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Summary

This research addresses a persistent challenge in structural engineering: the frequent mismatch between
the measured dynamic properties of high-rise buildings and those predicted by their design models.
Previous deterministic model updating studies on structures such as the New Orleans Tower, including
those by Moretti et al. [23] and Ritfeld [27], were constrained by two major limitations. First, they did
not utilize all available modal information, particularly torsional modes, which can provide valuable in-
sight into the structural behaviour. Second, they lacked a means to quantify uncertainty in the estimated
parameters, leading to results with unknown reliability.

The primary objective of this thesis was to overcome these limitations and enhance both the accuracy
and reliability of structural parameter estimation. To this end, a vibration-based Bayesian finite element
(FE)model updating approach was implemented. A simplified three-dimensional FEmodel, formulated
as a lumped-mass stick model, was developed for the New Orleans Tower. The model was specifically
designed to capture both torsional and shear deformations while maintaining the computational effi-
ciency required for Bayesian inference.

Within this framework, the Bayesian methodology employs Bayes’ theorem together with Markov
Chain Monte Carlo (MCMC) sampling to treat uncertain structural parameters, such as foundation stiff-
nesses and the concrete modulus of elasticity, as random variables. This produces a posterior probability
distribution that formally quantifies the uncertainties associated with the updated parameters. The prior
distributions were defined based on literature and engineering judgement, while the likelihood function
was defined through a data-generating process. Furthermore, a novel mode-matching method based on
the modal participation mass ratio was developed to robustly pair measured and modelled modes.

Model updating was performed for the New Orleans Tower through four different cases, each incorpo-
rating additional modal information. Overall, the Bayesian updating successfully produced models that
closely matched the measured data. Across these cases, several advantages of the Bayesian approach
were demonstrated, including the ability to detect parameter redundancy and overfitting, identify unin-
formative parameters, improve the solution through uncertainty reduction, and reveal the existence of
multiple possible solutions.

The proposed modelling approach also exhibited improved performance compared to simplified analyt-
ical beam models. It successfully captured the third bending mode without compromising the accuracy
of the lower modes. The first torsional mode was also well represented; however, the inclusion of
the second torsional mode proved unsuccessful. This limitation is likely due to missing parameters or
model features within the updating scheme rather than to deficiencies in the modelling approach itself.

The case study further revealed significant model inadequacies for higher modes. These inadequacies
were primarily attributed to the exclusion of the effect of the adjoining low-rise structure and the as-
sumption of rigid connections between structural elements. For studies where models with accurate
higher modes are required, these effects may not be neglected.
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qp Permanent load [kN/m2]
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1
Introduction

1.1. Research Context
For any structural system, the structural parameters, such as mass density, stiffness, and foundational
stiffnesses influence its natural frequencies and mode shapes. The dynamic properties derived via field
measurements can be used to provide insight on the aforementioned structural parameters. Ideally, these
measured dynamical properties should be close to the ones estimated during the design phase from a
FE model. However, different studies such as ones by Avci et al. [2], Bronkhorst et al. [4], Moretti
et al. [23], Pan et al. [24], have shown that the measured dynamical properties of high-rise buildings
generally do not match with the ones predicted by the design models. This mismatch in the properties
suggests that there are certain design choices taken during the modelling phase which leads to a model
that does not accurately represent the building in question [4, 23].

1.2. Research Problem
To improve the predictive capability of the FE model, a technique called model updating can be used,
wherein the model’s dynamic properties are matched with measured dynamic properties by altering
the mass, stiffness, and foundational stiffness of the building. Moretti et al. [23] and Ritfeld [27, 28]
developed a deterministic model updating approach based on analytical beam models, which allows
for the estimation of global structural properties (i.e., bending stiffness and foundation spring stiffness)
of high-rise buildings. While this method successfully matched the modal properties and provided
estimates for the global bending and foundation stiffnesses, the developed approach exhibited twomajor
limitations:

• Unused Modal Data: The analytical model which was used to represent the building did not
account for torsional displacements. Therefore, the model could only represent bending or sway
modes. The identified torsional modes and mixed modes were either not taken into account for
model updating or were averaged and converted to bending/lateral modes (which introduces bias
in the solution).

• UncertaintyQuantification: The developed deterministic model updating approach aims to find
a single “true” set of model parameters by minimizing a cost function between measured and pre-
dicted modal properties (natural frequencies and mode shapes). Such a deterministic approach
ignores inherent uncertainties associated with measured and modelled dynamical properties, may
require bias-inducing regularization for ill-posed problems, and fails to incorporate prior knowl-
edge about parameter ranges. As a result, there is often no indication of the reliability or the
uncertainty quantification of the updated model parameters.

1
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The first limitation can be addressed by adopting a 3D model. Increasing the model dimensionality
from 1D or 2D to 3D allows the inclusion of previously unused modal data and facilitates the use of
higher mode information through a more detailed representation of the structure. The second limitation
can be mitigated by incorporating uncertainty within the model updating process, for instance, through
Bayesian model updating. In this framework, the higher-fidelity FE model provides richer structural
information, while the Bayesian approach quantifies the associated uncertainty, offering a clearer un-
derstanding of discrepancies in the dynamic properties. By combining these two improvements into
a Bayesian FEM-based approach, more reliable estimates of the global structural properties can be
achieved.

1.3. Research Objective
The objective of this research is to improve the accuracy and reliability of structural parameter estima-
tion by incorporating torsional modes and by quantifying the uncertainty in the estimated parameters
using vibration-based Bayesian FE model updating.

1.4. Research Scope
The research will focus on the application of Bayesian Model Updating on a high-rise building using
vibrational data. Therefore, the outcome and recommendations from the research will be valid only
for high-rise buildings. The study will also be focusing on performing model updating on a simplified
FE model. Non-linear effects in modal properties due to effects of vibrational amplitude, damping,
and building lifespan will not be considered. The frequency dependence of the stiffnesses will not be
considered. Additionally, as the data for the study will be obtained from previous studies, Operational
Modal Analysis (OMA) will not be conducted and will not be the focus of the study.

1.5. Research Questions
The thesis has two main aspects with which it improves upon the previous works: i) increasing mod-
elling complexity to account for unused modal data, ii) using Bayesian inference to account for the
uncertainties in parameters, model, and measurements. As such, the main research question also re-
volves around these two key areas. The main research question for this thesis is:

“How can Bayesian model updating, combined with a simplified FE model, be effectively
utilized to enhance the accuracy and reliability of structural parameter estimation in high-rise

buildings?”

To address the above research question, a set of sub-questions have been derived below, which cover
the two main aspects of the thesis.

Research sub-questions related to modelling in Bayesian model updating:

• How should the updating parameters be determined?

• What effect does increasing model complexity have on the model updating results?

• What effect does including torsional modes have on the model updating results?

Research sub-questions related to uncertainty quantification and Bayesian inference:

• How should the prior probabilities be defined to best reflect the initial knowledge about the struc-
tural properties, including correlation?

• To what extent does the definition of the priors affect the posterior distribution?

• What likelihood function/model should be used?

• What insights can be derived from the updating results?
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1.6. Organisation of the Text
This document is organized into nine chapters. Chapter 1 introduces the research context and objec-
tives. Chapter 2 provides background information on high-rise building modelling and model updating.
Chapter 3 reviews existing literature on model updating and prior studies on the New Orleans Tower.
Chapter 4 presents the theoretical formulation of Bayesian model updating, while Chapter 5 details
the simplified finite element model and the modelling of the New Orleans Tower. Chapter 6 outlines
the practical choices made for uncertainty quantification and model updating. Chapter 7 presents the
corresponding case study. The report concludes with a discussion and final conclusions.



2
Conceptual Background

This chapter presents an overview of structural modelling approaches for high-rise buildings, ranging
from simplified analytical beam models to detailed finite element (FE) representations. It also intro-
duces the fundamental concepts of modal properties and model updating, along with a brief explanation
of the key concepts underlying deterministic and Bayesian model updating.

2.1. Structural Modelling Approaches
In structural engineering, the modelling approach strongly influences both the accuracy of results and
the computational effort required. Depending on the purpose of the study, models can range from highly
simplified analytical representations to detailed three-dimensional finite element (FE) models.

1. Analytical Beam Model
The simplest representation approximates a high-rise building as an Euler–Bernoulli (EB) or Tim-
oshenko beam. Suchmodels are computationally very efficient, making them particularly suitable
for tasks like model updating where eigenanalysis must be repeated thousands of times. However,
their simplicity often leads to a loss of local information [23, 27].

(a) (b)

Figure 2.1: (a) Elevation view and (b) analytical beam model of the Millikan Library, as presented by Taciroglu et al. [33].

4
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2. Shear Building Model
This approach idealises the building as a stack of lumped masses connected by lateral stiffness,
with rigid-diaphragm floor slabs. Only translational motion in x and y is considered, while rota-
tional effects are neglected. This makes the model suitable for low- to mid-rise buildings domi-
nated by shear behaviour, but less accurate for high-rise buildings where bending effects play a
major role.

(a) (b)

Figure 2.2: (a) Elevation view and (b) Shear Building Model of a 20-storey office building, as presented by Lam et al. [18].

3. Simplified FE Model
Extending the shear model, simplified FE models release the assumption of no rotational dis-
placement. Floors are modelled with both translational and rotational degrees of freedom, and
torsional effects may also be included. These models strike a balance between computational
efficiency and physical realism.

(a) (b)

Figure 2.3: (a) Elevation view and (b) Simplified 3D FE Model of the Shanghai Tower, as presented by Pan et al. [24].

4. Detailed FE Model
At the most refined level, detailed 3D FE models represent the geometry and material behaviour
with tens or even hundreds of thousands of elements. Such models minimise modelling bias
and capture local effects with high fidelity, but they are computationally very demanding, often
requiring hours for a single eigenvalue analysis. This makes them impractical for repetitive tasks
such as model updating.
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(a) (b)

Figure 2.4: (a) Al-Sinyar Tower and (b) Detailed 3D FE Model of the same, as presented by Avci et al. [2].

2.2. Parameters
The behaviour of a structural model is primarily governed by its geometry, boundary conditions, and
material properties. Geometry refers to the spatial configuration of the system, including the location
of nodes and the size and shape of elements (e.g., cross-sections and lengths). These are typically
derived from design drawings, either directly or through simplifications based on specific assumptions.
Boundary conditions define how the system interacts with its supports and external restraints, both at
the level of individual elements and the structure as a whole. Material properties, on the other hand,
dictate how each element responds to loading, encompassing characteristics such as density, elasticity,
and constitutive behaviour.

Collectively, these features are called the model parameters, which are the primary inputs of a system
that influence its response or output. They can represent intrinsic physical properties (such as material
and geometric characteristics, or boundary conditions) or be embedded within the mass and stiffness
matrices, which define the relationship between these physical properties and the model’s response. In
model updating research, the physical properties are often used as the model parameters due to their
clear physical meaning making them directly interpretable to the analyst, and enabling a intuitive link
between the model predictions and the real structure. [9]

2.3. Modal Properties
For any structure, its dynamic characteristics and behaviour are described by its modal properties. These
include natural frequencies, mode-shapes and damping ratios. Of these, the natural frequencies repre-
sent the frequencies at which the structural system would respond to in the absence of any external
loading, and the corresponding mode shapes describe how the structural system would respond. The
damping ratio describes how quickly the amplitude of the response decrease with time. In this thesis,
the natural frequencies and mode shapes of the structure are adopted as the primary modal properties
for analysis and model updating.

2.4. Model Updating
The modal properties of a structure can be obtained either through experimental observations or by
numerical predictions using finite element (FE) models. In an ideal scenario, the modal properties
measured from experiments wouldmatch those predicted by the FEmodel. In practice, however, the two
rarely align. This mismatch can arise for various reasons, such as measurement noise, simplifications
in the model, or discrepancies between the actual structural properties and those assumed in the model.
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To address this issue, model updating is employed. Model updating refers to the process of calibrating
uncertain system parameters by using measurement data as the reference for the “true” system. In
structural dynamics, vibration-based model updating specifically uses modal properties derived from
vibrational data as the basis for this calibration.

The modal properties of a structure are governed by its physical characteristics, such as the stiffness
and mass of its elements. Conversely, if the modal properties are known, they can in principle be used
to estimate the structural properties. Determining modal properties from given structural properties is
relatively straightforward, and most FE software can compute them through eigenanalysis. The reverse
task, i.e. inferring structural properties from measured modal properties, often called the ‘inverse prob-
lem”, is much more challenging. This is particularly due to the absence of a closed form solution for
this transformation. In addition to this, the presence of non-unique solutions also make this challenging
to say with certainty if the obtained solution is the true solution.

Model updating provides a practical way forward. It formulates the inverse problem as an optimization
task, where the goal is to minimize the discrepancy between the measured modal properties and those
predicted by the FEmodel. By systematically adjusting selected model parameters, the predicted modal
properties are brought into closer agreement with the experimental data, thereby improving the accuracy
of the underlying structural model.

2.5. Deterministic Model Updating
Deterministic model updating is a framework of model updating where the calibration of the model is
performed via an optimization problem. In this framework, the model parameters are defined as deter-
ministic parameters, without explicitly defining their uncertainties. For the optimization, the objective
function is defined as the error between the measured and predicted modal properties, often defined
as Eq. 2.1. As the objective function represents the error, the goal of the optimization becomes to
minimize this function.

J(θ) = wf

N∑
i=1

|fi − f̂i|
f̂i

+ wϕ

N∑
i=1

(1−MAC(ϕi, ϕ̂i)) (2.1)

where,
J(θ) : Error function

wf , wϕ : weights assigned for frequency and mode shapes respectively

fi,ϕi : estimated ith frequency and mode shapes respectively that depends on the parameters θ

f̂i, ϕ̂i : measured ith frequency and mode shapes respectively
N : Number of modes considered

Different algorithms, such as gradient-based algorithm and particle swarm algorithm, have been used
in the literature to carry out the deterministic model updating. The main feature of deterministic model
updating is that for the given initial definitions of the parameters and error function, the result of the
updating will always be exactly the same. The accuracy of deterministic updating depends strongly on
the quality of the measurement data, the choice of parameters to be updated, and the conditioning of
the inverse problem. While this method can provide a unique, best-fit model, it does not capture the
variability or uncertainty in the system.

2.6. Bayes' Theorem
Bayes’ theorem is a fundamental concept in probability theory, which describes how the probability
of certain outcome changes when new information about the event, called evidence, is obtained. The
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expression for Bayes’ theorem is given as follows:

P (A|B) =
P (B|A) · P (A)

P (B)
(2.2)

The different terms of this formula are explained in Table 2.1

Table 2.1: Components of Bayesian Formula

Term Terminology Meaning
A Hypothesis Quantity of interest
B Evidence Measurable or Observable Quantity

P (A) Prior of A Initial probability of hypothesis A being true
P (B) - Total probability of observing the evidence B

P (A|B) Posterior of A Probability of hypothesis A being correct given that evidence B is observed
P (B|A) Likelihood of B Probability of observing evidence B given that hypothesis A is true

2.7. Bayesian Model Updating
The concept and philosophy of Bayes’ theorem can be applied to system identification problems in
structural engineering via Bayesian model updating, which allows for the incorporation of both model
and measurement uncertainties. In Bayesian model updating, uncertain parameters are treated as ran-
dom variables with associated probability distributions, allowing Bayesian theory to formally account
for uncertainty.

For a set of unknown structural parameters, θ, we can infer its posterior distribution based on a dataset
D by using equation 2.2 in the following manner:

p(θ|D) =
p(D|θ) · p(θ)

P (D)
(2.3)

In this formulation:

• The operator P (·) refers to the Probability Mass Function (PMF) for discrete random variables,
while the operator p(·) refers to the Probability Density Function (PDF) for continuous random
variables.

• The prior distribution, p(θ), reflects existing knowledge or assumptions about the uncertain struc-
tural parameters, θ.

• The likelihood function, p(D|θ), quantifies the probability of observing the measured data given
the model parameters. In practice, this term incorporates some measure of the discrepancy be-
tween model-predicted and experimentally observed modal properties.

• The denominator, P (D), is the evidence term. It requires integrating the likelihood over the entire
parameter space, which is computationally intractable in most real-world applications.

In practise, sampling-based methods are commonly used to explore the posterior distribution by gener-
ating samples proportional to the unnormalised posterior (p(D|θ) · p(θ)). The evidence term is then
treated as an unknown normalisation constant. Consequently, the posterior probability is then given by:

p(θ|D) = c · p(D|θ) · p(θ) (2.4)

where c is the normalizing constant. [8]



3
Literature Review

This chapter reviews the existing literature on the uncertainty in the dynamic and structural properties
of high-rise buildings and the application of model updating to address such uncertainties. Section 3.1
discusses the sources and nature of uncertainties observed in high-rise structures. Section 3.2 examines
previous studies on model updating, with particular emphasis on applications to high-rise buildings.
Section 3.3 focuses on research specifically related to the New Orleans Tower.

3.1. Uncertainty in Dynamic properties of High-Rise Buildings
For any building, it is expected that the designed dynamic properties closely match the actual in-situ
dynamic properties. Although some deviation is expected due to modelling assumptions and measure-
ment noise, numerous measurement campaigns have revealed significant and repeated discrepancies.
For instance, Bronkhorst et al. [4] found that the natural frequencies for the high-rise buildings in the
Netherlands were underestimated by design codes by a factor of 1.4 to 2.2. More recent research on
structures like the New Orleans Tower and the New Erasmus Medical Center found mismatches in
natural frequencies reaching up to 30% and 50%, respectively [3].

Crucially, the mismatch in natural frequencies are often higher for complex and higher modes. Pan
et al. [24] found that for the Shanghai Tower, frequency errors reached up to 45% for torsional modes
compared to 34% for translational modes, suggesting that torsional behaviour is particularly susceptible
to modelling errors or inaccurate initial assumptions.

These mismatch in dynamic properties primarily arises from the inherent idealizations in FE models,
which are developed based on engineering judgment. Even the most detailed models rely on simplifying
assumptions andmay fail to capture important aspects such as connection behaviour, material variability,
or foundation–soil interaction [24]. Different authors have proposed various classifications of these
modelling errors and uncertainties, which, despite differing terminology, share the same underlying
principles. One such classification by Simeon et al. [32] divides the source of modelling uncertainties
into three categories:

a. Model Parameter: This type of uncertainty arises from incorrect assumptions about the struc-
ture’s parameters or properties. It may include uncertainties in material properties, complex load-
ing conditions, or geometrical imperfections.

b. Model Structure: These errors are introduced during the idealization and simplification of the
structural model. For example, assuming a fully fixed connection when it actually exhibits some
flexibility introduces structural modelling errors. Such errors may arise from both intentional

9
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simplifications and unintended side effects. Increasing the model fidelity can help mitigate these
errors.

c. Model Code: This uncertainty results from numerical or technical limitations in the modelling
software or hardware. It includes how numerical algorithms handle calculations. Generally, this
type of uncertainty is considered negligible.

To improve the predictive capability of the finite element (FE) model, the Model Parameter uncertainty
must be systematically reduced. This can be achieved throughmodel updating. Furthermore, addressing
Model Structure uncertainty, particularly the inability to model complex modes like torsion, requires
selecting an appropriate structural modelling approach. The following section reviews the literature on
Model Updating techniques to establish a foundation for choosing the most suitable method to address
these challenges.

Apart from model-based uncertainties, experimental data also contribute to the uncertainty in param-
eter identification. These arise from random measurement noise, instrument imperfections, and bias
introduced by unaccounted loading sources. Moreover, the dynamic properties used in vibration-based
model updating are not directly measured, but derived from time-domain vibration data. This extraction
process introduces additional uncertainty due to the assumptions involved, the finite length of the data,
data filtering, and the choice of a Linear Time-Invariant (LTI) system model. Together, these factors
contribute to both bias and variance in the identified dynamic properties [32].

3.2. Model Updating
Model updating is the process of calibrating uncertain system parameters using experimental data as a
reference to minimize the discrepancy between measured and predicted modal properties. The choice of
model and the updating methodology are critical factors influencing the feasibility and interpretability
of the results.

In the past, different authors have used different approaches to perform model updating, with varying
degrees of success. Table 3.1. outlines some of the studies done in the past concerning buildings,
grouped on the basis of the type of model used.

The analytical beam model has been widely used for deterministic model updating in previous studies
by Taciroglu et al. [33], Moretti et al. [23], and Ritfeld [27]. Taciroglu employed a Timoshenko beam
model with frequency-dependent foundation stiffnesses to represent the Millikan Library, while Moretti
and Ritfeld both modelled the New Orleans Tower using Euler–Bernoulli and discrete Timoshenko
beam models, respectively. All three studies reported that fitting the third bending mode degraded the
overall results, as the effort to match this mode introduced significant errors in the lower modes. Moretti
attributed this to model inadequacy, arguing that the analytical beam models do not have sufficient
features to explain these higher modes. Moreover, such models cannot represent torsional behaviour
or coupling between the x and y directions, which restricts the range of modal data that can be utilized
during the updating process.

The shear building model (SBM) is a simple yet widely used modelling approach. When extended to
three dimensions, it can capture torsional and coupling effects between the x and y directions. Aloisio et
al. [1] performed deterministic model updating using an SBM to fit three modes, including one torsional
mode. The torsional mode was fitted more accurately than the translational modes, although all modes
were within reasonable error limits.

Lam et al. [18] and Hu et al. [13] applied Bayesian model updating with SBMs using two transla-
tional modes per direction. Both studies reported relatively high errors in one of the first translational
modes and were unable to represent torsional behaviour. These errors were attributed to model struc-
ture uncertainty arising from oversimplification. In Lam’s study, the complex lower floors introduced
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Table 3.1: Summary of literature categorized by modelling approach

Author(s) Structure Updating
Method

Remarks

Analytical Beam Models

Taciroglu et al. [33] Millikan Library Deterministic Timoshenko beam model unable to fit
the 3rd bending mode.

Moretti et al. [23] New Orleans Tower Deterministic Euler–Bernoulli beammodel unable to
fit the 3rd bending mode.

Ritfeld [27, 28] New Orleans Tower Deterministic Discrete Timoshenko beam model un-
able to fit the 3rd bending mode.

Shear Building Models

Aloisio et al. [1] 8-storey CLT building
(23.21 m)

Deterministic About 5% frequency error in the 2nd
translational mode; good fit for the 1st
torsional mode.

Lam et al. [18] 20-storey office building Bayesian Using one mode led to high parameter
uncertainty. Using two modes reduced
errors, with maximum frequency error
of 8%.

Hu et al. [13] 9-storey coupled build-
ing

Bayesian Large parameter uncertainty and rela-
tively larger errors in the first transla-
tional mode, attributed to model uncer-
tainty.

Simplified FE Models

Wu et al. [36] Nanjing TV Tower (310
m)

Deterministic Good results updating with upto 4th
bending mode; also matched the 5th
and 7th bending modes.

Pan et al. [24] Shanghai Tower (632 m) Deterministic Using 9 modes, maximum frequency
error was 8.6%. Higher validation
modes improved, with errors reduced
from 17% to 3%.

Detailed FE Models

Avci et al. [2] 53-storey tower in Doha
(230 m)

Deterministic Despite using 10 modes (including 3
torsional), torsional frequency errors
remained high (> 10%).

Kaynardag et al. [17] 26-storey core-wall
building (131.2 m incl.
basement)

Deterministic With 4 bending modes in the y-
direction, the 2nd mode was not fitted.
Mode shapes beyond the 1st mode did
not match well, attributed to basement
fixed-type behavior. The 1st mode
matched well (weighted 80% in opti-
mization).

Dong et al. [8] 250 m tall building Bayesian Using 10 modes, maximum frequency
error was 8%. Parameter uncertainty
was reduced.

Liu et al. [19] 13-storey twin-tower ma-
sonry structure (48.3 m)

Bayesian Good agreement between predicted
and identified modal parameters. The
torsional mode showed relatively
higher error (7.8%).
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significant uncertainty when idealized as shear layers, reflected in the high CV (> 30%) of the up-
dated inter-storey stiffness. In Hu’s case, simplified modelling of structure–structure interaction using
translational springs led to similarly high uncertainty (CV > 30%) in the updated spring stiffnesses.

Overall, while the SBM offers computational efficiency, its simplifying assumptions limit its suitabil-
ity for complex or high-rise buildings. The absence of rotational degrees of freedom associated with
bending deformation makes it inadequate for capturing the full dynamic behaviour of tall structures.

The simplified finite element (FE) model improves structural representation by incorporating both shear
and bending behaviour between storeys. In contrast to the shear building model, it also allows rotational
displacements of each floor.

Wu et al. [36] applied this approach to the Nanjing TV Tower for deterministic model updating using
the first four bending modes. The updating reduced frequency errors to below 2% for all modes, while
higher unupdated modes (fifth and seventh) also showed low errors, demonstrating the model’s capabil-
ity to generalize beyond the calibrated range, and the potential to fit higher modes, a limitation of the
previous modelling approaches. Similarly, Pan et al. [24] used a 3D simplified FE model for the Shang-
hai Tower with nine modes (incl. three torsional modes), achieving good agreement with measurements
and a maximum error of 8.6% in the torsional and third bending modes. The model also showed strong
predictive performance for higher unupdated modes.

A key advantage of the simplified FE model is its ability to compute mode shapes directly at sensor
locations, reducing discrepancies caused by sensor eccentricity, a known limitation of analytical beam
models [27]. Additionally, the model provides considerable flexibility in selecting updating parameters,
with Pan et al. identifying up to 90 updatable parameters. These features make the simplified FE model
a practical and effective choice for vibration-based model updating.

The detailed FE model represents the highest level of structural abstraction, capturing geometry, bound-
ary conditions, and material behaviour with high fidelity. These models often have hundreds and thou-
sand times more elements than the previous modelling approaches. However, the large number of
elements makes eigenvalue analysis computationally expensive and often impractical for model up-
dating. While the high fidelity minimizes modelling bias, detailed FE models still exhibit limitations,
particularly in fitting torsional and higher bending modes.

Avci et al. [2] performed deterministic model updating on a 230 m tower using ten modes, including
three torsional modes. The updated model showed errors up to 16.4% in torsional modes and 7.4%
in bending modes, with notable mismatches in mode shapes, particularly on the lower floors. These
discrepancies were likely caused by the simplification of the non-standard joints in the structure. Sim-
ilarly, Kaynardag et al. [17] updated a 26-storey building using four bending modes in one direction.
Although the first mode was fitted perfectly, the second bending mode showed an error of 10.22%. The
high weighting (80%) assigned to the first mode contributed to this imbalance, while additional inaccu-
racies likely arose frommodelling shear walls as frame elements instead of more accurate shell elements.
The idealised simplification of the effect of the surrounding structures using two lateral springs further
introduced model structure uncertainty, contributing to the observed mismatch in mode shapes.

Dong et al. [8] applied Bayesian model updating to a 250 m tower using ten modes, achieving fre-
quency errors below 9%. The largest errors occurred in the x-direction bending modes, likely due to
the greater structural complexity and associated modelling uncertainties. Likewise, Liu et al. [19] per-
formed Bayesian updating on a complex twin-tower structure using four modes, including one torsional
mode. The torsional mode exhibited a relatively higher error of 7.8%, which was considered acceptable
by the authors. A plausible reason for this high error could be due to a higher effect of modelling error
on torsional mode compared to bending mode, given the complex geometry of the structure. Never-
theless, the parameter uncertainty was significantly reduced, with a maximum coefficient of variation
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(CV) of 6.9%.

Based on the reviewed studies, modelling approaches for high-rise buildings reflect a trade-off between
simplicity, accuracy, and computational cost. Analytical beam and shear building models offer effi-
ciency but are limited in capturing higher bending modes, torsional behaviour, and coupling effects.
Simplified FE models effectively balance accuracy and efficiency, allowing rotational degrees of free-
dom, higher-mode fitting, and flexible parameter updating. Detailed FE models provide the highest
fidelity but remain computationally intensive and still face challenges with torsional and higher bend-
ing modes. Overall, simplified FE models emerge as the most practical choice for vibration-based
model updating of complex tall structures. Additionally, an error of 8 − 9% appears to be inevitable
particularly for torsional and higher bending modes.

3.3. New Orleans Tower
The New Orleans is a residential tower in Rotterdam. It is the second highest tower in the Netherlands
standing at 158m, consisting of 45 floors. The tower is fitted with a permanent monitoring system
that includes 4 accelerometers (Sundstrand, type QA-700) located in the 34th floor. In addition to this
permanent system, four more accelerometers of the same type were temporarily added to the tower
with two accelerometers in 15th floor and two in 44th floor. Using the data of the eight sensors, a study
was performed by Bronkhorst et al. [4] wherein the natural frequencies of the New Orleans Tower was
monitored for four years, from 2012 to 2015. The primary finding of the study was the first natural
frequency, which represents the first bending mode in y direction, showed a significant discrepancy
between the design and measured values. The measured frequency (0.28Hz) was about 50% higher
than the frequency estimated as per NEN 6702 (0.19Hz). The estimates from NEN-EN 1991-1-4, on
the other hand, was about 5% higher (0.30Hz) for the same frequency. These results agreed with what
had already been observed in other Dutch high-rise buildings prior to the study. Additionally, a difficulty
in estimating the frequencies from the FE model was reported, citing possible causes as inaccurate in-
situ material property estimation, inadequate modelling of connections, and the influence of foundation
and soil. [4]

Figure 3.1: Elevation and Side-View of the New Orleans tower depicting the accelerometer positions.

In the subsequent study, 11 modes were identified using the frequency domain decomposition (Table
3.2). Of the 11 modes, modes 1, 2, 4, 5, 7 and 8 were deemed sufficiently identified based on the criteria
put forward by Heylen et al. [12] The remaining modes, namely mode 3, 6, 9, 10, and 11 violate this
condition, making these modes difficult to distinguish from other lower modes. [5]

Moretti et al. [23] used the results of the above study to estimate the structural properties of the New
Orleans tower by using deterministic model updating. The setup of the study involved modelling the
tower as a Euler Bernoulli beam in x and y direction, with translational and rotational stiffnesses at the
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Table 3.2: Identified modes of New Orleans Tower [5]

Mode Dominant Direction Natural Frequency [Hz]

1 y 0.282

2 x 0.291

3 θz 0.638

4 x 1.332

5 y 1.527

6 θz 2.054

7 x 2.771

8 - 3.560

9 x 4.155

10 - 5.300

11 - 7.250

foundation. The model updating was performed on all the parameters of the model, namely EIx, EIy,
Ktx,Kty,Krx,Kry and ρ. The model updating was performed on two different cases:

(a) (b) (c)

Figure 3.2: (a) Elevation of New Orleans Tower showing different segments, (b) Model of New Orleans Tower by Moretti
et al. [23] (c) Model of New Orleans Tower by Ritfeld [27]

• Case 1: Using only two bending modes in x and y direction for model updating,

• Case 2: Using two bendingmodes in y and three bendingmodes in x direction for model updating.

Of the two cases, Case 1 resulted in a good fit with the frequencies, while Case 2 showed some error
particularly in the first and third bending mode in x direction. The reason for this error was attributed
to model simplicity, in that the simplification assumptions applied to construct the model becomes no
longer valid to accurately represent these higher modes.

The results of the first case showed that the parameter values obtained frommodel updating significantly
differed from the design values for all parameters except for the equivalent distributed mass ρ. The
key result of this study was that the estimates for Kry were quite high compared to the design value,
increasing up to a factor of 5.9. The coefficient of variation for this parameter was also quite high at
46.9%. This combined with the result of sensitivity analysis done in the same study suggested that
this estimation of Kry may be incorrect. Additionally, the estimates for Ktx and Kty suggests that the
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previous assumption of fixed conditions in these translational directions at the base may not be valid
for higher bending modes.

Ritfeld [27, 28] built upon the works of Moretti et al. [23] by modelling the building now as a discrete
Timoshenko beam model in two directions. The model describes the building as a set of Timoshenko
beams, called “segments”, connected to each other through kinematic and dynamic interface conditions.
The key improvement of this approach is it allowed for varying the beam properties across segments
caused due to the change in structural configuration between these segments.

The model updating performed in this study was once again deterministic, with the same two cases as
the previous study. The parameters selected for updating were EIx, EIy, Ktx, Kty, Krx, and Kry.
As the model has multiple EI values due to multiple segments, the ratio between the different EI
values across the segments were kept constant, and all of them were updated simultaneously through
a common scaling factor. Despite the added complexity in the model through the inclusion of shear
effects and varying stiffnesses across the height, the updating was still not able to fit the third bending
mode. Similar to the Euler Bernoulli beammodel, accuracy of the first bending mode was compromised
when attempting to fit to the third bending mode. When comparing the results from updating using only
two bending modes per direction, this study was able to obtain a more reasonable value of rotational
stiffness Kry, now having a factor of about 1.2. The coefficient of variation also improved from the
previous 49.6% to 6.91%. The results of the two studies have been compiled in Table 3.3.

Table 3.3: Comparison of Deterministic Model Updating by Moretti et al. [23], Ritfeld [27, 28]

Parameter Moretti et al. Ritfeld

EIx [×EIx,nom] 2.68 2.19

EIy [×EIy,nom] 3.17 1.98

Ktx [N/m] 2.2× 109 1.9× 109

Kty [N/m] 2.85× 109 2.4× 109

Krx [Nm/rad] 3.07× 1012 2.36× 1012

Kry [Nm/rad] 11.1× 1012 2.62× 1012

ρ [kg/m3] 468.6 -

While the two studies were successful in estimating the parameters of the New Orleans Tower, they
also highlighted three key limitations. The first limitation was that the model updating process did
not account for the inherent uncertainties in the models or the measurements, nor did it provide any
quantification of uncertainty in the updated parameters themselves. As a result, the calibrated models
risk overfitting to the available data, potentially leading to misleading or overly confident conclusions
about the structural parameters. The second limitation concerns the interpretability of the parameters
themselves. Although the methods provided estimates of the equivalent bending stiffnesses of the beam
models, these parameters do not explicitly reveal the source of the discrepancies in the real structure. For
example, it remains unclear whether the deviations arise from the modulus of elasticity, the moment of
inertia, or other factors such as mass-density of the structure. Finally, the third limitation is the modal
data that were not used in the model updating process. The torsional modes and the third bending
modes were not used in the updating process, which could have valuable information about the updated
parameters.

These shortcomings emphasize the need for more advanced approaches that can incorporate uncertainty
in the updating process and provide parameters with clearer physical interpretation. Probabilistic meth-
ods, or more refined structural models, may therefore be necessary to obtain results that are not only
accurate but also robust and practically meaningful.



4
Bayesian Model Updating

This chapter outlines the model updating methodology employed in the present study. Section 4.1
provides an overview of Bayesian updating, followed by Section 4.2, which introduces the prior distri-
butions and the guidelines for their selection. Section 4.3 describes the data generation process, while
Section 4.4 defines the corresponding likelihood function. Section 4.5 explains the computation of the
posterior distribution, and Section 4.6 presents the posterior predictive distribution. Section 4.7 details
the error metrics used for comparison, and finally, Section 4.8 illustrates the methodology through a
simple example problem.

4.1. Introduction
Bayesian model updating utilizes Bayesian inference together with prior information about the structure
and the observed data to make conclusions about the probable properties of the structure. The general
equation used for Bayesian model updating is given in Eq 2.4, which is also given below:

p(θ|D) = c · p(D|θ) · p(θ) (4.1)

To calculate the posterior from this equation, it is clear that a choice for the prior and a definition of the
likelihood functions is required. These will be explained in the subsequent sections.

4.2. Prior Distribution
The prior distribution, p(θ), refers to the information already available to the analyst before the data
is collected. The choice for prior generally depends on previous experiment results and/or expert opin-
ions. When a specific distribution is not available from a previous uncertainty quantification studies,
the principle of Maximum Entropy can be utilized to determine the best choice of prior for the given sta-
tistical properties of the parameter [14, 15, 32]. The Maximum Entropy principle dictates the following
distributions based on the available information:

Table 4.1: Prior Selection based on Maximum Entropy Principle

Known information Assumptions on Prior

Finite range of values Uniform Distribution

Mean and Variance Normal Distribution

Log-mean and Variance Log Normal Distribution

Positive domain with a known mean Exponential Distribution

16
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In the cases where the parameter of interest, θ, is more than one, the joint probability distribution P (θ)
needs to be defined. The maximum entropy principle dictates that the parameters be assumed inde-
pendent unless if correlation is explicitly known. Assuming independence of parameters, the prior
distribution for each parameter can be combined into a joint probability distribution as:

p(θ) =

Nθ∏
i=1

p(θi) (4.2)

For specific structural parameters, the Joint Research Centre of European Commission has compiled
the recommendations on the priors to be used in the absence of project-specific information [26]. These
choices will be further discussed in chapter 6.

4.3. Likelihood Function
Before defining the likelihood function, a data generation process must first be established to explain
how the observed data may have been produced. This definition serves as a preliminary assumption
regarding the relationship between the model output and the experimental data.

To define the data generation process, the finite element (FE) modelM is considered a fully determin-
istic model that takes an input set of parameters (θ,X) and produces an output of modal properties
DM (θ,X). The input set includes a group of unknown parameters θ, which are subject to updating,
and another group of parametersX, which are assumed to be known with certainty and excluded from
the updating process.

For simplicity, from here on out, the notation DM (θ,X) will be shortened to DM (θ), and it will be
implicitly understood that the parameters X stays constant in the model, and the output of the model
only depends on the unknown parameters θ.

Due to the inherent uncertainties in the model, as discussed in section 3.1, any derived quantity will
also carry uncertainty. As the FE model is a deterministic model, this uncertainty manifests as a bias
term in the output (i.e. modal properties). If DM (θtruth) denotes the modal properties obtained from
the model, ηM the model bias, and D the true modal properties of the structure, the relationship is
expressed as:

D = DM (θtruth) + ηM (4.3)

Here the subscript,M , denotes model.

Similarly, the measurement of modal properties is considered a random variableDE , where the super-
script E denotes experimental data. These measurements represent the actual modal properties with an
added random error. Let ηE be this error, then the measured data can be written as:

DE = D+ ηE (4.4)

By eliminating the true structural behaviour D using Eqs. 4.3 and 4.4, the following expression is
obtained:

DE = DM (θtruth) + ηM + ηE (4.5)

It is important to note that ηM is a randomly distributed noise term, while ηM is a bias term, which are,
in theory, deterministic in nature.

Equation 4.5 will serve as a starting point for the likelihood definition.
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The likelihood function relates the observed data with the current model, quantifying how well the
current model explains the observed data. Due to this, the likelihood function generally includes some
variant of error function that is seen in deterministic model updating.

From Eq. 4.5, the discrepancy between the model predictions and the experimentally derived modal
properties represents the combined model and measurement uncertainties.

DE −DM (θtruth) = ηM + ηE (4.6)

In practice, the value of θtruth is not known a-priori, and only its estimation, θ is known. The goal
of the likelihood function is to give a measure of how likely is the available data observed due to the
current estimation of θ. This measure is given as a probabilistic value. Simoen et al. (2015) have shown
that the likelihood function can be formulated as a probabilistic model of the error terms in absence of
information on the individual error observed in the data. [32].

p(DE |θ) ≡ p(DE −DM (θ)|θ) = p(ηM + ηE |θ) (4.7)

The data,DE represents frequencies and mode shapes in this thesis. For frequencies, the above defini-
tion stays the same, withD being replaced with f .

fE − f(θ) = ηf ,M + ηf ,E (4.8)
p(fE |θ) ≡ p(ηf ,M + ηf ,E|θ) (4.9)

Here, a common choice for themeasurement error ηf,E is to assume that it follows a zero-meanGaussian
error with a diagonal covariance matrix Σf ,E with the ith diagonal terms equalling σfi,E . Similarly,
the model error, although deterministic in nature, can also be modelled as another zero-mean Gaussian
term, with a diagonal covariance matrixΣf ,M. It is important to note here that the randommeasurement
random noise is generally accepted to follow a Gaussian process [31], the model error is set to follow
the Gaussian distribution because its deterministic value is currently unknown. This is different to
the measurement error, where the assumption is that the error itself is inherently normally distributed.
Further discussion on this point will be done in section 6.4.

For mode shapes, the case studies in this thesis will not consider the effect of the model uncertainty, due
to the data showing little deviation from the nominal mode shapes. Due to this, the expression for the
rth mode shapes reduces to:

ϕE,r − arΓϕr(θ) = ηϕr,E (4.10)
p(ϕE,r|θ) ≡ p(ηϕr,E |θ) (4.11)

Here, Γ refers to a selection matrix, that picks the degrees of freedom for which the measurement is
available. ar refers to a scaling factor which may be defined as:

ar =
⟨ϕE,r,Γϕr(θ)⟩

∥Γϕr(θ)∥
(4.12)

Vanik et al. [34] suggests the use of zero-mean Gaussian distribution for the error in the above formu-
lation, following the justification from the Principle of Maximum Entropy. [34] As each mode shape
containsm degrees of freedom, a multivariate Gaussian distribution is proposed, which is represented
as follows:

ηϕr,E ∼ Nm (µ = 0,Σ = Σϕr) (4.13)
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The suggested definition of covariancematrix,Σϕr , is a diagonalmatrixwith all terms equal to δ2r∥ϕE,r∥2
with δ2r being defined as: [34]

δ2r =
1

Ns

Ns∑
i=1

∥ϕE,r
(i) − ϕ̄E,r∥2

∥ϕE,r
(i)∥2

(4.14)

where,
Ns : number of measurements used

ϕE,r
(i) : rth mode shape of measurement i

ϕ̄E,r : mean measured mode shape of mode r
∥ · ∥ : vector norm (typically Euclidean)

The above defined likelihood functions for frequency and mode shapes compute the likelihood for each
mode r and one instance of measurement. To use in the Bayesian model updating, the likelihood has to
be calculated for all the modes and for all the available measurement data. In order to combine the fre-
quency and mode shape likelihood, an assumption is made that the frequencies are independent of mode
shapes and vice versa. To combine the likelihood over all the measurements, an additional assumption
that the measurement are independently and identically distributed is made. These assumptions allow
us to combine all the likelihood in the following manner:

p(DE |θ) =
Ns∏
k=1

Nm∏
r=1

p(f
(r,k)
E |θ) · p(ϕE

(r,k)|θ) (4.15)

where,
Ns : number of measurements used
Nm : number of modeshapes used

4.4. Mode Matching
In Bayesian model updating, computing the likelihood function requires first calculating the observed
error between the model and the measured frequencies and mode shapes. It is crucial that this error
is calculated for corresponding modes, that is, the first bending mode in the x direction from the mea-
surement must be compared with the first bending mode in x from the model, and so on. While this
may seem trivial, in symmetric buildings where modes are closely spaced, mode switching can occur as
model parameters change, causing the previously first mode to appear as the second, and so on. To avoid
misleading likelihood values and ensure proper convergence, a mode matching process is necessary.

The mode matching process pairs measured modes with their most likely counterparts in the model.
Various approaches exist, using frequencies, mode shapes, or both [22]. In this thesis, a novel method
is developed that primarily uses themodal participation mass ratio (MPM) to classify and match modes.
The MPM quantifies the fraction of total mass mobilized in each mode, considering contributions in
three translational and three rotational directions. Based on which mass components are activated, the
algorithm can classify modes as bending in x or y, torsion, axial, or mixed, providing a physically
meaningful basis for pairing with measured modes.

The proposed method requires the following assumptions to be valid:

• The measured modes are pure global modes in bending, torsion or axial compression.
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• The order of the measured modes are known a-priori.

• There is no missing mode in the measurements. For example, bxn−1 must exist in the measure-
ment mode list before bn for all considered n. Similar condition applies for the other types of
modes (byn and tn)

In practice, these conditions are generallymet for the lowermodes of high-rise buildings, which supports
the practical applicability of the method. The algorithm begins by classifying the modes obtained from
the model into four categories: bx, by, t, and “unidentified/mixed” modes. For the simpler case, where
no unidentified or mixed modes are present, the procedure continues as follows. The classified modes
are first arranged in ascending order of their modal frequencies. The measured modes are then read
sequentially from their ordered list, starting with the lowest mode. Each measured mode is paired with
the first unpaired model mode of the same type from the ordered list. Once a model mode has been
paired, it is removed from the list to prevent reassignment. This approach naturally ensures that paired
modes of the same type maintain the order of appearance in both the measured and model datasets. In
cases where mixed modes are present in the model, the algorithm becomes more involved; the extended
procedure is described in Appendix C.

The main advantages of this approach are as follows:

• It establishes a clear one-to-one correspondence between measured and model modes, preventing
duplication and reducing mismatches.

• It is less sensitive to errors or ambiguities that arise from sparse sensor distributions, which can
mislead traditional methods based on modal assurance criterion (MAC) or weighted error func-
tions.

• It does not require arbitrary weighting factors, unlike traditional error-based approaches.

This algorithm does have limitations. Missing modes in the measurements can propagate errors for all
modes of the same type. Local modes are less accurately classified since the method relies on global
mass participation and mode direction. Mixed modes in the measurement data can also pose challenges,
though these can be addressed with relatively minor adjustments in the algorithm.

The full step-by-step procedure, including equations for MPM calculation, is provided in Appendix
C. In summary, the proposed method enables robust classification and matching of modes, which is a
crucial prerequisite for accurate likelihood computation and reliable model updating.

4.5. Posterior Distribution
With the prior and likelihood distributions defined, the posterior distribution can be obtained based on
Eq. 4.1. The calculation of the constant term, c, requires solving the following integral:

c−1 =

∫
D
p(D|θ) · p(θ) · dθ (4.16)

Often, the parameter set θ contains multiple parameters, leading to high-dimensional integrals when
evaluating this constant [32]. To address this computational challenge, sampling-based methods are typ-
ically employed. One of the most widely used approaches is the Markov Chain Monte Carlo (MCMC)
method.

MCMC has the useful property of sampling directly from the posterior distribution. Consequently, with
a sufficient number of samples, the statistical properties of the samples will reflect those of the posterior,
and their histogram provides a reasonable visualization of its shape [32]. This eliminates the need to
explicitly evaluate the constant term c. The theoretical background and working principle of theMCMC
process are outlined in Appendix D.
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In this research, the MCMC process was implemented using the open-source Python module emcee ,
which provides an efficient and flexible implementation of MCMC as proposed by Goodman &Weare
[10, 11]. The module offers a practical abstraction for implementing MCMCwithout requiring in-depth
knowledge of the underlying algorithmic details, such as the choice of proposal distributions or type of
moves.

The class emcee.EnsembleSampler() initializes theMCMCprocess. It requires the number of walk-
ers, the number of parameters, and the function used to evaluate the log-posterior. After initialization,
the MCMC is executed through the run_mcmc() method, which additionally requires the initial state
of the walkers and the number of steps to be performed.

Walkers are independent sampling entities that traverse the parameter space following the rules of the
MCMC algorithm. They collectively explore the posterior distribution. The recommended minimum
number of walkers is twice the number of parameters [25], although in practice, a factor of ten is com-
monly used to ensure adequate coverage of the parameter space.

The initial state of the walkers must be selected carefully to ensure that each walker starts from distinct
locations in the parameter space to avoid internal errors in the sampler. Furthermore, it is recommended
for the initial states to span the plausible parameter domain to promote efficient exploration. Sampling
the initial states randomly from the prior distribution often suffices these criteria, and hence the same
will be done in this thesis.

The number of steps determines how long the walkers explore the parameter space. Typically, this
number is large, often on the order of 10, 000 or more, to allow the sampler to reach convergence. If
convergence is not achieved within the initially chosen number of steps, the sampling process can be
extended.

Alternatively, the convergence of the MCMC can itself be used as the stopping criterion. Foreman-
Mackey et al. [10] recommend using the integrated autocorrelation time, τf , as a convergence metric,
defined as:

τf =
∞∑

τ=−∞
ρf (τ) (4.17)

Here, ρf (τ) represents the normalized autocorrelation function of the stochastic process that generated
the chain f . The integrated autocorrelation time measures the persistence of correlation between suc-
cessive samples, essentially quantifying how many subsequent states are influenced by the current state.
Therefore, for a chain of length N , approximately N/τf samples can be considered statistically inde-
pendent. A chain is generally considered to have converged if its total length exceeds 50 × τf [10].
This criterion was adopted in this research to determine convergence. For more information on this, the
reader is encouraged to the sources [10]

After sampling, it is necessary to discard the initial portion of the chains where the sampler is still
exploring the parameter space, as these early samples may bias the posterior statistics. This initial region
is known as the burn-in period. In this thesis, the first 4× τf samples of each chain were discarded as
burn-in. This ensures that the retained samples are independent of the starting conditions and represent
valid draws from the converged posterior distribution. An example of a converged MCMC chain with
its burn-in period is shown in Figure 4.1.

TheMCMC process typically involves hundreds of thousands of model evaluations before convergence.
Even when each model computation takes less than a second, the total runtime may extend to several
hours. The emcee module supports parallelization, which can significantly reduce computation time.
However, this functionality was not utilized in the present study due to compatibility issues between
emcee and the openseespy module used for structural modelling.
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Figure 4.1: An example of converged MCMC Chain with burn-in period

Once the posterior samples are obtained, the most likely value of each parameter can be determined
through the Maximum A Posteriori (MAP) estimate, which corresponds to the mode of the joint pos-
terior distribution. It should be noted that the MAP value is derived from the joint posterior, not from
individual marginal distributions. Therefore, the MAP estimate may not coincide with the peak of any
single parameter’s marginal posterior. The MAP value can be computed by constructing a histogram in
the multidimensional parameter space and identifying the bin with the highest count.

4.6. Posterior Predictive Distribution
The posterior distribution gives us the distribution of the parameters being investigated after incorporat-
ing the information from the priors and the data. This distribution, although very useful for parameters,
is not enough to predict the frequencies and mode shapes of the structure. The main reason behind this
is that the exact value of θ is still unknown. To obtain the distribution of frequencies and mode shapes,
it is then required to integrate over all the possible values of θ based on the posterior distribution. In
other words, this requires us to solve for the following integral:

p(D̃|DE) =

∫
p(D̃|θ) · p(θ|DE)dθ (4.18)

Here, D̃ refers to the predicted modal properties and p(D̃|DE) is the posterior predictive distribution.
Evaluating this integral poses problems, especially with the absence of closed form expression for the
posterior. To overcome this, a numerical approximation is obtained with a Monte Carlo approach,
through the following expression:

p(D̃|DE) ≈
1

N

N∑
i=1

p(D̃|θ(i)) (4.19)

Here, θ(i) refers to the samples generated from the posterior distribution. To construct a probability
distribution function from the above equation, it will be required to evaluate the expression for all D̃
values. An alternative to this would be to generate the samples ofDE from the conditional distribution
directly for every θ(i).

This arises from the fact that, even if the model is calibrated to represent the real structure, the measured
frequencies and mode shapes inherently contain measurement errors. Consequently, when predicting
the frequencies and mode shapes that may be observed from the structure, these measurement errors
must be incorporated into the model predictions. Applying this process to the posterior distribution
yields the posterior predictive distribution, which, as the name suggests, possesses predictive capabili-
ties.

4.7. Error Metrics
In order to evaluate the results of Bayesian model updating, various metrics are employed to compare
their predictions with measured data. Specifically, both frequencies and mode shapes are assessed using
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appropriate statistical and error measures.

For comparing model-predicted and measured frequencies, the statistical mode (maximum count) of the
frequency samples is used. The mode is computed by constructing a histogram in the n-dimensional
sample space, where n is the number of modes. The error metric employed is the absolute relative
percentage error.

Nominal Error (%) =
|finit − fmeas|

fmeas
× 100% (4.20)

Prediction Error (%) =
|fppd − fmeas|

fmeas
× 100% (4.21)

For comparing updated frequency results from Bayesian and Deterministic model updating, the Con-
tinuous Ranked Probability Score (CRPS) is used. This metric accounts for both the spread of the
predictions and any bias, penalizing high uncertainty and high deviation. Comparisons are made with
the statistical mode of the measured frequencies, with the CRPS defined as in Eq. 4.22 for Bayesian
results and Eq. 4.23 for Deterministic results. [16]

CRPS(fppd, fmeas) =
1

N

N∑
i=1

∣∣fppd,i − fmeas
∣∣− 1

2N2

N∑
i=1

N∑
j=1

∣∣fppd,i − fppd,j
∣∣ (4.22)

CRPS(fdet, fmeas) = |fdet − fmeas| (4.23)

where

fppd,i, fppd,j = ith and jth samples of the posterior predictive distribution (PPD) of f,
N = number of PPD samples.

fdet = frequency predicted in deterministic model updating

The CRPS has the same units as frequency [Hz] and can also be expressed as a percentage for easier
comparison (Eq. 4.24) [16].

CRPS [%] =
CRPS [Hz]

fmeas
× 100% (4.24)

For mode shape comparison, posterior predictive mode shapes are compared with the measured mode
shapes by selecting those that best represent the mean displacement across all degrees of freedom. The
comparison is performed using the Modal Assurance Criterion (MAC), with the ith mode shape calcu-
lated as per Eq. 4.25.

MAC(ϕppd,i,ϕmeas,i) =

(
ϕT
ppd,iϕmeas,i

)2
∥ϕppd,i∥2 ∥ϕmeas,i∥2

(4.25)

4.8. Example Problem : Verification of Bayesian Updating Routine
The Bayesian Updating Routine developed for this thesis is first verified with a simple double pendulum,
before applying it to the building model. The double pendulum provides a simplistic model, that can
be determined analytically, while still having a level of complexity associated with it.
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4.8.1. Problem Formulation
For the double pendulum, a small vibration assumption is considered, which allows us to express the
equation of motion in the linear form as follows:

MẌ+KX = 0 (4.26)

Here,

X =

x1
x2

 (4.27)

M =

(m1 +m2)l
2 m2l

2

m2l
2 m2l

2

 (4.28)

K =

g(m1 +m2)l 0

0 gm2l

 (4.29)

Solving the eigenvalue problem, the two natural frequencies will be expressed as:

f1,2 =
1

2π

√
g(m1 +m2 ∓

√
m2(m1 +m2))

lm1
(4.30)

Similarly, the two mode shapes are then given by:

ϕ1,2 =

−1 + 4π2

f2
1,2

· g
l

1

 (4.31)

Some key insights to note from these equations are that Eq. 4.30, the two natural frequencies are
dependent on the ratio m2

m1
. Eq. 4.31 suggests that the mode shapes are independent of the length, l.

To study howBayesian routine works, and to also check the sanity of themethod, following two example
cases were investigated.

Example 1: The two masses,m1 andm2, are chosen as updating parameters.

Example 2: Massm2 and length l are chosen as updating parameters.

It is important to note that the choice of the parameters do not have any physical significance in this
study in terms of real-life uncertainty.

To perform the analysis, it is required to have a data-generation process, which mimics the actual mea-
surement data. For this, the error is introduced in the true frequency and measurement as per the Eq.
4.9 and Eq. 4.11. The model uncertainty in frequency was omitted for the sake of simplicity.

4.8.2. Model Truths
The truth values for the pendulum system are listed in Table 4.2. To simulate the measurement data, a
zero-mean normally distributed error was introduced with a coefficient of variation, CVη = 0.05. With
these errors, 10 different measurement points were generated. The same coefficient of variation was
used for both error in frequencies and mode shapes.
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Table 4.2: Model Truth for the Double Pendulum System

Parameter Value

m1 4.5

m2 6.8

L 3.2

4.8.3. Pendulum Example 1: Updatingm1 andm2

For the first case, the two masses were chosen as updating parameters. For the choice of prior, two
uncorrelated normal distributions centred around the true valuewith a coefficient of variationCVθ = 0.2
was chosen.

The result of Bayesian model updating on this problem is shown in figure 4.2.

Figure 4.2: Probability Distributions for Pendulum Example 1

From Figure 4.2, a strong correlation between the posterior distributions of m1 and m2 is clearly ev-
ident, with a correlation coefficient of approximately 95%. This is expected, given that the system’s
frequencies are primarily governed by the ratio m2

m1
. As a result, precise knowledge of one mass effec-

tively eliminates the uncertainty in the other. This relationship is further supported by the observed ratio
of the masses in the region, approximately 6.8

4.5 = 1.51. The method’s ability to reveal such correlations
is particularly valuable when applied to more complex models, where such interdependencies may not
be as immediately apparent.

From the figure, it is also clear that the marginal uncertainty (the two histograms) in each parameter
did not change significantly. This can once again be attributed to the choice of parameters, particularly
because the modal properties depend on the ratio of the selected parameters. Although the marginal
uncertainty of each parameter did not appear to decrease, the total uncertainty was reduced from an
initially independent distribution to a narrower, correlated one.
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4.8.4. Pendulum Example 2: Updatingm2 and l
For the second case, them2 and l were chosen as updating parameters. All other input parameters were
kept same as previous. The results are shown in figure 4.3a and Table 4.3.

(a) PDF of Parameters (b) PDF of Frequencies

(c) Likelihood contribution of Mode shapes

Figure 4.3: Probability Distributions for Pendulum Example 2

Here, the two posterior probabilities do not show any correlation. This is again expected, as neither the
frequency nor the mode shapes show any dependence on the ratio of m2 and l. Figure 4.3c shows the
contour of the log-likelihood components of frequency and mode shapes. An interesting observation
here is that the log-likelihood contribution of mode shapes are parallel to the y-axis, suggesting that the
parameter l does not influence the likelihood of observing a mode shape. From Eq. 4.31, it is evident
that the mode shapes are independent of l, validating this observation.

The results in Table 4.3 show that the method was able to reduce the uncertainty in parameter by a factor
of ∼ 5 − 10. Similarly, the uncertainty in frequency was reduced by a factor of ∼ 10 and for mode
shapes this reduction was by a factor of ∼ 2 − 4. Further reduction in uncertainty is possible if the
number of measurement points, i.e. the available data, is increased. The error metric for the posterior
of parameters is worse in this case. However, this result is due to the choice of the prior distribution,
which is centred around the true solution. In reality, the true solution is not known, and it is unlikely
that the initial distribution is centred around the truth. Therefore, in real cases, the error is expected to
reduce. For the modal properties, the error metric is already good for the prior, which again is due to
the choice of the prior. Due to this, the posterior error does not see significant improvement. The mode
shapes show almost perfect match in posterior.
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Table 4.3: Prior and Posterior comparison for Pendulum case 2

Error metric CV

Parameter/Property Prior Posterior Prior Posterior

l 0% 3.14% 20% 4.77%

m2 0% 1.92% 20% 2.08%

f1 1.7% 1.08% 11.1% 1.12%

f2 1.28% 0.12% 13.0% 1.63%

ϕ1 99.07% 99.99%

2.87%
1.66%

 0.79%
0.48%


ϕ2 98.99% 99.99%

2.87%
1.66%

 1.57%
0.95%



As the expected results are obtained in the two example problems, the Bayesian updating routine is
validated for the simple case.



5
Model Development: New Orleans

Tower

This chapter presents the development of the structural model used for parameter estimation of the
New Orleans Tower. Previous studies primarily relied on analytical beam models, which could not
account for torsional displacements or higher bending modes without compromising the accuracy of
the lower modes. To address these limitations, this thesis uses a simplified 3D FE model. The model
is designed as a lumped-mass stick representation, capturing structural behaviors that were previously
neglected, such as shear and torsional deformations. This approach strikes a balance between including
sufficient complexity to utilize additional modal data (for example, torsional modes) and keeping the
computational cost low, which is important for procedures like Bayesianmodel updating. The following
sections describe how the procedure for constructing the model, and the values used for developing the
simplified FE model of the New Orleans Tower.

5.1. Model Requirements
To build a simplified 3D FE model, several information about the building is required. These informa-
tion may be obtained directly from the design documents, or there may be some derivations required
from the available data. The required information for constructing the model are as follows:

1. Nodal coordinates of centre of stiffness, centre of mass, and location of sensors

2. Elemental properties, (E, G, A, Ixx, Iyy, J , fx, fy) for each storey

3. Mass and Rotational Mass for each storey

4. Boundary conditions, and restraints

5.2. Modelling Theory
The current approach of modelling the high-rise building as a lumped-mass stickmodel was proposed by
Liu et al. [20] as a generalised method for modelling a structure with mixed wall-column components.
The method utilizes the concept of a macro beam element to represent each storey [20]. A theoretical
formulation of the model parameters is given here.

First, the total area A of the vertical members, as well as the centroid of these members considered
together are determined. The area is calculated as the sum of all the cross-section of the vertical stiffness
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members.

A =
∑

Ai (5.1)

Using this, the centroid, (xc, yc), of the vertical elements can be determined by the general formula:

xc =

∑
xiAi

A
, yc =

∑
yiAi

A
(5.2)

Next, to estimate the equivalent moment of inertias about the calculated centroid, Ixx and Iyy, Steiner’s
rule is used. It is important to note that when using this rule, no assumptions about the individual vertical
members are made.

Ixx =
∑

Ixx,i +Ai(yc − yi)
2, Iyy =

∑
Iyy,i +Ai(xc − xi)

2 (5.3)

To determine the nodal coordinates of centre of stiffness, first the storey stiffness contribution of each
vertical member, as well as the total storey stiffness need to be determined. To determine this stiffness,
first a few assumptions about the structure needs to be made. As the high-rise structure has a concrete
slab, the in-plane stiffness of the slab is sufficiently high as compared to the lateral stiffness of the
vertical elements, allowing us to apply the rigid diaphragm assumption. This assumption states that
the floor experiences a rigid body motion. Additionally, the connection between the vertical members
and the floor are also assumed to be rigid as a part of the rigid diaphragm assumption. Under these
assumptions, the equivalent storey stiffnesses kx and ky are estimated as:

kx =
∑

kx,i =
∑ 12EIyy,i

H3(1 + φx,i)
(5.4)

ky =
∑

ky,i =
∑ 12EIxx,i

H3(1 + φy,i)
(5.5)

Here,H represents the storey height. The factors φx,i and φy,i account for the shear deformation in the
x and y directions for the vertical member i. They are calculated as:

φx,i =
12EIyy,i
H2GAsx,i

, φy,i =
12EIxx,i
H2GAsy,i

(5.6)

Asx,i, Asy,i are the shear areas defined for the i-th element in the x and y directions, respectively.

The determination of stiffnesses allows us to incorporate the effects of torsion. For this, the centre of
stiffness for each level needs to be calculated with the following relations:

xs =

∑
kx,ixi
kx

, ys =

∑
ky,iyi
ky

(5.7)

For structures with shear wall, it is recommended to determine the torsional stiffness through the “stiff-
ness centre method” as follows: [20]

kθ =
∑[

kxi(yi − ys)
2 + kyi(xi − xs)

2
]

(5.8)

From the torsional stiffness, the torsional constant, J , can then be derived with the following relation:

J =
kθH

G
(5.9)

Next, we require the storey element to also represent shear deformations. The shear deformations are
considered through the shear shape factor in an FEM software. The use of shear shape factor is to get
the shear area from the cross-sectional area as follows:

Asx = αxA, Asy = αyA (5.10)
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To get this factor, kx and φx can be used, which has similar formula as for the individual ith member
as Eq 5.6, 5.4. Substituting Asx from Eq 5.10, we can get α as follows:

αx =
12EIyy
GAH2

·
(
12EIyy
kxH3

− 1

)−1

(5.11)

Similarly, for αy

αy =
12EIxx
GAH2

·
(
12EIxx
kyH3

− 1

)−1

(5.12)

It is important to note here that all the quantities in Eq 5.11 and 5.12 are equivalent quantities for the
storey, and not for any one individual element. Furthermore, in the case of multiple elements with
different material properties in a given floor, the equivalent E for the storey property can be chosen as
the material of the elements that dominates the stiffness. For the current case, the elastic modulus of
concrete is taken as the equivalent E.

In addition to these parameters, it is required to calculate the mass, centre of mass and the rotational
masses of each floor. The mass is considered as follows:

M = Self Wt.+ Permanent Load+ 0.3× Variable Load+ Facade Load (5.13)

For the self weight, the mass of the slabs, beams, and 50% of the mass of the vertical elements above and
below the slab were considered. The mass deduction due to openings in the slab were also considered.

Similarly, the rotational masses are also considered for torsion, i.e. Iθ,zz . To determine this, all the same
elements used in the mass calculation were also used. The effect of permanent and variable load on the
rotational mass was incorporated in the form of uniformly distributed additional mass on the slab.

Rotational masses in the other two directions, i.e. Iθ,xx and Iθ,yy, were not considered.

The calculated masses and rotational masses per floor were applied to the centre of mass of the storey.
The centre of mass is determined via the following formula:

xm =

∑
mixi
M

, ym =

∑
miyi
M

(5.14)

5.3. Model Description: New Orleans
In this thesis, a case study on the New Orleans Tower located in Rotterdam, will be performed. The
tower is 158.4 m tall and is used for residential purposes. A picture of the high rise, along with its
design FE model and the simplified FE model used in this study is shown in Figure 5.1

The FE model for this thesis is built by determining the equivalent storey properties as outlined in the
previous section. The model consists of nodes at centre of stiffnesses, centre of masses and the location
of measurements. The open-source module openseespy in Python was used to develop the model.
This model is then compared with a design detailed FE Model developed in SCIA by Besix, as well as
the measured mode shapes.

Stiffness Calculations
The centre of stiffnesses are used to make the vertical part of the model. The nodes are created at the
centre of stiffness due to all the considered vertical stiffness members between the jth and (j+1)th. The
two vertically adjacent centre of stiffness nodes are then connected via an elastic beam member, whose
equivalent properties are determined as described in the previous section. For the stiffness calculations,
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(a) (b) (c)

Figure 5.1: (a) New Orleans Tower, (b) Detailed SCIA Model provided by Besix, (c) Opensees Model constructed for the
current study

the contribution of the columns and shear walls are considered. Fig 5.2a and 5.2b show the members
considered for the stiffness calculation at two typical cross-sections.

In case if the centre of stiffnesses of the two adjacent stories do not share the same (x, y) coordinates,
then these centre of stiffnesses, at the same elevation, are connected via a rigid beam element.

Mass Calculations
For the mass calculation, the beams, columns, walls and the floor slabs were considered. The openings
in the slabs were deducted to ensure a sense of reality. Figure 5.2c show a typical cross-section with
beams being considered, and Figure 5.2d show the openings that have been deducted from the mass
calculations.

In addition to themass, the effect of loads were also considered to have an effect in the form of additional
mass. For this, the permanent loads, variable loads and facade loads were considered as per the original
design. The details of these loads are given in Table 5.1. The loads were converted from [kN/m2] to
[kg] using appropriate factors to ensure consistent dimensionality.

Table 5.1: Load Details

Load Name Symbol Value Unit Applied over

Permanent Load qp 1 kN/m2 Slab Area

Variable Load qv 1.75 kN/m2 Slab Area

Facade Load qf 1 kN/m2 Storey Perimeter, distributed 50% be-
tween upper and lower storey level

These masses are added to the centre of masses at every level, which are connected with the centre of
stiffnesses via a rigid beam element.

Boundary Conditions
Table 5.2 describes the boundary conditions applied to the structure. The sign convention for the foun-
dational stiffnesses are outlined in Figure 5.3. The design values for the translational stiffnesses, Ktx
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(a) (b)

(c) (d)

Figure 5.2: Typical Cross sections depicting (a, b) members considerd for stiffness calculations, (c) vertical members
considered for mass calculation, (d) openings deducted from mass calculation.

and Kty, and the rotational stiffnesses, Krx and Kry were provided by Besix. The value of Krz was
derived from the design drawings, and more details on this is provided in Appendix B.

Sensor Setup
The tower is fitted with a permanent monitoring system that includes 4 accelerometers located in the
34th floor with 2 sensors that measures in the x-direction and two that measures in the y-direction.
In addition to the permanent setup, four additional accelerometers were placed on the 15th and the
44th floors, with one sensor per direction in each floor. The location of these sensors, along with their
direction of measurements are outlined in Table 5.3 and their location in cross section is shown in Figure
5.4

As the mode shapes obtained from the measurement represent the modal displacement observed at the
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(a) Elevation (b) Side-View (c) Plan

Figure 5.3: Sign Convention for foundational stiffnesses

Table 5.2: Boundary Conditions

Boundary Type Symbol Value

Translation x Spring Ktx 3.1× 109 N/m

Translation y Spring Kty 3.1× 109 N/m

Translation z Fixed − ∞

Rotation x Spring Krx 1975× 109 Nm/rad

Rotation y Spring Kry 1927× 109 Nm/rad

Rotation z Spring Krz 511× 109 Nm/rad

(a) (b) (c)

Figure 5.4: Accelerometer layout (green squares) in New Orleans Tower. (a) 15th floor plan (b) 34th floor plan (c) 44th floor
plan. Green Arrows indicate measurement direction [5]

sensor location in the direction of measurements, for a fair comparison, it is important to also mea-
sure the modal displacements at the sensor locations. For this reason, nodes were added in the sensor
locations for obtaining the output of eigenanalysis. These nodes representing the location of sensor
measurements are connected to the centre of stiffness at the same level via a rigid beam elements.

5.4. Comparison of Measured and Calculated Modal Properties
When developing any model, it is important to verify the model, ensuring that the developed model
accurately represents the original structure, or in this case, the original design model, to the best of
the model’s ability. In this thesis, the comparison between the first eight natural frequencies and mode
shapes is used for the verification purpose. The comparison between the full FE model developed by
Besix and the simplified model are outlined in Table 5.4.
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Table 5.3: Sensor Positions

S.No. Measurement
Direction

x y z

1 x 4 4.5 51.35

2 x -15 -6.5 114.62

3 x 4 4.5 114.62

4 x 2.5 4.5 147.92

5 y 4 4.5 51.35

6 y 15 6.5 114.62

7 y 4 4.5 114.62

8 y 2.5 4.5 147.92

Table 5.4: Comparison of Detailed FE Model and Simplified FE Model

Frequency [Hz] Error in Simplified Model [%]

Mode Measurement Detailed FE
Model

Simplified
FE Model

w.r.t. Detailed
FE Model

w.r.t.
Measurement

by1 0.281 0.200 0.218 9.00 22.42

bx1 0.290 0.230 0.237 3.04 18.28

t1 0.636 0.500 0.961 92.20 51.10

bx2 1.323 1.250 1.565 25.20 18.29

by2 1.518 1.020 1.492 46.27 1.71

t2 2.075 1.550 3.330 114.84 60.48

bx3 2.778 2.440 3.210 31.56 15.55

mix 3.558 2.140 3.014 40.84 15.29

The current simplified model shows good agreement with the detailed FEM model for the first bending
modes (by1 and bx1), with errors of 9.0% and 3.0% with the detailed model, respectively. For higher
bending modes (bx2, by2, bx3), the discrepancy increases, which may be due to simplifications in the
model, such as assumptions on connection stiffness and local properties that start affecting these higher
modes.

The torsional modes (t1 and t2) exhibit large errors compared to the detailed FEM model (92.2% and
114.8%), likely due to a lack of information about torsional stiffness at the foundation in the detailed
FEM model. In the simplified model, torsional stiffness at the base was derived from pile locations
and stiffnesses without directly accounting for soil effects, which could partially explain the observed
discrepancies.

While it is important for the simplified model to have a similar frequencies as the detailed FE model, in
the end, the twomodels are simply derived from the same drawings with different assumptions. Without
complete information about the detailed model regarding these assumptions and the simplifications
made, it becomes difficult to make a conclusive comparison between the two models. In such a case,
the comparison with the measurement data provides insight on how well the model represents the real
structure.

When comparing with the measurements, the simplified model has similar error levels for all the modes
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except the torsional modes and the second bending in y direction. This shows the presence of a con-
sistent error in the model. The high error in torsional mode is likely due to inaccurate assessment of
the foundational stiffness, which has many assumptions associated with it (Appendix B). Finally, the
second bending mode in y-direction shows a very good agreement with the measurement at only 1.71%
mismatch. Similarly, there are also a fewmodes (by1, bx1, by2) which have better frequency estimation
than detailed FE model. This is unexpected as detailed FE model should be more accurate than the sim-
plified models. This counter-intuitive result has also been observed in previous studies (Ritfeld [27]),
where simpler models sometimes match measurements better than more detailed FEM models. One
possible explanation is that model structure errors in the simplified model partially cancel out model
parameter errors, resulting in better agreement with the measured data.

The comparison of the mode shapes for the most commonmeasured mode, the mode from the simplified
model and the detailed FE model shows a good match with each other for all modes except the torsional
modes and the third bending mode in x-direction. For both the torsional modes, the detailed FE model
shows fairly good comparison with the measured modes, while the simplified FE model deviates from
both the detailed model and measurement. This is likely due to reasons discussed previously in the
mismatch of frequencies. For the mode bx3, while the simplified FE model and the detailed FE model
have similar mode shapes, they both significantly differ from the measured mode shape. This suggests
the presence of error in both the models, and potentially in the design values themselves.

While the agreement between the simplified FE model and the measurement is a promising result, this
also suggests that the mode shapes may not provide a significant information when updating the model.
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(a)Mode bx1 (b)Mode bx2 (c)Mode bx3

(d)Mode by1 (e)Mode by2 (f)Mode t1 (g)Mode t2

Figure 5.5: Comparison of mode shapes obtained from Detailed FE Model, Simplified FE Model and measurement



6
Model Updating Configuration and

Uncertainty Quantification

This chapter establishes the different settings and configuration to be used for the case study. First, the
different candidate parameters are selected in Section 6.1. Then, the appropriate priors are defined in
Section 6.2. Section 6.3 describes a sensitivity analysis for updating parameter selection. Section 6.4
discusses the likelihood function formulation. Section 6.5 outlines a synthetic analysis for identifiability
of the parameters.

6.1. Candidate Parameters
Based on the created FEmodel in the previous chapter, it is evident that there are a lot of parameters that
control the structure. On the global level, these parameters include the self-weight of concrete, ρconc,
modulus of elasticity of concrete Econc, permanent load, imposed loads, facade loads and the five foun-
dational stiffnesses,Ktx,Kty,Krx,Kry,Krz . On the local level, the self-weight, modulus of elasticity,
and permanent, imposed and facade loads can be altered for every floor. This leads to countless param-
eter combinations that can be considered. The choice of sub-structuring, i.e. dividing the structure into
smaller sections depends on what is required from the analysis, and what the parameters of interests
are. For the current study, substructuring will not be performed, and the analysis will be done on the
global scale. Thus, the candidate parameters for updating are ρconc, Econc, Ktx,Kty,Krx,Kry,Krz ,
permanent load, and imposed loads. The façade load will be left out due to a general high certainty in
their determination.

6.2. Prior Selection
For every candidate parameter, we must consider the prior distribution for the parameter that accurately
reflects our known information. As discussed in the previous chapter, the principle of maximum entropy
provides a rough guideline on what the distributions should be based on the known knowledge. In
addition to that there have also been past studies that provide recommendations for the choice of priors.

Table 6.1 lists some of the parameters that are recommended to have a normal or log-normal distributions
from the literature. The mean value in the table represents the factor by which the nominal value is
multiplied.

From the table above, it is to be noted that the mean value for the distribution is generally centred
at nominal value. However, for the self weight of concrete, this recommended mean is 1.05 times the
nominal value. The reason for introducing a 5% bias is to cover the conservative over-estimation of self
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Table 6.1: Probabilistic Models for Structural Parameters

Parameter Distribution Mean CV Reference

Density, ρconc Normal 1.05 0.04 [26]

Permanent Load Normal 1.00 0.10 [26]

Modulus of Elasticity, E Log-normal 1.00 0.15 [26]

weight often performed during design [26]. For the modulus of elasticity, Econc, the prior distribution
was refined to a narrower normal distribution with a mean of 1 × Ecm and a coefficient of variation
of 0.1. This adjustment was made because the long tail of the original log-normal distribution was
considered unrealistic for the case study.

For live loads, selecting an appropriate distribution is somewhat more complex. Unlike dead or perma-
nent loads, live loads fluctuate both over time and across different areas of a structure. The values used
in structural design are typically based on the worst-case scenarios, which are rarely observed during
actual measurements. Consequently, the live loads present during monitoring are expected to be much
lower than the design values.

In general, live load is modelled as the sum of two components: the sustained load and the intermittent
load. The sustained load represents actions that persist over long periods, such as the weight of furniture,
equipment, and the presence of occupants engaged in normal activities. The intermittent load, on the
other hand, represents rare and short-duration extreme events, such as large gatherings of people or
temporary accumulation of heavy items.

As the occurrence of the intermittent loads are rare, it is unlikely that they are present during measure-
ment campaigns. Therefore, their contribution can be reasonably neglected when defining the prior for
live load. This simplification allows the prior of the live load to be taken as equivalent to that of the
sustained load.

To model the uncertainty in the sustained load (q), and consequently the live load, gamma distribution
is recommended as follows:

q ∼Gamma

(
µq = mq, σq =

√
σ2
V + σ2

U

A0

A
κ

)
(6.1)

Here, mq denotes the mean load intensity across the building for a given usage case. The term V is
a random variable that captures deviations of the load intensity from the mean value. It accounts for
variations in the global and floor-wise spatial averages relative to the mean loadmq. The corresponding
standard deviation of this variability is denoted by σV .

The term U represents a zero-mean random field with a standard deviation σU , and it is stochastically
independent of V . The parametersmq, σV , and σU depend on the building’s usage type. For the New
Orleans Tower, which is residential, the adopted values are 300N/m2, 150N/m2, and 300N/m2 for
mq, σV , and σU , respectively.

The reference area A0 is typically taken as 10m2, while A represents the tributary area associated with
the imposed load effect, which in this case is taken as the floor area of the New Orleans Tower model.
The ratio A0

A can reach a maximum value of 1.

Finally, κ characterizes the shape of the influence surface of the load, where a value of 1 corresponds
to a uniform influence and higher values indicate a more localized load effect. Since the current model
of the New Orleans Tower applies all the mass-like quantities at a single node (the Center of Mass), the
imposed load is assumed to be uniformly distributed across the floor. Accordingly, κ = 1 is adopted.
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Under these assumptions, the standard deviation of the imposed load is calculated as 0.156N/m2. For
more details on the probabilistic modelling of live loads, the reader is encouraged to read the sources
[26, 7].

The foundational stiffnesses pose a challenge in determining its prior distribution. Unlike other quan-
tities discussed above, the probabilistic model for foundational stiffness differs on case basis. As the
soil-structure interaction has been modelled as a set of five global springs, which in-turn was modelled
from individual springs that represents individual piles, a lot of factors, such as uncertainty in the foun-
dation material, soil properties, interaction between soil and foundation, as well as interaction between
different pile groups, affect the final five global spring stiffnesses. Shirzad-Ghaleroudkhani et al (2018)
used a non-informative joint uniform distribution to model the prior uncertainty in the foundational
spring stiffnesses along with other parameters [29]. The specific ranges for the uniform distribution
were, however, not specified. In the current study, to model the prior distribution of the foundational
spring stiffnesses of the New Orleans Tower, first the stiffnesses were increased and decreased to see
when the building exhibits a fixed or free boundary conditions. The observation was increasing or de-
creasing the stiffness by a factor of 10 leads to an almost fixed/free behaviour, while changing it by a
factor of 100 leads to a complete fixed/free behaviour. As the behaviour varied fairly smoothly between
these factors, the stiffness is parametrized by a term θKi in the following manner:

The foundational stiffnesses present a particular challenge when defining their prior distributions. Un-
like the other quantities, the probabilistic model for foundation stiffness is highly case-dependent. In
this study, the soil-structure interaction is represented by five global springs, each derived from the com-
bined behaviour of multiple springs corresponding to individual piles. Consequently, several factors
including uncertainties in foundation material properties, soil characteristics, soil–foundation interac-
tion, and interaction among different pile groups affect the resulting global spring stiffnesses.

Shirzad-Ghaleroudkhani et al. [29] modelled the prior uncertainty of foundational spring stiffnesses,
along with other parameters, using a non-informative joint uniform distribution [29]. However, the
specific ranges for this uniform distribution were not reported. In the present study, the prior distribution
of the foundational spring stiffnesses for the New Orleans Tower was established through a sensitivity
analysis. The stiffness values were systematically increased and decreased to identify when the structure
exhibited nearly fixed or free boundary behaviour. It was observed that modifying the stiffness by a
factor of 10 resulted in an almost fixed or free response, whereas a change by a factor of 100 and higher
produced a fully fixed or free type behaviour. As the transition between these behaviours was observed
to be smooth, the stiffness is parametrized by a factor θK,i, defined as follows:

Ki = Ki,0 × 2θKi with Ki ∈ {Ktx,Kty,Krx,Kry,Krz} (6.2)
Ki,0 = Nominal value ofKi

θKi = Parametrization ofKi

The prior is then defined through each of the θKi parameter. As per the recommendation of geotechnical
experts, the foundational stiffness is not expected to deviate more than a factor of 2. To account for this,
in addition to the previous observation of fixed-free behaviour, a truncated normal distribution was
proposed for θKi . The distribution is centred around 0, which represents the nominal value of Ki and
the standard deviation was chosen such that 1%− tile and 99%− tile are observed at θKi = −1 and 1
respectively, corresponding to a factor of 0.5 and 2 to the nominal value. Finally, the distribution was
truncated at −10 and 10 which corresponds to a factor of 1024. The prior distributions along with the
1%-tile and 99%-tile values are shown in Figure 6.1.



6.3. Sensitivity Analysis 40

(a) ρconc (b) Permanent Load (c) Imposed Load

(d) Econc (e) Foundational Stiffnesses (θKi
)

Figure 6.1: Priors for the candidate parameters

6.3. Sensitivity Analysis
When performing model updating, an important consideration is the selection of parameters to be up-
dated. Although the section on candidate parameters identifies a set of variables that govern the model’s
behaviour, not all of these parameters influence the modal properties to the same extent. Since model
updating is a computationally intensive process, it is essential to minimize the number of parameters
involved. To achieve this, a sensitivity analysis is typically conducted to identify the parameters that
have the greatest influence on the modal properties.

6.3.1. Methodology
In general, sensitivity analysis is performed by varying a parameter of interest within a predefined range,
for instance, between factors of 0.1 and 10. However, in Bayesian updating, prior information about
the parameters is already available, providing insight into the expected range of their plausible values.
It is therefore more consistent to use these priors to define the ranges for sensitivity analysis.

This approach, however, introduces a challenge when comparing different parameters, as the region
or range of the sensitivity analysis will not be directly comparable. To address this, the sensitivity
analysis is carried out over a uniform percentile interval of the priors. In the present study, each model
parameter was evaluated at 30 uniformly distributed points along the percentile scale of its prior, ranging
from the 1%-tile to 99%-tile. The corresponding lower and upper bounds for each parameter are listed
in Table 6.2. The natural frequencies obtained from these evaluations were then plotted against the
nominal values to assess the degree of deviation, providing a measure of how sensitive each frequency
is to the parameter under investigation.

6.3.2. Results
Figure 6.2 presents the results of the sensitivity analysis for the global parameters. The first observa-
tion is that the permanent load and imposed load parameters have little to no influence on the modal
frequencies and can therefore be excluded from the updating process.

Next, it can be observed that variations in Econc affect all the modal frequencies, with the impact be-
coming more pronounced in the higher modes. This behaviour is expected, as higher modes generally
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Table 6.2: Ranges for Sensitivity Analysis

Parameter Nominal Value Lower Bound Upper Bound Unit

Density, ρconc 2500 2380 2869 [kg/m3]

Permanent Load 1 0.767 1.233 [kN/m2]

Imposed Load 0.525 0.056 0.779 [kN/m2]

Modulus of Elasticity, E 37.8 26.4 52.8 [GPa]

Foundation stiffness, ktx 3.1 1.55 6.2 [GN/m]

Foundation stiffness, kty 3.1 1.55 6.2 [GN/m]

Foundation stiffness, krx 1975 987.5 3950 [GNm/rad]

Foundation stiffness, kry 1927 963.5 3854 [GNm/rad]

Foundation stiffness, krz 511 255.5 1022 [GNm/rad]

exhibit greater curvature, which corresponds to higher strain energy. Since the modulus of elasticity
directly reflects a material’s capacity to store strain energy, changes in Econc are naturally expected to
influence modes with higher strain energy more than those with lower strain energy.

The self-weight of the structure, parametrized by ρconc, also influences all the modal frequencies. This
is not surprising, as all frequency depends primarily on the stiffness and mass of the system. However,
the effect of self-weight is smaller than that of stiffness, with the frequency deviations ranging from
approximately−6% to 3%, compared to a minimum range of±8% for stiffness variations. As including
both mass and stiffness parameters would inevitably lead to a correlated solution, due to their similar
effects on the natural frequencies, only the parameter with the higher influence (Econc) was chosen.

The five foundational stiffnesses exhibit a selective influence on the natural frequencies. This is logical,
for instance,Ktx is expected to affect modes involving bending or motion in the x-direction, but not the
modes with pure bending in the other directions. Specifically,Ktx significantly affects the fourth, fifth,
seventh, and eighth frequencies, whileKty affects the fourth, sixth, and eighth frequencies. The fourth
and eighth frequencies are influenced by both translational stiffnesses, indicating a potential mode order
swap around these frequencies when the translational stiffnesses are varied.

For the rotational foundation stiffnesses,Krx andKry, the effects are mainly limited to the lower modes,
particularly the first bending modes. Kry influences both the first and second frequencies, again sug-
gesting a possible mode switch. The rotational stiffness Krz , which governs torsional behaviour, sig-
nificantly affects the third, eighth, and ninth frequencies, all of which correspond to torsional or torsion-
dominated modes.

When the effects of all foundational stiffnesses are considered together, it is evident that all nine fre-
quencies are influenced by at least one parameter, and each stiffness parameter affects a unique set
of frequencies. This suggests that, in principle, all six parameters should be identifiable within the
updating scheme.

Based on these observations, the six parameters are selected for the updating procedure, namely Econc,
Ktx,Kty,Krx,Kry, andKrz .
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(a) Econc (b) ρconc (c) Permanent Load

(d) Imposed Load (e)Ktx (f)Kty

(g)Krx (h)Kry (i)Krz

Figure 6.2: Sensitivity analysis results for the candidate parameters.

6.4. Likelihood Function Selection
The likelihood functions described in Section 4.3 will be taken as the likelihood function for the case
study. For the frequency, this corresponds to Eq. 6.4 below:

fE = f(θ)+ ηf,M + ηf,E (6.3)
p(fE |θ) ≡ P (ηf,M + ηf,E |θ) (6.4)

Here, the measurement error ηf,E is assumed to follow a zero-mean Gaussian distribution, with its
standard deviation obtained directly from the measurement data. The model error can similarly be rep-
resented as a zero-mean Gaussian term. However, determining its standard deviation, or the coefficient
of variation (CV), is more challenging. This error term quantifies the likely deviation of the current
model from the real structure, which would require knowledge of the true structural parameters to eval-
uate. Since the fundamental premise of model updating is that these true values are unknown, alternative
approaches are necessary to estimate the model error.

The JCSS probabilistic model code [35] suggests CV values ranging from 0.05 to 0.25 for various finite
element analyses. However, guidance specific to dynamic analyses involving frequencies and mode
shapes is not provided, and the influence of the level of detail of the FE model is also not addressed.
Examining 99% confidence intervals for different CV values yields the frequency ranges shown in
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Table 6.3. Based on these intervals, a CV between approximately 0.01 and 0.05 appears reasonable for
the model error. While selecting the higher end of this range (CV = 0.05) would make the likelihood
function more conservative, it could also create challenges for parameter identifiability. To assess the
practicality of using these CV values in the likelihood function, a synthetic study must be conducted.

Table 6.3: Frequencies [Hz] with 99% Confidence Intervals for different Coefficients of Variation. Numbers indicate the
half-width of the 99% confidence interval around the nominal frequency fnom.

99%-Confidence Interval Half-Width
Frequencies [Hz] /

CV 0.25 0.10 0.05 0.025 0.01 0.005 0.003

f1 0.218 0.127 0.051 0.025 0.013 0.005 0.003 0.002
f2 0.237 0.138 0.055 0.028 0.014 0.006 0.003 0.002
f3 0.961 0.559 0.224 0.112 0.056 0.022 0.011 0.007
f4 1.492 0.868 0.347 0.174 0.087 0.035 0.017 0.010
f5 1.565 0.910 0.364 0.182 0.091 0.036 0.018 0.011
f6 3.014 1.753 0.701 0.351 0.175 0.070 0.035 0.021
f7 3.210 1.867 0.747 0.373 0.187 0.075 0.037 0.022
f8 3.330 1.937 0.775 0.387 0.194 0.077 0.039 0.023
f9 5.428 3.159 1.263 0.631 0.316 0.126 0.063 0.037
In terms of
Percentage 58.20% 23.27% 11.63% 5.82% 2.33% 1.16% 0.69%

For a selected CV for the model uncertainty, the likelihood for a given frequency will be formulated as
follows:

p(ηf,M + ηf,E |θ) ∼ N
(
µ = 0, σ2 = σ2

M + σ2
E

)
(6.5)

where,
σM = CVmodel × fnom

For the mode shapes, the equation Eq. 6.7 is used.

ϕE,r = arΓϕr(θ)+ ηϕr,E (6.6)
p(ϕE,r|θ) ≡ p(ηϕr,E |θ) ∼ Nm (µ = 0,Σ = Σϕr) (6.7)

The explanations of the various terms are provided in Section 4.3. Note that the bias term is not included
here. Comparison of the nominal mode shapes with those observed in the measurements shows that
the majority of the measured mode shapes are already close to the nominal ones (Figure 5.5).For the
mode shape closest to the mean, the MAC values for almost all modes exceed 90%, indicating that the
model bias, though present, is small enough to be neglected, simplifying the likelihood formulation.
Furthermore, since the mode closest to the mean achieves an MAC greater than 90%, the mode shapes
may not contribute significantly to the likelihood. This suggests that neglecting the model bias in the
mode shapes would not substantially affect the updating results.

The total likelihood function is then defined as a combination of the individual likelihood functions, as
given in Equation 4.15.

6.5. Synthetic Analysis
6.5.1. Introduction
The goal of the synthetic analysis in this thesis is to assess the feasibility of identifying the parameters un-
der the specified model uncertainty. For this purpose, the synthetic analysis setup is designed to closely
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replicate the real-case scenario. By performing the analysis in an idealized context, the study evalu-
ates whether the chosen level of model uncertainty can produce acceptable prediction errors, thereby
demonstrating that parameter identification is feasible in the real case.

6.5.2. Model Truth
To perform a synthetic analysis, it is first necessary to define a set of true parameters, which serve as
the target values for the study. These “truth” values represent the real, but unknown, parameters of the
building under investigation. The advantage of synthetic analysis is that these true values are known
a priori, allowing for a direct assessment of the method’s effectiveness. Before defining the model
truths, the set of parameters to be updated must be selected. This set corresponds to the six parameters
identified in the sensitivity analysis. To establish the target values, random scalars were applied to these
six nominal parameters. Table 6.4 lists the parameters, the applied scalar values, and the resulting model
truths.

Table 6.4: Model Truths for the Synthetic Analysis

Parameters (θ) Truth Scalar Target Values

Econc 0.9 34.02 [GPa]

ktx 20.5 4.38 [GN/m]

kty 20.4 4.09 [GN/m]

krx 2−0.35 1550 [GN/rad]

kry 2−0.3 1565 [GN/rad]

krz 2−0.97 260 [GN/rad]

6.5.3. Data Generation
With the model truths established, the next step in the synthetic analysis is to generate data from these
true parameter values. Data generation is a critical component of the synthetic analysis, as poor data
generation can produce unusable or misleading results. To ensure that the synthetic data closely reflects
the real-case scenario, the methodology outlined in Section 4.3 is adopted. In this approach, errors
are systematically introduced to the modal properties to simulate real-world measurement uncertainties.
The data generation for the frequencies proceeds according to the following steps:

1. Calculate fmodel(θtruth). This represents the frequency of the structure with the model bias, as
the frequencies are being generated through the FE model.

2. Select a single CVmodel value to be investigated. The set of CVmodel that were considered under
investigation were {0, 0.005, 0.01, 0.025, 0.05, 0.10, 0.25}

3. Using the selected CVmodel, generate a set of random bias, one for each mode to be consid-
ered, from the distribution ηf,M ∼ N (µ = 0, σ = CVmodel × fnom). Add these biases to the
corresponding frequencies. The resulting frequencies now represent the true frequencies of the
structure without any model bias.

4. From the real data of the New Orleans Tower, calculate the standard deviations of the measured
frequencies, σf,E . This is done so as to ensure that the generated synthetic data matches the
measurement data as much as possible.

5. Using the measurement uncertainty, generate a set of 100 random numbers for each frequencies
from the distribution ηf,E ∼ N (µ = 0, σ = σf,E). These random numbers represent the mea-
surement errors, and are added to the corresponding frequencies obtained in step 4. This would
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result in a set of 100 frequencies, which will become the synthetic measured frequencies.

The data generation for mode shapes follows a similar methodology, with the main difference being a
lack of model uncertainty. The steps are as follows:

1. Calculate the mode shape from the model at the truth parameters, ϕmodel(θtruth), restricted to
the measurement DOFs, and normalize it to unit norm. This represents the mode shape of the
structure with model bias.

2. Obtain the covariance matrix of the mode shape for each mode r, Σϕr , from the measurement
data. This represents the uncertainty in the measured mode shapes.

3. Using the covariance matrix, generate 100 sets of random errors for each mode from the distribu-
tion of measurement uncertainty, ηϕr,E ∼ N (µ = 0,Σ = Σϕr).

4. Add the generated errors to the mode shapes obtained in Step 1. Normalize the resulting mode
shape to unit norm to ensure consistency. The resulting set of 100 mode shapes for each mode
represent the synthetic measured mode shapes.

6.5.4. Bayesian Updating Settings
For Bayesian updating, the priors for the six parameters, as discussed in Section 6.2, were adopted.
Similarly, the likelihood function was constructed following the formulation outlined in Section 6.4.
For the model uncertainty, the sameCVmodel used in the data generation was employed in the likelihood
function. This approach simulates an ideal scenario in which the likelihood exactly matches the data
generation process. In reality, the likelihood is unlikely to perfectly reflect the data generation process;
however, choosing the ideal scenario allows assessment of whether Bayesian updating can succeed
under optimal conditions and to quantify the deviation from the truth in the final results. This provides
two key insights: (1) if the updating produces a very large error, it suggests that the procedure may not
be feasible, as it struggles even under ideal conditions, and (2) if the updating produces an acceptable
error, it establishes a baseline expectation for the minimum error likely in real-case applications.

The MCMC routine was implemented using the emcee module in Python. A total of 60 walkers
were employed, and the algorithm was allowed to run for a maximum of 30,000 steps. If the chains
converged and stabilized satisfactorily before reaching the maximum number of steps, the algorithm
was terminated early. The initial values for the different walkers were taken as random samples from
the prior distribution. Apart from this, the default settings of the emcee module were used.

6.5.5. Results
The synthetic analysis was done by varying the model uncertainty in both the data generation and the
likelihood function. The updating for all the different model uncertainty was successful, in that the
solution converged to a set of parameter values. The converged solution was then compared with the
model truth (Table 6.4), to see the accuracy and quality of the updated parameters.

The results of the synthetic analysis are shown in Figure 6.3. From the figure, it can be seen that increas-
ing the model uncertainty in the generated data leads to an increase in error of the updated parameter.
This is an expected result, as higher model uncertainty corresponds to a lower quality of model, and
thus, poorer representation of the real structure. Despite this, the error does not significantly increase
until the CVmodel value of 0.025. For the CVmodel value of 0.05, the error in parameter estimation is
quite high, particularly for Ktx and Kty. This suggests that if the model uncertainty happens to be in
this order, the updating process would not be able to reasonably identify these two parameters.

The model uncertainty of CVmodel = 2.5% does not have significant error in the parameter estimation.
The highest error seen in this run is for Ktx at the parameter prediction error of 6.35%. This error
corresponds to an error band of ±280 × 109 N/m. Table 6.5 outlines the error bands for different
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parameters considering the error observed in the run, and also if the maximum error was taken as the
expected error for all the parameters. The error bands for various parameters seem reasonable enough
for the identification of the parameters to be feasible. Similarly, all the model uncertainties lower than
2.5% also show feasibility for the identification of these parameters.

From the Table 6.3, it was concluded that the model uncertainty of 0.01−0.05 is a reasonable choice for
the model uncertainty, based solely on the expected deviation in the predicted frequency by the model.
It is preferred to choose a higher uncertainty than the lower one, given that the said uncertainty does not
interfere with the feasibility of parameter identification. The main reason for this is due to the fact that
the true model bias is unknown. Based on this, the model uncertainty of CVmodel = 2.5% is chosen for
updating.

While the choice of a model uncertainty level of 2.5% results in the expected error bands presented in
Table 6.5, it is important to recognize that these values may not represent the actual or true error bounds.
Since the true level of model uncertainty—and consequently the model bias—is unknown, the real bias
in the estimated parameters could be larger than those indicated in the table. Moreover, as the current
analysis considers only a single instance of ground truth values and one specific realization of model
bias for each frequency, the results cannot be generalized to all possible cases. A more comprehensive
assessment would require multiple synthetic studies incorporating different realizations of the noise
corresponding to the assumed model uncertainty level.

Nevertheless, if the assumed model uncertainty accurately reflects the true uncertainty, the true param-
eter values are still expected to lie within the estimated error bands.

In other words, regardless of the true model uncertainty, the updated parameter will, at minimum, have
the specified error (as expressed in percentages) summarized in Table 6.5.

Table 6.5: Summary of parameter truth values, errors, and error bands (for CV = 2.5%).

Parameters Truth Parameter Error Error Band

Econc [GPa] 34.02 1.38% ± 0.47

Ktx [GN/m] 4.38 6.35% ± 0.28

Kty [GN/m] 4.09 5.15% ± 0.21

Krx [GNm/rad] 1550 2.14% ± 33.17

Kry [GNm/rad] 1565 3.82% ± 59.82

Krz [GNm/rad] 260 4.43% ± 11.54

Figure 6.3: Results of Synthetic Analysis
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6.6. Conclusion
This chapter started with a focus on defining a set of candidate parameters and their priors for updating.
A sensitivity analysis was performed to detect the effect of parameters of the frequencies. It was revealed
that the stiffness properties had a larger effect on the frequencies as compared to the mass-like properties.
Thus, the six stiffness properties were chosen for updating. This analysis also served as a confirmation
that the first seven frequencies were influenced by at least one of the selected parameters, implying that
these parameters should be identifiable.

Synthetic analysis was carried out under ideal setups (i.e., when the likelihood and the data genera-
tion process matched) to ascertain parameters’ identifiability and select a suitable model uncertainty
(CVmodel). It was found that the higher the model uncertainty in the data, the larger the error of the
updated parameters. Considering the error band in the frequency, as well as the feasibility of parameter
identification, the CVmodel = 2.5% was chosen for the model uncertainty.



7
Parameter Identification of New

Orleans Tower

This chapter presents the results of the case study on the New Orleans Tower, including a detailed dis-
cussion of the updated modal properties, comparison of updated parameters, evaluation of the posterior
probability distributions, and assessment of computational performance.

7.1. Introduction
The analyses with the real measurement data is done through four separate analyses conducted under
different settings to examine their influence on the results. The four considered cases are as follows:

• Case 1: Using only the first two bending modes in each direction, i.e., {bx1, bx2, by1, by2}. This
case aims to compare the performance of the currently developed Bayesian updating routine with
the previously employed deterministic updating method from the literature.

• Case 2: Using the first three bending modes in the x-direction and the first two bending modes
in the y-direction, i.e., {bx1, bx2, bx3, by1, by2}. This case investigates the effect of model com-
plexity on fitting the third bending mode, which posed challenges in the previous updating.

• Case 3: Using the first three bending modes in the x-direction, the first two bending modes in the
y-direction, and the first torsional mode, i.e., {bx1, bx2, bx3, by1, by2, t1}. This case examines
the effect of including a torsional mode in the updating scheme.

• Case 4: Using the first three bending modes in the x-direction, the first two bending modes in
the y-direction, and the first two torsional modes, i.e., {bx1, bx2, bx3, by1, by2, t1, t2}. This case
further investigates the effect of adding torsional modes to the updating procedure.

7.2. Bayesian Updating Settings
For Bayesian updating, the six parameters, Econc, Ktx, Kty, Krx, Kry and Krz were considered. For
Cases 1 and 2, as the torsion mode is excluded from the analysis, the rotational foundation stiffness
corresponding to torsion, Krz , was excluded from updating. For Cases 3 and 4, all the six parameters
were included.

The priors for the six parameters as discussed in section 6.2 were adopted. Similarly, the likelihood
function was constructed based on the formulation of section 6.4. The model uncertainty was selected
as CVmodel = 0.025. Of the total 126 available realization of each measured frequency and mode
shapes, 100 realizations were used for model updating, and the remaining 26 realization were used to

48
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compute the error metrics after updating.

For MCMC, 60 walkers were chosen and it was allowed to run until convergence, based on the auto-
correlation criteria recommended by the emcee documentation [10]. The parameter set in each walker
was initialised to a random value sampled from the prior distribution. Upon convergence, four times
the maximum auto-correlation length was taken as the burn-in period, and the half of the maximum
auto-correlation length was taken for thinning. If the chosen burn-in period appeared short, then it was
increased as required.

7.3. Results
The Bayesian updating routine was able to successfully run and converge to a solution for all the four
cases. These results of the cases are discussed in the respective sections below.

Case 1
The updating results for the frequencies (Table 7.1) indicate that the updated model successfully fit-
ted the four updated modes. However, the frequency errors for the remaining modes increased. This
suggests that the updated parameters may have overfitted the data.

Table 7.1: Results for Case 1: Frequencies and mode shapes

Mode Measured Predicted Nominal Error Prediction Error 95% Credible Interval MAC
[Hz] [Hz] [%] [%] [%]

by1 0.281 0.283 22.40 0.86 [0.279, 0.286] 98.3
bx1 0.290 0.290 18.30 0.16 [0.288, 0.296] 96.8
t1 0.636 1.018 51.22 60.19 [1.007, 1.043] 97.7
bx2 1.323 1.340 18.29 1.29 [1.314, 1.353] 94.6
by2 1.518 1.519 1.75 0.08 [1.503, 1.557] 97.8
t2 2.075 3.738 60.48 80.17 [3.202, 3.326] 85.4
bx3 2.778 3.348 15.56 20.51 [3.263, 3.472] 27.3
mixed-bending 3.558 3.246 15.29 8.75 [3.627, 3.880] 7.9

The corner plot in Figure 7.1a further supports this, showing strong correlations between the parameters.
The combination of these correlations and the wide credible intervals suggests that multiple parameter
sets can provide a reasonable fit to the data. This indicates redundancy in the parameter set and/or in-
sufficient data, implying that the maximum a-posteriori (MAP) estimate may not correspond to the true
parameter values. Interestingly, correlations are observed between all parameters. The negative corre-
lation between Econc and the foundation stiffnesses is expected, as increasing either parameter leads to
higher natural frequencies. The indirect correlations among the different foundation stiffnesses arise
from their shared dependence on Econc. This implies that modes insensitive to a particular parameter
can still help reduce its uncertainty, since all modes are influenced by Econc. A comparison of stiffness

Table 7.2: Comparison of stiffness parameters across Moretti et al., Ritfeld, and Case 1.

Parameter Moretti et al. Ritfeld Case 1

Ktx 2.20× 109 2.80× 109 1.62× 109

Kty 2.85× 109 5.70× 109 2.56× 109

Krx 3.07× 1012 2.14× 1012 5.62× 1012

Kry 11.1× 1012 2.89× 1012 3.76× 1012

parameters across studies (Table 7.2) shows large differences between this work and previous analyses
by Moretti and Ritfeld. Since Bayesian updating reveals the existence of multiple plausible solutions,
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(a) Case 1 (b) Case 2

(c) Case 3

Figure 7.1: Corner plots of the updated parameters for Case 1 through Case 3.

these differences do not imply error, but rather emphasize that the current parameter set is insufficiently
informative. To improve identifiability, either fewer parameters should be updated or additional data,
such as more modes, should be used.

Case 2
In this case, the third bending mode in the x-direction (bx3) was included in the updating process. This
resulted in reduced parameter correlations (Figure 7.1b), indicating improved generalization compared
to Case 1. Moreover, the prediction errors for the unupdated modes are comparable to the nominal error,
suggesting that overfitting did not occur in this case (Table 7.3).

While the frequency error for bx3 decreased, it remained higher than for lower modes, and the MAC
value stayed low. This indicates that the current model still cannot fully capture this mode, likely due
to missing parameters, possibly related to the lower part of the tower, where the mode shape mismatch
is most visible (Mode shape similar to Figure 7.4e). Nevertheless, the inclusion of bx3 enhanced the
overall parameter identifiability by providing new and unique information, as reflected by the reduced
parameter correlations.
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Table 7.3: Results for Case 2: Frequencies and mode shapes

Mode Measured Predicted Nominal Error Prediction Error 95% Credible Interval MAC
[Hz] [Hz] [%] [%] [%]

by1 0.281 0.274 22.40 2.33 [0.272, 0.278] 98.5
bx1 0.290 0.289 18.30 0.08 [0.285, 0.293] 88.5
t1 0.636 0.956 51.22 50.40 [0.94 0.968] 97.9
bx2 1.323 1.309 18.29 1.06 [1.294, 1.332] 96.7
by2 1.518 1.544 1.75 1.67 [1.508, 1.562] 93.9
t2 2.075 3.333 60.48 62.58 [3.258, 3.372] 81.6
bx3 2.778 3.055 15.56 9.98 [3.032, 3.077] 35.1
mixed-bending 3.558 3.055 15.29 14.14 [3.011, 3.139] 12.8

Table 7.4 compares the frequency prediction errors across studies. Unlike in previous analyses, the
inclusion of bx3 here did not degrade the fit of lower modes, and the highest frequency error was also
reduced. This suggests that the current modelling approach has a better performance than previously
employed analytical beam models.

Table 7.4: Comparison of Errors in Frequencies

Mode Moretti et al. Ritfeld Case 2
[CRPS %] [CRPS %] [CRPS %]

by1 1.42 0.00 2.86
bx1 13.06 17.18 0.54
bx2 0.07 0.00 1.57
by2 1.38 0.00 0.74
bx3 12.27 0.07 7.76

Case 3
This case introduces the first torsional mode and includes Krz in the updating. Table 7.5 shows that
the frequency errors decreased for all included modes, with by1, t1, and bx3 remaining slightly higher
but still within commonly adopted limits (≈ 8 − 9%), as observed in previous studies for torsional
and higher bending modes. The second torsional mode (t2) improved notably, from 60.48% to 41.80%
error, indicating better generalization.

Table 7.5: Results for Case 3: Frequencies and mode shapes

Mode Measured Predicted Nominal Error Prediction Error 95% Credible Interval MAC
[Hz] [Hz] [%] [%] [%]

by1 0.281 0.271 22.40 3.49 [0.268, 0.275] 99.6
bx1 0.290 0.288 18.30 0.70 [0.285, 0.293] 97.5
t1 0.636 0.681 51.22 7.09 [0.674, 0.695] 97.5
bx2 1.323 1.298 18.29 1.84 [1.285, 1.325] 98.6
by2 1.518 1.537 1.75 1.25 [1.505, 1.559] 95.7
t2 2.075 2.942 60.48 41.80 [2.924, 2.971] 88.3
bx3 2.778 3.042 15.56 9.51 [2.966, 3.095] 34.4
mixed-bending 3.558 3.054 15.29 14.15 [3.010, 3.120] 25.5

Interestingly, Figure 7.2 shows that, even though the higher modes were not included in the updating,
their frequency uncertainties are reduced to a level comparable with the measured values. This suggests
that the parameter uncertainty cannot be further reduced with the available data.
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Figure 7.2: Frequency Distribution Comparison for Case 3 (* denotes modes used in the updating process)

The MAC values indicate good agreement for the first five modes, while the higher modes show no-
tably lower values. The measured and predicted mode shapes are presented in Figure 7.4, with clear
mismatches observed for the torsional modes and the third bendingmode (bx3). For the torsional modes,
the predicted displacements in the x and y directions at sensor locations vary little, but the derived ro-
tation angle θ shows significant deviation. The bottom sensors, particularly in the x direction, exhibit
larger errors than the upper sensors. For bx3, a pronounced mismatch occurs at the bottom sensor, and
because the modes are normalized, this propagates to the top to maintain a unit norm. Overall, these
mode shapes suggest that the bottom part of the tower may not be accurately represented in the current
model.

Figure 7.3: MAC Matrix for updated results

The corner plot (Figure 7.1c) reveals a weak correlation between Econc and Kry. However, since the
correlation spans a narrow interval for Econc but not forKry,Kry may not be considered unique.
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(a)Mode by1 (b)Mode by2

(c)Mode bx1 (d)Mode bx2 (e)Mode bx3

(f)Mode t1 (g)Mode t2

Figure 7.4: Measured and Predicted modes for Case 3
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Case 4
In the final case, the second torsional mode was added to the updating. Despite this, t2 retained a large
frequency error (Table 7.6), and the fit for by1 showed significant deterioration. Although bx3 improved
considerably, these benefits do not outweigh the poorer performance of the lower modes. The updated
parameters therefore likely deviate from the true physical values.

Table 7.6: Results for Case 4: Frequencies and mode shapes

Mode Measured Predicted Nominal Error Prediction Error 95% Credible Interval MAC
[Hz] [Hz] [%] [%] [%]

by1 0.281 0.248 22.40 11.67 [0.245, 0.253] 99.1

bx1 0.290 0.282 18.30 2.65 [0.275, 0.286] 96.8

t1 0.636 0.676 51.22 6.30 [0.664, 0.728] 97.8

bx2 1.323 1.313 18.29 0.77 [1.219, 1.330] 97.7

by2 1.518 1.512 1.75 0.42 [1.490, 1.544] 95.9

t2 2.075 2.714 60.48 30.83 [2.696, 2.807] 86.0

bx3 2.778 2.872 15.56 3.40 [2.789, 2.936] 38.7

mixed-bending 3.558 3.067 15.29 13.78 [2.982, 3.113] 27.7

The failure to accurately fit t2 suggests missing parameters or limitations in the available data. As
noted by Bronkhorst et al.[4], the second torsional mode is difficult to distinguish experimentally from
the first, which is also evident in the updated MAC matrix shown in Figure 7.3. Consequently, the
second torsional mode may contribute little additional information to the updating scheme, resulting in
minimal improvement compared to the previous case.

The posterior distributions (Figure 7.5) exhibit bi-modal behaviour, showing that the Bayesian approach
successfully captured multiple local optima in the parameter space. This is reflected in bimodal fre-
quency distributions, particularly for t1, bx2, and t2, though only the main peak values are reported in
Table 7.6.

Figure 7.5: Posterior distribution of parameters for Case 4

7.3.1. Comparison of Updated Parameters
The four updating cases reveal distinct trends in parameter identification and model performance. In
Case 1, although the updated parameters fit the selected modes well, errors in the remaining modes
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increased, indicating overfitting and a lack of unique solutions. Case 4, which included all modes up
to the second torsional mode, also exhibited limitations: while some modes improved, others (notably
t2 and by1) showed increased errors. This suggests that the updated parameters in these cases do not
reliably reflect the true structural properties.

Cases 2 and 3 show more consistent and credible parameter estimates. Including additional modes
in Case 2 reduced correlations among parameters, while Case 3, which incorporated the first torsional
mode and its associated stiffnessKrz , further improved parameter identification. For these cases,Econc,
Ktx, and Kty converge to similar values with narrow 95% credible intervals, indicating a significant
reduction in uncertainty and likely proximity to the true values. The torsional stiffness Krz , updated
in Cases 3 and 4, shows similar MAP values and overlapping intervals. This also suggests that the
obtained value is likely close to true value. The large error in the first bending mode in Case 4 appears
to have occurred from the Econc trying to compensate for the missing parameter while trying to fit t2.

The rotational foundation stiffnesses,Krx andKry, exhibit substantial variation across cases and large
deviations from nominal values. The wide credible intervals for Krx in all cases indicate that this
parameter was not identified. In contrast,Kry shows narrower intervals (except Case 4), implying some
improvement in uncertainty, although its large deviation from the nominal value warrants caution.

Table 7.7: Nominal and MAP values for different cases

Param Unit Nominal Case 1 Case 2 Case 3 Case 4
Econc ×109 N/m2 37.8 52.3 37.3 36.2 29.6
Ktx ×109 N/m 3.10 1.62 1.75 1.73 1.90
Kty ×109 N/m 3.10 2.56 3.14 3.21 3.98
Krx ×1012 Nm/rad 1.98 5.62 75.2 106 219.9
Kry ×1012 Nm/rad 1.92 3.76 7.94 9.34 55.63
Krz ×109 Nm/rad 511 – – 190 196.5

Table 7.8: Credible intervals (95%) for prior and posterior distributions across different cases.

Param Unit Prior Case 1 Case 2 Case 3 Case 4
Econc ×109 N/m2 [30.4, 45.2] [48.1, 56.2] [37.1, 37.7] [36.0, 36.6] [29.5, 29.9]
Ktx ×109 N/m [1.83, 5.25] [1.57, 1.67] [1.71, 1.77] [1.70, 1.75] [1.86, 1.93]
Kty ×109 N/m [1.83, 5.25] [2.46, 2.67] [3.08, 3.19] [3.13, 3.26] [3.83, 4.10]
Krx ×1012 Nm/rad [1.17, 3.35] [4.50, 7.34] [64.1, 103] [82.1, 131] [170, 266]
Kry ×1012 Nm/rad [1.14, 3.27] [3.39, 4.28] [7.35, 8.32] [8.50, 9.82] [45.9, 72.4]
Krz ×109 Nm/rad [302, 866] – – [186, 193] [191, 199]

A further investigation on the log-likelihood and the log-posterior values around the Case 3 MAP solu-
tion (Figure 7.6) confirms these observations: for most parameters, there is a well defined peak in the
log-likelihood plot and the predicted values align with the likelihood maxima, indicating that the data
dominates the posterior. For Krx, the likelihood is nearly flat implying that the priors strongly influ-
ence the posterior. Since the selection of the prior is usually subjective (especially in the current study,
where the prior is based on engineering judgement), the resulting estimate also inherits this subjectivity.
Consequently, the predictedKrx is likely unreliable.

Nevertheless, the plateau in the likelihood indicates that beyond a certain point, the frequencies and
mode shapes show negligible sensitivity, allowingKrx to be idealized as a fixed support without signif-
icant error. ForKry, the data suggests that the predicted value may be close to reality, but the associated
uncertainty is higher than for other parameters, as reflected in the credible intervals. However, asKry

also showed correlation with Econc for all the cases, it is difficult to conclusively ascertain if the param-
eter has been reliably identified.
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Figure 7.6: Log-Likelihood and Log-Posterior around the predicted value of Case 3

7.3.2. Computational speed
All computations for this research were performed on a laptop equipped with an AMD Ryzen 7 PRO
5500U processor (8 cores, 16 threads, base frequency 1.9 GHz) with integrated Radeon Graphics and
16 GB DDR4 RAM operating at 3200 MT/s. The operating system used was Windows 11 (64-bit).

Table 7.9 summarizes the computational performance for the four cases analysed, including the number
of steps required for convergence, the total computation time, and the average time per 1000 steps and
per 10,000 model evaluations.

Table 7.9: Convergence Time for Different Cases

Case No. of steps Time to convergence Average time taken Average time taken
to convergence [min] [min per 1000 steps] [min per 10,000 model computations]

Case 1 5000 197 39 6.6

Case 2 6000 211 35 5.9

Case 3 6150 257 42 7.0

Case 4 16200 773 48 8.0

The analyses exhibited a consistent computational efficiency across the first three cases, averaging
approximately 40minutes per 1000 steps. These runs required between 5,000 and 6,150 steps, achieving
convergence within roughly 3 to 4.5 hours (197 to 257 minutes).

In contrast, Case 4 required substantially more computational effort, taking 16,200 steps and 773 min-
utes (approximately 13 hours) to converge. This increased computational demand can be attributed to
the bi-modal nature of the posterior distribution observed for this case. The existence of two distinct
peaks in the posterior indicates that the Bayesian updating process identified multiple local maxima.
Consequently, the MCMC sampler was required to explore two separate regions of the parameter space,
which increased the autocorrelation length of the chains and delayed convergence. This demonstrates
the computational cost associated with exploring complex, multi-modal posteriors in Bayesian infer-
ence.
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Overall, the simplified FE model demonstrated satisfactory computational performance, completing
approximately 10, 000 model evaluations in 68 minutes. Each model evaluation involved building the
model from scratch, performing eigenvalue analysis, computing the frequency and mode shape errors,
and evaluating the log-posterior based on these discrepancies.

7.4. Conclusion
For the analysis with the measured data, four distinct cases were investigated by varying the number
and type of modes included in the updating procedure:

• Case 1 (First two bending modes in x and y): The major characteristic of this case was overfitting
to the data, as errors in modes which were not included in the updating increased significantly.
Additionally, the updated distributions revealed strong correlations between the parameters, in-
dicating redundancy in the selected parameters non-uniqueness of the solution. Due to the non-
uniqueness, a conclusive comparison with the previous studies was not possible.

• Cases 2 (Including third bending mode in x): The addition of the third bending mode (bx3) led
to a correlation level that was substantially lower than that of Case 1, thus indicating that the
model had better generalization properties. However, the model was not able to explain the bx3
mode completely, which hinted at missing parameters or certain model limitations. A comparison
with the previous studies revealed that the current approach has better results, particularly as the
estimation of the lower modes were not affected by the inclusion of the higher mode.

• Case 3 (Including the first torsional mode t1): This case showed the most promising results of
balancing between model generalization and data fitting. The errors of frequency for by1 and t1
were pretty close to the acceptable range of 8% to 9% cited in the literature. The error in bx3
mode was comparable to the previous case, reinforcing the previous claim of model limitations.

• Case 4 (Including the second torsional mode t2): While this analysis was able to reduce the
error for t2 mode and even bx3 mode as compared to the previous case, the error in t2 was
still significantly high (30.7%). Furthermore, the case leads to an increase in the first mode,
by1, at 11.7%. As the first mode is usually much more important for different analysis than the
higher modes, this updating case was deemed as unsuccessful. Interestingly, this case revealed a
bi-modal distribution in the updated parameters, demonstrating the Bayesian updating routine’s
ability to detect local maxima in the posterior distribution.

The updated Maximum A, Posteriori (MAP) values for parameters Econc, Ktx, and Kty were similar
across the two better cases (Case 2 and Case 3) meaning that these values most likely represent the true
properties of the structure.

Specifically, the rotational stiffnesses Krx and Kry, in particular, were very different and had a large
range of credible intervals in all analyses. Likelihood function analysis showed that the function for
Krx was characterized by a large flat area with no distinct peak, making the solution highly dependent
on the prior distribution. This suggested that for these parameters, the choice of priors are critical in
their identifiability through Bayesian model updating.

In conclusion, Case 3 provided the best balance for updating the simplified FEmodel of the NewOrleans
Tower, successfully incorporating the first torsional mode and demonstrating the utility of Bayesian
updating in revealing parameter uncertainty, correlation, and model limitations. The results suggest that
while the current approach improves accuracy and generalization compared to previous studies, further
improvement would require addressing potential missing parameters, such as connection stiffnesses,
that may be relevant for higher-order bending and torsional modes
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Discussions

In this study, various analyses were performed to check the effectiveness of using Bayesian Model
Updating on a Simplified FE Model of the New Orleans tower. The analyses covered several aspects
of both Bayesian model updating, and the simplified FE Model, which are discussed in the following
sections.

8.1. Uncertainty Quantification
Bayesian model updating requires well-defined prior and likelihood functions that describe prior knowl-
edge of the structure and the data generation process. Ideally, these functions should yield the true
parameters that reproduce the real structural behaviour; however, several practical challenges prevent
such idealization.

For the priors, the literature provides structure-independent guidelines, which can be refined to reflect
the knowledge of the specific structure. While parameters directly representing material or loading
properties are relatively straightforward to define, derived quantities present a greater challenge. In
this study, this difficulty arose in defining the foundation stiffnesses, which were derived from the
properties of the supporting piles. Their priors can either be too broad, leading to non-physical results,
or too narrow, requiring detailed information that may not always be available. Since derived parameters
typically exhibit higher uncertainty, their priors become both more important and harder to specify. In
this work, these priors were defined based on engineering judgement, providing a reasonable but general
representation.

Despite these challenges, the likelihood exploration around the converged solution showed that with
sufficient, high-quality data, the results are not strongly dependent on the choice of prior. A smooth
prior that adequately spans the plausible parameter space is often sufficient.

Similar challenges arise in defining the likelihood function, which represents the probability of obtain-
ing the measured data given the model and its parameters. This requires quantifying both measurement
and model uncertainties. While measurement uncertainty is often modelled as white noise for simplic-
ity, the true error may exhibit coloured characteristics, necessitating more complex formulations. The
quantification of model uncertainty poses a far greater challenge as the model bias, reflecting the devi-
ation between the model and reality, cannot be evaluated directly when the true model and parameters
are unknown.

In this research, a synthetic analysis was used to estimate an appropriate level of model uncertainty.
However, the adopted value remains an assumption, and the true model bias may differ. Consequently,
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the resulting parameter estimates may deviate from reality.

8.2. Parameter Identification
Bayesian updating was performed using measured data across multiple cases, each employing a dif-
ferent combination of modal information. The results demonstrated the method’s capability to repro-
duce measured behaviour. Case 1 highlighted a key advantage of Bayesian updating over deterministic
methods - its ability to reveal parameter correlations and thereby indicate parameter redundancy and
non-uniqueness in solutions and overfitting. Furthermore, Bayesian updating yields full posterior dis-
tributions, thereby capturing uncertainty and revealing which parameters are weakly informed by the
data (those with wide posterior spreads).

Case 2 examined the influence of increasing model complexity from the uniform Euler–Bernoulli and
discrete Timoshenko beam models to the simplified FE model. The proposed FE model effectively
resolved a major issue seen in the previous models, the influence of the third bending mode (bx3) on
the first bending mode (bx1), while maintaining low overall error. This improvement results from the
model’s ability to capture bending in both directions simultaneously. Two main reasons explain this
improvement:

• By including both directions simultaneously, all modes contribute to the updating of Econc. In
previous models, only modes corresponding to one direction influenced the stiffness in that same
direction. Consequently, the updated Econc is expected to be more accurate.

• Because the model incorporates all six parameters together (rather than treating each direction
separately), the stiffness in one direction can influence that in the other through Econc, which is
affected by all frequencies. Hence, even modes that do not directly depend on a given stiffness
can influence it indirectly. This coupling represents one of the key advantages of the current
model formulation.

The case also revealed another advantage of using Bayesian updating, wherein the addition of modes
may have significant improvement in removing parameter redundancy and reducing the correlation in
the obtained solution, which cannot be detected in the deterministic model updating. This becomes
especially crucial, when the error of the added mode itself does not improve.

Adding the first torsional mode and its corresponding stiffness (Krz) improved the prediction of the first
torsional frequency without significantly affecting the others. The second torsional mode also improved.
The success in matching the first torsional mode confirms the dominant influence of Krz on torsional
behaviour.

In Case 4, the inclusion of the second torsional mode further reduced its error; however, the final dis-
crepancy remained significantly higher than that of the other modes. This outcome, together with the
findings from Case 3, suggests the presence of a missing parameter in the model or an underlying mod-
elling inadequacy.

8.3. Model Inadequacy
A reasonable hypothesis can be made regarding the nature of the missing parameter or model inad-
equacy. Based on the mode shapes (Figure 7.4), most discrepancies occur in the lower floors. The
torsional modes show slightly larger errors in the x-direction, and the third bending mode (bx3) dis-
plays significant mismatch in the same direction. These observations suggest that the source of error
lies in the lower part of the structure and likely in the x-direction.

In the current model, the tower is idealized as a slender structure with a cross-section of 28.8,m ×
32.3,m at the base, neglecting the adjoining low-rise structure (Figure 8.1). This portion likely provides
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additional stiffness in the x-direction, accounting for the observed discrepancies.

Figure 8.1: New Orleans Tower with the Low-rise building

Another possible source of error is the assumption of perfectly rigid connections. Relaxing this assump-
tion and introducing connection stiffnesses as updating parameters may provide valuable insight into
whether the rigid connection assumption is justified.

8.4. Investigation of Log-Likelihood and Log-Posterior
Analysis of the updated parameters revealed a decrease in uncertainty for all parameters except Krx.
The log-likelihood function indicated a broad plateau rather than a sharp peak, suggesting that this
parameter is weakly informed by the data and highly influenced by its prior. Testing different priors
can confirm this: if the posterior is highly sensitive to the prior, the data do not provide sufficient
information to identify the parameter. In such cases, it is advisable to gather more data or exclude the
parameter from updating.

The examination of the likelihood function also highlights an important feature of Bayesian model up-
dating. Although Bayesian methods are sometimes criticized for their subjectivity due to prior selection
[9], Figure 7.6 demonstrates that as the amount and quality of data increase, the subjective influence
of the prior diminishes. Hence, with reliable data and a well-chosen prior, Bayesian updating produces
consistent, objective, and scientifically reliable results.

8.5. Rotational Foundation Stiffness
Finally, it should be noted that, whileKrx was deemed unidentifiable, the data strongly suggests that this
stiffness is significantly higher than what might typically be expected based on engineering judgement.
A similar observation applies to Kry, with the difference that the data constrains it to a more specific
value. It is important to note that the priors reflect the engineering judgement, assigning extremely
low probabilities to these high values (Figure 8.2). Nevertheless, the posterior converges to these high
values due to strong support from the data, as reflected in the likelihood function. (Figure 7.6) The exact
reason for this behaviour is not fully known, but several plausible explanations can be considered:
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(a) Prior distribution of all the foundational stiffnesses θKi
(b) Log-prior distribution of all the foundational stiffnesses θKi

Figure 8.2: Prior and log-prior distributions of all the foundational stiffnesses θKi

1. Krx and Kry directly influence only the first bending modes, by1 and bx1, respectively. Since
only one mode directly constrains each of these parameters, whereas other parameters are influ-
enced by multiple modes, there may simply be insufficient modal information to accurately infer
these rotational stiffnesses.

2. Other modes also influence the rotational stiffnesses indirectly through Econc. Since Econc is
constrained by all the parameters, it is relatively well-determined. However, this also means
that fitting the first bending modes places a disproportionately high influence on the rotational
stiffnesses. Consequently, if the current updating scheme is missing any parameter that affects
these first bending modes, the rotational stiffnesses may compensate significantly to achieve a fit,
which could explain their elevated values.

3. In line with the previous point, the adjoining low-rise structure may contribute significant rota-
tional stiffness that is not explicitly modelled. This could manifest as high rotational stiffnesses
in the updated results.

4. Similarly, compensatory effects from model inadequacies affecting higher bending modes may
influence Econc, which in turn forces the rotational stiffnesses to adjust. For instance, in Case 4,
the second torsional mode led to compensatory adjustments in Econc. If a similar effect occurs
in Case 2 (and by extension Case 3) with the introduction of bx3, the first bending modes, being
primarily sensitive to rotational stiffness, may driveKrx andKry to higher values. Additionally,
as other modes do not affect these stiffnesses, the first bending modes are free to drive the val-
ues of Krx and Kry to unreasonable values. This appears to be the most plausible explanation,
particularly considering the notable reduction in uncertainty for Econc between Case 1 and Case
2.

5. Finally, it is also possible that the structure genuinely has such high rotational stiffnesses. Veri-
fying this outcome would require further investigation on the identification of these stiffnesses,
preferably using methods other than model updating.

A study by Carranza [6] on the frequency dependence of the foundational stiffness reports that the
stiffness corresponding toKrx is approximately 5−6×1012 Nm/rad in the frequency range 0−1 Hz.
The mode by1 falls within this range, which aligns with the result for Krx in Case 1, but not with the
results of the other cases.

Similarly, the study also reports that Kty has a value of 3 − 3.5 × 109 N/m in the frequency range
0−0.5 Hz. This corresponds well with the results of Case 2 and Case 3, whereKty was 3.14×109 N/m
and 3.21 × 109 N/m, respectively. However, the frequencies influencing this stiffness in these cases
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lie outside the reported range, where the foundational stiffness is significantly lower.

Taken together, these observations suggest that the stiffnesses corresponding to the static case have been
reasonably identified across the different cases. Nevertheless, it remains unclear whether this agreement
is coincidental or a true reflection of the effectiveness of the model updating and the data.
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Conclusion

The goal of this thesis was to enhance the accuracy and reliability of structural parameter estimation
in high-rise buildings by applying a vibration-based Bayesian Finite Element (FE) model updating ap-
proach. This methodology aimed to build up on the previous studies by incorporating previously un-
used modal data, such as torsional, as well as incorporating the uncertainty present in the data. This
work successfully utilized a Simplified (3D) FE model of the New Orleans Tower, a lumped-mass stick
model that accounts for torsional deformations, as well as coupling between different directions. The
research addressed the main question: “How can Bayesian model updating, combined with a simplified
FE model, be effectively utilized to enhance the accuracy and reliability of structural parameter estima-
tion in high-rise buildings?” A set of sub-questions were derived to answer this research question. This
section will provide the specific answers to these questions presented in the introduction.

9.1. Simplified FE Modelling Approach
The research sub-questions related to the modelling choice are addressed in this section.

How should the updating parameters be determined?
The selection of updating parameters was guided by a sensitivity analysis conducted to evaluate their
influence on the natural frequencies. In Bayesian model updating, prior distributions must be defined
for all parameters to be updated. By first establishing priors for the candidate parameters, reasonable
parameter bounds can be identified for the sensitivity analysis. This approach ensures that extreme or
physically unrealistic parameter values do not bias the results or affect the conclusions drawn from the
sensitivity analysis.

What effect does increasing model complexity have on the model updating results?
By increasing the model complexity from the previously used analytical beam model to the current
simplified FE model, the third bending modes could be included without introducing compensatory
errors in the lower modes. The 3D representation also enabled the incorporation of torsional modes,
thereby providing a more complete description of the building’s dynamic behaviour.

The use of a 3D model improved the updating results in two key ways. First, unlike the previous ap-
proaches that employed two uncoupled models for the x and y directions, the current model captures
the behaviour of both directions within a single model. This allows more modes to directly influence
certain parameters, such as Econc. Second, when parameters like Econc, which affect all natural fre-
quencies, are included in the updating process, modes that are not directly dependent on a particular
parameter can still contribute indirectly to improving its estimation through their shared dependence on
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Econc. This coupling effect is evident in the reduced uncertainty of Kty from Case 1 to Case 2, where
the only difference was the inclusion of mode bx3, which itself is not directly dependent onKty.

What effect does including torsional modes have on the model updating results?
The first torsional mode was successfully incorporated into the model updating without causing any
significant impact in the results of the other modes, demonstrating the model’s capability to capture
torsional behaviour. The second torsional mode, however, could not be successfully incorporated. This
limitation is likely due to an missing features in the model or missing updating parameters, rather than
an inherent shortcoming of the simplified FE modelling approach.

Computational Speed
Themodel updating showed a reasonable speed for updating themodel, which lasted on average of about
6− 8 minutes per 10,000 model computations. For the updating to complete, the best run took about 3
hours to complete while the longest run took about 13 hours. The updating can be optimized further to
improve these speeds, especially if parallelization could be achieved, which should significantly reduce
the computational time.

9.2. Bayesian Model Updating
The research sub-questions related to the Bayesian model updating approach are addressed in this sec-
tion.

How should the prior probabilities be defined to best reflect the initial knowledge about the struc-
tural properties, including correlation?
For the choice of priors, a combination of guidance from the literature, such as the JCSS Probabilistic
Code [35] and the reliability background of the Eurocodes [26], can serve as a starting point. When
available information is limited, the principle of Maximum Entropy can be applied to define the prior
distribution in a way that introduces the least bias. These suggested priors can subsequently be adjusted
based on additional information as it becomes available. Similarly, in the absence of information about
correlations, theMaximumEntropy principle recommends assuming no correlation between parameters,
providing a neutral starting point for the Bayesian updating process.

To what extent does the definition of the priors affect the posterior distribution?
While priors influence the posterior distribution, it was observed that with a large and high-quality
dataset, their effect becomes less critical. This indicates that a smooth prior covering the likely region
of the solution is generally sufficient. In the present case study, a dataset of 100 points was adequate
to reasonably constrain most parameters. Conversely, if the posterior remains sensitive to the choice
of prior despite using a large dataset, this may indicate that the parameter is not identifiable with the
available data, highlighting the potential subjectivity introduced by the priors.

What likelihood function/model should be used?
The likelihood function provides a measure of how likely a given set of measurements is, given the
current parameter values in the model. While some authors have used error metrics, such as percentage
error or the Modal Assurance Criterion (MAC), to construct the likelihood, a more rigorous definition
is obtained by considering an assumed data generation process. This process links the real structure
and the model while accounting for expected errors. When these errors are treated as random variables
with assumed distributions, the likelihood of a parameter being the true value becomes equivalent to
the probability of observing the mismatch between measured and predicted dynamic properties for the
same parameter set.

Defining the likelihood in this way incorporates contributions from both measurement and model un-
certainties. While measurement uncertainties can often be reasonably estimated, quantifying model



9.3. Limitations and Recommendations 65

uncertainty remains a significant challenge. This is because little to no information is usually avail-
able on the characteristics of these uncertainties, and their quantification requires knowledge of the true
structural parameters. However, by definition, the model updating process does not have access to the
true parameters, which creates an inherent difficulty in accurately characterizing model uncertainty.

What insights can be derived from the updating results?
The Bayesian updating results provide uncertainty estimates of the updated parameters in the form of a
joint posterior distribution. Analysing this distribution offers several insights into the model behaviour
and the quality of the obtained solutions that may not be evident in deterministic approaches. Key
insights include:

• Parameter Redundancy and Overfitting Detection: The Bayesian model updating revealed
instances of overfitting caused by parameter redundancy through the presence of strong correla-
tions among parameters. Such correlations, particularly when associated with wide uncertainty
bounds, indicate that certain parameters may be redundant or that the available data are insuffi-
cient to constrain them effectively.

• Improvement in Correlation: The Bayesian approach can identify modal data that enhance the
solution by reducing parameter correlation and overall uncertainty, even when these modes do not
directly improve the frequency prediction error. This was evident in Case 2, where the inclusion
of mode bx3 introduced additional independent information that mitigated overfitting observed in
Case 1. Deterministic methods might overlook the value of such modes, as they typically assess
performance only based on prediction accuracy.

• Parameter Identifiability: The Bayesian updating results can also reasonably check the iden-
tifiability of the updated parameters. The updated parameter showing a higher credible interval
than the prior hints at the non-identifiability of a parameter, as it implies that less information is
known about the parameter than what was started with. The investigation on the behaviour of the
log-likelihood function around the predicted value revealed that if a parameter is not identifiable
by the available data, then its converged value should be highly sensitive to the choice of prior.

• Multiple Solution Detection: Bayesian model updating demonstrated the capability to detect
multi-modal posterior distributions, revealing the presence of multiple plausible solutions. More-
over, it quantifies the relative likelihood of each solution through the inherent probabilistic formu-
lation of the posterior. Sampling-based methods, such as Markov Chain Monte Carlo (MCMC),
further enhance this process by exploring the entire solution space, thereby capturing the true
shape of the posterior distribution and providing deeper insight into the range and nature of po-
tential solutions.

Mode Matching
The current research also developed a novel mode-matching method that pairs measured and model
modes using the modal participation mass ratio (MPM). This approach provides an objective quantifi-
cation of the contribution of each mode to the total dynamic response of the structure in a given direction
(e.g., x, y, z, or θ). By considering both the directional influence and the relative order of the modes,
this method enables robust pairing of modes even when measurements are sparse. Such robustness is
particularly important for higher modes, which are often difficult to distinguish from lower modes in
cases with limited spatial measurements.

9.3. Limitations and Recommendations
The results and findings of this research also highlight key limitations of the current approach. The
case study indicates model inadequacy, particularly in capturing torsional and higher bending modes.
One possible reason for this inadequacy is the omission of the adjoining low-rise building in the model.
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The observed mode shapes suggest that the influence of surrounding structures cannot be ignored for
higher bending (and potentially torsional) modes. Therefore, a recommendation for future work is to
investigate this effect and determine the conditions under which the influence of adjoining structures
can be safely neglected.

Similarly, another potential source of the model inadequacy, and the limitation of the current modelling
approach is the assumption of rigid connection between all structural elements (beams, columns, shear
walls and slabs). The connection stiffness can have a significant influence on the torsional (and poten-
tially higher bending) modes. Investigating the effect of connection stiffness on these modes would
provide valuable insight into the conditions under which the assumption of rigid connections is valid.

For the results of model updating, it was observed that the rotational stiffnesses converged to values
significantly higher than expected. This raises questions regarding the validity of the current study.
While several possible explanations have been proposed, the underlying mathematical reason appears
to be that the reduction in uncertainty of Econc, combined with the value at which it converged, led
to the significant increases in the estimated rotational stiffnesses. Therefore, a dedicated study aimed
at accurately identifying either the modulus of elasticity of the building or the rotational foundation
stiffness with high confidence is recommended. Although model updating could be extended with
additional data or refined model features, an independent investigation focusing on one of these two
parameters would be valuable for verifying the present results.

Focusing on the Bayesian model updating aspect, a big challenge and limitation in the current study was
the choice of model uncertainty. The current study employed a rudimentary method for determining an
appropriate value, which relied on running a synthetic analysis to determine the identifiability of the
parameter under assumed model uncertainty. A more rigorous approach may be used in future works to
address this issue. For this, Bayesianmodel class selection can be used by varying the model uncertainty
between different models and selecting the most promising value. Alternatively, the model uncertainty
itself may be chosen as one of the parameter to be updated.

The final limitation relates more to the data rather than the methodology of the current study. The
measurements were obtained using a set of four sensors in each direction. While this sparse sensor
configuration was sufficient to identify the global modes, the limited sensor coverage near the lower
floors and the base of the tower made it difficult to accurately estimate the behaviour of the foundation.
It was observed that variations in foundational stiffness often had minimal effect on the mode shapes
at the sensor locations. Additional sensors near the base would have provided critical information for
improving the estimation of foundational stiffness. Therefore, a recommendation for future work is to
prioritise additional sensor placement on the lower floors, particularly when identification of founda-
tional stiffness is a key focus of the study.
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A
Mass moment of inertia

Derivation of Mass Moment of Inertia of a prism with a constant cross-sectional area
along its axis
The derivation for themassmoment of inertia around the centroidal axis, for any arbitrary cross-sectional
prism is given below. This is relevant as columns can be considered as prisms with a constant cross-
sectional area. This derivation can also be extended to slabs and shear walls, which are essentially as
rectangular prisms (i.e. cuboids). The mass moment of inertia for a given body is defined as:

Ic =

∫
M

r2 dm (A.1)

Given thatm = V ρ, for constant density ρ over the element, we get the relation:

dm = ρ dV (A.2)
dm = ρ dx dy dz (A.3)

Additionally, if we consider z to be in the direction of the axis of the prism, then r becomes independent
of z. The sign convention for the prism is depicted in Figure A.1

Substituting in the original integral,

Ic,|| =

∫ ∫ ∫
r2ρ dx dy dz

= ρ

∫ ∫ ∫
r2 dx dy︸ ︷︷ ︸

IA,zz

dz

= ρ

∫ H

0
IA,zz dz

= ρIA,zz

∫ H

0
dz (Constant cross-sectional area)

Ic,|| = ρHIA,zz (A.4)

This result is valid for any prism-like object with a constant density and a constant cross-section along
the z-direction, with H being the height/length quantity along the same direction. The term IA,zz

represents the polar (area) moment of inertia of the cross-section of prism perpendicular to its axis.
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Figure A.1: A prism of arbitrary area A

Derivation of Moment of Inertia of a prism with a constant cross-sectional area perpen-
dicular to its axis
The derivation for themassmoment of inertia around the centroidal axis, for any arbitrary cross-sectional
prism is given below. This is mainly relevant for beams when considering the rotational mass for tor-
sion, as beams can be considered as prisms with a constant cross-sectional area. The general equation
for mass moment of inertia is again the same:

Ic,⊥ =

∫
M

r2 dm (A.5)

Here, r2 has two components, one in y direction and one in z direction, which makes this:

r2 = y2 + z2 (A.6)

Given thatM = V ρ, and considering a constant density ρ along the length of the element,

dm = ρ dAdz (A.7)

Substituting this in the original integral, we get

Ic,⊥ =

∫ z1

−z0

∫
A
ρ(y2 + z2) dAdz

= ρ

∫ z1

−z0

∫
A
y2 dA︸ ︷︷ ︸

IA,xx

dz+ρ

∫ z1

−z0

z2
∫
A
dAdz

= ρIA,xx

∫ z1

−z0

dz+ρA

∫ z1

−z0

z2 dz

= ρIA,xx(z1 + z0) +
ρA

3
(z31 + z30)

Ic,⊥ = ρIA,xxH +
ρA

3
(z31 + z30) (A.8)

The term IA,xx represents the area moment of inertia (with axis in x-direction) for the cross section of
prism perpendicular to its axis.
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Parallel Axis Theorem
For completeness, the derivation of parallel axis theorem is also provided here.

Consider a body with the centre of mass at (xm, ym, zm). It is required to calculate the mass moment
of inertia about a vertical axis passing through the location (xm +∆x, ym +∆y). If (x, y) represents
the distance of an infinitesimal element from the centre of mass, then the mass moment of inertia about
this shifted axis is given by the following equation:

I =

∫
M

r2 dm

=

∫
M

(
(x−∆x)2 + (y −∆y)2

)
dm

=

∫
M

(
x2 − 2x∆x+∆x2 + y2 − 2 y∆y2 +∆y2

)
dm

=

∫
M
(x2 + y2) dm︸ ︷︷ ︸

Icm

−2∆x

∫
M

x dm︸ ︷︷ ︸
=0

−2∆y

∫
M

y dm︸ ︷︷ ︸
=0

+

∫
M

(
∆x2 +∆y2

)
dm

= Icm +M
(
∆x2 +∆y2

)
= Icm + ρV

(
∆x2 +∆y2

)
(A.9)

As no assumptions about the cross-section was done at any point in the derivation, the result is general,
and can be used without the loss of accuracy.



B
Torsional Foundational Stiffness

Determination

B.1. Approach
Let us consider an arbitrary pile located at the polar coordinates (r, θ). Let the centre of torsion be at
the origin, i.e. at (0, 0). The location of the pile in the Cartesian plane will be (x, y), which is related
to its polar coordinates through the following two relations

x = r · cos θ
y = r · sin θ

(B.1)

Let δθ be a small torsional displacement of the pile cap. Due to this, the new polar coordinates of the
displacement pile will be at (r, θ+ δθ) In Cartesian plane, this would be (x+ δx, y+ δy). Relating the
two coordinates, we get the following equations:

x+ δx = r · cos(θ + δθ)

y + δy = r · sin(θ + δθ)
(B.2)

The expression for δx and δy can now be isolated using equations B.1 and B.2.

δx = r ·
(
cos(θ + δθ)− cos θ

)
δy = r ·

(
sin(θ + δθ)− sin θ

) (B.3)

Applying Trigonometric identities, we get:

δx = r ·
(
cos θ cos δθ − sin θ sin δθ − cos θ

)
δy = r ·

(
sin θ cos δθ + cos θ sin δθ − sin θ

) (B.4)

Given that δθ is assumed to be a small torsional displacement, small angle approximation may be used,
which approximates sin δθ ≈ δθ and cos δθ ≈ 1. This simplifies the expressions into:

δx = −r · sin θ · δθ
δy = r · cos θ · δθ

(B.5)
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Using Eq. B.1, the above expression can be further simplified as;

δx = −y · δθ
δy = x · δθ

(B.6)

Now, let the equivalent torsional stiffness of the foundation be denoted byKrz . The strain energy Utor

stored in the foundation under an applied torsional displacement δθ is given as:

Utor =
1

2
Krz δθ

2 (B.7)

At this step, a few assumptions are introduced to simplify the calculation of the equivalent torsional
stiffness. These assumptions are listed below:

1. The pile cap (foundation slab) is assumed to undergo a rigid body rotation. In other words, every
part of the pile cap undergoes the same rotation δθ. Thus, the pile cap does not provide any
rotational stiffness, and consequently, does not store any strain energy.

2. The piles themselves are assumed to not undergo any torsional rotation. Thus, the piles do not
store strain energy in the form of torsional displacement. This simplification was done as the
details for the torsional stiffness of an individual pile was not available.

3. The effect of soil surrounding the pile cap and the basement is not considered, due to lack of
information in these regards.

4. The effect of soil in between the piles are assumed to be considered within the lateral stiffness of
the piles provided by the designer.

Under these assumptions, the torsional strain energy is stored entirely in the piles due to their lateral
stiffnesses in the x and y directions. Thus, for a pile plan consisting of np piles, the strain energy due
to the torsional displacement δθ is given as:

Upiles =

np∑
i=1

(
1

2
kpx,i δx

2
i +

1

2
kpy,i δy

2
i

)
(B.8)

where

kpx,i : translational stiffness of ith pile in x direction

kpy,i : translational stiffness of ith pile in y direction

δxi : displacement of ith pile in x direction due to δθ

δyi : displacement of ith pile in y direction due to δθ

Given the assumptions, Utor = Upiles. Using this, along with the substitution of B.6, we get the follow-
ing expressions:

1

2
Krz δθ

2 =

np∑
i=1

(
1

2
kpx,i (−yi · δθ)2 +

1

2
kpy,i (xi · δθ)2

)

Krz =

np∑
i=1

(
kpx,i y

2
i + kpy,i x

2
i

)
(B.9)
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where

(xi, yi) : coordinates of the ith pile

Equation B.9 is the required expression for the determination of equivalent torsional stiffness of the
foundation.

B.2. Values for the New Orleans Tower
For the New Orleans Tower, 316 piles depicted in Figure B.1 were considered. Each of the pile was
assumed to have stiffness as follows:

kpx = 10 MN/m (B.10)
kpy = 10 MN/m (B.11)

Using Eq. B.9, the torsional stiffness was calculated as

Krz = 5.11× 1011 Nm/rad. (B.12)

Figure B.1: Pile Plan for New Orleans Tower



C
Mode Matching

In this appendix the mode matching algorithm is described. The developed mode matching algorithm is
based on the use of modal participation mass ratio to classify and match modes. The modal participation
mass (MPM) is a quantity that measures the total mass that is mobilized in a given mode of vibration.
The modal participation mass is defined as:

MPM ij =

(
ϕi

TMTj

)2
gmii

(C.1)

where,
M = Mass Matrix

gm = ϕTMϕ = Generalised Mass Matrix
T = Directional matrix

When the directional matrix, T is defined as follows, the modal participation mass accounts for the
three translational and three rotational directions [30].

T nj =



1 0 0 0 dz −dz

0 1 0 −dz 0 dx

0 0 1 dy −dx 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





e1

e2

e3

e4

e5

e6


(C.2)

where,

ep =

{
1, p = j

0, p ̸= j

dx, dy, dz = distance of node n from the centre of mass in the three directions

The modal participation mass can be expressed as the percentage of the total mass for translational direc-
tions, and the total rotational mass for the rotational mass. This would lead to a modal participationmass
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ratio which is a nmodes × 6 matrix. The columns of this matrix represent the percentage of total mass
activated in the three translational (Mx,My,Mz) and three rotational directions (RMx, RMy, RMz).
These six columns can be easily translated to the different mode types - activation of Mx and RMy

corresponds to bending in x, My and RMx to bending in y, RMz to torsional and Mz to axial type
deformation. Thus, based on which mass is activated for a given mode, a reasonable guess on whether
the mode is bending in x, bending in y, torsion, axial, or a mixed mode can be made. When this infor-
mation is supplemented with the order at which all the modes appear, the mode matching can be made
with the measured mode easily just based on the order and type.

The proposed algorithm for mode matching requires a few assumptions and conditions to be true for it to
work. The first requirement is that the order of the measured modes is known a-priori. This means that
the measured modes can be identified and classified well. An extension of this requirement is that the
identified modes are not mixed modes. However, this requirement of non-mixed modes can be waived
with a little adjustment in the algorithm. Next requirement or assumption is that the measured modes
do not have any modes missing. This means, for example, for the bending mode in x direction, bxn−1

exists before bxn for all the considered n. Similar condition applies for the other types of modes (byn
and tn). These conditions are generally satisfied for lower modes, which are also usually the modes of
interest in model updating.

The algorithm used for the mode matching is explained below:

1. Input lists: For the input, the modal participation mass ratio matrix ordered based on the frequen-
cies is required. This is usually obtained directly from FE software. Additionally, the frequencies
and modes from the model as well as the measurement is required. The order of the measured
mode is also required, i.e. a list that describes the direction of the mode such as [bx, by, t, by, ...]

2. From the mass participation matrix, for each mode identify the two distinct directions most
strongly excited by the mode.

3. From the list of measured modes, read the first mode type in the list. For example, from the list
above, this would be bx.

4. Determine two candidate modes that match this measured mode as (i) the first mode with the
highest contribution in the given direction (candindate 1), and (ii) the first mode whose primary
contribution lies in another direction but for which this direction represents the second-highest
contribution (candidate 2).

5. Select the mode that corresponds to the measured mode. This is done through various checks.

(a) The first check is order of candidate 1 and 2. If candidate 1 appers before candidate 2,
always select candidate 1.

(b) The second check is done when candidate 2 appears before candidate 1. This suggests a
possibility of mixed mode. Check the ratio of the modal mass participation for the dominant
direction and second dominant direction (required direction). If this ratio is higher than a
pre-specified tolerance, then conclude that the candidate 2 is a puremode, and thus disregard
candidate 2 and select candidate 1.

(c) If candidate 2 is not a pure mode based on the tolerance test, then a traditional test needs to
be carried out to determine which candidate mode to be chosen. For this, an error function
defined as the weighted sum of error in frequency and modeshapes (MAC) is used (Eq. C.3)
The candidate mode with lower error is chosen.

Jij = α

∣∣∣∣fM,i − fE,j

fE,j

∣∣∣∣+ βMAC(ϕM,i,ϕE,j) (C.3)
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6. Once a model mode is matched to a measured mode, it is excluded from further matching to avoid
duplication.

7. The procedure is repeated for all measured modes in the order specified by the measured_order
list. For modes that cannot be matched (e.g., no candidate exists in the required direction), a
placeholder mode is assigned to indicate a missing match.

8. The final output consists of two lists: one containing pairs of matchedmode shapes (measured and
model), and the other containing pairs of matched frequencies. These outputs preserve the order
of themeasuredmodes, allowing direct comparison ofmodal properties between themeasurement
and the model.

Figure F.12 and Figures F.10, F.11 depicts the relation between the relative values of MPM ratio in
different directions with the pure modes for the results of Case 3.

The proposed algorithm has a few strengths over the traditional mode-matching based on error function.
The first advantage of using this is since the method relies on classifying the modes, much like how we
would classify it based on how they look, for the cases of all pure modes, the method will always work.
This is especially useful when multiple modes appear similar due to sparsity of sensor distribution. The
method based on error tend to struggle in such cases, as the error based on MAC could be misleading at
times. The method based on error can also give different results based on the weights used, making the
choice important. The current method does not have any such requirement for the weights. The value
for tolerance is required, but this term is much more intuitive, with choosing a higher value generally
working. The other advantage is that this method ensures that a same mode from the model does not
match with two modes from the measurements. This one-to-one correspondence reduces possibilities
of mismatching the modes.

However, the proposed method also has some limitations. The limitations are usually related to the
assumptions, with the biggest limitation being if the modes are missing. When a mode is missing in
the measurement side, this would affect the matching of all the modes of that type. Another potential
limitation for this method is that it may not be appropriate for local modes. As the method relies on a
more global properties, and global direction of mode shapes, the method fails to capture the differences
in mode shapes where local behaviour is governing. Finally, while the method does work for mixed
modes for the model mode shapes, mixed modes observed in the measurement side will pose issues.
This can, however, be circumvented by adjusting the algorithm.



D
Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) simulation methods are recognized as among the most popular
stochastic sampling techniques employed in Bayesian inference [32]. The principal goal of MCMC is
to generate samples that are consistent with a complex target distribution, typically the posterior Prob-
ability Density Function (PDF) of uncertain model parameters within the Bayesian framework. This
simulation approach is essential because, for most practical applications involving multiple parameters,
evaluating the posterior distribution requires solving high-dimensional integrals, which cannot generally
be calculated analytically [32]. MCMC addresses this challenge by combining Monte Carlo simulation
with the concept of Markov chains [21, 32]. The process involves simulating a sequence of states, or
samples, that form a Markov chain, whose limiting stationary distribution is designed to be the target
PDF [21]. These generated samples can then be used in statistical averaging to estimate various prop-
erties and expectations related to the distribution. A foundational and widely used MCMC approach is
the Metropolis-Hastings (MH) algorithm, which allows sampling from an arbitrary PDF even when the
function defining that PDF is only known up to a scaling constant.

The summary of MCMC how the MCMC process works in given below [21]:

• Step 1: Problem Formulation Before MCMC starts, the hyper-parameters for the MCMC pro-
cess are defined. This includes number of walkers nwalker, prior and likelihood distributions,
proposal distribution, q(θi+1|θi), and burn-in period, and initial state, θ0. The walkers represent
independent Markov Chains process that is running at the same time. Each of the walker behaves
exactly the same, with the only difference being their initial state. The initial state refers to the
first set of “guess” for the parameters that is under investigation. The initial state may be taken as
a random realisation of the prior. Doing so ensures that all the walkers start at a different initial
state. The proposal distribution refers to the distribution which will be used to generate the po-
tential next point in the Markov chain. Finally, the burn-in period refers to the number of initial
samples to be discarded. This is done to remove the region of non-convergence that exists before
a chain converges to a stable region.

• Step 2: Initialization As the first step of MCMC, the value of posterior is calculated from the
current state, θi, which right now is the initial state. This value is calculated from equation 4.1,
where the current state, θi is substituted for θ. The normalizing constant is not considered.

• Step 3: Checking State Change Then using the proposal distribution, q(θi+1|θi), a new state is
proposed. In general, the proposal distribution is a normal distribution centred at θi, with some
variance. This ensures that the new state reasonably close to the current state. Using this new
state, the posterior is calculated. Figure D.1 visually illustrates the proposal distribution around
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the current state and the probability of selecting the next state, while highlighting how these are
related to the posterior distribution.

Figure D.1: Proposal Distribution (Red Curve); Posterior Distribution (Black Curve); Current State θi; Proposed State θ∗.
(Figure from Lye et al. [21])

• Step 4: Acceptance Rate With the posterior from the two states, an acceptance rate can be
defined as the ratio of posterior and proposal distribution of the two states as follows:

α = min

[
1,

c · p(D | θi+1) · p(θi+1)

c · p(D | θi) · p(θi)
· q(θi | θi+1)

q(θi+1 | θi)

]
(D.1)

From Eq. D.1, it is seen that the normalizing constant cancels out, justifying the choice of not
considering it in the calculation of posterior. Furthermore, with the choice of proposal distribution
as normal distribution, which is symmetrical, we get the condition that q(θi+1 | θi) = q(θi |
θi+1), which eliminates these terms in the expression. The final expression becomes

α = min

[
1,

p(D | θi+1) · p(θi+1)

p(D | θi) · p(θi)

]
(D.2)

This expression returns a 1 if the new posterior is higher than the current posterior, and the ratio
of the two if the new posterior is lower than the current posterior.

• Step 5: Next State Check A random number, r, is then generated from a uniform distribution
between 0 and 1. If we satisfy the condition that α ≥ r, then the new state is accepted, and the
current state moves to this new state. This setup ensures that the chain converges towards the
region of high posterior, while still allowing for exploration around the high posterior region. If
the new state is accepted, the new state is added to the Markov chain. If the new state is not
accepted and the chain stays at the current state, a duplicate of the current state is not added to
the Markov chain.

• Step 6: Exploration and Convergence Depending on the previous step, the current state θi
either changes or stays the same. The steps 2 through 5 is repeated numerous times, until stop
criterion is satisfied. The stop criterion is usually when maximum number of steps is completed
or if the chain has converged based on the autocorrelation values.

• Step 7: Burn-in Period If the Markov chain has converged, this will appear as the chain mov-
ing within a set region for multiple steps. The statistics of the chain in this region provides the
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statistics of the posterior. To evaluate this, the initial region, called the burn-in period, where the
walker was still exploring towards convergence must be removed. This ensures that the posterior
statistics is not skewed by samples that have not converged.

The samples that remain after discarding the burn-in period represents the samples that have been di-
rectly sampled from the posterior distribution. Thus, plotting the histogram of these samples would
provide a visual indication on how the posterior looks, while computing the statistics from these sam-
ples will give us the statistics of the posterior.



E
Fitting Probability Distribution

The current work attempts to gain a posterior distribution of the parameters, based on updating the
model with the measured frequencies and mode shapes. As Case 3 saw the best result in generalisation,
the results of the case 3 was fitted into a standard probability distribution. Table E.1 gives the shape
and scale factors for the log-normal distribution for different parameters. The location parameter is
0 for all the parameters. Log-normal distribution was chosen over normal, as the updated parameters
showed a slight tilt towards the lower values. Fig E.1 shows the log-normal distribution being fitted to
the posterior samples.

Figure E.1: Marginal posterior distribution of parameters

Table E.1: Parameter Statistics

Parameter Shape Scale MAP
Econc 4.30× 10−3 3.63× 1010 3.62× 1010

Ktx 8.18× 10−3 1.73× 109 1.73× 109

Kty 1.05× 10−2 3.19× 109 3.21× 109

Krx 1.19× 10−1 1.03× 1014 1.06× 1014

Kry 3.68× 10−2 9.12× 1012 9.34× 1012

Krz 9.40× 10−3 1.90× 1011 1.90× 1011

82



F
Additional Figures and Results

F.1. Trace Plots

Figure F.1: Trace Plot for Case 1
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Figure F.2: Trace Plot for Case 2
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Figure F.3: Trace Plot for Case 3
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Figure F.4: Trace Plot for Case 4
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F.2. Corner Plot for Parameter

Figure F.5: Corner Plot for Parameters for Case 4
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F.3. Corner Plot for Frequencies

Figure F.6: Corner Plot for Frequencies for Case 1
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Figure F.7: Corner Plot for Frequencies for Case 2
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Figure F.8: Corner Plot for Frequencies for Case 3
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Figure F.9: Corner Plot for Frequencies for Case 4

F.4. Standard Deviation of Parameters
Table F.1: Standard Deviation of parameters across different cases

Param Unit Nominal Case 1 Case 2 Case 3 Case 4
Econc N/m2 3.76× 109 2.11× 109 1.61× 108 1.56× 108 3.56× 108

Ktx N/m 8.74× 108 2.41× 107 1.44× 107 1.41× 107 1.39× 108

Kty N/m 8.82× 108 5.39× 107 2.95× 107 3.34× 107 1.19× 108

Krx Nm/rad 5.61× 1011 7.35× 1011 9.89× 1012 1.24× 1013 2.44× 1013

Kry Nm/rad 5.47× 1011 2.29× 1011 2.49× 1011 3.36× 1011 1.80× 1013

Krz Nm/rad 1.46× 1011 – – 1.78× 109 1.64× 1010
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F.5. Mode Visualization in 3D

(a)Mode 1: by1 (b)Mode 2: bx1 (c)Mode 3: t1

(d)Mode 4: bx2 (e)Mode 5: by2 (f)Mode 6: t2

Figure F.10: Mode shapes 1-6 for the converged model of Case 3.
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(a)Mode 7: bx3 (b)Mode 8: by3

Figure F.11: Mode shapes 7-8 for the converged model of Case 3.

Figure F.12: Normalized Modal Mass Participation Ratio. Here M refers to Mass, RM refers to Rotational Mass and the X,
Y, Z refers to direction. For each mode (row), the entries have been normalised with the highest value for that mode (row)
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