
ON THE FEASIBILITY 
OF 

CONCURRENT GARBAGE 
COLLECTION 

KLAUS G. MULLER 



o 
CO • -
*« o 
«o o 
OD 00 

ON THE FEASIBILITY 
OF 

CONCURRENT GARBAGE 
COLLECTION 

PROEFSCHRIFT 

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR 
IN DE TECHNISCHE WETENSCHAPPEN AAN DE 
TECHNISCHE HOGESCHOOL DELFT, OP GEZAG VAN 
DE RECTOR MAGNIFICUS, PROF. DR. IR. H. VAN 
BEKKUM, VOOR EEN COMMISSIE AANGEWEZEN 
DOOR HET COLLEGE VAN DEKANEN, TE VERDE
DIGEN OP WOENSDAG 3 MAART 1976 TE 16.00 UUR. 

DOOR 

KLAUS ALFRED GEORG MULLER 

ELEKTROTECHNISCH INGENIEUR 

GEBOREN TE BERLIN, DUITSLAND 

/ 
BIBLIOTHEEK TU Delft 
P 1866 1258 

588496 

"O 

03 o> 



DIT PROEFSCHRIFT IS GOEDGEKEURD DOOR DE PROMOTOR 
PROF. DR. IR. W. L. VAN DER POEL 



Meiner Mutter, Virginia, 

Nicole und Sonja. 

Sie machten es möglich. 



ACKNOWLEDGEMENTS 

SHAPE Technical Centre has given me very significant support in 

the preparation of this thesis. For this, I wish to thank the 

management of STC. 

I am indebted to Dr. F.B. Kapper and Dr. W.R. O'Brien whose 

encouragement and friendly advice helped me to bring this work 

to a successful end. 

My thanks are also due to Mr. H.C. Rijnders who has been of 

great help in finding and obtaining the publications referenced 

in this thesis. I am also grateful for the cooperation and 

kind support I had from the staff of STC's Services Group during 

all phases of my work. 

With love and deeply felt gratitude, I must thank my wife Virginia 

and my daughters Nicole and Sonja. My wife typed the various 

drafts which finally led to this thesis. More important, however, 

was her moral support and understanding which kept me going, 

despite all difficulties. Nicole and Sonja were very patient 

with their father who so often during the last few years had to work 

and could not play with them. 



- 1 -

SUMMARY 

This thesis addresses the problem of designing and im

plementing concurrent garbage collection systems for dynamic storage 

allocation. So far, none of the important programming languages 

using garbage collection for the automatic run-time management of 

heap storage, such as ALGOL 68, LISP, and SIMULA, could be employed 

to program time-critical real-time programs. The reason for this 

has been that in all implementations of these languages to date, the 

garbage-collector is a sequential system procedure which is called 

when the free heap space is exhausted or has to be compactified. 

These calls occur at unpredictable points of time. While the gar

bage-collector is executing, the applications program must be sus

pended. This suspension can amount to up to several seconds during 

which the applications program cannot respond to external events. 

The main hypothesis of this thesis is that language pro

cessors with garbage collectors which work incrementally and con

currently with applications programs can be correctly designed and 

implemented. Such garbage-collectors interfere with applications 

programs only for short, limited periods. Thus, these programs can 

be given a predictable real-time behavior. 

The thesis describes applications program and concurrent 

garbage-collector as two parallel co-operating processes. For this 

system, two principal problem areas are identified, viz. process co

ordination and scheduling. 

The two processes share data, and their access to this 

data has to be ordered in time to ensure correct operation of the 

complete system. The thesis developes general solutions for this 

problem based on invariants for the shared variables. A necessary 

set of 11 invariants to be maintained by the critical regions of 

the two processes in concurrent garbage collection systems is iden

tified. 



- 1 1 -

The scheduling problem occurs because applications pro

gram and garbage-collector are in a consumer/producer relationship 

concerning free space. A model of this relationship is developed, 

and from it the level of free space at which to trigger off the 

garbage collection process is derived. Based on this, the maximum 

possible heap utilisation and the memory space- and processor time 

overheads of concurrent garbage collection are established. 

To show the general applicability of the approach, two 

concurrent garbage collection systems are presented in the form of 

programs. One system supports fixed-length LISP-like locations 

and uses a marking algorithm which works recursively in CAR and 

iteratively in CDR direction. The other supports variable-length 

locations and therefore has a compactifying garbage-collector. 

It uses a non-recursive copying algorithm which copies accessible 

locations to a new area in memory. 

The two systems are programmed in PASCAL, extended by 

four constructs, viz. shared variables, concurrent statements, 

critical regions, and conditional critical regions. The correct

ness of both systems is proved. 



-111-

Note 

It appears that solutions to the problem posed by con

current garbage collection have been "in the air". After the sub

mission of this thesis to the supervisor on 4 August 1975, two 

important papers on concurrent garbage collection have been published. 

The first one, by Dijkstra et.al. , describes a non-relo

cating concurrent garbage collection algorithm for LISP-like data-

structures, i.e., fixed-length locations with two pointers each. 

The correctness of the algorithm is shown. The most significant 

aspect of the algorithm is the minimal mutual exclusion and synchro

nisation constraints on the two concurrent processes "list-processor" 

and "collector". 

(2) 
The second paper, by Steele , is the winning paper of 

ACM's 1975 George E. Forsythe Student Paper Competition. It presents 

in great detail a compactifying concurrent garbage-collector/list-

processor system for fixed-length locations. No correctness proofs 

are offered. 

The overlap between those two papers and this thesis is 

small. In this thesis. Dijkstra's and Steele's papers have neither 

been used nor referenced. 

E.W. Dijkstra, L.Lamport, A.J. Martin, D.S. Scholten, and E.F.M. 

Steffens "On-the-fly garbage collection: An exercise in coopera

tion", Lecture Notes of International Summer School on Language 

Hierarchies and Interfaces, Munich, Juli 23 to August 2, 1975. 

G.L. Steele Jr. "Multiprocessing compactifying garbage collection", 

CACM, Sep. 1975, Vol. 18, No. 9. 



-IV-

TABLE OF CONTENTS 

INTRODUCTION 

Page 

1 

Chapter 

1 STORAGE MAN 
1 

1 

. 1 

.2 

THE STO 
1.1.1 
1.1.2 
1.1.2.1 
1.1.2.2 
1.1.3 

SCHEMES 
1.2.1 
1.2.2 
1.2.3 

1.2.3.1 
1.2.3.2 

1.2.4 

1.2.5 

1.2, 
1.2, 
1,2.5.3 
1.2.5. 
1.2.5, 
1,2.5. 

1.2,6 

STORAGE ALLOCATION PROBLEM 
Static allocation 
Dynamic storage allocation on a stack 
Fixed size data 
Variable-size data 
Dynamic storage allocation using a heap 

FOR HEAP MANAGEMENT 
Objective of storage reclamation 
Heap organisation 
Storage allocation under programmer 
control 
Techniques 
Programming languages implemented 
with this technique 
Storage allocation using the 
reference-counter approach 
Technique 
Programming languages implemented 
using this technique 
Storage allocation using garbage 
collection 
Technique 
Tracing and marking 
Collecting without relocation 
Compactification 
Garbage collection overheads 
Languages implemented with 
garbage collection 
Comparison between heap management 
systems 

4,1 
4.2 

1.3 THE REQUIREMENT FOR CONCURRENT 
GARBAGE COLLECTION 

5 
6 
9 
9 
9 
10 
11 

14 
14 
14 

15 
15 

17 

20 
20 

22 

22 
22 
24 
30 
30 
34 

36 

38 

40 

CONCURRENT GARBAGE COLLECTION 
2.1 THE PROBLEM 

42 
44 

2 . 2 PROCESS CONTROL 
2 . 2 . 1 The c o n c e p t u a l t o o l s 

47 
49 



rV-

Page 

2.2.2 Shared variables and invariants " 54 
Assertions concerning termination 56 
Assertions concerning the free space 59 
Invariants concerning the stack 63 
Invariants concerning the heap 72 
Shared variables and deadlock 73 

2.3 SCHEDULING OF GARBAGE COLLECTOR 76 
2.3.1 Model 77 
2.3.2 Design parameters for concurrent 

garbage collection . 83 

2.4 OVERHEADS 85 
2 . 4 . 1 Heap s p a c e o v e r h e a d 86 
2 . 4 . 2 P r o c e s s o r o v e r h e a d 86 

2 . 5 SUITABLE ALGORITHMS 88 

EXAMPLES 90 
3 . 1 A NON-RELOCATING CONCURRENT GARBAGE 

COLLECTION SYSTEM 91 
3 . 1 . 1 Da ta s t r u c t u r e s s u p p o r t e d 91 
3 . 1 . 2 Heap management 91 
3 . 1 . 3 Program d e s c r i p t i o n 92 
3 . 1 . 4 C o r r e c t n e s s p r o o f s 93 
3 . 1 . 4 . 1 I n v a r i a n t s 94 
3 . 1 . 4 . 2 O u t s t a n d i n g c o r r e c t n e s s p r o o f s 98 

3 . 2 A CONCURRENT COMPACTIFYING GARBAGE 
COLLECTION SYSTEM lOl 
3 . 2 . 1 Da ta s t r u c t u r e s s u p p o r t e d 101 
3 . 2 . 2 Heap management 102 
3 . 2 . 3 Program d e s c r i p t i o n 104 
3 . 2 . 4 C o r r e c t n e s s p r o o f s 107 
3 . 2 . 4 . 1 I n v a r i a n t s 109 

DISCUSSION 116 

4.1 FINDINGS AND CONCLUSIONS 116 

4.2 LIMITATIONS 120 

4.3 FUTURE RESEARCH 121 

FIGURES 127 



-VI-

Page 

APPENDIX A: THE LANGUAGE USED 177 

APPENDIX B: ON THE IMPLEMENTATION OF 
BRINCH HANSEN'S PROCESS EXTENSIONS 
TO PASCAL 184 

REFERENCES 188 

SAMENVATTING 191 

CURRICULUM VITAE 

L 



LEST-LOST-LAST-LISTLESSNESS DEPRESS YOU 

When too many errands aoarue 

it's useful to make out a list. 

You 're certain to lose it, it's true; 

but somewhere, the thing will exist, 

And then, when some accident brings 

the list you have lost into view, 

at least you 've a list of the things 

you've meanwhile forgotten to do. 

Piet Hein, Grooks V 



- 1 -

INTRODUCTION 

A group of programming languages, such as ALGOL 68, 

LISP, and SIMULA 67, use a technique called garbage collection 

for the run-time management of storage. The name is very descrip

tive of what the technique is all about: the executing applica

tions program consumes free storage without restraint. When it 

no longer requires a storage location, it does not attempt to re

use it, but just ignores it. The program behaves as if its free 

storage could not be exhausted. But, of course, there comes the 

point where no free storage is available any more. At this mo

ment, the program stops, and a utility, the garbage-collector, 

takes over. It regenerates free storage by finding and collecting 

the locations which the applications program has thrown away. 

The garbage is recycled and transformed into free storage. When 

it has finished, the application program continues, quite unaware 

that it had just run out of a very valuable resource (somehow an 

analogy between this process and man's ecological behaviour seems 

to suggest itself). 

Maurer (Ma 72) describes this aptly by saying ".... the 

(LISP) program proceeds 'like a jerky automobile' - every so often, 

everything stops ,,..". Depending on the size of storage in which 

the garbage has to be found, this pause can last several millions 

of central processor cycles, several seconds of real-time, and it 

can happen quite frequently if a program consumes and throws away 

its storage space at a high rate. 

Effectively, time is traded for space, and for a large 

class of applications, this is acceptable. 'Real-time' programs 

do not belong to this class. Their computation speed must be suf

ficient to keep up with the process(es) they are controlling or 

co-operating with. Knuth (Kn 68, p.412) remarks on this "We might 



r 
- 2 -

also note that garbage collection is unsuitable for 'real-time' 

applications, because even if the garbage-collector goes into 

action infrequently, it requires large amounts of computer time 

on these occasions". 

It was the increasing interest in real-time artificial 

intelligence applications such as robotics and pattern-recognition 

which in the late sixties caused computer scientists to search for 

means of overcoming this deficiency of list-processing languages. 

Bobrow (Bo 68) proposed a modification to the garbage-collector of 

a LISP 1.5 system on an SDS 940 computer. This modification was 

supposed to work incrementally as a separate process, sharing central 

processor time with executing LISP programs. The resulting system 

was expected to allow time-shared execution of several LISP programs, 

including real-time processes, with only a reduction in speed, but 

no pause during garbage collection. 

Knuth attributes this idea to Minsky and poses its solu

tion as a "moderately hard" exercise in his excellent series "The 

Art of Computer Progranmiing" (Kn 68). No trace of any further work 

on this proposal can be found in the literature. 

Barbacci et al. (Ba 71) propose a "parallel (compacting) 

garbage collection" system for a large microprogrammed LISP pro

cessor. This proposal goes into considerably more detail than the 

ones by Bobrow and Knuth. Again, there is no trace of its develop

ment or implementation anywhere in the literature. 

The author can offer no explanation for this discontin

uation of obviously promising approaches. Certainly, the need 

for a garbage collection system for real-̂ time programs has not di

minished. 

The work reported in this doctoral thesis is an attempt 

to show that the problems related to concurrent garbage collection 

can be isolated by analytical means, that the conceptual tools for 

solving them are available, and that concurrent garbage collection 

systems can be designed which function safely and efficiently. In 

order to make the results of this research of immediate practical 



- 3 -

use, two detailed examples of concurrent garbage collection algo

rithms are presented in the text. Informal proofs for the correct

ness of these algorithms are given. 

It is worth stressing that the primary contribution of 

this thesis is neither the testing of the hypothesis "concurrent 

garbage collection is feasible" nor the development of any specific 

concurrent garbage collection algorithm, but the ordered analysis 

and structured design of concurrent garbage collection systems in 

general. The objective is to demonstrate that the intellectual 

tools for this are available and that these can be employed to 

design concurrent garbage collection systems whose correctness can 

be proved without the need for any "ad-hoccery". 

The approach used by the author is entirely based on the 

"concurrent process" concept. The list-processing program on one 

side and the garbage-collector on the other are identified as con

current processes. These two processes are shown to share re

sources, namely variables. They are therefore interacting or com

municating processes. 

Denning (De 71, p.195) discusses four control problems 

of importance for concurrent processes: 

1) Determinacy - A system of processes is determinate 
if the outcome of the joint computation is indepen
dent of the relative speeds of the processes. 

2) Deadlock - A deadlock of processes can occur when 
it is possible for processes to be blocked indefi
nitely because each process holds non-preemptible 
resources requested by other processes. 

3) Mutual exclusion - This problem arises whenever two 
independent processes may require the use of a 
reusable resource, such as a variable. Each process 

' may modify the state of the resource, and therefore, 
no two processes may be using the resource at the 
same instant. 

4) Synchronisation - when the progress of one process 
depends on that of another, synchronisation is nec
essary. 



_ 4 -

These four problems are analysed for the list-processor/garbage 

collector system of concurrent processes. Solutions are provided 

which take the form of either design features or additional control 

mechanisms, to constrain the sequence of states through which the 

computation progresses, to a sequence of safe states. 

To permit correctness proofs for the solutions developed, 

a well-structured programming language is used, namely PASCAL ex

tended with concurrent statements and both simple and conditional 

critical regions as developed by Brinch Hansen (Ha 73). This nota

tion permits assertions concerning invariant relationships among 

program components to be made. 

For the purposes of this thesis, the author treats the 

synchronisation constructs used as primitives, i.e., their avail

ability is assumed. (Appendix B discusses briefly how they could 

be implemented by lower-level primitives, such as semaphores and 

P- and V-operations on these.) However, in order to test the fea

sibility of implementing the designed concurrent garbage collection 

algorithms, both examples presented have been mapped into sequen

tial PASCAL programs and executed on a CDC 6400 computer under a 

batch operating system. The concurrency of list-processor and 

garbage-collector was simulated by (almost) arbitrary interleaving 

of their execution, i.e., the concurrent garbage-collector was 

mapped into a serial one. 



- 5 -

Chapter 1 

STORAGE MANAGEMENT 

The purpose of this chapter is to discuss the garbage 

collection method in the wider context of storage management on a 

digital stored-program computer. 

The discussion is conducted in terms of individual pro

grams and their storage requirements, i.e., in the context of stor

age management performed by language compilers and their run-time 

systems. This is not to imply, though, that the storage management 

techniques discussed are not applicable to the storage management 

which an operating system must perform, e.g. of a computer's cen

tral memory or its file store. 

Starting with an abstract model of the functional inter

relation between a program and its data on one side and the storage 

in which program and data are represented during execution on the 

other, three different regimes of storage allocation - static allo

cation, classical dynamic allocation, and dynamical allocation 

using a heap - are discussed. In the interest of clarity and uni

formity of language, the terminology of the ALGOL 68 Report (Wi 69) 

will be employed wherever applicable. 

It will be shown how features of programming languages 

lead to different requirements for storage allocation. 

Garbage collection will be compared to two other tech

niques for heap management, namely, the reference count approach 

and the explicit request-and-return of storage locations in the 

applications program, 



- 6 -

1.1 THE STORAGE ALLOCATION PROBLEM 

A program is a piece of text which defines a sequence of 

actions to be performed by a computer. This sequence of actions is 

termed the program's elaboration. The actions are performed on 

internal objects in the working store of the computer. These ob

jects are instances of values and are represented by bit-patterns 

in the computer's working store. 

A program can be parsed into external objects (operators, 

declarations, identifiers, etc.). "A + 3 " for example consists of 

three such external objects, viz. the identifier A, the constant 3, 

and the operator +, 

External objects may possess internal objects (Fig. 1 - 1). 

E.g., the external object (denotation) 3 possesses the internal val

ue 'three' which is some bit-pattern which may differ from comput

er to computer. 

An internal object has three attributes: 

(1) it is of some mode, 

(2) it is an instance of a Value of that mode, 

(3) it has a location 

The mode of objects is characterised by the operations 

which may be performed on them, i.e., in which operations objects 

of this mode may be used as operands. For example, the operations 

"successor of", "addition", and "multiplication" are defined for 

natural numbers, but not for truth values. 

Several external objects may possess an instance of the 

same value, i.e., the mapping "possesses" does not have to be re

versible: a*- the same time, the value "three" (a specific bit-

pattern) can be possessed e.g. by a constant TRES and by another 

constant III. 

An internal object is to be found somewhere in the com

puter's store, namely at its location. 

In addition to primitive objects (constants) such as 



- 7 -

characters, integers, or strings, there exists a group of internal 

objects which as their values possess references to instances of 

other values. Such objects are called names. Names are effective

ly an abstraction of the concept "address" of real computer memories. 

Whereas the relationship "to possess" exists between an 

external and an internal object, the relationship "to refer to" 

exists between two internal objects, viz. the name and its value. 

Names themselves can be reference objects (values) of other names. 

The action of making a name refer to a value is called 

assignation. in ALGOL 68, this action and the resulting reference 

are represented by the := sign. A pair (name, value) of objects 

between which a reference exists is called a variable. The ref

erenced object is called the variable's content. The relation be

tween the name's and the value's notation can also be represented 

by the := sign (Fig. 1 - 2). This relation can be changed by an

other assignation, and this explains the term "variable". 

In a program, variables are distinguished from each 

other by identifiers which are introduced by declarations. In 

general, the elaboration of such a declaration 

- generates an internal object in memory, i.e., allo
cates storage, 

makes an identifier possess the name of the object 
generated, 

gives the variable a type, i.e., the set of values 
it may refer to, and 

initialises the variable's content. 

How then is a variable represented in a computer at pro

gram execution time? Computer memory is organised into equally 

sized cells, called words, bytes, or bits. The objects of dif

ferent modes may however be of different sizes. Integer objects 

require more memory space than character or boolean objects. One 

must therefore distinguish between the addressable units {cells) 

of real memory and the space occupied by objects, their locations. 



- 8 -

Each location has a unique (nxamerical) address identifying it, its 

name. 

Fig, 1 - 3 shows a snapshot of the memory representation 

of a piece of an ALGOL 68 program. The snapshot is taken after the 

declaration of three variables of different modes, char, int, and 

bool which are possessed by the identifiers "FIRST INITIAL", "AGE", 

and "OVERWEIGHT" and which are assigned values. The memory snapshot 

shows a memory organised into eight-bit bytes, 

On this (specific) computer, a character object requires 

one byte, an integer object six bytes, and a boolean object less 

than one byte, namely one bit, 

The locations referenced by the variables with the iden

tifiers FIRST INITIAL, AGE, and OVERWEIGHT have addresses 999, 

1000, and 1006, respectively, 

The user of a high-level language can effectively disre

gard the storage characteristics of the computer his program will 

finally be executed on. He programs for a virtual store (Ha 73, 

p.159). 

This virtual store is the union of all variables he uses 

in his program. Thus, the virtual store is the mapping of identi

fiers into values: 

VIRTUAL STORE : IDENTIFIER -̂  VALUE 

Real (i.e. physical) store, on the other hand, consists 

of memory cells identified by numbers called addresses. Each of 

these cells can have a content, its value. Real store can there

fore be regarded as the mapping: 

REAL STORE : ADDRESS -> VALUE 

Before a program can be executed, memory cells in real 

store must be assigned to its identifiers. The required mapping 

is called storage allocation: 

STORAGE ALLOCATION : IDENTIFIER -> ADDRESS 

Storage allocation is done partly at program translation 



- 9 -

time [static allocation), and partly at execution time {dynamic 

allocation) . 

Different programming languages use different virtual 

store concepts. Therefore, different systems to simulate the 

various virtual stores on physical storage devices are required. 

In the following, three different types of storage allo

cation will be discussed. Terminology and approach of this dis

cussion are based on publications by Wodon (Wo 69), Griffiths 

(Gr 74), and Bauer et al. (Ba 71a). 

1.1,1 Static allocation 

Static allocation is storage allocation at program trans

lation time. At this time, the address that each object will occu

py at run-time is fixed. For this to be possible, it is necessary 

that both the number and the size of objects are known at transla

tion time, and that only one instance of each variable exists dur

ing execution, E,g. FORTRAN variables satisfy these requirements, 

FORTRAN program modules - main program and subroutines -

are translated so that they can be stored in a contiguous area in 

memory, together with all locations for local variables and inter

mediate results (Fig. 1 - 4). 

The life-time of a variable in FORTRAN begins with the 

loading of the program module it is contained in and ends with the 

completion of program execution. Thus, all functions of storage 

allocation to variables at run-time and subsequent freeing of stor

age are left to the loader and the operating system. The program 

proper does not have to provide any storage-management functions. 

1.1.2 Dynamic storage allocation on a stack 

1.1.2.1 Fixed size data 

This storage allocation method is a simple extension of 

the static allocation scheme. Whereas static allocation is possi

ble for languages where the scope of variables does not overlap, 



- 10 -

the allocation approach to be discussed here is applicable to lan

guages which permit nested scopes. ALGOL 60 is the classical 

example, 

Nested scopes are represented statically by a nested 

block structure of a program (Fig. 1 - 5 ) . At translation time, 

variables are bound to the innermost declaration of matching no

tation. 

As we are dealing with fixed size data at the moment, the 

amount of storage required for the locations of a given block can 

be determined at compile time in the same way as in the case of 

static allocation. 

However, the number of block instances at run-time 

cannot be known at translation time. A procedure in ALGOL 60 may 

call itself recursively, giving rise to a new block instance for 

each nested call. 

As all scopes are entered and left in a last-in/first-

out fashion, the classical mechanism used for storage allocation 

is a stack-regime: every time a new scope is entered, a new block 

of storage of fixed length, the activation record, is allocated on 

a stack. Upon scope-exit, this block is de-allocated as a whole 

by just resetting the stackpointer. The stack thus allows a contin

ual reutilisation of the available space. The possible number of 

variables in an ALGOL program is therefore theoretically unlimited 

by physical storage for the associated locations. 

1.1.2.2 Variable-size data 

The two schemes discussed so far fix the size of any 

variable's location at program translation time and are therefore 

only applicable to data-sets with objects of fixed {. r at least 

bounded) storage requirements, 

There are two classes of modes, however, whose location 

size is unbounded, namely arrays with dynamic bounds and recursive

ly defined records, 



- 11 -

Example (a) Consider the following ALGOL 60 program 
segment: 

real array NUMBERS[inint:inint] 

Where "inint" is an integer function which returns an 
input integer number. The location size required for 
variable NUMBERS cannot be bounded at compile-time and 
can vary between one and MAXINT times the size of one 
real location. (MAXINT = the maximum integer value on 
the specific computer.) 

Example (b) SNOBOL permits the concatenation of text 
strings such as 

C = A B 

The location size for C cannot be bounded, as it depends 
on A's and B's length. 

The solution to this allocation problem is to separate 

the problem of access to a location from that of providing space 

for it. 

At compile-time, only space for a pointer to the variable-

size location is allocated. At run-time, the location is provided 

out of a pool of free storage, as soon as its size is known. 

For blockstructured languages which prohibit changing 

the size of a location inside a block, the storage required for 

the variable-size locations can be allocated and freed together 

with the activation records. Thus, the two mechanisms for allo

cation of space for fixed and for variable-size locations can be 

combined into one stack-regime. 

1,1,3 Dynamic storage allocation using a heap 

When the size of a location can change every time a new 

value is assigned to a variable, as in the case of SNOBOL variables, 

storage for the location has to be allocated at least every time 

the new object requires more space than the old one. This then 

happens in an order which is entirely determined by the flow 



- 12 -

of control in the program and is no longer a last-in/first-out 

process. The free storage for these allocations cannot be managed 

as a stack of continuous memory cells, but in a random-access 

fashion. Such a free storage area is called a heap. It consists 

of two types of cells, free cells and cells which are in use. 

Example: SIMULA 67 has a mode text whose objects can be 
of (almost) any size. After the execution of the 
following program segment 

text THIS ,IS,IT; 
THIS :-COPY("FIRST"); 
IS :-COPY("SECOND"); 
IT :-COPY ("THIRD") ,-
IS :-COPY("LAST TIME"); 

the storage allocator has allocated space for four text 
locations of different size, but only three locations are 
in use. 

Another language facility which requires a heap storage 

allocation regime is that of name variables (pointers) which may 

refer to anonymous (undeclared) variables. As already discussed, 

variables are also objects which may be referred to by names (viz. 

names of names). 

ALGOL 58 is one language which permits the declaration 

of such name variables which can be made to refer to anonymous 

variables by assignation. 

Example: 

ref ref person friend = heap ref person; 
friend := heap person := (male, "Jim"); 
friend := heap person := (female, "Joan"); 

In this example, a name variable is declared first, and 

its storage can be allocated by the compiler. Then, first one and 

then another anonymous variable is generated and assigned to 

"friend". After the elaboration of the third line of this program 

segment, only the last anonymous variable is still accessible, name

ly via the name variable "friend" which references it. The first 

one has been lost. 



- 13 -

This simple example shows the consequences of introducing 

name variables and anonymous variables into a language: 

(1) As anonymous variables can be generated during a 
program's elaboration in any number, the compiler 
cannot perform the storage allocation for these. 

(2) As anonymous variables can be generated and lost 
in an order which cannot be deduced from the pro
gram text, i.e., independently of the entry to, 
and exit from blocks, procedures, etc., the stor
age allocation is no longer a last-in/first-out 
process. 

Because of (1), any computation yielding a variable must 

lead to an explicit or implicit call to a storage allocation (con

structor) function, such as heap in ALGOL 68. 

The appropriate storage allocation regime for anonymous 

objects which may become inaccessible is the use of a heap. 

Fig. 1 - 6 shows an example of how variables are gen

erated and lost. a) is the LISP program which has been executed. 

The constructor function CONS was called three times, i.e., three 

variables were generated, b) shows the resulting list. It is ob

vious that only one of the three variables is referenceable via 

RESULT. The others cannot be reached anymore, they have become 

garbage. c) indicates what happened to the heap: three locations 

(addresses 100, lOl, and 102) were taken out of the free storage 

pool. (Before the execution of the program, the FREE pointer was 

at address 100.) 

In order not to lose the unreferenced locations in the 

heap, heap management must consist not only of storage allocation, 

but also storage reclamation. 

There are two basic approaches to heap management, viz. 

leave it to the programmer, and 

provide it automatically ("behind the scenes", like 
the ALGOL 60 stack mechanism). 

The automatic scheme can be implemented using either the 

reference count or the garbage collection method. 



- 14 -

The next section addresses itself to a description of 

these techniques and to their application in various implementa

tions of list-processing and general purpose languages. 

1.2 SCHEMES FOR HEAP MANAGEMENT 

1.2.1 Objective of storage reclamation 

Storage reclamation in the heap may be done for any one 

of the following reasons: 

a) Release of unreferenced storage locations. This is 
to combat the loss of memory cells. 

b) Reduction of heap fragmentation. When locations of 
different size are allocated from the same heap, 
the allocator possibly cannot allocate a location 
of size X, although the total number of free cells 
in the heap is in excess of x. This is possible 
because of fragmentation of the free storage area. 

c) Localising and linearising references. In a com
puter with large virtual memory, the danger of ex
hausting the free locations in the heap is very 
small. However, as the program execution proceeds, 
the active locations of the heap will be spread out 
over more and more pages. This leads to an increase 
in page swapping and consequently to degradation of 
system performance. This can be counteracted by 
compacting the active locations into the smallest 
number of pages and by linearising the records in 
the same process. Linearisation puts locations 

and locations referenced by them into one page, if 
possible. If anything is known about the most fre
quent access patterns - in LISP, lists are scanned 
in CDR direction much more frequently than in CAR 
direction - this infonnation can be used in opti
mally placing locations in the relocation process 
required. 

1.2.2 Heap organisation 

A heap can be implemented as one or more contiguous areas 

in storage. For the purposes of this section, the physical storage 



- 15 -

layout is of no significance. The heap will be considered as one 

area. 

The heap consists of a set H of storage locations. It 

can be divided into three mutually disjoint subsets, viz. 

The free space F, which is the set of all storage 
locations which are known to be free. 

The active space A, which is the set of all cells 
which are referenced by program variables, and 

The garbage G, which is the set of all allocated, 
but inaccessible locations. 

The relationship between these sets can be expressed in 

set-theoretical terms as 

H = FUAUG (1.2.1) 

and FflA = { } (1.2.2) 

FHG = { } 

AflG = { } 

The garbage and active space are of necessity intermixed. 

The free space can be either a list of free locations or one single 

location. 

Per definition, the free space is addressable from one or 

more pointer variables, the active space is addressable from vari

ables in the user program, and the garbage is not addressable from 

any variable. 

1.2.3 Storage allocation under programmer control 

1.2.3.1 Techniques 

Under this regime, the programmer requests locations from 

the free portion of the heap and returns locations to it by explic

it calls to utility routines in his program. The programmer can 

only return locations which are referenced by variables in his 

program. From the definition of G as the set of all unreferenceable 



- 16 -

locations in the heap, it follows that this system only works if 

locations cannot become inaccessible, i.e., G = { }. Otherwise, 

the set G would grow during execution, and the storage allocator 

could run out of free locations to allocate, i.e., the program 

would finally choke in its own garbage. 

On the other hand, the programmer does not have to re

turn locations as soon as he does not require them any more. If 

he wants to, he may do wholesale de-allocation of a whole set of 

locations at once. Thus, at any one time, set A is the union of 

two subsets, viz. A , the set of all required locations, and A , 

the set of all cells which are referenced by the program, but no 

longer required. Thus, the basic relationship (1.2.1) for the 

heap becomes 

H = A UA UF (1.2.3) 

r g 

for the programmer-controlled allocation scheme. 

The utilities required for this allocation system are 

fairly simple to implement. Addressability of locations is main

tained by giving every location an overhead location which con

tains a link field and a size field giving the size of the total 

location. The free space is referenced by a pointer FREE SPACE. 

Initially, the whole of the heap is one contiguous block of free 

storage. Every time the program requires a location of a certain 

size, it requests it by calling a function ALLOCATE with the size 

of the location as an explicit (or implicit) parameter. The loca

tion is taken off the free block, and a pointer to it is returned 

to the calling program. Conversely, the program returns a location 

by a call to a procedure FREE with a pointer to the location to be 

returned as a parameter. The location, with its size field un

changed, is linked to the list of free locations. 

Fig. 1 - 7 shows a mini-heap with 10 cells. (a)Initially, 

all of it is free space, and the size field in the overhead loca

tion has the value 10. The link field points to NIL. (b)ALLO

CATE is called with a request for a location of four cells. The 

location is split off the free block and is referenced by user 



- 17 -

program variable X, (c)FREE (X) is called, with (hopefully) the 

size field of X at 4, The returned location becomes the first in 

the list of free locations, linking to the size-6 block via its 

link field, (d)ALLOCATE (5) is called. The freelist is searched 

for a location with at least 5 cells. The first location does not 

qualify, but the second one does, so the five cells are taken out 

of this block, and a location of size 1 is left behind. 

The simple example shows clearly the necessary searching 

of the freelist and splitting of blocks for a system supporting 

variable-size locations. 

If all locations are of some constant size, this sear

ching and splitting can be avoided, and the size field is no lon

ger required. The freelist then functions as a linked stack, with 

locations being allocated from, and returned to, the top of the 

stack. 

If, however, variable-size locations must be catered 

for, the strategies for searching and splitting are important to 

control both processor overhead and fragmentation of the freelist, 

The set of options available includes ordering the freelist by size 

or address,and deciding on which block to split by either the first-

fit, best-fit, or worst-fit approach, 

Knuth (Kn 68 pp.435-461) gives an extensive analysis and 

comparison of these various options and their consequences, 

The programmer-controlled storage allocation system can 

be very efficient in terms of run-time. However, the price for 

this efficiency is that the burden of keeping track of references 

is entirely on the programmer. Returning locations to free store 

which are still referenced by program variables can be disastrous. 

Such errors are very difficult to find, as a program can continue 

running after the error apparently error-free, until the returned 

location is allocated again. 

1.2.3,2 Programming languages implemented with this technique 

The first widely used languages implemented using pro-



- 18 -

grammer-controlled storage allocation were IPL-V (Ne 60, Ne 65) and 

FLPL (Ge 60). They require the heap-regime because they are list-

processing languages (FLPL is not quite a language, but a set of 

FORTRAN subroutines) and as such support the dynamic generation of 

names. 

IPL and FLPL attempt to assist the programmer in remem

bering which locations are accessible and required by the program 

in the following way: each item belongs to one and only one list. 

If an item in a list belongs to that list, an indicator bit is 

set. Only items belonging to a list may be erased (freed) by that 

list. 

A more recent system for programmer-controlled storage 

allocation is the AED free storage package (Ro 67), It is also 

the most extensive scheme of this type, 

The AED package has three different strategies for free-

space management, namely "special strategy", "regular strategy", 

and "garbage-collecting strategy". Free space is broken up (accord

ing to programmer specification) into several "free zones", each 

with its own strategy. 

"Special" caters for locations ("beads" in AED terminol

ogy) which are all of the same size. 

"Regular" maintains a list of free locations in the order 

of increasing size. It is to be used for zones in which many re

quests for locations of various sizes are made and which have a 

high frequency of allocation and freeing. 

"Garbage-collecting" is also for providing locations of 

various sizes, but it maintains the freelist in the order of in

creasing addresses. It always merges freed locations which are 

contiguous into larger locations. The name "garbage-collecting" 

is an obvious misnomer: no garbage is collected, only fragmenta

tion is reduced. 

Ross claims that the AED package is more efficient in 

storage and processing time than the reference count or automatic 

garbage collection approaches. Even if this were so (and it is 



- 19 -

questionable for both the "garbage collecting" and the "regular" 

strategies), the programmer efficiency must be considered: AED 

has 20 different procedures with up to 5 parameters each for 

establishing zones, freeing, and allocating. In addition, the 

programmer has a HELP procedure to supplement these facilities. 

This interface could almost be called baroque. It burdens the 

programmer with too much low-level detail and is likely to cause 

many programming errors which are difficult to detect. 

The most important language implemented with programmer-

controlled storage is PL/1. 

PL/1 has six storage classes, viz, 

1. 

2. 

3. 

4. 

5. 

6. 

Internal static 

External static 

Automatic 

Internal controlled 

External controlled 

Based 

Objects of classes 4 to 6 are references: the declaration 

of a variable of such class declares an unbounded set of references. 

Storage is allocated for these locations by calls to ALLOCATE. 

For CONTROLLED "variables" (PL/1 terminology), only the 

reference created last is denoted by the identifier declared in 

the program and is thus a true variable. PL/1 controlled variables 

can be deleted by calls to FREE. The preceding reference (if any) 

then becomes a variable again, even if it was otherwise inaccessi

ble. 

CONTROLLED Storage thus functions as a stack of referen

ces. 

BASED does not have the underlying stack. Instead, each 

call to ALLOCATE causes a reference to be generated and assigned 

to a POINTER variable (these are references ranging over references). 



- 20 -

1.2.4 Storage allocation using the reference-counter approach 

1.2.4.1 Technique 

This technique, and the garbage-collection technique de

scribed in the next section, provide for automatic reclamation of 

unused storage. "Behind the back" of the user program, unreferenced 

cells are returned to free space. The prerequisite for any such 

automatic system is that the reclamation system must be cognizant 

of the modes of the objects in the heap, at least to the extent 

that it can distinguish pointers from non-pointers and that it can 

find the size of all objects. This is only possible if the user 

program follows a strict discipline in using locations properly. 

E.g. , pointers may not be stored temporarily in non-pointer loca

tions. 

The reference-counter approach is simply that each list 

has a special header-cell, i.e., a location which has an overhead 

in which a counter field is stored. This counter field is used 

for keeping track of how many locations reference this location. 

This is the "reference count". Initially, a program is given a 

fixed number of empty lists. The headers for these lists are used 

by the storage-management system to identify all locations in use 

by that program. To these lists, new locations may be added, and 

the resulting lists modified, so that list structures of any size 

and complexity are possible. 

When a list is created and attached as a sublist to an

other list, its reference count is initialised to 1. Subsequently, 

whenever it is attached to another list, its reference count is 

incremented, and when it is detached, it is decremented. 

Every time a list is detached from another list, the 

system checks if its reference count is down to zero. If yes, the 

list is no longer referenced by the user program and may be returned 

to free storage. Before this is done, however, the lists refer

enced by this list must have their reference count decreased, as 

they are being detached. The process of checking and freeing thus 



- 21 -

proceeds recursively through the referenced sublists. 

Fig. 1 - 8 shows an example of a list-structure with ref

erence counts before (a) and after (b) a DELETE LIST operation. 

ROOT references the master list which, in addition to its header 

(identified by "H"-tag), has two elements which reference two other 

lists initially. To detach the sublist whose header D is, one 

executes DELETE LIST (D). This decreases the reference count (RC) 

of that list to O, and the list can be returned to free storage. 

But first, the list's elements are traced. E and F both reference 

G, so G's reference count is decremented twice. 

The main advantage of the reference count technique is 

that it works incrementally, i.e., storage reclamation is contin

uous, without peaks of processor activity for reclamation. At 

all times, for non-recursive lists the set G is empty, and 

H = AUF (1.2.4) 

holds. 

For recursive lists, however, this is not true: their 

reference count is never decreased to zero, and they become in

accessible garbage, 

As 

F = H\(AUG) (1,2,5) 

the free space decreases in size, even if A maintains the same 

number of elements. This is a severe limitation of the reference 

counter technique, 

Another disadvantage is the relatively large field required 

for the reference count; any undetected overflow may cause erroneous 

return to free space of the associated list. If overflow is de

tected, however, the list can never be reclaimed safely. 

The processor time required for maintaining the reference 

count is proportional to the number of list attachments and detach

ments. So, even if no storage is being allocated or de-allocated, 

there is a continuous processor overhead. 



- 22 -

Also, every pointer assignment operation requires access 

to both the location to which the assignment is made and the loca

tion referenced. In a virtual memory system, this introduces addi

tional page swapping. 

1.2.4.2 Programming languages implemented using this technique 

The reference counter technique was first described by 

Collins (Co 60) in his article on the REFCO I free-storage package. 

The most widely known system using the reference counter 

method is SLIP (We 63). SLIP is a list-processing package, embedded 

in FORTRAN, which supports two-way lists. 

To overcome the method's disadvantage of not being able 

to recover recursive lists, Weizenbaum designed a SLIP-implementa-

tion combining both the reference-count and the garbage-collection 

techniques (We 69). 

1.2.5 Storage allocation using garbage collection 

1.2.5.1 Technique 

Garbage collection has two functions: 

to separate the unreferenced cells (the garbage) 
from the active cells, and 

to reconstitute the free store. 

Accordingly, garbage collection has two phases, marking/ 

tracing and collecting. 

Starting with (1.2.1), we see that the garbage can be iden

tified by completely determining the set of active cells and per

forming the set difference 

G:= H \ F \ A (1.2.6) 

The set of free locations is always known, be it in the form of 

a free list or of a contiguous free area. The set of active cells 

can only be found by tracing and marking all locations which can 



- 23 

be reached from one or more (fixed) root pointers, such as a stack 

of pointers into the heap. The mark is effectively a binary ref

erence counter which, however, is only updated at garbage collection 

time. 

Let F be the set of free locations at the start of the 

marking phase, G the set of garbage at that time, and F the set 

of free locations after the collection. Then the collection phase 

can be described to perform the operations 

^A 

°B 
H 

' • -

: = 

: = 

B B 

{ } 

A U F ^ 

Here is the whole garbage collection principle in a few 

lines of PASCAL: 

"The simplest collector" 
type LOCATION = LOW..HIGH; 

"lower/upper address of heap" 
var HEAP : array [LOCATION] of CELL; 

ALL, MARKED, FREE : set of LOCATION; 
ROOT : LOCATION; 

procedure MARK (PAR : LOCATION); 
begin if not PAR in MARKED then 

begin MARKED := MARKED + [PAR] ; 
"add location to set of marked cells" 
MARK (HEAP[PAR].SUCCESSOR) 
"mark locations referenced from HEAP[PAR]" 

end 
end; 

begin MARKED:=[ ] ; 
"the empty set" 
ALL:= [LOW..HIGH] ; 
"the set of all heap locations" 

"The marking phase:" . 
MARK(ROOT); 
"MARKED = A, the set of all active cells" 

"The collecting phase:" 
FREE:= ALL - MARKED 
"F = H\ A = F U G " 

^ B B 
end 

The marking algorithm does simple recursive tracing of 

the list referenced by ROOT, marking locations as they are encoun-



- 24 -

tered and then marking their successors in the list, (All pointers 

in cells are assiomed to be pointers into the heap,) 

In the absence of hardware to perform the set difference 

for large sets which is required in the collecting phase, this is 

simulated by linearly scanning through the heap and testing set 

membership in MARKED for each element individually, 

Thus: 

for I:= LOW to HIGH do 

if not I in MARKED then FREE := FREE +[l] 

The algorithm just shown results in an "Emmentaler" 

heap - full of (free) holes. If this is not desirable, e.g., because 

of the heap sharing a contiguous storage area with a stack, the 

free locations must be compacted in the desired direction. This 

requires relocation of some or all active cells and is done using 

the set of addresses of marked cells available after the marking 

phase. 

This discussion of the garbage collection principle 

makes it sound very simple. But as usual, "the devil is in the 

detail". In the next sections, ways of implementing the various 

phases of a garbage-collector will be compared, and the inherent 

difficulties highlighted, 

1.2,5,2 Tracing and marking 

As was seen above, the whole active list-structure in the 

heap must be traced in order to establish set A, the set of all ac

tive cells. The set is represented by a boolean array, the garbage-

collector marks. 

These marks can either be associated with the individual 

cells making up a location (cellmarking) or with the location as 

a whole (location marking). 

Cell marking is necessary when sub-locations of a loca

tion can be referenced. This is the case with ALGOL 68 where every 

sub-location in turn may be a location. Cell marking requires one 

bit of storage per active cell. This can be provided either in the 



- 25 -

cell itself or in a separate bit-table. 

In location marking, one marks a location as a whole. 

It is possible in languages without referenceable sub-locations 

(such as SIMULA 67 and LISP).) Every reference to a record in such 

languages is to the beginning or another fixed point of the record's 

location and thus only complete records can become inaccessible, 

not individual fields in the records. Location marks can be stored 

either in a location's overhead cell or again in a separate bit-

table. 

The decision on where to store the garbage-collector marks 

has to take into account both storage space considerations and 

ease of access to the mark bits. 

Example: In computer systems with virtual memory, the 
inspection or setting of a mark-bit in a record causes 
a page-fault if the record is not in central ("real") 
memory. Storing the mark-bits in separate bit-tables 
rather than with the records themselves leads to greater 
address locality; therefore, less page-faults are caused 
by the inspection or setting of mark-bits. In the ideal 
case, the bit-tables can stay in real memory throughout 
a collection, and operations on them do not increase the 
page-fault rate at all. 

The higher the density (e.g., in mark-bits per word) 
of mark-bits in the tables and the lower their average 
density in the records in the heap, the greater is the 
increase gained in address locality. 

Often, one can use otherwise unused bits in locations as 

mark bits. 

Example: Addresses on the DEC PDP-11 minicomputer are 
byte-addresses. Word-addresses on this computer are 
always even. Thus in a PDP-11 word there is space for 
a pointer to a word-sized location and a marking bit. 

The task of tracing is equivalent to that of finding all 

nodes in a general directed graph. Marking and tracing are done 

together, i.e., as soon as a node is encountered for the first time, 

it is marked, and then its successor list is marked. Knuth (Kn 68) 

termed this "preorder" graph traversal. Marking has a double func

tion, namely to indicate set-membership in the set of active cells 

and to prevent the graph-traversing tracing algorithm from entering 



- 26 -

an infinite loop, when tracing a list-structure with cycles. 

The tracing algorithm must be applied to every variable 

referring to a location in the heap. Also, non-declared referen

ces which are stored as intermediate results must be traced. An 

additional task of the tracing/marking phase is therefore to find 

all references to objects in the heap. 

Example: Hill (Hi 74) describes the storage administra
tion of the Munich ALGOL 68 implementation in which all 
objects on the heap can be accessed by reference chains 
which originate in static data areas in the run-time 
stack. To find all static areas, all active blocks and 
procedure calls in the stack must be located by follow
ing the dynamic chain for procedure-calls. For each 
static area, the structure is known at compile time. 
This structure is represented in a storage allocation 
list which indicates whether an item is a pointer and if 
not, how long it is. Thus, all pointers into the heap 
can be found. 

For tracing to be possible, the tracing algorithm must 

be able to detemnine the size and to find the pointers in an active 

location it has encountered. There are two basic approaches to 

storing this information (Wo 59). One is to store the information 

in the location itself. The tracing algorithm then has to inter

pret this information for each location as it proceeds through the 

list structure. This is called interpretative tracing. 

Example: Thorelli (Th 72) gives the following general 
interpretative tracing algorithm: 

begin pointer p; 
AUX:= empty list; 
p:= root; 

L: mark node (p); 
case node type (p) of_ 

(Insert the elements of node (p)'s succes
sor list in AUX) 

end; 
while AUX ^ empty list do 
begin p:= next element from AUX; 

if node (p) not marked then goto L 
end 

end 



- 27 -

This algorithm uses an auxiliary list AUX of addresses 
of nodes yet to be traced. Each node carries its type 
information, and this is interpreted in the case state
ment. 

The other method is to generate at compile time as many 

recursive tracing routines as there are modes in the heap. The in

formation on size and structure of locations is then contained in 

the tracing routines. For this to work, pointers must be typed, 

i.e., only refer to one type of object. This is the case in 

ALGOL 58 and SIMULA 67, but not in PL/1 where pointers can point 

to (almost) anything. 

Example: Here is a simple-minded recursive tracing algo
rithm in SIMULA 67: two classes are defined, one con
taining two pointers, and the other one pointer. Each 
possesses a routine TRACE. 

begin 
class A; 
begin ref (A)APTR; 

ref (B)BPTR; 
boolean MARKED; 
procedure TRACE; 

if not MARKED then 
begin MARKED:= true; 

if BPTR =/= none then BPTR.TRACE; 
if APTR =/= none then APTR.TRACE 

end 
end; 

class B; 
begin ref (A)APTR; 

integer I; 
boolean MARKED; 
procedure TRACE; 

if not MARKED then 
begin MARKED:= true; 

if APTR =/= none then APTR.TRACE 
end 

end; 

comment let P be the base pointer to some list-struc
ture containing A and B objects; 

P.TRACE 
end 

It can be seen that all information on where the pointers 
are and how many is written into the two (different) TRACE 
routines. 



- 28 -

A major problem with any marking algorithm for garbage 

collection is that it has to operate under a storage constraint. 

When it is applied, i.e., when the garbage collector is called, 

storage is at a premium. 

In tracing branched lists, the marking algorithm has to 

keep track of branch points encountered. For this, it requires an 

'amount of storage which depends on the level of nesting in the 

list-structure, i.e„, the maximum number of branch points in a path 

from the list root to any terminal node. 

Recursive marking algorithms store this information in 

the form of procedure return points, one for each branch point 

whose successor list is being traced. Naturally, this is done on 

a stack, the size of which depends on the structure being traced. 

Interpretative algorithms store the same information as 

sets of addresses of nodes which have been encountered, but whose 

sublists have not yet been traced. Unlike recursive tracing, inter

pretative tracing offers complete freedom concerning the order in 

which nodes are taken out of the set of untraced nodes. Different 

disciplines for this extraction lead to different marking orders. 

Example: If the set AUX in the interpretative algorithm 
shown above is managed as a stack (LIFO), it marks the 
nodes of a tree in depth-first order. Using queue dis
cipline (FIFO), it marks in breadth-first order (Th 72), 

Several methods have been developed which permit tracing 

of virtually any list structure which has any number of branch

points, despite the storage constraint. 

Van der Mey (Me 71) has developed a LISP-variant with 

compact lists and variable-length atoms. Where possible, a cell's 

successor follows it directly in memory, thus making a pointer to 

it unnecessary. Only where this is not possible, a separate poin

ter, a link-cell, is used. As link-cells in turn may point to 

other link-cells, equivalent lists may contain differing numbers 

of link-cells. A list with the minimum possible number of link-

cells is called compact. 



- 29 -

The garbage-collector of this system relocates all refer

enced cells towards one end of the heap in order to regenerate 

non-fragmented free space. In doing so, it also compactifies non-

compact lists by removing redundant link-cells. The marking algo

rithm works recursively, using the list-structure to store the re

quired stack and therefore not requiring any additional memory 

space. 

Similarly, all other recursive processing in van der Mey's 

system uses this list-stacking for storing branch-points. To mark 

modified nodes, three mark bits are used. 

Schorr and Waite (So 67) describe an interpretative tech

nique which moves down a list, marking each cell as it is encoun

tered, and reverses the pointers followed. In the downward scan, 

all sublists are ignored. The tracing,then proceeds backwards, 

following the reversed pointers (and restoring them to their ori

ginal values) until a branch node is found. Then, for the sub-

list (s) referenced by this, the same process is repeated. Thus, 

no space overhead is incurred for storing the addresses of untraced 

branch-points. (This is a form of the general non-recursive algo

rithm given above, using stack discipline for the set AUX.) 

Cheney (Ch 70) and Arnborg (Ar 72) have described non-

recursive algorithms which perform tracing and at the same time 

copying of active cells into successive locations in a separate 

area. The copied sublists are then scanned in queue-discipline 

and any unmarked cells referenced by them are also marked and 

copied. Here, the copied structure itself serves to store the set 

of all untraced branch-points. 

Van der Mey and van der Poel have developed a pragmatic 

method to limit the stack size required for recursive tracing. It 

makes use of the fact that in LISP, CDR chains are typically much 

longer than CAR chains, and that the maximum length of CAR chains 

in "normal", non-degenerate list structures is of the order 50 ... 

100. Thus, their technique marks iteratively in CDR and recur-

sively in CAR direction, requiring only a stack of 50 ... lOO 



- 30 -

elements for return addresses. 

General marking algorithms have been described in great 

detail by Knuth (Kn 68). 

Branquart (Br 71) and Wodon (Wo 71) give excellent dis

cussions on tracing methods in ALGOL 68 garbage-collectors. 

1.2.5.3 Collecting without relocation 

After the marking phase, all active locations are marked. 

All unmarked locations are therefore not in use and must be recon

stituted into free storage. 

If locations of only one size are supported (as in LISP 

1.5) and the heap resides in its own fixed memory area, the free-

space can most economically be organised as a linked list. During 

the collection phase, all unmarked locations must first be found, 

and then added to the list. 

Depending on how the mark bits are stored, the search 

for unmarked locations is a linear scan through either a bit-table 

or the heap. Whenever a free location is found, it is linked into 

the freelist. 

1.2.5.4 Compactification 

Systems which maintain free cells as a contiguous area 

in memory require compactifying garbage collection. In a system 

where a contiguous stack and a heap share a block in memory, gar

bage collection must be initiated when stack and heap bump into 

each other. Regardless of whether the system supports one or sev

eral sizes of locations, the heap must be compacted into a con

tiguous area away from the stack. Thus, a compaction phase instead 

of a collection phase follows marking. 

In a system with variable-size locations, one may defer 

compactification until the blocks on the free list are all too 

small to satisfy a request for allocation of a location of given 

size, i.e., until fragmentation of the heap has become unacceptable. 



- 31 -

Such systems have a collection phase and a separate store collapse 

phase which may be run less frequently than the collection phase. 

Again, when store compaction is run, it follows a marking phase. 

In one general type of compactifying algorithm, the compaction 

phase has three sub-phases which follow each other, viz. 

planning of new addresses for location to be moved to, 

updating of each pointer to the planned address of 
the object it references, and 

relocating of locations to their planned addresses. 

Haddon and Waite (Ha 57 ) and Wegbreit (We 71) have de

scribed this type of compaction in great detail. Its greatest 

disadvantage is its high processing overhead. A main cause for 

this is the second tracing of all active cells which is required 

in updating all references. 

A more time-economical type of compaction algorithm has 

been reported by Fenichel and Yochelson (Fe 59) , Cheney (Ch 70),, 

and Arnborg (Ar 72). It avoids the re-tracing sub-phase in the 

compaction phase by relocating locations as soon as they are en

countered (during marking) for the first time. 

The principle is quite simple. Instead of using one heap, 

this algorithm works with a circular ring-buffer of two semispaces, 

the current semispace, which is the currently active heap, and the 

future semispace, into which active cells are copied. When collec

tion is complete, the two semispaces switch their roles. 

For each base pointer into the heap, the first location 

referenced is copied to the address denoted by NEW (initially, this 

is the start of the future semispace), where NEW is the pointer to 

free space in the future semispace. Thus, the top level of a list 

has been copied. Then, a pointer SCAN scans through the pointers 

(if any) of the top level, copying referenced cells as encountered. 

When SCAN reaches NEW, the list referenced by a base pointer has 

been copied. 

Each time a location is moved, the old location is changed 



- 32 -

into a link cell to the new location. This permits updating moved 

locations by replacing references to the old location by the ad

dress of the moved record, using indirect addressing, 

Arnborg has described this algorithm as follows: 

begin SCAN:=NEW:=START[NEW SEMISPACE]; 
for each base pointer do 

if MARKED[location referenced] 
then update base pointer 
else 
begin move location referenced to NEW; 

mark; 
make old location link cell to NEW; 
move NEW past copy; 
while NEW ^ SCAN do 
begin 

for each pointer in location at SCAN do 
begin if not MARKED [location referenced] 

then begin move location referenced to NEW; 
mark; 
make old location link cell to NEW; 
move NEW past copy 

end; 
update pointer to address in link cell 

end; 
move SCAN to next location 

end 
end; 

swap semispaces 
end; 

Fig, 1 - 9 shows a snapshot of the two semispaces while 

a collection is going on. One can see that all locations between 

the start of the future semispace and SCAN have already had their 

pointers updated, i.e., they only reference locations in the future 

semispace. Between SCAN and NEW, however, all locations can only 

reference locations (copied or uncopied) in current semispace and 

therefore still require updating. This shows why "SCAN=NEW" is the 

terminating condition for the process, 

This algorithm marks and copies in breadth-first order. 

It can therefore only linearise locations in the future semispace 

if each location contains at most one reference to another loca

tion. 

Arnborg (Ar 72) gives a simple modification which permits 



- 33 -

linearisation by priority ordering of references to be followed. 

Let there be n (disjoint) sets of references C. ... C . The lin-
1 n 

earisation strategy then is to first follow C references, then C 

references, etc. The SCAN pointer in the above algorithm is replaced 

by SCAN , SCAN , ... SCAN , i.e., one for each priority set of re

ferences. These pointers at all times are ordered: 
SCAN < ... SCAN^ < SCAN, 

n = 2 = 1 

At all times, references in C. have been updated in all 

locations below SCAN., and the references in C, of the location at 
1 1 

SCAN, are updated when i is the highest number such that 

NEW = SCAN, , all k < i. 
k 

The above algorithm has then only to be changed as 

follows: 

while SCAN 7̂  NEW do 
begin i:= smallest i such that SCAN. 7̂  NEW; 

for all references of set C, in location at SCAN, do 
1 1 — 

move SCAN, to next location 
end; 

Applied to LISP, where one wishes to linearise in CDR 

direction, this modification would be 

while SCANCAR f NEW do 
begin 

if SCANCDR 7̂  NEW 
then follow CDR of location SCANCDR 
else follow CAR of location SCANCAR; 

move SCAN pointer treated to next location 
end; 

The price for this control over linearisation is the num

ber of accesses to locations by the various SCAN., which is n times 

greater than the number of accesses by a single SCAN pointer. 

Because of the single scan through the active locations 

in the heap, the linear scan through the future semispace, and the 

linearisation possible, this algorithm is very suitable for garbage 



- 34 -

collectors in virtual memory systems. 

1.2.5.5 Garbage collection overheads 

For the best garbage collection algorithms, the time 

spent in each garbage collection can be approximated by 

T = aA + b(H-A) (1.2.7) 
G 
where T = time for one collection 

a = time taken to mark and unmark one active cell 
A = number of active cells 
b = time taken to unmark and collect one free cell 
H = number of cells in heap 

Let r be the proportion of the heap which is used, the 

heap utilisation factor (A = rH). Then a collection frees H(l - r) 

cells, and the collection time overhead per cell collected is 

G arH + b(l - r)H 
(1 - r)H (1 - r)H 

'̂̂  _ar + b(l-r) ^̂ ^̂ .8) 
(1 - r)H (1 - r) 

This shows that the processing time overhead incurred by 

garbage collection is inversely proportional to the proportion of 

the heap which is recovered. The more the heap is filled up by 

active cells, the higher is the processing time per cell recovered, 

approaching infinity for larger and larger r-values. 

Given that one has implemented the garbage collector in 

the most efficient way possible, i,e,, with minimal a and b, the 

only control variable available to reduce the processing time over

head is the heap utilisation r. 

As r = A/H, r can be reduced by either decreasing A or 

increasing H, A can be decreased by parsimony with storage used, 

e,g,,by sharing common sub-structures. In a computer system in 

which memory can be obtained from a pool by calling a storage allo

cator at any time,or released to the pool, the size of H is a con

trol variable with which the processing time overhead can be con-



- 35 -

trolled, albeit with consequences for the cost of memory allocated, 

Hoare (Ho 74) proposes a simple system for optimising the 

total cost of a program's execution by requesting additional space 

for, or releasing superfluous memory from, the heap, 

Measuring cost as the product of memory space and time, 

he shows that the minimum cost for a program with garbage collec

tion is 

C . = (/a + /(b+c))^ AN (1.2,9) 
min G 
where a,b = defined by garbage-collector 

implementation (see 1.2.7), 
A = storage used, 
c = useful computing time per word collected, 
N = total number of cells collected. 

This minimum is achieved by allocating memory according 

to 

H = A(l + /(a/(b+c))) (1.2.10) 

The cost-optimum heap utilisation is therefore 

r = i (1.2.11) 
°P 1 + /(a/(b+c)) 

Hoare proposes to estimate c by dividing the running time 

used by the program since the previous collection by the number of 

cells just collected. This permits a dynamic good estimate of the 

amount of heap storage to request (or release) until the next col

lection. Hoare's paper also shows that the cost function is quite 

shallow around the minimum for the practical spectrum of a, b, and 

c values. 

Arnborg (Ar 74) reports on an actually implemented con

trol algorithm for a virtual-memory implementation of SIMULA on 

the DEC-IO computer. This algorithm is different from Hoare's main

ly in its assumptions about the garbage collection time function. 

Arnborg also discusses measurements on large sets of real-life pro

grams in terms of means and variances of 11 controlling variables. 

According to the figures given, their variances are usually small 

(10% of the mean) for a given program. Based on the small predic-



- 35 -

tion errors the algorithm results in, Arnborg concludes that for 

practical purposes, it is close enough to the optimum possible 

without a priori knowledge of program behaviour. 

1.2.5.6 Languages implemented with garbage collection 

The list processing language LISP was the first language 

to be implemented with garbage collection. Bobrow (Bo 68) de

scribes LISP storage management very clearly. The original imple

mentations of LISP had only two heap modes, viz. list cell and 

atom. All storage allocation was done in fixed-length locations 

of one (on the IBM 7090) or more (two in the University of Delft 

LISP on DEC PDP-8) words. This small location size made the use 

of reference counters unattractive because of the large storage 

space overhead. Furthermore, LISP explicitly permits reentrant 

lists to be created by functions such as RPLACA or RPLACD. 

List cells have two sub-locations in which pointers are 

stored. These pointers are the values of CAR and CDR, respective

ly, applied to the variable represented by the location. Atoms 

are also lists, but the locations they are composed of are of a 

different mode. 

List cells do not have an explicit mode indicator, but 

atoms do; so list cells are just non-atom cells. In some LISP sys

tems, the atom mode is denoted by a mark (the "atom mark") in the 

first cell of an atom list. In others, the address of the first 

cell indicates that it is an atom, because it lies in a range which 

is reserved for atom header cells. 

The marking process can thus find the mode information 

it needs for tracing the active list structure. The other informa

tion needed for marking is the set of base registers containing 

pointers into the heap. In a basic LISP implementation, these are: 

pointers on the working stack, and 

reference variables in the program. 



- 37 -

Program reference variables are fixed, and therefore no 

problem to find, but the working stack contains data of at least 

two modes, viz. references to lists and return addresses of proce

dure calls still to be completed. These must be denoted somehow 

for the marking process. One way to do this is to distinguish be

tween the two modes by address values. This is easily possible if 

heap and machine code are each in contiguous areas in memory so that 

one comparison with e.g. the lower bound of the heap suffices. 

The collection phase is very simple. It consists of a 

straight-forward sweep through the heap and the establishment of a 

new freelist. Where the heap and the stack are sharing one memo

ry area, this may be complemented by a compaction phase. 

Later variants of LISP, such as HISP (Me 70), have intro

duced variable-length locations for printnames, integers, program 

cells, etc. Therefore, these have been implemented with compac

tifying garbage-collectors. 

Another special-purpose language implemented with garbage 

collection is SNOBOL, a language for string- and list-processing, 

Because of its requirement for variable-size locations, such as 

strings, it requires compaction. 

Griswold (Gr 72) describes the implementation of SNOBOL 4 

and also covers in some detail the storage management by garbage 

collection. (He calls it "storage regeneration", though; as he jus

tifiably remarks, not the garbage is collected, but the active 

locations are, and the free locations are re-generated into one 

contiguous free area.) 

Two general-purpose languages which depend on the garbage 

collection method for their implementation are SIMULA and ALGOL 68. 

Arnborg (Ar 72) and Myhrhaug (My 70) give exhaustive ac

counts of the storage management requirements for SIMULA. For the 

purpose of this section, it suffices to remark that SIMULA supports 

variable-size heap locations (objects of mode text, i.e., character 

strings with records), access pointers, and objects of classes, and 

thus needs compactifying garbage collection. References to sub-



- 38 -

locations are not permitted, so that the use of overhead cells is 

very natural for implementing records in SIMULA. 

The literature on ALGOL 68 and garbage collection is al

ready very extensive: Branquart and Lewi (Br 70, Br 71), Marshall 

(Ma 71), Wodon (Wo 71), and Hill (Hi 74) give complete analyses of 

the ALGOL 68 storage problem and describe actual ALGOL 68 garbage 

collector implementations. 

1.2.5 Comparison between heap management systems 

As shown in the previous sections, there are basically 

three heap management schemes (programmer-controlled, reference 

count, and garbage collection) which can be categorised as non-

automatic (first) or automatic (last two). 

The main distinction between the two categories is the 

security provided to the programmer by the automatic schemes. 

Without any additional mental or programming effort on the pro

grammer's side, he is protected from errors such as releasing lo

cations which are still in use or not releasing storage and sub

sequently running out of storage. Thus, automatic storage manage

ment can give'increased programmer efficiency compared to a non-

automatic system. 

One can compare the two automatic approaches in terms of 

applicability and overhead. 

The reference count method cannot reclaim locations which 

are in a circular chain of references. Furthermore, it offers no 

solution to the fragmentation problem and is thus not applicable to 

systems with variable-size locations. The technique of garbage col 

lection with compactification is therefore more generally applica

ble. 

The space overhead for reference counters is one (large) 

counter location per location allocated. For single-word loca

tions, e.g. of mode real or byte, the space overhead is of the or

der of lOO% or more. Garbage collection requires only one mark-

bit per location. Often, an otherwise unused bit can be used for 



- 39 -

this. 

The run-time overhead incurred by each of the automatic 

systems is best compared numerically. The processor time required 

to reclaim one cell via reference counts can be expressed as 

T^^ = A^ X REF + A^ (1.2.12) 

where A = time required for incrementing/decrementing 
the reference count, 

REF= number of times the reference count has been 
incremented/decremented before reaching zero, 

A = time to return cell to free list. 

It is interesting to note that Collins (Co 65), in a com

parison between garbage collection and reference counts, erroneous

ly neglected the first term and came to conclusions strongly favour

ing the reference count approach. 

As shown in (1.2.2), the time to free one cell by garbage 

collection is 

T^^ = ar / (1 - r) + b 

The ratio between these two times is 

T A X REF + A 

;;r^ =-̂ -77T r^v, - ' (I.2.13) 
T^^ ar/(l - r) + b 

This shows that the reference count technique gets better 

with increasing heap utilisation and decreasing attachment and de

tachment frequency, i,e,, in situations where the list-structure is 

relatively static. The advantage of garbage collection lies in the 

control one has over T through the heap utilisation r. This per-
GC 

mits reduction of the run-time overhead by just increasing the 

heap-size. 

Informally, one can sum up these observations in the state

ment that compactifying garbage collection is the storage management 

technique to be preferred for general purpose programming systems 

for larger computers. 



- 40 -

1.3 THE REQUIREMENT FOR CONCURRENT GARBAGE COLLECTION 

The comparison in 1.2.5 did neglect one important point, 

namely the distribution over time of the processor overhead. Where

as the reference count technique works incrementally, all proces

sing must stop when the garbage-collector runs. The time required 

per collection can be of the order of seconds. 

Languages implemented with garbage collection can there

fore not be used for the programming of real-time systems, such as 

operating systems, which must respond to events such as interrupts 

in real time. Because of this, it is not quite appropriate to call 

ALGOL 58 in its present implementations a general-purpose language: 

if one uses these ALGOL 58 versions to program real-time systems, 

one must refrain from using any modes and operations which, implic

itly or explicitly, lead to storage allocation on the heap. The 

resulting s\ib-set of ALGOL 58 is not even generally defined, as the 

use of the heap can vary from implementation to implementation, 

On the other hand, ALGOL 68 contains several features, 

such as parallel clauses and semaphores, which are of direct appli

cability to programming real-time systems such as operating systems 

or process control applications. The present situation thus presents 

us with the paradox that a language's definition makes it highly rel

evant for the description and programming of real-time systems, but 

that one implementation detail, the sequential garbage-collector, 

precludes it from being used for this purpose. PL/1, on the other 

hand, has seen extensive use for real-time work, for example, as im

plementation language for MULTICS. 

As the problem does not lie with the processor time over

head per se, but with its distribution, an obvious solution is to 

make the garbage-collector work incrementally, interleaved with 

the processing of the applications program. Effectively, the 

garbage-collector would operate concurrently with the applications 

program. The garbage-collector in such system would no longer be 

an integral part of the applications program, but be a separate 

task competing for the processor. It would be a background task 



- 41 -

and could be activated e,g, when the applications program were 

waiting for the completion of input or output, 

Taken to the extreme, the garbage collector could be im

plemented in hardware, e.g,, microprogrammed, as a special-purpose 

processor which would be multiplexed amongst several applications 

programs. In combination with descriptors attached to memory words 

for mode denotation and with (to the applications programs) invisi

ble and inaccessible mark bits, this could result in a machine ar

chitecture for efficient execution of real-time programs programmed 

in ALGOL 68, LISP, etc, Tanenbaum (Ta 73) proposes such a virtual 

machine for ALGOL 58, His proposal includes the idea of a hardware 

instruction "garbage collect", which would however execute sequen

tially with the applications program. On the other hand, he also 

suggests a way to implement parallel processing on the machine. 

Concurrent garbage collection would permit this architecture to be 

used for all types of ALGOL 58 programs, including real-time ap

plications. 



- 42 -

Chapter 2 

CONCURRENT GARBAGE COLLECTION 

The author has found three significant proposals for con

current garbage collection in the literature. 

The first one, by Bobrow (Bo 58), concerns a compactifying 

garbage collection scheme for LISP. Its operation is as follows: 

when only a small fraction (about 10%) of free space is left, the 

garbage-collector is started as a separate process running in par

allel with the LISP program. The marking proceeds through the 

stack, from the bottom upwards. When the marking reaches the top 

(latest) entry on the stack, the marking phase is complete. Dur

ing the marking phase, the LISP program must take special precau

tions whenever it applies a pointer-moving function such as RPLACA, 

RPLACD, and SET. If the changed cell has already been marked, the 

item entered must be pushed on to the stack for marking, unless it 

has already been marked, too. 

During the list-structure relocation and list cell ad

justment phases, any references must be checked to determine whether 

they refer to relocated cells. If this is so, the new address must 

be computed by indirection through the address stored at the refer

ence. 

Address adjustment and relocation of arrays must go on 

simultaneously. A special cell for the array currently being 

moved must be provided, and a special computation must be made to 

find an element of the array. 

The incremental garbage-collector as described was planned 

(in 1958) for implementation in a LISP 1,5 system on an SDS 940. 

It was hoped that the system would support several users simulta

neously, including some real-time processes. 

This proposal at first glance appears sufficiently de

fined for implementation, as it offers ad-hoc solutions for problems 

resulting from simultaneous access to the heap by two processes. 



^ 

- 43 -

One solution which could not work is that of putting references to 

unmarked items into the stack. If the LISP program pops items off 

the stack, these references would be lost. If their referenced 

cells still had not been marked, they would never be marked and 

would subsequently be collected, 

It thus appears that Bobrow's idea was not sufficiently 

elaborated for successful implementation. In particular, not 

enough attention seems to have been given to synchronisation between 

the two co-operating processes, 

The second reference to concurrent garbage collection is 

by Knuth (Kn 58, pp.412 and 594). He attributes the idea to Minsky 

and poses its solution as a research problem. The only significant 

suggestion for a solution is that the garbage collector must be 

started when there are still N cells in free space, N being suffi

ciently large so that the garbage collector can finish before the 

applications program runs out of storage. No other synchronisation 

is touched upon by Knuth, 

The most recent and also most detailed proposal is by 

Barbacci et al, (Ba 71), He describes a compactifying parallel 

LISP garbage collector for a virtual memory computer, using Cheney's 

list copying algorithm. Barbacci recognises the problem of running 

out of storage in the future semispace. To prevent this, he pro

poses to adjust the timeslices for the LISP- and garbage-collection 

processes as follows so that the LISP process has minimal delays: 

"Let S = size of semispace 
Let UI= number of active (not garbage) cells at start 

of semispace flip 
Let GI= S - UI = number of recoverable (garbage) cells 
Let RG= (time quantum for collector) / (time quantum 

for LISP program) 
then 

RG = K X GI / UI OPTIMUM ' 

where K = (average time to copy an active cell) / 
(average time for LISP to obtain a new cell)" 

Apart from the impossibility of knowing UI, this is not 

even the optimum relation, as will be shown in this thesis, 



- 44 -

On the subject of synchronisation, Barbacci writes: "A 

conventional interrupt system is unsafe. Some LISP and GC routines 

cannot be suspended in the middle of their operation. When pointers 

are being inspected or modified, instead of interrupts, these rou

tines will check the system timer and 'voluntarily' return control 

to the supervisor, perhaps getting a little more than their time-

slice". 

This covers the synchronisation problem only partially. 

In particular, it does not say which routines cannot be interrupted 

and why. 

Barbacci also deals with the problem of applying pointer-

moving functions to cells which have already been copied. The so

lution he offers in Figure 5.8, p,55, is however incorrect. In the 

case that A £ SCAN and .X not yet copied, the CAR(.A) or CDR(.A), 

respectively, never gets updated. After the end of the collection, 

it still points at X in the old semispace. 

Summarising the three proposals, one can say that con

current compactifying garbage collection for LISP appears to be fea

sible, given that the two co-operating processes can be properly 

synchronised and that LISP and garbage collector can ensure that 

all cells are properly collected. What is required is a design 

methodology which allows the development of solutions which can be 

proven to be correct. The goal of this chapter is to establish such 

design methodology. 

2.1 THE PROBLEM 

In systems with sequential garbage collection, the garbage 

collector can be regarded as a subroutine called by the storage allo

cator, i.e., as an integral part of the applications program: 

procedure ALLOCATOR (CELLS NEEDED : INTEGER); 
procedure COLLECTOR; 
begin 



- 45 -

end; 
begin 

if NRFREE < CELLS NEEDED then COLLECTOR; 

end; 

The application program is a sequential program, because 

at any one time when it is active, only one of its statements is 

being executed. Thus, the program counter is either inside the 

procedure COLLECTOR, or it is outside it, somewhere else in the 

applications program (Fig. 2 - 1). The figure shows how garbage 

collection and problem processing (i.e., the execution of the ac

tual application) alternate. Three complete collections are shown: 

t / t , t / t » and t / t-r- During these, problem processing 

ceases completely, i.e., the application program appears to be 

dead. 

If the application program were controlling a real-time 

process, it could not react to any external events occurring in the 

collection periods t /t, ,t / t ^ o r t / t ^ before the comple-
a b c d e f 

tion of the garbage collection. In the worst case, the response 

time could be as long as the longest garbage collection could take. 

As this can be of the order of seconds, such real-time program 

could not be used to control processes with required response times 

in the millisecond range, e.g., l/O processes on a computer. 

Concurrent execution of the problem program and the gar

bage-collector could eliminate the dead-times, if both executed 

each on a separate processor (multiprocessing), or could make the 

dead-times arbitrarily small, if both multiplexed the same pro

cessor (multiprogramming). 

Fig. 2 - 2 shows the two possibilities. Several complete 

collections are shown. 

Conceptually, there is no difference between letting two 

processes progress in true parallel by multiprocessing or in quasi-

parallel by processor multiplexing. Of course, the rate of pro-



- 45 -

gress of a process getting only 1/n of a processor's time is only 

1/n of what it could be if it had not to share it. Neglecting over

heads for multiplexing, one can effectively map a system of process

es which multiplex a processor into a system of processes which all 

execute on individual processors of adjusted power. Henceforth, 

no distinction shall therefore be made in this thesis between con

currency implemented by multi-processing or by processor multi

plexing. 

In the system with concurrent garbage collection, two new 

problems show up which did not exist in the sequential system. One 

is that of process co-ordination. Two processes share data, such as 

the heap and the stack of base-pointers. Their access to this data 

has to be ordered in time to ensure correct operation of the com- ^ 

plete system. In a system with only one sequential process (e.g., 

a program with conventional garbage collection), such co-ordina

tion is not required, as the effect of a sequential program is time- • 

independent. Generally stated, in multi-process systems, there exists 

a control problem of permitting only those action sequences by the 

individual processes which result in safe, correct states. 

The other new problem with concurrent garbage collection 

is the scheduling problem. The garbage-collector and the appli

cations program are producer and consumer of free storage space, 

respectively (Fig. 2 - 3). While the garbage-collector is reclaim

ing storage, the applications program is consuming free storage. 

If garbage collection is done to prevent free space running out, 

the question is at which level of free space to activate the gar

bage collection process so that the applications program never has 

to wait for storage. In a conventional garbage collection system, 

this level can be zero, as the applications program stops consuming 

when the collector starts. The remainder of this chapter will ana

lyse the problems of process control and scheduling and will develop 

solutions. 



- 47 -

2.2 PROCESS CONTROL 

So far in this thesis, the term "process" has been used 

quite loosely and without definition. For the following discussion 

of the process control problems, a clear definition of this term 

is however required. 

Process is an abstraction of the activity of a processing 

unit running a program. Denning (De 71) defines this abstraction 

as follows: 

"With a given program we associate a sequence of 'actions' 

a,, a. ... a, . .', and a sequence of 'states' s , s, , . . s, , 
1 2 k o i k 

For k 2l 1» action a is a function of s , and s is the 

result of action a . The states represent conditions of 

a program's progress, with s the initial state. The 

sequence a a„ .,, a ,,, is called an action sequence, 

and s s ,,. s ... a computation. A process is defined 

as a pair P = (s, p), where p is a program and s is a 

state," 

Whenever the term "process"is used in the remainder of 

this thesis, the above definition is implied. 

In a system of concurrent processes, an action sequence 

generated by the system consists of concatenations and merges of 

the action sequences of its component processes. 

Example: Let there be two concurrent processes P and 
P with the action sequences abc and def, respectively. 
Then these are a few of the system's action sequences: 

abcdef 
abdefc 
adbecf 
defabc 

The process control problem is the problem of restricting 

the state sequences of a system of processes to those which lead 

to a correct computation. The sequence of states the system goes 

through on its way to a correct computation is a sequence of safe 



- 48 -

states: The last state of a correct computation is a safe state. 

Its preceding state is therefore also always a safe state, given 

that all state transitions are deterministic, etc. 

For disjoint processes, any interleaving of states is 

safe. This allows the scheduling algorithm in a multi-programming 

operating system complete freedom in scheduling independent jobs, 

as long as it can avoid resource conflicts between the jobs. 

For interacting processes, this is no longer true. Each 

of a system of co-operating processes makes a contribution towards 

the goal state. The concurrent garbage collection system is such 

a system. It has two processes, the applications process and the 

garbage collection process, which share several variables, viz. 

the heap, the stack of base pointers referencing active lists, and 

the pointer to the free-list (Fig. 2 - 4). Some of the (macroscopic) 

actions of the applications process are requesting storage, pushing 

onto and popping off the stack, and pointer assignment. Some of 

the (also very macroscopic) actions of the garbage collection pro

cess are marking, collecting, and unmarking of cells. The action 

sequences of both must be so combined that they lead from safe 

states to other safe states. The goal state is the correct comple

tion of the applications process. Both processes must co-operate 

towards that goal state. The possible number of action sequences 

is very large and cannot be enumerated. They must therefore be 

made safe by design. 

The process control problem has four major aspects, viz. 

determinacy, deadlock, mutual exclusion, and synchronisation (see 

Denning (De 71)), all of which are to be considered for the appli

cations process/garbage collection process system. 

Let a system of processes have access to a set M of memo

ry cells. Each process has associated with it a fixed set of input 

cells and a fixed set of output cells, both sets being subsets of 

M. Processes may read from their input cells and write into their 

output cells. Then a system of processes is called determinate 

if always the final contents of M depend uniquely on the initial 



- 49 -

contents of M, regardless of the system action sequences between 

start state and goal state, 

Deadlock is a state in a system of processes in which 

processes are forced to wait indefinitely for a resource to become 

free. Thus it can only occur in systems with limited resources in 

which processes can request resources while holding other resources, 

and in which the total demand may exceed the system's capacity, 

even though the demands of individual processes lie within the sys

tem's capacity. Such resources may be physical, such as tape 

drives, or more abstract, such as shared variables. 

Mutual exclusion is the requirement that, at most, only one 

process have access to a shared resource at any one time. It is a 

necessary, but not generally sufficient condition for determinacy 

of a system of interacting processes, 

In a system of co-operating processes, which performs a 

computation, some processes may have to wait until other processes 

have reached a certain state, e,g,, delivered some information or 

executed some code a number of times. Thus, there may be a need 

for synchronisation between otherwise asynchronously progressing 

processes. 

To design a concurrent garbage collection system which 

co-operates correctly with the applications program it supports, 

these four potential problem areas must be covered, and solutions 

be found for all of them. 

The objective of the next section is to select the in

tellectual tools for this design process. 

2.2.1 The conceptual tools 

A well-structured program can be built and understood in 
detail by an intellectual effort proportional to its size. 

This is one of the axioms of structured programming (see 

Dijkstra (Di 72) and Wirth (Wi 72)). The correctness of a well-

structured program can be verified by postulating and proving asser

tions about its components and combining these assertions, until 



- 50 -

assertions can be made about the complete program. 

For example, the correct functioning of a sequential 

garbage collector can be verified as follows (Fig. 2 - 5). Let P 

denote an assertion before the execution of a statement {antecedent) 

and Q an assertion after the statement {consequent). For the gar

bage collector to work correctly, the consequent Q after the com-
G 

pletion of the garbage collection statements must be 

Q = All garbage cells and no others have been collected 
and the garbage collector terminates. 

The function of the COLLECT statement is to collect all 

unmarked cells. The consequent assertion for COLLECT is therefore 

Q S All unmarked cells and no others are collected 
and COLLECT terminates. 

As Q^ - Qr-i "garbage" = "unmarked", and the antecedent C G 
assertion for COLLECT is 

P = All garbage cells and no others are unmarked 
and COLLECT is always started. 

The function of MARK is to mark all live cells which 

it can reach, but no others. The consequent assertion for MARK is 

Q = All live cells which can be reached by MARK and 
M 

no other cells are marked. 

As P = Q , the assertion after MARK must be: 

Q = All live cells and no other cells are marked 
M 

and MARK terminates. 

The necessary antecedent assertion for MARK is thus 

P„ = All live cells can be reached by MARK. M 

The antecedent assertion for the garbage collector is then 

also: 

P = All live cells can be reached by the garbage collector. 
G 

Once one has shown that the individual assertions for 

MARK and COLLECT always hold (this is done by making assertions 



- 51 -

about their component statements), one can conclude that Q always 
G 

holds, given that P holds upon entry to the garbage collector. 
G 

Henceforth, one can then disregard the implementation details of 

the garbage collector, i.e,, one can treat it as one component 

which can be trusted, 

The question is whether this same approach is also feasi

ble for concurrent processes, and if so, which tools are available. 

Dijkstra (Di 58) suggested a well-structured representa

tion of concurrent processes in a high-level programming language, 

namely the concurrent statement, in the form 
cobegin Si; S2; .,,. Sn coend 

This indicates that statements SI, S2, ..., Sn can be 

executed concurrently. Only when all of them are completed is the 

following statement in the program started. Since the concurrent 

statement has a single starting point and a single completion point, 

it is well-suited to structured programming, i.e., it permits re

ducing assertions about simple statements to assertions about 

structured statements, and then reducing these in turn to assertions 

about a complete program (see also Brinch Hansen (Ha 73, Ha 73a)), 

Assertions about concurrent statements and therefore 

their component statements must be time-independent. In particular, 

they must not make any assumptions about the relative speeds of the 

concurrent processes. This is generally possible for disjoint pro

cesses, i,e,, systems in which no output cell of one process serves 

as input cell for another (requirement for determinacy). 

Co-operating processes however have to communicate or 

interact through some common variable, i.e., they cannot be disjoint 

if they can access the common variable in parallel. To reestablish 

disjointness, one must make the access to the shared variable dis

joint, i.e., serialise the accesses by permitting only one process 

at a time to use the variable. This is a problem of mutual exclu

sion. 

Dijkstra (Di 68) developed the classical solution for 

this. He coined the term critical region for those statements in 



- 52 -

a process program which operate on the shared variable. His solu

tion to the mutual exclusion problem is based on semaphores on 

which P and V operations can be performed. Although it appears 

that all synchronisation problems can be solved by using P and V on 

general semaphores, these operations are too primitive to be of 

assistance in designing well-structured programs, Brinch Hansen 

(Ha 73, Ha 73a) argues that P and V are unsuitable language con

structs for a high-level language because: 

a) It is too easy for a programmer to cause time-
dependent errors, even deadlock situations, with 
semaphores, 

b) A language compiler cannot recognise errors such 
as a pair of P and V which are accidentally inter
changed, or one or both missing, or a semaphore 
which is initialised incorrectly, 

c) A compiler is unaware of the correspondence 
between a shared variable v and a semaphore 
mutex to gain access to it. Consequently, a com
piler cannot protest if in a region with access 
control by mutex, reference is made to another 
shared variable x, 

In general, he concludes, a compiler cannot give the pro

grammer any assistance whatsoever in establishing critical regions 

correctly by means of semaphores, because semaphores are too gener

al, 

Brinch Hansen therefore suggests a structured notation 

for shared variables and critical regions as an extension to a 

well-structured language, PASCAL. 

Let V be a variable of type (mode) T which is shared be

tween several co-operating processes. Then this intention to share 

it is denoted by adding shared to its type in the variable's decla

ration: 

var V : shared T; 

Variables thus declared can only be used inside a criti

cal region of the form 

region v do_ S end 



- 53 -

This clearly shows the programmer's intention and can 

be checked by the compiler. The region is a structured component 

in that it has one entry point and one exit. 

For process communication, Brinch Hansen proposes the 

introduction of the await primitive to implement the conditional 

critical regions proposed by Hoare (Ho 72). Let B be a boolean 

expression which tests the permissibility of an operation carried 

out by a critical region S, Then Brinch Hansen's notation is 

region v do begin await B; S end; 

This specifies that S is not carried out until B is true. 

To verify the correctness of a system of co-operating 

processes, one must define the permissible operations on the shared 

variable v. This can be done by some proposition I which specifies 

a property of v which must remain true at all times outside critical 

regions. Such a proposition is called an invariant for the shared 

variable. The proposition I must not refer to any variable which 

can be changed outside the critical regions for the shared variable. 

The condition for correct co-operation of the co-operative processes 

is that each process must leave the shared variable after accessing 

it in a state which satisfies I. The process may assume, i.e., may 

be programmed using the assumption, that I is true before each en

try to one of its regions. If all processes co-operate correctly, 

and I is initially true, then on completion of the computation I 

will still be true. 

Let P be a predicate which holds for the variables acces

sible to a process outside the critical region, and I an invariant 

on the shared variable v. After the completion of S, a result R 

holds for the former variables and I has been maintained. Thus, 

the axiomatic properties of the two constructs just discussed are 

i ip i i 

r e g i o n v do "P&I" S "R&I" end ; 
"R" 

and 



- 54 -

II pit 

region v do 
begin "P&I" 

await B; 
"P&I&B" 
S 
"R&I&B" 

end 
"R" 

The three structured notations presented in this section, 

the concurrent statement "cobegin SI; S2; ...; Sn coend", the criti

cal region "region v do S end" associated with a shared variable, 

and the conditional critical region "region v do_ begin . . . await B; 

S end" permit the design and correctness proof of a system with 

co-operating processes. The author of this thesis will t 'erefore 

use PASCAL, extended with the constructs above, as the description 

and design language for the applications process/garbage collection 

process system. Appendix A summarises this extended PASCAL, 

It must be stressed that no compiler for such extended 

PASCAL exists anywhere. The language is only used here for its 

descriptive power and the abstraction it permits. The main bene

fits accruing from this are that the intention of the algorithm 

designer is clearly visible in the structured notation possible, 

and that it permits assertions about individual program components 

to be combined into assertions on the complete program. Correct

ness proofs for the individual constructs are required only once. 

Afterwards, one can regard the correctness as an axiomatic proper

ty of the construct. 

In the following section, the shared variables for the 

application/garbage collector system of processes will be defined, 

and the permissible operations on them developed. 

2.2.2 Shared variables and invariants 

For this section, a representative model of an applica

tions process/garbage collector process system will be used. The 

applications process will be called "list-processor", which how-



- 55 -

ever is not meant to limit the applicability of the model to list-

processing. 

The model then is the following: list-processor und gar

bage-collector share the heap, a stack of basepointers referencing 

the active lists in the heap, and a pointer to the free-list. Af

ter initialisation, both list-processor and garbage-collector are 

activated. In the notation discussed in the preceding section, 

this can be described as follows: 

type HEAPSPACE = . "the range of all heap-addresses" 
STACKSPACE= .... "the range of values for the stack 

pointer" 
POINTER = .... "the range of values a cellpointer can 

take on, including heapspace and NIL" 
CELL = record "the locations making up the heap" 

end; 
var HEAP : shared array [HEAPSPACE] of CELL; 

"the heap" 
LSTACK:shared record 

STACK : array [STACKSPACE] of POINTER; 
TOP : STACKSPACE 
end; 

FREE : shared POINTER; 
procedure INITIALISATION; .... • 
begin 

INITIALISATION; 
cobegin 

LISTPROCESSOR; 
GARBAGECOLLECTOR 

coend 
end. 

Fig. 2 - 5 shows this program's basic structure. 

The representation for the heap as a shared array is only 

one possibility. Other possibilities are 

HEAP : array [HEAPSPACE] of shared CELL, 

or 

HEAP : array [PAGESPACE] of shared PAGE, 

where PAGE is defined as 

PAGE ^ array [LINESPACE] of CELL. 



- 55 -

The finer the partitioning of shared resources, the 

smaller is the probability of several processes competing for the 

same one. On the other hand, the space overhead increases, as with 

each shared variable a semaphore is associated. Also, elements of 

a resource array must always be requested and released in the same 

hierarchal order (e.g., in the order of increasing array indices) 

to avoid deadlock, 

Assertions concerning termination 

The verification rule for a concurrent statement is 

"PI & P2 & P3 ...& Pn" 
cobegin 

SI; 
S2; 
S3; 

Sn 
coend 
"Rl & R2 & R3 ...& Rn" 

Thus, for the concurrent garbage collection system it is (Fig. 2 - 5 ) : 

INITIALISATION; 
"P & P " 
L G 

cobegin 
LISTPROCESSOR; 
GARBAGECOLLECTOR 

coend 
"R & R " 
L G 

A necessary condition for this to be correct is 

R = program terminates. 

This is only possible if 

R = list-processor terminates, 
Li 

and 
R = garbage-collector terminates. 

For simplicity, it will be assumed that the computation 



- 57 -

is correct if, at termination, either the processing task has 

been accomplished, or list storage has been exhausted. 

Thus, 

R = (processing accomplished or_ storage exhausted) 
implies program terminates. 

R - (processing accomplished or_ storage exhausted) 
implies list-processor terminates. 

R ^ (processing accomplished or storage exhausted) 
implies garbage-collector terminates. 

The condition "processing accomplished" is established 

by the list-processor, and the condition "storage exhausted" by 

the garbage-collector. When one process terminates because its 

termination condition has become true, the other process must al

so terminate, even if at that time it is waiting for another con

dition to become true. 

The solution to this synchronisation problem is a shared 

boolean variable 

EXIT : shared BOOLEAN 

with the invariant 

EXIT = processing accomplished or storage 
exhausted 

Invariant 1 

Whenever one process is thus waiting for the other to 

make a condition B true, this must be done in the form 

region v do 
begin 

region EXIT do 
begin 

await B 0£ EXIT; 

end; 

end; 

in order to avoid infinite waiting for a condition which may never 



- 58 -

become true, because the other process terminated. 

The conditional critical region as proposed by Brinch 

Hansen and Hoare, however, does not allow the terms in the condi

tion associated with the await to refer to two shared variables, 

but restricts them to be components of the innermost shared varia

ble. This appears to be a major flaw in the proposed language 

construct, as it does not readily permit the prevention of infi

nite waits (deadlocks) in conditional critical regions. One has 

to associate an error condition with each shared variable which is 

accessed in a conditional critical region: 

var V : shared record 
A : 
ERROR : BOOLEAN 
end 

This error flag can then be set by the process which is 

supposed to satisfy a condition on A, but cannot do it. If there 

are many shared variables used in conditional critical regions, 

this makes for tedious and errorprone programming. 

For the purpose of this thesis, this flaw is of no real 

importance, as there are only two conditions to be considered, viz. 

"processing accomplished" and "storage exhausted". It will be 

shown that EXIT can be made a component of a shared record. 

The general form of the concurrent statement can then be 

represented as 

cobegin 
"LISTPROCESSOR" 
repeat 

region .... do 
begin 

EXIT:= EXIT 0£ PROCESSING ACCOMPLISHED; 
LPEXIT:= EXIT 

end 
until LPEXIT; 

"GARBAGECOLLECTOR" 
repeat 



- 59 -

region .... do 
begin 

EXIT:= EXIT 0£ STORAGE EXHAUSTED; 
GCEXIT:= EXIT 

end 
until GCEXIT 

coend 

As long as the remainders (indicated by ellipses) of 

the two processes can terminate regardless of the value of EXIT, 

this construction terminates, 

Assertions concerning the free space 

List-processor and garbage-collector are in a consiomer/ 

producer relationship: all cells which the list-processor takes 

out of free space must have been put into free space by the gar

bage-collector , 

Let NRCONSUMED = number of cells taken out of free 
space by list-processor, and 

NRPRODUCED = number of cells put into free space 
by garbage-collector. 

Then the invariant NRPRODUCED >̂  NRCONSUMED must hold at all times, 

An integer variable NRFREE with the meaning 

NRFREE = NRPRODUCED - NRCONSUMED 

is introduced. Then cells may only be taken out of free space if 

the following invariant can be maintained: 

NRFREE = NRPRODUCED - NRCONSUMED > O 

Invariant 2 

This leads to the following necessary conditional criti

cal region in every procedure which allocates storage from free 

space: 

region FREE do 
begin 

await NRFREE ̂  NRNEEDED; 
"NRFREE > NRNEEDED" 



- 60 -

NRFREE:= NRFREE - NRNEEDED 
"invariant 2 holds" 

end; 

NRNEEDED is the number of cells requested by the list-processor to 

be allocated from free space, 

But here is the danger described in the previous section, 

viz, the garbage-collector may be unable to reclaim a sufficient 

( >̂  NRNEEDED) number of cells. To enable both processes to terminate, 

the following construction must be employed: 

var FREESPACE : shared record 
FREE : POINTER; 
NRFREE, NRNEEDED : O..MAXCELLS; 
EXIT : BOOLEAN 

end; 

cobegin 
"LI&TPROCESSOR" 

procedure STORAGEALLOCATOR; 
begin 

region FREESPACE do 
begin 

await NRFREE >̂  NRNEEDED or_ EXIT; 
if EXIT then TERMINATE 
else 
begin NRFREE :=NRFREE-NPJ^EEDED 

end 
end 

end; 

"GARBAGECOLLECTOR" 

"after collection" 
region FREESPACE do 
begin 

STORAGE EXHAUSTED:=NRFREE<NRNEEDED; 
EXIT:= STORAGE EXHAUSTED 

end 

coend 



- 51 -

This allows the list-processor an orderly termination 

(TERMINATE), e.g,, closing of files, saving of results, or issuing 

comprehensive diagnostics describing the circumstances which ." ̂ d 

to the exhaustion of storage. In systems which permit a running 

program to request additional storage, this facility could be used 

to recover and continue. The statement EXIT:= STORAGE EXHAUSTED 

would then not be used in the garbage collector. 

Another invariant concerning NRFREE results from the 

requirement that the free space cannot exceed the heap capacity: 

NRFREE = NRPRODUCED - NRCONSUMED ̂  MAXCELLS 

Invariant 3 

Where: MAXCELLS = number of cells in the heap.. 

The phase of the garbage collector in which cells are 

added to the free space is the collection phase which collects all 

unmarked cells. For invariant 3 to hold after that phase, three 

requirements must be satisfied 

the collection phase must work correctly, i.e., 
only collect and count unmarked cells, 

- before the start of the collection phase, 
P = UNMARKED + NRFREE <̂  MAXCELLS must hold, and 

NRFREE = MAXCELLS after initialisation. 

Thus, to verify that invariant 3 always holds, one must 

prove the correctness of the marking algorithm and of the collec

tion phase. 

The garbage collector shall only run, i.e., "produce", 

when the level of free cells has fallen below a given level which 

shall be called TRIGGER. This gives rise to the invariant 

NRFREE < TRIGGER implies GC REQUIRED 

Invariant 4 

This synchronising condition can be implemented by a 

conditional critical region: 



- 62 -

"GARBAGECOLLECTOR" 
repeat 

region FREESPACE do 
begin 

await NRFREE < TRIGGER 0£ EXIT; 
if EXIT then TERMINATE 
else GCREQUIRED:= TRUE 

"invariant 4 holds" 

end; 
while GCREQUIRED do "garbage collect" 

until GCEXIT; 

There now exists a possibility of deadlock, a circular 

wait by list-processor and garbage-collector. The first could 

be waiting in "await NRFREE >̂  NRNEEDED or EXIT", while the latter 

was waiting in "await NRFREE < TRIGGER or EXIT". 

The deadlock condition is 

(NRFREE >̂  NRNEEDED or EXIT) = FALSE and (NRFREE < TRIGGER 
or EXIT) = FALSE. 

For this to occur, not EXIT and NRFREE < NRNEEDED and 

NRFREE > TRIGGER E TRUE. From this it follows that, to prevent dead

lock, the following assertion must always hold: 

EXIT or NRNEEDED £ TRIGGER 

Invariant 5 

This is simply assured by never permitting a request for 

storage of NRNEEDED > TRIGGER cells, e.g., by a test before executing 

the await in the list-processor 

The last invariant related to the free space is that at 

all times outside the critical regions for FREESPACE, NRFREE is the 

number of free cells: 

NRFREE = number of free cells 

Invariant 6 

This can be assured, after correct initialisation of 

NRFREE, by making the allocation of a cell and the decrementing of 



- 63 -

NRFREE, and the collection of a cell and the incrementing into 

atomic operations, i.e., critical regions. 

Invariants concerning the stack 

As the stack contains the rootpointers to all live lists, 

it must be accessed by the garbage-collector during the marking 

phase. It is therefore a shared variable. 

Fig. 2 - 7 gives the decomposition of the garbage-collect

or into its two main phases, MARK and COLLECT, together with asser

tions which ideally should hold. All live cells must be accessible 

to the garbage-collector during the marking phase. After the mark

ing phase, all cells which are marked are live cells, and the col

lection phase collects all cells which are not marked, i.e., not 

live. These assertions always hold for correct sequential garbage-

collectors. 

Let TOP = stack pointer (only updated by list-processor) 

ISTACK = pointer used by garbage-collector to scan 
through STACK. 

The mark phase of a garbage-collector satisfying these assertions 

could then be described as 

var LSTACK : shared record 
STACK : array[STACKSPACE] of POINTER; 
TOP : STACKSPACE 

end; 
ISTACK : STACKSPACE; 

"MARKING PHASE" 
region LSTACK do 
begin 

for ISTACK:=0 to TOP-1 do MARK (STACK [lSTACK]) 
"cell marked = cell live" 

end; 
• • • • 

The correctness of the marking procedure MARK is assumed. 

Several aspects of above algorithm make it unsuitable for 

concurrent garbage collection. First, the assertion "cell marked = 

cell live" outside the critical region is meaningless. A live cell 



- 64 -

is defined to be a cell which can be reached from STACK [o]..STACK 

[TOP-1],i.e,, the assertion depends on a shared variable and should 

be an invariant. However, it is not invariant: an allocation to 

the list-processor of a cell from free space (which is unmarked) 

and a subsequent push of a pointer to that cell onto the stack 

could invalidate it, 

There are basically two solutions to this problem: 

a) allocate only marked cells after completion of the 
marking phase and during the collecting phase, 

or 

b) prevent allocation of cells from free space during 
the collecting phase, 

The latter solution causes the list-processor to wait for storage 

during the collection phase and is therefore in principle inferior 

to the first, 

Solution a) can be implemented by marking the free space 

before leaving the critical region for LSTACK: 

region LSTACK do 
begin 

for ISTACK:=0 to TOP-1 do MARK (STACK[lSTACK] ) ; 
MARK FREESPACE 

end; 

Alternatively, one can increase the degree of possible 

concurrency by making the unmarked cells in free space inaccessible 

to the list-processor, and marking the free space outside the 

region for LSTACK: 

var TEMP : record 
FREE : POINTER; 
NRFREE : O,.MAXCELLS 

end; 
• • • • 
region LSTACK do 
begin 

region FREESPACE do 
begin 

TEMP:=FREESPACE; 



- 55 -

\ 

NRFREE:=0; 
FREE:=NIL 

end 
end; 

"MARK FREESPACE" 
while TEMP.NRFREE >0 do 
region FREESPACE do 
begin PTR:=TEMP.FREE; 

MARKED [PTR] : =TRUE; 
TEMP.FREE:=HEAP [TEMP.FREE] .LINK; 
TEMP.NRFREE:=TEMP.NRFREE-1; 
HEAP [PTR].LINK:=FREE; 
FREE:=PTR 

end; 

Which of the two approaches is to be preferred depends 

on the time it takes to mark the free space. If this is short in 

relation to the desired response time of the system (e.g., in the 

case of the free space being one contiguous area with the marking 

bits in a separate bit-table), the first approach should be ade

quate . 

As the list-processor may make marked cells inaccessi

ble, the assertion P before the collecting phase must be weakened 

to: 

P = "cell live implies cell marked" 

As a consequence, a concurrent garbage-collector can 

therefore in general not collect all garbage, but only a subset of 

it, i.e,, the unmarked cells. This will be discussed in detail 

later in this thesis, 

The major weakness of the first algorithm of this section 

is that it does all marking inside the critical region for LSTACK, 

This implies that for the duration of the marking phase, no stack 

operations can be performed by the list-processor. As the marking 

phase is the longest of the garbage collection phases for higher 

levels of heap utilisation, this makes the algorithm useless for 

concurrent garbage collection, 

A first attempt to repair this inadequacy is the following 

algorithm: 



- 55 -

repeat 
region LSTACK do 
begin if ISTACK < TOP then 

begin NEXT:=STACK [iSTACK] ; 
ISTACK:=ISTACK+1 

end 
else "ISTACK = TOP" DONE:=TRUE 

end; 
if not DONE then MARK(NEXT) 

until DONE; 

NEXT is a variable which is not shared, and it can there

fore be accessed outside the critical region. The marking is thus 

concurrent with the list-processor operations, 

It is simple to demonstrate that the results of the algo

rithm above are time-dependent and that it can therefore not be 

generally correct, 

As an example, assume that the garbage-collector and list-

processor share three variables (X, Y, and Z) during the marking 

phase, that the list-processor assigns one variable to another, and 

the garbage-collector marks cells and their successors: 

var X,Y,Z : shared CELL; 

cobegin 
"LISTPROCESSOR" 
HEAP[X] .CDR:=Y; 

"GARBAGE COLLECTOR" 
"MARK (X)" 
if not MARKED [x] 
then begin MARKED[x]:=TRUE; 

MARK(HEAP[X] .CDR) 
end 

coend; 

Even assuming that the two processes' actions are indi

visible, the system can be shown to be non-determinate. 

Fig, 2 - 8 shows the system schematically. The shared 

memory consists of X, Y, and Z. Each process performs one action 

(its interpretation) on these cells. Two possible computations 

are shown, each starting with all three cells unmarked and 

HEAP[x],CDR = Z, Computation I has the action sequence db and 



- 57 -

leads to the final state that X and HEAP [x],CDR are marked. This 

is correct. The second computation takes the sequence ba and 

yields a final state where X is marked and HEAP[x],CDR not. This 

is incorrect, as the subsequent collection phase will collect the 

unmarked cell Y, although it is referenced by the list-processor. 

The simple example demonstrates that concurrent pointer 

assignments and list marking fonji a non-determinate system, as the 

result of a computation in the system is not independent of its 

action sequence. 

Whether or not all cells which are garbage at the end 

of the marking phase are unmarked depends on the system action 

sequence during the marking phase. 

Let a = a list-processor action which makes cell X 
garbage, and 

b = the test and marking of X, 

Then ab leaves X unmarked, and ba results in a garbage 

cell being marked. 

One must therefore conclude that, in general, the system 

of concurrent processes list-processor/garbage-collector is non-

determinate. The only possibility of making concurrent garbage 

collection work is by making at least the list-processor determi

nate, so that the results of its computation only depend on the 

initial content of its memory cells and not on the merged list-

processor/garbage-collector action sequence. 

A correct marking algorithm will trace and mark all cells 

in a list exactly once. When it encounters a cell for the second 

time, it finds that it is marked and therefore does not attempt to 

trace the sublists. If there are unmarked cells in these sublists, 

these will never be marked. Any action sequence "mark list X, in

sert an unmarked cell in list X" during the marking phase of the 

garbage-collector will thus lead to incorrect results for the list-

processor's computation. 

The only way of inserting an unmarked cell into an other

wise marked list is by pointer assignment, such as RPLACA and RPLACD 



- 68 -

in LISP, and any reference assignment in general. One cannot stop 

pointer assignments during the marking phase without suspending 

execution of the list-processor and thus arriving at a sequential 

garbage-collector. The only other possibility is to design every 

pointer assignment operation in the list-processor so that it co

operates with the garbage-collector during the marking phase with 

the objective of completing the action sequence "allocation, mark

ing" for each live location. This then results in a sequence of 

safe states, i.e., determinacy. 

One way of doing this is by pushing references to such 

lists onto an auxiliary (shared) stack. The algorithm which en

sures that each unmarked list attached to a marked list will be 

traced and marked is then quite simple: 

var LSTACK : shared record 
STACK: 
ISTACK: 
TOP: 
AUX: array [AUXSPACE]of POINTER; 
AUXTOP:AUXSPACE; 
MARKING:BOOLEAN 

end; 
MARKED : shared array [HEAPSPACE] of BOOLEAN; 

cobegin 
"LISTPROCESSOR" 

"POINTER ASSIGNMENT HEAP [REFREF].PTR:=REF" 
region LSTACK do 
begin 

if MARKING then 
region MARKED do 
begin 

if MARKED [REFREFJ and not MARKED [REF] 
then PUSH (AUX,REF) 

end 
end; 



- 69 -

"GARBAGE COLLECTOR" 

"MARKING PHASE" 
region LSTACK do MARKING:=TRUE; 
DONE:=FALSE; 
repeat 
"A" region LSTACK do 

begin 
if AUXTOP>0 then 
begin NEXT:=AUX [AUXTOP] ; 

AUXTOP:=AUXTOP-1 
end 
else if ISTACK<TOP then 
begin NEXT: =STACK [ISTACK] ; 

ISTACK:=ISTACK+1 
end 
else 
begin DONE:=TRUE; 

MARKING:=FALSE; 
ISTACK:=0; 
MARK FREESPACE 

end 
end; 
if not DONE then MARK (NEXT) 

until DONE; 

coend 

This works correctly, i.e,, the marking phase will termi

nate with the assertion "all lists referenced from STACK [O] ,, STACK [TOP-1] 

are marked" holding, if all critical regions for LSTACK maintain the 

following invariants: 

MARKING implies TOP-ISTACK = number of lists still to be 
traced from STACK 

Invariant 7 

MARKING implies AUXTOP = number of lists still to be 
traced from AUX 

Invariant 8 

Cell live = cell referenced from STACK [o] ,,, STACK [TOP-1] 

Invariant 9 



- 70 -

If the marking is done outside the critical region for 

LSTACK, invariants 7 and 8 are maintained by the garbage-collector 

during the marking phase if the list referenced by NEXT is consid

ered as traced. This is permissible as, once NEXT is made to refer

ence a candidate list for tracing and marking, this list is always 

traced, irrespective of the values of ISTACK, TOP, and AUXTOP, If 

the garbage-collector marks inside a critical region for LSTACK, 

an intermediate variable NEXT is not required, and invariants 7 and 

8 must again be maintained by that region, 

In either case, the essential point is that at point A 

in the algorithm shown above, exactly (TOP-ISTACK)+AUXTOP calls to 

procedure MARK are outstanding. Then, when zero calls are outstand

ing upon entry of region LSTACK, DONE and MARKING are correctly 

made true, i.e., the marking phase is tejoninated with all live lists 

marked. 

The correctness of above algorithm will now be proved. 

Let k = TOP-ISTACK, m = AUXTOP. The proposition to be 

proved is "Starting at point A of above algorithm with k lists to 

be traced from STACK and m lists from AUX, the algorithm will ter

minate with these traced and marked". 

The proof of this proposition is done in three steps by 

proving propositions for m, k, and termination, 

Proposition a: "The algorithm traces all m lists from AUX" 

Proof: 

The proof is by induction in m. For m = O, it is true 
because no more lists are traced from AUX. For m+1, one 
list from AUX is marked (DONE=FALSE), and m lists from 
AUX remain to be marked. By induction, these lists will 
be marked. This completes the proof of proposition a. 

Proposition b: "The algorithm traces all k lists from STACK" 

Proof: 

The proof is by induction in k. Lists from STACK are 
only traced when AUXTOP = O. For k = O, DONE is made 
true and the algorithm terminates correctly without 
marking another list. For k+1, the algorithm marks one 



- 71 -

list from STACK, and k lists remain. According to the 
induction hypothesis, these k lists are marked correctly. 
This completes the proof of proposition b. 

Proposition c: "The algorithm terminates" 

Proof: 

As the number of unmarked cells is finite and all can be 
reached from either STACK[ISTACK]. .STACK [TOP-ijor 
AUX [O],, AUX [AUXTOP-1], they will be marked with a finite 
number of calls to MARK, Given that MARK cannot loop or 
wait indefinitely, the marking phase will terminate. This 
completes the proof, 

A necessary consequence of invariant 9 is that the list-

processor may have no "private" pointers into the heap outside 

critical regions for LSTACK, All intermediate results still re

quired after exit from the region have to be pushed onto the shared 

stack. 

The list-processor maintains invariants 7 and 8 by incre

menting the stackpointers TOP and AUXTOP for every push onto the 

respective stack and by decrementing it for every pop off the stack. 

However, the list-processor must do extra work during the 

marking phase. As a pop operation on STACK invalidates invariant 7 

whenever TOP<ISTACK after decrementing TOP, the following code must 

be added to procedure POP: 

"LISTPROCESSOR" 

fxinction POP:POINTER; 
begin 

region LSTACK do 
begin TOP:=TOP-1; 

POP : = STACK [TOP] ; 
"Added:" if_ MARKING then 

ISTACK:=MINIMUM (TOP, ISTACK) 
end 

end; 

The only alternative solution to this is to stop TOP 

from taking on values smaller than ISTACK by the following 

construct: 



- 72 -

function POP:POINTER; 
begin 

region LSTACK do 
begin 

await ISTACK<TOP; 
T0P:=T0P-1 

end 

The obvious disadvantage of this alternative is that the 

list-processor may have to wait up to the time it takes to mark the 

lists referenced by AUX[o] AUX[AUXT0P-1] and STACK[lSTACK] . This 

results in poorer, data-dependent real-time performance. 

Invariants concerning the heap 

Two invariants must be maintained by all critical regions 

for HEAP, viz. 

Any 
sets 

location bel 
ACCESSIBLE, 

ongs to one 
FREESPACE, 

and 
or 

only one 
GARBAGE. 

of the 

Invariant 10 

The mode and the contents of a location do not conflict. 

Invariant 11 

Fig. 2 - 9 shows what might happen if invariant 10 is not 

maintained. In the collection phase, an unmarked location A has 

been found and the garbage-collector has just put it onto the front 

of the freelist, but not yet updated FREE (a). At this time, the 

list-processor requests a location and gets cell B, which is un

linked from the freelist (b). FREE is updated to C. Then, the 

garbage-collector moves FREE to A (c). The result is that the 

freelist from C onwards is lost and invariant 10 violated for cell 

B, as it belongs to sets ACCESSIBLE and FREESPACE. This would also 

violate invariant 6, as NRFREE / number of cells in the freelist, 

In general, all operations (always involving reference 

assignments) which might affect the membership of a location to 

one of these sets must be indivisible, i.e., they are critical 

regions for HEAP. 



- 73 -

If storage allocation functions are separate from con

structor functions in a list-processor, they must initialise the 

sub-location(s) of the location allocated to appropriate skip 

values in order to maintain invariant 11, 

Invariant 11 is also important for languages which permit 

union modes, such as ALGOL 68, For these, the marking algorithm 

would fail if it were applied to a location at a time when its con

tents were of mode a, but its mode were still denoted as b. Any 

assignment to a variable of union mode and the updating of the 

actual mode indicator would have to be atomic, i.e., a critical 

region. This invariant is not necessitated by concurrent garbage 

collection. It is required for any language which supports par

allel processes. 

Shared variables and deadlock 

The previous section has indicated that one requires sev

eral shared variables for concurrent garbage collection, and that 

the critical regions for these may sometimes have to be nested. 

This leads to the danger of deadlock between list-processor and 

garbage-collector, as the following example will illustrate: 

cobegin 
"LISTPROCESSOR" 

region HEAP do 
begin 

region LSTACK do . 
.... , 
end 

"GARBAGE COLLECTOR" 

region LSTACK do 
begin 

region HEAP do ,,,, 

end 

coend 



- 74 -

Assuming that the list-processor has entered region HEAP 

and the garbage-collector region LSTACK, neither can proceed into 

its next, nested critical region, as both regions are busy: the 

system is deadlocked by a circular wait condition, 

Coffman et al. (Co 71) give the following necessary con

ditions for deadlock with respect to permanent resources such as 

shared variables: 

1) Mutual exclusion: A resource can only be acquired 
by one process at a time, 

2) Non-preemptive scheduling: A resource can only be 
released by the process which has acquired it, 

3) Partial allocation: A process can acquire its 
resources piecemeal, 

4) Circular waiting: The previous conditions permit 
concurrent processes to acquire part of their 
resources and enter a state where they wait indef
initely to acquire each othnr'? resources, 

To prevent deadlock, it is therefore sufficient to ensure that at 

least one of these conditions never holds, 

As list-processor and garbage-collector are cooperating 

processes with shared variables, mutual exclusion (condition 1) is 

required for determinacy. 

Preemptive scheduling is not possible efficiently once 

a process is inside a critical region. Furthermore, it would 

require cooperation by the process to be preempted, in order to 

bring the system into a safe state, i.e., all invariants holding. 

The only use of preemptive scheduling in the garbage-collector/ 

list-processor system is thus by conditional critical regions. In 

general, condition 2 vrill therefore hold for concurrent garbage col

lection. 

One can always prevent deadlock by complete allocation 

of all shared resources needed by a process in advance of its 

execution. For shared variables, this implies combining all vari

ables into one shared record. In the case of the concurrent garbage 

collection system, this would be: 



- 75 -

var ALL : shared record 
HEAP: 
LSTACK: 
MARKED: 
end; 

Whenever exclusive access to one of the variables is required, 

this is done by 

region ALL do_ 
(access variable) 
end; 

The disadvantage of total allocation is however that 

exclusion for one variable means exclusion for all other shared 

variables as well. If much of the processing in both list-proces

sor and garbage-collector is done on shared variables, this results 

in a low degree of parallelism between the processes. Still, this 

solution is efficient for list-processor/garbage-collector algo

rithms which frequently require access to most or all of their 

shared variables in a nested sequence. Here, it minimises the over

head connected with entry to and exit from regions. 

Generally speaking, such approach leads to more frequent 

and longer blocking between cooperating processes and thus to worse 

real-time response. For multi-processor implementations, it also 

results in worsened processor utilisation, if processor time during 

blocking cannot be utilised elsewhere. 

The negation of condition 4 can be done by a sequential 

ordering of requests to prevent circular waiting. It requires an 

algorithm which determinates whether, upon entering a critical region, 

it can be left again within a finite time. An example of such algo

rithm is the Banker's Algorithm,which is however time consuming. 

Brinch Hansen gives a proof in (Ha 73) that deadlocks of 

nested critical regions can also be prevented by a hierarchal or

dering of common variables vl, v2, ... vn and critical regions 

region vl do 
region v2 do 

region vn do 



- 76 -

Each level in the hierarchy of variables consists of a 

finite number of variables. When a process has acquired variables 

at level j, it can only request variables at a higher level k, 

Variables acquired at level k are released before the variables 

acquired at a lower level j, 

Given that in both list-processor and garbage-collector 

algorithms the nested accesses to shared variables follow the same 

sequence, this is an efficient way of deadlock prevention. Other

wise, it may be necessary to acquire access to a variable before 

it is needed, thus reducing the degree of parallelism possible, 

2, 3 SCHEDULING OF GARBAGE-COLLECTOR 

In a sequential garbage collection system, the optimum 

scheduling strategy is to initiate garbage collection when the free 

space has been exhausted. This leads to minimum overhead per re

claimed cell, as can be shown as follows: 

Let H = number of cells in the heap 

r = heap utilisation 

m = marking rate 

k = collection rate 

u = unmarking rate 

R = number of garbage cells reclaimed=(l-r)H-NRFREE 

Then, assiaming equilibrium (r=const.), the relative cost in proces

sor time per reclaimed garbage cell can be expressed as 

rH/m + (1 - r) H/k + H/u ,o -, , N 
rel. cost = (2.3.1) 

R 

This is minimized by R = (1 - r)H, i.e., by initiating garbage 

collection when the free space is exhausted. 

If this same strategy were applied to a system with con

current garbage collection, the list-processor would have to wait 



- 11 -

for storage for up to rH/m units of time. Therefore, for concur

rent operation throughout the garbage collection phase, the col

lector has to start while there is still a sufficient number of 

free cells in the free space to satisfy the list-processor's storage 

requests throughout the marking phase. 

To determine the marking time and subsequently the level 

of free cells at which to start the garbage-collector (called 

TRIGGER in the preceding section), a model of marking, storage al

location, and garbage production will be developed in the following 

section. 

2.3.1 Model 

The following assumptions about the concurrent garbage 

collection system are made: 

a) The system is in equilibrium, i.e., the heap utili
sation r is constant. 

b) The list-processor consumes free space cells at a 
constant rate c. 

c) The list-processor makes cells inaccessible (gar
bage) at a constant rate g. 

d) Accessible cells become inaccessible at random. 
The probability of an accessible cell becoming 
inaccessible is independent of whether it is 
marked or not, 

e) . All cells are of equal size, 

The model of the heap composition during the marking phase can then 

be depicted as shown in Fig. 2 - 1 0 . At any one time during mark

ing, a cell can be in one of the following sets of cells in the 

heap: 

1) Free space cells (occupancy F(t)) 

2) Unmarked live cells (occupancy U(t)) 

• 3) Marked live cells (occupancy M(t)) 

4) Marked garbage cells (occupancy L(t)), and 



- 78 -

5) Unmarked garbage cells (occupancy G(t)). 

The transition rates between the sets are: 

1 to 2 : the storage allocation rate c 

2 to 3 : the marking rate m 

2 to 5 : a proportion of the garbage rate. 

Because of assumption d), this is 

g X u(t) / (U(t) + M(t)) 

3 to 4 : a proportion of the garbage rate. 
Because of d), this is 

g X M(t) / (U(t) + M(t)) 

Sets 2 and 3 together are the live cells, and sets 4 and 

5 the garbage cells. Of the latter, only set 5 can be reclaimed 

by the collecting phase following this marking phase. The marking 

phase terminates when all live cells are marked: 

U (T ) = O (2.3.2) 
m 

At this time, 

F(0) - F(T ) = cT (2.3.3) 

m m 

free cells have been consumed. Let F(o) = TRIGGER. 

Then 

TRIGGER - cT > O (2.3.4) 

m = 

must hold in order to avoid waiting for storage during the mark

ing phase. 

The occupancies of the five sets shall now be determined 

as functions of time. 

F(t) 

From Fig. 2 - 9 : 

Integration of (2.3.5) gives the time-function for the number of 

free cells 

F(t) = TRIGGER - ct (2.3.5) 



- 79 -

U(t) 

From Fig. 2 - 9 : 

do U • ,̂  , .,, 

dr=">-IÏÏÏÏ^ . . (2.3.7) 

Because of assumption a) concerning equilibrium, 

U+M = rH (2.3.8) 

For the same reason, 

U(0) = rH (2.3.9) 

Solution of (2.3.7) with start condition (2.3.9) gives 

the number of unmarked live cells at time t: 

U(t) = rH( 1 - - (l-exp(- 2_ t))) (2.3.10) 
g rH 

Equilibrium also presupposes 

c = g (2.3.11) 

Thus, (2.3.10) can also be expressed in the form 
m p 

U(t) = rH(l - - (l-exp( - -rr t))) (2.3. lOa) 
c rH 

M(t) 
From Fig. 2 - 9 : 

(2.3.12) 

(2.3.13) 

M(0) = 0 (2.3.14) 

The initial time derivative of M is 

M( t = O) = m (2.3.15) 

The solution of differential equation (2.3.12) 

is therefore 

M(t) = 2£S. (i_exp( - -^ t)) • (2.3.15) 

with 

The 

(2.3 

initi 

dM 
dt 

.8), 

dM 
dt 

al va 

m -

m -

lue 

M 
U+M g 

-?i^ 
of M is 



- 80 

or, with (2.3.11) 

M(t) = ^^^ (l-exp( - ̂  t)) (2.3.15a) 
c rH 

This is the time function of the number of marked live cells. 

L(t) 

From Fig. 2 - 9 : 

i^^üTi^ (2.3.17) 

5^=2^M (2.3.18) 
dt rH 
L(t) = ̂  ƒ Mdt (2.3.19) 

rH •* 
Inserting (2.3.16) one gets 

L(t) = 2^ ƒ 2££ (l-exp( - 2_ t))dt (2.3.20) 
rH ' g rH 

The initial values of L and L' are 

L (O) = O (2.3.21) 

L'(O) = O (2.3.22) 

The number of marked garbage cells then has the time 

function 

L(t) = mt - 2i£i (l-exp( - ̂  t) ) (2.3.23) 
c rH 

G(t) 

From Fig. 2 - 9 : 

dT^IÏÏÏÏ^ (2.3.24) 

~=^ü (2.3.25) 
dt rH 

Inserting (2.3.10) and integration yield 

G = 2_ ƒ (rH - 2̂£S. (i-exp( - 2_ t)))dt (2.3.25) 
rH g rH 

The initial values for G and G' are: 

G'(O) = g (2.3.27) 

G (O) = (1 - r)H - F(0) - L(0) (2.3.28) 



- 81 -

With (2.3.21): 

G(0) = (1 - r)H - F(0) (2.3.29) 

The time function of unmarked garbage cells is then 

G(t) = (g - m)t + 2£^ (l-exp( - 2- t)) 
g rH 

+ (1 - r)H - F(0) 
(2.3.30) 

All time functions have now been arrived at. It is 

already obvious from these that concurrent garbage collection does 

not work for all values of g, m, etc. These design parameters will 

be discussed in the next section, based on the functions just devel

oped. 

Here, the model shall only be used to determine the mark

ing time and the level of free cells at which collection must be 

initiated so that the list-processor does not "starve" during the 

marking phase. 

The marking time T is derived at by using (2.3.2) and 

(2.3.10) 

rH(l - - (l-exp( - 2- T ))) = 0 (2.3.31) 
g rH m 

T = - — In (1 - S:) (2.3.32) 
m g m 

rH c 
T = In (1 ) (2.3.32a) 

m c m 

This leads to the conclusion that the marking phase 

only terminates if c < m, i.e., if the marking rate is faster than 

the rate of taking new, unmarked cells from the free space. 

Fig. 2-11 shows the marking time as a function of the 

ratio m/c and for a range of values for the heap utilisation r. 

The marking time is normalised by dividing by H/c, the time it 

takes the list-processor to consume H cells (the whole heap) from 

free space. As the marking rate approaches the consiomption rate, 

the marking time goes to infinity. This is equivalent to a queu

ing system where the arrival rate (influx of unmarked cells from 

free space) approaches the service rate (marking). Naturally, the 

pool from which the arrivals come is limited (=TRIGGER for t=0), 



- 82 -

This limits the marking times, but may also cause the list-proces

sor to wait for storage, i.e., negate concurrency. All things 

being equal, concurrent garbage collection has longer marking times 

than sequential collection. The ratio of the respective marking 

times is 

\(CONC) -^" '^^' - "/"̂ -̂ ^ 

\(SEQU) ^̂ "̂" (2.3.33) 

= -Blind - ^ ) 
c m 

Fig. 2-12 shows this function plotted. With m/c approaching 1, 

it grows against infinity. The number of cells which the concur

rent collector marks in excess of rH is marked garbage, i.e., un-

retrievable. 

The level of free cells TRIGGER at which to initiate col

lection to prevent running out of storage during marking can be 

derived at by using (2.3.4): 

TRIGGER > -rH In(1 - - ) (2.3.34) 

= m 

Fig. 2-13 shows TRIGGER (as a proportion of H) as a 

function of m/c for various levels of heap utilisation. As the 

marking rate approaches the cell consumption rate (m/c ->• 1), the 

number of cells consumed during the marking phase goes asymptoti

cally against infinity. As the speed ratio m/c goes against infini

ty, the situation for sequential garbage collection (TRIGGER = O) is 

approached asymptotically. This is plausible, as c = O during mark

ing for sequential garbage collection. 

From this figure, it becomes obvious that concurrent gar

bage collection is only possible for a limited range of values for 

r and m/g without running out of storage during the marking phase: 

at most, (1 - r)H cells can be in free space when the heap utilisa

tion is r. With increasing r or decreasing m/c, the number of cells 

required to satisfy all storage requests during the marking phase 

increases, whereas the number of cells available decreases. Func

tion (2.3.34) thus only gives the cells required to get through 

the marking phase without waiting for storage; this storage may 



- 83 -

however not be available. 

The next section will develop the parameter space for 

which concurrent garbage collection without wait conditions for 

storage is possible. 

2.3.2 Design parameters for concurrent garbage collection 

For full concurrency, i.e., if the list-processor is 

never to wait for storage, two conditions must be satisfied 

(see Fig. 2 - 14): 

F(T ) > 0 (2.3.35) 
m = 

and 

F(T ) > F(0) = TRIGGER (2.3.36) 

u = 

If (2.3.36) is not satisfied, storage equilibriiom is 

impossible, as less cells are reclaimed than are consumed during 

garbage collection. The system must therefore run out of storage. 

A sufficient condition for storage not running out is 
D = F(T ) - F(0) > O (2.3.37) 

u 
where D = the niomber of cells by which the garbage 

collection has increased free space. 

During the collection phase (T ...T ), the time function of 
m c 

F is 

F(t) = F(T ) + (k - c)(t - T ) (2.3.38) 
m m 

Taking the smallest possible value for F(T ), viz.F(T ) = O: 
m m 

F(T, ) = (k - c) (T, - T ) ( 2 . 3 . 3 9 ) 
Jc K m 

where k = collection rate (assumed to be constant). 

Given k, T - T is determined by the number of unmarked (thus 
k m 

retrievable) garbage cells at t = T : 
m 

F(T ) = (k - c) G(T ) / k = (1 - k/c) G(T ) (2.3.40) c m m 

The time function for F during the unmarking phase (T ...T ) is: 

F(t) = F(Tĵ ) - c(t - T^) (2.3.41) 



- 84 -

Assuming that always the whole heap is unmarked, the unmarking 

time (T - T, ) is: 
u k 

T - T = - (2.3.42) 

u k u 

where u = unmarking rate (assumed to be constant). 

With (2.3.37), (2.3.40), and (2.3.42), the result is: 
D = (1 - ̂  ) G(T ) - - H - F(0) (2.3.43) 

k m u 
The function for G during marking is provided by (2.3.30), and 

T by (2.3.32) . 
m 

Letting F(0) = TRIGGER and using (2.3.34), the result is: 

D = H(1 - - - £ + (1 +2.-ïi)rln(l - - ) ) (2.3.44) 
u k c k m 

This is the fundamental design formula for dimensioning 

a concurrent garbage collection system. Under the assumptions 

made in section 2.3.1 for the heap model, it allows the determina

tion of the parameter space for which fully concurrent garbage col

lection is possible, i.e., for which D >̂  0. 

Fig. 2-15 shows the net gain of cells D, normalized by 

H, for a range of values for m/k, m/c, and c/u. 

(Note: c/k = (c/m)(m/k).) 

The faster the cell reclamation and unmarking rates, the 

less cells are consumed during the reclamation and unmarking 

phases. Fig. 2 - 15(a) shows the extreme case where unmarking and 

reclamation are infinitely faster than marking. For a heap utilisa

tion of zero, the garbage collection then yields all unused cells. 

With increasing heap utilisation, the ratio m/c necessary to sus

tain concurrent collection increases rapidly. 

Fig. 2 - 15(b) shows D for a system with a reclamation 

rate which is twice the marking rate, and an unmarking rate which 

is five times the cell consumption rate. Because of the cell con

sumption during the reclamation and unmarking phases, the free 

space available after a collection is significantly less than for 

the case shown in Fig. 2 - 15(a), i.e., zero unmarking and recla

mation times. This leads to more frequent garbage collector acti

vations and thus to more overheads. 



- 85 -

Solving (2.3.44) for r, one can determine the maximum 

heap utilisation possible so that D >_ O: 

1 - c/k - c/u (2.3.45) 
max -(1 + m/c - m/k)In(1 - c/m) 

For a heap utilisation of r , the garbage collection rate 
max 

becomes infinite, i.e., the collector is always active. 

Fig. 2 - 16(a) gives the heap utilisation possible for 

zero unmarking time. The top curve (zero reclamation time) shows 

the theoretical maximum for r , i.e., the best heap utilisation 
max 

possible with concurrent garbage collection. For example, m/c=2 

only permits a heap utilisation of up to about 50%. An increase 

in the reclamation time decreases r further, though not signif-
max 

icantly. 

Fig. 2 - 16(b) shows a case which is extremely (and pro

bably unrealistically) bad, viz. an unmarking rate which is only 

twice the cell consumption rate. Even for m/c=10, the heap utili

sation possible is well below 50%. 

Formula (2.3.45) can be used to determine the size of the 

heap H required for an application program needing on average x 

cells and consuming cells at a rate c: 
— < r 
H = max 
^ (2.3.46) 
H > x/r 
X = max 

2.4 OVERHEADS 

There are two categories of overheads connected with 

concurrent garbage collection: 

Overheads due to synchronisation and means to make 
the system determinate, and 

overheads which are inherent in concurrent garbage 
collection. 



- 86 -

To the first category belongs all processing time which 

is consumed by region entry and exit and by re-evaluating the await 

condition. Also, the additional work to be done by the list-proces

sor during the marking phase and the space required to store refer

ences for the garbage-collector to unmarked sxiblists attached to 

marked lists fall under this category. 

These overheads depend on the algorithms used by list-

processor and garbage-collector, on the efficiency with which the 

critical regions are implemented, and on the data involved in the 

list-processor's computation. Therefore, no general functions for 

the processor and memory overheads of the first category will or 

can be offered here. 

Overheads of the second category are the additional heap 

space needed to compensate for the unreclaimable garbage and the 

additional processor time caused by marking cells which then be

come garbage during the collection. These are intrinsic overheads 

which depend on rates such as cell consumption, marking, reclama

tion, and unmarking. In the following, the model developed in the 

previous sections will be used to estimate these overheads. 

2.4.1 Heap space overhead 

The unreclaimable (marked) garbage cells reduce the total 

useful heap space and thus represent a storage overhead. Their 

number is computed by evaluating L(t) for t = T (Formulas 2.3.23 
m 

and 2.3.32): 

L(T ) = rH( - - ln(l - - ) - 1) (2.3.47) 

m c m 

The space overhead is thus a proportion of the heap space 

in use and decreases asymptotically to zero with increasing speed 

ratio m/c. 

2.4.2 Processor overhead 

The greater processor overhead of concurrent compared to 

sequential garbage collection has two causes, viz. the higher 



- 87 -

frequency of garbage collection and the longer duration of each 

individual collection. 

The increase in frequency stems from the smaller number 

of cells reclaimed by concurrent garbage collection, and the greater 

processing time per collection from the marking of cells which later 

become garbage. 

A given computation produces a fixed amount of garbage G. 

The number of collections needed to reclaim these cells is: 

n = f (2.3.48) 
R 

where R = number of cells reclaimed by one collection. 

Thus, the ratio of concurrent to sequential collections for the 

same computation is: 

n R 

• • ir = 5 ^ - (2.3.49) 
s c 

where s = subscript for sequential collection 
c = subscript for concurrent collection 

The total processing overhead of concurrent relative to sequential 

(2.3.50) 

where T , T = processor time for one concurrent 
(resp. sequential) collection. 

The processing time is the sum of the marking, reclama

tion, and unmarking times. From the model developed in section 

2.3.1, the time for concurrent collection is derived as: 

T = -£H in( 1 - ^ ) + J (1 +2^r ln(l -£)) + ^ 
c c i m k c m u 

= H( ̂ ln(l - £ ) ( 2.- 1) + l + i ) (2-3.51) 
c m k k u 

For one sequential collection, the processing time needed is: 

T ^ £ H ^ (1 - r ) H ^ H 2) 
s m k u 

Concurrent collection retrieves unmarked garbage cells only. 

collection 

P 

is 

= 

thus: 
n 
c 

n 
s 

T 
c 

T 
s 



- 88 -

With (2,3,6), (2,3.30), and (2.3.32), their number at the end of 

the marking phase is 

R = G(t = T ) + F(t = T ) 
^ "̂  "̂  (2.3.53) 
= H(l + - r ln(l - - )) 

c m 

Sequential garbage collection always reclaims the total unused 

space: 

R = H(l - r) (2.3.54) 

s 

By insertion in (2.3.50), the total relative processor overhead 

of concurrent garbage collection results: 
= (1 - r)(ln(l - c/m)(m/k - 1) r/c + 1/k + 1/u ) 

^ (1 + r ln(l - c/m) m/c)(r/m + (1 - r)/k + 1/u) 

(2.3.55) 

With increasing m/c, the relative overhead decreases 

asymptotically to 1. This shows the importance of a fast marking 

algorithm for the efficiency of concurrent relative to sequential 

garbage collection. Alternatively, this can be stated in the form 

that for a given concurrent garbage collection algorithm, the effi

ciency increases with decreasing cell consumption rate. 

2.5 SUITABLE ALGORITHMS 

For the design of a system with concurrent garbage col

lection, algorithms must be selected which 

can be implemented so that they satisfy the speed 
constraints discussed in the preceding section, and 

permit a high level of concurrency. 

In principle, all garbage collection algorithms are suit

able for concurrent operation. They do vary, however, in their 

real-time performance because of the length of time spent inside 

critical regions: 

Example 1: Some garbage-collector algorithms modify 



- 89 -

the list-structure of accessible lists by using it as a 
stack during the marking phase (e.g. Schorr and Waite, 
So 67). This results in invariant 9 not holding while 
a list is being traced, leading to long, data-dependent 
periods in which the garbage collector process stays 
inside the necessary critical region for HEAP. 

Example 2; Some algorithms, such as that by Haddon and 
Waite (Ha 57 ) compactify storage as follows: 

1. Mark all free storage. 

2. Move all non-free elements to a compact block 
at one end of the heap, building up a relocation 
table at the same time. 

3. Update all relocatable fields, using relocation 
table. 

Between the time a location has been moved and the time 
all references to it have been updated, invariant 9 does 
not hold. This requires a very long (most of phases 2 
and 3), unpredictable period inside the critical region 
for HEAP. 

The most suitable algorithms for good real-time respon

siveness are those which have to violate invariants only for short, 

data-independent periods. In general, these are algorithms which 

do not change anything in locations accessible to the list-processor. 

For such algorithms, the longest period inside a critical 

region can be bounded by the amount of time required to process the 

largest single location and be independent of the length of lists 

or the complexity of the list-structure. 

With respect to efficiency relative to sequential garbage 

collection, a fast marking algorithm is desirable, as it keeps the 

number of lost cells low. This puts e.g. the Cheney-Arnborg algo

rithm at a disadvantage, as it does marking and copying together. 

To minimise the amount of heap-uspace required for full 

concurrency, also the collection and unmarking rates should be 

high. In particular on machines with large wordlength, this favours 

the separate array of marking bits over marking bits built into the 

locations themselves, as it permits much faster unmarking. For exam

ple on the CDC 6000/CYBER series with 60 bits/word, the unmarking 

rate using a bit array is at least 50 times that for individual mark 

bits. 



- 90 -

C h a p t e r 3 

E X A M P L E S 

In this chapter an attempt will be made to demonstrate the 

practical applicability of the approach. For this purpose, two 

list-processing systems have been chosen whose heap management re

quirements are assumed to embrace the range of requirements one 

encounters in practice. The first example supports a fixed number 

of LISP-like data-structures (list cells, atom headers, and atom 

cells) which can be catered for by fixed-length locations. For 

this, a non-relocating, concurrent garbage-collector has been de

veloped which performs marking by recursion and iteration. 

The second example supports variable-size locations with 

an arbitrary number of modes. The modes may contain any number of 

pointer and non-pointer fields. A concurrent, interpretative gar

bage-collector which compactifies the active part of the heap is 

shown in this example. It is based on the copying algorithms of 

Cheney (Ch 70) and Arnborg (Ar 72). 

For both examples, shared variables are identified and 

invariants stated, and correctness proofs are offered. 

The two algorithms for concurrent garbage collection have 

been simulated by sequential programs. For this purpose, they were 

programmed in PASCAL and executed on a CDC 5400 computer. The con

currency of the original algorithms was simulated by interleaving 

the execution of list-processor and garbage-collector. Both algo

rithms executed correctly for a large range of list structures. 

The main limitation of this test method lies in the complete mutual 

exclusion of both processes, i.e., the sequential simulation does 

not permit testing of critical regions for individual shared vari

ables. Therefore, this thesis does not rely in any way on the 

simulation experiments performed or on their results. However, 

they have played an important role in the development of the con

cepts discussed. 



- 91 -

3.1 A NON-RELOCATING CONCURRENT GARBAGE COLLECTION 

SYSTEM 

3.1.1 Data structures supported 

As this example is supposed to exemplify the heap manage

ment requirements of a LISP-like system, the following three modes 

are supported: 

List cell: This is a pair of references (CAR, CDR) 
to objects either of mode "list cell" or of mode "atom". 

Atom head: This contains a reference CDR to a property 
list and a reference PNMPTR to the atom's print-name. 

Atom content:The print-name of the atom is stored in a 
list of locations of this mode. It has a character 
string STRING and a reference NEXT to the next part (if 
any) of the print-name. 

Number atoms do not exist in this system. 

The modes of cells are stored in boolean locations PNAME 

and ATOM in each object. 

The address space of the heap is assumed to run from LOW 

to HIGH, with LOW > O, Builtin atoms are assumed to have addresses 

< LOW. Only one builtin atom is explicitly used, namely NILP which 

denotes "no object". NILP is given address O. 

Fig. 3 - 1 shows objects of the three modes in which all 

fields are densely packed. How locations for these modes are im

plemented, however, is of no consequence for the algorithm. The 

only assumption made is that all objects are of the same size. 

Fig. 3 - 2 gives an example of an atom in this system. 

The contents of the STRING fields are irrelevant for the garbage-

collector, as they are non-pointer fields. 

3.1.2 Heap management 

The heap is assumed to consist of HIGH-LOW+1 fixed-size 

locations. No requirement for compaction is assumed. Thus, all 

free locations are allocated from and collected into a linked free 

list. 



- 92 -

Two types of lists must be traced and marked by the mark

ing algorithm of the garbage-collector, viz. lists made up of list 

cells and atom headers, and print-name lists. The latter are only 

referenced by atom header cells. In principle, all active lists 

could therefore be marked recursively by two routines, one for nor

mal lists and one for atoms. As the maximum possible depth of re

cursion depends on the space available for the stack of procedure 

activation records, this would restrict the list size in CAR and 

CDR direction. A compromise solution used for LISP systems is to 

recurse only in CAR direction and to mark iteratively in CDR direc

tion. This then only imposes a restriction on the maximum list 

depth in CAR direction. The algorithm used here adopts the same 

approach by marking normal lists and atoms iteratively in CDR and 

recursively in CAR direction. 

A basic assumption made is that the list processor does 

not change a location's mode after allocation. 

For keeping unmarked live lists attached to the marked 

list accessible for the marking algorithm, the same approach as 

described in chapter 2 is used, viz. an auxiliary stack. 

3.1.3 Program description 

The program structure of this example follows that shown 

in Fig. 3 - 3, i.e., list-processor and garbage-collector are pro

grammed as procedures which are called inside the concurrent state

ment. 

The declaration part for global constants, types, and 

variables (Fig. 3-4) is practically identical to what has been 

used and developed in chapter 2. 

Fig. 3 - 5 identifies the structure of the list-processor. 

As the objective of this thesis is not to study list-processors, the 

list-processor program is not complete. Only a set of primitive 

operations (stack operations PUSH and POP, constructor functions 

CONS, pointer-moving function RPLACA, and non-pointer moving func

tion CAR) has been selected from the ones in a LISP system which 



- 93 -

is representative for the synchronisation requirements of a list-

processing applications process in a concurrent garbage collection 

system. 

The garbage-collector (Fig. 3-6) also follows the struc

ture developed in chapter 3. The only significant addition is the 

marking algorithm (procedure MARK). It marks recursively in CAR 

direction (lines 40...43) and iteratively in CDR direction (lines 

44...50). To mark the cells making up the print-name of an atom, 

HARK has a local procedure MARKATOM which marks iteratively. All 

iterative and recursive marking is done outside critical regions, 

so that each critical region is left within a short time which is 

independent of the list-structure. The only exception is the mark

ing by iteration in T'lARKATOM which for reasons of simplicity only 

is done inside critical regions (lines 11...25). Assuming that the 

number of cells containing an atom print-name is small, this has no 

significant effect on the real-time responsiveness of the algorithm. 

Also, if necessary, it is easy to change MARKATOM so that all criti

cal regions are left between marking individual cells. 

Lines 96...98 of Fig. 3 - 5 show that this algorithm ter

minates as soon as it finds that there are no more free cells in 

the freelist at the end of the collection phase. Another reaction 

to this condition would be to request more memory from the operating 

system, or to attempt one more collection and stop only when this 

also fails to reclaim cells. 

Procedure INITIALISATION (Fig. 3-7) establishes the free-

list and unmarks the heap. It makes all invariants hold so that 

they hold upon entering the concurrent statement. 

3.1.4 Correctness proofs 

The correctness proof provided in chapter 2 for a con

current garbage collection system such as this one assumes that 

invariants 1 to 11 hold, 

the marking algorithm is correct and terminates, and 

the system is deadlock-free. 



- 94 -

In order to avoid repetition, the correctness of this algorithm 

shall be shown by demonstrating that all invariants are maintained, 

and that procedure MARK is correct and terminates. Also, it will 

be shown that the system cannot get into a deadlock condition. 

3.1.4.1 Invariants 

After procedure call INITIALISATION (Fig. 3-7) 

Invariant 1 

Assuming PROCESSING ACCOMPLISHED E FALSE, EXIT E NRFREE = 0 

is correctly initialised after line 25. 

Holds if LOW <̂  HIGH which is ensured by the check in line 3 

Holds if LOW <̂  HIGH, as NRFREE = HIGH-LOW+1 = MAXCELLS 

after line 17. 

Holds after line 29. . 

Invariant 5 

In this system, all allocation is in locations with a 

fixed length of one cell. Thus, NRNEEDED is implied to be one, 

and the invariant holds after the check in line 29. 

Invariant 6 

Holds if LOW £ HIGH, as there are MAXCELLS cells in the 

heap. All cells are in the freelist and NRFREE = MAXCELLS after 

line 17. 

Invariant 7 

Holds after line 26. 

Invariant 8 

Holds after line 26. 



- 95 -

Invariant_9 

Holds after line 24, as there are no live cells and the 

stack is empty. 

Invariant 10 

After line 17, all cells belong to one set, viz. FREE. 

Holds. 

Invariant 11 

Holds, as there are no live cells. 

Thus, it has been shown that all invariants hold upon 

entry to the concurrent statement. 

After critical regions in list-processor (Fig. 3-5) 

Invariant_l 

Line 80: EXIT is only changed in value if "processing 

accomplished". (How this condition is determined shall be of no 

concern here.) Invariant is maintained. 

Invariant_2 

Lines 32...52: The conditional critical region ensures 

that NRFREE is only reduced by one when NRFREE > O. Maintained. 

Invariant 3 

Lines 32...52: NRFREE is only decremented in this region, 

never incremented. Maintained. 

Invariant 4 

Not affected by list-processor. 

Invariant 5 

As all allocations are done in locations of one cell 

(NRNEEDED = 1), this invariant is maintained. 

Invariant_5 

Lines 32...52: Maintained by doing cell allocation and 



- 96 -

decrementing of NRFREE as one atomic operation. 

Invariant_7 

Lines 7...8: All PUSH operations add a list to be traced 

to the stack. Accordingly, ST.TOP-ISTACK is increased by one by 

incrementing ST.TOP. 

Lines 15...17: All POP operations remove a list to be 

traced from the stack, unless the list already had been traced 

(TOP < ISTACK). Correctly, the difference ST.TOP-ISTACK is decre

mented only if an untraced list is popped off the stack. (No error-

checking code to prevent stack overflow or POP operations on an 

empty stack are shown, i.e., all stack operations are assiomed to be 

correct.) 

Invariant 8 

Lines 70...71: Whenever a pointer to a list to be traced 

is pushed onto the auxiliary stack, AUX.TOP is incremented. 

Invariant_9 

Lines 23...28, 36...51, 57...74: Popping off of para

meters from, and pushing results ontq ST.STACK is always done inside 

one critical region for LOC. 

Invariant_lO 

Lines 35...51: Cells are taken out of the set of free 

cells and put into the set of live cells in one indivisible opera

tion. Invariant maintained. 

As all LISP selector functions (e.g. CAR) or replacement 

functions (e.g. RPLACA) can put cells into the set of garbage cells, 

no local variables may be used to reference cells outside the criti

cal region LOC in which the function was applied. This has been 

adhered to. 

Invariant_ll 

Lines 41...49: CONS does change the mode of the allocated 

cell. The CAR and CDR fields are assigned to in accordance with 



- 97 -

mode "list cell". (Any other constructor function, such as RATOM 

in LISP, would also have to set the cell's mode indicator and 

assign to its fields in one indivisible operation, i.e., in a re

gion for HEAP.) 

After critical regions in garbage collector (Fig. 3-5) 

Invariant_l 

Line 96: Only at this line is EXIT assigned to. After 

line 98, EXIT = EXIT ox_ (NRFREE = 0), i.e., EXIT = "processing 

accomplished" o£ "storage exhausted". Maintained. 

Invariant_2 

Lines 65...69: After this region, NRFREE = 0. Maintained. 

Lines 74...83: This only increments NRFREE. Maintained. 

Lines 90...94: Maintained for same reason. 

Invariant_3 

Lines 74...83: In this region, no new cells are added 

to the freelist. Maintained. 

Lines 90...94: Only unmarked cells are added to the free-

list. Each unmarked cell is only added once to the freelist. Given 

that the marking algorithm is correct, this critical region main

tains the invariant. 

Invariant_4 

Lines 105...109: This is ensured by the critical region 

which is conditional on NRFREE < TRIGGER. 

Invariant 5 

As neither TRIGGER nor NRNEEDED are changed inside the 

garbage-collector, this invariant is unaffected. 

Invariant 5 

Lines 65...59, 74...83, 90...94: All operations involving 

adding cells to the freelist or taking cells from it and the associ-



- 98 -

ated updating of NRFREE are indivisible operations. Maintained. 

Invariant 7 

Lines 111...130: Whenever a list to be traced from the 

stack has been selected (NEXT:=ST.STACK [ISTACK]), the difference 

ST.TOP-ISTACK is correctly decremented by incrementing ISTACK, 

Invariant 8 

After selection of a list to be traced from the auxiliary 

stack (line 118), AUX,TOP gives the proper number of lists still to 

be traced from AUX, 

Invariant 9 

Not affected by garbage-collector, 

ïl}Y5£i55^_i9 

Lines 55...69, 74,,.83, 90...94: All deletions from and 

additions to the freelist are done as atomic operations. Maintained. 

Invariant 11 

Not affected by the garbage-collector. 

3.1.4.2 Outstanding correctness proofs 

Having shown that all invariants are maintained, it suf

fices to prove the following propositions in order to complete the 

correctness proof of the system: 

Proposition a: "MARK terminates" 

Proof a: 

Only unmarked cells are marked. The number of cells is 
finite. Every time NOTYET = TRUE (Fig. 3 - 5 , line 33), 
a cell is marked. Thus, line 35 can only be passed a 
finite number of times. 
It only remains to be shown that neither the while loop 
in MARK nor that in MARKATOM will loop indefinitely, i.e., 
that lines 49 and 18 are only passed a finite number of 
times. This can be seen by inspection, since one pre
viously unmarked node is marked per loop iteration. 
This completes proof a. 



- 99 -

Proposition b: "MARK only marks cells which have been live" 

Proof b: 

A cell is live when it can be reached from ST.STACK[Ó]... 
ST. STACK [TOP-iJ . Two different calls MARK (NEXT) must 
be considered, viz. NEXT = ST.STACK QlSTACK], and 
NEXT = AUX.STACK [TOP]: 

First case: Let n be a marked cell in the list refer
enced by ST.STACK [lSTACK]. Suppose it is marked as m 
cell in this list, m >̂  1. The proof is by induction in 
m. For m = 1, n = HEAP [ST. STACK[NEXT]] and thus n can 
be reached from ST.STACK [NEXT]. 
For m > 1, n must be a successor to a node n' which was 
marked prior to n. According to the induction hypothe
sis, n' can be reached from ST.STACK[NEXT] and, consequent
ly, so can n. 

§5£2DÉ_EÊËË- Only references to cells which have been 
referenced from ST.STACK[0] .. .ST.STACK[TOP-1] are pushed 
onto AUX (see Fig. 3 - 5 , lines 53...72). Thus, the 
second case reduces to the first case. 

This completes proof b. 

Proposition c: "MARK completely marks an unmarked list" 

Proof c: 

Assume that MARK has run to completion on the originally 
unmarked list referenced by NEXT and that n is a cell 
reachable from NEXT which is not marked. 
Let n = HEAP[NEXT], n , n .... n = n be the cells 

along a path from cell n to n. Let n be the first of 

those cells which is unmarked, s >̂  1. 
The proof shall be done by case analysis and induction. 

Ass\ame that n , is marked by MARKATOM. Then the while 
s-1 

loop (Fig. 3 - 6 , lines 17...23) is only left if n is 

marked, i.e., MARK completes only with n marked. This 

contradicts the original assumption. 

Assume that n , is marked by MARK at line 33. Then n s-1 s 
is marked at line 42, if it follows n . in CAR direction, 

s-1 ' 
or at line 49 if it follows in CDR direction. This con
tradicts the original assiomption. 



- 100 -

Assume that n , is marked at line 49. Then n is 
s-1 s 

marked at line 54 if it succeeds n , in CAR direction, 
s-1 ' 

or at line 49 if in CDR. This contradicts the original 
assumption. 

As all possible cases contradict the original assumption, 
the assumption must be rejected as false for s if it is 
false for s-1. As it is false for s = 1 (the call to 
MARK(NEXT) marks n = HEAP[NEXT]at line 33), it is false 

for all s. This completes the proof. 

Proposition d: "The system is deadlock-free" 

Proof d; 

As there can be no circular waiting in the conditional 
critical regions, given invariant 5 is maintained, it 
suffices to show that all shared variables are accessed 
in the same hierarchal order. This can be done by 
inspection: 

List-processor_^Fig^_3_- 5): 

Lines 23...25: LOC -> HEAP 

Lines 32...42: FREELIST ->- LOC -+ HEAP 

Lines 57...61: LOC -> HEAP -> MARKED 

Garbage-collector _(Fig. 3_-_5) : 

Lines 11... 13 : HEAP -»• MARKED 

Lines 74... 77: FREELIST ->- HEAP 

Thus the hierarchy of shared variables which has been 
adhered to is FREELIST -^ LOC ̂  HEAP -> MARKED. 

Consequently, the system is deadlock-free. 



- 101 -

3.2 A CONCURRENT COMPACTIFYING GARBAGE COLLECTION 

SYSTEM 

3.2.1 Data structures supported 

This system supports locations with a variable number 

of cells. The number of cells in a location depends on its mode. 

Also, whether or not a cell contains a reference is determined by 

the location's mode. 

References in this system may, but don't have to be typed. 

The garbage-collector algorithm only has to be able to find all 

references in a location, not their modes. Minimal assumptions have 

been made as to where the information distinguishing reference cells 

from non-reference cells is stored. The garbage-collector requires 

the mode indicator to be stored in a location and also expects the 

existence of a predicate (APOINTER) which, given the mode of a lo

cation and a cell's offset from the start of the location, identi

fies the cell as a pointer or a non-pointer sub-location. 

As the algorithm is described in the following, it assumes 

the mode of a location to be stored in the first cell of a location. 

Any references to sub-locations can thus be visualised as consisting 

of two parts, viz. a reference to the start of a location, and the 

offset of the sub-location from the start. 

For reasons of efficiency, only multi-cell locations have 

an overhead cell, with one field giving the location's mode and one 

giving its size, including the overhead. These configurations are 

representative for structured and multiple values. 

Locations consisting of only one cell are also supported. 

Typically, they would be used for primitive modes (real, integer, 

etc.) and sub-ranges thereof. These locations also carry a mode 

field, but no length information. 

One special mode always required and therefore predefined 

is that of "LINKCELL". The garbage-collector converts the mode of 

every location it has copied into LINKCELL, storing a reference to 

the copy in its field LINK. If an object of this mode is encoun-



- 102 -

tered by the list-processor when applying a function, the func

tion is applied to the location referenced by LINK. Thus, it just 

causes one level of indirection. 

The other use of this mode is made by the list-processor 

to provide access paths for the garbage-collector to otherwise 

(possibly) inaccessible, but live cells. 

Fig. 3 - 8 shows the structure of locations supported by 

this system. 

In principle, this system can support the heap management 

requirements of languages such as ALGOL 68. However, as presented 

in the following, it does not cater for the problem posed by the 

marking of sub-values as discussed e.g. by Branquart et al. (Br 71, 

pp.228-229). Basically, this problem arises when only a slice of 

an array is live, not the whole array. For reasons of access, the 

inaccessible gaps (garbage) in the array must be preserved in the 

compactification phase, but if the array is of mode "[ , ] ref ...", 

only the references from the accessible cells must be traced. 

Branquart offers a solution to this problem, and it appears that 

the garbage-collector here presented could easily be extended by 

using Branquart's or similar proposals. 

3.2.2 Heap management 

As the system must cater for variable-length locations, 

compactifying garbage collection is required. The algorithm se

lected is of the Cheney-Arnborg type already mentioned elsewhere 

in this thesis. The heap is assumed to consist of one contiguous 

address space from LOW to HIGH, i.e., with HIGH - LOW + 1 cells. 

This space is split into two semi-spaces (SSl and SS2) of equal 

size (Fig. 3 - 9). When there is no garbage collection going on, 

only one of the semi-spaces (LPUSES) is active and being used by 

the list-processor. 

All allocation of free cells takes place from a contig

uous area delimited by a pointer FREE and the end of the semi-space. 

FREE is updated after every allocation and moves towards the end of 



- 103 -

the semi-space. 

When the free space contains less than TRIGGER cells, 

the garbage-collector becomes active. Starting from the stack of 

pointers into the heap, it copies all active locations contiguously 

into a second semi-space (GCUSES), converting all copied locations 

into LINKCELL pointers to their copies. During the garbage collec

tion, the active heap is gradually transferred to the semi-space 

GCUSES, i.e., the list-processor works more and more in GCUSES. 

But all the time, storage is allocated in LPUSES. When all active 

locations have been copied, and all references have been updated 

so that there are no more references into semi-space LPUSES, the 

two semi-spaces change their roles, i.e., LPUSES becomes GCUSES, 

and vice versa. 

In practice, there is no need for the two semi-spaces to 

be available all the time. The semi-space GCUSES could be re

quested from the operating system only when required for copying. 

Also, the semi-spaces do not have to be physically contiguous in 

memory. All that is required by the system is that from each re

ference, the semi-space it points into can be identified. 

As in all concurrent garbage collection systems, the 

list-processor must maintain accessibility to the garbage-collector 

of unmarked (i.e., also uncopied) sub-lists attached to marked 

(copied) lists. This can be done quite elegantly, without an ad

ditional stack, by simply extending the basic mechanism of the 

Cheney-Arnborg algorithm. The algorithm functions non-recursively 

by first copying the top location of a list (which is referenced 

from the stack) and then linearly scanning through the copied loca

tions, tracing references and copying unmarked locations. Thus, 

all the list-processor has to do is to add to the queue of un-

scanned locations a link-cell to a reference to an otherwise 

possibly inaccessible location. This solution has first been de

scribed by Barbacci et al. (Ba 71). 

Fig. 3-10 shows the structure of the solution. SCAN 

is the pointer which scans through the queue of locations whose 



- 104 -

references are yet to be traced and updated. The list-processor 

has just made an assignment to a reference which has already been 

passed by SCAN, i.e., which already was updated to point to an 

object in GCUSES. The object now referenced is in the old semi-

space (LPUSES), and as it is impossible for the list-processor to 

determine whether there is any other reference to that object, it 

puts a link-cell to the reference into the queue. NEW always 

points one cell behind the end of the queue, and as therefore 

SCAN = NEW is a necessary condition for terminating the tracing 

and copying, SCAN will reach the link-cell before this termina

tion. All the garbage-collector has to do then is to trace the 

reference referred to by the link-cell, i.e., by one level of in

direction. Afterwards, the link-cell has become garbage which 

will be collected in the next collection. 

3.2.3 Program description 

The overall structure of the program for the concurrent 

compactifying garbage collection system is given in Fig. 3-11. 

Except for a few additional global functions, it is equivalent to 

that of the previous example. 

Fig. 3-12 presents the declarations of global constants, 

modes, and variables. Line 11 introduces the mode of locations in 

the heap. Only LINKCELL is always defined. If this system were 

used to support a language such as ALGOL 68, more modes would be 

predefined, namely all modes which are part of the language (bool, 

real, int, etc.). All programmer-defined modes would be added to 

the ordered set MODE as they were encountered by the compiler. 

Line 12 declares a type CELLTYPE which has the range of 

values SINGLE (for cells in locations of size one), OVERHEAD (for 

the first cell in a multi-cell location), and BODY (for all but 

the first cells in multi-cell locations). 

In line 13, the united mode of all cells is introduced 

as a packed record. Packed declares the intention to have the 

fields of the record packed. This is supported by PASCAL. In this 



- 105 -

case, it is assumed that each of the record variants fits into 

one word. 

Type DATABASE (line 27) is the mode of the one shared 

variable ALL (line 36). This combination of all shared data into 

one variable is used primarily for clarity of the algorithm. 

As can be seen, the array of garbage-collector marks is 

not shared in this system: any LINKCELL location in semi-space 

LPUSES indicates a copied location and the list-processor uses 

this. The array MARKED is nevertheless used by the garbage-collec

tor for reasons of efficiency; it allows determination of whether 

or not a location has been copied without accessing the location 

itself. This is advantageous in virtual memory systems and also 

increases the marking and unmarking rates. 

Fig. 3-13 shows procedure INITIALISATION. The first 

few statements partition the heap into the two semi-spaces SSI 

and SS2. Arbitrarily, the list-processor starts with SSl. At 

first, all of LPUSES is free space (line 14). After INITIALISA

TION, i.e., before entering the concurrent statement, all invariants 

are supposed to hold. 

In Fig. 3 - 14, the auxiliary functions are given. 

SIMPLE is a predicate which is true for all modes whose locations 

occupy one cell, APOINTER is a predicate which indicates for a 

given mode whether the cell at OFFSET from a location's beginning 

is a pointer, LONG gives the length of locations of a given mode, 

INSEMISP is a predicate of a pointer which is true if the pointer 

references a location in a given semi-space, (For a non-contiguous 

semi-space, this would have to be altered.) 

Fig. 3-15 shows the list-processor. PUSH and POP oper

ate on the stack of pointers into the heap or to built-in atoms 

(e.g., NILP). PUSH and POP are always called within a critical 

region for ALL. One general constructor procedure for all modes 

(except LINKCELL) is given (lines 16...39). In it, all storage 

allocation from free space is done. All initialising parameters 

are taken off the stack. If no specific initialisation is desired, 



- 106 -

these parameters must be skip values for all sub-locations of 

"reference to" mode in order to permit tracing. The reference to 

the newly created location is pushed onto the stack. 

The only other true list-processor function shown is pro

cedure ASSIGNMENT for general assignment to locations of all modes, 

such as A:=(true, 123, "A") in ALGOL 68. It takes all parameters 

off the stack, but does not deliver a value. While a garbage col

lection is ongoing (MARKING = TRUE), it calls procedure SAVE (line 

40) for every pointer being assigned to (lines 64 and 72). If the 

reference being assigned to is in GCUSES, i.e., already copied, 

SCAN is already past the reference, and the new reference value 

points into the old semi-space, SAVE generates a link-cell to the 

first reference, space in GCUSES permitting. If the system is out 

of copy-space, SAVE causes termination. 

Obviously, LISTPROCESSOR is not intended to be in any way 

a complete list-processing program. It is only supposed to show 

how the regions must be structured, and which steps must be taken 

to maintain the invariants. 

Procedure GC (Fig. 3 - 16) on the other hand is complete, 

Collection starts when the number of free cells is less than TRIGGER 

cells (line 31), Then, tracing and copying is performed until the 

last list pointer from the stack has been traced (ISTACK = TOP) and 

the queue of untraced locations in GCUSES is empty (SCAN = NEW), 

Each call to COPY copies one entire location (line 13), marks it, 

and converts it into a link-cell. Also, COPY updates the reference 

to the cell copied to the address of the copy (line 19), COPY is 

therefore only called for still uncopied cells in semi-space LPUSES. 

If the copy-space is exhausted, GCEXIT is set to TRUE (line 22). 

When the collection is completed, the semi-spaces are 

swapped (lines 49...54), and a test is performed to check whether 

at least NRNEEDED cells have been reclaimed. If not, EXIT is set 

to TRUE for termination. 



- 107 -

3.2.4 Correctness proofs 

The structure of the marking and copying phase of the 

garbage-collector discussed above is different enough from that 

developed in section 2.2.2 to merit a new proof of its correctness. 

Proposition a: "Every location that is copied has been live" 

Proof a: 
th 

Let n be a copied cell. Suppose it was copied as m 
cell, m >̂  1, during a collection. The proof is by 
induction in m. 

For m = 1, n = HEAP[STACK[oj] , and thus n has been 
reached from the stack. 

For m > 1, n must either have been copied by a call 
COPY (ALL, STACK [lSTACK] ) at line 46, by 
COPY (ALL, HEAP [REF].PTR) at line 72, or by 
COPY (ALL, HEAP [SCAN].PTR) at line 79. In the first 
case, it was thus reached from the stack. In the latter 
cases, it must have been a successor to a copied loca
tion which, according to the induction hypothesis, had 
been reached from the stack. Consequently, n has also 
been reached from the stack. 
This completes the proof. 

Proposition b: "The algorithm terminates" 

Proof b: 

Every time line 38 is passed, either a pointer from the 
stack or a pointer from the queue in GCUSES is traced, 
or a non-pointer cell in that queue is skipped. As the 
stack is finite and only previously unmarked locations 
are marked and copied to GCUSES, line 38 can only be 
passed a finite number of times. 

It remains to be shown that COPY does not contain any 
infinite loops. The only loop in COPY is the for loop 
on line 13 which can only be executed a finite number 
of times per call. 
This completes the proof. 

Proposition c: "At termination, every mode which can be reached 
from STACK[O] . . . S T A C K [ T O P - 1 ] h a s been c o p i e d " 

P roof c : 

Assimie that the algorithm has reached line 49 and that 
n is a node which can be reached from the stack and which 



- 108 -

has not been copied. 

Let n = HEAP [STACK [P]] , n , n ., . n = n be the 

locations along a path from n to n. Let n be the 

first of these locations which is not copied, s >̂  1. 
n , is copied. 
s-1 

There are two possible cases: 

First case: n has become a successor to n , before s s-1 
SCAN reached the pointer referencing n . Then SCAN < NEW 

at that moment, and the algorithm could not terminate 
without SCAN reaching the pointer to n . Inspection 

of the algorithm shows that this implies copying of n 

before SCAN = NEW, i.e., before completion. This 
contradicts the assumption. 

Second case: n has become a successor to n , after s s-1 
SCAN reached the pointer to n . For this to happen, 

s 
a pointer assignment is required. 
During the garbage collection (MARKING = TRUE), all 
pointer assignments check for this configuration (see 
Fig, 3 - 15, lines 64, 72, and 43). When the "dangerous" 
configuration is detected, the list-processor puts a 
link-cell to the reference to n into the queue of loca
tions to be scanned and simultaneously increases NEW by 
one. So, as long as always SCAN _< NEW is maintained 
during marking, SCAN must reach the link-cell before 
SCAN = NEW, i.e., termination. Again, this contradicts 
the assumption. 

Thus, given that n is copied, n is copied. To complete 

the induction, it remains to be shown that n is always 

copied. Given that ISTACK _< TOP is maintained during 
collection, this will always be done at line 45 before 
completion. 
This completes the proof. 

Proposition d: "The system is deadlock-free" 

Proof d: 

As all shared variables are combined into one shared 
record, the only possibility for deadlock is a circular 
wait-condition by both processes in conditional critical 
regions. Given that invariant 5 holds throughout, this 
is impossible. 
This completes the proof. 



- 109 -

3.2.4.1 Invariants 

In principle, all eleven invariants developed in chapter 

2 are applicable here, too. However, in view of the fact that this 

garbage collection system relocates and compactifies by copying, 

slight amendments are required. These shall first be developed, 

and then it shall be shown that the invariants are maintained after 

initialisation. 

Amendments 

As the system described above cannot proceed if the copy-

space is exhausted during a collection, this leads to a broader 

interpretation of "storage exhausted" in invariant 1: 

EXIT = processing accomplished or free space exhausted 
or copy-space exhausted 

Invariant 1' 

(In an operating system environment permitting requests for storage 

by running programs, conditions "free space exhausted" and "copy-

space exhausted" signify that all space which is requested and which 

the operating system can allocate is exhausted.) 

In this example, the number of cells in free space NRFREE 

is represented by the term ENDSS [LPUSES] - FREE + 1. Similarly, 

the number of cells available for copying is ENDSS[GCUSES] - NEW + 1 

The requirement that cells may only be allocated from either space 

while it is not exhausted gives rise to 

EWDSS [LPUSES] >̂  FREE - 1 and ENDSS [GCUSES] ^ NEW - 1 

Invariant 2' 

Accordingly, invariant 3 takes on the form: 

ENDSS[LPUSES] - FREE + 1 £ ENDSS[LPUSES]- STARTSS [LPUSES] + 

and 

ENDSS[GCUSES] - NEW + 1 £ ENDSS[GCUSES] - STARTSS [GCUSES] + 



- no -

Simplification yields 

FREE >̂  STARTSS [LPUSES] and NEW >^ STARTSS [GCUSES] 

Invariant 3' 

Sxibstitution of ENDSS [LPUSES] - FREE + 1 for NRFREE in invariant 4 

results in the synchronisation invariant 

ENDSS[LPUSES] - FREE + 1 < TRIGGER implies GC required 

Invariant 4' 

Invariant 5 does not require any adaptation. 

The updated form of invariant 6 is again arrived at by 

substitution for NRFREE: 

ENDSS[LPUSES] - FREE + 1 = number of free cells 

Invariant 6' 

On the following two invariants, the correctness proof 

of proposition c in section 3.2.4 depends. 

Invariant 7 does not require adaptation. 

Invariant 8 has to be replaced by an equivalent invariant 

which reflects the different mechanism for tracing and keeping lists 

accessible to the garbage-collector process. As not all cells in 

the quoue HEAP[SCAN] ...HEAP[NEW - l] are references (some are just 

overhead cells, and others contain non-pointer values), the invariant 

must take on the form of an inequality: 

INIEW - SCAN >̂  number of lists still to be traced from 
semi-space GCUSES 

Invariant 8' 

Invariant 9, 10, and 11 are applicable unchanged. 

In the following it will be shown that all these invariants 

hold after initialisation and that they are maintained inside the 

concurrent statement. 

f 



- Ill -

Invariants after procedure call INITIALISATION (Fig. 3-13) 

Invariant 1' 

As FREE £ ENDSS [LPUSES] and NEW < ENDSS [GCUSES] , EXIT = 

FALSE is correct after exit from the critical region, assuming that 

"processing accomplished" = FALSE. 

Invariant 2' 

Holds a f t e r t h e c r i t i c a l r e g i o n , a s FREE <̂  ENDSS [ L P U S E S ] 

and NEW <̂  ENDSS [GCUSES] . 

I n v a r i a n t 3 ' 

Holds after the critical region, as FREE = STARTSS [LPUSES] 

and NEW = STARTSS [GCUSES]. 

Invariant_4' 

Holds after the assignment to TRIGGER on line 19. 

Invariant 5 

Given that MAXLENGTH > O, the invariant holds after line 

20. 

Invariant 5' 

In the beginning, all cells in semi-space LPUSES are free. 

As FREE = STARTSS[LPUSES] , the invariant holds after the critical 

region. 

Invariant 7 

As MARKING = FALSE, this invariant holds after the criti

cal region. , . 

Invariant 8' 

Holds for same reason. 

Invariant 9 

There are no live cells, and TOP = O. Holds. 

I 



- 112 -

Invariant_10 

All cells in semi-space LPUSES belong to set FREE. All 

other sets are empty. The invariant therefore holds. 

Invariant 11 

Holds, as the mode of free cells can be regarded as bits. 

Invariants after critical regions in LISTPROCESSOR (Fig. 3-15) 

Line 44: EXIT is correctly set to TRUE when the list-

processor finds the copy-space exhausted. 

Line 79: It is only indicated schematically how 1' is 

maintained for "processing accomplished". 

•"•^YE^i^!}^ ̂ 1 

Lines 20...37: The conditional critical region is only 

completed if the allocation of NRNEEDED cells is possible. 

Lines 44...51: Space for a link-cell in semi-space GCUSES 

is only allocated if the copy-space is not exhausted. 

Invariant 3^ 

Not affected by the list-processor. 

Invariant A'_ 

Not affected by the list-processor. 

Invariant 5 

Lines 19...20: As long as the size of the largest location 

is <^ TRIGGER, the invariant is maintained. If this is not guaran

teed by the language supported, a check must be made before entering 

await. 

Invariant_5_^ 

Line 35: After allocation of space, the pointer FREE is 

correctly updated before leaving the critical region. 



- 113 -

Invariant 7 

Lines 5...5: Whenever a pointer to a list is pushed onto 

the stack, ST.TOP-ISTACK is incremented by incrementing ST.TOP. 

Lines 11... 13: Only when the pointer popped off the stack 

references a list which still had to be traced is ST.TOP-ISTACK de

cremented. Otherwise (TOP < ISTACK), that difference is maintained 

at zero. 

Invariant 8' 

Lines 47...52: Whenever the list-processor puts a link-

cell to a list to be traced from semi-space GCUSES into the queue 

HEAP [SCAN]... HEAP[NEW - l] , it correctly increments the number of 

cells in that queue (NEW - SCAN) by incrementing NEW. 

Invariant_9 

Lines 23...33: All parameters are popped off the stack 

and the pointer to the newly allocated location is pushed onto the 

stack in one critical region. 

Invariant 10 

Lines 23.,,33: Cells are taken out of the set of free 

cells and made live in one critical region, 

Lines 58,.,75: All pop operations of parameters and 

assignments to a location are done in one critical region. 

Invariant 11 

Lines 23.,,33: Assuming all parameters to be of correct 

modes, the allocated location's mode and content do not conflict 

upon exit from the critical region, 

Invariants after critical regions in GC (Fig. 3 - 16) 

Invariant 1' 

Line 22: When exhaustion of the copy-space is discovered 

by the garbage-collector, EXIT is set to TRUE. 



- 114 -

Line 58: After completion of a collection, EXIT is 

updated correctly. 

Invariant_2' 

Lines 12...20: Only if sufficient cells for copying a 

location are available in copy-space is the copying performed and 

NEW updated. 

Lines 49...50: The assignments to FREE and NEW maintain 

the invariant. 

Invariant_3_|̂  

Line 20: As NEW is only increased, the invariant is 

maintained, 

Lines 49...50: After swapping the two semi-spaces' roles, 

NEW and FREE point into GCUSES and LPUSES, respectively. 

Invariant_4' 

Line 31: Whenever the number of cells in free space has 

fallen below TRIGGER, a collection is either going on or is started. 

Invariant_5 

Not affected by the garbage-collector. 

Invariant 5' 

Lines 50...53: After all copying is completed, there are 

ENDSS [GCUSES] - NEW + 1 free cells available in free space after 

swapping of semi-spaces. Thus, the assignment maintains the 

invariant. 

Invariant_7 

Lines 42...45: Whenever a list referenced from the stack 

has been traced, the count of references still to be traced from 

the stack is decremented by incrementing ISTACK. 

Invariant_8' 

Lines 12...21: Whenever a location of size n has been 



- 115 -

copied to semi-space GCUSES, the number of cells in the queue still 

to be traced (NEW - SCAN) is updated by increasing NEW by n, 

Lines 57,,,72, 75...79: For each cell removed from the 

queue HEAP [sCAN]... HEAP [NEW], SCAN is incremented, and the queue 

length therefore decremented. 

Invariant 9 

Lines 12...21: When a cell directly referenced from the 

stack is copied, the pointer in the stack is updated to the relo

cated location in semi-space GCUSES before leaving the critical 

region. All other references to this location are via a link-cell. 

Similarly, a location in LPUSES referenced by a copied location is 

kept accessible (live) after having been copied. 

Lines 45, 71, 78: As references to link-cells in LPUSES 

are encountered, they are replaced by references to the associated 

copied locations in GCUSES. Thus, finally all live cells are in 

the new semi-space. 

Invariant_lO 

Lines 12...21: When a location has been copied, its orig

inal memory cells can become garbage, if there are no other refer

ences to it. The cells in copy-space into which the location has 

been copied may become live, if it is still reachable from the 

stack. Thus, all these (potential) changes of set membership are 

done in one critical region. 

Lines 45, 71, 78: The updating of a reference to the copied 

location referenced by a link-cell may cause this cell to become gar

bage. It is therefore done as one indivisible operation. 

Lines 12...13: A location, i.e., mode indicator and content, 

is always copied as a whole. 

Lines 15...15: The mode (LINKCELL) and the content of a 

link-cell are assigned in one critical region. 



- 115 -

C h a p t e r 4 

D I S C U S S I O N 

4.1 FINDINGS AND CONCLUSIONS 

Design method 

This thesis has shown that a system with concurrent gar

bage collection can be designed reliably and that its correctness 

can be proved. The design method developed can be summarised as 

follows: 

Given the heap management requirements (heap struc
ture, data structures to be supported, access to the 
heap) for an application process, select a suitable 
garbage collection algorithm. This selection is gov
erned mainly by the degree of real-time responsiveness 
required. In process control or operating system 
applications, there are maximum tolerable response 
times which must be guaranteed. In general, this is 
only possible to satisfy if the garbage collector 
process stays inside any critical region for a length 
of time which is independent of the list-structure 
being acted upon. The type of collector algorithm 
required here is one which acts upon at most one loca
tion (or a fixed number of locations) per entry into 
a critical region. The response time can then be 
bounded by the maximum amount of processing required 
by any location in any region. The penalty is of 
course that the overhead caused by region entries and 
exits is proportional to the number of locations to 
be processed (traced, marked, and collected). It 
appears that, in general, non-relocating algorithms 
are easier to adapt to the requirement of bounded 
time inside critical regions than relocating ones, 
and interpretative easier than recursive ones. 
If the real-time requirement is less severe, as for 
example the user requirements of acceptable response 
times in an interactive computing environment, it is 
possible to get away with a greatly reduced overhead 
of region entries/exits by selecting an algorithm 
which processes e.g. a whole list or sub-list in one 
critical region. 



- 117 -

The second step is to establish the variables shared 
by the two processes. By definition, the heap, the 
space (or list) of free cells, and all access point
ers into the heap must belong to these. 
However, other variables (e.g., status variables such 
as the array of garbage collector marks) may also be 
shared. Depending on the access pattern to these 
variables and on the real-time responsiveness needed, 
the shared variables may be combined into a few shared 
records or even one. 

- For all shared variables, the invariants to be main
tained by their critical regions must be established. 
The eleven invariants presented in chapter 2 appear 
to be the minimal set of invariants for a system with 
concurrent garbage collection. However, they may 
require slight amendments and adaptations to cater 
for specific algorithms. 

- Using the invariants, the program and its proof are 
developed simultaneously. The proof is made by 
showing that all invariants hold after initialisation 
and then are maintained by all critical regions. 
Based on this, the correctness of at least the follow
ing propositions must be shown: 

Only inaccessible (i.e., garbage) cells are col
lected and returned to free space. 

The system terminates. 

The system is deadlock-free. 

The parallel development of proof and program is 
greatly aided by the use of a structured notation, 
using constructs whose correctness has been proved 
once and for all and can be taken as an axiomatic 
property. 

In chapter 3, the approach just outlined was applied to two 

representative examples. The notation employed was PASCAL, enhanced 

by four constructs (concurrent statement, shared variable, critical 

region, and conditional critical region). It is felt that this nota

tion shows the design intentions much more clearly than any unstruc

tured notation. In particular, this is an improvement in clarity, 

brevity, and ease of understanding over a design expressed entirely 

with semaphores. This is a consequence of introducing an additional 

layer of abstraction (the process extensions to PASCAL) into the 

design. The relative brevity and simplicity of the proofs presented 



- 118 -

could only be achieved by using the axiomatic properties of each of 

the constructs, rather than proving the correctness of each individ

ual instance of the constructs. 

Determinacy 

The analysis of the list-processor/garbage-collector 

system of co-operating processes has shown that, in general, this 

system is only conditionally determinate: to a given heap utili

sation by the list-processor, there corresponds a minimal speed 

ratio between garbage-collector and list-processor below which it 

is not determinate. If the garbage-collector process is not fast 

enough, the list-processor's output history is influenced not only 

by its input history, but also by the garbage-collector's progress 

in that it runs out of storage before accomplishing its processing 

task. Thus, for a given concurrent garbage-collector implementa

tion, only a limited parameter space in the dimensions "relative 

speed" and "heap utilisation" permits the list-processor to be 

unconditionally determinate. For certain assumptions concerning 

the heap dynamics, this space is identified by formula (2.3.43). 

Even within the parameter space which permits full concurency be

tween storage allocation and garbage collection, determinacy of the 

applications process can only be achieved by making this process 

support the garbage-collector during the marking phase. This support 

has to maintain for the marking algorithm the set of lists yet to 

be traced. It ensures that for all live cells, the action sequence 

"allocation, tracing, marking" is completed. Several solutions 

meeting this requirement have been developed and described, 

Space requirements and overheads 

In general, a system with concurrent garbage collection 

requires more heap space for the same computation than one with 

sequential collection. This has two reasons: first there must 

always be sufficient cells in free space to satisfy the storage 



- 119 -

requests of the applications process. Second, the concurrent gar

bage-collector cannot reclaim all garbage: all cells which are 

marked, but become garbage before the reclamation phase can only 

be collected in the following garbage collection cycle. Effec

tively, this reduces the useful heap space. 

Additional space overhead is caused by the auxiliary ref

erences which the applications process must store for the marking 

algorithm to ensure determinacy. 

Processing time overheads result from the synchronisation 

and mutual exclusion mechanisms, from the marking of cells which 

then become garbage, and from the higher frequency of garbage col

lection due to the smaller yield of free cells per collection. 

Applicability of concurrent garbage collection 

It appears that all garbage collection algorithms are ba

sically suitable for employment in a concurrent garbage collection 

system, (Although, as has been discussed, there are differences in 

the real-time response times which can be obtained with them., 

Thus, concurrent garbage collection is a feasible approach to making 

languages depending on garbage collection for their heap management 

(e.g., ALGOL 68, LISP, SIMULA, and SNOBOL) applicable to real-time 

programming. Because of the overheads incurred by concurrent col

lection, it is probably advisable to make the selection of the gar

bage collection mode a compile time (for in-line code) or run time 

(for the run-time system) option for the user. Also, there should 

be software facilities to inhibit the garbage collection process 

for time-critical pieces of code and to enable it for less critical 

periods, e.g., slow l/O. 



- 120 -

4.2 LIMITATIONS 

This thesis has not addressed the question whether and 

how, with the present state of the art in hardware and software, the 

region, await, and cobegin ... coend constructs can be implemented 

efficiently. It has used them as abstractions for design purposes. 

In his book (Ha 73), Brinch Hansen has shown how they can be imple

mented in terms of more primitive constructs, i.e., event queues and 

semaphores. From that description, it appears feasible to efficient

ly implement the higher-level constructs, but the author is so far 

only aware of one language under development which will contain them 

(though in a modified form). This language is "Concurrent PASCAL", 

and it is being developed by Brinch Hansen and others at the Cali

fornia Institute of Technology (Ha 75). 

Until the availability of such languages, the constructs 

can be used for design and programming of systems with concurrent 

garbage collection, but must either be translated (manually or by 

language extension) into calls to a given real-time monitor or be im

plemented from scratch along the lines given by Brinch Hansen (Ha 73), 

In either case, the correctness of the implementation of the con

structs must be proved, 

Another related question not answered by this thesis is 

whether the conceptual simplicity of the synchronisation method 

used (conditional critical regions) is achieved at the price of 

unacceptably high processor overheads caused by busy waiting. The 

simplicity and elegance are demonstrated by the fact that the pro

cesses being synchronised are completely unaware of each other, 

i.e., the scheduling mechanism is hidden, and no process has the 

responsibility of scheduling other processes. This necessitates 

the re-evaluation of the synchronisation condition associated with 

the await of a conditional critical region every time the associated 

shared variable has been accessed by another process. The result is 

busy waiting which may only be tolerable for more loosely coupled pro

cesses. 



- 121 -

At which point the associated overhead becomes unaccept

able is impossible to postulate for the general case and has not 

been addressed in this thesis. However, if it is found in a spe

cific implementation that too much processing time is absorbed by 

this busy waiting in conditional regions, they can easily be re

placed by explicit scheduling between the two processes, e.g., by 

using event variables or semaphores. This forces the programmer 

to be explicitly aware of scheduling details and thus removes a 

level of abstraction. As this is only done at the last step in 

the sequence "concept/design/proof of correctness/implementation", 

and as it is only done where required for reasons of efficiency, 

i.e., in a few, isolated areas of code, it is far less harmful 

than using these lower-level constructs throughout. 

4.3 FUTURE RESEARCH 

In the course of the research done for this thesis, the 

author has found several areas in which research promises to yield 

results which should be of value for the implementation of concur

rent garbage collection systems. These areas are outlined below. 

Adaptive scheduling 

The real-time responsiveness of a given system with con

current garbage collection depends on the availability of sufficient 

heap space at any time. As the analysis of the heap dynamics in 

chapter 2 shows, the space required for the applications process not 

to run out or h.ve to wait for free cells is a function of the 

consumption, marking, collecting, and unmarking rates. Similarly, 

the level of cells in free space at which to initiate garbage collec

tion is a function of the heap utilisation, cell consumption rate, 

and marking rate. 

In systems which are not dedicated but shared by several 

application programs, memory space and processor time used are 



- 122 -

being competed for by these programs, and normally even accountable. 

The cost incurred by a program is then a function of these two vari

ables. 

For a program with concurrent garbage collection, there is 

at any time a maximum heap utilisation for which the applications 

process does not run out of storage, but for which the garbage-collec

tor process is active all the time. At this heap utilisation, the 

processor overhead incurred by the collector is maximal. As more 

heap space is made available to the application, the collection fre

quency and therefore the additional processor cost decreases, but 

the memory cost increases. This poses a cost-minimisation problem 

with one control parameter, viz. heap utilisation, and two constraints, 

the minimum memory required to keep the applications process from 

waiting for storage, and the maximum memory allocatable. 

/ The simplest, yet crudest, space allocation policy is to 

provide the applications process with a fixed amount of heap space 

which suffices for the worst combination of heap utilisation and space 

consvmiption rate during its computation. For an application with 

varying heap utilisation and consumption rate, however, this is not a 

cost-optimal strategy. 

Arnborg (Ar 74) and Hoare (Ho 74) have described algorithms 

for cost-optimal memory management for sequential garbage collection. 

Because of the constraint of staying below the maximum heap utilisa

tion which maintains concurrency, these algorithms are not applic

able to concurrent garbage collection. The main problem here is 

that this limit is not a constant, but a function of various rates 

which may show significant fluctuations during a computation and 

also differ from computation to computation. 

The research proposed here is the following: 

Given an implementation of a system with concurrent 
garbage collection, develop a sampling scheme which 
permits estimation of the rates of space consumption, 
marking, reclamation, and unmarking. This would have 
to be a third process in addition to the applications 
and collector processes. 



- 123 -

Develop an algorithm which predicts the cost-minimal 
heap utilisation from these rates under the given 
constraints. 

Make the third (monitor) process request and release 
heap space according to that algorithm, and also up
date the value of TRIGGER accordingly. 

It is felt that such an adaptive scheduler could be of 

great benefit, in particular for computer systems which process a 

widely varying job-mix. In highly loaded systems, it might even be 

the only way to permit concurrent garbage collection to be used 

within the resource constraints. 

Parallelism in garbage-collector 

The memory overhead incurred by concurrent garbage collec

tion can be reduced by increasing the marking, reclamation, and 

unmarking rates. This could either be done by using a faster pro

cessor to execute the garbage collector process, or by using sev

eral processors in parallel for this. For each technology, there 

exists a limit to the maximum processor speed obtainable. However, 

providing that memory access contention remains acceptable, one can 

combine several processors to increase the total processor through

put. 

With the simple repetitive processing task which the gar

bage-collector represents, one would not even have to use general-

purpose processors for multi-processing the garbage collection (see 

also next section). 

In a concurrent garbage collection system without compac

tion, all three phases of the collection permit parallel execution. 

In the marking phase, the lists of live locations can be traced and 

marked concurrently by several processes. Reclamation could be 

done by multiple processes, e.g., by letting the processes scan dif

ferent areas of the heap for unmarked cells. One could proceed 

similarly for the unmarking phase. To facilitate such concurrency, 

the heap would almost certainly have to be organised as a resource 

array, e.g., HEAP:array [PAGESPACE]of shared PAGE. 



- 124 -

Compactifying garbage collection offers the same scope 

for parallelism only during the marking and unmarking phases. As 

the new address (after relocation) of a location depends on the 

new addresses of previously relocated locations, there appears to 

be less potential concurrency during the relocation phase. 

The research proposed is to investigate for various im

portant garbage collection algorithms the maximum possible degree 

of parallelism in each phase of the collection, and to determine 

the cost-optimum number of processors, as a function of hardware , 

memory , and processor usage for given applications. 

This research is of interest not only for concurrent gar

bage collection systems, but also for sequential ones. It is well 

possible that, for some systems, fast sequential garbage collection 

by multiple processors is a viable alternative to concurrent garbage 

collection, as it would not require the applications process to be 

burdened with any synchronisation and mutual exclusion code, or with 

cooperation with the marking algorithm. 

Hardware environment for garbage collection 

With the decreasing cost of hardware and the increase in 

hardware adaptability, e.g., by micro-programming, the designer of 

an environment for garbage collection must consider where and how 

he can use special hardware for the implementation. 

One potential application has already been mentioned, viz. 

the use of multiple processors for multi-processing the garbage-

collector. These processors could either be micro-processors, 

micro-programmed processors with an instruction set which is spe

cialised for the garbage collection code, or of course normal cen

tral processors (although the latter would probably be an ineffi

cient overkill). Because of the small amount of code to be executed, 

it is possible to store all or most of it in special memory apart 

from the normal central memory. This would prevent the multiple 

processors from degrading system performance by competing for access 

to central memory for fetching instructions. 



- 125 -

Another area in which hardware can be used to facilitate 

garbage collection with lower overheads is the use of descriptors. 

If, with each memory word, a descriptor field were associated which 

could be set, read, and tested by special instructions, these could 

be used to store the mode or at least the category of the mode 

(pointer versus non-pointer) of the location. This would permit ef

ficient execution not only of the garbage-collector, but also of 

applications programs compiled from languages such as ALGOL 68 or 

SIMULA. With the rigid memory organisation of the vast majority of 

present computers, descriptors have to be an integral part of a me

mory word and must therefore be designed into the basic hardware. 

It is hoped that future systems will provide more flexibility and 

permit the introduction of descriptor fields by the systems program

mer. 

Many parts of a garbage-collector could be made consider

ably faster and more efficient by associative memories, as much of 

the processing is of the nature "Find all (or the first) words with 

content X". This processing is at present done by linear scans or 

list searches. One use would be the array of mark bits, another 

the maintenance of the (scattered) set of free cells in an asso

ciative array, rather than as a linked free list. 

The research proposed here is of a very wide scope. 

Some of the possible directions have been sketched out above, but 

the general objective envisaged is the development of hardware 

which is at least as efficient in executing programs written in 

languages depending on garbage collection as present stack-oriented 

computers are in executing programs written in ALGOL 60 or other con

ventional high-level languages. 



- 127 -

Fig. 1 - 1 EXTERNAL OBJECT, INTERNAL OBJECT, AND THE 

RELATIONSHIP "TO POSSESS" 

GENERAL: EXAMPLE: 

EXTERNAL OBJECT 

\ 

POSSESSES 

r 

INTERNAL 
OBJECT 

EXTERNAL 

INTERNAL 

3 

1 f 

OOOOLL 



- 128 

Fig. 1 - 2 THE CONCEPT "VARIABLE" 

NOTATION 

NAME < 

NOTATION 

EXTERNAL 
INTERNAL 

REFERENCE 
> 

— S CONTENT 

VALUE 

A VARIABLE 



- 129 -

Fig. 1 - 3 HOW VARIABLES, IDENTIFIERS, ADDRESSES, 

LOCATIONS, AND OBJECTS INTERRELATE 

char FIRST INITIAL := 'K'; 

int AGE := 38; 

bool OVERWEIGHT := true 

IDENTIFIERS ADDRESSES 

FIRST INITIAL 999 

AGE 1000 

1001 

1002 

1003 

1004 

1005 

OVERWEIGHT 1006 

•8BITS= 1 BYTE-

K = A CHARACTER OBJECT 

38- AN INTEGER OBJECT 

UNDEFINED (NOT USED) TRUE 

A BOOLEAN OBJECT 

A CHARACTER 
LOCATION 

AN INTEGER 
LOCATION 

A BOOLEAN 
LOCATION 



- 130 

Fig. 1 STORAGE FOR A FORTRAN PROGRAM MODULE 

PROGRAM PART 
(MACHINE CODE) 

LOCATIONS FOR 
LOCAL VARIABLES 

LOCATIONS FOR 
INTERMEDIATE 

RESULTS 



131 -

Fig. 1 - 5 STATIC BLOCK STRUCTURE A LA ALGOL 60 

begin real A; 

procedure Pi; 

begin 

end; 

begin boolean A; 

begin integer A; 

end 

end; 

end; 



- 132 -

Fig. 1 EXAMPLE OF GENERATING AND LOSING REFERENCES 

CDR (CONS (CONS A NIL) (CONS B NIL)) 

b) 

1Ü2 

1ÜÜ 

. 

1 ' 

A 
/ 

101 

RESULT 

B 
/ 

c) 

FREE 

102 
1Q1 

100 

GARBAGE 
IN USE 

GARBAGE 

HEAP 

^ RESULT 



- 133 -

F i g . 1 - 7 PROGRAMMER-CONTROLLED STORAGE ALLOCATION 

a) I n i t i a l l y 

FREESPACE ^ 10| NIL 

b) A f t e r X:=ALLOCATE(4) 

FREESPACE 
61 NIL X J T 

* U 

c) A f t e r FREE(X) 

FREESPACE . L\ 
'»I 6 | NIL 

d) A f t e r Y:=ALLOCATE(5) 

FREESPACE H -i M NIL I n 



- 134 -

F i g . 1 - 8 L I S T WITH REFERENCE COUNTS 

a) I n i t i a l l y 

ROOT 
•i»jH| RC = " 

VALUE 

8 

I » 

^ VALUE 

H | RC = 1 

VALUE 

NIL 

VALUE 

VALUE 

-̂T L I 
H| RC = 3 

VALUE 

NIL 

VALUE 

H 

NIL 

NIL 
VALUE 

b) After DELETE LIST(D) 

ROOT 
B 

H | RC = 1 

VALUE 
NIL 

VALUE 

NIL 

VALUE 

H 
H | R C = 1 

VALUE 

, NIL 

NIL 

VALUE 



135 

Fig. 1 - 9 STORAGE SNAPSHOT FOR COMPACTIFYING GARBAGE 

COLLECTOR A LA ARNBORG ET,AL. 

START OF 
SEMISPACE 

END OF 
SEMISPACE 

COPIED 

COPIED 

COPIED 

MOVED AND 

^ UPDATED 

LOCATIONS 

•SCAN 

MOVED, BUT 

}> NOT UPDATED 

LOCATIONS 

•NEW 

FREE AREA 
FOR 

COPYING 

CURRENT SEMISPACE FUTURE SEMISPACE 



- 136 -

Fig. 2 - 1 ALTERNATION BETWEEN PROBLEM PROCESSING AND 

GARBAGE COLLECTION (SEQUENTIAL COLLECTION) 

START r 

PROGRAM COUNTER 
IN COLLECTOR , 

(GARBAGE COLLECTION) 

PROGRAM COUNTER 
ELSEWHERE 

(PROBLEM PROCESSING) 

COMPLETION 

START r 
COMPLETION COMPL. 

START! T 

TIME 

tb td 
- I — • — 
te tf 



- 137 -

F i g . 2 - 2 CONCURRENT GARBAGE COLLECTION BY MULTI

PROCESSING AND MULTI-PROGRAMMING 

a) Garbage c o l l e c t o r and p rob lem program on two p r o c e s s o r s 

START 

GARBAGE COLLECTOR 

EXECUTING 

I 
COMPLETION 

START i 
COMPLETION jCOMPL. 

START I 1 

PROBLEM PROGRAM 

EXECUTING 

- • • T I M E 
-i 1-

b) Garbage collector and problem program multiplexing one processor 

START 

GARBAGE COLLECTOR 

EXECUTING 

PROBLEM PROGRAM 

EXECUTING 

I 
COMPLETION 

START I 

f f 

COMPL. 

n n n n n n n n n n n n n n n 

u u u u u u L J U U U U U U U U 

TIME 



138 

Fig. 2 - 3 CONCURRENT GARBAGE COLLECTION VISUALISED AS 

PRODUCER/CONSUMER SYSTEM 

GARBAGE COLLECTOR 
PRODUCES 

APPLICATIONS PROGRAM 
CONSUMES 

LEVEL 

-_: FREE 
- - SPACE" 



- 139 -

F i g . 2 - 4 APPLICATION PROCESS AND GARBAGE COLLECTION 

PROCESS AS SYSTEM OF CO-OPERATING PROCESSES 

a) System of two c o - o p e r a t i n g p r o c e s s e s 

APPLICATION 

PROCESS 

ACTIONS: 

a^ = PUSH 

Qi = POP 

Qj = POINTER 
ASSIGNMENT 

GARBAGE 

COLLECTOR 

PROCESS 

ACTIONS: 

g, = MARK 

g^ = COLLECT 

gj = UNMARK 

HEAP STACK FREE 
SHARED 

VARIABLES 

b) Some p o s s i b l e a c t i o n s e q u e n c e s 

• ^ 2 5 l ^ l 5 l ^ 3 ^ 1 ^ 2 ' 

• • ^ 1 ^ ^ ^ ^ 1 ^ 5 3 5 3 V 3 -

• • • •92^2^25253^1^1^2^2• 



- 140 -

Fig. 2 - 5 ASSERTIONS ABOUT A SEQUENTIAL GARBAGE 

COLLECTOR 

^/^ SPACE ^ V . 

^ v s . AVAILABLE^X^ 

1 

' 

YES 

' 

APPLICATION 

NO 

GARBAGE 1 
COLLECTOR , 

L 

PG 

MARK 

\ Pc 

COLLECT 

Qc 

QG 

"1 

J 



141 

Fig. 2 - 5 BASIC PROGRAM STRUCTURE OF SYSTEM WITH 

CONCURRENT GARBAGE COLLECTION 

INITIALISATION 

1 
P 

n 



- 142 -

Fig. 2 - 7 MARKING AND COLLECTING PHASES OF GARBAGE 

COLLECTOR WITH IDEAL ASSERTIONS 

MARKING 

COLLECTING 

•PM : "CELL LIVE = CELL ACCESSIBLE TO 
GARBAGE COLLECTOR" 

-RMSPb^'CELL MARKED = CELL LIVE" 

-Rc : "not CELL MARKED =CELL COLLECTED' 



143 -

Fig LIST-PROCESSOR AND GARBAGE COLLECTOR AS 

NON-DETERMINATE SYSTEM 

Shared memory cells 

X, Y, Z 

Interpretations 

HEAP[X].CDR:=Y if not MARKED[x] then 

begin MARKED[x];=true; 

MARK(HEAP[x].CDR) 

end 

Computations 

(I) 

MARKED [X] 

MARKED [Y] 

MARKED [Z] 

HEAP[X].CDR 

^0 

false 

false 

false 

Z 

a 

false 

false 

false 

Y 

b 

true 

true 

false 

Y 

^E 

true 

true 

false 

Y 

MARKED [X] 

MARKED [Y] 

MARKED [Z] 

HEAP[x].CDR 

^0 

false 

false 

false 

Z 

b 

true 

false 

true 

Z 

a 

true 

false 

true 

Y 

^E 

true 

false 

true 

Y 



144 -

F i g . 2 - 9 V I O L A T I O N OF I N V A R I A N T 1 0 

a) 
B C D . 

I ^ I' • I I I 

FREE _J 

b ) 

P 

C D 

NEW CELL FREE _i 

c) 

FREE 
A 

r 

a 

/ 

c D 

NEW CELL 

. 



- 145 -

Fig. 2 - lO MODEL OF HEAP COMPOSITION DURING MARKING 

PHASE OF CONCURRENT GARBAGE COLLECTOR 

FREE 
SPACE 
CELLS 

& 

UNMARKED 
LIVE 
CELLS 

/u(t)y 
m 

U(t) 

U(t)+-M(t) *g 

© UNMARKED 
GARBAGE 

CELLS 

MARKED 
LIVE 

CELLS 

»rM(t)y 
M(t) 

MARKED 
GARBAGE 

CELLS 

U(t)-|-M(t) 
« 9 O 



- 146 -

Fig. 2 - 1 1 MARKING TIME AS A FUNCTION OF RELATIVE 

MARKING SPEED AND HEAP UTILISATION 



- 147 -

Fig. 2 - 1 2 THE RATIO OF MARKING TIMES FOR CONCURRENT 

AND SEQUENTIAL GARBAGE COLLECTION 



- 148 -

Fig 13 LEVEL OF FREE CELLS (TRIGGER) AT WHICH TO 

INITIATE GARBAGE COLLECTION 

1.5T 

UJ 

on 



149 

Fig. 2 - 1 4 THE NUMBER OF FREE CELLS DURING CONCURRENT 

GARBAGE COLLECTION 

TRIGGER 

O 
Z UJ 

z 
o UJ 
•= to o < 
U J I 
o o 

-M*-
o 
ZUJ 
i£ in o: < 
| £ z 
3 



- 150 

Fig. 2 - 15(a) NET GAIN OF FREE CELLS BY CONCURRENT 

GARBAGE COLLECTION (u/c=0O; m/k=0) 

r = 0 

-0.8-

-1.0-'-

r=:O.A 



151 -

Fig. 2 - 15(b) NET GAIN OF FREE CELLS BY CONCURRENT 

GARBAGE COLLECTION (u/c=5; m/k=0.5) 

I.OT 

0.8--

-0.6 •• 

r = 0 

r=0.2 

-1.0-'-



- 152 

Fig. 2 - 16(a) MAXIMUM HEAP UTILISATION POSSIBLE FOR 

CONCURRENT GARBAGE COLLECTION (u/c =00) 

'max 

m/c 



- 153 -

Fig. 2 - 16(bl MAXIMUM HEAP UTILISATION POSSIBLE FOR 

CONCURRENT GARBAGE COLLECTION (u/c=2) 

I.OT 

f max 

0.5 •-



154 -

F i g . 3 - 1 MODES SUPPORTED BY NON-RELOCATING CONCURRENT 

GARBAGE COLLECTION SYSTEM 

LISTCELL 

PNAME MARK 

ATOM MARK 

F 

F 

CDR 

CAR 

ATOMHEAD 

F 

T 

CDR 

PNMPTR 

ATOM CONTENT 

T 

T 

NEXT 

STRING 



- 155 -

F i g . 3 - 2 EXAMPLE OF AN ATOM 

PROPERTY LIST 
A 

THIS A 

T 

T IS A AN 

T 

T 

NILP 

ATOM. 

PRINT NAME 



- 156 -

F i g . 3 - 3 STRUCTURE OF EXAMPLES OF CONCURRENT GARBAGE 

COLLECTION SYSTEMS 

p r o c e d u r e INITIALISATION . . . 

p r o c e d u r e GC . . . 

p r o c e d u r e LISTPROCESSOR . . . 

b e g i n 
INITIALISATION; 
cobegin 

LISTPROCESSOR; 
GC 

coend 
end. 



- 157 -

F i g . 3 - 4 CONSTANTS, T Y P E S , AND GLOBAL VARIABLES FOR 

NON-RELOCATING CONCURRENT GARBAGE COLLECTION 

SYSTEM 

c o n s t LOW = . . , , ; " l o w e s t s t a c k a d d r e s s " 
HIGH = . , . , ; " h i g h e s t s t a c k a d d r e s s " 
NILP = O; "no o b j e c t " 
MAXSTACK = , . , , ; "maximum s t a c k s i z e " 

" 5 " MAXCELLS = HIGH - LOW + 1; "number of c e l l s i n h e a p " 

t y p e POINTER = 0 , ,HIGH; "mode of a l l r e f e r e n c e s " 
CELL = r e c o r d "un ion mode of a l l l i s t o b j e c t s " 

c a s e PNAME : BOOLEAN of_ 
FALSE : (CDR : POINTER; 

"10" c a s e ATOM : BOOLEAN of 
• FALSE : (CAR : POINTER); 

TRUE : (PNMPTR : POINTER)); 
TRUE : (NEXT : POINTER; 

c a s e AATOM : BOOLEAN of 
" 1 5 " FALSE : ( ) ; 

TRUE : (STRING : ) ) 
end; 

HEAPSPACE = LOW,,HIGH; "mode of heap addresses" 
STACKSPACE = O,,MAXSTACK; "mode of Stack indices" 

"20" PDS = record "mode of stack objects" 
STACK : array [STACKSPACE]of POINTER; 
TOP : STACKSPACE 
end; 

LOCTYPE = record "mode of stack and AUX combined" 
"25" ST, AUX : PDS; 

ISTACK : STACKSPACE; 
MARKING : BOOLEAN 
end; 

CELLINT = 0,,MAXCELLS; "mode of any cell-counter" 

"30" var HEAP : shared array [HEAPSPACE]of CELL; "the heap" 
LOC : shared LOCTYPE; "list- and auxiliary stack" 
MARKED : shared array [HEAPSPACEjof BOOLEAN; "GC marks" 
FREELIST : shared record " the free-list" 

FREE : POINTER; 
"35" NRFREE : CELLINT; 

EXIT : BOOLEAN . ' ' 
end; 

TRIGGER : CELLINT; "when to Start collection" 



- 158 

F i g , 3 - 5 STRUCTURE OF LISTPROCESSOR FOR NON-RELOCATING 

CONCURRENT GARBAGE COLLECTION SYSTEM 

p r o c e d u r e LISTPROCESSOR; 
v a r LPEXIT : BOOLEAN; 

p r o c e d u r e PUSH (var S : LOCTYPE; ARG : POINTER); 
b e g i n 

" 5 " w i t h S, ST do 
b e g i n 

STACK [ T O P ] := ARG; 
TOP := TOP + 1 

end 
"10" end ; 

p r o c e d u r e POP (var S : LOCTYPE; v a r RESULT : POINTER); 
b e g i n 

w i t h S, ST do 
b e g i n 

" 1 5 " TOP := TOP - 1; 
RESULT := STACK [ T O P ] ; 
i f MARKING t h e n ISTACK := MIN(TOP, ISTACK) 

end 
end ; 

"20" p r o c e d u r e CAR; 
var TEMP : HEAPSPACE; 

begin 
region LOC do 
begin 

"25" POP(ST, TEMP); 
region HEAP do 

PUSH(ST,HEAP [TEMP],CAR) 
end 

end; 

"30" procedure CONS; 
var TEMPA, TEMPD : POINTER; TEMPC : HEAPSPACE; 

begin region FREELIST do 
begin await (NRFREE>0) or_ EXIT; 

LPEXIT := EXIT; 
"35" if_ not LPEXIT then 

region LOC do 
begin 

TEMPC := FREE; 
POP(ST, TEMPA); 

"40" POP(ST, TEMPD); 



- 159 

Fig, 3 - 5 (continued) 

region HEAP do 
with HEAP[TEMPO]do 
begin 

FREE := CDR; 
"45" NRFREE := NRFREE - 1; ' 

ATOM := FALSE; 
CAR := TEMPA; 
CDR := TEMPD 

end; 
"50" PUSH(ST, TEMPC) 

end 
end 

end; 

procedure RPLACA; 
"55" var REFREF : HEAPSPACE; REF : POINTER; 

begin 
region LOC do 
begin 

POP(ST, REFREF); 
"60" POP(ST, REF); 

region HEAP do 
begin 

HEAP[REFREF].CAR := REF; PUSH(ST, REFREF); 
if MARKING 

"65" then region MARKED do 
if MARKED [REFREF] and REF >̂  LOW 
then if not MARKED [REF] 

then with AUX do 
begin 

"70" STACK [TOP] :=REF; 
TOP := TOP + 1 

end 
end 

end 
"75" end; 

begin "main body of list processor" 
repeat 

region FREELIST do 
"80" begin EXIT := EXIT or "processing accomplished"; 

LPEXIT := EXIT 
end 

until LPEXIT 
end ; 



- 160 -

Fig. 3 - 6 STRUCTURE OF NON-RELOCATING CONCURRENT GARBAGE 

COLLECTOR 

procedure GC; 
var GCEXIT, DONE : BOOLEAN; 

NEXTPTR, TEMP : POINTER; 
procedure MARK(PAR : POINTER); 

"5" var NOTYET, MORE, ATOMIC : BOOLEAN; 
CAND : POINTER; 

procedure MARKATOM(AT : POINTER); 
var ITER : POINTER; MORE : BOOLEAN; 

begin 
"10" ITER := AT; 

region HEAP do 
begin 

region MARKED do 
begin 

"15" if ITER>̂ LOW then MORE: =not MARKED fiTER] 
else MORE := FALSE; 
while MORE do 
begin 

MARKED [ITER] : =TRUE; 
"20" ITER:=HEAP [ITER].NEXT; 

if_ ITER>LOW then MORE: =not MARKED [ITER] 
else MORE:=FALSE 

end 
end 

"25" end 
end; 

begin 
if PAR>LOW then 
begin 

"30" region MARKED do 
begin 

NOTYET:=MARKED [PAR]; 
if NOTYET then MARKED[PAR]:=TRUE 

end; 
"35" if_ NOTYET then 

begin 
region HEAP do 
begin 

ATOMIC:=HEAP [PAR].ATOM; 
ti 4 0 " CAND: =HEAP [PAR] . CAR; 

end; 



- 161 -

Fig, 3 - 6 (continued) 

if ATOMIC then MARKATOM(CAND) 
else MARK(CAND); 
region HEAP do CAND:=HEAP [PAR].CDR; 

"45" • region MARKED do 
if CAND ̂  LOW then MORE:=not MARKED [CAND] 
else MORE:=FALSE; 

while MORE do 
begin region MARKED do MARKED [CAND]:=TRUE; 

"50" region HEAP do 
begin ATOMIC:=HEAP [CAND].ATOM 

NOW:=HEAP[CAND].CAR 
end; 
if ATOMIC then MARKATOM(NOW) 

"55" else MARK(NOW); 
• region HEAP do CAND:=HEAP[CAND] .CDR; 
region MARKED do 

if CAND^LOW then MORE:=not MARKED[CAND] 
else MORE:=FALSE 

"60" end 
end 

end 
end; 

procedure SAVEFLIST; 
"55" begin region FREELIST do 

begin TEMP:=FREE; 
FREE:=NILP; 
NRFREE:=0 

end 
"70" end; 

procedure MARKFLIST; 
var P : POINTER; 

begin while TEMP ?̂  NILP do 
region FREELIST do 

"75" begin P:=FREE; 
FREE:=TEMP; 
region HEAP do 
begin TEMP:=HEAP[TEMP].CDR; 

HEAP[FREE].CDR:=P; 
"80" NRFREE:=NRFREE+1; 

region MARKED do MARKED[FREE]:=TRUE 
end 

end 
end; 



- 152 -

Fig. 3 - 6 (continued] 

"85" procedure COLLECT; 
var RUNNER : HEAPSPACE; GARB : BOOLEAN; 

begin for RUNNER:=LOW to HIGH do 
begin region MARKED do GARB:=not MARKED [RUNNER] ; 

if_ GARB then 
"90" region FREE LIST do 

region HEAP do 
begin HEAP [RUNNER].CDR:=FREE; FREE:=RUNNER; 

NRFREE:=NRFREE+1 
end 

"95" end; 
region FREELIST do begin EXIT:=EXIT 0£ (NRFREE=0); 

GCEXIT:=EXIT 
end 

end; 

"100" procedure UNMARK; 
var RUNNER : HEAPSPACE 

begin region MARKED do 
for RUNNER:=L0W to HIGH do MARKED [RUNNER]:=FALSE 

end; 

"105" begin "main body of GC" 
repeat region FREELIST do 

begin await NRFREE<TRIGGER 0£ EXIT; 
GCEXIT:=EXIT 

end; 
"110" if_ not GCEXIT then 

begin region LOC do MARKING:=TRUE; 
DONE:=FALSE; 
repeat 

region LOC do 
"115" if_ AUX.TOP>0 then 

with AUX do 
begin TOP:=TOP-1; 

NEXT: = STACK [TOP] 
end 

"120" else if ISTACK<ST.TOP then 
begin NEXT: =ST. STACK [ISTACK] ; 

ISTACK:=ISTACK+1 
end 

else begin MARKING:=FALSE; 
"125" ISTACK:=0; 

SAVEFLIST; 
DONE:=TRUE 

end; 



- 163 

Fig. 3 - 5 (continued) 

if not DONE then MARK(NEXT) 
"130" until DONE; 

MARKFLIST; 
COLLECT; 
UNMARK 

until GCEXIT 
"135" end; 



- 164 -

F i g . 3 - 7 I N I T I A L I S A T I O N PROCEDURE FOR NON-RELOCATING 

CONCURRENT GARBAGE COLLECTOR 

p r o c e d u r e INITIALISATION; 
v a r RUNNER : HEAPSPACE; P : POINTER; 

b e g i n i f LOW>HIGH t h e n ERRORSTOP; 
r e g i o n FREELIST do 

" 5 " b e g i n 
r e g i o n MARKED do 
b e g i n 

r e g i o n HEAP do 
b e g i n NRFREE:=0; 

"10" P:=NILP; 
f o r RUNNER:=L0W t o HIGH do 
b e g i n MARKED [RUNNER] :=FALSE; 

FREE:=RUNNER; 
HEAP [ F R E E ] . C D R : = P ; 

" 1 5 " P:=FREE; 

"20" 

"25" 

NRFREE:=NRFREE+1 
end 

"30" 

end 
end 

end; 
region LOC do 
begin ISTACK:=0; 

AUX,TOP:=0; 
ST,TOP:=0; 
region FREELIST do EXIT: 
MARKING:=FALSE 

end; 
TRIGGER:= 
if TRIGGER<0 then ERRORSTOP 

end; 

=NRFREE=0; 



155 

Fig. 3 - 8 MODES SUPPORTED BY CONCURRENT COMPACTIFYING 

GARBAGE COLLECTION SYSTEM 

Simple values 

GENERAL FORM < M O D E > <CONTENT> 

FORM OF A 
LINKCELL 

LINK 
CELL 

LINK 

Structures, multiple values 

OVERHEA ° { 

BODY 
:LENGTH-1 CELLS)" 

< M O D E > <LENGTH> 

<CONTENT > 

< CONTENT > 

< CONTENT > 

< CONTENT > 

< CONTENT > 



- 156 

F i g . 3 - 9 STRUCTURE OF HEAP FOR CONCURRENT COMPACTIFYING 

GARBAGE COLLECTION SYSTEM 

a) No c o l l e c t i o n g o i n g on 

STARTSS 
[LPUSES] 

FREE 

ENDSS 
[LPUSES] 

ACTIVE 
LOCATIONS, 
GARBAGE 

FREE 
SPACE 

A 
^ACTIVE 

HEAP 

^TRIGGER 

SCAN, NEW 
STARTSS 
[GCUSES] 

ENDSS 
[GCUSES] 

NOT 
IN 

USE 

LPUSES GCUSES 

b) During collection 

FREE 

ACTIVE LOCATIONS, 1 
LINK CELLS TO 
COPIED LOCATIONS, 
GARBAGE 

FREE SPACE 

ACTIVE 
HEAP 

^TRIGGER 

- \ 

\ 

COPIED LOCATIONS, 
LINK CELLS FOR 
POINTER UPDATING 

FREE 
COPY 
SPACE 

SCAN 

NEW 

LPUSES GCUSES 



167 -

Fig. 3 - lO THE FUNCTION OF LINKCELLS IN SEMISPACE 

"GCUSES" 

LPUSES 

/ 

POSSIÉLY 
ONLY 

REFERENCE 

/ 

GCUSES 

LINK 
CELL 

SCAN 

,NEW 



- 168 -

F i g . 3 - 1 1 OVERALL STRUCTURE OF CONCURRENT COMPACTIFYING 

GARBAGE COLLECTION SYSTEM 

" D e c l a r a t i o n s of c o n s t a n t s , modes , and g l o b a l 
v a r i a b l e s " 

p r o c e d u r e INITIALISATION . . . 

f u n c t i o n SIMPLE ( . . . ) : BOOLEAN . . . 

f u n c t i o n APOINTER ( . . . ) : BOOLEAN . . . 

f u n c t i o n LONG ( . . . ) . . . 

f u n c t i o n INSEMISP ( . . . ) : BOOLEAN . . . 

p r o c e d u r e LISTPROCESSOR . . . 

p r o c e d u r e GC . . . 

b e g i n 
INITIALISATION; 
cobegin 

LISTPROCESSOR; 
.. GC 

coend 
end. 



- 159 -

F i g . 3 - 1 2 CONSTANTS, MODES, AND GLOBAL VARIABLES FOR 

CONCURRENT COMPACTIFYING GARBAGE COLLECTION 

SYSTEM 

c o n s t LOW = . . . ; " l o w e s t heap a d d r e s s " 
HIGH = . . . ; " h i g h e s t heap a d d r e s s " 
NILP = O; "no o b j e c t " • ' 
MAXLENGTH = . . . ; "maximum s i z e of a l o c a t i o n " 

" 5 " MAXSTACK = . . . ; "maximum v a l u e of a s t a c k p o i n t e r " 
NRCELLS=(HIGH-LOW+1)/2; "number of c e l l s i n s e m i - s p a c e " 

t y p e POINTER = NILP..HIGH; "mode of p o i n t e r s " 
HEAPSPACE = LOW..HIGH; "mode of heap a d d r e s s " 
STACKSPACE = O..MAXSTACK; "mode of s t a c k p o i n t e r s " 

"10" SEMISPACE = ( S S l , S S 2 ) ; "mode of s e m i - s p a c e s " 
MODE = (LINKCELL,TYPE1,TYPE2, . . . T Y P E n ) ; "modes of l o c a t i o n s " 
CELLTYPE = (SINGLE,OVERHEAD,BODY); "mode of c e l l t y p e s " 
CELL = p a c k e d r e c o r d " u n i t e d mode of c e l l s " 

c a s e CELLTYPE of_ 
" 1 5 " SINGLE : (KIND : MODE; 

c a s e MODE of_ 
LINKCELL : (LINK : POINTER); 
TYPE1,TYPE2, ...:(CONTENT: ...)); 

OVERHEAD : (LOCKIND : MODE; 
"20" LENGTH : 2..MAXLENGTH); 

BODY : (CONTEN : ...) 
end; 

PDS = record "mode of stacks" 
STACK : array [STACKSPACE]of POINTER; 

"25" TOP : STACKSPACE 
end; 

DATABASE = record "mode of all shared data" 
ST : PDS; 
EXIT, MARKING : BOOLEAN; 

"30" ISTACK : STACKSPACE; 
NRNEEDED : 1..MAXLENGTH; 
HEAP : array [HEAPSPACE]of CELL; 
LPUSES, GCUSES : SEMISPACE; 
FREE, SCAN, NEW : LOW..HIGH + 1 

"35" end; 

var ALL : shared DATABASE; "all shared data" 
STARTSS, ENDSS : array [SEMISPACE]of HEAPSPACE; 

"first and last address of semi-spaces" 
TRIGGER : O..NRCELLS; 



- 170 -

Fig. 3 - 1 3 INITIALISATION PROCEDURE FOR CONCURRENT 

COMPACTIFYING GARBAGE COLLECTION SYSTEM 

"10" 

"15" 

"20" 

procedure INITIALISATION; 
begin if HIGH + 1 £ LOW then ERRORSTOP 

else begin STARTSS[SS1]:=LOW; 
STARTSS[SS2]:=LOW+(HIGH-LOW+1) div 2; 
ENDSS [SSl] :=STARTSS [SS2] -1 ; 
ENDSS[SS2] :=HIGH; 
region ALL do 
begin 

end; 

LPUSES 
GCUSES 
EXIT 
MARKING 
ISTACK 
ST.TOP 
FREE 
SCAN 
NEW 

= 
= 
= 
= 
= 
= 
s 

= 
= 

NRNEEDED 

SSl; 
SS2; 
FALSE; 
FALSE; 
0; 
0; 
START CLPUSES] 
START[GCUSES] 
START[GCUSES] 
:= 0 

TRIGGER := ...; 
if TRIGGER < MAXLENGTH then ERRORSTOP 

end 
end; 



- 171 -

F i g . 3 - 1 4 O U T L I N E OF A U X I L I A R Y F U N C T I O N S FOR CONCURRENT 

C O M P A C T I F Y I N G GARBAGE C O L L E C T I O N SYSTEM 

f u n c t i o n SIMPLE(M : MODE) : BOOLEAN; 
b e g i n 

SIMPLE := LONG(M) = 1 
e n d ; 

"5" function APOINTER(M:MODE; OFFSET:0..MAXLENGTH) : BOOLEAN; 
begin 

APOINTER:= "cell at position OFFSET from start of 
location of mode M contains a pointer" 

end; 

function LONG(M : MODE) : O..MAXLENGTH; 
"10" begin 

LONG := "number of cells (inc. overhead) in location of 
mode M" 

end; 

function INSEMISP(PTR : POINTER; SEM : SEMISPACE) : BOOLEAN; 
begin 

"15" INSEMISP := PTR ̂  STARTSS [SEM] and PTR <̂  ENDSS [SEM] 
end; 



- 172 -

F i g . 3 - 1 5 OUTLINE OF L I S T PROCESSOR IN CONCURRENT 

COMPACTIFYING GARBAGE COLLECTION SYSTEM 

p r o c e d u r e LISTPROCESSOR; 
v a r LPEXIT : BOOLEAN; 

p r o c e d u r e PUSH(var A : DATABASE; ARG : POINTER); 
b e g i n w i t h A,ST do_ 

" 5 " b e g i n STACK [ T O P ] : =ARG; 
T0P:=T0P+1 

end 
end ; 

p r o c e d u r e POP(var A : DATABASE; v a r RES:POINTER); 
"10" b e g i n w i t h A,ST do 

b e g i n T0P:=T0P-1 ; ' ' 
R E S : = S T A C K [ T 0 P ] ; 

if MARKING then ISTACK:=MIN(ISTACK,TOP) 
end 

"15" end; 

procedure CONS(MDE : MODE); 
var I, NRPARS : 1..MAXLENGTH; 

begin region ALL do 
begin NRNEEDED:=LONG(MDE); 

"20" await FREE+NRNEEDED<ENDSS[LPUSES]+1 or EXIT; 
if EXIT then LPEXIT:=TRUE 
else 
begin with HEAP[FREE]do 

begin 
"25" KIND:=MDE; 

if not SIMPLE(MDE)then 
begin LENGTH:=LONG(MDE); 

NRPARS:=LENGTH-1; 
for I:=l to NRPARS do 

"30" POP (ALL, HEAP [FREE +l].CONTEN) 
end 
else POP(ALL,CONTENT) 

end; 
PUSH(ALL,FREE); 

"35" FREE:=FREE+NRNEEDED; 
NRNEEDED:=0 

end 
end 

end; 



- 173 -

Fig. 3 - 1 5 (continued] 

"40" procedure SAVE(var A:DATABASE;LHS:HEAPSPACE;RHS:POINTER); 
begin 

with A do 
if INSEMISP(LHS,GCUSES)and LHS<SCAN and INSEMISP(RHS,LPUSES) 
then 

"45" begin if NEW>ENDSS [GCUSES] then begin EXIT:=TRUE; 
LPEXIT:=TRUE 

end 
else 
begin with HEAP [NEW] do 

"50" begin KIND:=LINKCELL; LINK:=LHS end; 
NEW:=NEW+1 

end 
end 

end; 

"55" procedure ASSIGNMENT; 
var LHS:HEAPSPACE; I,NRVALUES:1..MAXLENGTH; 

TEMP:POINTER; 
begin region ALL do 

begin POP(ALL,LHS); 
"50" if_ HEAP[LHS] . KIND=LINKCELL then LHS : =HEAP [LHS] .LINK; 

if SIMPLE(HEAP [LHS] .KIND) then 
begin POP(ALL,HEAP[LHS].CONTENT); 

if APOINTER(HEAP[LHS].KIND,0) then 
if MARKING then SAVE(ALL,LHS,HEAP[LHS] .CONTENT) 

"55" end 
else 
begin 

NRVALUES:=LONG(HEAP[LHS].KIND)-1; 
for I:=l to NRVALUES do 

"70" ' begin POP(ALL,HEAP[LHS+I].CONTEN); 
if APOINTER(HEAP[LHS].KIND,I) then 

if MARKING then SAVE(ALL,LHS+I,HEAP[LHS+I].CONTEN) 
end 

end 
"75" end 

end; 

begin 
repeat 

"80" region ALL do 
begin EXIT:=EXIT or_ "processing accomplished"; 

LPEXIT:=EXIT 
end 

until LPEXIT 
"85" end; 



- 174 -

Fig. 3 - 1 6 CONCURRENT COMPACTIFYING GARBAGE COLLECTOR 

procedure GC; 
var GCEXIT:BOOLEAN; 

OFFSET,CURLENGTH:O..MAXLENGTH; 
TEMP:SEMISPACE; 

"5" CURMODE:MODE; 
REF:POINTER; 
MARKED:array[HEAPSPACE]O£ BOOLEAN; 

procedure COPY(var D:DATABASE; var P:POINTER); 
var 1:0..MAXLENGTH-1;SIZE:1..MAXLENGTH; 

"10" begin 
with D do 
b e g i n i f SIMPLE(HEAP[p].KIND) t h e n SIZE:=1 

e l s e SIZE:=HEAP[P].LENGTH; 
i f NEW+SIZE<^ENDSS [GCUSES]+ 1 t h e n 

" 1 5 " b e g i n f o r I : = 0 t o SIZE-1 do HEAP[NEW+l] :=HEAP['p+l] ; 
w i t h HEAP[P]do 
b e g i n KIND:=LINKCELL; LINK:=NEW e n d ; 
MARKED[P]:=TRUE; 
P:=NEW; 

"20" NEW:=NEW+SIZE 
end 
e l s e b e g i n GCEXIT:=TRUE; EXIT:=TRUE end 

e n d 
end ; 

"25" procedure UNMARK; 
var RUNNER:HEAPSPACE; 

begin for RUNNER:=LOW to HIGH do MARKED[RUNNER]:=TRUE end; 

begin UNMARK; 
repeat 

"30" region ALL do 
begin await ENDSS[LPUSES]-FREE+KTRIGGER o£ EXIT; 

GCEXIT:=EXIT; 
MARKING:=TRUE; 
OFFSET:=0; 

"35" DONE:=FALSE 
end; 



- 175 -

- 15 (continued) 

repeat . 
region ALL do . . ;. 

if SCAN=NEW then 
begin if ISTACK<TOP then 

begin 
if BUILTIN(STACK[lSTACK])then "skip" 
else if INSEMISP(STACK[ISTACK],GCUSES) then "skip" 
else if MARKED [STACK [ISTACK]] then 

STACK [ISTACK] : =HEAP [STACK [ISTACK]] . LINK 
else COPY(ALL,STACK[iSTACK]) ; 
ISTACK:=ISTACK+1 

end 
else begin FREE:=NEW; 

NEW:=START [LPUSES]; 
SCAN:=START[LPUSES]; 
TEMP:=LPUSES; 
LPUSES:=GCUSES; 
GCUSES:=TEMP; 
ISTACK:=TEMP; 
MARKING:=FALSE; 
DONE:=TRUE; 
EXIT:=ENDSS [LPUSES]-FREE+1<NRNEEDED or EXIT; 
GCEXIT:=EXIT 

end 
end 
else 
begin if OFFSET=0 then begin CURMODE:=HEAP [SCAN].KIND; 

if SIMPLE(CURMODE)then CURLENGTH:=1 
else CURLENGTH:=HEAP[SCAN].LENGTH 

end; 
if CURMODE=LINKCELL then 
begin REF:=HEAP[sCAN].LINK; 

if INSEMISP(HEAP[REF].PTR,GCUSES) then "skip" 
else if MARKED [HEAP[REF].PTR] then 

HEAP [REF] .PTR: = HEAP [HEAP[REF] .PTR] .LINK 
else COPY(ALL,HEAP[REF].PTR) 

end 
else if APOINTER(CURMODE,OFFSET) then 

if BUILTIN(HEAPCSCANj.PTR) then "skip" 
else if INSEMISP(HEAP[SCAN].PTR,GCUSES)then"skip" 
else if MARKED[HEAP[SCAN] .PTR] then 

HEAP[SCAN].PTR:=HEAP[HEAP[SCA^Q .PTR] .LINK 
else COPY(ALL,HEAP [SCAN].PTR) ; 

SCAN:=SCAN+1; 
if OFFSET=CURLENGTH-1 then OFFSET:=0 

end 
until DONE or GCEXIT; 



- 176 -

F i g . 3 - 1 6 ( c o n t i n u e d ) 

i f n o t GCEXIT t h e n UNMARK; 
" 8 5 " r e g i o n ALL do 

b e g i n EXIT:=EXIT o r GCEXIT; 
GCEXIT:=EXIT 

end 
u n t i l GCEXIT 

" 9 0 " end ; 

L 



- 177 -

Appendix A 

THE LANGUAGE USED 

Thé language which has been used in this thesis is 

PASCAL as defined in the Revised Report (Je 74), extended by the 

language constructs proposed by Brinch Hansen (Ha 73, Ha 73a) for 

concurrent processes. 

This appendix has been incorporated in the thesis for 

the benefit of readers without access to the defining documents 

referenced above. It provides a brief description of syntax and 

semantics of Revised Report PASCAL and of Brinch Hansen's exten

sions. 

Structure of a PASCAL program 

const <constant definitions> 
type <type definitions> 
var <variable definitions> 
procedure <procedure definition> "may be repeated" 
function <function definition> "may be repeated" 
begin 

<statement part> 
end 

Procedures and functions have the same structure as given above. 

Primitive data types 

Constants are denoted by numbers or identifiers. 

const A = 123 

introduces A as a synonym for the constant 123. 

Variables are declared in the form 

var VI,V2, ... Vn : <type> 

This associates the notations (identifiers) Vi with a data type. 

Types can be defined by enumeration, e.g. 



- 178 -

type WEEK = (MON, TUE, WED, THU, FRI, SAT, SUN) 

or as ranges: 

type OCTAL = O..7 

PASCAL implementations are expected to have the primitive types 

INTEGER 
REAL 
BOOLEAN 
CHAR 

predefined. 

. Structured data types 

PASCAL has two data structures, the array and the record. 

Array types are defined in the form 

array [ <type>] of <type> 

For example: 

type MATRIX = array [l..10,1..lo]of REAL 

PASCAL arrays are always of fixed size. 

Record types define data structures consisting of a fixed number 

of components which may be of different types: 

record 
Fl : <type>; 
F2 : <type>; 

• • • 
Fn : <type> 

end 

Example: 

type ANIMAL = record 
SORT : (DOG, COW, OTHER); 
WEIGHT : 1..1000; 
DOMESTIC : BOOLEAN 

end 

Records may have Variants. These are introduced as follows: 



- 179 -

record . ' • 

<type>; V2 : <type>...); 
); 
); . 

end; 

Example: 

type MAN = record 

FIRSTNAME, LASTNAME : ALFA; 
case STATUS : (SINGLE, MARRIED, DIVORCED) of 
SINGLE : (GIRLFRIEND : PERSON); 
MARRIED : (WIFE : PERSON; WEDDINGDATE : DATE); 
DIVORCED : (FROM WHOM : PERSON; GUILTY : BOOLEAN) 
end 

The variant-field may be omitted, in which case no storage is reserved 

for it: 

record 

case <type> of 

end 

A component F of a record variable V is denoted by 

V.F 

For example: 

var FIDO : ANIMAL; 

FIDO.SORT:=DOG; 
FIDO.WEIGHT:=40; 

Statement types 

Primitive 

Jump statements in PASCAL have the form 

goto <label> ••.•••; 

Labels are positive integers. 

case FV : <type> of 
CONSTANT 1 
CONSTANT 2 
CONSTANT n 

(VI 
( . 
( , 



- 180 -

Assignment statements have the syntax 

v := <expression> 

Unlike ALGOL 60, the expression may only consist of operators and 

fiinctions applied to constants, variables, and other expressions, 

Procedure- and function statements are like the ones in ALGOL 50: 

PF (a,, a_, a,, .,,, a ) 
I z Ó n 

Structured 

Statements can be concatenated into a compound statement: 

begin Sl; S2; ,,, Sn end 

Statement selection is performed for boolean expressions by 

if <boolean expression> then Sl else S2 

For expressions of a primitive type, the case selection is pro

vided : 

type T = (CI, C2, ,.,, Cn); 

case <expression of type T> of_ 
CI : SI; 
C2 : S2; 

Cn : Sn 
end 

A statement is repeatedly executed while a condition is true by 

while <boolean expression> do S 

Alternatively, it can be repeated until a condition holds: 

repeat S until <boolean expression> 

A statement may also be repeated, with a sequence of primitive val

ues being assigned to a loop variable v: 

for V := min to max 

For records, the structured statement 

'7ith V do S 



- 181 -

is provided. Inside S, the fields of record variable v can be 

referred to by their identifiers alone, instead of using the dot-

notation "v.f", 

Example: 

with FIDO do 
begin 

SORT := DOG; 
WEIGHT := 40 

end 

Procedure and function declarations 

Procedures and functions are declared by 

procedure P (pi; p2; ,,.; pn); 
<local declarations> 
begin 

sl; s2; ..,; sn 
end 

function F(pl; p2; ,,,; pn) : <result type>; 
<local declarations> 
begin 

sl; s2; .,,; sn 
end 

The declarations of formal parameters p. have the form 

V. : T, 
1 1 

for constant parameters of type T., and 

var V. : T. 
J D 

for variable parameters 

Functions may only have results of primitive types or subranges of 

these. 

Brinch Hansen's extensions for concurrent processes 

The concurrent statement 

To indicate that the statements Sl, S2, ,,., Sn can be executed 

concurrently, Brinch Hansen uses the concurrent statement 



- 182 -

cobegin SI; S2; ,,,; Sn coend 

It was first proposed by Dijkstra, 

The semantics of the concurrent statement in the sequence 

SO; cobegin Sl; S2; ,..; Sn coend; Sn+1 

is as follows: First, SO is executed, and then Sl, S2, ..., Sn 

are executed concurrently. When all statements in the concurrent 

statement have terminated, Sn+1 is executed, 

To enable time-dependent errors to be caught by a com

piler, the designer or the reader of an algorithm, the structured 

statement's semantics are restricted to mean that its statements 

Sl; S2; ,,.; Sn define disjoint processes. This implies that a 

variable subject to change in one of these processes may not be 

referred to by another. To permit checking of this disjointness, 

the language used must have the property that a statement's con

stant and variable parameters can be determined by inspecting the 

statement, 

Hoare (Ho 72) developed the following set of rules for 

a language with such property: 

Arrays must be private to a single process, because 
their components are selected at run-time, 

Procedure calls may not have side-effects, 

All variables used as variable parameters in a pro
cedure statement must be distinct and cannot occur 
as constant parameters in the same statement. 

Jumps out of concurrent statements are forbidden, 

These rules have been obeyed in the algorithms presented in this 

thesis, 

The critical region 

For the declaration of shared variables, Brinch Hansen uses the 

notation 

var V : shared <type> 



- 183 -

Concurrent processes can only refer to and change common variables 

within structured statements called critical regions: 

region v do s 

This enables compilers and humans to verify that shared variables 

are only accessed inside critical regions. 

Critical regions referring to the same variable exclude 

one another in time. 

The conditional critical region 

To enable a process to wait until an arbitrary condition 

B between the components of a common variable holds, Brinch Hansen 

proposes the await primitive: 

var V : shared T; 

region v do 
begin ,,,, await B; ,... end 

The await must be textually enclosed by a critical region associated 

with variable v. For nested regions, the synchronising condition B 

is associated with the innermost enclosing region. 

This notation is a generalisation of the conditional criti

cal region proposed by Hoare (Ho 72) which is of the form (in Hoare's 

notation): 

with V when B do S 

Hoare's construct thus only permits the testing of condition B at 

the beginning of the critical region. 



- 184 -

Appendix B 

ON THE IMPLEMENTATION OF BRINCH HANSEN'S 

PROCESS EXTENSIONS TO PASCAL 

Introduction 

The purpose of this appendix is to describe how the con

structs concurrent statement, shared variable, critical region, and 

conditional critical region could be implemented in terms of more 

primitive constructs. 

In this discussion, the availability of a real-time mo

nitor is assumed, and for each construct, the services required 

from this monitor are described. 

The discussion is based entirely on Brinch Hansen's imple

mentation proposals in (Ha 73). 

The concurrent statement 

The concurrent statement 

SO; 
cobegin Sl; S2; .. ..; Sn coend; 
Sn+1 

can be implemented as follows: The process that executes statement 

SO initiates the concurrent processes Sl, S2, ...., Sn by calling 

a monitor procedure initiate process once for each of these. Then, 

by a call to a monitor procedure delay process, it is delayed until 

all the processes in the concurrent statement are terminated: 

SO; 
for every Si do initiate process (initial state); 
delay process; 
Sn+1; 

Initial state defines the initial register values for the 

new processes. 

Initiate process initialises a process description for 

the new process and enters a pointer to it in the queue of ready 



- 185 -

processes. Finally, it increases the number of children of the 

calling process and continues this process. 

Monitor procedure delay process functions as follows: 

If the number of children of the calling process is greater than 

zero, it is delayed, and another process from the ready queue is 

given its processor. Otherwise, the calling process continues. 

The children processes Sl, S2, .. . . , Sn in a concurrent 

statement each execute a statement Si and call a monitor procedure 

terminate process: 

"Process i" Si; 
terminate process; 

Terminate process frees the description of the calling 

process and decrements the number of children of its parent process. 

If the number of children becomes zero and the parent is delayed, 

the parent is continued. Otherwise, the processor is allocated to 

another ready process, 

Shared variable and critical region 

Shared variables can be implemented by associating a sema

phore with the variable: 

"var R : shared T" var R : record 
value : T; 
mutex : semaphore 
end 

Thus, each shared variable has its own private semaphore which 

should be inaccessible (anonymous) inside a concurrent statement. 

Critical regions for R can then be implemented in the form 

R.mutex := 1; "initialisation" 
cobegin 

with R do "region R do" 
begin P(mutex); "begin" 
S; "S" 
V(mutex) 
end; "end"; 

coend 



- 186 -

P and V are Dijkstra's classical semaphore operations. These are 

the only monitor functions required to implement the region con

struct. 

Conditional critical regions 

When a process encounters a critical region for a shared 

variable V, it joins a queue which is associated with V's semaphore, 

From this queue, the processes enter the region sequentially one 

after the other (mutual exclusion), 

At the await B of a conditional critical region, it in

spects the shared variable V to test whether the condition B holds, 

If it does, it completes the remainder of the critical region, 

Otherwise, the process leaves the critical region temporarily and 

joins an event queue QE(V) associated with the shared variable V. 

Other processes can then enter critical regions for V, If they are 

also made to wait by a conditional critical region, they join the 

same event queue QE(V), 

Whenever a critical region for V has been completed, V 

may have been changed and consequently the waiting conditions for 

some of the processes in the event queue QE(V) may be satisfied, 

Therefore, at the exit of each critical region for V, all processes 

in the event queue are transferred to the main queue connected to 

the shared variable's semaphore. This allows those processes to re

enter their critical regions and inspect the shared variable V again, 

The conditional critical region can thus be implemented 

by using two monitor procedures, await and cause, in the following 

way: 

region V do_ "region V do" 
begin "begin" 

while not B do await(e); "await B"; 
S; "S" 
cause(e) 

end "end" 

An event variable (e) consists of two components: A queue 

of processes waiting for the event, and a pointer to the semaphore 



- 187 -

on which these processes must wait to reenter their critical region, 

after the occurrence of the event, 

The await procedure enters the calling process in an event 

queue and performs a V operation on the associated semaphore, so 

that another process can enter its critical region, 

The cause procedure transfers all processes from an event 

queue to an associated semaphore queue. The calling process con

tinues. For each shared variable accessed in a conditional criti

cal region, all critical regions (including the simple ones) must 

conclude with a call to cause. 



- 188 -

REFERENCES 

Ar 72 Arnborg, S., Storage acSministration in a virtual memory 
SIMULA system. BIT, Vol. 12 (1972), pp. 125-141. 

Ar 74 Arnborg, S., Optimal memory management in a system with 
garbage collection. BIT, Vol. 14 (1974), pp. 375-381. 

Ba 71 Barbacci, M., A LISP processor for C.ai. Carnegie Mellon 
Univ., CMU-CS-71-103. 

Ba 71a Bauer, F.L., and Goos, G., Informatik. Berlin, Springer 
Verlag, 1971. 

Bo 68 Bobrow, D.G., Storage management in LISP. In: Symbol 
Manipulation Languages. Amsterdam, North Holland Publ, 
Comp,, 1968, 

Br 70 Branquart, P,, and Lewi, J., General principles of ALGOL 
68 garbage collector, Techn,Note, N50. Brussels, MBLE 
Manufacture Beige de Lampes et de Materiel Electronique, 
Jan 1970. 

Br 71 Branquart, P., A scheme of storage allocation and garbage 
collection for ALGOL 68. In: Pe 71, p. 199. 

Ch 70 Cheney, C.J., A non-recursive list compacting algorithm. 
Communications of the ACM, Vol. 13 (1970), p. 577. 

Co 60 Collins, G.E., A method for overlapping and erasure of 
lists. Communications of the ACM, Vol. 3 (1950), pp. 555-
657. 

Co 66 Collins, G.E., PM, a system for polynomial manipulation. 
Communications of the ACM, Vol. 9 (1965), pp. 578-589. 

Co 71 Coffman, E.G., System deadlocks. Computing Surveys, Vol.3 
(1971), pp. 67-78. 

De 71 Denning, P.J., Third generation computer systems. Computing 
Surveys, Vol. 3 (1971), pp. 175-211, 

Di 68 Dijkstra, E.W., Co-operating sequential processes. In: 
Programming Languages, by F.Genuys (ed.). New York, 
Academic Press, 1958. 

Di 72 Dijkstra, E.W., Notes on structured programming. In: 
Structured Programming, by 0,J,Dahl, E.W, Dijkstra, and 
C,A,R. Hoare, New York, Academic Press, 1972, 

Fe 69 Fenichel, R,R,, and Yochelson, J,C,, A LISP garbage collector 
for virtual memory systems. Communications of the ACM, Vol.12 
(1969), pp. 611-612. 

Ge 60 Gelernter, H.,Hansen, J.R., and Gerberich, C.L., A FORTRAN -
compiled List Processing Language. J.Assn.Comp.Mchy. Vol. 7 
(1960), pp. 87-101. 



- 189 -

Gr 72 Griswold, R.E., The Macro Implementation of SNOBOL 4. 
San Francisco, W.H.Freeman & Co., 1972. 

Gr 74 Griffiths, M., Runtime storage management. In: Lecture notes 
"Advanced Course on Compiler Construction". TU Munich, 
March 4 to 15, 1974. 

Ha 67 Haddon, B.K., and Waite, W.M., A compaction procedure for 
variable length storage elements. Computer Journal, Vol.10 
(1957-58), pp. 152-165. 

Ha 73 Hansen, P.Brinch, Operating System Principles. Englewood 
Cliffs, N.J., Prentice-Hall, 1973. 

Ha 73a Hansen, P.Brinch, Concurrent programming concepts,Computing' 
Surveys, Vol, 5 (1973.12), no. 4, 

Ha 75 Hansen, P,Brinch, The purpose of Concurrent PASCAL, SIGPLAN 
Notices, Vol. 10 (1975), no. 5, pp. 305-309. 

Hi 74 Hill, U., Special run-time organisation techniques for 
ALGOL 58. In: Lecture Notes "Advanced Course on Compiler 
Construction", Chapter 3 C, pp. 25-28. TU Munich, March 4 
to 15, 1974. 

Ho 72 Hoare, C,A,R,, Towards a theory of parallel programming, 
In: Operating System Techniques , New York, Academic Press, 
1972, 

Ho 74 Hoare, C.A.R., Optimisation of store size for garbage 
collection. Information Processing Letters, Vol. 2 (1974), 
pp. 165-166. (North Holland Publ.Comp.) 

Je 74 Jensen, K., and Wirth, N., PASCAL User Manual and Report. 
Berlin, Springer Verlag, 1974 (Lecture Notes in Computer 
Science, Vol. 18). 

Kn 68 Knuth, D., Fundamental Algorithms; 2nd pr. Reading, Mass., 
Addison-Wesley Publ.Comp., 1969 (The Art of Computer 
Programming, Vol. 1) 

Ma 71 Marshall, S., An ALGOL 68 garbage collector. In: Pe 71, 
p.239. 

Ma 72 Maurer, W.S., The Programmer's Introduction to LISP. 
London, McDonald/American Elsevier, 1972. 

Me 70 van der Mey, G., and van der Poel, W.L., A manual of HISP 
for the PDP 9. TH Delft, unpublished note, ca, 1970. 

Me 71 van der Mey, G., General list processing. TH Delft, 
unpublished note, ca. 1971. 

My 70 Myhrhaug, B., Storage assignment systems. Norwegian 
Computing Centre, Publ. S-15. 

Ne 60 Newell, A., and Tonge, F.M., An introduction to IPL-V. 
Communications of the ACM, Vol. 3 (1950), pp. 205-211. 



- 190 -

Ne 55 Newell, A. et.al., Information Processing Language-Manual; 
2nd ed., Englewood Cliffs, N.J., Prentice-Hall, 1965. 

Pe 71 Peck, J.E.L. (ed.), ALGOL 68 Implementation. (IFIP). 
Amsterdam, North-Holland, Publ.Comp., 1971. 

Ro 67 Ross, D.T., The AED free storage package. Communications 
of the ACM, Vol. 10 (1957), pp. 481-492. 

So 57 Schorr, H., and Waite, W.M., An efficient machine-independent 
procedure for garbage collection in various list structures. 
Communications of the ACM, Vol. 10 (1967) , pp. 501-5O6. 

Ta 73 Tanenbaum, A.S., Design and Implementation of an ALGOL 68 
Virtual Machine. I.W. 4/73, June 1973. Amsterdam Math.Centrum, 

Th 72 Thorelli, L.E., Marking algorithms. BIT, Vol, 12 (1972) 
pp. 555-568. 

We 53 Weizenbaum, J., Symmetric list processor. Communications 
of the ACM, Vol. 6 (1963), pp. 524-544. 

We 68 Wegner, P., Programming Languages, Information Structures, 
and Machine Organisation. New York, Mc Graw-Hill, 1958. 

We 59 Weizenbaum, J., Recovery of re-entrant list structures 
in SLIP. Communications of the ACM, Vol. 12 (1959),pp. 370-372. 

We 71 Wegbreit, B., A generalised compactifying garbage collector. 
Computer Journal, Vol. 15 (1972) pp. 204-208. 

Wi 59 van Wijngaarden, A. (ed.). Report on the Algorithm Language 
ALGOL 58. Numerische Mathematik 14 (1959), pp. 79-218. 

Wi 72 Wirth, N., Systematisches Programmieren. Stuttgart, Teubner 
Verlag, 1972. (Teubner Studienbücher) 

Wo 59 Wodon, P.L., Data structure and storage allocation. BIT, 
Vol. 9 (1959) . 

Wo 71 Wodon, P.L., Methods of garbage collection. In: Pe 71, p. 245. 



- 191 -

SAMENVATTING 

Dit proefschrift behandelt het vraagstuk met betrekking 

tot het onwerpen en implementeren van concurrent garbage collector 

systemen voor dynamische geheugenallocatie. Tot dusver kon geen van 

de belangrijke programmeertalen, zoals ALGOL 58, LISP en SIMULA, die 

garbage collection gebruiken voor het automatische beheer van het 

heap geheugen gedurende run tijd, gebruikt worden voor het pro

grammeren van tijd-afhankelijke real-time programma's. De reden hier 

voor is, dat tot op heden de garbage collector in alle implementaties 

van deze talen een sekwentiële systeem procedure is, die wordt aan

geroepen als er geen vrije heap ruimte meer beschikbaar is of als 

deze moet worden samengepakt. Dit aanroepen gebeurt op niet 

voorspelbare tijdstippen. Gedurende het uitvoeren van de garbage 

collector moet de uitvoering van het applikatie programma worden 

opgeschort. Dit opschorten kan oplopen tot enkele seconden gedurende 

welke het applikatie programma niet kan reageren op externe gebeur

tenissen. 

De voornaamste stelling van dit proefschrift is, dat er 

taal processors met garbage collectors, die incrementeel en con

current werken met applikatie programma's, correct kunnen worden 

ontworpen en geïmplementeerd. Zulke garbage collectors verstoren 

de uitvoering van applikatie programma's slechts gedurende korte en 

beperkte perioden. Daarom kan aan deze programma's een voorspelbaar 

real-time gedrag worden toegekend, 

Het proefschrift beschrijft applikatie programma en con

current garbage collector als twee parallelle, samenwerkende pro

cessen. Voor dit systeem worden twee hoofd probleem gebieden vast

gesteld, nml. coördinatie en scheduling van de processes-., 

De twee processen delen gegevens en hun toegang tot deze 

gegevens moet in de tijd geordend worden om de juiste werking van 

het gehele systeem te verzekeren. Het proefschrift ontwikkelt 



- 192 -

algemene oplossingen voor dit probleem, gebaseerd op invarianten 

voor de gezamelijke variabelen. Een noodzakelijke verzameling 

van 11 invarianten, die bijgehouden moeten worden door de kritieke 

gebieden van de twee processen met concurrent garbage collection 

systemen wordt hiertoe vastgesteld. 

Het scheduling probleem treedt op doordat applikatie 

programma en garbage collector wat betreft de vrije ruimte een 

producent/consument relatie tot elkaar hebben. Een model van 

deze relatie wordt ontwikkeld en het niveau van de vrije ruimte, 

waarbij het garbage collection proces wordt ingeschakeld, wordt 

hieruit afgeleid. Gebaseerd hierop wordt het maximaal mogelijke 

nuttige heap gebruik en de overhead van geheugenruimte en pro

cessor tijd vastgesteld, 

Om de algemene toepasbaarheid van de benadering te laten 

zien worden twee concurrent garbage collection systemen in de vorm 

van programma's aangeboden, Eén systeem onderhoudt locaties met 

een vaste lengte, zoals in LISP, en gebruikt een merkende algorithme, 

die recursief in CAR en iteratief in CDR richting werkt. Het andere 

systeem onderhoudt locaties met een variabele lengte en heeft daarom 

een samenpakkende garbage collector. Het gebruikt een niet-recur-

sieve kopieer algorittime, die de toegankelijke locaties naar een 

nieuw gebied in het geheugen kopieert. 

De twee systemen zijn geprogrammeerd in PASCAL, dat is 

uitgebreid met vier constructies, nml. shared variables, concurrent 

statements, critical regions, en conditional critical regions. De 

correctheid van beide systemen wordt bewezen. 



- 193 -

CURRICULUM VITAE 

Born 12 October 1937 in Berlin, Germany. 

Attended the Ratsgymnasium in Goslar, Germany, from 

1948 to 1957. 

Studied electrical engineering at the Technological 

University in Braunschweig, Germany, from 1957 to 1964. 

Was granted the degree of Diplom-Ingenieur in 1964. 

Worked in an industrial laboratory on the design and 

implementation of fail-safe logic circuits, 

Joined a consultancy firm and was project leader for 

major operations research studies. 

Joined SHAPE Technical Centre, The Hague, Netherlands, 

as member of the Operations Research Division. Engaged 

in military operations research and specialised in 

system description, -design, ari -simulation. 

Has been a member of SHAPE Technical Centre's Mathematics 

and Computer Division since 1971, Had project responsibility 

for the design and implementation of a very large interactive 

simulation system and several real-time systems, 

Special research interests lie in the areas of programming 

methodology, data structures, system implementation 

languages, and computer graphics. 

At the time of publication of this thesis, holds a Branch Head 

position in the Mathematics and Computer Division. 



STELLINGEN 

1 

Although not adding anything to the semantics of ALGOL 68 or SIMULA, 

concurrent garbage collection permits the use of these languages for 

the programming of real-time software. Thus, this implementation 

approach considerably widens the scope of application of these lan

guages. 

2 

Garbage collection, as a readily identifiable overhead of programs 

in languages such as ALGOL 68 and SIMULA, has put these languages 

at a psychological disadvantage relative to PL/1. Concurrent gar

bage collection, particularly if it is supported by hardware, results 

in incremental, more continuous heap management and could therefore 

significantly reduce the psychological disadvantage. 

3 

Well-structured high-level language constructs will permit program

ming to make the necessary transition from an art to an engineering 

discipline. They will have an impact on software design equivalent 

to that which standardised reliable components such as ball-bearings 

or screws made on the design of machinery. 

4 

The mushrooming extensions to FORTRAN in the direction of "Structured 

FORTRAN" are mere cosmetics. They are harmful to progress in the 

programming field, as they will extend the lifetime of FORTRAN, and 

will proliferate into a large number of non-standard FORTRAN dialects. 



5 

Unlike ALGOL 50, which led to the development of stack-oriented 

central processors, ALGOL 58 has so far not influenced the archi

tecture of commercially available computer hardware. 

6 

In variation of Dijkstra's statement that "Program testing can be 

used to show the presence of bugs, but never to show their absence", 

it might be said that correctness proofs of a program can be used 

to demonstrate that the program correctly implements a design, but 

never to show the design's correctness. 

7 

The teaching of BASIC and similar languages in secondary schools 

is dangerous in that it hides the true potential of computers from 

the pupils. Also, the ubiquitous teletypewriter is probably the 

least satisfactory pupil-machine interface in use, because of its 

slow speed and basically one-dimensional output. The development 

of software, hardware, and a curriculum for teaching informatics 

in secondary and possibly also primary schools is an urgent task 

which is worthy of the attention of the best computer scientists, 

psychologists, and pedagogues. 

8 

In his article "The architecture of complexity", H.A, Simons has 

written that the search for state and process descriptions of the 

same phenomenon is characteristic of human problem solving, and 

that both modes are equally important. The German schooling system 

and probably most other European systems have traditionally over

emphasized the state-description mode. Simulation, role playing, 

and teaching games are a means which could serve to support the 

teaching of the process-description mode. 

Cf. Simon, H.A., "The architecture of 
complexity", Proc. American Philosophical 
Society 105,5, pp.468-482, 1962. 



9 

One of man's greatest gifts is his ability to construct mental 

models; one of his greatest handicaps is his tendency to mistake 

these models for reality, 

10 

Television has traditionally been a centralized medium which 

projected the centres' urban value systems. Cable television 

could provide the technical means to re-establish a balance by 

enabling the peripheral regions and small towns to give expres

sion to their own value systems, 

11 

The large number of civil service staff supporting the govern

ments of European democracies has put the legislative bodies 

and the electorate in these countries at a disadvantage in the 

political process, 

12 

The secret, unauthorised manipulation of the future ought to be 

made a punishable offence, 

Klaus G. Muller Delft, 3 Maart 1976 


