a dedicated US/French altimeter
satellite, scheduled to be launched in June 1992. Preparations have been made for an
extremely precise orbit determination (the satellite will be equipped with a GPS
receiver) to be able to fully exploit the information content of the precise altimeter
observations, and to meet the ambitious objectives in the field of oceanography. The
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TOPEX/Poseidon satellite will be injected into a 1300 km altitude orbit with an incli-
nation of 63°. The satellite’s ground track will repeat itself after 10 days or 127 orbital
revolutions.

ARISTOTELES. The European/US solid Earth satellite ARISTOTELES is scheduled to
be launched in 1997. The objectives of this satellite are the determination of the
geomagnetic and gravity fields of the planet Earth to a high accuracy and spatial reso-
lution. The ARISTOTELES satellite orbit is scheduled to be flown in a 200 km alti-
tude, 96° inclined orbit for the gravity field part of the mission.

GPS. The Global Positioning System was developed to be a global, all-purpose satel-
lite navigation system. The final configuration will consist of 24 satellites (3 active
spares) at 20,000 km altitude (2 orbital revolutions per day) with inclinations of 55°
and 63°. The satellites will be distributed over 6 orbital planes, each shifted 60° in
their right ascension of ascending node. The final constellation is expected to reach its
completion in 1993.
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Appendix B. Partial derivatives of satellite laser range (SLR) measurements to
gravity field harmonic coefficients

The computation of partial derivatives of satellite laser range (SLR) measurements
to gravity field harmonic coefficients with the Linear Perturbation Theory (LPT) for a
circular reference orbit consists of the following steps:

a- determination of the unit vectors pointing in the orbital radial, along-track and

cross-track directions at all measurement times;

determination of the unit vector pointing in the direction from station to satellite at

all measurement times;

computation of the derivatives of the radial, along-track and cross—track perturba-

tions to the harmonic coefficients to be adjusted;

computation of the derivatives of the range between station and satellite to the

radial, along-track and cross-track directions;

e- combination of the steps a-d to the desired derivatives of SLR measurements to har-
monic coefficients to be adjusted.

b

o
|

d

Ad a. The unit vectors in radial, cross-track and along-track directions are determined
using Figure B.1 and the following relations:

cos(+M ) = cos(0—Q)cosd (B.1)
sin(w+M )cosy = cos(a—€2)sind (B.2)
sin(@w+M )cosi = cosdsin(0~Q) (B.3)

sin(o—£2) = sinysin(w+M ) (B.4)

sind = sini sin(@+M ) (B.5)

The desired directions, in the Earth-fixed reference system, are computed as follows:
cosdcos(o—0 2) u,(x)

radial : &, = |cosdsin(0-8,) | = |u,(y) (B.6)
sind u,(z)
sini sin(Q—Gg) u.(x)
cross ~track : &, = |-sini cos(Q-9,)| = |u, () (B.7)
cosi u.(z)
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—sin(w+M )cos(Q2-0 ¢ )-cos(a+M )cosi sin(Q2-6, )
along —track : &, = [-sin(o+M )sin(Q—Og H-cos(w+M )cosi cos(£2-0 )
cos(+M )sini

Uy (x)
= [ug(y) (B.8)

Ug(z)

It can easily be shown that an orthonormal system is obtained:
T, o, = I,ell, = W,ef, =0 (B.9a)
and
Hg =g, =g =1, (B.9b)
Suppose that (0-9)p is the ascending node passage at the time L and that the orbital
angular velocity can be written as: '
- d(@tM)
i

With (B.10) and (B.1)-(B.5) the unit vectors in the radial, along-track and cross-track
directions (equations (B.6)-(B.8)) at arbitrary time ¢ can be computed:

n (B.10)

sind = sini sinn (¢ -t,) (B.11)
cosd = ‘/1—sin28 (B.12)
t—t,
cos(o—-Q) = cosnt—tp) (B.13)
cosd
Sin(@—Q) = sinn (r—tp )cosi (B.14)'
cosd
-6 = (@-0),+280 )= (B.15)

cos(a—-eg) = cos(oz—Q+Q—(-)g) = cos(0—Q)cosB —sin(0—Q)sinB (B.16)

sin(a—eg) = sin(0—€2)cosB +sinB cos(a—Q) . (B.17)

Ad b. To determine the unit vector in the direction from station to satellite, the posi-
tion of the satellite in the Earth-fixed reference system must be determined. It is
assumed that the station coordinates in the Earth-fixed reference system are known:

Xsta
Tsta = |Ysta (B.18)

Zsta
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At the ascending node passage the longitude is taken equal to A, and the latitude ¢ is
equal to 0°. For an orbit inclination i greater than 90° (retrogradc satellite orbit) the
following relations can be derived (see also Figure B.2):

1- geocentric longitude :

s (B.19)
cos(w+M )20 — f = arctan [cos(l80°—i Ftan(o+M )] (B.20)
cos(0+M )<0 — f = arctan [cos(180°--i tan(w+M )]+180° (B.21)
2- geocentric latitude :
¢ = arcsin [sin(180°—-i )sin(w+M )] . (B.22)

The unit range vector can now be determined, with r the radius of the orbital trajec-
tory:

r cosPCosA—x,,

r cos¢psinA—y,,,

rsin—zg, (8.23)
Upange = p
where,
1
= [(r COSOCOSA—X g1 )>4+(r COSPSINA—Y o ) HH(F sind—z,, )2] 2 (B.24)

With the above derived unit vectors in the radial, along-track, cross-track and range
vector directions, a laser range residual with a value equal to resid can be split in com-
ponents in radial, along-track and cross-track directions:

(resid ) ggiq = resid (it 5g, 9id,) (B.25)
(resid)giong = resid o(if, gng, 98, ) (B.26)
(resid)cross = resid o(it, ,p,, oit,) (B.27)

Ad c. With the LPT the partial derivatives of the radial, along-track and cross-track
orbit perturbations to the harmonic coefficients to be adjusted can be computed. These
derivatives can be found by taking the partial derivatives of the equations (2.6a)-(2.6c)
to the harmonic coefficients.

Ad d. With the equations (B.6)-(B.8) the partial derivatives of the satellite vector

(Xsa0Ysar?sq) In the Earth-fixed reference system to radial (r), along-track (t) and
cross-track (c) directions can be computed:
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OX gy OYsar 0z,
— - mr— T B.28
ar‘ ur(x) ’ ar !‘(y) ’ ar ur(z) ( )
OX sz st 0zZ;4
= — ——— B.29
axsal sar azsat
- D ———r— ———— T B-30
o u.(x), % ), % u.(z) (B.30)
The SLR measurement can be modeled as:
p= \/(xsat_xsta) l()sa!_ysta )2 t (zsat_zsta) (B'31)

With the equations (B.28)-(B.31) the partial derivatives of the SLR measurements to
the radial, along-track and cross-track directions can be computed.

Ad e. If H is an harmonic coefficient C;,, or 5, and p the range between the ground
tracking station and the satellite, the derivative o’? this range to the harmonic H is:

O Al K D |
oH o (Xsar=Xstq) oH +(Vsar—Ysta) oH HZgar—Zgq) oH

r h
g

oH
_ Y sar

Urange® oH
0z5y
oH |

.

ra"sat or %y 9t e Q¢
aar aHTagz BHTaic oH
—_ Ysat Or sat OT sat ¢

+ + B.32
Hrange® 5, 9H T ot oH ' 9c oH ®.32)
azsau or ) azsat a1 . a2".~mt dc
| or OH 9t oH oc oH |
All elements of equation (B.32) can be computed with the equations (B.1)-(B.31) and

(2.6a)-(2.6c). Equation (B.32) is used in the computation of the observation equations
for SLR measurements in the gravity field tailoring experiments of Chapter 5.
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Appendix C. Statistical considerations

In this Appendix, relations are derived for the standard deviations of and correla-
tions between subset solutions of normal equations with a priori information. After
this, relations are derived for standard deviations of certain phenomena, if a covariance
matrix for a model describing these phenomena is available.

Suppose the following set of observation equations:

Ax =[ A, Az][i;]=R (C.1)

where x is the vector of unknowns divided in the subsets x; and x,, and R is the vector
of residuals. Further, the expectancy for each element of the vector x is assumed to be
equal to zero.

In addition, suppose a priori information in the form of inverse covariance matrices
G,; and G, for the subsets x; and x, and weight factors w, and w,. In this case, the
minimum-variance solution with a priori information reads:

-1
A 1TA 1+W IGl A2TA1

T
= R (C2)
x A ITA 2 A ZTA 2+W zG 2 A

Cy Cip

T T
= T AR =CA'R
Ciz Cp
The matrix C represents the a posteriori covariance matrix for the unknowns x, pro-
vided a proper calibration for this matrix, which is supposed to be the case.
The correction of an observation at a certain time ¢, by application of the subset
solution x; is:
N
correction, = YAy Xy (C.3)
i=1
where x; is a vector with N elements and A . is the element of row k and column i of
the matrix A,. The standard deviation for this correction is:

Gz(correctionk) = &{%A 16X l,i} = E{[%A l.kixl’i]l} (C4

i=1 i=]

N N N N
=E{Y YA 1A 1x1ix1 0 = X XA kA 14j0° (X))
i=1j=1 i=1j=1

In the derivation of equation (C.4) the zero expectancy of the elements of the vector x
was applied. The term oz(xl %1 1s equal to the element of the i’th row and the j'th
column of the matrix C 11 in equation (C.2):
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N N :
o*(correction;) = 3. T A1 ;A 1, C 11,ij (C.5)
i=lj=1

Taking all the observations nobs, equation (C.5) becomes:

nobs . nobs N N N N |nobs
Y o*(correction) = ¥ Y T A14A14C11 = L X4 LA 1A 14 (€ 11,ij (C.6)
k=1 k=1i=1j=1 i=1j=1]k=1

The summation between brackets is equal to the element (A ITA ] )ij; thus the rms of the
standard deviations is:

1
N N 2
O(correction) = —1—2 E(A ITA 1),-jC 11,ij (C7)
nobs ;511 '
In a similar way, equations for the standard deviation of the corrections with the solu-
tion for x, and the covariance of the corrections with the solutions for x; and X, can

be derived. The covariance of the subsets X, and X reads, if the vector Xy has M ele-
ments:

1 M N
8%(xyx9) = TZI 21(4 1TA;CT 1 (C.8)
i=lj=

1 N M T
= 'n—OI;ElEl(Az A1);iCraj -

Suppose the availability of a calibrated covariance matrix C of a model with N
parameters P; describing the phenomenon f. It is assumed that f is modeled by a linear
relation:

N
f=XfP;. (C.9)
i=l

It is possible to derive in the same way as in the derivation of equation (C.5) that the
variance of f is equal to:

) N N
o(f) = zazlfifjcij . (C.10)

= j= .
Examples of the matrix C may be calibrated gravity covariance matrices or covariance
matrices of the dynamic sea surface topography; examples of f may be amplitudes of
orbit perturbation frequencies, geoid heights or altimeter crossover differences at a cer-
tain geographical position, dynamic sea heights, etc.



Appendix D. Theory of formal error estimates from satellite observations with
a special geometry

This Appendix describes the theory of formal harmonic coefficient error estimates
when the LPT is applied to a data set of satellite observations with a special geometry.
It will be shown that under certain conditions normal equations for the harmonic
coefficients can be derived that are block-diagonal. Such a structure of the normal
matrix facilitates a quick inversion of this matrix, leading to the formal error estimates
of the harmonic coefficients.

In general, a gravity field induced signal or signal of the dynamic sea surface topog-
raphy f(g) along an almost circular satellite orbit can be described as a function of the
gravity field harmonic coefficients and the orbit parameters:

Imax 1 1
F@ =3 X 30 @mFimS @M Q0),,, . ®.1)
1=2m=0p=0
The factors Q(a), and F I are functions of respectively the semi-major axis and
the inclination of 't’g)e satellite orbit and are constants. Examples of f{g) may be satellite
orbit perturbations (Chapter 2) and gradiometer measurements (Chapter 9). The func-
tion S(co+M,Q-6)Imp can be written as:

S (@+M Q-8) 1, = T3y COS(f pp 1t +m A g =B, ") (D.2)
where,
‘,lm = '\/Clm +Slm ‘ (D°3)
o Sbn
arctanc—- l-m even
Blm* - S Im (D4)
arctan Im T l-m odd
Com 2
=[]-op TN
Fimp =1-20~2 (D.5)
n= \/ i‘? (D.6)

where 7La is the longitude at the ascending node passage, ¢ the time after this passage
and nr is the number of orbital revolutions per day.

It is assumed that the satellite is in an exact repeat orbit: the satellite makes nrev
orbital revolutions in nday nodal days. For such an orbit, equation (D.1) takes the form
of a Fourier series and nr is equal to nrev/nday . It is now supposed that in one repeat
period, N, observations are made with a constant sampling rate. If Simp 18 smaller than
the so-called Nyquist-frequency, the following relation can be derived (Colombo,
1984):
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N, o o
3 COS(f iy 1 AL+0)COS(f 1y, i A +00) = ? m#m or |-2p+l'-2p

i=1 ?Nm m=m’ 1-2p=1'-2p’

With the equations (D.1)-(D.7) it can be shown that for the Nm observations, the
harmonic coefficients of a certain order m are uncorrelated with harmonic coefficients
of any order m’ unequal to m for m,m’<nrev/2. This means that if normal equations are
computed for harmonic coefficients from satellite observations made by or to a satellite
in a repeat orbit with a constant sampling-rate, the normal matrix has a block-diagonal
structure, if this matrix is organized per order m (Figure D.1). The largest block has a
dimension less than two plus the maximum degree used in the spherical harmonic
expansion solved for (provided that this maximum degree is smaller than nrev/2). In
fact, the maximum dimension is half of this number, because also coefficients for even
and odd degree ! are uncorrelated. The inverse of the normal matrix is easily obtained
by taking the inverse of each block. This is a much smaller effort than computing the
inverse of the full matrix for e.g. 120,000 unknowns, if a gravity field model complete
to degree and order 360 is to be estimated.

Having computed the inverse, the formal error estimate of an harmonic coefficient is
found by taking the square root of the diagonal elements of the inverse and multiply-
ing this with the standard deviation or accuracy of the measurements.

The theory of formal error estimates may be applied to e.g. gravity field harmonic
coefficient estimation or dynamic sea surface topography harmonic coefficient estima-
tion or to a combination of the two from e.g. satellite altimeter measurements, gra-
diometer measurements or orbit perturbations. It must be noted that if two harmonic
models describing two different phenomena (e.g. gravity field and dynamic sea surface
topography, Chapter 6) are estimated together, the maximum dimension of a block
may become equal to two plus half the sum of the maximum degrees of each model.

“(D.7)

The theory of formal harmonic coefficient error estimates has been implemented in a
computer program (FORTRAN-code). This software is capable of estimating formal
error estimates of gravity field coefficients and/or coefficients for the dynamic sea sur-
face topography from any combination of the following observations:

1- satellite orbit perturbations in the radial, along-track and cross-track directions
(Chapters 6 and 9);

2- satellite altimeter observations (Chapter 6);

3- gradiometer components I, l" and I'_ (Chapter 9);

4- range-rates between two satelhtcs in )?;c same circular orbit but with a different
phase angle.

The parameters than can be manipulated in this software are the semi-major axis a,
the orbit inclination i, the repeat period in nodal days nday, the number of revolutions
in a repeat period nrev, the measurement interval At (or N ) and the noise of the
observations ©.



aven

degrees

odd
degrees

non—zero blocks
on diagonal

Figure D.1 Structure of the normal matrix
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Appendix E. Least-squares collocation covariance analysis

The estimate by least-squares collocation of a certain gravity field induced signal s
from gravity field induced observations ¢ reads (Chapter 7):

s =Ca(CytD )t (E.1)

where the diagonal elements of the matrix D consist of the square of the measurement
accuracy (variance of the measurement noise) and the off-diagonal elements of the
cross-correlations between the measurement accuracy of two observations (non-zero for
"colored" noise). The estimate of the standard deviation of the estimate for s becomes
(Moritz, 1980): :

o%(s) = E{(s -5)2} = C(0)-C4(Cy+D)1C, T (E.2)

where C(0) is equal to the value on the diagonal of the matrix C,. The estimate of the
correlation between the estimates s ] and §, can be written as:

(s 159 = E{(sl—Fl)(sz—s_z)} = C(0)1-Cy, (Cy+D)'C,,T . (E.3)
These equations are valid for point values of s. If the ‘mean of a certain number N of

- point values is computed, e.g. the mean of a regular distribution of N point values in a
1°x1° area on the Earth’s surface, the error estimate for this value can be found by:

2 1 N N
O Smean) = ﬁ'zl‘zlc(s 152) (EA4
i=l)=
where
1 N
Smean = 'ﬁz S; (E.5)



Appendix F. Adams-Moulton integrator

In order to be able to integrate satellite orbits with a high-degree and -order spheri-
cal harmonic expansion, an Adams-Moulton integrator with a Runge-Kutta initializa-
tion was developed. The integration takes place in a right-handed, Cartesian, geocentric
semi-inertial reference frame with the X-axis pointing in the direction of the Vernal
Equinox and the Z-axis pointing to the North-pole. The Earth is assumed to be rotating
with a constant angular velocity o, around the Z-axis.

The equations of motion that have to be integrated can be represented as:

X =f(tx) (E.1)

where x is the satellite state-vector that consists of the position vector x, y and z and
the velocity vector, i.e. the time derivatives of x, y and z in the semi-inertial reference
frame. The vector f(z,x) consists of the velocity vector and the gravity field force fac-
tor elements in the X-, Y- and Z-directions. The variable ¢ denotes the time.

The Adams-Moulton integrator is a multi-step method, a so-called predictor-
corrector method. The method as implemented in the software integrates with a con-
stant time step At. The rationale behind the Adams-Moulton integrator is the expansion
of the state-vector as a function of time in a Taylor-series. If the order is taken equal

to n, the state-vector at time tin is modeled as:
i A AT = AP 1, . A®
X = X+f (4. 0)At +f (ti,x;)—z'—-i-f (t,-,xi)?+....+f" l(ti,x‘-)—n-'— . (F2

The (multiple) time-derivatives of the vector f{(,x;) are computed by using again a
Taylor expansion with n-1 preceding values for this vector. In this way, a system of
equations has to be solved that reads, in matrix notation:

APY =FP (F.3)

where,
YT = (F 6.5 @) 6T e " 005) (F.4)
FPY = F 6T GG o fi Do Gt Finss)) . (E5)

The elements of the matrix AP can be written as:

__ [a-i)Anu-b
UG-
Solving the equations (F.3) and inserting this solution in equation (F.2), the predicted
state-vector can be written as:

AP (F.6)

n -
i =5+ Xpif Waasj T - E.7)
j=1

Equation (F.7) represents the predictor step. For a certain integration step At, the
coefficients p; are constants. The predicted state-vector xpi +7 1s used to predict the
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value f(r. iv 1' +7)- After this, a same procedure as used in the predictor step is used
to compute thc (multxplc) time-derivatives of the vector f(t ,x) from n-2 preceding
values for this vector and the value f(t;, ;, ¥, ;). Again a set of equations similar to
equation (F.3) has to be solved:

A°Y =F°¢, (F.8)

The vector of unknowns Y can be represented by equation (F.4). The vector F© can be
written as:

(FC)T = (f(ti+1,fpi+1)f(ti,fi)f(‘i-lxi—l)’ ------- f(t.'.n+2fi_n+2)) . F.9)
The elements of the matrix A become:

_i VA 1G-D
y=leal ('I)AI’)], : (F.10)

Solving the equations (F.8) and inserting this solution in equation (F.2) dehvers a rela-
tion comparable to equation (F.7):

AC

—— n ——
X = Xte f (X i)+ X 6if (njoBiaa-j) - (E.11)
2
Equation (F.11) represents the corrector step. Also the coefficients ¢; are constants for
a constant time step Af.

In order to be able to start the Adams-Moulton integrator, » values for the vector
f(t,x) must be known. However, the state-vector x is only known at the epoch time Ly
This so-called initialization is performed with a fourth-order Runge-Kutta integrator:

Xin = fi‘"'g(k1+kz+’"r3+k4) (F.12)

where,

ky = Atef (1,,%;) | (F.13a)

ko= Atef (t‘~+%At,f,~+lAtql?l) (F.13b)

2

k= Atef (t,-+%-At ,J?‘-+l

) Atek,) (F.13c)

ks = Atef (t;+At T +At ok ) . (F.13d)

The order of the Adams-Moulton integrator can be chosen much higher than the order
of this Runge-Kutta initialization. Thus relatively large initialization errors can be
made. Therefore, an advanced start-up procedure was developed. For an n-th order
Adams-Moulton orbit integration, this start-up procedure consisted of the following
steps:

1- integrate n-1 time steps Ar backwards with Runge-Kutta;
2- integrate n-1 time steps Az forward with the Adams-Moulton integrator using the
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3-

4-

5-

values of the first step;

integrate again n-1 time steps Ar backwards but now with the Adams-Moulton
integrator using the values of the second step or fourth step when available;
integrate again n-1 time steps At forward with the Adams-Moulton integrator using
the values of the third step; v
repeat the steps 3 and 4 (in the following referred to as an iteration) until conver-
gence.

The start-up procedure was applied in the computation of the ERS-1 orbits used in
the simulations described in Chapter 3. To show the convergence of the initializa-
tion procedure, the state-vector at a time equal to to+At (i.e. the first point after
epoch) was stored after the initialization step number 2 (1 state-vector) and after
each iteration i (until convergence). The position and velocity differences between
these successive state-vectors are displayed in Figure F.1. The values displayed are
defined as:

Aposition =N (X 11=X, Y4+ 1 =;)H(i 11-2;)* (F.14a)
Avelocity = N (i 1% 0419 +Eiy1—2;)° . (F.14b)

As can be seen from Figure F.1, the initialization converges logarithmically. After 7
iterations the differences have become negligible: the position differences have
become less than 0.01 pm and the velocity differences equal to zero.
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Figure F.1 Initialization of ERS—1 orbit integration
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Plate I: Dynamic sea heights (m) from the new SST-model
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Plate 1ll: Standard deviation (cm) of the adjusted geoid
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Plate IV: Standard deviation (cm) of the new SST-model
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