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Abstract

Computational simulations have developed to a phase where the inherent physical variability
prevalent in computational models exerts a larger effect on the predictive results than the
deterministic numerical errors. To aim for more accurate and realistic simulations of the
physical systems, it is imperative to include the input uncertainties into the computational
models and investigate their effects on the outputs of interest. In the field of Computational
Fluid Dynamics (CFD), which features high non-linearity and complexity, the non-intrusive
Stochastic Collocation method (SC) gains great popularity by the virtue of easy implemen-
tation and high convergence rate of its spectral basis. The main idea of SC is to constructs a
surrogate response surface in the stochastic space by globally interpolating the sampling val-
ues obtained from the deterministic simulations. Therefore, like any other spectral method,
it shows limitations in capturing local parametric steep gradient or discontinuity in the
stochastic space. Besides, the convergence rate is deteriorated due to the Gibbs oscillations.
These spurious oscillations, which amount to unphysical realizations, could result in falsely
enlarged full confidence interval, e.g., the pressure distribution along the upper surface of a
transonic airfoil. To provide more robust stochastic analysis, the Gibbs oscillations in the
stochastic space need to be eliminated.

To this end, the robustness concepts from the CFD community, i.e., Local Extremum Con-
serving (LEC), Monotonicity Preserving (MP) and Essentially Non-Oscillatory (ENO), are
reformulated for the multi-dimensional stochastic space and incorporated into the Stochas-
tic Collocation method. The proposed method is termed Stochastic Collocation with Es-
sentially Non-Oscillatory (SC-ENO) robustness. Different from the traditional Stochastic
Collocation method, the SC-ENO method first resolves the locations of the discontinuity
in the stochastic space by enforcing the robust limiter to the surrogate response surface.
Then the whole stochastic space is partitioned into disjoint smooth sub-domains bounded
by the discontinuities. All the deterministic sampling points are classified into each smooth
sub-domain. Finally, the model surrogate in each smooth element is constructed by interpo-
lating the sampling points of the same class. The proposed discontinuity detection method
is implemented for the 1-dimensional space and extended to the multi-dimensional space by
the so-called dimension-by-dimension approach. Hence, the deterministic multi-dimensional
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viii

sampling points are structured and formed by the tensor product of 1-dimensional nodes.
As for the surrogate construction, the performance multivariate interpolation methods, i.e.,
Sauer-Xu Lagrange interpolation and the least interpolation, are compared in terms of the
robustness and the accuracy. The least interpolation method is better than Sauer-Xu algo-
rithm but it lacks robustness for certain distribution of the sampling points. To remedy this,
a element-wise interpolation method matching the proposed discontinuity detection method
is developed.

One remarkable feature of the proposed SC-ENO method is being completely non-parametric.
It is essentially a post-processing of the input sample realizations. When the deterministic
sampling points are structured, it has been proved that SC-ENO is able to choose automat-
ically either a piecewise or a global polynomial approximation based on the smoothness of
the target solutions in each dimension of the stochastic space. Therefore, the robustness
of the surrogate model is ensured while the efficiency of Stochastic Collocation method is
maintained. The accuracy and convergence property of the proposed SC-ENO method is
investigated for some numerical test functions with jump discontinuities. Although there is
no obvious improvement of the convergence rate, especially for the statistical quantities, the
issue of the Gibbs oscillations is solved. To see how SC-ENO performs for real problems with
jump discontinuities or steep gradient in the stochastic space, it is applied to the shock tube
problem with uncertainties in initial conditions and the transonic viscous flow over the RAE
2822 airfoil with uncertainties in inflow conditions. In both of these test cases, the accuracy,
efficiency and robustness of the SC-ENO method are illustrated. It is shown that there are
no unphysical overshoots in the full confidence intervals of the interested quantities with
sufficient deterministic sampling points. Meanwhile, the performance of another approach
dealing with the stochastic discontinuities, Subcell Resolution (SR), is investigated for these
two test cases. It is concluded that the SC-ENO method is more suitable for the viscous flow
problems whereas the SR approach performs better for the inviscid case. Using the same
set of the deterministic sampling values, the results of some interested quantities of smooth
nature are presented, where the spectral convergence property is obtained.

Since the SC-ENO method works on the tensor product sampling points, it is prone to the
curse of dimensionality for high-dimensional stochastic spaces. To reduce the computational
resources, the proposed approach is combined with the sparse grid approach of both isotropic
type and dimension-adaptive type. However, the numerical experiments shows that the
robustness property of the SC-ENO is lost for the sparse grid case. A more efficient and
robust scheme suitable for high-dimensional space is a future research topic.

MSc. Thesis Huiqing Wang



Contents

Acknowledgements v

Abstract vii

1 Introduction 1

1.1 Uncertainty Quantification in Computational Fluid Dynamics . . . . . . . . . 1

1.2 Thesis objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Review of existing numerical methods 5

2.1 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Monte Carlo sampling-based techniques . . . . . . . . . . . . . . . . . . . . . 6

2.3 Generalized Polynomial Chaos methods . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Spectral expansion with gPC basis . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Stochastic Galerkin methods (SGM) . . . . . . . . . . . . . . . . . . . 10

2.3.3 Non-intrusive spectral projection methods . . . . . . . . . . . . . . . 11

2.3.4 Interpolation approach based on gPC basis . . . . . . . . . . . . . . . 12

2.3.5 Statistics of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Stochastic Collocation method . . . . . . . . . . . . . . . . . . . . . . . . . . 14

MSc. Thesis Huiqing Wang



x CONTENTS

2.4.1 Full tensor-product formulation for multi-dimensions . . . . . . . . . . 15

2.4.2 Conventional Sparse Grid formulation for multi-dimensions . . . . . . 15

2.5 Motivation for a new approach . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Robust one-dimensional Stochastic Collocation with discontinuities detec-
tion 21

3.1 Robustness concepts from the CFD community . . . . . . . . . . . . . . . . . 21

3.1.1 Local extremum conserving limiter . . . . . . . . . . . . . . . . . . . . 22

3.1.2 Monotonicity Preserving limiter . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Stochastic Collocation with ENO robustness in 1-D . . . . . . . . . . . . . . . 25

3.3 Subcell Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Discussion of discontinuity detection methods . . . . . . . . . . . . . . . . . . 30

4 Multi-dimensional Stochastic Collocation with ENO robustness 33

4.1 Discontinuities detection in the multi-dimensional space . . . . . . . . . . . . 33

4.2 Domain classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Multivariate interpolation on unstructured grids . . . . . . . . . . . . . . . . 36

4.3.1 Sauer-Xu multivariate Lagrange interpolation . . . . . . . . . . . . . 37

4.3.2 Least interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.3 Comparison of the multivariate interpolation methods . . . . . . . . . 41

4.3.4 Element-wise interpolation . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 SC-ENO with the dimension adaptive sparse grid . . . . . . . . . . . . . . . . 47

4.4.1 Error estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.2 Adaptive procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

MSc. Thesis Huiqing Wang



CONTENTS xi

4.4.3 Loss of the hierarchical structure . . . . . . . . . . . . . . . . . . . . . 49

5 Numerical examples 51

5.1 Test functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Comparison between traditional SC and SC-ENO . . . . . . . . . . . . . . . . 53

5.2.1 One-dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.2 Two-dimensional case on tensor grid . . . . . . . . . . . . . . . . . . . 56

5.2.3 Post-processing time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Sparse grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.1 Standard sparse grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.2 Dimension adaptive sparse grid . . . . . . . . . . . . . . . . . . . . . . 64

6 Uncertainty quantification for shock tube problem 67

6.1 Shock tube test case descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 Deterministic simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3 Reference Monte Carlo results . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.4 Uncertainties propagation results with SC, SC-ENO and SR methods . . . . 69

6.4.1 Uncertain density at x = 0.82 . . . . . . . . . . . . . . . . . . . . . . . 69

6.4.2 Statistics and full confidence interval of the whole field . . . . . . . . . 72

7 Uncertainty quantification for RAE 2822 airfoil 77

7.1 RAE 2822 airfoil test case descriptions . . . . . . . . . . . . . . . . . . . . . . 77

7.2 Deterministic simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.3 Uncertainty propagation results with SC and SC-ENO . . . . . . . . . . . . . 81

MSc. Thesis Huiqing Wang



xii CONTENTS

7.3.1 PDF of Cl, Cd and Cm . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.3.2 Pressure distribution around the airfoil surface . . . . . . . . . . . . . 83

7.3.3 Mean and standard deviation of the whole pressure field . . . . . . . . 88

7.4 Uncertainties propagation with the Subcell Resolution (SR) method . . . . . 88

7.4.1 Staircase approximation of the statistics . . . . . . . . . . . . . . . . . 89

7.4.2 Subcell resolution for the transonic airfoil test case . . . . . . . . . . . 90

7.4.3 Response surface in the parameter space with SR . . . . . . . . . . . . 90

7.4.4 Statistics and full confidence interval obtained with SR . . . . . . . . 91

7.4.5 Limitation of the SR method . . . . . . . . . . . . . . . . . . . . . . . 93

8 Conclusions and Recommendations 95

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.2 Recommendations and future works . . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography 104

A The original Wiener polynomial chaos 105

B Algorithm of the multivariate Lagrange interpolation 107

C Construction of the least interpolant by Gauss elimination 109

D Properties of the least interpolation method 113

MSc. Thesis Huiqing Wang



Chapter 1

Introduction

This chapter starts with a general introduction of uncertainty quantification in Computa-
tional Fluid Dynamics (CFD) in Section 1.1. Then, the objectives of this thesis project is
discussed in Section 1.2. Finally, the outline of this thesis is presented.

1.1 Uncertainty Quantification in Computational

Fluid Dynamics

Up to date, deterministic CFD simulations have made considerable achievements in engi-
neering design and system analysis. Accurate, efficient and robust numerical schemes have
been developed to solve the governing model of the flow field under study. However, there
still exist differences between the real flow field and the simulation results. Part of these
differences result from the inevitable discretization errors originating from the numerical
solutions of the mathematical model (round-off, numerical diffusion/dispersion, iteration er-
rors, etc.) in the spatial or temporal domain, while the other parts can be attributed to the
ubiquitous uncertainties present in the real physical phenomena. These uncertainties fall
into the following two categories [36]:

Aleatory uncertainty, also referred to as irreducible uncertainty, is the physical vari-
ability present in the system being analyzed. Under a probabilistic framework, it is
normally modeled as random variable, whose probability density function (PDF) is
usually prescribed by the observed variability or based on expert experience.

Epistemic uncertainty, also called reducible uncertainty, is a potential deficiency due to
a lack of knowledge in any phase of the modeling process. It usually originates from
assumptions or simplifications introduced in the derivation of the mathematical models
(e.g. turbulence models). As a consequence, it can be reduced through refined physical
models and experimental observations.

For numerical simulations associated with fluid dynamics, some common sources of uncer-
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2 Introduction

tainties are [51]:

� variability of operating conditions and initial conditions (e.g. angle of attack α for flow
around the airfoil, the free stream Mach number of the steady flow),

� characterization of the physical domain (geometry, surface roughness, thickness-to-
chord ratio of an airfoil),

� inherent heterogeneities of materials in the fluid-structure interaction,

� approximations and assumptions in mathematical model to represent the real physi-
cal process (e.g. linearizations of physical parameters, the incompressible or inviscid
assumption, the two-dimensional approximation, neglect of radiative transfer in many
natural convection models).

In order to provide more reliable simulation solutions, rigorous and trustworthy quantifica-
tion of the numerical errors and uncertainties is required. The field of Uncertainty Quan-
tification (UQ) aims to quantify the effects of the uncertain features of a computational
model on certain output quantities of interest (QOI) by characterizing and propagating un-
certainties based on mathematical methodologies. UQ is a powerful tool in decision making
because it provides a rigorous mathematical measure of the confidence interval of interested
quantities. Also, UQ becomes a necessary process for robust design since it provides an ob-
jective overview of the system performance in practical operating conditions when exposed
to ubiquitous uncertainties.

There exist two general methodologies for Uncertainty Quantification: forward uncertainty
propagation and inverse uncertainty quantification. Most forward uncertainty propagation
approaches are based on the probabilistic framework [2]. Firstly, the uncertain features
associated with the model under study are characterized as random variables based on the
observed variability or expert experience using the statistical methods. Then, the presence of
uncertainties can be incorporated into the model through the reformulation of the governing
equations. After that, the effects of uncertain inputs are propagated through the compu-
tational model. Finally, the statistical moments of the quantities of interest are calculated,
which provides valuable information to explain the deviation of the deterministic simulation
results from the real physical phenomena. Further insights into the physical process can
be gained by doing the sensitivity analysis and calculating the full confidence interval of
interested quantities.

In the field of CFD, popular UQ methods for the uncertainty propagation are based
on the deterministic sampling. These kinds of methods are called ‘non-intrusive’ methods
since the existing high-fidelity CFD solvers can serve as the black box to produce a set of
deterministic solutions. No modification of the existing codes is required. The surrogate
model in the stochastic space is constructed by classical approximation methods, e.g., the
polynomial interpolation and the orthogonal projection.
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1.2 Thesis objectives 3

1.2 Thesis objectives

Most of the non-intrusive methods rely on the interpolations of the deterministic solutions
using the spectral polynomial basis in the stochastic space. They are efficient and applicable
to complicated large scale CFD simulations with a moderately low number of uncertain
inputs. However, the non-linearity in the fluid dynamics model can exhibit discontinuous
solutions in the form of shock waves or contact surfaces in the spatial space as well as
in the stochastic space. As a consequence, these efficient methods lack robustness in the
case of approximating discontinuous solutions. The surrogate constructed with the spectral
basis would exhibit Gibbs oscillations in the stochastic space. Besides, the convergence rate
is deteriorated. What’s worse, it is very likely that there are unphysical overshoots and
undershoot in the statistics and the full confidence interval of the QOI, which makes the UQ
analysis less objective and trustworthy.

This thesis focuses on improving the robustness of the existing efficient UQ methods. The
main goal is to develop a non-intrusive uncertainty propagation method, which is able to
provide reliable results under a limited computational resources. To that end, the robustness
concepts from the CFD community are incorporated into the reference Stochastic Collocation
(SC) method. The pursued efficient and robust approach is expected to be able to construct
a non-oscillatory surrogate using a relatively low number of deterministic sampling points.

The rest of this thesis is organized as follows.

� The aim of Chapter 2 is to give a theoretical background for the subsequent chapters.
The mathematical formulation of the stochastic inputs to the PDEs is presented. Sev-
eral assumptions regarding the random variables and the function space are made. A
general literature overview of popular spectral methods for forward uncertainty propa-
gation under the probabilistic framework is given, with special focus on the construction
of the polynomial basis and the sparse grid approach. Their properties in terms of the
intrusiveness and the accuracy are discussed. Then, the Gibbs phenomenon is discussed
in details, followed by a state-of-the-art literature review dealing with it. Finally, the
motivations for this thesis work are presented.

� Chapter 3 presents the one-dimensional formulation of the proposed Stochastic Collo-
cation method with ENO robustness (SC-ENO). Firstly, the robustness concepts from
the CFD community and their reformulations are discussed. Then, a new discontinuity
detection method is proposed and tested. After that, the subcell resolution (SR) ap-
proach is introduced briefly. Finally, a discussion of the existing discontinuity detection
methods used in UQ is given.

� Chapter 4 shows the principle of the SC-ENO method in the multi-dimensional stochas-
tic space. The proposed discontinuity detection method is extended to multi-dimensional
space by the so-called ’dimension by dimension’ approach. Two multivariate interpo-
lation methods, i.e., Sauer-Xu Lagrange interpolation and the least interpolation, are
introduced. Their robustness and accuracy are investigated. Finally, details about how
to combine the SC-ENO approach with the isotropic sparse grid and the dimension-
adaptive sparse grid are given.
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4 Introduction

� Chapter 5 investigates the performance of the SC-ENO method when it is applied to
various kinds of discontinuous test functions. Two types of deterministic sampling
points, i.e., the full tensor product grid and the sparse grid, are tested. The computa-
tional cost of SC-ENO is given.

� Chapter 6 provides the application of the SC-ENO method to the shock tube problem
with uncertain initial conditions. Its accuracy and robustness are compared with those
of the Stochastic Collocation method and the Subcell Resolution (SR) method.

� Chapter 7 deals with the test case of transonic flow over the RAE 2822 airfoil with
uncertain operating conditions. Two kinds of probability distribution of the uncertain
inputs are considered. Quantities of interest with different smoothness properties are
calculated. Limitations of the SR approach is illustrated.

� Chapter 8 gives the conclusions of this thesis work. Some recommendations are dis-
cussed.
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Chapter 2

Review of existing numerical meth-
ods

In this chapter, the advantages and disadvantages of different uncertainty propagation meth-
ods are discussed. First, the mathematical formulation of the random variables and the func-
tion space is presented in Section 2.1. Then, the Monte Carlo sampling method is discussed
in Section 2.2. After that, the spectral methods based on the generalized Polynomial Chaos
expansion are discussed in Section 2.3, including the intrusive and non-intrusive methods.
After that, the traditional Stochastic Collocation method in combination with the conven-
tional sparse grid are presented in Section 2.4. Finally, the motivations for this thesis project
are presented.

2.1 Mathematical formulation

To propagate the parametric uncertainties through the computational model, we first need
to characterize the uncertainties by a finite number of random variables. Let (Ω,A,P) be a
complete probability space, where Ω is the sample space, A ⊂ 2Ω the σ-algebra (non-empty
collection of subsets of Ω), and P the probability measure. The mapping Ω → R defines a
random variable ξ, which assigns a real value ξ(ω) to each element ω of Ω . The set of possible
values for ξ(ω),∀ω ∈ Ω is called the image of ξ(ω), which is denoted as Ξξ ⊂ R. The above
definitions can be extended to vectors of random variables. Let ξ = {ξj(ω)}Nj=1 : Ω 7→ RN
denote a vector of random variables for ω ∈ Ω. In particular, let ρ(ξ) be the joint Probability
Density Function (PDF) of the random vector ξ corresponding to the probability measure
P. Then, the stochastic space is defined as:

Ξ =

N∏
j=1

Ξj ⊂ RN .

In this thesis, we assume that Ξ is bounded.

Suppose the computational model under consideration has a d-dimensional bounded physcial
domain D ⊂ Rd (d = 1, 2, 3) that is Lebesgue measurable interior. With the incorporation
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6 Review of existing numerical methods

of random variables, the d-dimensional governing equations of the physical model can be
rewritten as an (N + d)-dimensional differential equation:

L(ξ,x, t;u(ξ,x, t)) = S(ξ, t,x), (ξ,x) ∈ Ξ×D, (2.1.1)

where L(ω,x, t) is some differential operator. x ∈ D and t ∈ [0, T ] are the spatial and
temporal coordinates, and S is a source term. The solutions of the governing equations
u(ξ,x, t) are called the output quantity of interest (QOI). For convenience, we omit the
boundary operator, which can take various forms and have random components. Further,
we assume that the boundary ∂D is sufficiently regular and the source term, boundary
operator are properly posed, such that (2.1.1) is well-posed.

It should be noted that for each couple values of (x, t), the relation between u(ξ,x, t) and
the uncertain parameters ξ constitutes a real-valued function u(ξ) = f(ξ), which is affected
by the physical model (2.1.1). Then the composition U = f ◦ ξ defines a mapping from Ω to
R. Thus, the QOI is also a random variable.

Throughout this thesis, random variables with finite second order moments are considered,
whose space is denoted as L2(P). This assumption is necessary to allow piecewise continuous
solutions to the non-linear conservation laws subject to uncertainty. Let X(ω) and Y (ω) be
two elements in L2(P). The expectation E[X,Y ] defines an inner product as follows:

E[X,Y ] = 〈X(ω), Y (ω)〉 =

∫
Ω
X(ω)Y (ω)dP(ω). (2.1.2)

Then, the associated norm comes as ‖X‖Ω =
√
〈X,X〉. With the above definitions of the

inner product and norm, the space L2(P) is a Hilbert space. Therefore, we can utilize
Fourier-like expansions and orthogonal projections, which are convergent with respect to the
norm defined, to approximate the response surface u(ξ) = f(ξ) in the same way as in the
deterministic context. The statistical moments of the QOI are given by:

µui(x, t) =

∫
Ξ
u(ξ,x, t)iρ(ξ)dξ. (2.1.3)

2.2 Monte Carlo sampling-based techniques

Monte Carlo method is a classical method to propagate uncertainties through system based
on random sampling following specific PDFs from the stochastic space. The statistics are
readily computed by replacing the integrals (2.1.3) with the average sum over the whole set
of samples. Although the convergence rate is relatively slow-approximately 1/

√
nMC , nMC

is the number of simulations-, it is universally applicable to the available computational
tools and easy to parallelize. Also, it is independent of the stochastic dimension, making
it suitable for larger number of uncertainties. However, for complex physical system which
needs computationally expensive deterministic solver, this method is infeasible due to the
fact that a large number of realizations is required to acquire good accuracy even for low-
dimensional problems. To accelerate the convergence, Latin Hypercube sampling (LHS) [52]
was applied to assess uncertainties in complex systems [34].
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2.3 Generalized Polynomial Chaos methods 7

2.3 Generalized Polynomial Chaos methods

Nowdays, non-statistical methods based on the generalized polynomial chaos(gPC) expansion
are the major forces in the field of the uncertainty propagation and the global sensitivity
analysis. They are initiated by the work of Wiener 1 [68], which states that any second-
order random field can be expanded as a generalized Fourier series in the form of orthogonal
Hermite polynomials in terms of Gaussian random variables. The Hermite polynomials
constitutes a complete basis in the Hilbert space L2(P). The resulting polynomial series
converges in the mean-square sense due to the Cameron-Martin theorem [8], and the conver-
gence rate of the spectral expansion depends on the distribution of the random variables that
one seeks to represent. To obtain the optimal convergence for random variables following any
kind of probability distribution, Xiu and Karniadakis [83] extended the Polynomial Chaos
framework to the generalized polynomial chaos(gPC) expansion, where random variables fol-
lowing specific distributions are expanded by the corresponding set of polynomials from the
Askey scheme [3]. For example, a uniformly distributed function is optimally represented
by Legendre polynomials that are orthogonal with respect to the uniform measure. Table
2.3.1 shows the generalized polynomial chaos which provide an optimal basis for different
continuous probability distribution types.

Table 2.3.1: Correspondence between different types of continuous probability
distributions and the orthogonal polynomials from the Askey scheme
Distribution Density function Polynomial Weight function Support range

Normal 1√
2π
e
−x2
2 Hermite Hen(x) e

−x2
2 [−∞,∞]

Beta (1−x)α(1+x)β
2α+β+1B(α+1,β+1)

Jacobi P
(α,β)
n (x) (1− x)α(1 + x)β [−1, 1]

Uniform 1
2 Legendre pn(x) 1 [−1, 1]

Exponential e−x Laguerre Ln(x) e−x [0,∞]

The spectral gPC approach can achieve optimal convergence provided the probability law of
the QOI is known. However, this is not the case for general predictions with uncertainties
since the explicit form of the QOI u(ξ,x, t) in terms of uncertain input ξ is unknown.
Therefore, the problem arises hwo to choose the optimal orthogonal polynomial basis we
should choose arises. Nonetheless, as stated in [43], at least the probability distributions of
the model uncertain inputs that we try to propagate are known, so people usually utilize the
optimal basis based on the known distribution associated with those random parameters.

1The original Wiener polynomial chaos is presented in Appendix A
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8 Review of existing numerical methods

2.3.1 Spectral expansion with gPC basis

The gPC expansion is to represent the QOI u(ξ) in terms of orthogonal polynomial basis
{Ψj(ξ)}∞j=0 in the stochastic space Ξ:

u(ξ,x, t) ≈ uP (ξ,x, t) =
∞∑
j=0

uj(x, t)Ψj(ξ), (2.3.1)

This gPC expansion divides the model response into a deterministic part and a stochastic
part, i.e., the coefficients ui(x, t) and the polynomial chaos Ψi(ξ) respectively. The coeffi-
cients ui(x, t) are determined by the physical space. The randomness of uncertain inputs ξ
is transferred into the gPC basis.

Choice of independent random variables

In this thesis, the random variables are assumed to be independent, which is a desirable
property for multi-dimensional problem. This widely adopted assumption allows the ten-
sor product construction of the multi-dimensional polynomial basis and the corresponding
weighting function. The desired multi-dimensional orthogonality properties can be inherited
from the univariate polynomial basis, i.e., the basis functions {Ψj(ξ)}∞j=0 are orthogonal
with respect to the joint probability measure ρ(ξ)

〈Ψi,Ψj〉 =

∫
Ξ

Ψi(ξ)Ψj(ξ)ρ(ξ)dξ = 〈Ψ2
i 〉δij . (2.3.2)

The above multi-dimensional inner product vanishes if any of the one-dimensional inner
product is zero. What’s more, when the expansion coefficients are solved by the orthogonal
projection, the multivariate quadrature rules follow from the tensor products of the one-
dimensional quadrature rules. It should be noted that the mutual independence is not a very
strong requirement. If the input uncertainties are correlated or have arbitrary distributions
that are not covered in the Askey shceme, we can apply “Gram-Schmidt” orthogonalization
for computing the optimal orthogonal polynomial basis for any type of input distribution
[71].

Construction of multi-dimensional gPC basis

For system involving single random variable ξ, one-dimensional polynomial chaos basis ψ(ξ)
can be selected from the Askey scheme. For instance, the first few Legendre polynomials
corresponding to the uniform distribution are:

ψ0(ξ) = 1,

ψ1(ξ) = ξ,

ψ2(ξ) =
1

2
(3ξ2 − 1),

ψ3(ξ) =
1

2
(5ξ3 − 3ξ). (2.3.3)
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2.3 Generalized Polynomial Chaos methods 9

For N -dimensional parameter space Ξ, if we can take advantage of the component indepen-
dence of random vector ξ = {ξ1, . . . , ξN}, then the general polynomial chaos Γp of order p
is constructed through the product of 1-D gPC basis. Let i= (i1 + · · · + iN ) ∈ NN0 be a
multi-index with |i| = i1 + · · ·+ iN . The N -variate p-th order polynomial chaos is:

Γp =

{ ⋃
|i|=p

N∏
k=1

ψik(ξk)

}
, (2.3.4)

where the optimal univariate basis ψik(ξk) is chosen for the corresponding random variable
ξk. The linear space Γ̄p spanned by Γp has dimension

(
N+p−1

p

)
. For example, the 2-D

expansion can be written as:

u(ξ) =a0ψ0 + a1ψ1(ξ1) + a2ψ1(ξ2)

+ a11ψ2(ξ1) + a21ψ1(ξ2)ψ1(ξ1) + a22ψ2(ξ2)

+ a111ψ3(ξ1) + a211ψ1(ξ2)ψ2(ξ1) + a221ψ2(ξ2)ψ1(ξ1) + a222ψ3(ξ2)

+ · · · .

(2.3.5)

For the sake of the notational convenience and the practical implementation , the above order
based expression is simplified in the form of term-based expression like (2.3.1), where there
is a one-to-one correspondence between the functional Ψ(·) and Γ(·), and also the coefficients
uj and ai1i2...in . A popular choice for this transform is graded lexicographic order, where i > j
if and only if |i| ≥ |j| and the first non-zero entry in the difference, i − j, is negative [80].
Then, the term-based multi-dimensional chaos basis is:

Ψj(ξ) =

N∏
k=1

ψ
ijk

(ξk), (2.3.6)

where the superscript j in multi-index ik denotes the j-th term-based basis Ψj . A 2-D
example of the graded lexicographic order is shown in the Table 2.3.2.

Table 2.3.2: Example of graded lexicographic order of multi-index i for the 2-D case
order p = |i| Multi-index i Single-index j

0 (0 0) 0
1 (1 0) 1

(0 1) 2
2 (2 0) 3

(1 1) 4
(0 2) 5

3 (3 0) 6
(2 1) 7
(1 2) 8
(0 3) 9

· · · · · · · · ·
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10 Review of existing numerical methods

Then, the first few multivariate Legendre polynomials for a 2-D case (ξ = (ξ1, ξ2)) are:

Ψ0(ξ) = ψ0(ξ1)ψ0(ξ2) = 1

Ψ1(ξ) = ψ1(ξ1)ψ0(ξ2) = ξ1

Ψ2(ξ) = ψ0(ξ1)ψ1(ξ2) = ξ2

Ψ3(ξ) = ψ2(ξ1)ψ0(ξ2) =
1

2
(3ξ2

1 − 1)

Ψ4(ξ) = ψ1(ξ1)ψ1(ξ2) = ξ1ξ2

Ψ5(ξ) = ψ0(ξ1)ψ2(ξ2) =
1

2
(3ξ2

2 − 1)

Expansion truncation

Suppose a generalized chaos basis {Ψj(ξ)}∞j=0 is given for the random variables ξ ∈ Ξ.
For the computational purpose, a truncated subspace of {Ψj(ξ)}∞j=0 is needed. Under the
circumstance that no prior knowledge about the importance of different random variables
is available, a usual approach is to truncate the infinite dimension polynomial basis to a
certain total order P , i.e., to take all possible combinations of the multi-index ik satisfying∑N

k=1 ik ≤ P , then the spectral expansion of QOI with infinite terms reduces to a finite
number of M + 1 terms:

u(ξ,x, t) ≈ uP (ξ,x, t) =
M∑
i=0

ui(x, t)Ψi(ξ), (2.3.7)

where M satisfies:

M + 1 =
(N + P )!

N !P !
. (2.3.8)

If the QOI have different sensitivities to different random variables, the expansion trunca-
tion should be adjusted to make sure that the sensitive dimensions have a higher order of
polynomial chaos basis than the insensitive dimensions.

2.3.2 Stochastic Galerkin methods (SGM)

To solve the coefficients ui(x, t) of the spectral expansion uP (ξ,x, t), one approach is the
Stochastic Galerkin method [27]. It is an intrusive method in the sense that the mathematical
formulation of the computational model needs to be changed. Consequently, modifications
of existing deterministic codes are required, in contrast to the sampling based techniques
and non-intrusive methods.

To apply the Galerkin projection, the governing equation (2.1.1) is multiplied by Ψj(ξ)
and integrated over the stochastic space:∫

Ξ
ρ(ξ)L(ξ,x, t;uP (ξ,x, t))Ψj(ξ)dξ =

∫
Ξ
ρ(ξ)S(ξ, t,x)Ψj(ξ)dξ, ∀j ∈ {0, . . . ,M}. (2.3.9)
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2.3 Generalized Polynomial Chaos methods 11

Consequently, the residual of (2.3.9) is orthogonal to the subspace spanned by {Ψi}Mi=0.
Finally, we obtain a system of M + 1 coupled deterministic equations in the physical domain
D, which can be achieved by a standard discretization technique.

The Stochastic Galerkin method was successfully applied to various engineering problems
[84, 81, 85]. Spectral convergence with respect to the polynomial order can be achieved
when the stochastic response are sufficiently smooth. Details of priori error estimates and
convergence analysis were given by Babuška et al. [4] for elliptic partial differential equa-
tions. Although endowed with rigorous mathematical framework, Galerkin-based intrusive
methods are more cumbersome to implement for complex problems, such as the full-scale
Navier-Stokes simulation of 3-D flows or multi-system simulations with different determin-
istic codes. To determine the coefficients in the spectral expansion, all dependent variables
in the governing equations are substituted by their polynomial chaos expansions. As a re-
sult, the whole existing code needs to be re-written. What’s worse, every time when a new
random parameter is included in the system, the solutions need to be re-calculated and the
coupled system of equations need additional work.

2.3.3 Non-intrusive spectral projection methods

Apart from the Stochastic Galerkin method, there are other non-intrusive UQ methods to
solve the spectral coefficients, which rely on repeated runs of the deterministic solver at a
prescribed set of nodes in the parameter space. The existing deterministic solver can be used
as a black box that associates each uncertain parameter ξ to the model output u(ξ).

Recall that the spectral expansion of a second-order random variable u(ξ) on a finite
dimensional stochastic subspace of L2(P):

u(ξ) =
M∑
i=0

uiΨi(ξ).

By the virtue of the orthogonality and completeness of the basis, the projection coefficients
ui is given by:

ui =
〈u(ξ),Ψi(ξ)〉
〈Ψi(ξ)2〉

=
1

〈Ψi(ξ)2〉

∫
Ξ
u(ξ)Ψi(ξ)ρ(ξ)dξ. (2.3.10)

The denominator in equation(2.3.10) can be computed analytically for multivariate orthog-
onal polynomials using the product of the square of univariate norms,

〈Ψj(ξ)2〉 =
N∏
k=1

〈ψ
ijk

(ξk)
2〉. (2.3.11)

So the main issue is to evaluate the multidimensional integral (2.3.10. The selection of
sampling points for deterministic code evaluations categorizes the non-intrusive techniques
into the following two approaches.
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12 Review of existing numerical methods

Monte Carlo sampling projection

The simplest approach to evaluate of the integral is Monte Carlo method:

ui(x, t) =
1

〈Ψi(ξ)2〉 · nmc

nmc∑
k=1

u(x, t, ξk)Ψi(ξk). (2.3.12)

This random sampling method is well suitable for high-dimensional problems, since the
convergence rate is independent of the number of random variables. Application of this
method to reacting flow can be found in [57].

Quadrature based projection

Another approach to evaluate the integral is to use Gauss quadrature rules. This method can
effectively reduce the number of sampling points in the parameter domain for low-dimensional
problems. For one-dimensional integral, we can choose Gaussian quadrature points based on
the distribution of the random variables (e.g., Gauss-Hermite, Gauss-Legendre and Gauss-
Laguerre for normal, uniform and exponential distributions respectively). The 1-D quadra-
ture rule can be extended to the high-dimensional space via either full or sparse tensor
products of one-dimensional quadrature rule. Then the coefficients ui(x, t) can be approxi-
mated as:

ui(x, t) =
1

〈Ψi(ξ)2〉

∫
Ξ
u(ξ,x, t)Ψi(ξ)ρ(ξ)dξ

≈ ûi(x, t) =
1

〈Ψi(ξ)2〉

ns∑
k=1

wku(x, t, ξk)Ψi(ξk), (2.3.13)

where ξk are the quadrature points, which are the roots of orthogonal polynomials, wk are
quadrature weights.

Regarding error, projection methods involve two approximations. One arises from the
finite term truncation to (2.3.7), the other is due to the approximation to the exact contin-
uous orthogonal PC projection (2.3.10). The difference between the continuous orthogonal
projection and the discrete projection is termed as aliasing error [79]. It was proved that
û(ξ,x, t) =

∑M
i=0 ûi(x, t)Ψi(ξ) converges to u(ξ,x, t) as M → ∞ and ns → ∞ provided the

quadrature rule is convergent.

To sum up, gPC based projection methods can be viewed as a post-processing step after
the realizations at the sampling nodes or prescribed quadrature nodes. In contrast to the
intrusive Stochastic Galerkin method, where all the coefficients are coupled and solved simul-
taneously, one can compute particularly interested expansion coefficients without evaluating
the rest.

2.3.4 Interpolation approach based on gPC basis

Another way to construct the approximation of response surface u(ξ) is to use polynomial in-
terpolation. We start by prescribing a set ofM+1 sampling points (ξk = {ξ1, ξ2, . . . , ξN}k, k =
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2.3 Generalized Polynomial Chaos methods 13

0, 1, 2, . . . ,M) in parameter space Ξ for a set of given PC basis {Ψi(ξ)}Mi=0. Then run the
deterministic codes evaluated at those points. The interpolation condition u(ξk,x, t) =∑M

i=0 ui(x, t)Ψi(ξk), (k = 0, 1, 2, . . . ,M) results in the following linear system:
Ψ0(ξ0) Ψ1(ξ0) · · · ΨM (ξ0)
Ψ0(ξ1) Ψ1(ξ1) · · · ΨM (ξ1)

...
...

. . .
...

Ψ0(ξM ) Ψ1(ξM ) · · · ΨM (ξM )



u0(x, t)
u1(x, t)

...
uM (x, t)

 =


u(ξ0,x, t)
u(ξ1,x, t)

...
u(ξM ,x, t)

 (2.3.14)

A core issue of this approach is the choice of sampling points, since it has a decisive impact
on the interpolation error even though the error is zero at interpolation points. Hosder et al.
[35] have investigated performance of three different sampling techniques, Random, Latin
Hypercube, and Hammersley, in terms of the accuracy and the efficiency. It is shown that
the Hammersley and Latin Hypercube sampling achieve a smoother convergence compared
to the random sampling.

Oversampling is usually recommended for the robustness against noisy samples, then
the linear system (2.3.14) becomes over-determined, which is solved by the Least Square
approach. It has been observed [35] that more than twice number of collocation points than
the number of the polynomial basis yields a better result in terms of the statistics of the
solutions.

2.3.5 Statistics of solutions

The statistics of the QOI can be computed free from the known spectral expansion. The
mean of u(ξ,x, t) can be approximated as:

µu(x, t) := E[u(ξ,x, t)] ≈ E[uP (ξ,x, t)] = E
[ M∑
i=0

ui(x, t)Ψi

]
= u0(x, t)E[Ψ0] +

M∑
i=1

ui(x, t)E[Ψi] = u0(x, t),

(2.3.15)

following the fact that 〈Ψi〉 = 0 for j > 0. Therefore, the zeroth mode of the expansion
corresponds to the expectation. The second moments, e.g., the covariance function for any
x1,x2 ∈ D:

Cu(x1,x2) := E[(u(ξ,x1, t)− µu(x1, t))(u(ξ,x2, t)− µu(x2, t))]

≈ E[(uP (ξ,x1, t)− u0(x1, t))(uP (ξ,x2, t)− u0(x2, t))]

=

M∑
i=1

[ui(x1, t)ui(x2, t)〈Ψ2
i 〉].

(2.3.16)

The correlation function is:

Ru(x1,x2) := E[u(ξ,x1, t)u(ξ,x2, t)]

≈ E[uP (ξ,x1, t)uP (ξ,x2, t)]

=

M∑
i=0

[ui(x1, t)ui(x2, t)〈Ψ2
i 〉].

(2.3.17)
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14 Review of existing numerical methods

The variance of u(ξ,x, t) for any x ∈ D, t ∈ T is:

σ2
u(x, t) := E[(u(ξ,x, t)− µu(x, t))2]

≈
M∑
i=1

u2
i (x, t)E[Ψ2

i ] =
M∑
i=1

u2
i (x, t)〈Ψ2

i 〉.
(2.3.18)

2.4 Stochastic Collocation method

Stochastic Collocation (SC) is a non-intrusive method to propagate uncertainties through a
complex model when a high-fidelity deterministic code is available. It is termed Stochastic
Collocation Method(SC) due to the pioneering work of Mathelin and Hussaini [51]. Later,
many researchers, to name a few, Xiu and Hesthaven [82], Nobile et al. [55, 54], Loeven et
al. [46], Ma and Zabaras [48, 49] improve this method in different aspects.

The key idea of the stochastic collocation approach is to construct the approximating
model response u(ξ) by interpolating its deterministic values at a pre-specified set of points
in the stochastic space, which are called the collocation points. Let ΘN := {ξm}nsm=1 ∈ Ξ be
the prescribed set of nodes in N dimensional parameter space, where ns is the total number
of collocation nodes. The spectral expansion of the approximated solution is formed as a
sum of multi-dimensional Lagrange interpolation polynomials:

u(ξ,x, t) ≈ I(u(ξ)) =

ns∑
m=1

u(ξm,x, t)Lm(ξ). (2.4.1)

The spectral coefficients u(ξm,x, t) are the response values at each of the collocation points,
where a deterministic problem is solved. To simplify the notation, the spatial coordinate x
and temporal coordinate t are dropped from here on.

Different from the non-intrusive gPC projection approach, where the expansion coefficients
are estimated for the known basis functions, the SC method constructs the polynomial basis
from the pre-specified collocation points. The approximation quality and the convergence
properties depend critically on the choice of collocation points for sample realizations. Tak-
ing advantage of the well-established approximation theory [63, 64], one popular choice of
the sampling points is the nested Clenshaw-Curtis nodes, which also are the extrema of
Chebyshev polynomials. They are defined defines as :

ξij = − cos
(π(j − 1)

si − 1

)
, j = 1, . . . , si, (2.4.2)

where single index i ∈ N denotes the level of interpolation, and si follows the following
relations:

s1 = 1 and si = 2i−1 + 1, for i > 1. (2.4.3)

A nested set means that each subsequent set contains all elements of the previous set. It
is an essential property for the hierarchical construction of the interpolant as well as the
error estimate based on the hierarchical surplus. What’s more, it enables us to use all
obtained expensive deterministic results of previous levels if a further level of interpolation
is needed. Another desirable property of the Chebyshev points is its immunity to the Runge
phenomenon due to the small value of the Lebesgue constant.
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2.4.1 Full tensor-product formulation for multi-dimensions

For the multivariate case, we use the multi-index i=(i1, . . . , iN ) ∈ NN with ik(k = 1, . . . , N)
to denote the level of interpolation along the k-th dimension. ξikjk is the jk-th point in the
k-th dimension.

First, we define Iisi as a one-dimensional interpolating operator for a smooth function
u : [−1, 1]→ R:

Iisi(u(ξ)) =

si∑
j=1

u(ξij)L
i
j(ξ), (2.4.4)

based on nodal sets

Θi = (ξi1, . . . , ξ
i
si) ⊂ [−1, 1], (2.4.5)

where

Lij(ξ) =

si∏
k=1,k 6=j

ξ − ξik
ξij − ξik

(2.4.6)

such that Lij(ξ
i
k) = δjk with δjk as the Kronecker delta. Assume that one-dimensional inter-

polation formula (2.4.4) are given for each dimension k(k = 1, . . . , N), then the interpolation
in the entire space Ξ ⊂ [−1, 1]N via tensor-product can be written as:

I(u(ξ)) = (Ii1si1
⊗ · · · ⊗ IiNsiN )(u(ξ))

=

si1∑
j1=1

· · ·
siN∑
jN=1

u(ξi1j1 , . . . , ξ
iN
jN

)(Li1j1 ⊗ · · · ⊗ L
iN
jN

). (2.4.7)

sik is the number of collocation points used in the k-th dimension. It should be mentioned
that different levels and distribution of collocation points in each dimension can be used,
which should be adjusted according to the importance of independent random parameters.

2.4.2 Conventional Sparse Grid formulation for multi-dimensions

From the full-tensor product formulations, we can observe that the total number of col-
location points is ns =

∏N
j sij , which shows an exponential increase with respect to the

dimension N . This well-known numerical challenge curse of dimensionality would cause a
prohibitive computational cost for the uncertainties propagation of large scale deterministic
system. To combat the curse of dimensionality inherent to the full tensor-product formu-
lation, the sparse grid approach based on the Smolyak algorithm [61] is incorporated into
non-intrusive methods, including the collocation method and the spectral projection method.
In contrast to the full tensor-product formulation that treats all dimensions and intersec-
tion terms equally, the isotropic sparse grid is a linear combination of subsets of the full
tensor-product grid with the property that only low order interaction terms are considered
[6]. Consequently, the number of nodes required for the interpolation is reduced by orders of
magnitude. A parameter w called level of approximation (w ∈ N0) controls the polynomial
basis coverage of the Smolyak grid.
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16 Review of existing numerical methods

Following the notations in Section 2.4.1, we define:

∆i = Ii − Ii−1, (2.4.8)

for i ≥ 1 and set I0 = 0. Then the Smolyak isotropic formulas Aw,N is given by:

Aw,N =
∑

|i|≤w+N

(∆i1 ⊗ · · · ⊗∆iN ). (2.4.9)

The multi-index i=(i1, . . . , iN ) ∈ NN denotes the level of interpolation along each dimension.
Let |i| = i1 + · · ·+ iN . Equivalently, the above formula can be rewritten as [67]:

Aw,N =
∑

w+1≤|i|≤w+N

(−1)w+N−|i|
(

N − 1
w +N − |i|

)
· (Ii1 ⊗ · · · ⊗ IiN ). (2.4.10)

To compute Aw,N , we only need to evaluate function on the “sparse grid”:

ΘN ≡ Hw,N =
⋃

w+1≤|i|≤w+N

(Θi1 × · · · ×ΘiN ), (2.4.11)

where the set of abscissas used by Ii is:

Θi = (ξi1, . . . , ξ
i
mi) ⊂ [−1, 1]. (2.4.12)

If the nested Clenshaw-Curtis nodes are used, we have Θi ⊂ Θi+1 and thereby Hw,N ⊂
H(w + 1, N). Then (2.4.11) becomes:

Hw,N =
⋃

|i|=w+N

(Θi1 × · · · ×Θin). (2.4.13)

Comparison of the tensor and sparse grid of level w = 4 is illustrated in Figure 2.4.1. It can
be observed that the sparse grid involves a significantly reduced number of points. The ratio
of number of nodes for tensor and sparse grids increases with the dimension.
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Figure 2.4.1: Comparison of the tensor and the sparse grid of level w = 4 with the Clenshaw-
Curtis abscissas.

As for the interpolation error, we consider the function space:

F lN = {f : [−1, 1]N → R|∂|s|f continuous, si ≤ l,∀i} (2.4.14)

where s∈ NN and ∂|s| is the usual N -variate partial derivative of order |s|. Then, the
interpolation error in terms of the maximum norm follows [6]:

‖ f −Aw,N (f) ‖∞≤ CN,l ·M−l · (logM)(l+2)(N−1)+1, (2.4.15)

where M = dim(Hw,N ) is the number of interpolation points. For analytic functions (l →
∞), the convergence will be exponential. However, despite the improvement over the full
tensor product grids, the sparse grid still suffer from the curse of dimensionality due to the
dependence on the dimension in the logarithmic terms.
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2.5 Motivation for a new approach

The aforementioned non-statistical methods rely on the spectral expansion using the poly-
nomial basis. Therefore, the convergence rate depends on two factors: the smoothness of
the underlying function and the dimensionality of the parameter space. For general compu-
tational models governed by non-linear conservation laws, which are usually encountered in
fluid dynamics, the convergence is usually less favorable since the smooth requirement cannot
be met. More often than not, many physical phenomena are represented by piecewise smooth
functions. The steep gradients or discontinuities in the physical space, e.g., shock waves in
hypersonic flow field would result in their counterparts in the stochastic space. Therefore,
the spectral expansions may yield the Gibbs oscillations in the stochastic space, as shown in
Figure 2.5.1. There are following features associated with the Gibbs phenomenon [29, 30, 9]:

� The oscillation away from the discontinuity decays rather slowly. The error at a fixed
location ξ decreases as O(n−1), where n is the order of the polynomial basis.

� The overshoots and undershoots near the discontinuity do not diminish with increasing
level of approximation, i.e., the infinity error stays almost constant with respect to n.

� The integral error Lp for p ≥ 1 decreases as O(n
− 1
p )
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Figure 2.5.1: Gibbs phenomenon

These oscillations naturally enlarge the interval of model response in the stochastic space.
For certain values of uncertain inputs ξ, the resulting output u(ξ) may stand for some non-
physical quantities such as the negative static pressure. The situation becomes even worse for
time-dependent problems (e.g., fluid-structure interaction problems), where stochastic drift
[25] may become unacceptably large during the long-term time integration. To circumvent
the difficulty of approximating discontinuous function, methods based on discretization of
the parameter space were developed. The piecewise polynomial basis with local supports are
utilized to ensure the convergence in the smooth region, similar to what has been done in
deterministic numerical methods.
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In [19, 5], finite element basis functions were used in the random space to approximate
locally the stochastic dependence of the solution. The wavelet basis expansion method
was also utilized to address this problem [44, 45]. It relies on an orthogonal projection of
uncertain data and solution variables onto a multi-wavelet basis. A Galerkin procedure in the
parameter space is employed to compute the coefficients of the expansion, which inevitably
transform the corresponding stochastic equations to a set of coupled deterministic algebraic
equations.

The multi-element generalized polynomial chaos method (MEgPC) [65, 66] was introduced
to address discontinuities in the random space while preserving the convergence rate of the
gPC method. The main idea of MEgPC is to decompose the space of random inputs into
small elements. The local decay rate of the variance and the element size were used as
indicators to split a random element into two equal parts when a certain condition is met.
Subsequently, in each sub-element a new random variable with respect to a conditional
probability density function (PDF) is defined, then the generalized polynomial chaos (gPC)
method with orthogonal basis is implemented element by element. Since the degree of
perturbation in each element is reduced proportionally to the size of random elements, a
low order gPC basis in each element is enough to maintain the desired accuracy. Finally,
the local solutions in all elements are summed up to form the global approximation. Due
to the element-wise approximation, the undesirable Gibbs oscillation are confined a limited
number of elements surrounding the discontinuities and the approximation away from the
discontinuities is able to maintain the high accuracy. To avoid computational complexity of
the Galerkin projection, which increases with the number of stochastic dimensions and the
number of expansion terms, the authors in [65, 66] later extended (MEgPC) to the multi-
element probabilistic collocation method (ME-PCM) [22], where tensor product or sparse
grid collocation is used in each element.

A similar adaptive approach based on Newton-Cotes quadrature in simplex elements was
proposed in [78]. In this approach, the stochastic response is approximated by a piecewise
polynomial by subdividing the parameter space into simplex elements. The Newton-Cotes
quadrature rule is employed in the approximation of the statistical moments. The elements
are refined adaptively using a refinement measure based on the curvature of the approximat-
ing response weighted by the probability represented by the element.

As a matter of fact, efficient localization of discontinuities has been an active research topic
in many scientific computing fields. It is called edge detection in image processing. There
have been many traditional edge detection methods. One recent method called polynomial
annihilation edge detection [1] gains popularity. It is based on local Taylor expansions like
the traditional ENO or WENO scheme. A high order reconstruction of the jump function is
obtained based on the global approximation of sampling nodes. The order of reconstruction
needs to be specified in advance and it affects the resolution of the jump function. The edges
are identified by comparing the values of jump function and a certain threshold value. Taking
advantage of the polynomial annihilation edge detection method, a different methodology
dealing with discontinuous functions was proposed in [38] recently. The novel feature of
this method is that the parameter space is partitioned into multiple elements defined by
the underlying discontinuities, in direct contrast to the traditional multi-element methods
where the sub-domains are obtained by splitting the axes in the parameter space [38]. To
resolve the discontinuities, a discontinuities detector is employed, which is based on the
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combination of the polynomial annihilation edge detection and the adaptive sparse grid.
After the decomposition of the whole parameter space, the surrogate in each element is
constructed by the least orthogonal interpolation method [53].

For UQ applications to industrial problems, it happens that more than one QOI from
the same computational model are wanted for a better understanding of the effects of the
uncertainties. More often than not, different QOI has different smoothness property in the
random space, e.g., the static pressure at various physical locations around the airfoil surface.
Under such circumstances, the adaptive methods need different deterministic sampling values
for distinctive QOI. This would result in a huge computational cost.

Apart from the above mentioned adaptive methods dealing with discontinuities, a novel
spectral method called iterative generalized polynomial chaos (i-gPC) was proposed in [56].
This method, with a post-processing nature, automatically builds a recursive approxima-
tion based on iterative formulations of the orthogonal polynomial basis with respect to the
stochastic properties of the solutions. It has been shown that with increasing number of itera-
tions and large number of quadrature points, the oscillations are restrained in the immediate
vicinity of the discontinuity [56]. This method proves to be robust when compared with
other non-intrusive methods on the Woodward-Colella benchmark of a high-speed channel
flow with a forward step in [47]. Although no additional deterministic simulations/sam-
ples are needed during the whole process, the aliasing error may become large during the
iterations.

To conclude, existing methods dealing with the discontinuous response in the parameter
space have shown satisfactory results with regards to some computationally cheap models.
However, a large number of sampling points or polynomial basis is needed to achieve a
relatively good accuracy, which makes them impractical to use for time-consuming large
scale CFD simulations under the case of limited computational resources. Besides this,
most non-intrusive methods are based on adaptive refinements, making it impossible for
parallelizations. Consequently, the whole process may take a long continuous time. For the
economical purpose, a consistent non-adaptive method using the same set of deterministic
sampling values to conduct the stochastic post-processing is needed. In the next chapter,
the one-dimensional formulation of the proposed method is presented.
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Chapter 3

Robust one-dimensional Stochastic
Collocation with discontinuities de-
tection

This chapter presents a novel non-adaptive Stochastic Collocation method with essentially
non-oscillatory (ENO) robustness (SC-ENO), which is designed to eliminate the spurious
oscillations associated with discontinuous response surface. The robustness concepts, such
as Local Extremum Conserving (LEC), Monotonicity Preserving (MP), are incorporated
into the non-intrusive Stochastic Collocation (SC) method with structured deterministic
sampling points. The LEC limiter has been applied in the Simplex Stochastic Collocation
(SSC) method [73, 74], where it is used to reduce the order of polynomial basis in each local
simplex element. Different from the SSC method, the proposed method works on a structured
sampling points. It first resolves the locations of discontinuities by the limiter, and then
constructs high order surrogate inside each smooth sub-domains. In the following, robustness
concepts from the CFD community are discussed in Section 3.1. Then, the novel approach
is shown in Section 3.2. Another method for predicting the location of discontinuity in the
parameter space is discussed in Section 3.3. Finally, the popular polynomial annihilation
edge detection method and the proposed SC-ENO method are discussed in Section 3.4.

3.1 Robustness concepts from the CFD community

As we know, the classical spatial discretization methods, such as the finite difference and
related finite volume methods, are based on local interpolations of data at discretized grids
with polynomials or other simple functions. From the classical approximation theory, the
order of accuracy of the interpolation is proportional to the number of nodes in the in-
terpolation stencil, provided the function to be approximated is smooth. However, fixed
interpolation stencil of second or higher order would result in Gibbs oscillations once it
contains discontinuities.

In the past three decades, to deal with the piecewise smooth property of the generic solu-
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22 Robust one-dimensional Stochastic Collocation with discontinuities detection

tion for hyperbolic conservation laws, people have developed many robust methods to sup-
press the oscillations around the discontinuities. In 1987, ENO (Essentially Non-Oscillatory)
scheme was proposed by Harten et al. [33], which is able to obtain the uniformly high order
accurate and essentially non-oscillatory interpolation for piecewise smooth functions [60].
Based on the fact that the divided difference can measure the smoothness of the function
inside the stencil, they utilized a hierarchy construction that begins with one or two cells,
then adds one cell at a time to the stencil from the two candidates on the left and right based
on the two values of the Newton divided differences. Although the ENO schemes are indeed
uniformly high order accurate, it is not suitable for the uncertainty propagation problem due
to the inherently different nature of spatial discretization and the non-intrusive sampling in
the parameter space. Limited by the expensive computational cost of a single sampling for
large scale CFD simulations, it is impractical to achieve convergence by a relatively fine
mesh/grid/sampling or adaptive refinement. Consequently, the order of interpolation stencil
cannot be maintained uniformly high across the whole random space. For example, if there
are more than one discontinuities in the random space and they are close to each other, then
the order of interpolation achieved by the classical ENO scheme is limited by the distance
between the discontinuities in the parameter space.

Before ENO was developed, limiters were used to eliminate spurious oscillations. In effect,
the order of polynomial basis near the discontinuities is reduced to linear. In [73, 74], re-
formulation of this kind of robustness principle was proposed with regards to the parameter
space and Simplex Stochastic Collocation (SSC) method was developed. In the SSC method,
the Local Extremum Conserving (LEC) limiter is used to control the size of the local inter-
polation stencil to avoid overshoots across the discontinuities. The adaptive refinement of
sampling grid is controlled by a local error estimator which is based either on the root mean
square of hierarchical surpluses or on the combination of the local probability measure and
the polynomial order. Later, the ENO type stencil selection was introduced into the Simplex
Stochastic Collocation (SSC) method [74]. For each simplex element in the stochastic space,
the stencil with the highest polynomial degree is selected from the set of candidate stencils
to construct the local response surface approximation. Consequently, the high order inter-
polation can be extended to the discontinuity locations. Recently, an improved version of
SSC is proposed in [20], which is more efficient and suitable for high-dimensional problems.

Inspired by the SSC method, some robustness concepts from the CFD community are
incorporated into the Stochastic Collocation method in an attempt to suppress the Gibbs
oscillations. They are introduced in the following sections.

3.1.1 Local extremum conserving limiter

Like other non-intrusive UQ methods, firstly a set of samples u(ξk) are obtained by solving
the deterministic problems at the structured sampling points ξk, k = 1, . . . , ns, where ns is
the total number of nodes. The whole parameter space Ξ can be viewed as a summation
of elements Ξ =

⋃ns−1
J ΞJ , each of which is bounded by the sampling points ξk. Then,

approximation wJ(ξ) is constructed for each element. The following definition is reproduced
from [72].

Definition 3.1.1 (Local Extremum Conserving (LEC)). Approximation wJ(ξ) of sam-
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3.1 Robustness concepts from the CFD community 23

ples u(ξk) in ΞJ is LEC with respect to u(ξk) in ΞJ if

min
ξ∈ΞJ

wJ(ξ) = min
ξk∈ΞJ

u(ξk) ∧ max
ξ∈ΞJ

wJ(ξ) = max
ξk∈ΞJ

u(ξk). (3.1.1)

Interpolation operator I is LEC in ΞJ if the resulting approximation wJ(ξ) is LEC with
respect to u(ξk) in ΞJ for all u(ξk).

Local approximation wJ(ξ) for element ΞJ using the sampling values at its vertices always
satisfies LEC limiter. To aim for higher order polynomial basis, more sampling points are
needed for the interpolation stencil of each element. However, oscillation appears whenever
the stencil contains discontinuities or high gradients inside. In that case, the LEC limiter
would not be satisfied and the reduction of the order is needed, as indicated in Figure 3.1.1.
In this sense, the LEC limiter can preserve the monotonicity of the underlying function to
some extent.
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(a) LEC limiter is violated when a global approxi-
mation is applied to a discontinuous function
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Figure 3.1.1: The LEC limiter forbids overshoots by reducing the polynomial order.
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(a) LEC limiter is violated when a global approxi-
mation is applied.
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Figure 3.1.2: The LEC limiter forbids local smooth extrema.
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24 Robust one-dimensional Stochastic Collocation with discontinuities detection

However, the original LEC limiter has the disadvantage that it reduces interpolation to
first-order accuracy for smooth non-monotonic functions at local extrema. To demonstrate
this, we consider the following non-monotonic smooth test function: u(ξ) = sin

(
π
2 (ξ+ 1.3)

)
.

The plots are in Figure 3.1.2. As a result of the LEC limiter, the approximation is reduced
to first-order.

3.1.2 Monotonicity Preserving limiter

To solve the problem of misinterpretation of smooth extrema as discontinuities, another
robustness concept Monotonicity Preserving (MP) is introduced. To show how it works, we
use a smooth non-monotonic quadratic function: u(ξ) = 4

3ξ
2 + 1. For ease of clarification,

we take four samples ξ = [−0.7,−0.3, 0.4, 0.7] to construct the polynomial approximation.

Since the original LEC limiter does not allow overshoots in the approximating surrogate
w(ξ) with respect to the sample values [u(−0.7), u(−0.3), u(0.4), u(0.7)], the approximation
would be reduced to piecewise linear function around the local minimum at ξ = 0. Con-
sequently, the interpolation error in the continuous element [−0.3, 0.4] is not acceptable.
To cope with that, we propose a modified LEC limiter, which enlarges the interval of the
limiter automatically, i.e. the extremum of the sample values, near the real local extrema.
A similar formulation is developed by Suresh and Huynh [62] in the context of the Mono-
tonicity Preserving (MP) limiter in Finite Volume Methods. First, we seek the intersec-
tion points (ξint, uint) of neighboring straight lines passing through two adjacent samples.
Then the local extremum of each element [ξJ , ξJ+1] is determined by comparing three values
[uint, u(ξJ), u(ξJ+1)] instead of the original two values [u(ξJ), u(ξJ+1)].

(a) Enlarged intervals of the LEC limiter for non-
monotonic function

(b) Unchanged intervals of the LEC limiter for
monotonic function

Figure 3.1.3: The LEC limiter combined with monotonicity preserving concept

As we can see from Figure 3.1.3(a), the local minimum for the continuous element [−0.3, 0.4]
is changed from the original sample value u(−0.3) to the green intersection point of two lines
passing through neighbouring sample values. On the other hand, for smooth monotonic
functions, the interval of the LEC limiter remains unchanged automatically because the in-
tersection point uint is between [u(ξJ), u(ξJ+1)], as can be seen in Figure 3.1.3(b). Compared

MSc. Thesis Huiqing Wang



3.2 Stochastic Collocation with ENO robustness in 1-D 25

to an existing MP limiter [76], the modified LEC limiter does not need any threshold value
to determine the existence of the smooth local extremum. It is expected to give the same
robust results for both monotonic and non-monotonic functions. It should be noted that the
enlarged interval of local extrema depends not only on the sample values u(ξk) but also on
the sampling nodes ξk. Therefore, a high oscillatory response surface is allowed if enough
sampling points are given,

3.2 Stochastic Collocation with ENO robustness in

1-D

In classical spectral expansions of functions with a polynomial basis, the high-order terms
determine the regularity of the approximation. For Lagrange interpolation, each polynomial
basis has the same order, thus the same magnitude of variance. When a larger number of
nodes is involved for interpolation, the interpolation becomes more capable to represent a
continuous function with many extrema accurately. On the other hand, the fewer nodes are
involved, the more robust the approximation becomes. Guided by this idea, essentially non-
oscillatory property can be achieved by using the LEC limiter and MP limiter to limit the
order of polynomial basis. Actually, for the 1-dimensional space, the process of constructing
surrogate with the ENO property can also be viewed as a process of resolving discontinuities
in the parameter space. In the following part, an efficient and robust methodology for
detecting discontinuous elements is presented.

To resolve the discontinuities in one dimensional parameter space Ξ, we first perform
Stochastic Collocation with a global basis as described in Section 2.4. The number of nodes
si is determined by a given computational budget and desired accuracy requirement. Then,
the space is partitioned into si−1 elements, i.e., Ξ =

⋃si−1
J=1 ΞJ . The term element used here

is different from the one used in multi-element probabilistic collocation method (ME-PCM)
[22, 65, 66], since no new polynomial basis is generated again inside each element and the
sampling is global still.

The main computational cost is spent on the realization of samples u(ξk) since it is fair
to assume that manipulation of polynomial approximation is not expensive. The approxi-
mations I(u(ξmcJ )) at Monte Carlo integration points ξmcJ ,mcJ = 1, . . . , smcJ inside each
element ΞJ are used for computing the statistical moments of the solution and for the LEC
limiter.

Then, if discontinuities exist in parameter space, the oscillations around it will trigger
the LEC limiter. After that, the number of nodes will be dropped one by one until the
remaining nodes {ξ1, ξ2, . . . , ξk}, k < si produce a robust approximation of the elements
enclosed by nodes ξ1 and ξk. Here, ‘robust’ means that the LEC limiter is satisfied and
undesired oscillations between each two nodes are suppressed. In practice, the dropping of
nodes could start from either side of the interval [ξ1, ξsi ]. However, it should be emphasized
that ‘robust’ does not exclude naturally the discontinuities out of the interval [ξ1, ξk]. In
some rare cases, the LEC limiter could also be satisfied even if the discontinuity lies between
nodes ξk−1 and ξk. So the next step is to determine which side the discontinuity lies with
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26 Robust one-dimensional Stochastic Collocation with discontinuities detection

respect to the node ξk. Here, we employ a straightforward jump discontinuity detector, which
is very similar to the shock detector used in discretization schemes in the CFD community.
If sample values |u(ξk)−u(ξk+1)| < |u(ξk)−u(ξk−1)|, the discontinuity locates between ξk−1

and ξk, and vice versa. Then, a first-order approximation is applied to the discontinuous
element Ξdisci , disci ∈ {1, . . . , s − 1}. This scanning process restart again for the elements
which have been dropped before, i.e., elements between nodes ξdisci+1 and ξs. This scanning
process finishes until all elements in the whole parameter space Ξ have been interpolated
‘robustly’. Finally, the parameter space is partitioned into disjoint smooth elements with
the discontinuous element as interface, and the global interpolation is replaced by piecewise
interpolation. A pseudo-code is presented in alg. 1 for a better clarification.
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(a) LEC limiter violated with global basis
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(c) Determine the location of discontinuous element
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(d) Interpolation with piecewise polynomial basis

Figure 3.2.1: Discontinuity detection for u(ξ) = sin(π4 (ξ+ 1)) +H(ξ) with 6 sampling nodes

To see how this method works, we consider a simple discontinuous function with smooth
background u(ξ) = sin(π4 (ξ + 1)) + H(ξ), where H(x) =

∫ x
−∞ δ(s)ds is the Heaviside step

function. First, we perform interpolation with global basis. The LEC limiter is violated due
to the oscillations, as we can see from Figure 3.2.1(a). Then, we drop the nodes used for
constructing the basis one by one from the right side until the LEC limiter is satisfied (Figure
3.2.1(b)). For this example, the LEC limiter is satisfied using the first four nodes. Next,
we determine on which side the last node lies to the discontinuity by comparing the nearby
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3.2 Stochastic Collocation with ENO robustness in 1-D 27

sample values. Consequently, we find the discontinuity lies in the element bounded by the
third and fourth node (Figure 3.2.1(c)), inside which a linear interpolation is applied. Then,
we restart the scanning process from the fourth node until the boundary node is reached.
Finally, we obtain an approximation with piecewise polynomial basis (Figure 3.2.1(d)).

Algorithm 1 Identifying discontinuous elements with the LEC concept in 1-D

1. Run the deterministic solver at Clenshaw-Curtis nodes (2.4.2) and perform Stochastic
Collocation based on samples {u(ξk)}sk=1. The number of nodes s is determined by a given
computational budget and desired accuracy requirement. Decompose the parameter space
into s− 1 elements {ΞJ}s−1

J=1.
2. Denote the interpolation stencil as [ξstart, ξend]. Set up an indicator variable δ of LEC
limiter (3.1.1) as a function of samples ξk for interpolation. δ([ξstart, ξend]) = 1 means that
LEC limiter is satisfied over the interval [ξstart, ξend].
3. Initially, set ξstart = ξ1, ξend = ξs and conduct global LEC limiter check on the
approximation w(ξ) = Is(u(ξ)) for each element at Monte Carlo integration points {ξi}smci=1 ,
where smc � s.
if δ([ξstart, ξend]) = 1 then

There does not exist a discontinuity in the parameter space. Global Stochastic Collo-
cation is performed.
else . scan the whole parameter space and find the location(s) of discontinuity

while start < s do
end = s
while δ([ξstart, ξend]) = 0 do

end = end− 1
end while
if end < s then

if |u(ξend−1)− u(ξend)| > |u(ξend)− u(ξend+1)| then
start = end
Linear interpolation for discontinuous element [ξend−1, ξend]

else . ξend lies left to the discontinuity
start = end+ 1
Linear interpolation for discontinuous element [ξend, ξend+1]

end if
else . [ξstart, ξend] contains no discontinuity

start = end . scanning process completed
end if

end while
end if

This new method of approximating discontinuous function is termed as Stochastic Col-
location with ENO robustness (SC-ENO). It should be noted that the proposed method is
capable of locating multiple discontinuities if enough sampling nodes are given. To demon-
strate, we consider a test function with multiple discontinuities.

Example 3.2.1 (1-D discontinuous function). Let the underlying solution u(ξ) contains
three Heaviside step functions H(x) and a smooth background function:

u(ξ) = sin(
π

4
(ξ + 1)) +H(ξ + 1/3) +H(ξ − 0.5) +H(ξ + 0.7) (3.2.1)
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28 Robust one-dimensional Stochastic Collocation with discontinuities detection

The approximated solution constructed using the SC-ENO approach with s = 30 is shown
in Figure 3.2.2(a), together with the exact solution. It can be seen that the locations of
the discontinuities (denoted by red crosses) are well resolved and the local linear interpo-
lations are employed for discontinuous elements (bounded by blue dots) and higher order
interpolation in the smooth parts.

(a) Approximation w(ξ) with piecewise polynomial
basis

(b) Interpolation error

Figure 3.2.2: Example 3.2.1 approximated with piecewise polynomial basis based on 30
samples

The proposed SC-ENO method can identify the locations of discontinuities with a res-
olution proportional to the element size. The interpolation error inside the discontinuous
elements dominates the whole error of the piecewise approximation. To get an more accurate
location of the discontinuity, a natural choice is to insert sampling nodes inside the discontin-
uous elements until a tolerance value of resolution is reached. Actually, this tolerance value
is the final size of the discontinuous element, which is inversely proportional to the number
of sampling nodes.

Now, let’s consider a 1-dimensional test case, where we can only afford h deterministic
solutions under a limited computational budget. The underlying function in the parameter
space can be smooth or discontinuous. Suppose those h sampling nodes can be chosen freely
in the parameter space. Using the aforementioned robust approximation method, there
are two different approaches to use those sampling values to achieve the best accuracy. One
choice is to choose l ≤ h sampling nodes correspond to a certain level of approximation using
the Chebyshev extrema points according to 2.4.3. Then run the deterministic solver with
those l uncertain input values. Lastly, the approximation is constructed at one time using the
SC-ENO method. Another choice is to use those computational resources step by step rather
than one-time. Since the post-processing is much cheaper compared to the deterministic
solver, the approximation procedure can start with a low level of approximation. Then,
we can choose to add more sampling nodes according to the smoothness of the constructed
response surface. If there is no discontinuity detected, the remaining deterministic solutions
can be obtained at those sampling nodes belonging to a higher level of approximation.
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3.3 Subcell Resolution 29

Then, the SC-ENO method is applied to all of the sampling nodes. This would yield the
same approximation result as the first choice. If there exists a discontinuity in the parameter
space, the remaining sampling nodes are supposed to be added inside those discontinuous
elements to narrow the size of the discontinuous element. It is true that the second choice
is able to obtain smaller approximation error in the vicinity of the discontinuity because the
linear interpolation become steeper. However, the accuracy away from the discontinuity may
not be as good as expected due to the limited number of sampling points, which is equivalent
to a low order of polynomial basis.

In this thesis work, the first approach is chosen for the sake of the parallelization of the
deterministic solver. Besides, due to the nested nature of the Chebyshev points, at least a
finer resolution of the discontinuity can be expected with an increasing level of approximation
, even though it may not be optimal for the same number of sampling nodes.

3.3 Subcell Resolution

Admittedly, a robust approximation of the discontinuous function can be achieved by us-
ing a linear interpolation across the jump discontinuity. However, the response surface in
the elements containing the discontinuity remains the same as long as the location of the
discontinuity is between the sampling nodes that are used for linear interpolation. In other
words, the discontinuity does not affect the stochastic response surface unless it moves across
a sampling point. At that moment, the response surface changes discontinuously. If the dis-
continuity in the parameter space is caused by a discontinuity in the physical space, this
linear interpolation would result in a staircase approximation of the integral value of the
solution in the physical space, e.g. the mean and standard deviation. To get rid of it, we
need a subcell resolution to achieve more accurate approximations of discontinuities in the
parameter space.

The notion of subcell resolution (SR) was developed by Harten [32] in the Finite Volume
Method (FVM) to obtain accurate approximations of discontinuities in the physical space.
Reformulation of SR concept into the Stochastic Collocation methods was introduced in [75].
Its basic strategy is to extract the discontinuity location xdisc in the physical space from
each of the deterministic simulations for the sampled random parameter values ξk. Then,
the physical discontinuities xdisc are interpolated in the parameter dimensions to derive a
relation for the location of the physical discontinuities xdisc as a function of the random
parameters ξ. In most real cases, this function xdisc = f(ξ) is smooth and monotonic in the
parameter space. Then, for each physical location, the predicted locations of discontinuity
are obtained in the form of a hyperplane in the stochastic space. With the subcell resolution
, the interpolation from the smooth elements can be extended to the predicted discontinuity
locations in the discontinuous elements, replacing the local linear interpolation by a higher
order interpolation.

Remark 3.3.1 (Limitation of the Subcell Resolution). It should be noted that the extraction
of the physical discontinuity is problem-dependent. In some cases, the spatial jump is not
strong enough, e.g., a shock wave weakened by the viscous boundary layer. As a result, the
locations of physical discontinuities xdisc are hard to parameterize and then interpolate as a
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30 Robust one-dimensional Stochastic Collocation with discontinuities detection

function of the random parameters ξ.

3.4 Discussion of discontinuity detection methods

In this thesis work, besides the SC-ENO method and the SR approach, edge detection
technique based on the polynomial annihilation method was once considered as a candidate
approach to address the Gibbs oscillations in the parameter space. In literature, an efficient
approach, which is based on the polynomial annihilation and active learning, was proposed
to localize the discontinuities in complex simulations last year [28]. Although improvements
in terms of the number of deterministic sampling nodes were achieved, this approach was
not adopted due to the following reasons. First of all, only a sufficiently large number of
sampling points can guarantee a quality result. Otherwise, the approximated locations of
discontinuity may be far away from the true discontinuity. Secondly, the distribution of the
sampling nodes may not the optimal in terms of the accuracy of the constructed surrogate
model. The active learning process starts with an initialization phase [28], during which
the sampling points are assigned to different regions and the polynomial annihilation is used
to perform a first “guess” of the discontinuity location. After that, adaptive refinement is
performed around the guessed location. As a result, sampling points are clustered in a narrow
band. It is likely that the approximation away from the discontinuity loses the accuracy.

For both the polynomial annihilation method and the SC-ENO method, the inputs are
the sampling nodes obtained from deterministic simulations. Compared to the expensive
costs of deterministic simulations, the computational cost of both methods can be seen
negligible. Hence, they can be viewed as post-processing procedure. From the author’s
experience, both of them suffer from low resolution and noisy environment. Low resolution,
which is due to the limited number of sampling nodes, may result in a inaccurate location of
the discontinuity for the polynomial annihilation method and a misidentification of a steep
gradient as a discontinuity for the SC-ENO method. The key difference between the two
methods is as follows: for the polynomial annihilation method, we need a threshold value for
the jump function and we can get an approximated location of the discontinuities; while for
the SC-ENO method, no threshold value is needed and we can get an approximated interval
in which the discontinuity lies.

In practice, the underlying function may be discontinuous in its derivatives rather than
function values. Besides that, there may exist strong gradient in the response surface. All
of these are likely to result in oscillating response surface. Under this condition, the afore-
mentioned discontinuity detection method, such as the SR approach and the polynomial
annihilation technique still works. However, there is a risk that the constructed response
surface that is supposed to be continuous becomes a discontinuous one. For such continuous
non-differentiable underlying function, the proposed SC-ENO remains a reliable robust ap-
proximation method because it is based on the limiter suppressing oscillations. An example
is given in the following.

Example 3.4.1 (1-D continuous non-differentiable function). Consider a continuous non
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3.4 Discussion of discontinuity detection methods 31

differentiable function u(ξ) with a steep gradient between [0.1− 0.35].

u(ξ) =


ξ2, ξ < 0.1
3.96ξ − 0.386, 0.1 ≤ ξ ≤ 0.35
cos(ξ − 0.35) ξ > 0.35

(3.4.1)

As we can see from Figure 3.4.1(a), although the underlying function is continuous, over-
shoots still exist around the steep gradient region if the spectral basis is used. For this
test case, the SC-ENO resolves the sharp region quite well, where a linear interpolation is
applied.
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(a) Approximation w(ξ) with SC
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Figure 3.4.1: Example 3.4.1 approximated with the global SC and SC-ENO method based
on 9 samples

More 1-dimensional numerical examples are presented in chapter 5. Before that, the
multi-dimensional formulation of the SC-ENO method is given in the following chapter.
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Chapter 4

Multi-dimensional Stochastic Collo-
cation with ENO robustness

In this chapter, the multi-dimensional formulation of the proposed SC-ENO method is pre-
sented. Firstly, a new method for the discontinuity localization in multi-dimensional space is
introduced in Section 4.1. Then, a matching algorithm used for the domain classification is
described in Section 4.2. After that, several multivariate interpolation methods used for the
surrogate construction are discussed in Section 4.3. Finally, the combination of the SC-ENO
method with the dimension adaptive sparse grid approach [26] is discussed.

4.1 Discontinuities detection in the multi-dimensional

space

The proposed one-dimensional ENO based discontinuity detection method can be extended
to the multi-dimensional space by a dimension by dimension approach. Following the same
procedure for the 1-D case, we first run the deterministic simulations at the prescribed
structured sampling nodes that are formed by the tensor product of the 1-D quadrature
nodes. Suppose the number of sample nodes for each dimension is sik(k = 1, . . . , N), then the
entire parameter space is decomposed into ne =

∏N
k=1(sik − 1) hypercube elements, i.e.Ξ =⋃ne

J=1 ΞJ . Every N -dimensional hypercube element contains 2N hypercubes of (N − 1)-
dimension on the boundaries. For example, a 2-dimensional square has 4 sides or lines; a 3-
dimensional cube has 6 2-dimensional faces; a 4-dimensional tesseract has 8 cubes. Without
loss of generality, an N -dimensional hypercube element is identified as the discontinuous
element if any of its boundary hypercubes of (N − 1)-dimension contains discontinuity. If
we repeat this detecting process starting from the highest dimension, the problem amounts
to detecting all the 1-dimensional line segments with discontinuities embedded in the N -
dimensional hypercube. Therefore, an N -dimensional hypercube element is identified as
a discontinuous element if it contains a discontinuous line on the boundary. In practical
implementations, the tracking of discontinuous line elements Ξkdisci , with discki ∈ {1, . . . , sik−
1} and k ∈ {1, . . . , N} can be achieved by performing the 1-D detection Algorithm (1) for
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34 Multi-dimensional Stochastic Collocation with ENO robustness

each dimension ξk. During this process, all but the k-th dimension are fixed by a given
coordinate.

Example 4.1.1 (Multi-dimensional discontinuities detection). To illustrate the proposed
discontinuities detection method, we consider the following function [37]:

u(ξ) =

{
1,

∑k
i=1 ξ

2
i < r2, k ≤ N

0 otherwise
(4.1.1)

(a) k = N = 2, r = 0.45 (b) k = 2, N = 3, r = 0.45

Figure 4.1.1: Discontinuity detection method applied to Example 4.1.1

Generally, the discontinuities are associated with all the random variables, i.e. k = N ,
then the whole parameter space is decomposed in all dimensions. Fig. 4.1.1(a) shows a
discontinuous curve on a two dimensional domain. In this case, the 1-D detection Algorithm
(1) is applied to each dimension (ξ1, ξ2). Here, the sample nodes are the tensor product
Clenshaw-Curtis points with the level of interpolation i1 = i2 = 4. As we can see from
Fig. 4.1.1(a), the discontinuous line elements, which are indicated by blue dashed lines,
are spotted when the first dimension ξ1 is scanned. Similarly, green dashed lines show the
discontinuous elements along the second dimension ξ2. Then, all the elements of rectangular
shape with dashed lines are flagged as discontinuous elements. However, if the discontinuities
lie in the lower-dimensional space, the global spectral expansion will be maintained in the
dimensions without discontinuities. Consider the Example 4.1.1 with k = 2, N = 3, the
discontinuity manifold is the surface of a cylinder. There does not exist a jump discontinuity
in the ξ3 dimension. As a result, the desired accuracy can be achieved with a lower level of
interpolation i3 compared to the other dimensions. Here, we choose i1 = i2 = 4, i3 = 2. Fig.
4.1.1(b) shows the result of the discontinuity detection method. The discontinuity surface is
represented by the dense red dots. Black dots stand for the end points of discontinuous line
elements. If we cut the cylinder horizontally (by fixing the ξ3 coordinate), the same result
will show up as Fig. 4.1.1(a).
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4.2 Domain classification 35

4.2 Domain classification

Once the discontinuities enclosed by discontinuous elements are resolved, the whole parame-
ter space is partitioned into disjoint smooth sub-domains bounded by discontinuities. Due to
the arbitrary shape of the discontinuities, the resulting smooth sub-domains would no longer
be hypercube-shaped. The next task is to construct accurate polynomial approximations in-
side each smooth element using the existing simulation results on unstructured sample nodes.
First, we need to classify the sampling nodes into each continuous sub-domain. Thanks to
the structured nature of tensor product grids, the classification of grids can be achieved by
classifying hypercube elements. Then, all the vertices of each hypercube elements in the
same category are in the same smooth sub-domains.

Assume that the discontinuous elements are well resolved by the discontinuities detection
algorithm. The remaining continuous elements are classified by a tracing algorithm. Initially,
all the continuous elements are categorized as unclassified and a random continuous element
is picked. Then we examine its neighboring elements in all axial directions. If they are not
discontinuous elements, then they all belong to the same class as the original element. This
scanning process is repeated for each newly-classified element and continues until it stops
yielding new elements. As a result, we can conclude that all the elements belonging to the
same class 1 have been totally covered. Now, we pick randomly another unclassified contin-
uous element and start looking for the elements belonging to the class 2. This process goes
on until all the continuous elements have been classified. Finally, the domain classification
process is complete. The pseudo-code of this domain classification process is outlined in
Algorithm 2.
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(e) Result

Figure 4.2.1: Domain classification applied to a two-dimensional example

MSc. Thesis Huiqing Wang



36 Multi-dimensional Stochastic Collocation with ENO robustness

A 2-dimensional example with 5 nodes in each dimension is presented to show how this
algorithm works. For the ease of explanation, equiv-distant points are used. Suppose the
jump discontinuity is a straight line running across the two dimensional domain, which is
denoted by the black dash-dot line in Figure 4.2.1. After the discontinuity detection step, the
grey discontinuous element are found and the whole domain is decomposed into two smooth
sub-domains. The continuous elements are represented by the yellow squares. Firstly, a
random continuous element, which is denoted by the red element with a cyan circle at the
center in Figure 4.2.1(b), is picked and classified into 1st sub-domain. Its neighbours in all
dimensions are checked to see if they are continuous ones. At the same time, the checked
element is flagged with a cyan pentagon in Figure 4.2.1(c). The same checking process
continues for each newly-classified element until all the elements lying on one side of the
discontinuity are categorized into the same class. Finally, the two smooth sub-domains,
which are indicated by red and green colors, are obtained, as shown in Figure 4.2.1(e)

Algorithm 2 N -dimensional domain classification

Input: N -dimensional array I indicating the smoothness of each hypercube element
k = 0
unc : set of index of smooth elements
while unc 6= ∅ do

k = k + 1
class(k) = unc(1)
num = 1
asnum = 0
while asnum 6= num do

index = class(k)(asnum+ 1)
for i = 1 : N do

Check the two neighbouring elements of element unc(index) in dimension i .
Classify them as class k if they are continuous elements.
Store the index in order.

end for
num = #(class(k))
asnum = asnum+ 1

end while
unc = unc\class(k)

end while
Output: class(k) indicating the index of elements belonging to class k

4.3 Multivariate interpolation on unstructured grids

After classifying the vertices of each smooth element, the sampling nodes belonging to each
class becomes unstructured since each smooth region may not be of hypercube shape. The
next step is to construct an approximation response surface for each of the sub-domain. In
order to be consistent with the notation convention used in the multivariate interpolation,
symbol x is used to denote the unstructured sampling points in the stochastic space in
contrast to structured ones ξ. Actually, the remaining problem can be seen as a multivariate
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4.3 Multivariate interpolation on unstructured grids 37

interpolation problem. Although the univariate interpolation is a well-established field, the
problem becomes tricky for the multivariate case 1. To show this, we need a few definitions.

Definition 4.3.1 (Lagrange interpolation problem). Given a finite point set Θd =
{x1, . . . , xS}2 with elements xj = (x(1), . . . , x(d)) ∈ Rd. The values to be interpolated are
denoted by y1, . . . , yS. The Lagrange interpolation problem is to find a polynomial p ∈ F ,
such that

p(xj) = yj , j = 1, . . . , S, (4.3.1)

where F , called the interpolation space, is a subspace of the space of all d-variate polynomials
Πd.

Definition 4.3.2 (Posedness). The Lagrange interpolation problem in Definition 4.3.1 for
the points Θd = {x1, . . . , xS}, is called posed in F if there exists a unique polynomial p ∈ F ,
such that

p(xj) = yj , j = 1, . . . , S.

Definition 4.3.3 (Haar space). Suppose Υ ⊆ Rd. Let B ⊂ C(Υ) be a finite dimensional
subspace with polynomial basis b1, . . . , bS. Then B is a Haar space on Υ if the determinnant
of the Vandermonde matrix formed by any set of points Θd = {x1, . . . , xS} ∈ Υ does not
vanish, i.e.

det(bk(xj)) 6= 0

Remark 4.3.1. The existence of Haar spaces guarantees the posedness of the Lagrange inter-
polation problem. It has been proved that univariate polynomials of degree ≤ S − 1 form a
S-dimensional Haar space for a set of 1-dimensional data {x1, . . . , xS}. For the multivariate
case, there is no guarantee due to the following theorem.

Theorem 4.3.1 (Haar-Mairhuber-Curtis theorem [50, 12]). Suppose that Υ ⊆ Rd con-
tains an interior point3. There exists no Haar space on Υ for dimension d ≥ 2.

In [21], an interpretation of the Haar-Mairhuber-Curtis theorem is given as follows:
If we want to have a well-posed multivariate scattered data interpolation problem, we can no
longer fix in advance the set of basis functions we plan to use, instead the basis should
depend on the data locations. Guided by this idea, two types of interpolation methods
with basis dependent on the point locations are tested in this thesis. They are introduced
in the following sections. After that, their performances are illustrated and compared.

4.3.1 Sauer-Xu multivariate Lagrange interpolation

The multivariate Lagrange interpolation method developed by T.Sauer and Y.Xu [59] is
able to find the interpolation space for scattered sampling nodes set Θd. Its main idea is to
successively construct the Lagrange fundamental polynomial basis L1, . . . , LS satisfying the

1A general survey of all the results before the 21st century is given in [23].
2We use N in the previous sections to denote the stochastic dimension
3x is an interior point of Υ ⊆ Rd if there exists an open ball with radius δ > 0 and center at x that is

completely contained in Υ.
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38 Multi-dimensional Stochastic Collocation with ENO robustness

conditions Li(xj) = δij , i, j = 1, . . . , S. Then, the interpolant of the function f(x) can be
written as:

I(f(x)) =
S∑
j=1

f(xj)Lj(x). (4.3.2)

Suppose Πd
n is a M -dimensional space of polynomials with elements of total degree at most

n. Its basis are denoted by {qj}Mj=1 and follow a certain graded order. Let P
[i]
j denotes the

Lagrange polynomial corresponding to the jth point at the ith step. Following an induction

process, suppose that P
[k]
1 , . . . , P

[k]
k are already constructed for some k ≥ 1 from {qj}kj=1 and

{xj}kj=1 with the following condition

P
[k]
i (xj) = δij , i, j = 1, . . . , k ≤ S (4.3.3)

satisfied. These basis P
[k]
1 , . . . , P

[k]
k are linearly independent and span a k-dimensional sub-

space of Πd
n. Then, for the next point xk+1, we first pick a basis qk+1 from the subspace

Πd
n \ {P

[k]
j }kj=1 such that qk+1(xk+1) 6= 0. Then, qk+1(x) is replaced by

qk+1(x) = qk+1(x)−
k∑
i=1

qk+1(xi)Pi(x). (4.3.4)

to make qk+1(xi) = 0, i ∈ {1, . . . , k}. After this, the corresponding Lagrange basis for the
point xk+1 is constructed by:

P
[k+1]
k+1 (x) =

qk+1(x)

qk+1(xk+1)
. (4.3.5)

With this newly added basis P
[k+1]
k+1 (x), we need to further change the previous basis as

follows

P
[k+1]
j (x) = P

[k]
j (x)− P [k]

j (xk+1)P
[k+1]
k+1 (x), j = 1, . . . , k, (4.3.6)

to make sure the previous basis vanish at xk+1.

It should be noted that if the Lagrange interpolation problem is posed with respect to Θd,
there must exist some j ∈ {k + 1, . . . , S} such qj(xk+1) 6= 0 at the jth step. Without loss of
generality, we assume that qk+1(xk+1) 6= 0.

The above algorithm works as long as the points set Θd in posed in Πd
n. Otherwise, we can

enlarge the polynomial space by increasing the total order n. From the Kergin interpolation
[39], we know that there always exist a subspace Πd

p ⊆ Πd
S−1 with p > n such that the

Lagrange interpolation problem with respect to Θd is posed in Πd
p. This algorithm is easy to

implement since only the natural operations on polynomials, i.e.,, addition, multiplication
by scalars and point evaluation, are required. However, from the author’s experience, it
takes much longer time for high dimensional scattered points. What’s more, the numerical
stability is an inevitable issue inherent to this method since division Pk(x) := Qi(x)

Qi(xk) exists in

the algorithm. In [59], some improvements were recommended, such as the use of Bernstein-
Bezier polynomial basis. It is observed that a better stability is accomplished by pivoting
strategies when searching for index j such that qj(xk+1) 6= 0. That is, determine j such
that qj has maximal absolute value at xk+1. A pseudo-code for this algorithm is given in
Appendix B.
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4.3 Multivariate interpolation on unstructured grids 39

4.3.2 Least interpolation

In this section, another multivariate interpolation method, called least interpolation [16], is
presented. For the notation convenience, the elements of the finite point set Θ 4 are denoted
as {θ1, . . . , θS} with θj ∈ Rd. This method constructs the right interpolation space ΠΘ

with some nice properties, which are listed in Appendix D. First, we show some necessary
definitions concerning the interpolant.

Definitions

Multi-index α = (α(1), . . . , α(d)), α(i) ≥ 0, i = 1, . . . , d denotes the order of derivative of a d-

dimensional function. We define Dα :=
∏
j D

α(j)
j as a multivariate differential operator, with

Dj being the differentiation with respect to the jth argument. The power series expansion
(i.e., the Taylor series expansion around the origin), of a function p analytic at the origin
reads as follows:

p =
∑
α

θα

α!
Dαp(0), (4.3.7)

where θα = θ(1)α(1) · · · θ(d)α(d). The least operator ↓, by definition, gives the least term p↓
as the first nontrivial term in the power series expansion of p. If g↓ has degree k, then

g↓ =
∑
|α|=k

θα

α!
Dαg(0).

When the least operator ↓ is applied to a linear space H of functions analytic at the origin,
the following function space is obtained:

H↓ := span{f↓ : f ∈ H}.

It was proved in [16] that

dimH↓ = dimH (4.3.8)

The exponential eθ with frequency θ has the power series expansion:

eθ := eθ·x = 1 + θ · x+ (θ · x)2/2 + · · · , (4.3.9)

with θ · x =
∑d

j=1 θ(j)x(j) the ordinary scalar prodcut of two d-vectors θ and x. Because
exponentials eθ with different frequencies θ is linearly independent [17], they form a basis of
the function space

expΘ := span{eθ·x : θ ∈ Θ} (4.3.10)

and dim expΘ = #Θ.

This method relies on a pairing operation, which is defined as follows:

〈g, f〉 :=
∑
α

Dαg(0)Dαf(0)/α!, g, f ∈ Π. (4.3.11)

4The previous subscript d is omitted for simplification.
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It follows that the pairing of a function f with respect to the exponential eθ amounts to the
polynomial evaluation f(θ), i.e.,

〈eθ, f〉 =
∑
α

Dαeθ(0)Dαf(0)/α! = f(θ), (4.3.12)

because
Dαeθ(x) =

∏
j

D
α(j)
j eθ(x) =

∏
j

θ(j)α(j)eθ·x = θαeθ·x. (4.3.13)

Proposition 4.3.2. [17] The polynomial interpolant in the form

IΘf :=
S∑
j=1

gj↓
〈gj , f〉
〈gj , gj↓〉

(4.3.14)

is the unique interpolant satisfying IΘf = fon Θ, with g1, g2, . . . , gS a basis for expΘ (par-
ticularly, S = #Θ) and

〈gi, gj↓〉 = 0 ⇐⇒ i 6= j. (4.3.15)

The proof of this proposition can be found in [17]. As we can see from the proposition,
the space spanned by {g1↓, . . . , gS↓} is the posed polynomial space for interpolation at Θ.
Since dimΠΘ =dim(expΘ) = #Θ = S, we have

ΠΘ = span{g1↓, g2↓, . . . , gS↓}. (4.3.16)

Construction of the basis

We can construct the interpolation space ΠΘ = span{g1↓, g2↓, . . . , gS↓ : g ∈ expΘ} from the
basis {eθ·x : θ ∈ Θ} for expΘ by a variant of the Gram-Schmidt process [15]. In the following,
we will denote eθi·x by fi for ease of explanation. Suppose we already have g1, g2, . . . , gj−1

available, which span the same space spanned by f1, f2, . . . , fj−1, next we achieve the or-
thogonality:

〈gi↓, gj〉 = 0, , i < j, (4.3.17)

by computing

gj := fj −
∑
i<j

gi
〈gi↓, fj〉
〈gi↓, gi〉

. (4.3.18)

In order to achieve another orthogonality

〈gj↓, gi〉 = 0, , i < j, (4.3.19)

we make the further modification:

gi ← gi − gj
〈gj↓, gi〉
〈gj↓, gj〉

. (4.3.20)

The denominator in the above equation (4.3.20) is non-zero since gj 6= 0, which results from
the linear independence of the fi. It should be noted that the above modification (4.3.20)
does not change the biorthogonality in equation (4.3.17) due to the following reasons:
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� If deg(gj↓) >deg(gi↓), gi↓ does not change from (4.3.20) because (gj↓) > interacts only
with the expansion terms of (gi) of order k in 〈gj↓, gi〉, where deg(gj↓) = k.

� If deg(gj↓) <deg(gi↓), gi does not change since 〈gj↓, gi〉 = 0.

� If deg(gj↓) =deg(gi↓), 〈gj↓, gi〉 = 〈gi↓, gj〉 = 0, which is already achieved in (4.3.17).

Finally, (4.3.17) and (4.3.19) combines to make (4.3.15), and we obtain the basis {g1↓, g2↓, . . . , gS↓}
for ΠΘ. In [17, 14, 15], extensive discussions about the connection of this method to Gauss
elimination were made. An effective approach for the construction of basis for ΠΘ satisfying
(4.3.15) is proposed in [17], which is based on Gauss elimination of the Vandermonde matrix
by segments (i.e., by degree-by-degree). An improved version in terms of numerical stability
is given in [15], where it is also verified that the earlier Gram-Schmidt like algorithm ap-
plied to fi := eθi·x, i = 1, . . . , S, is Gauss elimination with column pivoting applied to the
Vandermonde matrix. In Appendix C, details of Gauss elimination with row pivoting are
presented, which yields not only the same polynomial space as the column pivoting, but also
a ‘good’ ordering of the points in Θ.

4.3.3 Comparison of the multivariate interpolation methods

So far, two multivariate interpolation methods have been introduced. In this section, the
performances of them together with the conventional fixed basis method solved by Gauss
elimination with row pivoting are investigated with respect two simple examples. Without
loss of generality, two dimensional domain is considered. Let (x, y) stands for the 2-D
variable.

Example 4.3.1. Let Θ = {(−0.5,−0.5), (0, 0).(0.5, 0.5)} ⊂ R2, the values of the function to
be interpolated are f(−0.5,−0.5) = 1, f(0, 0) = 3, f(0.5, 0.5) = 5.

For all methods, the polynomial basis needs to prescribed. As we can see from the nu-
merical example provided below, the ordering of the polynomial basis has a influence on
the interpolant. If we use the graded lexicographic ordering of the monomial basis for the
Vandermonde matrix V :

(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), . . . ,

it is easy to verify that the det(V ) = 0. In other words, the Lagrange problem is not
posed for the interpolation space F = span{( )α1 , ( )α2 , ( )α3} with α1 = (0, 0), α2 = (1, 0)
and α3 = (0, 1). However, if we use the Sauer-Xu Lagrange interpolation algorithm, the
interpolant f(x, y) = 2x2 + 5x + 3 is obtained. The plot of the results is shown in Figure
4.3.1(a). Suppose we use a different ordering of the monomial basis, i.e., put the interaction
term first among the basis with the same total order:

(0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (0, 2), . . . ,

then the interpolant f(x, y) = 2xy+ 2.5x+ 2.5y+ 3 is obtained by the Sauer-Xu algorithm,
whose plot is shown in Figure 4.3.1(b). This interpolant seems more ‘correct’ since the
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gradient of the response surface at all locations is more or less parallel to the straight line
connecting the three interpolation points. Now, if we rotate the coordinate system by 45◦

and define a new variable s = x+y, then the original two dimensional interpolation problem
is reduced to a one dimensional problem: f(x, y) = g(s) with g(−1) = 1, g(0) = 3, g(1) = 5.
The univariate interpolant admits a quadratic expansion: g(s) = 0.5s2 + 2.5s+ 3. The cor-
responding 2-D interpolant is (x, y) = 0.5x2 + 0.5y2 + xy + 2.5x+ 2.5y + 3, which is plotted
in Figure 4.3.1(c). Actually, this interpolant is the result obtained from the least interpo-
lation method with the graded lexicographic ordering of the monomial basis. This example
demonstrate the one proved property of the least interpolation method, i.e., coordinate
system independence [16]. The full property descriptions can be found in Appendix D.
Although only three function values are known, five polynomial expansion coefficients can
be determined uniquely.

(a) Interpolant f(x, y) = 2x2 +
5x + 3 obtained by the Sauer-Xu
method

(b) Interpolant f(x, y) = 2xy +
2.5x + 2.5y + 3 obtained by the
Sauer-Xu method with re-ordered
monomial basis

(c) Interpolant f(x, y) = 0.5x2 +
0.5y2+xy+2.5x+2.5y+3 obtained
with the least interpolation method

Figure 4.3.1: Comparison of the interpolation for Example 4.3.1

It should be noted that all the above three interpolants are of the same highest total order.
Also, they are correct in the sense that they all interpolate the values exactly at those three
points (depicted by black dots) exactly. However, the last interpolation makes more sense
since the value changes linearly in the direction of the three points while stays constant in
the orthogonal direction. From this example, we can observe that the Sauer-Xu algorithm
still works when the conventional fixed basis method fails and the ordering of the polynomial
basis exerts a big influence on the interpolant. However, although it is numerically stable,
there is a risk that the constructed interpolant becomes ‘illogical’ away from the interpolation
points. To show this, we consider the following example:

Example 4.3.2. Let Θ = {(−1,−1), (−1, 1), (0,−1), (0, 1), (1,−1), (1, 1)} ⊂ R2, the func-
tions values are f(−1,−1) = 3, f(−1, 1) = 4, f(0,−1) = 5, f(0, 1) = 6, f(1,−1) = 7, f(1, 1) =
8.

This example is a common case when the proposed SC-ENO method is applied to a dis-
continuous function. These 6 nodes may constitute a smooth sub-domains with two smooth
elements. The interpolant obtained by least interpolation method is f(x, y) = 2x+0.5y+5.5,
as shown in Figure 4.3.2(a). By contrast, the interpolant obtained by the Sauer-Xu algorithm
with a monomial basis is f(x, y) = 2x3 + 0.5y3 + 5.5y2. If the Legendre polynomial basis is
employed, then the interpolant becomes f(x, y) = 5x3 + 1.25y3 + 8.25y2− 3x− 0.75y− 2.75.
As we can see from the Figure 4.3.2, even if the values are interpolated exactly at those six

MSc. Thesis Huiqing Wang



4.3 Multivariate interpolation on unstructured grids 43

points, the interpolants obtained from the Sauer-Xu algorithm appear to lose the underlying
structure of the function and is too complicated away from the interpolation points. This
example demonstrate another desired property of the least interpolation method, i.e., the
constructed interpolant has the minimal possible degree.

(a) Interpolant f(x, y) = 2x +
0.5y + 5.5 obtained by least inter-
polation.

(b) Interpolant f(x, y) =
2x3 + 0.5y3 + 5.5y2 obtained
with the Sauer-Xu algorithm using
the monomial basis.

(c) Interpolant f(x, y) = 5x3 +
1.25y3 + 8.25y2− 3x− 0.75y− 2.75
obtained with the Sauer-Xu algo-
rithm using the Legendre polyno-
mial basis.

Figure 4.3.2: Comparison of the interpolation for Example 4.3.2.

From the above two examples, we can see that the Sauer-Xu multivariate Lagrange in-
terpolation algorithm is better than the fixed basis method, but it lacks robustness. It
seems that the least interpolation method is an accurate and stable multivariate interpola-
tion method for scattered data points, which is able to exploit the underlying structure of the
interpolation points when necessary. From the author’s experience of test, it would produce
the most accurate surrogate based on the sampling nodes obtained from the domain clas-
sification. However, in some rare cases, e.g., if the underlying function is highly oscillatory
in each smooth sub-domains and the locations of sampling nodes Θ are very irregular (par-
tially due to the shape of the discontinuities), this method may result in a model response
with some singularities. As a consequence, robustness cannot be maintained. An example is
shown as follows.

Suppose the smooth region resulting from the discontinuity detection is shown in Figure
4.3.3(a). There are 51 sampling points in this smooth region, which are the subset of the
tensor product Clenshaw-Curtis points and denoted by the black dots. The underlying
smooth function f(x, y) = cos

(
3(x + y)

)
is highly oscillatory. The interpolant obtained by

the least interpolation method is shown in Figure 4.3.3(b). In this example, the distribution
of the sampling nodes are far apart. What’s more, the number of sampling points is so large
that the interpolation space has to be of maximum order of 10 to be posed. As a consequence,
the interpolant exhibits abnormal values away from the sampling points. This phenomenon
would become worse for high-dimensional case [53]. To remedy this, we propose a more
robust interpolation method that matches the proposed discontinuity detection method.

MSc. Thesis Huiqing Wang



44 Multi-dimensional Stochastic Collocation with ENO robustness

(a) Exact function (b) Interpolant with the least interpolation

Figure 4.3.3: Unstable behaviour of the least interpolation.

4.3.4 Element-wise interpolation

We recall that the sampling points in the whole stochastic space are formed by the ten-
sor product. In the discontinuities detection step, the continuous elements ΞJ , with J ∈
{1, . . . , ne} \ {disc1, . . . , discn}5, are found by enforcing the modified LEC limiter dimension
by dimension. To avoid the occurrence of singularities in the surrogate constructed in smooth
sub-domains, a natural choice is to decrease the number of points used for the construction
of the polynomial basis. At a cost of reducing the order of the basis, the robustness is
strengthened. One possible choice is to construct the interpolant element-wisely by finding
the interpolation stencil with fewer points for each smooth element.

Here, we propose to utilize stencil formed by structured subset of the unstructured grids
in each smooth sub-domain. To that end, we start by defining the admissible interpolation
stencil SJ for element ΞJ as the one with structured nodes from the smooth sub-domains as
well as containing all the vertices of element ΞJ , thus SJ = {ξkJ,1 , . . . , ξkJ,2N , . . . }. There-

fore, the piecewise linear interpolation is assured and a higher degree interpolation can be
constructed by adding more neighbouring sampling nodes ξk. Generally, the admissible can-
didate stencils for each smooth element are not unique and they formed a set {SJ,i}rJi=1 with
rJ ≥ 1. Therefore, a criteria need to be chosen in order to determine which stencil should be
picked. For the sake of the best utility of sample results and the high accuracy, we choose
the stencil SJ ∈ {SJ,i} for ΞJ with the largest number of sample nodes:

SJ = SJ,i, with i = argmax
i∈{1,...,rJ}

card(SJ,i). (4.3.21)

Because the stencil SJ is constructed by the tensor product of grids in each dimension, the
problem can be reformulated as follows:

SJ = SJ,i, with i = argmax
i∈{1,...,rJ}

N∏
j=1

(ξi,jend − ξ
i,j
start + 1), (4.3.22)

5{disc1, . . . , discn} is index set of all the discontinuous elements.
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where ξi,jend, ξ
i,j
start ∈ {ξ

ij
1 , . . . , ξ

ij
sij
} are the starting and end indices of samples ξik belonging to

the i-th candidate stencil in the j-th dimension. If multiple stencils have the same number
of sample nodes, then the one with the minimum average Euclidean distance of the sampling
points ξk to the center of ΞJ is chosen.

91

-1 -0.5 0 0.5 1

9 2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
%inc

%dec

%I

(a) Stencil for element ΞI after diagonal expansion
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(b) Stencil for element ΞJ after diagonal expansion
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(c) Stencil for element ΞK after diagonal expansion
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(d) final stencil for element ΞI ,ΞJ ,ΞK after updat-
ing process (second step)

Figure 4.3.4: Stencil selection algorithm applied to Example 4.1.1, with k = N = 2.

Constructing and checking all candidate stencils SJ for all elements ΞJ is impractical due
to the increased complexity for high-dimensional problems. Here, an efficient construction
of the interpolation stencil for all smooth elements ΞJ is proposed, which comprises of the
following two steps. Firstly, a temporary neighbour stencil ŜJ is constructed for each ΞJ
by expanding the stencil along the N -dimensional diagonal centering on the hypercube ΞJ
until it touches the discontinuous element Ξdisci or the boundaries. In other words, based
on all the vertices of element ΞJ , {ξkJ,1 , . . . , ξkJ,2N }, the indices of boundary samples in each

dimension are either increased or decreased in at least one dimension. During this process,
the temporary neighbour stencil is updated to contain as many sample nodes as possible.
Subsequently, two temporary stencils are obtained by expanding in two diagonal directions.
Each one of these two stencils is composed of all the sample nodes enclosed in a larger
hypercube that contains ΞJ as one of its corner. The other two corner hypercubes opposite
to ΞJ obtained by increasing and decreasing along diagonal are denoted as Ξinc and Ξdec.
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46 Multi-dimensional Stochastic Collocation with ENO robustness

Then, we assume that the interpolation stencil is further expanded by using Ξinc and Ξdec
as the starting and ending element in the diagonal line of the expanded stencil. It should
be noted that there may be discontinuous elements in this expanded stencil. If so, one of
the previous temporary neighbor stencil with a larger cardinality is chosen. If there is no
continuous element around ΞJ , then ŜJ = {ξkJ,1 , . . . , ξkJ,2N }. Next, a updating process is

run for each ŜJ since there may exist another larger stencil ŜI that contains all the samples
of ŜJ . Meanwhile, the requirement of minimum average Euclidean distance is checked if
candidate stencils have the same number of samples. Consequently, the final interpolation
stencil for element ΞJ will be the one with the largest number of sample nodes and the
minimum average distance.

Due to the inherent property of the hypercube tessellation, the two-step stencil selection
algorithm provides an interpolation stencil with the largest number of sample nodes by re-
stricting the stencil selection to a subset of all possible stencils. In Fig. 4.3.4, we demonstrate
our algorithm on a two-dimensional parameter space with two smooth sub-domains as in Ex-
ample 4.1.1. Equiv-distant sample nodes are used for ease of explanation. Discontinuous
elements are denoted by closed dashed blue lines. Stencils for elements are sets of samples
enclosed by lines with corresponding color. Cyan dashed-dots lines indicate the process of
diagonal expansion. Original interpolation stencil for element ΞI is maintained. Interpo-
lation stencils for element ΞJ and ΞK are replaced by a larger stencil with the minimum
average distance during the second step.

After the stencil selection step, the surrogate for each element ΞJ can be constructed with
its own stencil SJ . To increase efficiency, an extra step is taken to remove the overlap of
interpolation stencils, which is extremely important for high-dimensional problems. Conse-
quently, a smallest set of stencils with the property that all elements are covered just once
is obtained. Then, the interpolation space is constructed by the tensor product space

Ps = span{ξα : α < s} (4.3.23)

where vector s ∈ RN denote the number of sampling nodes in each dimension for certain
interpolation stencil. Although we can construct artificially non-tensor-product polynomial
spaces on purpose, it is stated in [58] that it is reasonable to use tensor product space when
interpolating on a tensor product grid. It is consistent with the fact that a tensor product
space is always obtained when the least interpolation method is used to interpolate on tensor
product grids, as shown in Appendix D.

In this thesis work, the least interpolation method and the proposed element-wise in-
terpolation method are used for the surrogate construction in the smooth regions. Their
performances with respect to some discontinuous test functions are discussed with more de-
tails in the next chapter. So far, the formulation of the SC-ENO is based on tensor product
grids. In the following, its combination with the sparse grid is presented.
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4.4 SC-ENO with the dimension adaptive sparse

grid

The proposed SC-ENO method is a post-processing step based on the deterministic values at
tensor product sampling grids. To make it more efficient for high-dimensional problem, we
propose to combine the SC-ENO method with the sparse grid approach [31, 7]. As we show
in Section 2.4.2, the sparse grid be formulated as a linear combination of tensor product
grids. The reduction of the number of sampling points is achieved by the manipulation of
the multi-indices i, which controls the number of sampling points in each dimension. For the
isotropic sparse grid case, i belongs to a hyperbolic index set :

Iiso := {i ∈ NN+ , i ≤ N + w}, (4.4.1)

where w ≥ 0 is the approximation level. In effect, the high order interaction terms are ruled
out. The interpolant, denoted by Aw,N , is as follows:

Aw,N =
∑
i∈Iiso

(∆i1 ⊗ · · · ⊗∆iN ). (4.4.2)

where ∆i = Ii − Ii−1 for i ≥ 1 and I0 = 0. If we expand the above formula and substitute
every ∆i by Ii − Ii−1, then Aw,N becomes a linear combination of Ii1 ⊗ · · · ⊗ IiN with
i=(i1, . . . , iN ) ∈ NN and i ∈ Iiso. Because each Ii1 ⊗ · · · ⊗ IiN works a tensor product grid,
then the SC-ENO approach can be applied to it.

However, the isotropic sparse grid does not take into account the sensitivity of the output
with respect to the different uncertain parameters. An equal importance is still assigned to
low-order interaction terms between different dimensions. In most applications, the different
dimensions are not equally important. In other words, an seemingly high-dimensional prob-
lem possess a low effective dimension. In that case, more sampling/interpolation nodes are
supposed to be given to those important dimensions.

To this end, many approaches were developed to detect the important correlations and
interactions between dimensions, e.g., ANOVA-type (Analysis of Variance) decomposition.
Around ten years ago, the dimensional adaptive sparse grid method based on posteriori error
indicator was developed for the multivariate integration problem [26], which is regarded as a
generalization of the conventional isotropic sparse grid. The index set I is gradually expanded
based on the error indicators (to be addressed below). In this thesis project, this adaptivity
concept is incorporated into the proposed SC-ENO method. For completeness, this method
is summarized in the following as described in [26]. First of all, a few definitions are listed.

Definition 4.4.1 (Admissible index set). An index set I of multi-indices i, is called
admissible if for all k ∈ I, the following condition is satisfied,

k− ej ∈ I for1 ≤ j ≤ N, kj > 1, (4.4.3)

where ej is the j-th unit vector. In other words, for every index k ∈ I, the admissible
index set contains all indices that have smaller entries than k in at least one dimension.
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Definition 4.4.2 (Forward neighbour index). The forward neighbour index of an
index k is defined as the N indices {k + ej , 1 ≤ j ≤ N}.

Definition 4.4.3 (Backward neighbour index ). The backward neighbour index of
an index k is defined as the N indices {k− ej , 1 ≤ j ≤ N}.

Definition 4.4.4 (Active index set). The active index set A contains those indices
of I whose error indicators have been computed but the error indicators of all their
forward neighbours have not been calculated yet.

Definition 4.4.5 (Old index set). The old index set O contains all the other indices
of the index set I. In other words, the active index set A contains the forward neighbours
of the old index set O.

4.4.1 Error estimate

The error indicator of a multi-index k plays an important role in indicating the necessity of
future refinement in its forward neighbours. It can depend either on the integral value or
on the point value. For example, we can define an error indicator g(k) that depends on the
expectation of difference formulas:

gkE = |E[∆k]| = |E[∆k1 ⊗ · · · ⊗∆kN ]|. (4.4.4)

Also, we can incorporate hierarchical surpluses into the error indicator:

gkhs =
1

n(k)

∑
j

|wk
j |, (4.4.5)

where wk
j are the hierarchical surpluses of the sub-grid Θk

∆ = Θk1
∆ × · · · × ΘkN

∆ and n(k) =

#Θk. Suppose the given sampling nodes are nested, i.e., Θk−1 ∈ Θk, then Θk
∆ = Θk \Θk−1.

The mlti-index j runs over all the points in the sub-grid Θk
∆.

For problems where the function evaluations at sampling nodes are expensive, we can take
the number of involved work into account:

gk# = sk1 · · · skN , (4.4.6)

where sk is the number of nodes in certain dimension given by equation (2.4.3).

Besides, we can take a weighted combination of these error indicators. The weights, which
are problem dependent, indicate the relative importance of different error indicators. As for
the stopping criteria, we define a global error estimator, which is the sum of all gk in the
active index set A,

η :=
∑
k∈A

gk. (4.4.7)
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4.4.2 Adaptive procedure

The dimensional adaptive sparse grid interpolant

AI =
∑
i∈I

(∆i1 ⊗ · · · ⊗∆iN ). (4.4.8)

is constructed by performing the following the procedures:

1. Starts with unit index set 1 = (1, . . . , 1). A = {1} and O = ∅.

2. Select the index with the largest error indicator from the active index set and put it
into the old index set.

3. Subtract its error indicator from the global error estimator.

4. Add the new admissible forward neighbours of this index and compute their error
indicators.

5. Update the solution through equation (4.4.8) using all the function evaluations.

6. End this cycle process if the global error estimate falls below a given threshold value or
the work count #ΘN exceeds a given amount. Return the solution given by equation
(4.4.8).

4.4.3 Loss of the hierarchical structure

The existing applications of the sparse grid approach to uncertainty quantification use either
spectral basis or piecewise multi-linear basis [41, 54, 40]. With the aid of nested 1-D grid, it
is possible to construct the conventional sparse grid interpolation based on the hierarchical
structure instead of the linear combinations of interpolants on tensor product grids [41]. It
is shown that the hierarchical construction is more efficient [42] since it enables the paral-
lelization of the post-processing step and new runs of deterministic solvers at refined grids.
What’s more, the hierarchical structure make it possible to obtain a error indicator of the
current level of approximation. However, this more efficient construction structure is not
applicable to the SC-ENO approach. The reasons are given as follows.

Suppose the nested Clenshaw-Curtis nodes Θi is used, the 1-dimensional interpolation
formula of level i is given by

Ii(u) =
∑
ξi∈Θi

Lξi · u(ξi), (4.4.9)

where, Lξi are basis functions satisfying aξi(ξi) = δij . The hierarchical construction is based
on the fact that Ii(u) can represent exactly Ii−1(u) if multi-linear basis or spectral basis are
used, i.e.,

Ii−1(u) = Ii
(
Ii−1(u)

)
. (4.4.10)

By contrast, the proposed SC-ENO method utilize problem-dependent piecewise local basis.
Therefore, relation (4.4.10) does not hold any more. For this reason, the hierarchical con-
struction cannot be applied to SC-ENO method. A simple example is given as follows to
demonstrate this loss of the hierarchical structure.
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50 Multi-dimensional Stochastic Collocation with ENO robustness

Example 4.4.1 (Loss of the hierarchical structure). Let the underlying solution u(ξ) con-
tains one Heaviside step functions H(x) and a smooth background function:

u(ξ) = sin(
π

4
(ξ + 1)) +H(ξ + 1/3) (4.4.11)
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(a) Approximation with SC-ENO
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(b) Approximation with spectral basis

Figure 4.4.1: Loss of hierarchical structure

As we can see from Figure 4.4.1(a), I3∗ = I4
(
I3(u)(ξ4)

)
is obtained by interpolation using

the level 4 nodes and corresponding values I3(u)(ξ4). However, due to the presence of the
discontinuity, the piecewise basis of I3 and the spectral basis of I3∗ are different, thus I3 6= I3∗

(indicated by the difference between the black line and magenta line). Consequently, equation
(4.4.10) does not hold any more. If spectral basis or linear basis is used, Ii−1(u) = Ii

(
Ii−1(u)

)
is always guaranteed regardless the smoothness.

This concludes the description of the SC-ENO approach combined with the sparse grid.
The performance of the SC-ENO method is presented in the next chapter.
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Chapter 5

Numerical examples

This chapter presents numerical results of the proposed SC-ENO method applied to some
discontinuous test functions. First of all, the test functions are set up in Section 5.1. Then,
the comparison between the traditional stochastic collocation method and the proposed
SC-ENO method are made for moderate low-dimensional parameter space in Section 5.2.
Meanwhile, the performance of different multivariate interpolation methods are investigated.
It should be noted that only low levels of interpolation nodes are considered because the main
aim of this work is to improve the accuracy and robustness of uncertainty propagation for
complex computational models. Finally, the proposed SC-ENO method is combined into the
dimensional adaptive method to combat the curse of dimensionality and some results are
presented to show its performance.

5.1 Test functions

To investigate the performance of the SC-ENO method, we consider the following three
benchmark test functions with discontinuities of arbitrary strengths and manifolds from the
Genz function set [24, 38].

usphere(ξ) =

{
1 + cu1(ξ),

∑N
i=1 ξ

2
i < e2

cu1(ξ) otherwise
(5.1.1)

ucube(ξ) =

{
1 + cu1(ξ), ‖ξi‖ < e,∀i ∈ {1, . . . , N}
cu1(ξ) otherwise

(5.1.2)

uplane(ξ) =

{
cu1(ξ) + u2

N (ξ), 3ξ1 + 2ξ2 ≤ 0.01
cu1(ξ) otherwise

(5.1.3)

where

u1(ξ) = exp(−
2∑
i=1

ξ2
i )− ξ3

1 − ξ3
2 , (5.1.4)

u2
N (ξ) = 2 +

1

2
cos(π(ξ1 + ξ2 + 0.3)) +

1

4N

N∑
i=2

ξ2
i . (5.1.5)
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All the test functions above contain a smooth background function u1(ξ) and a jump
discontinuity. The jump value can be a constant 1 or a varying function u2

N (ξ). The constant
c is a parameter controlling the strengths of the discontinuities as well as the smoothness
and variation of the background function. The smaller the value of c is, the smoother
the background function is, and the stronger the discontinuity becomes. The parameter e
controls the range of the discontinuities. The Gaussian term exp(−

∑2
i=1 ξ

2
i ) in the first

two dimensions have large mixed derivatives and thus the increase of accuracy can always
be expected with increasing level of interpolation nodes. Figure 5.1.1 shows the response
surfaces of these test functions for two-dimensional cases with c = 0.2, e = 0.7 and c = 1, e =
0.7.

(a) usphere(ξ), c = 1 (b) usphere(ξ), c = 0.2

(c) ucube(ξ), c = 1 (d) ucube(ξ), c = 0.2

(e) uplane(ξ), c = 1 (f) uplane(ξ), c = 0.2

Figure 5.1.1: Response surfaces of the two-dimensional benchmark test functions.
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To compare the accuracy and calculate the statistics of output quantity, we run Monte
Carlo simulations on the surrogate response surface w(ξ). Without loss of generality, we
consider discontinuous functions u(ξ) : Ξ = [−1, 1]N 7→ R with N uniformly distributed
random parameters. For random parameters following other kinds of probability distribution,
the corresponding random number generator will be used to generate the Monte Carlo points.
We generate smc = 10, 000 Monte Carlo samples on [−1, 1]N . These Monte Carlo samples
are classified inside each of the hypercube element {ΞJ}neJ=1. These Monte Carlo simulations
are very cheap because they do not involve the expensive deterministic solver. The statistics
and the L1,L2,L∞ error can be approximated by:

µu ≈

(
1

smc
·
smc∑
i=1

w(ξi)

)
(5.1.6)

σ =

√√√√ 1

smc

smc∑
i=1

(w(ξi)− µ)2 (5.1.7)

‖u(ξ)− w(ξ)‖1 ≈
1

smc
·
smc∑
i=1

‖u(ξi)− w(ξi)‖ (5.1.8)

‖u(ξ)− w(ξ)‖2 ≈

√√√√ 1

smc
·
smc∑
i=1

‖u(ξi)− w(ξi)‖2 (5.1.9)

‖u(ξ)− w(ξ)‖∞ ≈ max
i∈smc

‖u(ξi)− w(ξi)‖ (5.1.10)

5.2 Comparison between traditional SC and SC-

ENO

In this section, we illustrate the improvement of accuracy and robustness of the proposed
piecewise Stochastic Collocation method compared to the traditional Stochastic Collocation
method. To rule out the influence of different multivariate interpolation methods, one-
dimensional parameter space is considered first. Then, the performance of the least interpo-
lation method and element-wise interpolation method is investigated for the two-dimensional
case. Finally, numerical results for the moderate high-dimensional case is presented.

5.2.1 One-dimensional case

For the one-dimensional parameter space, the test functions usphere(ξ) and ucube(ξ) are the
same, so we consider usphere(ξ) and uplane(ξ). Here, constant parameter e is chosen to be
0.6 and c = 0.5. We perform Stochastic Collocation for each function with Clenshaw-Curtis
nodes from level 2 to 8 as indicated in eqation (2.4.3). The L1,L2 error are given in Figure
5.2.1.
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(b) L1 error comparison for uplane(ξ)
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(c) L2 error comparison for usphere(ξ)
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Number of nodes
101 102

E
rr

or
of

m
ea

n

10-3

10-2

10-1

100

SC-ENO
SC

(e) Mean value error comparison for
usphere(ξ)

Number of nodes
101 102

E
rr

or
of

m
ea

n

10-2

10-1

100

SC-ENO
SC

(f) Mean value error comparison for
uplane(ξ)

Number of nodes
101 102

E
rr

or
of

st
an

d
ar

d
d
ev

ia
ti
on

10-4

10-3

10-2

10-1

100

SC-ENO
SC

(g) Standard deviation error comparison for
usphere(ξ)

Number of nodes
101 102

E
rr

or
of

st
an

d
ar

d
d
ev

ia
ti
on

10-4

10-3

10-2

10-1

100

SC-ENO
SC

(h) Standard deviation error comparison for
uplane(ξ)

Figure 5.2.1: Error comparison between traditional SC and SC-ENO on one-dimensional test
functions usphere(ξ) and uplane(ξ).MSc. Thesis Huiqing Wang
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Figure 5.2.2: Response surface for one-dimensional test function usphere(ξ) with c = 0.5,
e = 0.6.
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Figure 5.2.3: Response surface for one-dimensional test function uplane(ξ) with c = 0.5,
e = 0.6.
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It can be seen that the accuracy of the approximation obtained by the SC-ENO approach
increases as the number of the collocation nodes increases. Contrary to the expectation, the
accuracy of the SC-ENO method is not as good as traditional SC for low level of nodes.
However, it does not mean traditional SC is better. As we can see from the approximated
response surface in Figure 5.2.2 and Figure 5.2.3, traditional SC results in several overshoots
and undershoots around the discontinuities, which may be unphysical realizations for real
cases. By contrast, SC-ENO is able to construct a robust response surface at a relatively
low level of the collocation nodes.

It should be noted that the main source of error for the SC-ENO methods comes from
the linear approximation inside the discontinuous elements. Even though the error from
the smooth elements can be decreased by increasing the number of nodes, the L∞ error
inside the discontinuous elements stays almost the same and is influenced by the jump value.
That’s the reason why there is only slightly improved performance. Since we are dealing
with discontinuous test functions, the linear interpolation is the reasonable approximation
we can use for the elements containing discontinuities. The more sampling nodes we use, the
smaller the size of the discontinuous element becomes, and thus the linear interpolation gets
closer to a jump discontinuity. In terms of the statistical quantities, i.e., mean and standard
deviation, the performance of the SC-ENO is not as good as the SC method for these two
test functions.

5.2.2 Two-dimensional case on tensor grid

For the multi-dimensional case, we consider all the two-dimensional test functions with
c = 0.5 for the sake of visualizing the response surface. Deterministic sampling of test
functions is performed for each function with Clenshaw-Curtis nodes from level 2 to 6.
Equal importance is given to each dimension due to the underlying isotropic property. The
L1,L2 error are given in Figure 5.2.4.

Like the one-dimensional case, the convergence of SC-ENO is slightly faster than the
traditional SC method. In terms of the mean value and standard deviation, both the SC and
SC-ENO method converges to the exact value as the number of sampling points increase.
Their performance varies with respect to different test functions. Numerical tests have been
performed for these three test functions using different values of shape parameter c and e. It
is observed that the convergence rate differs a lot when the test functions changes. Therefore,
we cannot conclude which method is better in terms of the statistical quantities. Further,
we can see from Figure 5.2.5 that the response surface obtained by the SC-ENO method is
more robust with the spurious oscillations around the discontinuities eliminated.
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Figure 5.2.4: Error comparison between traditional SC and SC-ENO for two-dimensional
test functions usphere(ξ) , uplane(ξ) and ucube(ξ), c = 0.5, e = 0.7.
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(a) ucube(ξ),Traditional SC, level 4 (92

nodes)
(b) ucube(ξ), SC-ENO, level 4 (92 nodes)

(c) ucube(ξ), Traditional SC, level 5 (172

nodes)
(d) ucube(ξ), SC-ENO, level 5 (172 nodes)

(e) usphere(ξ), Traditional SC, level 5 (172

nodes)
(f) usphere(ξ), SC-ENO, level 5 (172 nodes)

Figure 5.2.5: Response surface for two-dimensional test functions with c = 0.5, e = 0.7.

Comparison of surrogate constructions inside smooth sub-domains

For the multi-dimensional stochastic space, the choice of the multivariate interpolation meth-
ods has an effect on the approximation in each smooth region. Comparison of multivariate
interpolations methods are already discussed in Section 4.3.3. Here, comparisons between
the least interpolation method and the element-wise interpolation method are made for these
discontinuous test functions.

MSc. Thesis Huiqing Wang



5.2 Comparison between traditional SC and SC-ENO 59

(a) Response surface from the element-wise interpo-
lation

(b) L1 error from the element-wise interpolation

(c) Response surface from the least interpolation (d) L1 error from the least interpolation

Figure 5.2.6: Comparison between the element-wise interpolation method and the least
interpolation method on test functions ucube(ξ). with c = 1, e = 0.7. #nodes=72.

As we can see from the Figure 5.2.4 and 5.2.6, both methods do not show a huge difference
in terms of accuracy. The disparity between these methods grows smaller with increasing
level of nodes. However, compared to the least interpolation, the element-wise interpolation
method is more robust, but it loses its continuity of derivatives along the borders of each
hypercube element since the patched surrogate is constructed by combining the element-
wise approximation. Each element is assigned with its own interpolation stencil of hyper-
rectangular shape.

5.2.3 Post-processing time

The proposed SC-ENO method is inherently a post-processing of the given sample values.
Therefore, it is theoretically applicable to any dimension. Without loss of generality, tests
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are run on a simple high-dimensional step function:

ustep(ξ) =

{
1, ‖ξi‖ < 0.9, ∀i ∈ {1, . . . , N}
0 otherwise.

(5.2.1)

The error comparison and the post-processing time of the SC-ENO method are given in Table
5.2.1. Since the discontinuity exists in all dimensions, the same number of nodes is needed
for each dimension. Here, the full tensor product grid is employed, so the total number of
nodes is 5N .

Table 5.2.1: Error comparisons and processing time for ustep(ξ) with 5 nodes in
each dimension

SC SC-ENO

N εL1 εL2 εL∞ εL1 εL2 εL∞ time

1 9.83 · 10−2 1.37 · 10−1 5.29 · 10−1 3.96 · 10−2 1.25 · 10−1 6.58 · 10−1 0.2s
2 1.49 · 10−1 1.93 · 10−1 7.26 · 10−1 7.59 · 10−2 1.75 · 10−1 8.22 · 10−1 0.3s
3 1.83 · 10−1 2.35 · 10−1 7.38 · 10−1 1.04 · 10−1 2.08 · 10−1 8.64 · 10−1 0.9s
4 2.12 · 10−1 2.67 · 10−1 9.72 · 10−1 1.31 · 10−1 2.36 · 10−1 8.65 · 10−1 5.5s
5 2.31 · 10−1 2.89 · 10−1 1.170 1.53 · 10−1 2.59 · 10−1 9.38 · 10−1 157s

If the discontinuity is of lower-dimensional structure, then we can restrict attention to
the parameters ξ causing the discontinuity. For other smooth dimensions, the number of
nodes thus can be reduced dramatically to achieve the required accuracy. For example, test
function uplane(ξ) is a discontinuous function with discontinuity lying in the dimension ξ1

and ξ2. For dimension ξi, i ∈ {3, . . . , N}, only 3 nodes are needed for each dimension to
interpolate accurately the second-order term 1

4N

∑N
i=2 ξ

2
i .

5.3 Sparse grid

This section will show how the traditional SC and SC-ENO methods perform for the dis-
continuous test functions on the sparse grid. In order to compare with the results of the full
tensor product grid, the constant parameter is chosen the same, i.e., c = 0.5, e = 0.7.

5.3.1 Standard sparse grid

The results obtained with conventional sparse grid for two-dimensional test function uplane(ξ)
are given in Table 5.3.1 and 5.3.2 . The response surface of level w = 5 are given in Figure
5.3.1.
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Table 5.3.1: Conventional sparse grid with global basis for uplane(ξ), N = 2

Approximation Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
Number of points 5 13 29 65 145 321

εL1 8.19 · 10−1 7.29 · 10−1 6.79 · 10−1 5.43 · 10−1 4.78 · 10−1 4.04 · 10−1

εL2 1.01 9.08 · 10−1 9.27 · 10−1 7.95 · 10−1 7.26 · 10−1 6.57 · 10−1

εL∞ 3.17 2.84 2.94 2.72 2.84 2.67
εµ 2.76 · 10−1 8.08 · 10−2 2.97 · 10−1 3.08 · 10−1 2.30 · 10−1 1.82 · 10−1

εσ 4.31 · 10−2 1.98 · 10−1 1.85 · 10−1 1.12 · 10−1 8.98 · 10−2 9.37 · 10−2

Table 5.3.2: Conventional sparse grid with SC-ENO for uplane(ξ), N = 2

Approximation Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
Number of points 5 13 29 65 145 321

εL1 7.38 · 10−1 6.21 · 10−1 5.56 · 10−1 4.67 · 10−1 4.32 · 10−1 3.69 · 10−1

εL2 1.01 7.57 · 10−1 7.90 · 10−1 6.67 · 10−1 6.73 · 10−1 5.67 · 10−1

εL∞ 3.17 2.58 2.67 2.21 2.37 2.19
εµ 2.88 · 10−1 5.35 · 10−2 2.20 · 10−1 1.97 · 10−1 1.02 · 10−1 2.16 · 10−1

εσ 4.29 · 10−2 4.50 · 10−2 6.12 · 10−3 5.53 · 10−3 4.77 · 10−2 7.36 · 10−2

(a) Conventional sparse grid with traditional
SC, level w = 5 (145 nodes)

(b) Conventional sparse grid with SC-ENO,
level w = 5 (145 nodes)

Figure 5.3.1: Response surface for test functions uplane(ξ) with c = 0.5, e = 0.7.

The results obtained with conventional sparse grid for two-dimensional test function
ucube(ξ) are given in Table 5.3.3 and 5.3.4 . The response surface of level w = 5 are given in
Figure 5.3.2.
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Table 5.3.3: Conventional sparse grid with global basis for ucube(ξ), N = 2

Approximation Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
Number of points 5 13 29 65 145 321

εL1 3.12 · 10−1 5.93 · 10−1 2.40 · 10−1 1.89 · 10−1 1.25 · 10−1 9.34 · 10−2

εL2 3.99 · 10−1 7.06 · 10−1 3.33 · 10−1 2.80 · 10−1 2.11 · 10−1 1.67 · 10−1

εL∞ 1.32 1.75 1.23 0.955 0.961 0.888
εµ 1.41 · 10−1 5.93 · 10−2 8.83 · 10−2 3.14 · 10−2 2.78 · 10−2 3.24 · 10−2

εσ 3.81 · 10−2 1.59 · 10−1 6.02 · 10−2 3.90 · 10−2 4.17 · 10−2 2.02 · 10−2

Table 5.3.4: Conventional sparse grid with SC-ENO for ucube(ξ), N = 2

Approximation Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
Number of points 5 13 29 65 145 321

εL1 6.07 · 10−1 5.73 · 10−1 2.76 · 10−1 1.81 · 10−1 1.15 · 10−1 1.14 · 10−1

εL2 7.18 · 10−1 7.16 · 10−1 3.63 · 10−1 2.81 · 10−1 2.06 · 10−1 2.09 · 10−1

εL∞ 1.86 1.49 1.09 1.00 0.943 0.925
εµ 5.86 · 10−1 5.72 · 10−1 1.75 · 10−2 2.71 · 10−2 2.65 · 10−2 6.65 · 10−2

εσ 1.86 · 10−2 1.77 · 10−2 8.01 · 10−2 3.68 · 10−2 4.07 · 10−2 5.07 · 10−2

(a) Conventional sparse grid with traditional
SC, level w = 5 (145 nodes)

(b) Conventional sparse grid with SC-ENO,
level w = 5 (145 nodes)

Figure 5.3.2: Response surface for test functions ucube(ξ) with c = 0.5, w = 0.7.

We can see from above two examples that conventional sparse grid is not a good choice
for discontinuous function. The SC-ENO method outperforms the traditional SC slightly in
terms of the accuracy. However, although it is guaranteed that there is no oscillation for
each response surface constructed on the sub-tensor product grids, there is a possibility that
the linear combination of the non-oscillatory response surfaces would yield a oscillatory one.

Now, we investigate the results obtained by both the SC-ENO method and SC method
on the isotropic sparse grid or the tensor grid. For the 2-dimensional test function uplane(ξ),
the convergence in terms of L1, L2 error and statistical quantities are shown in Figure 5.3.3.
It is observed that the SC-ENO method on the full tensor product grid tends to achieve
the best result in all aspects, except for the standard deviation. Also, we can see that for
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this discontinuous function, the interpolation based on the tensor product grid yields a more
stable convergence behaviour than the sparse grid. For another 2-dimensional test function
ucube(ξ), the results obtained on the sparse grid are slightly better than the tensor grid in
terms of the L1 and L2 error. From the above two examples, it is observed that there is
no method or grid distribution that outperforms the others. But in terms of the capability
in eliminating spurious oscillations, the SC-ENO method on the full tensor product grid is
better, especially when the dimensionality of the stochastic space is low.
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Figure 5.3.3: Error comparison between traditional SC and SC-ENO for two-dimensional
test function uplane(ξ) on the sparse grid and tensor grid.
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Figure 5.3.4: Error comparison between traditional SC and SC-ENO for two-dimensional
test function ucube(ξ), c = 0.5, e = 0.7 on the sparse grid and tensor grid.

5.3.2 Dimension adaptive sparse grid

In this section, we investigate the performance of the the SC-ENO method combined with
dimension adaptive sparse grid method. A even weighted combination of the expectation
(4.4.4) and amount of work (4.4.6) is used as the error estimate, i.e., gk = 0.5

(
1/gk# + gkE

)
.

As for the stopping criteria, the number of nodes is used instead of global error. As we
can see from the following examples of adaptive index evolution, the dimension-adaptive
algorithm tends to refine low order interaction term. However, the refinements in low order
interaction term does not lead to convergence. The error stays almost unchanged, which
makes it unreliable to be stopping criteria.

First, test are run on the two-dimensional functions ucube(ξ) and uplane(ξ). We force the
adaptive algorithm stop if about 150 nodes are used. The final index set I is shown in Figure
5.3.5. The response surface is shown is Figure 5.3.2.
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(a) Index set for uplane(ξ)
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Figure 5.3.5: 3-D index set obtained by dimension adaptive sparse grid algorithm.

(a) Approximated response surface for uplane(ξ), with
S = 113 nodes.

(b) Approximated response surface for ucube(ξ), with
S = 193 nodes.

Similar to the conventional sparse grid, the results obtained by the generalized adap-
tive sparse grid is not as good as expected. However, for high-dimensional problem, the
dimension-adaptive algorithm is still capable of focusing more on the dimensions that need
refinement. If we apply the algorithm to 3-dimensional test functions ucube(ξ) and uplane(ξ),
the index set together with the number of nodes are shown in Figure 5.3.6. The low res-
olution in the third dimension for test function uplane(ξ) is exactly as expected since the
discontinuity exists in the first two dimensions.
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(c) Index set for uplane(ξ), with S = 151 nodes. (d) Index set for ucube(ξ), with S = 165 nodes.

Figure 5.3.6: 3-D index set obtained by dimension adaptive sparse grid algorithm.

To conclude, the robustness of the proposed SC-ENO approach on the tensor product
grid are illustrated. However, the linear combinations of them cannot guarantee a robust
response surface.
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Chapter 6

Uncertainty quantification for shock
tube problem

This chapter shows the comparison of the proposed SC-ENO method with the SC method
and the Subcell Resolution (SR) method for the shock tube problem with uncertainties in
initial conditions. Inspired by the numerical results on test functions, the full tensor product
Clenshaw-Curtis points are used as the deterministic sampling points. First, the shock tube
test case is discussed after which the deterministic solution is explained. Then, comparisons
of different methods are made in section 6.4, with respect to the statistics of the QOI and
the response surface in the parameter space for a certain physical location.

6.1 Shock tube test case descriptions

The Sod’s Riemann problem is a classical test case to study the solutions of hyperbolic
conservation laws. Simplex Stochastic Collocation (SSC) method has been applied to this
problem to investigate the propagations of uncertainties in initial conditions [74, 75]. The
computational model can be represented by the following differential conservative form of
1-D Euler equations:

∂U

∂t
+
∂F

∂x
= 0, (6.1.1)

with state vector of the conservative variables U and flux vector F

U =

 ρ
ρu
ρE

 , F =

 ρu
ρu2 + p
ρuE + pu

 , (6.1.2)

where ρ is the density, and E is the total energy per unit mass. For a perfect gas, we have
p = ρRT, γ = Cp/Cv and E = CvT + 1

2u
2.

The finite physical domain is confined to x ∈ [−0.2; 2] with reflective boundary conditions.
The initial conditions U0(x) for the static pressure p, the density ρ and the velocity on the
both sides of a diaphragm at x0 are given by the Sod’s Riemann problem:
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
uleft = 0,

pleft = 1,

ρleft = 1,


uright = 0,

pright = 0.1,

ρright = 0.125.

(6.1.3)

The uncertainties are imposed on the initial left static pressure pleft ∈ [0.9; 1.1] and the
location x0 ∈ [−0.025; 0.025] of the initial discontinuity with uniform distributions. The
output quantity of interest is the density across the whole spatial domain.

6.2 Deterministic simulation

The Euler equations (6.1.1) are solved using a second order front tracking method [77, 69].
Known to be an effective tool for resolving discontinuities in the solution of the hyperbolic
conservation laws, front tracking method is not susceptible to the numerical diffusion, con-
sequently resulting in sharp jumps in the physical space. Characteristic fronts are used to
discretize the rarefaction wave, the number of which is chosen to be nf = 64 based on a
convergence study [74]. The deterministic solution at t = 1, with medium value of uncer-
tain inputs pleft = 1, x0 = 0, is shown in Figure 6.2.1. Apart from the shock wave around
x = 1.75, the contact surface results in a discontinuity in the density field around x = 0.8 as
well.
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Figure 6.2.1: Deterministic density distribution at t = 1, nf = 64.
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6.3 Reference Monte Carlo results

10, 000 Monte Carlo simulations are performed to serve as the reference result based on a
convergence study. The mean and full confidence interval of the density field is depicted in
Figure 6.3.1(a). Different from the deterministic solutions, the shock and contact waves are
smeared due to the effects of the uncertainties on initial conditions. Subsequently, a large
variation shows up in the discontinuity regions due to the highly non-linear property of the
underlying hyperbolic system. It should be noted that there is no uncertainty at the right
boundary since that region lies outside the influence domain of pleft and x0 [74].
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(a) Mean value and full confidence interval
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Figure 6.3.1: Reference stochastic results of the density field based on 10, 000 MC simulations

6.4 Uncertainties propagation results with SC, SC-

ENO and SR methods

In this section, the performances of different uncertain quantification methods are compared.
To exclude the impact of sampling nodes, the same Clenshaw-Curtis nodes are used for
parameter sampling in each dimension of the parameter space and a full tensor product grid
is employed.

6.4.1 Uncertain density at x = 0.82

The large standard deviation in the discontinuity regions results from the discontinuous
response surface in the parameter space. The reference result obtained by Monte Carlo
simulations is shown in Figure 6.4.1. As a result of the moving location of the contact
surface, the response is composed of two smooth regions, which are separated by a curved
diagonal discontinuity of varying strength.
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70 Uncertainty quantification for shock tube problem

Figure 6.4.1: Response surface at x = 0.82 with 10, 000 Monte Carlo simulations.

To show the efficacy of the SC-ENO method in dealing with Gibbs oscillations, the re-
sponse surface of ρ in the parameter space is approximated using increasing level of Clenshaw-
Curtis nodes. The results are displayed in Figure 6.4.2 and Figure 6.4.3. While there exists
Gibbs oscillations around the discontinuity for the SC method, the SC-ENO yields a robust
approximation and converges to the reference result. With increasing number of sampling
nodes, the size of discontinuous elements in the parameter space grows smaller and the linear
interpolation inside them converges to the sharp discontinuity. For the interpolation in the
smooth sub-domains, the SC-ENO can achieve almost zero error in direct contrast to the SC
method, in which case the oscillations even exist away from the discontinuity.

(a) SC, level 3 (b) SC, level 4 (c) SC, level 5

(d) L∞ error, level 3 (e) L∞ error, level 4 (f) L∞ error, level 5

Figure 6.4.2: Response surface and L∞ error at x = 0.82 with SC
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(a) SC-ENO, level 3 (b) SC-ENO, level 4 (c) SC-ENO, level 5

(d) L∞ error, level 3 (e) L∞ error, level 4 (f) L∞ error, level 5

Figure 6.4.3: Response surface and L∞ error at x = 0.82 with SC-ENO

Although effective in removing Gibbs oscillations, the SC-ENO method still needs further
improvement in terms of the resolution of the discontinuity location inside the discontinuous
element. To this end, the subcell resolution (SR) concept is introduced to approximate
the exact locations of discontinuity. Different from the implementation in [75], the least
interpolation method is used to construct the surrogate by interpolating all the sampling
nodes inside each smooth sub-domain.

(a) contact surface (b) shock wave

Figure 6.4.4: Approximation of the discontinuity locations in the parameter space with 25
sampling nodes

Two monotonic functions wshock(ξ) are obtained by interpolating the physical discontinu-
ity locations as a function of two random inputs pleft and x0. Consequently, the locations of
the discontinuity in the parameter space for a certain physical location can then be resolved
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by finding the intersection of the hyperplane with the function wshock(ξ). Once the discon-
tinuity location is resolved, the surrogate constructed in each smooth sub-domain can be
extended to the predicted location of discontinuity. The response surfaces and L∞ error are
shown in Figure 6.4.5. For this test case, the SR method can achieve a fairly good accuracy
with a relatively small number of sampling nodes. The interpolation error at a few points in
the parameter space may result from the approximation of the discontinuity locations.

(a) Response surface, level 3 (b) Response surface, level 4

(c) L∞ error, level 3 (d) L∞ error, level 4

Figure 6.4.5: Response surface and L∞ error at x = 0.82 with SR

6.4.2 Statistics and full confidence interval of the whole field

The mean value and the full confidence interval of the density field obtained with the SC,
SC-ENO and SR method using ns = {25, 81} sampling nodes are shown in Figure 6.4.6, 6.4.7
and 6.4.8. Compared to the SC method, both of the SC-ENO method and the SR method
succeed in suppressing oscillations in the discontinuity regions, thus resulting in a physical
and robust approximation of the mean value and the full confidence interval.
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(a) ns = 25
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(b) ns = 81

Figure 6.4.6: Mean value of the density and full confidence interval obtained with SC
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(a) ns = 25
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Figure 6.4.7: Mean value of the density and full confidence interval obtained with SC-ENO
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(a) ns = 25
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Figure 6.4.8: Mean value of the density and full confidence interval obtained with SR
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(a) Mean value by SC
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(c) Mean value by SC-ENO
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(e) Mean value by SR

x
0 0.5 1 1.5 2

st
an

d
ar

d
d
ev

ia
ti
on

-d
en

si
ty
;

0

0.02

0.04

0.06

0.08

0.1

n s=25

n s=81

n mc =10000

(f) Standard deviation by SR

Figure 6.4.9: Statistical moments for the density field obtained with the SC, SC-ENO and
SR method

However, due to the linear interpolation for the discontinuous element in the parameter
space, the solution obtained by the SC-ENO method remains the same unless the discontinu-
ity moves across a sampling point. Consequently, the phenomenon of staircase approximation
of the mean shows up for the SC-ENO method. The larger number of sampling nodes, the
smaller the size of the staircase jumps. This is further demonstrated in Figure 6.4.9 for the
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convergence of the mean and the standard deviation with ns = {25, 81}.
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Chapter 7

Uncertainty quantification for RAE
2822 airfoil

In this chapter, the non-intrusive Stochastic Collocation method with ENO robustness is
applied to a steady flow around a transonic RAE 2822 airfoil, which is one of the test cases of
the UMRIDA project 1. Two aerodynamic uncertainties, i.e., freestream Mach number M∞
and angle of attack α, are modeled by independent uniform or symmetric beta distribution
(α = 4, β = 4) under the probabilistic framework. Due to the low dimensionality of the
stochastic space, the deterministic sampling on tensor product grids is affordable. What’s
more, the robustness can be maintained. The test case description is given in Section 7.1,
followed by the deterministic simulation in Section 7.2. Then, the uncertainty propagation
results are presented in Section 7.3 and Section 7.4.

7.1 RAE 2822 airfoil test case descriptions

The test case of the transonic flow over the RAE 2822 airfoil corresponds to the case 6 in
[11], of which the freestream flow conditions is listed in table 7.1.1.

Table 7.1.1: Original freestream flow conditions
Mach number Reynolds number Angle of attack

0.725 6.5 · 106 2.92◦

It should be noted that due to the slight differences between the design coordinates of the

1UMRIDA: Uncertainty Management for Robust Industrial Design in Aeronautics is a European Union’s
research project under grant agreement ACP3-GA-2013-605036
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78 Uncertainty quantification for RAE 2822 airfoil

airfoil geometry and the actually measured airfoil in wind tunnel tests, the measured profile
is used for the grid generation, which is shown in Figure 7.1.1.

0 0.2 0.4 0.6 0.8 1
-0.6

-0.4

-0.2

0

0.2

0.4

Figure 7.1.1: The measured RAE2822 airfoil geometry

Apart from the geometry differences, the experimental flow conditions needs to be cor-
rected to eliminate the wall interference. Then, the corrected freestream flow conditions are
considered here, which are listed as follows:

Table 7.1.2: Corrected freestream flow conditions
Mach number Reynolds number Angle of attack

0.729 6.5 · 106 2.31◦

Operational uncertainties are imposed on the Mach number and the angle of attack with
medium value from Table 7.1.2. The uncertain interval for the Mach number is [95%−105%],
while [98%−102%] for the angle of attack. It should be noted that we impose the same prob-
ability distribution for both parameters since we do not want to favor any particular random
parameter, although different distributions for different parameters are not incompatible
with the SC-ENO formulation. In previous stochastic studies of flow around transonic air-
foils [10, 70], the same methodology is employed. Different from the test case descriptions of
the UMRIDA workshop, where symmetric beta distribution is used, uniform distribution is
added here for the reason that the uniform distribution contains more uncertainty than any
other continuous distribution on an interval of compact support. It would be interested to see
the influences of different probabilistic characterizations of uncertain inputs. The Reynolds
number is kept fixed at Re=6.5 · 106, consequently, the dynamics viscosity µ changes with
varying freestream velocity due to the uncertain Mach number M∞.

The quantities of interest (QOI) are the lift coefficient Cl, drag coefficient Cd, pitching
moment coefficient Cm, whole pressure field and pressure coefficient Cp along the surface of
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7.2 Deterministic simulation 79

airfoil, of which the mean, standard deviation and probability density function are solved.
The moment reference point is chosen as (x, y) = (0.25, 0) in the coordinate system of Figure
7.1.1.

7.2 Deterministic simulation

The deterministic steady-state flow solutions are computed based on solving the Reynolds-
Averaged Navier-Stokes (RANS) equations using the commercial software of NUMECA. The
structured hexahedral mesh provided by the UMRIDA workshop is used, which consists of
9 · 104 volumes, as seen in Figure 7.2.1.

(a) Whole mesh with (x, y) ∈
(−1000, 1000)

(b) Vicinity of the airfoil (x, y) ∈ (0, 1)

Figure 7.2.1: Spatial mesh

(a) Deterministic results for M∞ = 0.729, α = 2.31◦
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(b) Pressure distribution around the surface

Figure 7.2.2: Deterministic validation against experimental data from [11] of RAE 2822
airfoil

After comparison with the experiment data, the k − ε turbulence model is used for the
turbulence modelling. The second order central scheme is used for the spatial discretization.
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All simulations are performed using the Courant-Friedrichs-Lewy (CFL) number equal to 1
and converged to the residual of order 10−6. Each simulation takes about 50 hours on one
core.
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Figure 7.2.3: Deterministic pressure distribution around the surface for 5 different Mach
number under the same angle of attack α = 2.31◦

(a) Whole pressure field
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Figure 7.2.4: Deterministic results for M∞ = 0.7032, α = 2.31◦

For validation of numerical simulation results, the experimental data for case 6 from [11]
is used. The comparison of surface pressure distribution is shown in Figure 7.2.2(b), from
which we can see that there exists a weak transonic shock wave on the upper surface around
x/c = 0.55.

To see how the deterministic solutions vary with the uncertain inputs, the pressure dis-
tribution of the same angle of attack α = 2.31◦ and 5 different Mach numbers, which corre-
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sponds to the Clenshaw-Curtis sampling nodes, is shown in Figure 7.2.3. For M∞ ≥ 0.729,
the weak shock wave moves towards the trailing edge with increasing Mach number. Mean-
while, the strength of the shock wave grows. However, for this test case, the weak shock
wave disappears for freestream inflow with low Mach number. As shown in Figure 7.2.4(b),
the static pressure on the upper surface is recovered in a smooth way.

7.3 Uncertainty propagation results with SC and

SC-ENO

In this section, analysis of stochastic flows for beta distribution (α = 4, β = 4) and uniform
distribution are given. Clenshaw-Curtis nodes of level 3 are used for parameter sampling in
each dimension of the parameter space and a full tensor product grid is employed.

7.3.1 PDF of Cl, Cd and Cm

We first investigate the influence of the random parameters on the integral value, i.e., the
lift, drag and moment coefficient. Results obtained by the SC and SC-ENO are compared
with each other.

Combined beta distribution

The probability density function of Cl, Cd and Cm for the propagation of the beta dis-
tributed uncertain inflow conditions are given in Figure 7.3.1. Due to the non-linearity of
the underlying deterministic model, the symmetric property of the input random parameter
is lost.
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(c) Moment coefficient Cm

Figure 7.3.1: Probability densities for the beta distribution

The results obtained by SC and SC-ENO exhibit a reasonable agreement due to the smooth
nature of these integral quantities, which is manifested in Figure 7.3.2
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(a) Response surface of Cl (b) Response surface of Cd (c) Response surface of Cm

Figure 7.3.2: Response surface for the beta distribution

Combined uniform distribution

The probability density function of Cl, Cd and Cm for the propagation of the uniform dis-
tributed uncertain inflow conditions are given in Figure 7.3.3. Similar to the case of beta
distribution, the evenly distributed property cannot be preserved through the deterministic
solver. However, the influence of the random inputs can still be reflected by the PDF of the
outputs, which are more evenly spread compared to the case of the symmetric beta distri-
bution. Again, the results obtained by SC and SC-ENO exhibit a reasonable agreement due
to the smooth nature of these integral quantities, which can be seen in Figure 7.3.4

Cl

0.62 0.64 0.66 0.68 0.7 0.72 0.74

p
ro

b
ab

il
it
y

d
en

si
ty

0

5

10

15

20

25

30

SC-ENO
SC

(a) Lift coefficient Cl

Cd

0.01 0.015 0.02 0.025 0.03 0.035

p
ro

b
ab

il
it
y

d
en

si
ty

0

50

100

150

200

250

SC-ENO
SC

(b) Drag coefficient Cd

Cm

0.07 0.08 0.09 0.1 0.11 0.12

p
ro

b
ab

il
it
y

d
en

si
ty

0

20

40

60

80

100

SC-ENO
SC

(c) Moment coefficient Cm

Figure 7.3.3: Probability densities for the uniform distribution

(a) Response surface of Cl (b) Response surface of Cd (c) Response surface of Cm

Figure 7.3.4: Response surface for the uniform distribution
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7.3.2 Pressure distribution around the airfoil surface

Another quantity of great importance for robust airfoil design and active control of flow
field is the pressure distribution around the airfoil. The presence of weak shock wave on
the upper surface results in a large variation in the parameter space for a certain physical
location, therefore, it is important and necessary to investigate how the pressure distribution
varies under the influence of the random inputs. The mesh used around the airfoil has
610 volumes ,to each of which the same post-processing, i.e., the non-intrusive uncertainty
propagation, is applied. After comparison of different surrogate construction methods, the
least interpolation method is incorporated into the SC-ENO method since the difference
between the least interpolation method and the blocked Lagrange interpolation method is
negligible.

Combined beta distribution

The results of post-processing with SC and SC-ENO for the beta distribution are displayed
here. The mean surface pressure coefficient Cp± standard deviation is shown in Figure 7.3.5.
The results obtained by both methods are consistent for the lower surface due to the smooth
response surface in the parameter space for each physical location.

However, things are different for the upper surface due to the presence of the shock wave.
For a better clarification, the standard deviation on the upper surface is shown in Figure
7.3.6. The traditional SC method overestimates the standard deviation on the upper surface
as a result of the Gibbs oscillations around the discontinuities in the parameter space. As
mentioned earlier, the oscillations even spread to the smooth region, as demonstrated by
the overprediction of standard deviation in the region right after the shock wave, which
corresponds to the part x ∈ [0.65− 0.8] in Figure 7.3.6.
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Figure 7.3.5: Mean surface pressure coefficient Cp± standard deviation for the beta distri-
bution

By comparison, the Gibbs oscillations in the parameter space are completed eliminated
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by the SC-ENO method. Consequently, the values of standard deviation are smaller. This
improvement is more necessary if the uncertain bar of full confidence interval is needed for
design purpose. The changing location and strength of the shock wave resulting from the
uncertain inputs give rise to a dramatic surface pressure variation. Consequently, a large
uncertainty bar exists in the shock region, which is shown in Figure 7.3.7. A small undershoot
is visible in the shock region for the case of SC. In contrast, the maximum and minimum
bounds of pressure distribution obtained by the SC-ENO are completely smooth and follows
the same tendency as the mean value. For the ease of visualization of uncertain bar, a sparse
version with fewer physical points is displayed in Figure 7.3.8.
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Figure 7.3.6: Standard deviation of upper surface pressure coefficient Cp for the beta distri-
bution
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Figure 7.3.7: Mean surface pressure coefficient Cp and full confidence interval for the beta
distribution
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Figure 7.3.8: Mean surface pressure coefficient Cp and full confidence interval for the beta
distribution with fewer physical points

Combined uniform distribution

The results for the propagation of the uniform distributed operational uncertainties are re-
markably similar to those for the beta distribution. The main difference is that the standard
deviation of beta distribution is smaller than the uniform distribution due to the high con-
centration of the probability in a small region of the parameter space, as we can see from
Figure 7.3.11
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Figure 7.3.9: Mean surface pressure coefficient Cp± standard deviation for the uniform
distribution
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Figure 7.3.10: Mean surface pressure coefficient Cp and full confidence interval for the uni-
form distribution
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Figure 7.3.11: Standard deviation comparison of the pressure coefficient Cp on the upper
surface

Response surface in the parameter space

The different behaviours of SC and SC-ENO methods in terms of the standard deviation and
the full confidence interval can be explained if the response surface in the parameter space
for a certain physical location is investigated. The physical locations with large standard
deviation x = 0.584 is picked. In Figure 7.3.12(a), the LEC and MP limiter is enforced to
suppress the overshoot around the sharp gradient. It should be noted that although there
doe not exist a discontinuity in a strict sense, the steep gradient still needs special care for
the purpose of robust designs.
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(a) SC-ENO (b) SC

Figure 7.3.12: Response surface in the parameter space for x = 0.584.

(a) Mean pressure field of SC-ENO (b) Standard deviation of SC-ENO

(c) Mean pressure field of SC (d) Standard deviation of SC

Figure 7.3.13: Mean and standard deviation of the whole pressure field for the beta distri-
bution
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7.3.3 Mean and standard deviation of the whole pressure field

The stochastic analysis for the whole pressure field is presented in this section. The post-
processing step is performed for each of the physical points close to the airfoil, which are
reduced to 46200. Again, the standard deviation is dominant in the shock region for both of
the distributions.

(a) Mean pressure field of SC-ENO (b) Standard deviation of SC-ENO

(c) Mean pressure field of SC (d) Standard deviation of SC

Figure 7.3.14: Mean and standard deviation pressure fields for the uniform distribution

7.4 Uncertainties propagation with the Subcell Res-

olution (SR) method

In this section, uncertainties propagation results obtained with Subcell Resolution method
are presented. Some inherent limitations of the proposed SC-ENO method are discussed first.
Then, the application of the Subcell Resolution method to the surface pressure distribution
is presented. Finally, the limitations of SR to this test case are discussed.
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7.4.1 Staircase approximation of the statistics

The essential idea of the SC-ENO method is to employ piecewise polynomial basis to approx-
imate a discontinuous underlying function. As a result, multi-variate linear interpolation is
always used for the discontinuous element bounded by sampling nodes. However, in prob-
lems where the discontinuities in the parameter space result from the discontinuities in the
physical space, e.g., the test case under consideration, the corresponding random discontinu-
ity locations often result in a staircase approximation of the mean and standard deviation,
which can be observed in Figure 7.4.1. Here, the sensitive part of the upper surface is
considered. Obviously, this kind of staircase behaviour of the mean value is non-physical.
What’s more, the convergence rate is reduced to first-order. Meanwhile, standard deviation
is underpredicted.
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Figure 7.4.1: The mean value and standard deviation of pressure coefficient in the shock
region

(a) x = 0.5238 (b) x = 0.6054

Figure 7.4.2: Response surface in the parameter space with SC-ENO
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To explain this, we consider two physical locations x = 0.5238 and x = 0.6054, which
are approximately the starting point and ending point of the staircase approximation in the
shock region. The response surfaces in the parameter space are shown in Figure 7.4.2. In this
case, the solution does not change much for these two far-apart physical locations, especially
for the high gradient region between M∞ = 0.729 and M∞ = 0.7548, where the linear
interpolation is always used. It can be imagined that the solutions in the parameter space
are more similar for neighbouring physical locations. It should be noted that the staircase
behaviour in the statistics is more obvious if the underlying function is strictly discontinuous.
To improve the accuracy of the statistics, the subcell resolution method is introduced in the
following.

7.4.2 Subcell resolution for the transonic airfoil test case

The implementation of the subcell resolution concept is problem-dependent. For this test
case, only a weak discontinuity exists around the upper surface for certain combinations of
random parameters due to the viscous boundary layer, which is in contrast to the existing
applications to the inviscid solutions around the airfoil in [75].

To resolve the location of the discontinuity inside the discontinuous element in the param-
eter space, the physical shock location xshock along the airfoil is firstly extracted from each
of the samples based on the gradient magnitude of the pressure coefficient. Then, to avoid
the discrete resolution of the shock location, which is limited to the size of the spatial cell,
a parabolic fitting through the maximum gradient point and its two neighbouring spatial
points is performed. Consequently, a more accurate shock location is obtained by finding
the extremum of that parabolic fit. As shown in Figure 7.2.3, there is no shock wave or even
high gradient region of pressure on the upper surface for M∞ ≤ 0.7032. Then, the extraction
step is spared for those 10 samples.

Subsequently, the extracted physical discontinuity locations xshock are interpolated in the
parameter space to obtain an approximation wshock(ξ) of the spatial discontinuity location
xshock as a function of the random parameters, i.e., the angle of attack and the Mach
number. For this test case, the approximation is extrapolated from the parameter space
with M∞ ≥ 0.729 to the whole parameter space and a monotonic function is obtained,
which is shown in Figure 7.4.3.

The locations of the discontinuity in the parameter space for a certain physical location can
then be resolved by finding the intersection hypersurface Ξshock. For each physical location,
a corresponding hypersurface Ξshock is resolved, which is assumed to be the discontinuity in
the parameter space. Consequently, the surrogate constructed in each smooth sub-domain
can be extended to the predicted locations of the discontinuity.

7.4.3 Response surface in the parameter space with SR

To compare the proposed SC-ENO method with the SR method, the response surface in
the parameter space obtained with SR method is shown in Figure 7.4.4 for the previously
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Figure 7.4.3: Approximation of xshock in the parameter space

considered physical locations x = 0.5238 and x = 0.6054, the plots of which are in Figure
7.4.2. With the subcell resolution, the linear interpolation inside the discontinuous element
are replaced by the extended interpolation of neighbouring smooth sub-domains from both
sides to the predicted discontinuity location ξshock along the hypersurface Ξshock.

(a) x = 0.5238 (b) x = 0.6054

Figure 7.4.4: Response surface in the parameter space with SR

7.4.4 Statistics and full confidence interval obtained with SR

Here, comparisons of the statistics between the SC, SC-ENO and SR methods are made for
the sensitive shock region. When it comes to the full confidence interval, the SR and the
SC method exhibit similar behaviour, i.e., a larger interval with non-physical overshoots.
However, the reasons for that are different. As can be observed in Figure 7.4.4(b), the
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overshoots can be explained by the smooth extrapolation inside the discontinuous elements
where the limiter is not satisfied any more, which is different from the Gibbs oscillations. Due
to the truly discontinuous representation of the sharp gradient enclosed in the discontinuous
element, the standard deviation obtained with the SR method is larger than that of the
SC-ENO method regardless of the distribution of the random parameter, as shown in Figure
7.4.6 and Figure 7.4.7. This difference of the standard deviation is enlarged if the distribution
of the random parameters is concentrated in the parameter space, which is demonstrated in
Figure 7.4.8.
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Figure 7.4.5: Mean of the pressure coefficient Cp and full confidence interval for the uniform
distribution in the shock region
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Figure 7.4.6: Mean of the pressure coefficient Cp± standard deviation for the uniform dis-
tribution in the shock region
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Figure 7.4.7: Mean of the pressure coefficient Cp± standard deviation for the beta distribu-
tion in the shock region
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Figure 7.4.8: Comparison of the standard deviation of the pressure coefficient Cp in the
shock region

7.4.5 Limitation of the SR method

The SR method is introduced to solve the staircase approximation of the statistics. For this
test case, the staircase behaviour of the standard deviation is not obvious due to the smeared
shock wave. In terms of the mean value of the pressure coefficient, the SR succeeds to obtain
a generally monotonic continuous curve. However, there exist a small overshoot near the
end of the shock region, which can be seen in Figure 7.4.7(a). To explain this, the response
surfaces of two consecutive physical locations at that region are plotted in Figure 7.4.9.

We can see from the figure that the response surfaces in the parameter space are dramati-
cally different. In both locations, the parameter domain are splitted into two parts. However,
the sampling nodes inside each smooth sub-domains is not the same. For the sub-domain as-
sociated with the large Mach number, the predicted location of the discontinuity lies between
the second and middle sampling nodes in the dimension of the Mach number at x = 0.6054,
while it lies between the boundary and the second sampling nodes at x = 0.6108. Subse-
quently, two sampling nodes are employed in the Mach number dimension at x = 0.6054
while only one sampling node exists x = 0.6108. Consequently, a linear interpolation is ap-
plied for the Mach number dimension at x = 0.6054 while constant approximation is made
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x = 0.6108. As for the other part of the parameter space, the surrogates constructed show
a huge difference as well.

(a) x = 0.6054 (b) x = 0.6108

Figure 7.4.9: Response surface in the parameter space with SR near the end of shock region

For this test case, where a full N-S solver is used, the weak shock wave on the upper
surface of the airfoil cannot be defined as a discontinuity in the strict sense. Therefore, SR
is not suitable compared to the robust SC-ENO method. On the other hand, this test case
proves that SC-ENO method is a reliable and robust method for practical problems.
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Chapter 8

Conclusions and Recommendations

The main contribution of this thesis is to develop an efficient and robust uncertainty prop-
agation method for underlying functions with discontinuities or steep gradients, especially
targeting expensive CFD simulations. To eliminate the stochastic Gibbs oscillations, a com-
plete computational methodology, termed SC-ENO, is proposed and coupled with the di-
mension adaptive sparse grid approach to alleviate the curse of dimensionality. A black box
toolkit based on Matlab for the probabilistic uncertainty propagation is developed.

8.1 Conclusions

As we all know, Stochastic Collocation with global basis exhibits fast convergence provided
that the underlying function is smooth. However, in most cases, the smoothness of the inter-
ested quantities is not known a priori. To prevent the Gibbs oscillations inherent with the
spectral basis, robustness concepts from the CFD community, i.e., Local Extremum Con-
serving (LEC), Monotonicity Preserving (MP) and Essentially Non-Oscillatory (ENO), are
reformulated for the multi-dimensional stochastic space and incorporated into the Stochas-
tic Collocation method. Different from the existing Simplex Stochastic Collocation (SSC)
method, where the simplex tesselation is employed to discretize the stochastic space, the pro-
posed SC-ENO method works on the hypercube discretization where the structured sampling
grids are formed by the tensor product of 1-D quadrature nodes. With the prescribed deter-
ministic sampling nodes, the SC-ENO method first locates the discontinuities by enforcing
the robust limiter to the surrogate response surface and then constructs the surrogate using
the piecewise polynomial basis inside each smooth sub-domain. Due to its non-adaptive
nature, the locations of discontinuity can only be resolved up to a resolution of the size of
the hypercube elements. As for the surrogate construction, the performance multivariate
interpolation methods, i.e., Sauer-Xu Lagrange interpolation and the least interpolation, are
compared in terms of the robustness and the accuracy. The least interpolation method is
better than Sauer-Xu algorithm but it lacks robustness for certain distribution of the sam-
pling points. To remedy this, a element-wise interpolation method matching the proposed
discontinuity detection method is developed.
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Like other non-intrusive uncertainty propagation methods, the SC-ENO method can be
linked to any deterministic solver to propagate the probabilistic uncertainties. The surro-
gate model in the stochastic space comes out automatically without the need for parameter
manipulations. Generally speaking, it can be viewed as a weighted interpolation method
as well as a robust and efficient surrogate construction tool. The most important character
of the developed framework lies in its self-adaptation in choosing between the global basis
and the local basis based on the smoothness of the constructed surrogate. This is extremely
useful when there are more than one quantity of interest (QOI) with different smooth prop-
erties since the same set deterministic sampling values can be used. In contrast to the
existing adaptive methods designed for the robust approximation of discontinuous function,
the SC-ENO is more efficient in terms of the number of deterministic solutions. Besides, the
deterministic solvers can be run parallelly.

The performance comparison between the SC-ENO method and the traditional Stochas-
tic Collocation has been demonstrated with respect to some test functions with jumps in
function values or derivatives. Robustness against spurious oscillations have been demon-
strated. To illustrate its potential for a wider industrial applications, it is first applied to the
shock tube problem with uncertainties in initial conditions, whose QOI has a discontinuous
response surface in the parameter space. Then, it is applied to the steady flow around the
transonic airfoil. For this test case, different QOIs have different smoothness as the func-
tions of the random parameters. The integral value such as the lift coefficient has no jump
in the parameter space, where the global basis is desired for the sake of fast convergence.
For the same QOI with different smoothness properties at different physical locations, e.g.,
the static pressure around the airfoil surface, a robust result is obtained with the same set
of deterministic sampling values. In both of these test cases, the accuracy, efficiency and
robustness of the SC-ENO method are illustrated. It is shown that there are no unphysical
overshoots in the full confidence intervals of the interested quantities with sufficient deter-
ministic sampling points. Meanwhile, the performance of another approach dealing with
the stochastic discontinuities, Subcell Resolution (SR), is investigated. It is concluded that
the SC-ENO method is more suitable for the problems with steep gradients whereas the SR
approach performs better for the truly discontinuous problems.

8.2 Recommendations and future works

In addition to the need of a robust method to cope with the discontinuous function, there is
another challenging research topic in the field of the uncertainty propagation, i.e., curse of
dimensionality. The proposed SC-ENO method relies on a structured tensor product grid,
therefore, it is prone to suffering from the formidable computational costs for problems with
high stochastic dimensions. To deal with that, the conventional sparse grid and dimension-
adaptive sparse grid are coupled with the SC-ENO method. However, the accuracy of the
results is not as good as expected. Based on the experience with the discontinuous test
functions, it may be concluded that the conventional sparse grid is not a good choice for dis-
continuous problems. The combination of the SC-ENO with the existing High-Dimensional
Model Representation (HDMR) technique is a future research topic. Another approach to
reduce the number of nodes is to perform the sensitivity analysis first, thus identifying the
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important dimensions where more deterministic sampling values are supposed to be obtained.

It should be noted that the performance of the SC-ENO method depends largely on the
distribution of the sampling nodes. In this thesis work, the Chebyshev extrema nodes are
considered with rigorous support from the approximation theory. Besides that, the sampling
nodes can be constructed by optimization methods to minimize the error of the interpolant.
In that sense, the approach becomes adaptive. Consequently, the multi-dimensional disconti-
nuity detection algorithm, which relies on the tensor product grid, needs to be reformulated.

As shown in the numerical examples of the discontinuous functions, the main interpolation
error comes from the linear interpolation applied to the discontinuous elements. To get a
more accurate result, it would be beneficial to apply the adaptive grid refinements to the
discontinuous elements.
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Appendix A

The original Wiener polynomial chaos

Let {ξj(ω)}∞j=1 be a set of independent standard Gaussian random variables, ω is the sample
event. L2(Ω,P) is the space of second order random variables ξ defined on (Ω,A,P). Let
Γ̂p denote the space of all polynomials in {ξj(ω)}∞j=1 of degree not exceeding p; Γp represent

the set of polynomials in Γ̂p orthogonal to Γ̂p−1; Γ̄p be the space spanned by Γp. We have
[43]

Γ̂p = Γ̂p−1 ⊕ Γ̄p, L2(Ω,P) =

∞⊕
i=0

Γ̄i. (A.1)

Then, the subspace Γ̄p of L2(Ω,P) is called the p-th Homogeneous Chaos, and Γp is called
the Polynomial Chaos of order p [68]. As indicated in [8], any second-order random process
U , as a function of random event ω, can be represented in the form:

U(ω) = a0Γ0 +
∞∑
i1=1

ai1Γ1(ξi1(ω))

+

∞∑
i1=1

i1∑
i2=1

ai1i2Γ2(ξi1(ω), ξi2(ω))

+
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3Γ3(ξi1(ω), ξi2(ω), ξi3(ω))

+ · · · ,

(A.2)

where Γp(ξi1(ω), . . . , ξip(ω)) denotes the Hermite Polynomial Chaos of order p in terms of
the variables (ξi1(ω), . . . , ξip(ω)). This expansion is convergent in the mean-square sense as
a result of Cameron-Martin theorem [8]. Such L2 strong convergence implies convergence
in probability, and further convergence in distribution. We can also observe from the above
expansion that the Polynomial Chaos of order p consist of all orthogonal polynomials of order
p with all kinds of combinations of random variables {ξj(ω)}∞j=1. An intrinsic property of
Polynomials Chaos is that they are orthogonal to each other when they are either of different
order or with a different argument list. Consequently, the Polynomial Chaos of order greater
than one have vanishing mean.

For the computational purpose, the construction above that involves infinite dimension
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106 The original Wiener polynomial chaos

should be reduced to a finite dimensional Polynomial Chaos. In this case, the infinite upper
limit on the summations in (A.2) is replaced by a number equal to the number of independent
random variables ξi. For instance, an expansion with two dimensions becomes:

U(ω) = a0Γ0 +
2∑

i1=1

ai1Γ1(ξi1(ω))

+

2∑
i1=1

i1∑
i2=1

ai1i2Γ2(ξi1(ω), ξi2(ω))

+
2∑

i1=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3Γ3(ξi1(ω), ξi2(ω), ξi3(ω))

+ · · · .

(A.3)

If we use ξ1 and ξ2 to denote these two random variables, (A.3) becomes:

U(ω) = a0Γ0 + a1Γ1(ξ1(ω)) + a2Γ1(ξ2(ω))

+ a11Γ2(ξ1(ω), ξ1(ω)) + +a12Γ2(ξ1(ω), ξ2(ω)) + +a22Γ2(ξ2(ω), ξ2(ω))

+ a111Γ3(ξ1(ω), ξ1(ω), ξ1(ω)) + a211Γ3(ξ2(ω), ξ1(ω), ξ1(ω)) + a221Γ3(ξ2(ω), ξ2(ω), ξ1(ω))

+ a222Γ3(ξ2(ω), ξ2(ω), ξ2(ω)) + · · · .
(A.4)
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Appendix B

Algorithm of the multivariate Lagrange
interpolation

In this chapter, the pseudo code of the multivariate Lagrange interpolation algorithm is
reproduced from [59].

Let αn1 , . . . , α
n
rdn

be the multi-indices 1 of a certain order n, with |α| = n and rdn =
(
d+n−1
n

)
.

Also, these multi-indices are arranged in a certain order, e.g., lexicographical order. For con-
venience and without misunderstanding, we denote ordering α1

1, α
2
1, . . . , α

2
d, . . . , α

n
1 , . . . , α

n
rdn

by α1, . . . , αS .

1These multi-indices are actually the exponents of monomial basis
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108 Algorithm of the multivariate Lagrange interpolation

Algorithm 3 Lagrange interpolation algorithm [59]

Input: Scattered data Θd = {x1, . . . , xS} in d-dimensional space
Initialization:
M := N ;
for k = 1 : S do

Qk := xαk . Multi-indices are prescribed in a certain order based on total degree
end for
Inductive process:
for k = 1 : S do

i :=min({k ≤ j ≤M : Qj(xk) 6= 0} ∪ {M + 1}
while i = M + 1 do

for j = 1 : 1 : rdn+1 do

QS+j(x) = xα
n+1
j −]sumk

l=1x
αn+1
j

l Pl(x);
end for
M :=dimΠd

n+1;
n+ 1;
i :=min({k ≤ j ≤M : Qj(xk) 6= 0} ∪ {M + 1};

end while
Pk(x) := Qi(x)

Qi(xk) ;
for j = 1 : 1 : k − 1 do

Pj(x) = Pj(x)− Pj(xk)Pk(x) ;
end for
for j = i : −1 : k + 1 do

Qj(x) = Qj−1(x)−Qj−1(xk)Pk(x) ;
end for
for j = i+ 1 : 1 : S do

Qj(x) = Qj(x)−Qj(xk)Pk(x) ;
end for

end for
Output:P1, . . . , PS ∈ Πd

n are the Lagrange polynomial basis satisfying Pi(xj) = δij , i, j =
1, . . . , S
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Appendix C

Construction of the least interpolant
by Gauss elimination

First, a proof is of the proposition 4.3.2 is presented. The proposition is restated as follows:

Proposition C.0.1. [17] The polynomial interpolant in the form

IΘf :=

S∑
j=1

gj↓
〈gj , f〉
〈gj , gj↓〉

(C.1)

is the unique interpolant satisfying IΘf = fon Θ, with g1, g2, . . . , gS a basis for expΘ (par-
ticularly, S = #Θ) and

〈gi, gj↓〉 = 0 ⇐⇒ i 6= j. (C.2)

In the following, the proof of the above proposition is given based on [17]:

Proof. First, let us recall the pairing:

〈g, f〉 :=
∑
α

Dαg(0)Dαf(0)/α!, g, f ∈ Π. (C.3)

and the polynomial evaluation f(θ) in terms of the pairing with respect to the exponential
eθ, i.e.,

〈eθ, f〉 =
∑
α

Dαeθ(0)Dαf(0)/α! = f(θ), (C.4)

The equation (C.4) can be extended to pairing of arbitrary g ∈ expΘ and f ∈ C(Rd) by

〈
∑
α∈Θ

w(θ)eθ, f〉 =
∑
α∈Θ

w(θ)f(θ), f ∈ C (C.5)

Consequently, ∑
i

w(i)gi = eθ ⇒
∑
i

w(i)〈gi, f〉 = f(θ), f ∈ C (C.6)
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110 Construction of the least interpolant by Gauss elimination

From (C.1) and (C.2), it follows that

〈gi, IΘf〉 = 〈gi, f〉, all i. (C.7)

Since g1, g2, . . . , gS is a basis for expΘ and (C.4) (C.6), it implies that

IΘf(θ) = 〈eθ, IΘf〉 = 〈
∑
i

w(i)gi, IΘf〉 =
∑
i

w(i)〈gi, f〉 = f(θ), θ ∈ Θ. (C.8)

In the following, a detailed discussion of Gauss elimination with partial row pivoting is
given. It should be remarked that most of the following descriptions are taken from [17].
More details are added based on the knowledge and understanding of the author. A little
typo from the original paper is corrected.

We consider the matrix

V := (θα)θ∈Θ,α∈Nd , (C.9)

which is obtained from the Vandermonde matrix V = (θα) by treating all entries of a given
degree as one entry. From here on, boldface letters indicate vector quantities. The rows of
V are indexed by θ ∈ Θ as before, but its columns are indexed by degree by degree instead
of term by term. Hence,

(θk) = (θα)|α|=k, k = 0, 1, 2, . . . .

Here, the term Gauss elimination takes a new meaning since we cannot ‘eliminate entries’
as what we did for entries of numbers any more. Rather, the entries of V are vectors, so we
can only make all the entries in the pivot column below the pivot row orthogonal to the
pivot entry. When eliminating in column k of V, the inner product

〈a, b〉k :=
∑
|α|=k

a(α)b(α)/α! (C.10)

is defined, which is consistent with the pairing defined in (4.3.11).

Let W be the ‘working matrix’, which initially equals V. So it has vectors indexed by
{α ∈ Nd : |α| = k} as the entries in its kth column. To simplify the notation, the following
abbreviation

〈〈〈W(θ, k),W(θ, k)〉〉〉 := 〈W(θ, k),W(θ, k)〉k
is used.

The overall process of Gauss elimination with partial row pivoting is achieved by manip-
ulating the W using the scalar product (C.10). At the jth step, the largest nontrivial entry
of W in column kj is searched, where kj is the smallest order satisfying kj ≥ kj−1. Then,
interchange its row with row j of W to put it into the pivot position W(θj , kj) if necessary.
Then, the appropriate multiple of the pivot row W(θj , :) is subtracted from the subsequent
rows in order to make W(θj , kj) orthogonal to W(θi, kj) for all i > j.
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As a result of the above ‘elimination’, a factorization

LW = V

is obtained, where L is a unit lower triangular matrix of size RS×S , and W ∈ RS×kS is in
row echelon form. It should be noted that for some ordering {θ1, θ2, . . . , θS} of Θ and all j,
there is a nondecreasing sequence k1, k2, . . . , kS

1 such that the vector entry W(θj , kj) is the
first nonzero entry in the row W(θj , :). In other words, the matrix (W(θi, kj))

S
i,j=1 is block

upper triangular [17]. The orthogonality of W(θj , kj) to W(θi, kj) when ki = kj and i 6= j
is guaranteed by the elimination steps, thus the square matrix defined as

U := (〈〈〈W(θi, kj),W(θj , kj)〉〉〉)Si,j=1 ∈ RS×S

is upper triangular and invertible. Due to the orthogonality of W(θj , kj) to W(θi, kj) when
ki = kj and i 6= j, there may exist some zeros in upper part of U .

After this top-down elimination step is finished, the next task is to enforce orthogonality
of the pivot element in row j to the elements above it in the pivot column, i.e., to make
W(θj , kj) orthogonal to W(θi, kj) for all i < j. This can be accomplished by a further
factorization of the matrix W with UG := W. As shown later, the matrix G ∈ RS×kS is the
matrix we want. To factor out the upper triangular matrix U , ‘back substitution’ is used, i.e.,

for j = S, S − 1, . . . , 1, do
W (θj , :)←W (θj , :)/U(j, j)
for i = 1, 2, . . . , j − 1, do

W (θi, :)←W (θi, :)− U(i, j)W (θj , :)
end for

end for

The jth step exerts the orthogonality of the pivot element in row j to the elements above
it in the pivot column, without chaning the orthogonalities already achieved in subsequent
columns2, and without changing anything in the preceding columns. Consequently, the
matrix

(〈〈〈G(θi, kj),G(θj , kj)〉〉〉)Si,j=1

is diagonal and invertible. As for the diagonal value, we have

〈G(θi, :), Gkj (θj , :)〉 =
∑
k

〈G(θi, :), Gkj (θj , :)〉k (C.11)

= δi,j/U(j, j), i, j = 1, . . . , S,

with Gk given by

Gk(; , α) :=

{
G(:, α), |α| = k
0 otherwise.

(C.12)

1The sequence k1, k2, . . . , kS need not be strictly increasing.
2Think an example, if a⊥b, a⊥c, then a⊥(αb+ βc), where a, b, c are vectors and α, β are real numbers.
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112 Construction of the least interpolant by Gauss elimination

Define a scalar valued function:

gi :=
∑
α

( )α/α! G(θi, α). (C.13)

Since LUG = V = (Dαeθi(0))i,α, if we multiply a column vector [ ( )α

α! ] from right on both
sides, where |α|max = kS , we get∑

j

(LU)(i, j)[
∑
α

( )α

α!
G(θj , α)] = (Dαeθi(0))i,α ·

∑
α

( )α

α!
=
∑
α

( )α · θαi
α!

, (C.14)

and subsequently 3 ∑
j

(LU)(i, j)gj = eθi , all i. (C.15)

Further,

gi↓ :=
∑
|α|=ki

( )α/α! G(θi, α), (C.16)

with equation (C.11), we get

〈gi, gj↓〉 = δi,j/U(j, j), i, j = 1, . . . , S. (C.17)

Due to the above equation, g1, g2, . . . , gS is linearly independent, (C.15) implies that g1, g2, . . . , gS
is a basis for expθ. What’s more, g1↓, . . . , gS↓ is linearly independent, thus a basis for ΠΘ.

With the above defined functions, the polynomial interpolant in the form

IΘf :=
S∑
j=1

gj↓a(j), (C.18)

where a := diag(U)(LU)−1(f(θ1), . . . , f(θS)), is the unique interpolant from ΠΘ to f on Θ.

Proof. From (C.17), it follows that

〈gj , IΘf〉 = a(j)/U(j, j). (C.19)

Therefore, from (C.15) and the expression of a,

IΘf(θi) = 〈eθi , IΘf〉 =
∑
j

(LU)(i, j)〈gj , IΘf〉 (C.20)

=
∑
j

(LU)(i, j)
∑
r

(LU)−1(j, r)f(θr) = f(θi).

3There is a little typo in the original paper [17], it is corrected based on the author’s derivation.
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Appendix D

Properties of the least interpolation
method

Descriptions of the properties of the least interpolation method are reproduced from [15].
(Interested readers can refer [16, 17, 18, 13, 15] for proof and further information):

� Well defined. ΠΘ is well-defined polynomial space regardless of the choice of Θ.

� Continuity, that is, small changes in Θ results in small change ΠΘ.

� Coalescence⇒ osculation, i.e., as points coalesce, Lagrange interpolation approaches
Hermite interpolation.

� Translation invariance, i.e., ∀(p ∈ ΠΘ, a ∈ Rd) p(a + ·) ∈ ΠΘ. This implies that
ΠΘ is independent of the choice of the origin, that is, it is closed under differentiation.

� Scale invariance, i.e., ∀(p ∈ ΠΘ, a ∈ R) p(a·) ∈ ΠΘ.

� Coordinate system independence, i.e., an affine change of variables x 7→ Ax+c (for
some invertible matrix A) affects ΠΘ in a reasonable way. Precisely, ∀(invertibleA ∈
Rd×d, c ∈ Rd) ΠAΘ+c = ΠΘ ◦AT .

� Minimal degree, i.e., the elements of ΠΘ have as small a degree as is possible. To
be precise: For any polynomial space P for which 〈Θ, P 〉 is correct, and for all j,
dimP ∩Πj ≤ dimΠΘ ∩Πj .

� Monotonicity, i.e., Θ ⊂ Θ′ ⇒ ΠΘ ⊂ ΠΘ′ .

� Cartesian product ⇒ tensor product, i.e., ΠΘ×Θ′ = ΠΘ ⊗ ΠΘ′ . This means for
tensor product grids, we recover the standard tensor product space.

� Constructible, i.e., a basis for ΠΘ can be constructed in a finitely many arithmetic
steps.
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