
See Clearly, Act Intelligently: Transformers in
Transparent Environments

Omar Elamin
Supervisor(s): Frank A. Oliehoek, Jinke He

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Omar Elamin
Final project course: CSE3000 Research Project
Thesis committee: Frank A. Oliehoek, Jinke He, Mathijs de Weerdt

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract—Traditionally, Recurrent Neural Networks (RNNs)
are used to predict the sequential dynamics of the environment.
With the advancement and breakthroughs of Transformer
models, there has been demonstrated improvement in the
performance & sample efficiency of Transformers as world
models. The focus has been on partially-observable environments
where their capabilities can be maximally utilised. In this paper,
we sought to investigate the conditions under which transformers
outperform RNNs given a fully observable environment where
states obey the Markov property. This provides insight
into transformers’ generalisation and predictive capabilities.
Specifically, our experiments explored the impact of model
complexity and the size of the dataset. We observed that
transformers did not outperform our baseline implementation
when given up to 7000 episodes of trajectory data. It was
also observed that having shorter sequence lengths had a
negligible impact on the performance of the model, leading to
our recommendation of avoiding using transformers in these fully
observable environments.

I. INTRODUCTION

Transformers are the state-of-the-art (SOTA) technology
responsible for the recent breakthroughs in Natural
Language Processing (NLP) such as the Generative
Pre-trained Transformer (GPT) [1] & Bidirectional Encoder
Representations from Transformer (BERT) [2]. Transformers
excel in handling sequential data due to their ability to capture
long-range dependencies through self-attention [3]. An agent’s
actions in reinforcement learning are sequential by nature, and
the current state of the art is to use Recurrent Neural Networks
(RNNs) to capture this [4]. RNNs suffer from exploding &
disappearing gradients, which is exacerbated when trying to
capture longer-range dependencies [5]. Transformers do not
have this limitation.

Furthermore, Transformers as applied to NLP are trained
on words. Language is rich in features and intricate patterns,
and the models are trained using a self-supervised learning
objective. These properties are directly transferable to learning
world models in Model-Based Reinforcement Learning
(MBRL), making transformers a potential replacement for
traditional RNN implementations.

Several studies have explored this applicability. For
instance, Micheli, Alonso, and Fleuret [6] observed a 70%
improvement in mean human normalised score on Atari 100k
over Self-Predictive Representations (SPR) [7], the second
best performing model, establishing a new state-of-the art
for methods without lookahead. TransDreamer from Chen,
Wu, Yoon, et al. [8] uses a Transformer State-Space Model
in place of the Recurrent State-Space Model in DreamerV2
and matches its performance on most tasks, as well as
outperforming it on complex tasks that require long-term,
complex memory interaction. These studies assume a partially
observable environment where the capabilities are largely
utilised.

In fully observable environments where states satisfy the
Markov property, the dynamics of the environment are
known and sequences are shorter. This limits the utility of
transformers and thus has not been adequately explored,
highlighting a knowledge gap regarding the performance and

utility of transformers in these environments. Specifically,
it allows us to examine the capability of transformers in
capturing past signals that give more informed insights for
making predictions, and whether these signals can amount
to giving enough information to allow the transformer to
outperform a more traditional approach. Crucially, the benefit
of identifying this is it allows us to understand if the added
computational overhead is justifiable.

Using a baseline model based on DreamerV2 [4] &
EfficientZero [9], We will investigate the question “Under what
conditions do transformers enhance the planning performance
of model-based reinforcement learning in fully observable
environments compared to conventional methods?”

We will begin by introducing the background & the existing
work related to our investigation (section II). We will then
outline the details of the implementation of the transformer
based on IRIS [6], as well as the evaluation and data collection
techniques (section III). Then we will investigate how model
size (subsection IV-E) & dataset size (subsection IV-F) impact
performance.

II. BACKGROUND

MBRL, as opposed to model-free reinforcement learning,
involves building a model of the world the agent is operating
in, to make more informed & ideally optimal decisions.
Specifically, instead of directly learning a reward function
Q(s, a) for a state-action pair, we build a model that learns
a deterministic state transition function T (s, a) → s′ that
outputs a resultant state s′, and a reward function R(S, a) →
r that outputs a reward. The following sections introduce
some concepts relevant to the implementation used in the
experiments.

A. Autoencoders

To process the states in a deep-network architecture, we
must represent the information meaningfully to the model. The
information related to the current state of the world is given
as images, represented in RGB pixel data format. This format
is largely non-descriptive for the world model’s goals. Thus,
a method of reducing the dimensionality of the input into a
more descriptive latent space is necessary, and autoencoders
are the SOTA [10].

An autoencoder is a symmetrical network architecture
where the same input is used as the expected output to learn
meaningful latent data representations. This can be seen in
Figure 1, where the useful representation is learned in the
central bottleneck portion.

A discrete autoencoder works similarly, but instead of
learning the model in a continuous space, it learns a set of
N discrete latents [12] and the output of the encoder part in
Figure 1 is mapped to the closest discrete latent.

B. Recurrent State-Space Model

In DreamerV2, a “Recurrent State-Space Model” is used,
combining the stochastic transitions of State-Space Models
and the deterministic transitions in RNNs to split their problem

Figure 1: Architecture of an autoencoder, Adapted from: [11]

into deterministic & stochastic components. This recurrent
state space model operates on the latent space and predicts
dynamics from one latent representation to another [13].

Our environment is fully deterministic, and so the baseline
model provided omitted this functionality, opting instead for
what is functionally a recurrent dynamics model that learns
the transitions T (s, a) in a latent space.

C. Transformers

Transformers provide an alternative approach to modelling
sequential dependencies in data, using a mechanism called
attention popularised by Vaswani, Shazeer, Parmar, et al. [3]
in 2017. Focusing on this form of causal attention in an
auto-regressive transformer, it can be thought of as a method
of looking back at past events and searching for different
“patterns” of dependencies. Each search for a “pattern” is
called an attention head, and collectively sending out h
attention heads allows the model to gain h different types of
insight into how the past affected the current state.

This insight is then incorporated into the latent
representation of the current state, allowing the transformer to
generate a distribution of possible next states using this newly
enriched latent vector. Sampling from this distribution gives a
possible prediction for the next state. This process is chained
to generate prediction chains of arbitrary length. This chaining
process is what makes the transformer “auto-regressive”.

D. Transformers as World Models

The paper by Micheli, Alonso, and Fleuret [6] explores the
applicability of transformers as world models. They use an
auto-regressive transformer with a discrete autoencoder, where
the dynamics of the world are modelled as sequences, captured
by the transformer.

The state vectors input to the transformer are represented as
a vector of indices zt = (z1t , z

2
t , ..., z

K
t) corresponding to the

discrete latents from an embedding lookup table E = {ei}Ni=1.
An input image xt is passed through a CNN to produce an
output yt, which is mapped to the closest embedding s.t. zkt =
argmini||ykt −ei||. This discrete autoencoder method is taken
from Oord, Vinyals, and Kavukcuoglu [12].

The transformer then takes an input sequence such as
(z1t , z

2
t , ..., z

K
t , at, z

1
t+1, ..., z

K
t+1, at+1), which is a sequence

of two state-action pairs, and processes it as described in
subsection II-C. This is illustrated in Figure 2. In this figure, it

can be seen that the world model predicts the reward rt+1 as
expected, but it also predicts a terminal flag dt+1, alongside
the next state zt+2.

III. METHODS

To learn a model of the environment and evaluate it in an
offline setting, a few steps must be taken. Firstly, a dataset
of an agent interacting with the environment is necessary for
training. Secondly, a method of using the environment model
to learn a policy function must be implemented for evaluation.

A. Deep Q-Network

Deep Q-Network (DQN) is a model-free reinforcement
learning algorithm where the goal is to learn a policy
that maximises the cumulative reward by approximating the
optimal action-value function Q(s, a) [14]. DQN primarily
uses a deep neural network to estimate Q-values, combining
the benefits of reinforcement learning and deep learning.

An agent selects actions using an ϵ-greedy strategy. This
means that at each point the agent selects either a purely
random action with probability ϵ, or the optimal Q-value with
probability 1− ϵ. This is annealed linearly to eventually lead
the agent to choose optimal Q-values only.

This generates interaction data from the environment that
can be used to train the world model. Using this approach
provides high-quality & meaningful trajectories, rewards, and
terminal data.

B. Monte Carlo Tree Search

It is also necessary to try to use the world model to make
decisions in order to evaluate its competence. This can be done
using Monte Carlo Tree Search (MCTS), which is a search
algorithm used in decision-making processes, particularly
effective in games and complex decision environments [15]. It
works by building a search tree incrementally, using random
roll-outs from its leaves to estimate the value, in turn helping
determine the optimal decisions to take.

MCTS is used in the learned world model to search through
the imagined search space and determine optimal actions.
These actions can then be taken in the real environment and
evaluated based on future rewards. This provides a numerical
measure of the planning performance of the world model.

C. Transformer World Model

Most importantly, a choice of implementation for the
transformer is necessary. This will be implemented using the
transformer from IRIS, utilising the fact that it was developed
for a very similar use case. The paper by Micheli, Alonso, and
Fleuret [6] does not motivate using the discrete autoencoder
and learning an index-based language in the transformer to
represent the states. Therefore, in the interest of controlling
the scope of the experiment, this step will be omitted.

We can therefore use the latent representation of the
state st concatenated with the action yielding a vector
(s1t , s

2
t , ..., s

K
t , at). This vector can be passed through the

embedding network similar to Figure 3 to yield a new

Figure 2: Transformer Architecture in IRIS, Adapted from: [6]. It can be see that the index set representing the state is paired with the
action and then passed through the transformer producing a reward, done probability, and a next state. This can be paired with a new action
to continue this auto-regressive prediction chain.

embedding xt. The transformer thus takes input sequences
of the form ((x1

t , ..., x
K
t), (x1

t+1, ..., x
K
t+1), ...).

PositionalEncoding =

{
sin(ed∗i) index is even
cos(ed∗i) index is odd

(1)

This sequence is passed through a positional encoder. IRIS
did not have a positional encoder as a part of their transformer
implementation, so one was created for the purposes of this
experiment. Positional encoders incorporate information about
the state’s position in the sequence into its vector, so that the
attention heads can learn to look for them. The calculated
positional encoding is simply added to the existing state
vector and the result is used as input for the transformer.
In Equation 1, d is a constant divisor term that depends on
the embedding dimension, and i is the index. Essentially this
encodes each position in the sequence in a unique way such
that it is meaningful to the transformer. This approach is taken
from Vaswani, Shazeer, Parmar, et al. [3].

Loss = wdyn·Lossdyn+wrep·Lossrep+wreward·Lossreward

+ wdone · Lossdone + wrec · Lossrec (2)

Training the transformer is quite involved, since sequences
must be retrieved and we do not want to retrieve sequences that
overflow into new episodes. The dataset was therefore grouped
by episode, and each batch iteration a random sequence
sample of length sequence length is taken from the episode.
Additionally, it was observed that the model was quickly
getting stuck in local minima by minimising the dynamics
loss and ignoring the others, since this could be achieved by
simply making all embeddings close to zero. To solve this, we
introduced weight parameters to the model for each loss term,
and increased the weight of the reconstruction loss in order to
learn the embedding first, then learn the dynamics based on

this. The formula for the loss can be found in Equation 2, and
these corresponding paramters in Table I.

IV. EXPERIMENTS

Using the two implementations of world models, an
investigation into what factors cause one model to outperform
the other was employed. It was specifically desirable to
investigate whether larger transformers are superior to a large
baseline model and whether one improves at a quicker rate
when more data is provided.

Performance is measured using the future rewards obtained
by using the imagination of the world model in MCTS
to take actions. This gives an indication of the planning
performance of the world model. We are specifically interested
in transformer’s generalisation capabilities. Given limited data,
the model ability to generalise to unseen states vs over fitting
to its training set is an aspect that could provide insight
into transformer’s capabilities. The intuition is motivated
by Transformer’s demonstrated sample efficiency in partially
observable envrionments [6].

A. Environment & Setup

The environment chosen for this research is the MinAtar
breakout environment. This environment is minimal, with its
images being only 10x10 in size, as well as being much
simpler than the traditional breakout game. Given that this
investigation uses transformers, which are heavily demanding
models, it is infeasible within the scope of this research to
use larger or more complex environments. Additionally, it is
paramount to the core of the investigation that the environment
is fully observable and Markov, which a simpler environment
like MinAtar breakout satisfies.

B. Hypotheses

There are a couple factors to consider when hypothesising
on how the models will preform. The first and major one
is what the gained utility of looking at past states is. It is

reasonable to expect that past states might include some clearer
signals that are useful for future state prediction, even if that
signal is also present in the current state from the Markov
property (though less clear). It is these signals that could give
the transformer an advantage from looking into the past.

Additionally, the architecture of the transformer might
provide some superiority over the baseline model. The
attention heads may prove to be a more effective way of
retrieving the relevant information from the past state(s) to
predict the future state. This may be true even if we are only
using timestep t− 1 for future prediction.

However, it is also possible that these factors along with
the fact that transformers are inherently larger models than a
simple 3-layer MLP, that it is prone to over fitting to the data.

The hypothesis however for this experiment, is that the
transformer will outperform the baseline when there is less
data, due to its proven ability to be more sample efficient [6],
but as more data is available, the baseline should match its
performance.

In terms of model size, the transformer’s architecture
is inherently larger, and so is more capable of capturing
more information and so the second hypothesis is that the
transformer will outperform the baseline for larger latent space
dimensions.

C. Baseline Model
To evaluate the transformer, there is a need for an

implementation to be used as the baseline. The implementation
provided for this purpose is a sequence model inspired
by DreamerV2 [9] & EfficientZero [4]. This model has
three components: a representation net E, a reconstruction
net D, and a dynamics net M . E and D together make
up the autoencoder, while M learns the transition function
T (s, a), the reward function R(s, a), and a terminal function
d(s) → [0, 1] which determines a probability of whether
taking an action at a given state yields a terminal. Specific
hyperparameters can be found in Table II. Additionally, the
code is available in the project repository.

Figure 3: Architecture of the Baseline Model

D. Transformer Hyperparameters
Using the hyperparameter set from IRIS as a starting point,

and tuning them to optimise performance & convergence

Hyperparameter Value
Batch Size 128
Number of Epochs 500
Learning Rate 0.00025
Embedding Dimension 256
Sequence Length 20
Number of Layers 10
Number of Attention Heads 4
Dropout on Embeddings 0
Dropout on Attention 0
Dropout on Residual Connections 0
Weight Dynamics Loss 10
Weight Reconstruction loss 20
Weight Representation loss 0.1
Weight Reward loss 0.1
Weight Done loss 0.1
Table I: Hyperparameters used in Transformer implementation.

of losses, the set of parameters in Table I were chosen.
The decision was taken to fix the context sequence length
parameter to 20 in order to meaningfully evaluate the use case
of the transformer, despite the fact that low sequence lengths
were displaying equal or better results (see subsection IV-G).

Figure 4: Mean Undiscounted Reward of Baseline Model with 7000
episodes. The ranges represent the 95% confidence interval.

E. Experiment 1: Model Size

Firstly, an investigation into how model size affected
performance was conducted. Larger models can encapsulate
more information, but can be susceptible to over-fitting and
are harder to learn. A core part of the size of the model
is the size of the embedding dimension, as it dictates the
number of hidden features the models can use to represent
the environment. This makes this variable the ideal candidate
for an independent variable in a model size experiment.

It was observed that, firstly, the baseline model appears to
perform better when the model size increased. This can be

observed in Figure 4, where the mean reward of an embeeding
of 256 was 2.54, compared to 2.08 when the embedding was
128.

Conversely, the transformer seems to perform more poorly
when the model size is increased. This can be observed in
Figure 5, where an embedding size of 128 yielded a mean
reward of 3.3, compared to 2.5 from 256.

Figure 5: Mean Undiscounted Reward of Transformer Model with
7000 episodes. The ranges represent the 95% confidence interval.

F. Experiment 2: Dataset Size

The second experiment is related to changing the amount
of data given a dataset of 7000 episodes. The models were
trained on 1000, 3000, & 7000 episodes and evaluated for
planning performance.

Figure 6: Mean Undiscounted Reward of Baseline Model with
embedding size 256. The ranges represent the 95% confidence
interval. Given the quicker evaluation runs of the baseline, it was
also feasible to run it for the 5000 episode checkpoint.

As expected, more data proved to be more useful for both
models. The transformer however seems to not be benefiting
much after 3000 episodes (see Figure 7), with a slight but
statistically insignificant decrease in performance from 3000
to 7000 episodes.

The baseline seems to perform worse after 5000 episodes,
achieving 5.41 mean rewards at 5000 episodes, but with 7000
it achieves a mere 2.54. These results can be seen in Figure 6.

Figure 7: Mean Undiscounted Reward of Transformer Model with
embedding size 256. The ranges represent the 95% confidence
interval.

Hyperparameter Value
Batch Size 128
Number of Epochs 30
Learning Rate 0.00025
Embedding Dimension 128
Dimension of Hidden Decoder Layers 64

Table II: Hyperparameters used in Baseline implementation.

G. Experiment 3: Sequence Length

In order to gain insight into the utility of transformer’s
sequence modelling strengths in these environments,
investigating the impact of shorter sequences on the
performance is useful. It was observed that shorter sequence
had little to no impact on performance. Using sequence length
1 yielded the best performance seen from any of the models,
5.5 mean reward.

Figure 8: Mean Undiscounted Reward of Transformer using 7000
episodes. The ranges represent the 95% confidence interval.

V. DISCUSSION

Having detailed the experiment and the resulting outcomes,
this discussion section will provide a critical & insightful
analysis of these results. For ease of comparison of the two

models, refer to Figure 9. For all its intents and purposes,
usage of “statistically significant” refers to a 95% confidence
interval.

Figure 9: Heat map of Rewards and Std Errors for different
episodes/embedding size combinations. T represents a transformer
run, and B represents a baseline run.

A. Experiment 1: Model Size

The model size experiments showed minor changes
in planning performance, with a statistically insignificant
decrease in performance for the transformer, meaning we
cannot conclude that it had any real impact on performance
given our dataset. On the other hand, the baseline model did
experience an increase in performance that was statistically
significant.

This poses a challenge, since this same baseline model has
shown superior performance with a 128 embedding dimension
when more data is given to the model. One reason for this
could be that the model is performing better with larger
embedding sizes when there is less data since the model can
try to over fit to what it has a little more effectively with a
larger latent space.

B. Experiment 2: Dataset Size

The dataset size experiments analysed the impact of giving
more data to the model on it’s planning performance. It
was observed that more data improved or did not change
performance except in the case of of the baseline model when
using an embedding of size 256, and going from 3000 episodes
to 7000. The resulting rewards decrease by over 9 standard
errors, which is clearly a significant loss. This is not the case

for the same step in dataset size when the embedding size is
128, where the decrease in insignificant.

A possible explanation for this reduction is again referring
back to this over fitting idea. Learning from more data leads
to less over fitting to the original data, meaning the model is
likely learning more information about states of the game that
are later on, when behaviour is more optimal, but losing some
accuracy in the early game in the process. This loss can be
exacerbated when dealing with a larger latent space, and so
could explain this significant reduction in accuracy.

C. Experiment 3: Sequence Length

The outcome of this experiment highlights a key potential
issue with the approach of using the past in a fully
observable environment; this procedure simply adds noise
to the prediction. By limiting the sequence length to 1 and
observing this remarkable performance it can be inferred that
there is little to gain by looking in the past, and thus the
variable that would have allowed transformers to excel is no
longer a factor.

On the other hand, it also opens up the door to an
exploration of different baseline models to capture the
dynamics of the environment. Since it showcases that a
different technique of using the last state to predict the future
can outperform the baseline. This is not an indication of
transformers being superior to traditional approaches, rather
that there is room for improvement in the baseline model.

D. Limitations

These results highlight a significant limitation of the
experiments, and that is amount of data. It is clear from
these results that 7000 episodes is not enough to evaluate the
efficacy of the model. The reason for the choice of 7000 is
due to memory constraints in the hardware available, where
7000 episodes was using 16GB of RAM, and asking for
more from the DHPC cluster would result in infeasible queue
times. Future work should look at optimising the memory
usage of the dataset loader for the transformer learning loop,
and training the models with much more data. This was
unfortunately not feasible within the time frame of this project,
given the already implementation-heavy aspect of it.

Additionally, the results are sensitive to the random state
of the program, due to various elements such as the random
weight initialisation, dataset shuffling & splitting, and neuron
dropout, among others. Ideally, one would run the experiments
with several different seeds and ensure that the results are
reproducible. Due to the time constraints of this project, and
the lengthy training time of these models, this was infeasible.

Another limitation of these results pertains to the chosen
baseline model. Although it was developed using established
methodologies, there is an inherent limitation in that it may not
accurately represent the state-of-the-art approach. It is possible
that an alternative architecture for the baseline model could
significantly outperform the transformer.

Due to the scope of this project, the MinAtar environment
was chosen for its simplicity. This provides a valuable initial

probe into the capabilities of these models, however, there is an
intrinsic limitation in this simplicity in that it raises concerns
regarding the scalability of the results.

E. Future Work

Given these limitations, and to ensure that the results are
robust and broadly applicable, future work should explore the
areas of reproducibility, choice of baseline model, scalability,
transformer enhancements, and real-world deployment.

In terms of reproducibility, it is recommended to run
experiments with different random seeds to assess the stability
of the results and mitigate the sensitivity to randomness.

Regarding the baseline model, future work could explore
variations such as Convolutional Neural Networks or
Long-Short Term Memory models. Additionally, more
extensive hyper-parameter tuning could be carried out to find a
more optimal set of parameters for the current baseline model.

Considering MinAtar’s simplicity, future work should
explore more complex environments, such as a non-simplified
version of Atari Breakout, to reinforce the reliability of the
results found in this study.

Furthermore, investigating different types of transformers,
particularly those incorporating memory mechanisms or
hierarchical attention, could potentially enhance performance
further.

Finally, to understand the practical utility of these
techniques, they should be deployed in real-world scenarios.
This will provide a more concrete evaluation of their
performance beyond theoretical justifications.

VI. RESPONSIBLE RESEARCH

To ensure that this research is being conducted responsibly,
it is important to analyse both the reproducibility & integrity
of the contents of the paper. Additionally, it is imperative to
consider the contexts in which the findings of this paper could
be used in a way that is harmful to individuals or society at
large.

For full reproducibility, all code used to generate any results
in this paper is available in the project repository. Additionally,
all hyperparameters used to train the models are included in
the appendix, and the architecture is outlined in detail in the
paper. The model weights are also available for download from
the project repository.

All steps taken have been motivated using referenced
literature, and the limitations of the results have been discussed
in section V to ensure maximal integrity of the results arrived
at in this paper.

Artificial Intelligence is a topic of much deliberation in
moral philosophical circles and society at large. The nature
of the contents of this paper being publicly accessible gives it
the edge of democratising the technology. While it potentially
allows for malicious actors to use it for undesirable purposes,
ultimately it aids in the goal of ensuring that no one entity has
a monopoly on its capabilities.

Additionally, the proposal that transformers are a superior
alternative to RNNs encourages replacing the usage of RNNs

with transformers. Transformers require much more energy
and are therefore more detrimental to the environment. It is
therefore our recommendation to prioritise maximising model
efficiency. Additionally, we strongly urge using energy sources
with the lowest carbon footprint available.

VII. CONCLUSION

The exploration of transformer models in fully observable,
Markovian environments, where the state transitions are
deterministic and predictably governed by current state
actions, reveals critical insights into the applicability and
performance of these advanced models. This thesis scrutinised
the efficacy of transformers compared to a baseline recurrent
model under varying conditions of dataset size and sequence
lengths.

The experimental results indicate that transformers do not
outperform the baseline model when data is limited. This
showcases the challenges transformers face in environments
where the ability to extract and make use of complex
patterns or dependencies from data is limited. Furthermore,
the investigation into the impact of sequence length has
demonstrated minimal influence on the performance outcome.
This finding suggests that in scenarios where the Markov
property holds, the potential benefits of transformers, which
are typically realised in handling longer and more complex
sequences, are negated.

The implications of this study are twofold. First, it cautions
against the indiscriminate application of transformers in
environments where the prerequisites for their success—such
as large datasets and the presence of complex, long-range
dependencies—are not met. Second, it invites a reevaluation of
the computational overhead and resource demands associated
with transformers, especially in contexts where simpler models
could achieve comparable or superior performance.

In conclusion, while transformers present a significant
advancement in modelling sequential data in many complex
scenarios, their application within fully observable, Markovian
environments does not justify the additional complexity
and resource requirements. Future research should continue
to explore the boundaries of effectiveness for transformer
models, potentially exploring hybrid approaches that could
leverage their strengths while mitigating their limitations in
data-constrained scenarios.

REFERENCES

[1] T. B. Brown, B. Mann, N. Ryder, et al., Language
models are few-shot learners, 2020. arXiv: 2005.14165
[cs.CL].

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
Bert: Pre-training of deep bidirectional transformers
for language understanding, 2019. arXiv: 1810.04805
[cs.CL].

[3] A. Vaswani, N. Shazeer, N. Parmar, et al., Attention is
all you need, 2017. arXiv: 1706.03762 [cs.CL].

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1706.03762

[4] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba,
Mastering atari with discrete world models, 2022.
arXiv: 2010.02193 [cs.LG].

[5] Y. Bengio, P. Simard, and P. Frasconi, “Learning
long-term dependencies with gradient descent is
difficult,” IEEE Transactions on Neural Networks,
vol. 5, no. 2, pp. 157–166, 1994. DOI: 10 . 1109 / 72 .
279181.

[6] V. Micheli, E. Alonso, and F. Fleuret, “Transformers
are sample-efficient world models,” in The Eleventh
International Conference on Learning Representations,
2023. [Online]. Available: https : / / openreview . net /
forum?id=vhFu1Acb0xb.

[7] M. Schwarzer, A. Anand, R. Goel, R. D. Hjelm, A.
Courville, and P. Bachman, Data-efficient reinforcement
learning with self-predictive representations, 2021.
arXiv: 2007.05929 [cs.LG].

[8] C. Chen, Y.-F. Wu, J. Yoon, and S. Ahn, Transdreamer:
Reinforcement learning with transformer world models,
2022. arXiv: 2202.09481 [cs.LG].

[9] W. Ye, S. Liu, T. Kurutach, P. Abbeel, and Y. Gao,
Mastering atari games with limited data, 2021. arXiv:
2111.00210 [cs.LG].

[10] Q. Fournier and D. Aloise, “Empirical comparison
between autoencoders and traditional dimensionality
reduction methods,” Jun. 2019, pp. 211–214. DOI: 10.
1109/AIKE.2019.00044.

[11] A. Dertat. “Applied Deep Learning - Part 3:
Autoencoders.” (Oct. 2017), [Online]. Available: https:
//towardsdatascience.com/applied-deep- learning-part-
3-autoencoders-1c083af4d798.

[12] A. van den Oord, O. Vinyals, and K. Kavukcuoglu,
Neural discrete representation learning, 2018. arXiv:
1711.00937 [cs.LG].

[13] D. Hafner, T. Lillicrap, I. Fischer, et al., Learning latent
dynamics for planning from pixels, 2019. arXiv: 1811.
04551 [cs.LG].

[14] V. Mnih, K. Kavukcuoglu, D. Silver, et al., Playing
atari with deep reinforcement learning, 2013. arXiv:
1312.5602 [cs.LG].

[15] R. Coulom, “Efficient selectivity and backup operators
in monte-carlo tree search,” vol. 4630, May 2006, ISBN:
978-3-540-75537-1. DOI: 10.1007/978-3-540-75538-
8 7.

https://arxiv.org/abs/2010.02193
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/72.279181
https://openreview.net/forum?id=vhFu1Acb0xb
https://openreview.net/forum?id=vhFu1Acb0xb
https://arxiv.org/abs/2007.05929
https://arxiv.org/abs/2202.09481
https://arxiv.org/abs/2111.00210
https://doi.org/10.1109/AIKE.2019.00044
https://doi.org/10.1109/AIKE.2019.00044
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/1811.04551
https://arxiv.org/abs/1811.04551
https://arxiv.org/abs/1312.5602
https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.1007/978-3-540-75538-8_7

	Introduction
	Background
	Autoencoders
	Recurrent State-Space Model
	Transformers
	Transformers as World Models

	Methods
	Deep Q-Network
	Monte Carlo Tree Search
	Transformer World Model

	Experiments
	Environment & Setup
	Hypotheses
	Baseline Model
	Transformer Hyperparameters
	Experiment 1: Model Size
	Experiment 2: Dataset Size
	Experiment 3: Sequence Length

	Discussion
	Experiment 1: Model Size
	Experiment 2: Dataset Size
	Experiment 3: Sequence Length
	Limitations
	Future Work

	Responsible Research
	Conclusion

