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ABSTRACT

Developments in remote sensing created new possibilities to capture the
human environment on a large scale. This data is used in the generation of
large scale Three dimensional (3D) city models, which has led to a higher
demand for 3D city models in a wide range of fields.

The lack of semantic information in many 3D city models is a consider-
able limiting factor in their use, as a lot of applications rely on semantic
information. This research is a first step in creating an automatic workflow,
that semantically labels a plain 3D city model, with level of detail 1 or 2,
represented by a triangulated polygon mesh, with semantic and thematic
information as defined in the CityGML standard.

The first step in this labelling process is the reconstruction of the building
entities and (parts of) the terrain: the thematic features. Next, two methods
are proposed to semantically label the surfaces in the previously defined
building entities.

The first implemented method is a best practice of methods that are tested,
which aim at labelling the 3D city model with the classes WallSurface, Roof-
Surface, and GroundSurface. The second method is an explorative approach
and a proposal that additionally recognises the classes OuterCeilingSurface
and OuterFloorSurface. In this approach, an proposal is made that extends
the current class definitions of a RoofSurface and a WallSurface in CityGML.
This research shows that by extending these defintions, a CityGML file with
Level of Detail 1 and 2 can be semantically labelled automatically.

The results show that a high semantic classification accuracy is possible.
The accuracy depends on a number of factors, floating point precision errors
is the biggest limitation factor in the thematic and the semantic labelling.
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1 INTRODUCT ION

A Geographical Information System (GIS) operates with the largest scope
of spatial objects: the spatial and the semantic, their relationships and the
means to analyse these different components (Zlatanova, 2000). In a GIS, the
information about these spatial objects is maintained and analysed (Stoter
and Zlatanova, 2003). Geographical information however, is still largely pre-
sented in a Two dimensional (2D) field. This 2D geo-information is available
in large amounts, in different types, at different scales while covering many
application domains (Stoter and Van Oosterom, 2002).

In the last years, the need for 3D information is rapidly increasing, as 2D

GIS has shown its limitations in some applications, such as: noise predic-
tion, water management and flood modelling, air pollution modelling and
geology. Other disciplines that can benefit from 3D geo-information are: 3D

urban planning and real estate market analysis, environmental monitoring,
telecommunications, public rescue operations or landscape planning (Stoter
and Zlatanova, 2003; Gröger and Plümer, 2012; Vosselman et al., 2001).

Laser scanning and photogrammetry, created new possibilities to capture
and model the human environment in three dimensions (Verma et al., 2006).
This 3D spatial modelling is the key and the basis for 3D GIS (Yanbing et al.,
2007). These new sensing technologies however, only capture the geometry.

The integration of this data in a GIS requires additional semantic infor-
mation. Semantic information, in the scope of this research, is information
about what a surface represents in the real world. For example, a surface
with attached the information that it represents a wall, a terrain, or a roof
surface. Next to semantic information of single surfaces, single buildings
should be individually identifiable. Creating possibilities to select and query
single buildings, which are used to evaluate the results in spatial analysis.

In other words, 3D city models without this information do not support
most 3D GIS applications, because it is not possible to identify the surfaces of
interest, e.g. roof surfaces to estimate the solar irradiation on them, or walls
to calculate the total facade area. Therefore, their use for GIS purposes is
hindered by the lack of thematic and semantic information (Brodeur, 2012).

Next to geometrical models created from sensor data, other sources of
information are getting integrated into GIS too. For example, CAD models
are currently integrated into GIS and vica versa (Mommers, 2015; de Laat
and van Berlo, 2011), the large amount of available CAD data creates major
possibilities for integration in a GIS to create urban scenes (Stoter and Zla-
tanova, 2003). Other sources of 3D city models are 3D modelling software,
e.g. Esri’s CityEngine. The integration of all this different data in a GIS

however, needs more advanced integration of semantics. Therefore these
semantics must first be added to this data in order to make them usable
in a GIS (de Laat and van Berlo, 2011). In other words, the usability of 3D

city models from all different sources can be highly increased if semantic
information is added to the geometry. While models without semantic in-
formation may still be valuable for visualisation, their full potential in a GIS

is limited by the lack of semantic information (Brodeur, 2012). Therefore,
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4 introduction

the concept of semantic enrichment, i.e. adding of semantic information to
the geometry, is necessary to create models that meet the requirements of
relevant applications (Henn et al., 2012).

The process of automatically adding semantic information to 3D city mod-
els is scarcely researched. Therefore, this research aims to develop a method
to automatically enrich 3D city models with semantic and thematic informa-
tion, as defined in the CityGML standard. CityGML is developed with in
mind a broad spectrum of use cases. Thereby, it can be easily extended for a
specific nationwide, or application specific demand. Making the use of the
thematic and semantic classes as defined in CityGML a logical decision.

Although some research in creating semantically rich 3D models has been
carried out (Verdie et al., 2015; Xiong et al., 2013), research in enriching
existing 3D city models is almost non-existing and holds many scientific
and software opportunities (Biljecki and Arroyo Ohori, 2015). This research
aims at exploiting these opportunities and bridging the gap in the lack of
research that currently exists in enriching 3D city models. As adding seman-
tic information to these models is usually done manually, frequently on a
small scale or for an individual building, and is therefore labour intensive
and costly. Thereby, the thematic labelling is currently mostly neglected and
left aside. Also, the LoD of the model must be detected, the LoD determines
the presence of the semantic classes in the city model.

Figure 1.1: Left: an thematically/semantically unlabelled 3D city model. Right: the
same model after the labelling process, where the semantic classes; roof,
wall or terrain, are represented by a different colour. Source: Rotterdam
municipality (2015)

1.1 research questions

This research aims at semantically enriching 3D city models in an automated
way, in order to increase the usability of these models for GIS analysis. Here
fore, thematic and semantic information is added to a dataset by only pro-
cessing and analysing the geometry of the 3D city model. More precise, this
research aims at creating a work flow that takes a polygon mesh, or a soup
of polygons, as input, and generates a model whereby the different spatial
features: walls, roofs, ground, terrain, and two more additional classes are
differentiated and recognized. Figure 1.1 is an example of a unclassified and
a classified city model of Rotterdam, what we seek to achieve automatically.
Next, these spatial features are merged to create single buildings, following
the specifications of the CityGML standard. This is translated in the follow-
ing research question:

”How to automatically enrich a LoD 1 or 2 3D city model with thematic
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and semantic information as defined in CityGML, by only utilising the
models geometry?”

To bring the answer to this problem, it has been subdivided in several sub
questions:

- How is the LoD of the 3D city model detectable?

- What semantic and thematic classes can be distinguished by only us-
ing geometric properties, dependent on the LoD?

- How can these geometric properties be used in the classification of the
3D city model?

- Can methods established in remote sensing, e.g. classification of point
clouds be used?

- How accurate is the classification process?

1.2 research scope and purpose statement
The recognition of WallSurfaces, RoofSurfaces an GroundSurfaces in a soup
of polygons has been successfully researched (Diakité et al., 2014), in order
to create a semantically rich 3D city or building model. However, in order
to create a semantically and thematically rich CityGML dataset with LoD 1

and 2, existing research still holds three limitations:
First, in existing research, not all the in CityGML defined semantic classes

for a LoD 2 model are detected. The semantic classes that additionally need
to be detected are OuterCeilingSurface and OuterRoofSurface (Figure 1.3).
All the semantic classes, except ’relief’ which represents the terrain, are vi-
sualised in Figure 1.3. This selection of semantic classes is based on the
CityGML class taxonomy, as explained in the chapter related work and lit-
erature research, section 2.3.2. Thereby, these semantic classes are expected
to be detectable in the 3D city models, by using the methods proposed later
in this research. The classes BuildingInstallation and ClosureSurface will
not be detected, because the class BuildingInstallation is not mandatory in
the CityGML standard. The class ClosureSurface cannot be automatically
detected, because it is not bound to any specifications and only functions
to close a feature its space, so the volume of the feature can be computed.
Therefore, the following semantic classes will be detected.

- Relief: Terrain surface, containing all ground surfaces that are not part
of a building.

- RoofSurface

- WallSurface

- GroundSurface, which is the terrain surface that is part of a building.

- OuterCeilingSurface

- OuterRoofSurface

Second, in CityGML, single building entities, defined as AbstractBuild-
ing in CityGML, must be stored individually. Facilitating the possibility to
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query and select these individual buildings. This demands the recognition
and re composition of these individual buildings, aggregating the compo-
nents of a building into single entities, specified by a semantic class. So,
besides the labelling of the semantic classes, this research aims at retrieving
the thematic building entities of the 3D city model. This means that this
research aims at reconstructing, recreating and aggregating the single build-
ings. Thereby, polygons which are not part of a building will be thematically
classified as terrain.

Third, current research does not focus on the detection of the LoD of the
3D city model. This limits the possibility to create the correct output for the
algorithm, because the presence of the semantic classes in the dataset fully
depends on the LoD of the model.

This research aims to find a solution for these three limitations. There-
fore, the goal is to develop an automatic work flow that takes a 3D virtual
city model as input, and turns out the same geometry which is semantically
enriched in a CityGML format, dependent on the LoD.

1.2.1 Level of Detail

The semantic, spatial and geometrical properties of the building model are
structured in five different LoDs (Kolbe et al., 2005; Gröger and Plümer, 2012).
The concept of LoD describes how close the virtual representation reflects the
actual real-world scene, and includes the spatio-semantic coherence (Stadler
and Kolbe, 2007). Five levels of LoD are defined in the CityGML standard
and will be used in this research. In Figure 1.2, the different levels of LoD

are visualized. These five levels offer a clear and straightforward distinction
and are used in related research (Boeters et al., 2015; Biljecki et al., 2014).
CityGML specifies the following LoDs

Figure 1.2: Different LoDs (Biljecki et al., 2016)

• LoD 0: 2.5D building footprints and/or roof edge polygons (Boeters
et al., 2015; Biljecki et al., 2014). A possible application for LoD 0 is
density or distance calculation for fire precautions or land tenure visu-
alisation (Löwner et al., 2013).

• LoD 1: Extruded footprints (prismatic models) (Boeters et al., 2015; Bil-
jecki et al., 2014), represented as a block model. In other words, a
vertical extruded solid, without any semantic structuring. Possible ap-
plications for these models are noise mapping approaches or real vol-
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ume calculations in flood modelling applications (Löwner et al., 2013).

• LoD 2: Simple models with differentiated roof structures (Boeters et al.,
2015; Biljecki et al., 2014). The outer surfaces can be differentiated
by the class BoundarySurface. These surfaces can be individually la-
beled with semantics like WallSurface, RoofSurface, GroundSurface,
etc. Chimneys, Dormers and Balconies may be associated to a build-
ing in LoD 2 using the class BuildingInstallation (Löwner et al., 2013).
A possible use case for these models is the calculation of the potential
for solar energy (Biljecki et al., 2015a).

• LoD 3: Detailed architectural models with openings such as windows
and doors (Boeters et al., 2015; Biljecki et al., 2014). In LoD 3, the build-
ing is represented by a geometrically detailed outer shell. Compared
to LoD 2, the class Opening is added, which consists out of windows
and doors (Löwner et al., 2013). LoD 3 models are used in, for example,
heat transmission analysis (Biljecki et al., 2015a).

• LoD 4: These models also contain detailed indoor geometries of build-
ings (Boeters et al., 2015; Biljecki et al., 2014). Whereby interior struc-
tures are represented as Room, which may enhanced by the attributes
class, function and usage (Löwner et al., 2013).

1.3 semantic classes per lod
The concept of LoD plays a central role in this research, as the LoD is the
decisive matter in the presence of semantic classes in a 3D urban scene. In
other words, different semantic classes will be relevant in the classification
process, depending on the LoD of the 3D city model that is processed. The
following paragraph will therefore define what semantic properties will be
added, depending on the LoD.

LoD 0: Models with LoD 0 will not be considered in this research.

LoD 1: In models with LoD 1, the labelling process will aim at adding the-
matic information to Buildings only. This means clustering the dif-
ferent Building components together, forming the thematic CityGML
class AbstractBuilding.

LoD 2: In models with LoD 2, the labelling process will aim at adding the-
matic information to Buildings and, if present, the terrain. This means
clustering the different Building components together, forming a the
CityGML class Building. Thereby, adding semantic information to
the semantic components of the Building: Roofsurface, WallSurface,
GroundSurface, OuterFloorSurface and OuterCeilingSurface.

LoD 3: Models with LoD 3 will not be classified in this research, because of the
higher complexity of the model.

LoD 4: Models with LoD 4 will be left untouched in this research, as labelling
indoor geometries is outside the scope of this research.
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Figure 1.3: Visualisation of all semantic classes in a LoD2 model in the CityGML
standard. Source: OGC (2012, p. 70).

The decision to focus on models with LoD 1 and 2 is based on the bigger
availability of models with this LoD. Thereby, models with LoD three or
higher are considered to be too complex to fully automate the semantic
labelling process in this stage.

1.4 contributions

In the course of this research, multiple classification techniques are devel-
oped and tested. These techniques are developed through a process of in-
cremental design, where the best practices from earlier tested methods are
selected and used in the development of the end product. One of the tested
methods is presented in Rook et al. (2016). This thesis presents the best prac-
tice of all the different tested methods, which does not include the works in
Rook et al. (2016). The paper is published during the writing of this master
thesis.

The central concepts in this developed methodology are: first, the con-
struction of a spatial index, whereby difficulties with geometrical invalidi-
ties such as double stored vertices and small gaps are overcome. Second,
an approach which reconstructs the single buildings in the 3D city model.
Third, two approaches to enrich the geometries in a single building with se-



1.5 overview of the thesis 9

mantic information. To do so, this paper presents a logic, based on extended
semantic class definitions in CityGML, which allows automatic semantic la-
belling to create a semantically rich CityGML dataset from a polygon mesh.

1.5 overview of the thesis
The research is structured in the following way. This chapter functions as an
introduction to the research. Chapter 2 gives an overview of relevant works
of others. Next, chapter 3 describes the challenges that have to be over-
come. The methods are explained in chapter 4. The implementation of the
proposed methods are chronologically described in chapter 5. This chap-
ter chronologically describes the development of the methodology that is
described in the previous chapter. This methodology is developed through
a process of incremental design. Where the methods are developed from
scratch, using the related work as inspiration.





2 RELATED WORK AND L I TERATURE
RESEARCH

This chapter will provide an overview of already existing works which are
relevant for this research and starts with a description of the different tech-
niques that are used to create 3D city models. Next the concept and use of
semantics in spatial and non-spatial information science is explained, fol-
lowed by an introduction to CityGML. The following section elaborates on
works which focus on semantically enriching 3D data. Next, different clas-
sification techniques and means to analyse the accuracy are explained. This
chapter concludes with spatial data handling techniques.

2.1 the creation of 3d city models
Developments in massive 3D data acquisition made it possible to create
dense 3D data from the human environment (Diakité et al., 2014; Stoter and
Zlatanova, 2003). Different techniques are developed to capture the human
environment. Photogrammetry and Light detection and ranging (LiDAR),
are currently the most used techniques. 3D laser scan data usually consists
out of a collection of points, holding an X, Y and Z coordinate with addi-
tional attributes like colour or return intensity. To create a 3D city model, the
points are used to create vectorized models, whereby the point geometry is
converted to edges and faces, representing the sensed environment (Previ-
tali et al., 2014). Another method to create 3D city models with LiDAR, is to
combine the points with other data. Vosselman et al. (2001) describes how
LoD 2 city models can be generated from ground plans combined with LiDAR.
Takase et al. (2003) describe how LiDAR is combined with topographic maps
and aerial images to automatically create textured 3D city models. In these
techniques, the 2D polygons are given a third dimension that is computed
from the LiDAR points that intersect with the polygon.

Remondino and El-Hakim (2006) gives an overview of available solutions
that are used in the generation of 3D models from terrestrial and aerial im-
ages. In these methods, a building is photographed from different angles.
These images are then used to compute a 3D coordinate for the features, or
clusters of pixels, that appear in at least two images. The increase in the
availability of this data has triggered an extensive increase of the use of
these 3D models for analysis and visualization (Previtali et al., 2014; Stoter
and Zlatanova, 2003).

2.2 semantics in 3d city models
The increasing availability of these models triggers the development of 3D

GIS. However, 3D GIS applications require semantic information (Stadler and
Kolbe, 2007). Before getting into more detail about semantics in geographi-
cal data, first the term semantics will be explained.

11
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Semantics, in the sense of data, is best explained by Tim Berners-Lee’s
concept of the semantic web (Berners-Lee et al., 2001). He explains that the
semantic web is an extension of the internet protocol, which also contains
meaningful information about the data, or what it represents, that machines
can understand. This ”understanding” offers new possibilities in linking
and processing data, such as automated reasoning. But for the semantic web
to function, computers must have access to structured information about
what the data actually represents. This way, a computer can infer rules or
use logic to conduct automated reasoning (Berners-Lee et al., 2001).

In the scope of this research, the definition of semantic information is
limited to what a surface represent in the real world. For example a roof or
a wall.

2.3 semantics for the purpose of spatial
analysis

For geographical data, semantics are important for many applications, some
examples are:

• Data integration Stadler and Kolbe (2007) define the relation between
semantics and geometry and describe how semantics in geographi-
cal data can reduce the ambiguities for geometric integration, which
means merging different datasets into one. For example, when a 3D

building models are merged with a digital surface model. They de-
scribe a process where different datasets can be merged with the use
of semantics, for example: the ground surface of a building model of a
house should be connected to the terrain. In order to do so, the geom-
etry of parts of the house and the terrain surface must be separately
accessible.

• Data harmonisation Data harmonisation is the process of creating con-
sistency in data, in order to allow the unification of different datasets.
This process can be done more effective if semantic information is
available (van Oosterom and Zlatanova, 2008). A good example of
data harmonisation is the INSPIRE framework, which should make it
possible to combine spatial data and services from different sources
(INSPIRE, 2013).

• Real world simulations Vosselman et al. (2001) identifies an increas-
ing interest for 3D city models by urban planners and the telecommu-
nication industry. For example, to simulate the view from a certain
location in the city or to compute the behaviour of communication
signals in an urban environment.

• Spatial analysis Finally, semantics are recognized as one of the most
important features that separate virtual 3D models, used for visual-
ization only, from models employed in spatial analyses (Biljecki et al.,
2014). As models without semantic information may still be valuable
for visualisation and other purposes, their full potential in a GIS is
hindered by the lack of semantics (Brodeur, 2012). For example in
flood modelling or disaster management (Van Oosterom et al., 2006).
Where semantics are used to model the effect of rising water levels
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and to simulate the impact of events in the real world environment, or
to determine the number of affected households by a flood.

Models without semantic information do not allow 3D analyses, be-
cause it is not possible to identify the surfaces of interest, e.g. roof
surfaces to estimate the solar irradiation on them, or walls to calculate
the total facade area.

Biljecki et al. (2015b) researched the current use and utilisation of 3D city
models. In their research, they point out the importance of semantics in
the different use cases of semantically rich 3D city models. Therefore they
categorised 29 use cases. Some of these use cases are:

• Noise mapping and visualisation The use of semantics in the prop-
agation of noise in urban environments. In this case, the use of se-
mantics can lead to more accurate and precise predictions and a better
assessment of the consequences of noise.

• Emergency response, where semantics can for example be used to de-
termine the best position for the deployment of ladder trucks, whereby
windows and doors must be distinguishable from other building fea-
tures.

• (Indoor) navigation and route visualisation, where the path-finding
algorithm uses semantics to create a topology of the building, as for
example where doors are situated.

• Legal or commercial real estate assessment, where 3D city models are
used to automatically determine the floorspace surface.

2.4 citygml and semantic interoperability
In order to combine data from different sources, semantic interoperability
is required. Interoperability is defined as the ability of computer systems
or software to exchange and make use of information (Oxford Dictionaries,
2015). The lack of data heterogeneity is considered to be one of the main
issues in the GIS field (Kolbe et al., 2005), because the lack of data hetero-
geneity hinders the interoperability of data.

Semantic interoperability presumes common definitions of objects, at-
tributes, and their relationships, dependent on a specific domain (Kolbe
et al., 2005), crucial for data integration. Semantic interoperability for ge-
ographical data is therefore a central issue in the development of the stan-
dard CityGML, as CityGML fits into the concept of the Spatial data infras-
tructure (SDI), which is expected to become more important in the future
(Gröger and Plümer, 2012). Semantic interoperability is therefore a key is-
sue for the development of CityGML and therefore plays a central role in
this research, as it gives the decisive framework for the different thematic
and semantic labels that are added in the labelling process. CityGML is a
standard for geographical data and its semantic information, it defines the
structure, the aggregations and the taxonomies of the data. The standard
is open and independent and specifies the spatial and semantic aspects of
the 3D city model. In the standard, the data is ontologically structured, and
allows advanced analysis (Gröger and Plümer, 2012), exchange and storage
of data.



14 related work and literature research

In CityGML, semantically rich 3D city models have, besides the spatial
and graphical aspects, an ontological structure including a thematic class,
attributes, and the interrelationships between the two. This way, CityGML
can be extended and specified for a specific application domain, because
it explicitly supports simple and complex 3D geometry (Kolbe et al., 2005),
while relating semantic information to the spatial objects and their geome-
try (Stadler and Kolbe, 2007). This section elaborates on the thematic and
semantic class taxonomy of the CityGML standard.

2.4.1 Thematic information

CityGML is not limited to only storing buildings, but holds all relevant fea-
tures in an urban environment. On the thematic level, the CityGML class
taxonomy defines classes and relations for the most relevant topographic
objects in cities and regional models, comprising built structures, elevation,
vegetation, water bodies, city furniture, and more. The thematic model
of the CityGML standard is based on a hierarchical decomposition of geo-
graphical objects, that depends on the LoD of the 3D city model. This way,
urban features can be combined to create a dataset which holds the needed
information for a specific application (Stadler et al., 2009).

The Building model

The building model is the most detailed thematic class of CityGML. It allows
for the representation of thematic and spatial aspects of buildings, building
parts and installations in four levels of detail (Fan et al., 2009).

The central class of the building model is the AbstractBuilding. From this
central class, the two classes Building and BuildingPart are derived. These
classes have a composite relationship, as a Building can contain Building-
Parts or one or more Buildings. BuildingParts form the semantic classes of
the building model, the presence of this semantic information depends on
the LoD of the model. For example, a building may be assigned a solid geom-
etry in LoD1. In LoD2 the building is further decomposed into surfaces, like
a WallSurface and a RoofSurface. These associated geometries, or semantic
classes, should again refer to the AbstractBuilding they are part of, because
they form the outer shell of the building (OGC, 2012).

A Building and its BuildingParts share (Stadler et al., 2009), or inherit
(OGC, 2012) attributes from the AbstractBuilding class, like a creation data
or a reference that points to the same object in another dataset. Thereby,
attributes like year of construction, usage or function are provided for build-
ings, and inherited by the building parts (Stadler et al., 2009).

The Building class is one of the two subclasses of AbstractBuilding. If a
building only consists of one (homo-geneous) part, the class AbstractBuild-
ing shall be used. A building composed of structural segments, differing
in for example the number of storeys or when they have a different roof
type, the building has to be separated into one building having one or more
additional BuildingParts (OGC, 2012, p. 65). This is visualised in Figure 2.1.

A fully coherent CityGML dataset has the advantage that each geometry
object ‘knows’ what thematic role it plays and that each thematic feature
‘knows’ its location and spatial extent (Kolbe, 2009). Thereby, the rich the-
matic and semantic information can be used for thematic queries, analyses,
or simulations (Stadler et al., 2009).
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Figure 2.1: Examples of buildings consisting of one and two building parts. Source:
OGC (2012, p. 65).

2.4.2 Semantic classes in the CityGML Building model

The thematic building class comprises different semantic classes. The classes
in a LoD 2 model are depicted in Figure 2.2 and 2.3. This section elaborates
on the geometric properties and modelling rules of these classes:

• GroundSurface A GroundSurface is an exterior, lower boundary sur-
face of a Building, BuildingPart or BuildingInstallation (SIG3D, 2015),
also referred to as the ground plate of a building and is congruent
with the buildings footprint. The surface normal of the ground plate
points downwards (OGC, 2012).

• WallSurface A wallSurface is an exterior, lateral boundary surface of
a Building, Building part or BuildingInstallation. A wall is a vertical
construction that bounds the internal space. The WallSurfaces should
generally lie in the horizontal, up to 45 degrees (SIG3D, 2015).

• BuildingInstallation A BuildingInstallation is a permanently installed
part of the buildings outer shell, which is an accessory for the building
structure, including loggia, dormer, etc and is not a mandatory class.
Doors and windows are modelled by their corresponding CityGML
classes and are not part of the BuildingInstallation (SIG3D, 2015).

• RoofSurface A RoofSurface is a exterior, upper boundary surface of a
Building, BuildingPart or BuildingInstallation. A roof encloses a build-
ing from above. The normals of a roof should generally lie upwards
(SIG3D, 2015).

• OuterFloorSurface The OuterFloorSurface is the Exterior, upper bound-
ary surface of a Building, BuildingPart or BuildingInstallation which
is not a roof. The normals of an outer floor surface should generally be
vertical and directing upwards (SIG3D, 2015; OGC, 2012). An example
is the floor of a loggia (OGC, 2012).

• OuterCeilingSurface A OuterCeilingSurface is a exterior, lower bound-
ary surface of a Building, BuildingPart or BuildingInstallation against
the outer space (SIG3D, 2015). Examples are the visible part of the
ceiling of a loggia or the ceiling of a passage. The normals of an outer
ceiling surface should generally be vertical and directing downwards
(OGC, 2012).
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• ClosureSurface Additionally, buildings with open sides, like a barn
or a hangar, are virtually closed. These features are closed to be able
to compute their volume. The surface which closes these features is
called a ClosureSurface.

Figure 2.2: Semantic BoundarySurfaces classes of a LoD2 model in the CityGML
standard (1). Source: OGC (2012, p. 70).

Figure 2.3: Semantic BoundarySurfaces classes of a LoD2 model in the CityGML
standard (2). Source: OGC (2012, p. 70).
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2.5 related work in the semantic enrich-
ment of 3d data

This section summarises the efforts in the field of semantic enrichment and
classification of spatial and non-spatial data.

2.5.1 Semantically enriching 3D city and building models

Enriching 3D city models with semantics has been researched in different
fields with varying methods. In most cases, semantics are manually added
to these models. Some research in semantically labelling 3D city models ex-
ists. This section shortly elaborates on these research efforts.

Henn et al. (2012) researched a method to classify buildings, in LoD 1, by
their building type, whereby a Support Vector Machine (SVM) was devel-
oped. A SVM is a supervised learning algorithm, whereby the aim is to au-
tomatically find regularities and patterns in data. In the research by Henn
et al. (2012), seven classes of building types, which are typical for urban
development in Germany, where classified. Some of the different classes
are: detached and semi-detached buildings, terraced buildings and villas.
The classification is purely done on geometrical properties, such as length,
width (the shortest edge), footprint area or the volume of the building. Sec-
ond, the feature space consists out of measures that reflect the complexity
of the building, like the number of right angles and vertices of the footprint.
Some building types are thereby defined by their construction, compared
to their neighbouring buildings. As for example, the terraced buildings are
a part of building blocks that consist out of at least three buildings. Third,
infrastructural features are used, based on an assumption that certain types
of infrastructural institutions agglomerate in certain city districts, whereby
the feature is calculated as the distance from the building to the infrastruc-
tural institution, like hospitals, stations or schools. SVM algorithms use a set
of training data, that define the feature space for the classification process.
In the case of Henn et al. (2012), whole streets, where one class of buildings
frequently appears, are, after a cleaning process, used as training data. This
selection of training data does require knowledge about the scene that is to
be classified. The algorithm classified the buildings accurately in over 90%
of the time.

Verdie et al. (2015) created a workflow that produces a semantically rich
3D city model from a triangular mesh, created by a Multi-View System (MVS).
In their framework, the input data is a raw triangle surface mesh. The clas-
sification step relies on a MRF, in order to distinguish between four classes:
ground, trees, façade and roof. The method is unsupervised and only uses
geometric attributes. The following logic defines their work best: the ground
class is characterized by locally planar surfaces, that are located below the
other classes. Trees have curved surfaces. Façades are vertical surfaces, that
are adjacent to roofs, another class, which are composed of planar surfaces.
In the research, no single triangles are used in the classification process. In-
stead, super-facets are used, that are sets of connected triangles with the
same characteristics.



18 related work and literature research

Diakité et al. (2014) propose a method that is based on a propagation
method that is directed by heuristic rules, in order to retrieve semantics of
the building components. The approach takes vector data as input, where
the Combinatorial Map (C-Map) data structure is used to reconstruct the
topological relations. The C-Map is a edge-centered data structure, that, in
3D, describes an object by it’s vertices, edges and faces. The basic element
of a C-Map is the dart, which is part of each incident cell, meaning that two
cells are incident, if one belongs to the boundary of the other. The process
entirely relies on a method of heuristic rules, which combines topological
and geometrical criteria, which gives the flexibility to define as much rules
as desired, whereby only geometry is used. The different semantic classes
are: facade, wall, ground, floor and roof.

In the work of Biljecki and Arroyo Ohori (2015) a conversion method is
described, where a 3D city model is converted from CityGML to Wavefronts
object format and the other way around. In the conversion from object to
CityGML, the triangles are enriched with semantic information. This classi-
fication is solely based on the orientation of the surface normal. For instance,
a surface whose normal is horizontal is most likely a wall. Thematic infor-
mation is captured by utilising the information from a spatial index, which
allows easy retrieval of triangles which share an edge. These relationships
are used to create clusters of triangles, which together form distinct groups
of faces that represent a single object.

Boeters et al. (2015) propose a method to automatically generate indoor
geometries, based on existing CityGML LoD2 exterior geometries. In their
research, the same approach as Biljecki and Arroyo Ohori (2015) is used for
the classification of the exterior geometries. These surfaces are classified
as RoofSurface, WallSurface or FloorSurface. The classification is based on
a method that computes the pitch angle of a triangle, computed with the
normal vector of the triangle. The classification thresholds for the different
classes is visualised in Figure 2.4.

2.5.2 Semantically enriching point cloud data

While this research does not focus on point clouds, they are of interest to
this research, because they are also 3D data. The focus on the classification
of point clouds does limit the applicability on 3D city models.

Pu et al. (2006) look for seven urban classes in a point cloud, by using
the properties of clustered segments of points in that point cloud. These
classes are floor, wall, window, roof, door, extrusion and intrusion. The
distinguishing features of these classes are:

• The size of the segment, as walls, windows and doors can be easily
distinguished from other features by the size of the clustered segment.

• The position, because certain features appear only in a certain position.
For example, windows and doors are always on walls, while roofs are
always on top of walls.

• The orientation, as walls and roofs can be distinguished by their direc-
tion.
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Figure 2.4: The angles in the figure show which angle results in which surface type.
Source: Boeters et al. (2015, p. 13).

• Topology, as building features have certain topology relations with
other features or for example, the terrain.

• Last, miscellaneous constraints, that includes other information, for
example, point density, as windows have lower point density because
glass reflects fewer laser pulses.

Next, Pu et al. (2006) describe the importance of the order in which the re-
gions are assigned a class, as some feature recognition is based on other fea-
ture recognition. For example, terrain and walls are detected first, but the
recognition of walls first needs the recognition of terrain, while extrusion
and intrusion features need wall features. Therefore the order of feature
recognition is: ground, wall, window, roof, door, extrusion and intrusion.

Waldhauser et al. (2014) aimed at developing models to automatically
classify ground cover and soil types from airborne LiDAR. The focus of this
research was to find a new, fast and reliable algorithm for the classification
of point clouds, which can minimize the manual checking and correction.
Here fore, they used the logic of supervised machine learning, whereby the
focus is on decision trees. A number of 11 classes is ought to be recognized
and classified in the point cloud. The decision tree seeks to partition the
entire feature space of a dataset, one variable at the time. Hereby they state,
that the larger the training dataset, the better the classification will be. One
of the main point attributes they used to do the partitioning in the decision
tree, is the echo of the LiDAR point, also called the number of return.

Niemeyer et al. (2014) addresses the task of contextual classification of
airborne LiDAR. Here fore they integrate a random forest classifier into a
conditional random field, without using any external information like aerial
imagery. What distinguished this research from other point cloud classifica-
tion approaches, is that Niemeyer et al. (2014) not only utilises the informa-
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tion of the points, or the points region into account, but also uses the labels
of the surrounding neighbourhood. The different point region attributes the
classification is based on, are the following: intensity, ratio of echo number,
height above DTM, variance of point elevations in a sphere of radiance r.
The ratio of point density in a sphere of radiance r, eigenvalue based fea-
tures in a sphere of radiance r, point density in a sphere of radius r and the
variation of intensity, omnivariance, planarity, anisotropy, sphericity, point
density, number of returns, mean curvature and gaussian curvature in a
sphere of radius r.

Khoshelham and Dı́az-Vilariño (2014) present an approach for 3D indoor
modelling from point clouds, based on a shape grammar. The research
demonstrates that interior spaces can be modelled by iteratively placing,
connecting and merging cuboid shapes. Here fore, the parameters and the
sequence of grammar rules are learned automatically from a point cloud.
Using the shape grammar, an indoor environment is modelled as a configu-
ration of parametrized spaces. Such a model contains semantics like height
and volume of the spaces and their topological relationships.

Pittarello and De Faveri (2006) present an outline for automatic semantic
building model reconstruction from preprocessed point clouds. In this pro-
cess, the building reconstruction is a multi step process in which each step
corresponds to a different level of detail and uses a specific set of symbols,
production rules and semantic rules. The steps are embedded in a control
structure, which determines the next step. The process is largely based on
the topological relations of the different surfaces.

2.5.3 Semantically labelling non-environmental 3D data

Kalogerakis et al. (2010) present a data-driven approach to simultaneous seg-
mentation and labelling of parts in 3D meshes. The meshes in this research
vary from shapes that represent humans to everyday objects like a vase or
sunglasses. The classification function uses training data from a collection
of labelled meshes. They define the problem of mesh part recognition as a
problem of optimizing a Conditional random field (CRF).

2.6 classification methods

The aim of this research is to classify three dimensional surfaces. Differ-
ent methods exist in the classification of spatial and non-spatial data. This
section describes the methods that are used in this research.

2.6.1 Decision tree

Decision tree learining is a widely used and practical method. The method
suits best for classification problems with conclusive and decisive classes
(Shalev-Shwartz and Ben-David, 2014). The classification problem of the ge-
ometrical data in this research satisfies this condition, as the classes are well
defined and explicit. A decision tree classifies instances by sorting these
instances down a tree from the root to a leaf node. This leaf nodes provides
the classification of the instance, where each node in the tree specifies a test
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on one of the instance its attribute (Mitchell, 1997). The decision tree uses
a tree as a predictive model, whereby observations of a feature lead to the
conclusion about this feature. It uses a classification scheme to do so, a
hierarchical structure that is accompanied by descriptive information. Algo-
rithms to create a decision tree work top-down, eventually classifying the
features. This classification scheme assigns a class to each feature (Maimon
and Rokach, 2005).

2.6.2 Propositional logic

Propositional logic is the branch of logic that studies ways to join or mod-
ify statements to form more complicated propositions or sentences. Thereby,
also the logical relationships and properties that are derived from this method
of combining or altering statements is part of propositional logic (Internet
Encyclopedia of Philosophy, 2016). In other words, propositional logic deals
with logical relationships between propositions, which are statements and
assertions, taken as a whole. This means that the fundamental unit of anal-
ysis is the whole proposition, which can only be True or False.

2.6.3 Heuristic rules

Heuristics stands for strategies that use available and accessible information
to control or improve problem-solving processes or decisions by humans or
in man-machine interaction (Pearl, 1984). In heuristics, the use of the general
knowledge, or knowledge gained by experience is used in the reasoning to
get to a decision or, in this case, to do a classification. Wikipedia (2015b) pro-
vides a simple and clear definition of heuristic techniques, or simply called
a heuristic: ”A Heuristic, is any approach to problem solving, learning, or
discovery that employs a practical method not guaranteed to be optimal or
perfect, but sufficient for the immediate goals. Where finding an optimal so-
lution is impossible or impractical, heuristic methods can be used to speed
up the process of finding a satisfactory solution”. Heuristic rules are used
by Diakité et al. (2014) to semantically label a 3D model of a house.

2.7 interpreting the thematic and seman-
tic classification accuracy

Stehman (1997) states that the comparison of classification algorithms is a
complex and open problem, because of three main reasons. First, perfor-
mance can be defined in many ways, for example: accuracy, speed, or read-
ability. Second, an appropriate tool is necessary to quantify the performance
definition. Third, a consistent method is needed to compare the measured
values in a correct and consistent way. The confusion matrix provides an
answer to all these three difficulties.

The confusion matrix is a specific table layout that allows visualization of
the performance of an algorithm, and provides an adequate solution for all
the three above mentioned problems. In the confusion matrix, each column
represents the instances in a predicted class while each row represents the
instances in the actual class. The confusion matrix makes it easy to see if the
system is confusing two classes, in other words: mislabelling an instance
(Wikipedia, 2015a). The most popular measure for classification accuracy
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and the overall success rate is defined as the trace of the confusion matrix,
where the total number of rightly classified instances is divided by the to-
tal number classified instances. This measure is multi-class, symmetrical,
and ranges from perfect misclassification to perfect classification (Stehman,
1997).

2.8 spatial data handling

3D city models consist out of points, lines and polygons, which all are types
of spatial data. The multiple dimensions of spatial data makes the process-
ing more demanding in terms of computing power and therefore time. In
order to efficiently handle the spatial data, spatial indexing and spatial ac-
cess methods are used. The main purpose of spatial access methods is to
support efficient spatial selection. Examples of these are nearest neighbour
queries of spatial objects or other spatial analysis as topological relationship
calculations. These access methods are needed because most spatial data
is unstructured, irregularly distributed and large. A spatial access method
needs to take spatial indexing and clustering techniques of the data into
account. Without spatial indexing, computing tasks with geometric or ge-
ographical data take much more time. For example, in searching for the
nearest neighbours, every spatial object has to be iterated over to calculate
the distance to every other object, leading to longer query or computing
time which is unacceptable in practice for interactive users and many appli-
cations. Therefore spatial indexes are required (van Oosterom, 1999).

2.8.1 kd-tree

The spatial index method used in this research is the kd-tree. The kd-tree
is a space-partitioning data structure to organize points in a k-dimensional
space. The kd-tree is a binary tree, in which every non-leaf node splits, with
the use of a hyperplane, the space in two, creating half-spaces. The points
on the left of this hyperplane are represented by the left sub-tree, the points
on the right by the right sub-tree. The hyperplane splits the space in turns
on all different axis (Wikipedia, 2015c). This space partitioning creates a tree
data structure, that is used to efficiently iterate over the data.

2.8.2 Region Growing

Vosselman et al. (2004) describe different automatic processing techniques
to extract information from point clouds. To do so, the paper gives an
overview over different techniques for the extraction of surfaces from point
clouds. These smooth surfaces are mostly extracted by clustering neigh-
bouring points together, that share similar properties, like, for example, the
orientation of normal vector of the point and its neighbourhood. This way,
a point cloud is grouped into multiple regions, which are clusters of points.
The most useful technique for this research that is shortly described, is the
region growing approach.

This region growing approach is used by Rovers et al. (2015) to add seman-
tic information to point clouds. In this case, colour and geometry are used
to group the similar points in the point cloud together. Next, the groups, or
clusters, of points are used in a supervised classification method in order to
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add semantics. The same concept is used in image segmentation problems
for computer vision (Hoover et al., 1996), or where objects are ought to be
recognised in photographs, like in Google’s and Facebooks image recogni-
tion challenge ILSVR (ImageNet, 2015). In these cases, not points, but pixels
are grouped together.





3 CHALLENGES

In the course of this research, a number of challenges are identified, partially
from the work of related researchers, partly from preliminary experiments.
This chapter elaborates on these different challenges, which have to be over-
come in the development of the methodology.

3.1 complexity of the semantic classes and
the lack of definition

The definitions of semantic classes in CityGML are not restrictive, which
allows a lot of freedom in the modelling of the human environment. A good
example is the number of possibilities to model the underground structure
or the foundation of a building, visualised in Figure 3.1, which shows three
valid ways to model the cellar and foundation of a house.

Figure 3.1: Example of the modelling of a Buildings underground structure and the
terrain intersection. Source: SIG3D (2015).

The freedom CityGML offers gives way to model complex environments
in a very realistic way, while still being a valid model. A downside however,
is that this freedom limits the possibility to infer classification rules on the
surfaces in the 3D city model. OGC (2012) does prescribe the orientation of
the surface normals for the different classes. But the possibilities to utilise
this information in this research is also limited, which is further explained
in the next paragraph.

3.2 limited applicability of utilising the sur-
face normal

The normal of the surfaces in the 3D city model play an important role in the
classification of surfaces in CityGML, as a fair share of semantic information
can be inferred just by analysing the orientation of the surface (OGC, 2012).
Also the classification by Biljecki and Arroyo Ohori (2015), as described in
section 2.4.1, solely depends on the surface normals. In their research, the
3D city models where converted from CityGML to OBJ. The CityGML stan-
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dard defines rules for the orientation of the different surfaces, what creates
opportunities to store and later label the surfaces with this information.

However, a robust classification solely based on the normals of the trian-
gles is not possible in this research, because the orientation of the normal
can be correct in 3D city models which originally where stored as CityGML,
this is not necessarily the case in models from other sources.

Thereby, even in CityGML it is impossible to distinguish between the
classes RoofSurface and OuterFloorSurface, where both the normals point
upwards, and the classes GroundSurface and OuterFloorSurface, where the
surface normals point downwards. These classes can therefore not be de-
tected by only utilising the surface normals. In figure 1.3, all the semantic
classes are visualised, this figure shows that the RoofSurface, OuterCeiling-
Surface, OuterFloorSurface and GroundSurface all have normals that point
up- or downwards and cannot be classified by only utilising this infor-
mation. Therefore, a method has to be devised where a class assignment
depends on the relationship with surrounding and other present semantic
classes.

3.3 topology and spatial index

To retrieve the spatial relationship of a triangle with other triangles, and
their semantic class, topological relations have to be recovered to obtain ad-
ditional insights that may hint at the semantics of a surface. Biljecki and Ar-
royo Ohori (2015) referred to a topology as a spatial index. After inspecting
the test models (to be introduced later), it turned out that these topological
relations are not always directly retrievable. Some models contain double
vertices, where others hold gaps between adjacent triangles. Other cases
which cause missing topological relationships are floating roofs, or roofs
that are not connected to a wall. The availability of models which hold a
valid geometry is researched by Ledoux (2013), who investigated the vali-
dation of solids, giving different examples of valid and invalid solids. For
example, a solid is invalid when they overlap another solid or when they
invade each others’ space. Another example of a valid triangle is when two
adjacent triangles share the same points and edge, if not, the creation of
the topology will be impossible or much harder since real-world models are
virtually never error-free.

3.4 semantic content and lod detection

To correctly classify all the semantic classes in the 3D city model, the algo-
rithm must first recognise the content of the different semantic classes. This
scan is required because the labelling process should automatically realise
what classes it has to classify. For instance, among the different selected
models that are used to test the algorithm, some models have a terrain,
while others do not. Therefore, some buildings in the different models have
a BuildingInstallation which represent dormers or chimneys, while other
models only contain roofs, walls, together forming a Building. These fea-
tures have to be recognised, in order to make a valid classification. The
generated output also depends on the LoD of the 3D city model, i.e. it makes
no sense to classify semantic boundary surfaces in an LoD 1 dataset, as ex-
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plained in section 1.3. Therefore, the LoD of the model should also be de-
tected, as different LoDs contain different semantic classes. Automatically
detecting the LoD of the model is also one of the main challenges in this
problem.

3.5 lack of thematic definition building and
abstractbuilding

The datasets which are used share no consistency in the geometric aggre-
gation of the classes Building and AbstractBuilding. Or, as explained in
the OGC (2012) standard : ”CityGML allows many different alternatives
for modelling. This is an obstacle in the validation process, because it is
not unambiguously defined what validity actually means without further
specification”. For example, the elements Building and BuildingPart can be
modelled in three different ways: as a single solid, a composite solid or as
one single multi surface geometry. All the three options are valid in the
CityGML standard (OGC, 2012). Thereby, the aggregation of Buildings and
BuildingParts is not only based on geometrical properties and can therefore
not be aggregated by geometrical properties only. Figure 3.2 depicts a case
which shows the challenge of recognizing and aggregating different Build-
ings into one AbstractBuilding. The Buildings in this single model can be
aggregated as one AbstractBuilding, but can also be stored separately. Both
are correct.

Figure 3.2: Example of an aggregation of BuildingParts into one Building. Data
source: (Rotterdam municipality, 2015)

This obstacle makes it hard, or impossible, to reconstruct the thematic
aggregations and information from the original 3D city model.
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To enrich a 3D city model with semantic and thematic information, the just
proposed challenges, see section 3, have to be overcome. The methodology
to overcome these challenges and to enrich a 3D city model with semantic
and thematic information is explained in this chapter. This methodology is
structured in a number of steps, which are illustrated in Figure 4.1. These
steps function as guide through the methodology proposal. In step 5: Se-
mantic classification, two approaches are proposed, which focus on a differ-
ent part of the defined challenges. The process takes a triangulated polygon
mesh as input. Figure 4.2 displays a screenshot of a polygon soup.

Figure 4.1: Different steps in the workflow

Introduce two semantic labelling approaches.

4.1 indexing and constructing a topology
The first step is the spatial indexing of the triangles in the model. With this
index, adjacent spatial features of an object can be easily retrieved. This is
necessary to cluster the triangles into regions, in order to exploit adjacency

29



30 methods

Figure 4.2: Screenshot of the semantically unlabelled Waldbrucke city model. Data
source: (CityGML, 2016)

relationships of the triangles and to recompose the single Building entities,
which are the next steps in the labelling process (Figure 4.1). A spatial index
is also used in the research of Biljecki and Arroyo Ohori (2015), who used the
spatial index to group the triangles that formed connected components and
together represent individual buildings. Although the method to compute
the index is different, the goal of the indexing is the same.

In the research of Biljecki and Arroyo Ohori (2015) the edges are indexed.
Next, these edges are matched to detect neighbouring triangles, which are
triangles that share an edge. In this research, the triangles are indexed on
a relationship where two triangles share one vertex, instead of an edge. An
example is given in Figure 4.3, where the triangles in example ’A’ share
two vertices, which together form one edge. While in example ’B’, two
neighbouring triangles only share one vertex and therefore not an edge.
The proposed methodology also indexes these triangles as neighbours.

This different approach allows an improved reconstruction of semantic
and thematic features, because some buildings are composed out of differ-
ent parts which not necessarily share an edge, but can also share one single
vertex. This is visualised in Figure 4.4, where a building has an annex on its
roof, which is part of the building. This annex is not connected to the rest
of a building by an edge, but by one single vertex.

Figure 4.3: Example A: two triangles share an edge. Example B: two triangles share
a vertex.
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Figure 4.4: A building, of which its parts are connected by one single vertex.

As described in section 3.3, some datasets contain double stored vertices
or adjacent triangles separated by a hole, also referred to as sliver polygons.
To handle and restore all these different cases, a one fits all method has to
be devised, that: one, snaps the vertices that are very close together. Two,
corrects the errors that are caused by double stored vertices.

The proposed method reconstructs the topology through the use of a kd-
tree, which is often used in region growing algorithms for point clouds.
This kd-tree takes the coordinates of all the vertices as input, and returns
a list for every vertex with its k nearest neighbours and the distance to
those neighbours, as explained in the implementation chapter, section 5.3.1.
To snap and to detect double stored vertices, a threshold is calculated by
selecting 250 random edges from the city model, and multiplying the length
of the 50st smallest edge by 0.01. This threshold is used as a measure to
identify vertices that should be snapped or amended. The kd-tree is used
as follows.

After the construction of the kd-tree all vertices are iterated over, while
checking the distance to its 5 nearest neighbours. In cases where the distance
is zero or below the set threshold, a neighbouring relationship between two
vertices is stored. Figure 4.5 visualises this process, in which vertex N1 is
stored as a neighbour of vertex P, the vertices N2 and N3 are not stored as
neighbours, because their distance to vertex P is bigger than the threshold.

Figure 4.5: Vertex P, its 3 nearest neighbours (N1, N2, N3) and the threshold that is
used to reconstruct the topology.

This relationship is later used to retrieve the adjacency relationships of the
triangles. In other words, every triangles is composed out of three vertices.
The neighbour relationships between the triangles are retrieved by identify-
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ing all the triangles which contain one of the neighbours of the vertex the
triangle is composed of. This way, the problem of gaps is overcome.

4.2 region growing of triangles
The input 3D city models that the method seeks to enrich come as a trian-
gulated mesh. To reconstruct single semantic features, which together form
one surface and represent one semantic class, regions are grown. A region is
a cluster of adjacent triangles which hold corresponding geometrical proper-
ties. Using regions instead of individual triangles has one main advantage:
it gives way to exploit the topological relations between those regions, in or-
der to aggregate the different semantic classes into single building features.
For example, recognising the WallSurfaces, by exploiting their adjacency to
a roof surface, facilitates the storage of this relationship. This relationship
can later be used to create the individual thematic AbstractBuilding entities
and to label the surfaces with a semantic class. This approach is used by
Niemeyer et al. (2014), as explained in the related works, section 2.4.2, who
exploits information about surrounding clusters of points to assign a class
to another region of points in a point cloud.

The region growing algorithm is explained in Algorithm 4.1. The geo-
metrical property that is used to cluster the triangles is based on the pitch
angle of the triangle, computed with the surface normal (explained in sec-
tion 5.4.2), for which a threshold is created. This threshold separates the
triangles in two groups: triangles which represent a WallSurface and trian-
gles which don’t. The threshold is set as a range from zero to five degrees
and is also used in related research (Biljecki and Arroyo Ohori, 2015). This
is further discussed in section 4.7, where the properties of the different se-
mantic classes are explained.

The threshold that is set creates two collections of triangles: one with
triangles which represent a WallSurface and one with triangles which repre-
sent another semantic class, these collections are processed individually in
the region growing algorithm. This creates two sets of regions: WallSurfaces
and non-Wallsurfaces.

Algorithm 4.1: Region grow (L, T, τ)
Input: A list L of triangle class instances T, a seed point triangle τ,

and a list of neighbouring triangles KNN.
Output: A list of regions (R) containing a collection of neighbouring

triangles which share similar geometrical properties.

1 while length of KNN > 0 do
2 for T in KNN do
3 if T holds similar geometrical properties as seed point triangle τ

then
4 Add T to region (R); Add neighbours of T to KNN

5 else
6 continue

The result of the region growing algorithm is visualised earlier in Figure
1.3. This image shows that different surfaces are partitioned and that one
single region represents one semantic class and represents one complete sur-
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face. These regions function as the input for the next step, which assembles
the different regions into single building entities. The distinction between
the WallSurfaces and non-Wallsurfaces is of great importance for the next
step.

4.3 thematic classification: building recon-
struction

Figure 4.6: Data structure of the algorithm.

After the completion of the region growing, the regions, which individ-
ually represent a semantic class and together form a thematic entity, are
clustered together into single building entities. This facilitates the creation
and recognition of thematic building features, needed to create a CityGML
dataset. A single building, in this case, is formed by a region of wall tri-
angles, with all connected non-wall regions. Therefore, a building can be
defined as a set of connected triangles, which is separated from other sets
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of connected triangles in the model by empty space or the terrain. A UML
diagram of the data structure is depicted in Figure 4.6.

In this process, the WallSurfaces function as the base class for the recon-
struction of the buildings. In other words, the WallSurface are the central
class, the non-WallSurfaces regions are matched and connected to these wall
regions.

More complex buildings however, as shown in Figure 4.7, contain multi-
ple WallSurfaces and non-Wallsurfaces. This means that matching WallSur-
faces to non-WallSurfaces once is not sufficient, because that will lead to
multiple single building entities. This is best explained with the example
in Figure 4.7. In this Figure, the red, green and blue WallSurface regions
will be recognised as one single building, if the different regions are only
matched once, while these WallSurfaces are in fact part of a bigger building.

In order to reconstruct such buildings, all WallSurfaces and non-Wallsurfaces
have to be added to the same building until the building contains all sur-
faces which are connected to one of its parts. More concrete, for the building
in Figure 4.7 this means, that the building is not complete until the blue, red
and green WallSurfaces and all connected non-WallSurfaces are part of the
building. Therefore, the reconstruction of the buildings is done through a
process which is described in Algorithm 4.2.

The regions are matched by exploiting the earlier created spatial index.
These relationships are exploited by comparing the neighbours of all the
triangles of the WallSurfaces with the triangle IDs in the non-Wallsurfaces
set.

Algorithm 4.2: Compose buildings out of surfaces

Input: A table which stores all the connections between a
WallSurface and its neighbouring non-WallSurfaces, a table
which stores the connection between a non-WallSurface and
all neighbouring WallSurfaces

Output: A single building entity.

1 Select a WallSurface W

2 while set of non-WallSurfaces K which are connected to W > 0 do
3 for all connected non-WallSurfaces Kn in K do
4 Add connected non-WallSurface Kn to the building entity
5 for All WallSurfaces U that are connected to the just added

non-WallSurface Kn do
6 Add connected WallSurface Un to the building entity
7 for all non-WallSurfaces G which are connected to the just

added WallSurface Un do
8 Add non-wallSurface Gn to set K

4.3.1 Detecting the terrain

The presence of a terrain however, leads to multiple buildings being assem-
bled as one. This is caused by the fact that these buildings will be connected
to the same non-Wall region, which in this case represents the terrain.

To prevent this, the user must define if the 3D city model has a terrain or
not. If the user states that the city model has a terrain, the regions which
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contain terrain triangles are detected. This is done by, first, checking if a
non-WallSurface region contains more than 25% of all non-Wall triangles.
If so, the region is labelled as terrain. Second, if a non-WallSurface region
is connected to more than four WallSurface regions, it will also be labelled
as terrain. Theses measures are set after experiments with different city
models. Next, the neighbouring regions of the regions which are defined as
terrain will be filtered out during the reconstruction of the buildings. This
means that in step 6 of algorithm 4.2, the WallSurfaces, which are connected
to the terrain, will not be added to the building entity.

Figure 4.7: A building which is composed of multiple WallSurface regions, depicted
in red, green and blue

The outcome of the matching process is shown in Figure 4.8, in which
each individual building is given a different colour. These single buildings
later function as input for the classification of the semantic classes.

Figure 4.8: 3D city model, where the triangles which form a building are clustered.
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4.4 semantic classification

The coming two sections describe the methods on which the regions of
the individual building entities are assigned a semantic class. Multiple ap-
proaches are tested in the course of this research, two of which are presented
in this report. Both approaches take the recomposed buildings, which are
created in the previous step, section 4.3, as input and exploit the separation
of the WallSurfaces and the non-WallSurfaces that is created in the previous
step.

The first approach, named the two class approach, is described in the fol-
lowing section and is based on a best practice of various tested methods that
aimed to automatic semantically label freely available 3D CityGML models
from the internet. Therefore, it is important to notice that the goal of devel-
oping this methodology is to semantically label an existing 3D city model
which only contains the semantic classes RoofSurface, GroundSurface, Wall-
Surface and, additionally, the terrain.

The second approach, named the comprehensive approach, aims at addi-
tionally recognising the classes OuterFloorSurface and OuterCeilingSurface.
This specific topic has not been researched before. Thereby, the usability of
this methodology will not be limited to semantically enriching an existing
3D city model, but is also an explorative approach to automatic semantically
label a 3D city model during its creation, where additionally the classes Out-
erFloorSurface and OuterCeilingSurface can be labelled. A more in depth
explanation follows in section 4.7. In both approaches, the first semantic
class that is labelled is the WallSurface.

4.5 semantic classification: the wallsur-
faces

The regions which contain the WallSurfaces are already separated from the
regions that do not represent a WallSurface during the region growing. This
selection of triangles is based on the pitch angle of the triangle, which is
computed with the normal vector of the triangle, described in section 5.4.2
and visualised in Figure 4.9. To make a selection, a threshold is set, which
labels the triangles with a pitch angle between -5 and 5 degrees as a Wall-
Surface. This is visualised in Figure 2.4.

Figure 4.9: Pitch angle in the 3D coordinate system.
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4.6 semantic classification: two class ap-
proach

As explained above, the two class approach aims at distinguishing between
the WallSurfaces, the RoofSurfaces and the GroundSurfaces only. To label
the non-WallSurfaces in the reconstructed buildings as either RoofSurface
or GroundSurface, the height properties of the WallSurfaces are exploited.
For each WallSurface in the building, the height value of the lowest vertex
in the region and the standard deviation of the height values of all vertices
are calculated. Next, the lowest average height value of the WallSurfaces in
the building is selected, and a threshold is created by adding one tenth of
the standard deviation to this lowest average height value.

This threshold is used to classify the non-Wall regions. The non-WallSurface
regions which have a minimum height that is lower than the threshold are
labelled as GroundSurface. Regions which have a minimum height which
is higher than the threshold are labelled as Roofsurface. This very simple
approach seemed sufficient for most models that are available online. In
section 6, the accuracy of this implementation is given.

Finally, the terrain triangles are separated from the GroundSurfaces. To
do so, the assumption is made that a RoofSurface is always situated above a
GroundSurface. This provides possibilities to separate the terrain from the
GroundSurface, by checking if a GroundSurface is alligned under a RoofSur-
face. If a triangle, which is part of a GroundSurface region, is not alligned
under a RoofSurface, it will be labelled as terrain. A further in depth expla-
nation is given in section 5.7.

4.7 semantic classification: the comprehen-
sive approach

This second implementation is an explorative approach to label a 3D city
model with, additionally, the classes OuterCeilingSurface and OuterFloor-
Surface. This semantic labelling is merely based on the definitions of the
different semantic classes.

In the CityGML standard however, the semantic classes are insufficiently
defined. For example, a RoofSurface is defined as: ”The major roof parts of
a building or building part are expressed by the class RoofSurface.” (OGC,
2012, p.72). While a GroundSurface is defined as: ”The ground plate of
a building or building part is modelled by the class GroundSurface. The
polygon defining the ground plate is congruent with the building’s footprint.
However, the surface normal of the ground plate is pointing downwards”
(OGC, 2012, p.70).

These not so strict definitions give producers of 3D city models a lot of
freedom in the creation of the model. This, however, also has a downside,
because it leaves much freedom in the interpretation of the modelling rules.
Or, as described by Biljecki et al. (2016), who faces the same difficulties in the
specification of LoD in (OGC, 2012): ”from a geometric point of view, the five
LODs are insufficient”, and ”their specification is ambiguous.” The same
applies to the definitions of the semantic classes, because, as mentioned
in section 3.2, the classification of 3D city models from other sources does
not allow labelling solely based on the normals of the surfaces. Therefore,
the definitions in CityGML must be extended. These new definitions are
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defined in the coming section in which the methodology for the semantic
labelling is defined.

This methodology is based on a number of definitions, statements, and
arguments. In the Internet Encyclopedia of Philosophy (2016), a statement
is defined as: ”a declarative sentence, or part of a sentence, that is capable of
having a truth-value, such as being true or false”. These statements are nec-
essary to make classification rules, because the CityGML standard does not
provide enough rules to infer automated classification. Therefore, heuristic
rules are used to come to the statements.

Out of these different statements, arguments are formulated. An argu-
ment is a series of statements linked by logical inferences (Internet Encyclo-
pedia of Philosophy, 2016), or as explained in Oxford Dictionaries (2015): ”a
reason or set of reasons given in support of an idea, action or theory”. A def-
inition is a statement of the exact meaning of a word (Oxford Dictionaries,
2015). To come to a logic that allows the semantic labelling of the surfaces,
first a set of definitions is given. These are needed to create unambiguous
statements and arguments.

4.7.1 Definitions

First, before the statements that are used in the classification process can be
introduced, the following terms need to be defined:

• An object, denoted X, is a feature in the 3D euclidean space denoted
R3. An object can represent a part of, or an entire building. Therefore,
an object can be defined as: a data construct that provides a descrip-
tion of anything present in the scene.

• A region, denoted R, is a set of triangles that share similar geometric
properties. A single region always represents one semantic class.

• A building is a set of connected regions, and comprises at least a Roof-
Surface, a GroundSurface and one WallSurface.

4.7.2 Statements

Next, a set of statements is given, from which a number of arguments are
formulated. The statements are given in the coming section, introduced by
a description, the origin and the reasoning behind the statement. In the
introduction of the statements, a distinction is made, wherein the semantic
classes are discussed separately in order to give a better overview. The state-
ments are based on the definitions of the semantic classes in the CityGML
standard and related works, or are logically derived from these or other def-
initions or heuristic rules. This section elaborates on these statements per
semantic class.

wallsurfaces The CityGML standard states that: ”All parts of the build-
ing facade belonging to the outer building shell can be modelled by the class
WallSurface” (OGC, 2012, p. 71). A Facade is in Oxford Dictionaries (2015)
defined as: ”The principal front of a building, that faces on to a street or
open space”. Therefore it can be stated that a WallSurface is the exterior, lat-
eral boundary surface of a building and a vertical construction, as proposed
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in (SIG3D, 2015).

Statement 1: A WallSurface is an exterior, lateral boundary surface of a
building and is always a vertical construction.

SIG3D (2015) states that the normals of the wall surfaces should generally
lie in the horizontal, up to 45 degrees (SIG3D, 2015). This definition limits
the possibilities in the proposed classification algorithm, where the Wall-
Surfaces function as a central class to later classify other classes. Therefore
the threshold used by Boeters et al. (2015) and Biljecki and Arroyo Ohori
(2015) is used, which states that the angles of the normals of the wall sur-
faces should generally be between 0 and 5 degrees. Section 5.4.2 further
elaborates on the calculation of this threshold. This threshold is used in the
creation of two sets: WallSurfaces and non-WallSurface, which is used in the
region growing, section 4.2.

Statement 2: The pitch angle of triangle, based on the normal vector, of
the WallSurfaces should lie in the horizontal, up to 5 degrees.

roofsurface The third statement comes from merging the descriptions
of SIG3D (2015) and OGC (2012). The truth of the statement is confirmed
by the definition of a roof in Oxford Dictionaries (2015), which states that a
roof is: ”the structure forming the upper covering of a building or vehicle”.
Meaning that all surfaces coloured red in Figure 4.10 can only be a Roof-
Surface. This statement implies that a surface which closes a building from
above is always a RoofSurface, also when it only encloses a smaller part of
the building.

Statement 3: A RoofSurface is the upper boundary surface of a Build-
ing: a RoofSurface encloses a building from above.

Figure 4.10: Nn example of a building where roof surfaces are coloured red.

groundsurface Statement 4 originates from the definition of a Ground-
Surface in (OGC, 2012) and (SIG3D, 2015). This rule implies that the Ground-
Surface of a builing is congruent with the buildings footprint and functions
as the foundation of the building. Figure 4.11 gives some examples of pos-
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sible GroundSurfaces.

Statement 4: A GroundSurface is the lower boundary surface of a Build-
ing which encloses the building from below. The GroundSurface func-
tions as the ground plate or foundation of the building and is congruent
with the buildings footprint: a GroundSurface encloses the building from
below

Figure 4.11: GroundSurfaces of a Building.

outerceilingsurface and outerfloorsurface Statements 5 and 6 are
a unification of the definitions for a OuterFloorSurface and a OuterCeiling-
Surface in (OGC, 2012) and (SIG3D, 2015).

Statement 5: A OuterFloorSurface is an upper boundary surface of a
Building, which is not a roof.

Statement 6: A OuterCeilingSurface is the lower boundary surface of a
Building, which is not a floor.

These two statements imply that a OuterFloorSurface and a OuterCeiling-
Surface only can occur when they are not a RoofSurface, which is the upper
part of a building which closes a (part of a) building from above. Or are not
a GroundSurface, which encloses the building from below and functions as
the foundation of the building.

4.7.3 Arguments

An argument is a series of statements linked by logical inferences (Internet
Encyclopedia of Philosophy, 2016), based on the described statements. An
argument must comprise with, and may not contradict with the statements.
This section gives the arguments that, together with the statements, function
as classification rules.

argument 1: A RoofSurface cannot be alligned under, or above an-
other RoofSurface. A RoofSuface always encloses a building from above
(Statement 3). Therefore a RoofSurface cannot be alligned under or above
another RoofSurface. Because in that case, one of the overlapping RoofSur-
faces would no longer be the upper boundary or covering surface, which is
contradictory to statement 3.
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Figure 4.12: A WallSurface, OuterCeilingSurfaces and OuterFloorSurfaces are al-
ways situated between the GroundSurface and a RoofSurface.

argument 2: A GroundSurface cannot be alligned under another Ground-
Surface. A GroundSurface cannot be alligned under, or above another
GroundSurface, because a GroundSurface is always the lower boundary sur-
face of a Building (Statement 4). Therefore a GroundSurface cannot be al-
ligned under or above another GroundSurface. Because in that case, one of
the overlapping GroundSurface would no longer be the lower boundary or
ground plate of the building, which is contradictory to statement 4.

argument 3: A WallSurface, OuterCeilingSurfaces and OuterFloorSur-
faces are always situated between the GroundSurface and a RoofSurface.
The RoofSurface encloses a building from above, while a GroundSurface
functions as the ground plate of the building. Therefore, the surfaces that
represent a WallSurface, OuterCeilingSurface or a OuterFloorSurface cannot
be a upper or lower boundary surface and will always be situated between
the GroundSurface and the RoofSurface. Figure 4.12 visualizes this argu-
ment.

argument 4: An OuterFloorSurface can only be present when a Out-
erCeilingSurface is above this surface. If there is no OuterCeilingSurface,
a OuterFloorSurface cannot be present. Because without a OuterCeiling-
Surface, a possible OuterFloorSurface will be a RoofSurface, because it will
be the upper closing surface of a part of the building. In Figure 4.13, a
Roofsurface is encircled. This surface will be a OuterFloorSurface, which is
encircled in Figure 4.12, if a OuterCeilingSurface is situated above it. This
argument is contradictory with examples given by SIG3D (2015), where a
number of examples are given. These examples are visualised in Figure 4.14.
In the scope of this research, with the goal to automatically enrich a 3D city
model, such surfaces will be labelled as RoofSurface, because both examples
enclose a part of the building from above.

argument 5: A surface can only represent one semantic class. A surface
can only represent one semantic class, because of the following reasons:
it cannot be a WallSurface and one of the other classes at the same time;
this is prevented by the threshold. A RoofSurface cannot be a RoofSurface
and a GroundSurface at the same time, because it cannot be the upper and
lower boundary surface. Last, it can only be a OuterCeilingSurface or an
OuterRoofSurface when a surface is not a RoofSurface or a GroundSurface.
Thereby, it cannot be a OuterCeilingSurface and a OuterRoofSurface at the
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Figure 4.13: An example of a RoofSuface, which can contradict with examples in
(SIG3D, 2015).

Figure 4.14: Source: (SIG3D, 2015)

same time, because a surface cannot be the upper and lower boundary at
the same time.

4.8 decision tree classification

The above described geometrical properties of the semantic classes, in re-
lation to the other classes in a building, are used to classify the surfaces.
This classification is fully based on classification decisions which are derived
from the statements and arguments that are just explained. These decisions
are embedded in a decision tree. Decision tree learning is a widely used and
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practical method that works best for classification problems with conclusive
and decisive classes (Mitchell, 1997). The classification problem in this re-
search satisfies this condition, as the classes are well defined and explicit.
A decision tree classifies instances by sorting these instances down a tree,
where the end node, a leaf, assigns a semantic class (Mitchell, 1997).

Figure 4.15: Decision tree of our method.

The proposed decision tree is visualised in Figure 4.15, which shows the
order on which the semantic classes are recognized in the classification pro-
cess. The decision tree takes the single buildings, as explained in section 4.3,
as input and classifies the regions in this building by a set of rules. These
rules are derived from the statements and arguments just explained.

In the process, a classification of one single region automatically classifies
all triangles within that region. This section describes the order on which
the regions are classified, this order is of major importance and is inspired
by the work of Pu et al. (2006) who used this technique in point cloud
classification, described in section 2.4.2.

4.8.1 Step 1: the classification of the WallSurfaces

The order, which is presented in Figure 4.15, recognizes the different seman-
tic classes step by step. The first class that is recognised is the WallSurface,
which is the central class in this classification process. The WallSurface is
the class that is most easily detectable, because the WallSurface is the verti-
cal structure of a building. The Walls are already recognised in the region
growing algorithm and include all triangles of which the pitch angle of the
normal is between -5 and 5. This is further discussed in section 5.4.2.

4.8.2 Step 2: the classification of the RoofSurfaces

The WallSurface of a Building is always situated between the RoofSurface
and a GroundSurface (Argument 3). This argument is exploited to recognise
the RoofSurface, which is the highest non-WallSurface of the building (State-
ment 3). Next, other roof surfaces will be recognised by exploiting argument
1, which states that RoofSurfaces cannot overlap each other. To do so, the
second highest region in the building will be checked for overlap with the
just recognised RoofSurfac, which is the highest surface of the building. The
algorithm keeps on checking for RoofSurfaces, until a non-RoofSurface is
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recognised. If a non-RoofSurface is recognised, the algorithm starts to look
for another semantic class: the GroundSurface.

4.8.3 Step 3: the classification of the GroundSurfaces

The method to find the GroundSurface is similar to the method to find
the RoofSurface. The difference is that for finding the GroundSurface the
lowest region of the building is detected, exploiting Statement 4. Next, other
GroundSurfaces will be recognised by exploiting argument 2, which states
that GroundSurfaces cannot overlap each other. To do so, the second lowest
region in the building will be checked for overlap with the just recognised
GroundSurface. The algorithm keeps on checking for GroundSurfaces, until
a non-GroundSurface is recognised.

4.8.4 Step 4: Distinguishing OuterCeilingSurface and the OuterFloorSur-
face

In this fourth step, the still unclassified regions are labelled. Here fore, the
algorithm selects the next highest region iteratively, working its way down.
The possible classes for the remaining unclassified triangles are reduced to
three in this step. Although the algorithm already aimed for identifying the
RoofSurfaces, some RoofSurfaces can still be in the collection of unclassified
triangles. This is visualized in Figure 3, in which the different steps are
visualised. This image shows that after identifying the RoofSurfaces in step
2, there can still be RoofSurfaces left. Therefore, before the algorithm checks
if a surface is a OuterCeilingSurface or a OuterFloorSurface, it will first
check if it is not dealing with another RoofSurface or GroundSurface.

Figure 4.16: Order on which the regions are assigned a class.

If the Surface is not a RoofSurface, it can only be a OuterCeilingSurface
or a OuterFloorSurface. To distinguish between these two classes, first the
OuterCeilingSurface is ought to be recognised because a OuterFloorSurface
cannot be present without a OuterCeilingSurface being situated above it
(Argument 4). By taking the highest region, a OuterCeilingSurface can be
detected. When a surface is detected which is alligned under a OuterCeil-
ingSurface, it will be classified as OuterFloorSurface.

4.8.5 Step 5: Filter out terrain

The last step is the separation of the terrain triangles from the GroundSur-
face triangles, which occur if the model is stored with a terrainSurface. To
do so, the assumption is made that a RoofSurface is always situated above a
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Figure 4.17: Schema of the order on which the regions are assigned a semantic class

GroundSurface, providing possibilities to separate the TerrainSurface from
the GroundSurface by checking if a GroundSurface is alligned under a Roof-
Surface. If a triangle which is part of a GroundSurface region is not alligned
under a RoofSurface, it will be labelled as terrain.

The different steps of the workflow are depicted in Figure 4.17.

4.9 distinguishing between cellars and out-
erceilingsurfaces

CityGML also allows the modelling of cellars. Cellars are situated below
the terrain and should be assigned the class GroundSurface, causing possi-
ble height differences in the ground plate of a building. This creates another
difficulty in the distinction between a GroundSurface and an OuterCeiling-
Surface. This problem is visualised in Figure 4.18 in which the already pro-
posed methodology should correctly recognise both GroundSurfaces. While
in Figure 4.19, the proposed methodology will classify the OuterCeilingSur-
face as GroundSurface, because it does not overlap a GroundSurface.

To catch one of these exceptions, two solutions are proposed.
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Figure 4.18: GroundSurface.

Figure 4.19: OuterCeilingSurface.

First, by assuming that a 3D city model does not hold any cellars and
has one single flat ground plate, which allows that the lowest region of the
building is the only present GroundSurface. In other words, only the lowest
region will be assigned the class GroundSurface. All regions above this
lowest region will not be assigned the class GroundSurface.

Second, when a terrain surface or information about the terrain height
is present, the original proposed methodology can be used with additional
a threshold that is set by the terrain height. This terrain height will deter-
mine if the OuterCeilingSurface in Figure 4.19 will be classified as OuterCeil-
ingsurface or GroundSurface. Because if this particular surface is situated
above the terrain, it cannot be a GroundSurface. When it is situated below
the terrain, it can only be a GroundSurface.

4.10 lod detection

The LoD of the CityGML file the algorithm should return is dependent on
the LoD of the 3D city model that functions as input. In order to detect the
LoD of the 3D city model, multiple properties of the buildings can be used.
These all require the detection of semantic classes.

In the first place, the normal of the triangles in the RoofSurfaces is checked,
as used by Biljecki and Arroyo Ohori (2015). The normals of the RoofSur-
faces in a 3D city model with LoD1 should all point in the same direction,
while in a model with LoD2 this is not necessarily the case.
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Additionally, the presence of the semantic classes OuterCeiling and Out-
erFloor can be used to distinguish between LoD1 and LoD2. Because a model
with LoD 1 can not hold one of these two classes.





5 IMPLEMENTAT ION

This chapter describes the implementation of the just proposed methodol-
ogy. This chapter follows the order of the workflow, which is visualised in
Figure 4.1. This chapter starts with a short explanation about the decisions
that are made in this experimental design:

First, in section 4.9, it is explained that the implementation of the method-
ology depends on the presence of cellars and/or knowledge about the height
of the surrounding terrain. In order to test the proposed methodology, the
assumption is made that the 3D city model does not hold any cellars and
that the height of the terrain is unknown. This implies that the GroundSur-
face of a building is formed by one single ground plate which is represented
by one single region.

Second, one of the research goals is to detect the LoD of the city model, in
order to generate CityGML. The implementation however, allows a user to
define the LoD of the CityGML file that is to be generated. If no LoD is given,
the algorithm automatically detects the LoD. Other parameters the user can
define are explained in the following section.

5.1 input parameters
The implementation takes four user defined input parameters. These pa-
rameters are:

• The city model The 3D city model that is processed.

• LoD The LoD of the 3D city model, which defines the LoD of the CityGML
file the algorithm generates. If the LoD is not specified by the user, the
algorithm automatically detects the LoD.

• Orientation The orientation of the 3D city model, which states which
axis defines the height in the model. This is necessary, because in some
3D city models, the height is defined by the Y-axis, while in others it is
defined by the Z-axis.

• Presence of a terrain The presence of a terrain is a limiting factor in
the reconstruction of the building entities. This is explained in section
3. Therefore, the presence of a terrain is defined by the user. The
methods to detect the terrain are presented in section 4.3.

5.2 input data
The labelling process takes a triangulated polygon mesh as input. Therefore,
the triangle is the main component of the algorithm. Working with triangles
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has some advantages: the shapes simplicity allows simple and unambigu-
ous computations. Thereby, most semantically unlabelled models come as
polygon meshes. In Figure 4.2, an image of a triangulated mesh is given.

5.2.1 Wavefronts object format

The algorithm, that will be developed, will use Wavefront object files as in-
put. This data format is used to store and exchange geometric objects, com-
posed of lines, polygons, and free-form curves and surfaces. Next to geom-
etry, colours and texture can also be stored in the object format (Wikipedia,
2015e). In practice, many 3D city models are stored in object file format and
the format has been used in GIS applications (Biljecki and Arroyo Ohori,
2015). Because only faces (i.e. triangles) and vertices will be used, only
these data types will be described. Faces are formed by a set of points.
These points are connected in the order they are stored, forming lines. The
faces are created by connecting these lines, as shown below.

Simple Wavefront file

v 0.0 0.0 0.0
v 0.0 1.0 0.0
v 1.0 0.0 0.0
f 1 2 3

5.3 constructing the spatial index
The next step involves the construction of a spatial index. The construction
of the index is discussed in depth in section 4.1. This section elaborates on
the tools that are used to construct the spatial index.

5.3.1 Scipy spatial kd-tree

The kd-tree as a spatial indexing tool is explained in section 2.7.1. This
section provides a short overview of the working of the Scipy spatial (SciPy,
2015) module only, because it plays a major role in this research. The scipy
spatial module (SciPy, 2015), takes al individual vertex coordinates (x, y and
z) as input and returns two matrices. The first matrix holds all distances
from point x to its k nearest neighbours. The second matrix holds all index
numbers of its k nearest neighbours. The index numbers of the points in
the input matrix refer to the index numbers of the output.

5.4 region growing of triangles
The second step in the thematic and semantic labelling process is the process
of region growing. These regions individually represent a semantic class
and are composed out of a set of neighbouring triangles with a similar
orientation. This orientation threshold functions to distinguish between the
WallSurfaces and the non-WallSurfaces. To do so, first the surface normal is
computed.
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Figure 5.1: Return of the Scipy spatial (SciPy, 2015) module kd-tree. Left the dis-
tance to the k nearest neighbours, right the index number of the k (3)
nearest neighbours

5.4.1 Surface normals

A surface normal is a line or a vector that is perpendicular to a given object.
In the three-dimensional case a normal to a surface is a vector that is perpen-
dicular to the tangent plane to that surface (Wikipedia, 2015d) as depicted
in figure 5.2.

Figure 5.2: Normal of a triangle, Source: blog.wolfire.com

The normals are computed in the following way (Rust, 2015). If P1 =
(x1, y1, z1) and P2 = (x2, y2, z2) and P3 = (x3, y3, z3) form the triangle. The
normal vector, to the triangle with these three points as its vertices, is given
by the cross product N = (P2 − P1)× (P3 − P1). The matrix form is worked
out in 5.1, which is equal to 5.2.

N

AX
AY
AZ

 =

 i j k
x2 − x1 y2 − y1 z2 − z1
x3 − x1 y3 − y1 z3 − z1

 (5.1)

N

AX
AY
AZ

 =

 (y2 − y1)(z3 − z1)− (y3 − y1)(z2 − z1)
(z2 − z1)(x3 − x1)− (x2 − x1)(z3 − z1)
(x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)

 (5.2)
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Resulting in the normal vector N. Next, the normal vector is normalised.
This normalisation is worked out in equation 5.3

D =
√
(AX ∗ AX) + (AY ∗ AY) + (AZ ∗ AZ)

Nx = AX/D

Ny = AY/D

Nz = AZ/D

(5.3)

Whereby Nx, Ny and Nz is the normalized vector and D is the magnitude
or length.

5.4.2 The pitch angle

The characteristic on which the WallSurface triangles and Non-WallSurface
triangles are selected is the pitch angle of the triangle with the z-axis of the
reference frame. The angle of the normalized surface normal with the z axis,
θ, corresponding to a pitch motion, is computed with equation 5.4, as used
by Boeters et al. (2015).

θ = arcsin
Nz

D
= arcsin

(
Nz√

N2
x + N2

y + N2
z

)
(5.4)

Next, two sets are created. One with WallSurface triangles and one with
non-WallSurface triangles. Both sets function as input for a region growing
algorithm as explained in algorithm 4.1 and are processed individually. A
region therefore can only consist of triangles which represent a WallSurface
or triangles which do not represent a WallSurface.

5.5 creation of thematic features

After the regions are grown, the next step involves the matching of the
regions which contain WallSurfaces with the adjacent regions which con-
tain the Non-Wallsurfaces. This way, the single building features are recon-
structed.

The matching of the surfaces is based on the stored neighbour relation-
ship that is computed during the creation of the index. These adjacency
relationships were computed for all single triangles. These relationships
are copied to the region instances, which contain all the neighbouring tri-
angles of all the triangles in that particular region. The actual matching is
done through comparing the neighbours of the WallSurface region with the
triangles in the non-WallSurface regions and the other way around. Next,
to match the regions instead of the individual triangles, a temporary table
is created which stores the relationship between a triangle and the region
which it is part of. This is explained in depth in section 4.3.



5.6 semantic classification 53

5.6 semantic classification
As explained at the beginning of this chapter, two approaches are tested in
this implementation. The reconstructed buildings, which are created in the
previous step, function as input for both approaches. These single building
entities are processed one by one, meaning that the semantic class of a sur-
face of a building is independent from class assignments in other building
entities.

Section 4.4 describes two different approaches to label the non-WallSurfaces.
The classification in the two class approach is solely based on setting a
threshold, which represents a maximum GroundSurface height, and which
than classifies the non-WallSurfaces by checking if they are situated below
or above this threshold. The whole approach is described in detail in section
4.6 and is therefore not further explained in this section.

The semantic labelling methodology in the comprehensive approach, sec-
tion 4.7, is based on the mutual relationship of the different non-WallSurface
regions in one single building entity. These building entities at least contain
one region with WallSurfaces and two or more regions with non-WallSurfaces.

The methodology in this experimental design is based on the assumption
that the 3D city model does not hold any cellars and that the height of the
terrain is unknown. This is already mentioned at the beginning of this
chapter and discussed in section 4.9.

In the process, the highest non-WallSurface region is automatically as-
signed the class RoofSurface, while the lowest region is automatically as-
signed the class GroundSurface. Next, as visualised in Figure 4.17, the
unassigned regions are iteratively assigned a class. This class assignment
is based on an exclusion process for the different classes, as described in
section 4.8.

This exclusion is solely based on the spatial relationship of the triangles
in the region that gets assigned a semantic class, with the triangles in the
regions that are already assigned a class. More concrete, as explained in sec-
tions 4.7.3 and 4.8, the class assignment is based on an overlap relationship
between the regions that gets assigned a semantic class and regions that are
already assigned a semantic class. This is further explained by using the
example in Figure 5.3. In this example, the highest region is selected and
classified as a RoofSurface. The lowest region is classified as a GroundSur-
face. Next, the third surface will be assigned a semantic class. This third
surface can only represent a RoofSurface or a OuterCeilingSurface, based on
the assumptions made at the beginning of this chapter. To determine which
class is assigned to this region, an overlap relationship between this surface
and the other surfaces in the building has to be checked for. To do so, the
triangles are converted from 3D to 2D by ignoring the height dimension in
the processing.

Next, a overlap relationship, which is either True of False, is defined for
every triangle in the region that gets classified, with every triangle in the
region that is already assigned a semantic class. In the example in Figure
5.3, this means that every triangle in the OuterCeilingSurface is checked for
its spatial relationship with every triangle in the RoofSurface.

Three possible relationships are possible: disjoint, meet and overlap. The
’disjoint’ relationship includes all two triangles that have no touching or
overlapping relationship. The ’meet’relationship includes all relationships
between two triangles that either share a point or an edge, or where the
point of one triangle touches an edge of the other triangle. The ’overlap’
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relationship includes all cases where one triangle invades the space of the
other triangle. Some examples are given in Figure 5.5.

Figure 5.3: Semantic classification, example one

Figure 5.4: Semantic classification, example two

To determine if two regions do not overlap, none of the checked spatial
relationships between the triangles of the two regions can be overlap. If one
of the triangles does overlap with one of the triangles in the other region,
the relationship between the regions is set as overlapping. In the example
in Figure 5.3, the OuterCeilingSurface has an overlap relationship with the
RoofSurface, and is therefore classified as OuterCeilingSurface. While in
Figure 5.4, the RoofSurface does not overlap with the other RoofSurface,
and is therefore classified as RoofSurface. The classification rules for all
semantic classes are given in section 4.8. The Python package shapely is
used to compute the spatial relationships between the triangles.

5.7 differentiating between the terrain and
groundsurface

In the last step of classification process, the terrain, if present, is separated
from the GroundSurfaces. This method is used in implementation one and
two. This is necessary, because the triangles which form the terrain are in
most cases part of a region which also contains GroundSurfaces. To distin-
guish between these two classes, the assumption is made that a GroundSur-
face triangle is always aligned under a RoofSurface region. Here fore, every
triangle which is part of GroundSurface region is processed individually, in
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Figure 5.5: Examples of the 3 categories of topological triangle relationships

which every vertex of the GroundSurface triangle is checked on whether it
is not disjoint with all RoofSurface triangles in that region. The relationship
between the vertex and the triangle is disjoint if the vertex does not intersect
at all with the triangle or its boundary. In other words, the GroundSurface
will be labelled as terrain if one of its vertices is disjoint with all triangles
which form the RoofSurface.

This method however, is very sensitive with regards to floating point pre-
cision errors. Therefore, disjoint relationships where detected in cases where
this is incorrect. To catch these errors, every vertex that is disjoint from a
triangle is additionally checked for being on the line of that particular trian-
gle. This checking must be done in a way that leaves room for floating point
precision errors. This method is explained in the following paragraph.

point on line Every triangle consists out of three vertices A, B and C. In
order to check if vertex P is on one of the lines AB, BC or CA, all three lines
have to be processed individually. Figure 5.6 gives an example of a case
where point P is checked to be on line AB or not. The method is given in
Algorithm 5.1. The distance function is this algorithm is given in Equation
5.5.

Figure 5.6: Example to check whether point P1 is on line AB
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Algorithm 5.1: Point on line algorithm

Input: Line AB, defined by point A and B. Point P
Output: True if point P is on line AB, False if not

1 if Distance(A,P) + Distance(B,P) < Distance(A,B) * 1.02 and
Distance(A,P) + Distance(B,P) > Distance(A,B) * 0.98 then

2 Return True

3 else
4 Return False

Distance(P1, P2) =
√
(P1x − P2x)2 + (P1y − P2y)2 (5.5)

5.8 output in citygml
After assigning a class to every triangle, the CityGML file is created. In
CityGML, every building is stored as a separate <cityObjectMember> and
gets assigned a unique ID: <gml:id=”buildingID”>. For models with LoD

2, every triangle which is part of a region, or a MultiSurface in CityGML,
is given a semantic class: <bldg:”GroundSurface”>. Every triangle which is
part of this surface is assigned a unique ID: <gml:Polygon gml:id=”PolygonID>”.
The code that is used to create a CityGML file with LoD 2 is given below in
section 5.8.1, in which the above described id’s and the geometry is coloured
red.

Generating CityGML models with LoD 1 is slightly different, and is given
section 5.8.2. The difference between the two, is that the surfaces in models
with LoD 2 are given a semantic class. As already explained in chapter 4.7.3;
CityGML defines the orientation of the surface by its normal. The semantic
labelling therefore allows the correction of the normals of the surfaces in the
model, while generating the CityGML file.

5.8.1 Generating CityGML with level of detail 2

<cityObjectMember>
<bldg:Building gml:id=”buildingID”>
<bldg:boundedBy>
<bldg:”GroundSurface”>
<bldg:lod2MultiSurface>
<gml:MultiSurface>
<gml:surfaceMember>
<gml:Polygon gml:id=”PolygonID”>
<gml:exterior>
<gml:LinearRing>
<gml:posList>
Vertex1 Vertex2 Vertex3

</gml:posList>
</gml:LinearRing>

</gml:exterior>
</gml:Polygon>

</gml:surfaceMember>
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</gml:MultiSurface>
<gml:MultiSurface>
<gml:surfaceMember>

...

</gml:surfaceMember>
</gml:MultiSurface>

</bldg:lod2MultiSurface>
</bldg:”GroundSurface”>

</bldg:boundedBy>
<bldg:boundedBy>

<bldg:”WallSurface”>
...

</bldg:Building>
</cityObjectMember>

5.8.2 Generating CityGML with level of detail 1

<cityObjectMember>
<bldg:Building gml:id=”buildingID”>
<bldg:lod1MultiSurface>
<gml:MultiSurface>
<gml:surfaceMember>
<gml:Polygon gml:id=”PolygonID”>
<gml:exterior>
<gml:LinearRing>
<gml:posList>
Vertex1 Vertex2 Vertex3

</gml:posList>
</gml:LinearRing>

</gml:exterior>
</gml:Polygon>
<gml:Polygon gml:id=”PolygonID”>
<gml:exterior>
...

</gml:surfaceMember>
</gml:MultiSurface>

<bldg:lod1MultiSurface>
</bldg:Building>

</cityObjectMember>

The CityGML file that is generated does not hold a terrain.





6 RESULTS AND ANALYS IS

This chapter gives and reflects on the results of the implemented method-
ologies. To test these, different 3D city models are used.

6.1 test datasets
The 3D city models that are being used in this research are described in this
section. The models are freely accessible online, and are selected because
they are stored in CityGML and therefore already contain semantics. These
models are converted to Wavefronts object format, where all information,
except the vertices and faces, is deleted. Creating a polygon mesh, or a soup
of polygons that is used to test the proposed classification methods. After
the classification, the original semantic information from the CityGML file
is used te evaluate the accuracy of the developed methods.

waldbrücke dataset The first dataset that will be used, is a 3D model of
a small village in Waldbruecke in Germany (Figure 6.1). The model holds
small houses and apartment buildings in LoD 1 and LoD 2 and does not hold
any complex structures. The terrain of the model is completely flat. The
dataset is freely accessible on the CityGML website (CityGML, 2016).

Figure 6.1: Waldbruecke dataset

rotterdam The second dataset is a model of the neighbourhood Klein-
polder in Rotterdam (Figure 6.2). The model holds houses and apartment
buildings in LoD 2. The model only holds buildings and has no terrain. The
dataset is freely accessible on the website of the municipality of Rotterdam
(Rotterdam municipality, 2015).
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Figure 6.2: Rotterdam dataset

switzerland lv 95 The Switzerland LV 95 model is a model without a
terrain and only holds buildings with LoD 1 and 2. The houses in the model
are situated in the mountains, what distinguishes this model from the other
models. The dataset is a test product from of the Swiss topographic office
and is freely accessible on their website (Swisstopo, 2015).

Figure 6.3: Switzerland dataset

new york The fourth dataset (Figure 6.4) is a model with LoD1 of Man-
hatten, New York. The dataset is free to download on the website of the
University of Munich (Kolbe et al., 2015). The dataset only holds a road
network as terrain polygons. The models contains low and high buildings,
which makes it an interesting case for testing the proposed methodology.

montreal The dataset from the city of Montreal is freely available on the
website of City of Montreal (2015). The dataset only contains buildings and
is of LoD 2.
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Figure 6.4: New York Dataset

test datasets created with arc cityengine Different test datasets are
created with CityEngine, a program that is developed to create 3D city mod-
els. These models are used to test the comprehensive approach, because no
models could be found that contain the semantic classes OuterCeilingSur-
face and OuterFloorSurface.

6.2 accuracy assessment

The following sections elaborate on the accuracy of the labelling process.
The accuracy is assessed by comparing the semantic class of the original
CityGML dataset with the class of the classification algorithm. It is impor-
tant to notice that the original dataset can also contain errors.

In this section, first the thematic labelling and the detection of the LoD

is given. The limitations of the methods, which are logically derived from
the accuracy measures, are given in the next section 6.6. Therefore, the
limitations are not discussed in this section.

6.2.1 Thematic labelling

Table 6.1 shows that the number of detected buildings in the labelling pro-
cess deviates from the number of buildings in the original datasets. This is
caused by different building entities which are connected by one or more
vertices or edges. In section 3.5, the lack of definition of the thematic enti-
ties in the CityGML standard is discussed. With this discussion in mind, the
number of buildings that are detected by the labelling algorithm cannot be
considered as necessarily wrong. Please note that the part of the algorithm
which recomposes the buildings is the same for both thematic labelling ap-
proaches. Therefore they are not discussed separately.

Table 6.2 gives the number of classified and unclassified triangles. Tri-
angles which are not classified are mainly part of a region which do not
represent a wall. These regions are not matched to a wall region, therefore,
these regions are not part of a building and are left unclassified causing un-
classified triangles being an effect of an error in the thematic aggregation.



62 results and analysis

Table 6.1: 3D city models used for testing the performance of the method.
Name Size (Buildings) LoD Reconstructed buildings
Rotterdam 1544 2 507

Montreal 384 2 191

Switzerland 3151 2 2218

Waldbruecke 606 2 273

New York approx 1M 1 276

CityEngine 1 6 2 6

CityEngine 2 7 2 7

Table 6.2: Classification matrix: the total number of triangles, the number of classi-
fied and the number of unclassified triangles

triangles in the model classified unclassified
Rotterdam 57581 57533 48

Montreal 57581 57578 3

Switzerland 135389 135227 162

Waldbrucke 12157 12152 5

New York 103552 103556 0

CityEngine 1 204 204 0

CityEngine 2 276 276 0

Visual inspection of the models, like the New York model, as described in
sections 6.4.5 and 6.4.3, also shows that some buildings have missing parts.

The detection of the terrain is visually checked for accuracy. Most models
which hold a terrain, like the New York and the Waldbrucke model, have
their terrain stored as, for example, a road network. Therefore, these mea-
sures are not shown in the different tables. The labelling is checked for
accuracy nonetheless. In all tested models, the terrain, which represent all
non-building features, are labelled correct.

6.2.2 LoD detection

Table 6.1 shows the LoDs that are detected. All the detected LoDs are correct.

6.3 semantic labelling
The following section describe the results and the accuracy of the semantic
classification. In this section, a short description of the overall results are
given. The following two sections describe the accuracy in more detail,
distinguishing the two class approach and the comprehensive approach.

The results of the two class approach for the Switzerland, the Montreal
and the Rotterdam dataset with the two class approach are around 99%.
Some errors occur because of missing neighbour relationships, leading to
unclassified triangles as discussed in the previous section.

The results of the comprehensive approach differ. For the models that are
made in CityEngine, the results are a 100% or 97% accurate. Other models
made in CityEngine, which are no described in this report, where made
on a different scale in CityEngine and showed less good result because of
more prevalent floating point precision errors. This is further discussed
in the next section: 6.6. Also the Rotterdam dataset is classified with the
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Table 6.3: Classification accuracy Rotterdam dataset in percentages
WallSurfaces RoofSurfaces GroundSurfaces

WallSurfaces 57.3 0.2 0

RoofSurfaces 0 24.7 0

GroundSurfaces 0 0 17.8

Table 6.4: Classification accuracy Montreal dataset in percentages
WallSurfaces RoofSurfaces GroundSurfaces

WallSurfaces 52.5 0 0

RoofSurfaces 0 8.5 0.2
GroundSurfaces 0 0 38.8

methods in the comprehensive approach. The classification on this dataset
is less accurate than the results from the two class approach, which can be
explained by the higher sensitivity to float precision errors.

6.4 accuracy assessment of the two class
approach

6.4.1 Rotterdam dataset

In this paragraph, the results of the labelling process of the Rotterdam
dataset are given. The total number of buildings in the dataset is 1544, while
the labelling process detected 507 buildings. The total number of unclassi-
fied triangle is 48. Inspection of the model revealed that these 48 triangles
are part of a single polygon, which is not connected to any other polygons.
Therefore, this surface is not identified as a (part of a) building and there-
fore ignored by in the labelling process. Table 6.3 shows the omissions and
commissions. The table shows that 88 surfaces are labelled as a WallSurface,
while these surfaces should be labelled as RoofSurface. This discrepancy
can be explained by the orientation of these surfaces, because these surfaces
represent beams which support the roof. Therefore these surfaces are not
oriented upwards, but fall within the threshold that identifies the RoofSur-
faces. Overall, the 99.7 % of the triangles are given the correct label, with a
kappa coefficient of 0.99.

6.4.2 Montreal dataset

The Montreal model holds 57581 triangles in total. A number of three tri-
angles are unclassified. These triangles appear spread out over the model
and are either a WallSurface or a RoofSurface. The accuracy of the semantic
labelling is presented in table 6.4, overall the classification accuracy on this
model is 99.8 % with a kapa coefficient of 0.99. In the Montreal dataset, 191

buildings are detected. The original CityGML file holds 384 buildings. The
labelled dataset is visualised in Figure 6.5.
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Figure 6.5: Visualisation of the labelled Montreal dataset.

Table 6.5: Classification accuracy Switzerland dataset in percentages
Wall Roof Ground

WallSurfaces 40.1 0.1 0.002

RoofSurfaces 0.1 48.4 1.3
GroundSurfaces 0.008 0 9.96

6.4.3 Switzerland dataset

The total number of unclassified triangles is 162 out of a total of 135389.
These unclassified triangles are not clustered together and do not belong to
the same building. Therefore, it seems evident that these triangles are not
classified because they, or the region they are part of, are not connected to
a set of walls and therefore to a building. This is most likely caused by the
higher level of detail of the model, which leads to a lower threshold in the
indexing of the model and therefore in the matching of the regions. Table 6.5
shows the accuracy of the semantic labelling. Before this table was created,
the triangles which hold the class BuildingInstallation in the original file are
filtered out. A number of 2054 BuildingInstallation triangles are labelled
as WallSurface and a number of 1431 triangles are labelled as RoofSurface.
The class BuildingInstallation is discussed in section 2.3.2, and can either
represent RoofSurfaces or WallSurfaces. These triangles are not checked for
accuracy any further.

The total number of buildings in the original dataset is 3151, the algorithm
detected 2218 buildings. The labelled 3D city model is visualised in Figure
6.6.

6.4.4 Waldbrucke dataset

The original Waldbrucke dataset holds some deviancies. Some buildings in
the Waldbrucke model have a GroundSurface, while others don’t. This is
visualised in Figure 6.7 and Figure 6.8. In which Figure 6.8 shows that the
buildings with a sloping roof are not closed, while their WallSurfaces stick
through the terrain surface. Thereby, the original CityGML file of Wald-
brucke does not hold the right semantic classes and can therefore not be
used to validate the labelling process. Therefore, the model is validated
through visual inspection.

A total of 5 triangles are unclassified in the labelling of the Waldbrucke
data. These triangles are most likely unlabelled because the regions they are
part of are not matched to a WallSurface.
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Figure 6.6: Visualisation of the labelled Switzerland dataset.

Figure 6.7: Buildings from the Waldbrucke dataset seen from above.

The algorithm detected 273 buildings, the original model holds 606 build-
ings. Two of these buildings are missing a RoofSurface and are part of the
set unlabelled triangles described above. The terrain in this model is one
closed surface.

6.4.5 New York dataset

The New York dataset is a 3D city model with LoD 1. The original dataset
contains 103552 triangles, the labelled dataset contains 103556 triangles.

For this model, no ground truth for the semantic classification is available,
because it is a model with LoD 1. Therefore, the accuracy of the labelling pro-
cess on this model is only inspected visually. The visual inspection showed
that some buildings are missing GroundSurfaces and/or RoofSurfaces. Five
of these cases are detected. The terrain surface, which in this model rep-
resent a road network and is not connected to any WallSurface, is labelled
correct. The number of detected buildings is 276.
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Figure 6.8: Buildings from the Waldbrucke dataset seen from below.

The fact that some buildings are missing a GroundSurface and/or a Roof-
Surface, while the total number of triangles in the automatically labelled
dataset is higher than the number of triangles in the original dataset, points
on an error in the reconstruction of the single buildings. This is most likely
caused by WallSurfaces that are not correctly matched to non-WallSurfaces.
Leading to a single building being stored as multiple buildings, but in parts,
while some surfaces of this building appear in multiple parts of this build-
ing.

This is most likely caused by floating point precision errors in the data,
where errors occur in the part of the algorithm which separates the terrain
from the GroundsSurfaces. Or by the matching algorithm which connects
the non-WallSurfaces tot the WallSurfaces.

6.5 accuracy assessment of the comprehen-
sive approach

This section gives the accuracy assessment of the comprehensive approach.
The results are given with the idea to proof that the approach does work, but
also to display its current limitations. The results, and especially the meth-
ods current limitations, are further discussed in section 6.6. The second
approach is tested with a variety of models. The first test models are cre-
ated in CityEngine to test the methodology. These 3D city models are most
suitable for testing, because they contain very little floating point precision
errors. These errors highly effect the results of the methodology, which is
further elaborated in section 6.6.6.

6.5.1 CityEngine Model 1

The fist model that is used to test the methodology holds 7 buildings, which
are composed out of 204 triangles. All triangles are labelled in the labelling
process. Figure 6.9 is a visualisation of the labelled 3D city model seen from
above, 6.10 is a visualisation of the same model seen from below. These
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Table 6.6: Classification accuracy CityEngine model 1 in percentages
Wall Roof Ground Ceiling OutRoof

Wall 69.6 0 0 0 0

Roof 0 12.7 0 0 0

Ground 0 2.9 6.9 0 0

Ceiling 0 0 0 6.9 0

OutRoof 0 0 0 0 2.9

images, together with table 6.6, show that all 204 surfaces are assigned the
correct semantic class. Also the right number of buildings is detected.

Figure 6.9: Labelled CityEngine model 1, seen from above.

Figure 6.10: Labelled CityEngine model 1, seen from below.

6.5.2 CityEngine Model 2

The second tested model contains seven buildings and is composed out
of 276 triangles. In the labelling process, seven buildings where detected,
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Table 6.7: Classification accuracy CityEngine model 2 in percentages
Wall Roof Ground Ceiling OutFloor

Wall 60.9 0 0 0 0

Roof 0 27.5 0 0 0

Ground 0 2.2 5 0 0

Ceiling 0 0 0 2.2 0

OutFloor 0 0 0 0 2.2

Table 6.8: Classification accuracy Rotterdam in percentages
Wall Roof Ground

Wall 57.3 0.15 0

Roof 0 21.86 0

Ground 0 0 17.7
Ceiling 0 2.8 0

OutFloor 0 0.1 0

which is the correct number. The labelled city model is visualised in Figure
6.11. Table 6.7 gives the assigned labels per class. Overall, the algorithm
assigned the correct class to 97 % of the triangles in this model.

Figure 6.11: Labelled CityEngine model 2.

The errors in the classification, Table 6.7, are discussed in section 6.6.

6.5.3 Rotterdam dataset labelled with the comprehensive approach

The results of the processing of the Rotterdam city model with the method
in the comprehensive approach are given in Table 6.8.

The results show that the classification accuracy is considerably lower
than in two class approach, which can be found in 6.3. This is caused by
floating point precision errors, which will be further discussed in section 6.6
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6.6 limitations of the methodology
This section discusses the results and the limitations of the proposed meth-
ods. In this discussion, the focus is on the comprehensive approach. Be-
fore discussing the limitations into more depth, the following has to be
explained.

Various methods have been tested on a wide range of models. During this
testing, the researcher realised that there is no one fits all approach. In other
words, this methodology cannot be translated in an algorithm which can
take any 3D city model from any source as input and output a thematically
and semantically labelled 3D city model. This is because of the following
reasons:

Presence of other (undefined) objects than buildings or terrain, which
makes the labelling process over complex. Currently, the algorithm classi-
fies every surface as a being part of either a building or the terrain. Thereby,
objects other than the terrain or a building are not modelled in a consis-
tent way, creating difficulties in the filtering of these objects. An example
is given in Figure 6.12. In this figure, one can clearly see that the terrain in
the centre of the village is labelled as a RoofSurface, which is coloured red.
This is caused by the canal around the village, which has a vertical ridge.
This ridge is identified as a WallSurface, causing the algorithm to recognise
a building and the labelling of a RoofSurface.

Figure 6.12: Labelled city model of Ettenheim. The model is labelled with the two
class approach.

Incomplete buildings and missing surfaces, which are buildings with-
out, for example, a GroundSurface. These missing surfaces make the cre-
ation of a set of rules, that can be used in the labelling process, overcomplex.

Incorrect geometries, which is discussed in the expected challenges, sec-
tion 3.3. Causing surfaces being left unmatched to a building, as discussed
in the accuracy assessment, section 6.2.1.

Next, a number of limitations are given. These limitations are further dis-
cussed here. In this discussion, the focus is on the comprehensive approach,
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the first four limitations (sections 6.6.1 until 6.6.4) are applicable to both
approaches.

6.6.1 Matching of surfaces and building parts

In some models, the algorithm did not match the different regions correctly.
This has already been discussed in section 6.2.1. These missing connections
between surfaces are either caused by inaccuracies in the data, as described
in section 3.3, or by the method used to construct a topology and a spatial
index. These ’missing connections’ did not occur in all models, and are
therefore most likely caused by inaccuracies in the data.

Thereby, a threshold is used in the construction of the index. This thresh-
old is calculated by randomly selecting edges from the city model. There-
fore, the threshold varies per input model and can even vary if one model is
processed multiple times. Therefore, the threshold is not universally valid.
Future work should focus on the calculation of a universally valid method.

6.6.2 One region can represent multiple classes

Section 4.7.1 states that one single region only can represent one semantic
class. The current region growing algorithm however, only distinguishes
between triangles which represent a wall and triangles which represent an-
other class. Therefore, in the current implementation, one region can repre-
sent multiple classes, which should, if in line with the theory, be subdivided
into multiple regions. Figure 6.13 gives an example of two regions which
are grown as one region, but should be subdivided in two regions. This
building is part of the model in Figure 6.11. This building is the only error
in the classification in this particular model.

Figure 6.13: Current defect of the region growing algorithm.

6.6.3 Distinguishing between the terrain and the GroundSurface

In both approaches, the terrain is separated from the GroundSurface by
making the assumption that the GroundSurface is always aligned under the
RoofSurface. Because of the threshold of 5 degrees, that is set to distinguish
between the WallSurfaces and the Non-WallSurfaces, a GroundSurface can
be be aligned under a WallSurface, while not being aligned under a RoofSur-
face. Therefore, to distinguish between the GroundSurface and the terrain,
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the assumption: ’a GroundSurface is always aligned under a RoofSurface’,
should be extended with WallSurfaces.

6.6.4 Recognition of regions which contain the terrain

In the current implementation, the presence of the terrain is given as user
input. The triangles that represent the terrain are recognised by the proper-
ties of the region it is part of. In the next step, in which adjacent regions are
matched, the recognition of the terrain regions function as input and is used
to limit further matching. This way, it is prevented that multiple buildings,
which are all connected to a particular terrain region, are recognised as a
single building.

The properties on which a region that contains terrain triangles is recog-
nised are the number of WallSurface regions it is connected to, for which a
threshold of four is set, and the percentage, 25%, of the total non-WallSurfaces
triangles that the region contains (section 4.3). These thresholds however,
are set by experimenting on a set of test data sets. These measures proved
sufficient in most models, but can differ largely if used on other models.
Therefore, it is advised, before implementing this approach, to experiment
with the data in order to recompute these thresholds.

The presence of a terrain is therefore a very limiting factor, because the
likeliness of false positives during the detection of the terrain becomes big-
ger if the 3D city model becomes more complex. For example, if the Roof-
Surface of a building is connected to more than four annexes that are part
of the building, the algorithm will detect a terrain, while it is a RoofSurface.
Therefore, after testing approaches to automatically detect the terrain, it was
decided to let the user define the presence of a terrain.

The following limitations are only applicable to the comprehensive ap-
proach.

6.6.5 Methodology only works on models till LoD 2.2

To classify the OuterCeiling and OuterFloorSurfaces, an extension of the def-
initions of the semantic classes is proposed. This is described in section 4.7.
These extensions allow automatic semantic classification. This methodology
however, is limited by properties of the 3D city model. These properties are
best described by the extended definitions of Biljecki et al. (2016), which, for
LoD 2, are visualised in Figure 6.14. In the visualisation of LoD 2.3, one can
see that the roofs have an overhang over another RoofSurface. How this is a
limiting factor is explained with the use of Figure 6.15.

Figure 6.14: Surface labelled as OuterCeilingSurface, Source: (Biljecki et al., 2016)

In Figure 6.15, a RoofSurface is classified as a OuterCeilingSurface be-
cause the RoofSurface in this figure overlaps the OuterCeilingSurface. This
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Figure 6.15: Limitation of the methodology, caused by the detail in LoD 2.3. Source:
(Swisstopo, 2015)

overlap in the relationship leads to a recognition of a OuterCeilingSurface,
while it is in fact a RoofSurface. This is a major limitation for the compre-
hensive approach.

6.6.6 Precision errors

Most classification errors of the comprehensive approach on the Rotterdam
dataset, as given in Table 6.8, occur because of precision errors in the data.
These errors do not occur in the two class approach, Table 6.3. These errors
occur in the detection of overlap relationships, on which the comprehensive
approach is based. These errors occur because of floating point precision
errors. The comprehensive approach is therefore much more sensitive to
such errors.

6.6.7 Complete and partly overlapping surfaces

In the classification of the different semantic classes, an overlap relation-
ship is used to come to a classification. This overlap relationship however,
can only be positive or negative. The classification for a single surface can
therefore also be only positive or negative.

This classification method however, does in some cases not comprise en-
tirely with the extended definitions of the semantic classes, which form the
basis for the proposed methodology. For a RoofSurface, the extended defi-
nition states: ”A RoofSurface is the upper boundary surface of a Building:
a roof encloses a Building from above”. Surfaces which are only partly over-
lapped by another surface should, according to the definition, be subdivided
into two surfaces with both a different class. This is further explained with
the example that is given in Figure 6.16.

In Figure 6.16, the OuterCeilingSurface, coloured green, is partly a Roof-
Surface, because it us the upper boundary of a part of the building which en-
closes the building from above. This is visualised in the same Figure, below
the model. The right example is the same surface, which is subdivided in
two surfaces that either represent a RoofSurface and a OuterCeilingSurface.
Only after this subdivision, all semantic classes comply with the extended
definitions.
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Figure 6.16: An case which demands the subdivision of a surface.





7 CONCLUS IONS

In order to answer the main research question: ”What is needed to auto-
matically enrich a LoD 1 or 2 3D city model with thematic and semantic
information as defined in CityGML, by only utilising the models geome-
try?”, first the sub questions will be answered.

how is the lod of the 3d city model detectable? The LoD of a 3D

city model is detectable by the orientation of the surface normals of the Roof-
Surfaces, as already proposed by Biljecki and Arroyo Ohori (2015). Thereby,
the presence of the semantic classes OuterCeilingSurface and OuterFloor-
Surface is proved to be a sufficient parameter in the recognition of semantic
classes. These methods however only help in distinguishing between the
LoDs 1 and 2. Thereby, if all buildings in a 3D city model with LoD 2 have
flat roofs and the buildings do not hold the classes OuterCeilingSurface and
OuterFloorSurface, the current implementation will detect the wrong LoD.

what semantic and thematic classes can be distinguished by only
using geometric properties, dependent on the lod? The seman-
tic classes WallSurface, RoofSurface, GroundSurface, OuterCeilingSurface
and OuterFloorSurface can be distinguished by structuring the geometry of
the individual buildings in the 3D city model. Here fore, the definitions of
the semantic classes in CityGML have to be extended, which is described
in the methodology, section 4.7. The following points described these exten-
sions briefly:

First, the assumption is made that WallSurfaces have a pitch angle, which
is computer by the triangles normal vector, which is smaller than 5 degrees.
Second, it is stated that the GroundSurface encloses the building from below
and that it forms the ground plate of a building. Third, the definition of the
RoofSurface is extended with the fact that it encloses a building from above.

The used methodology to distinguish between the different semantic classes
is as follows. The set threshold for the WallSurface creates two collections,
first triangles that fall within this threshold: the WallSurfaces and triangles
that don’t: the triangles that represent all other classes. These two collec-
tions function as input for a region growing algorithm. The regions which
represent a WallSurface, are than used to creating single buildings. Next, a
topologic structure is used to match all other regions to these Wallsurfaces.
Next, the highest and lowest region in the building entity is assigned the
classes RoofSurface and GroundSurface. The unclassified regions, which
can represent a RoofSurface, GroundSurface, OuterCeilingSurface or a Out-
erFloorSurface, are distinguishable by computing the overlap relationships
between the different surfaces in one single building model. The classes
BuildingInstallation and ClosureSurface cannot be distinguished. These
classes however, are not obligatory to create a valid CityGML file and are
therefore not researched.

In addition to the recognition of these semantic classes, the theme’s Build-
ing and the terrain can be distinguished. Here fore, the assumption is made
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that the GroundSurface of a building is aligned under the other parts of a
building, e.g. the RoofSurface. This method proved sufficient, but requires
user input which defines the presence of the terrain. Further possible differ-
entiation of the terrain surface has not been researched.

how can these geometric properties be used in the classifica-
tion of the 3d city model? The method used to come to a classifi-
cation is based on a number of geometric properties. First, the relative
height of the surfaces; the highest surface, or region, is automatically as-
signed the class RoofSurface. The lowest surface is automatically assigned
the class GroundSurface. The other surfaces in the building are labelled by
computing an overlap relationship between the different surfaces in a single
building. In other words, the surfaces are labelled with a semantic class, if
the surface is overlapped, or not, by an already classified surface.

can methods established in remote sensing, e.g. classification
of point clouds be used? The main method that is used and estab-
lished in the processing of remote sensing data is the concept of region
growing. This method clusters adjacent triangles together which have a
pitch angle that falls within the set threshold. The regions are a central con-
cept in this research. Next to region growing, the kd-tree that is used in the
construction of the spatial index, also referred to as the topology, originates
from the processing of point clouds that are created in the field of remote
sensing. Thereby, the idea used in the semantic labelling of a region, which
uses the geometry of surrounding regions, also originates from point cloud
processing techniques (section 2.4.2).

how can the thematic features, e.g. buildings, be recomposed?
The buildings are recomposed with a methodology that clusters adjacent
spatial features together in regions. Next, these regions are matched to its
adjacent regions, forming single building entities. In this matching process,
the central class is the WallSurface; the WallSurfaces are used to recompose
the single buildings. This means that the assumption is made that one single
building is composed by a set of triangles which are all connected. The
terrain is still a limiting factor in this process, because a terrain is, in most
cases, connected to all, or multiple buildings. To prevent the aggregation of
multiple buildings into one entity, some thresholds are set. These thresholds
are described in section 4.3, the limitations of this method is discussed in
6.6.4.

how accurate is the classification process? The accuracy assess-
ment in chapter 6 showed that an accuracy of 100% is possible. This accu-
racy does depend on a number of factors, especially for the comprehensive
approach. First, the data, because float precision errors are a big limiting
factor in the labelling process. This causes errors in the overlap relation-
ship calculation. Also, in some models, some surfaces are not matched to
a building entity. This is most likely caused by float precision errors which
are present in the data.

Second, to fully comply with the extended definitions of the semantic
classes as proposed, some surfaces, regions, should be subdivided, where
each part gets assigned a different class. This is discussed in section 6.6.7.
These cases are not included in the 100% accuracy that is mentioned at
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the beginning of this paragraph. The 100% classification accuracy is only
achieved in one model.

Now, the research question: ”How to automatically enrich a LoD 1 or
2 3D city model with thematic and semantic information as defined in
CityGML, by only utilising the models geometry?” is answered.

Automatic recognition of thematic features from 3D city models is possible
by clustering adjacent triangles together. First, a region growing algorithm
is used to recreate surfaces, in which the WallSurfaces are grown indepen-
dently from all the other classes. Second, the WallSurfaces are used to recre-
ate the single buildings, by utilising adjacency relations of single triangles.
These techniques, to recompose the thematic features and to recognise the
terrain, depend on a number of thresholds. These threshold do vary and
depend on the input data. The results of the thematic labelling showed that
the number of re composed buildings in the labelled test datasets do differ
from the number of buildings in the original files.

Beacuse of the lack of definition of building entities in CityGML, the re
composition cannot be verified by comparing the labelled dataset with a
ground truth. In other words, the definition of a single building in CityGML
gives the possibility to aggregate one single building and its parts in differ-
ent ways, which can all be valid.

In this research, two approaches are tested which aim at semantically clas-
sifying the surfaces in a building. The first approach, the two class approach,
only distinguishes between the semantic classes WallSurface, RoofSurface
and GroundSurface and uses to relative height of the surfaces to come to a
classification.

The second approach, the comprehensive approach, aims at the automatic
enrichment of 3D city models with additional the classes OuterCeilingSur-
face and OuterFloorSurface. The definitions of these classes however, as de-
fined in the CityGML standard, do not allow automatic semantic labelling.
Therefore these definitions must be extended. These extensions are based
on heuristic rules. These extensions are: first, the setting of a threshold that
defines a maximum slope for WallSurfaces. Second, an extension of the def-
inition for RoofSurfaces, which states that a roof encloses a building from
above. Third, extending the definition of a GroundSurface with the rule that
it encloses a building from below.

The extensions are used to create a logic which allows the recognition of
the semantic classes by their relative height and the interdependent overlap
relations of the different surfaces, which are represented by a region, in one
single building.

Both approaches are developed with in mind the goals that are described
above. The two class approach works best in the labelling of existing 3D city
models which do not hold the classes OuterCeilingSurface and OuterFloor-
Surface. The comprehensive approach additionally recognises these classes
too.

The accuracy of the labelling processes highly depends on the input data.
For the two class approach, an accuracy around 99% can be achieved. For
the comprehensive approach, a 100% accuracy is achieved where the input
data does not contain float precision errors and where the buildings in the
model are not too complex.

The thematic and semantic classification leverages the usability of the
data, as it can be used in an extended range of applications which require
the added information.





8 FUTURE WORK

Out of this research, a methodology is proposed, which is based on an ex-
tension of the definitions of the semantic classes in CityGML, that allows
automatic semantic en thematic enrichment of 3D city models. The complex-
ity of the problem is described in section 3. The challenges described in this
section are, to some extend, overcome but not completely solved. Therefore,
the challenges described in section 3 can be interpreted as future work.

Next, this chapter describes other challenges that are derived from the
limitations described in section 6.6: Limitations .

8.1 extended definitions citygml
As described in the conclusion, automatic semantic labelling of 3D city mod-
els requires an extension of the definitions of the semantic classes in CityGML.
Per semantic class, the extension of the definition is proposed as:

• WallSurface A WallSurface encloses a building from above and is con-
gruent with the ground plate of a building.

• GroundSurface A GroundSurface encloses a building from below.

• WallSurface The pitch angle of the normal vector of a WallSurface
triangle cannot exceed 5 degrees.

In this thesis, it is demonstrated that by extending the definitions, auto-
matic semantic labelling is possible by exploiting classification rules that
are inferred from a logic that is based on the above described extensions.
Thereby, an extra extension of the definition of the GroundSurface should
be discussed: SIG3D (2015) advises to model the terrain as a flat plane, OGC
(2012) does currently not specify this.

For future work in automatic semantic classification of CityGML, a num-
ber or remarks are given in the following paragraphs. These are learned
during this research.

the semantic class buildinginstallation The semantic class Buildin-
gInstallation in CityGML is defined as: ”The BuildingInstallation class is
used for building elements like balconies, chimneys, dormers or outer stairs,
strongly affecting the outer appearance of a building” and ”A BuildingIn-
stallation is an outer component of a building which has not the significance
of a BuildingPart, but which strongly affects the outer characteristic of the
building. Examples are chimneys, stairs, antennas, balconies or attached
roofs above stairs and paths” (OGC, 2012, p, 64). This definition is neither
inclusive or exclusive, meaning that is does not include or exclude surfaces.
Dormers and chimneys, for example, can be stored as one BuildingInstal-
lation as well as RoofSurfaces and WallSurfaces. This creates ambiguity

79



80 future work

between models, where in one model dormers and chimneys are classified
as BuildingInstallation, while in others these surfaces have a different class.

Therefore the following extension or description for the class BuildingIn-
stallation can be discussed, to overcome this ambiguity: ”A BuildingInstal-
lation is a part of the building which volume does not add up to the volume
of a building”. This means that buildingparts which are attached to, but do
not enclose the internal space of a building are classified as BuildingInstalla-
tion. This definition does not allow dormers or chimneys to be classified as
BuildingInstallation, but includes all external parts that are not part of the
main structure.

defining the semantic class openings in lod 3 models The format
CityGML can, until now, be used and processed in a limited number of
software packages. Boeters et al. (2015) demonstrated that the processing,
or the adding of information to the dataset can be done by first converting
the data to another format and later transform the data back to CityGML.
The surface normal proofed to be a sufficient matter in this transformation.

In order to process models with LoD 3 in the same way, a technique to
distinguish the windows could come helpful. Therefore, the possibilities to
define the surface normal of Windows and Doors in the opposite direction
of the surface normals of its surrounding surfaces should be researched, in
order to be able to distinguish these features on their surface normal. An-
other possibility is to store the geometry with surfaces of the class Opening
double, but in different directions. This way, the surface normal of this class
points in two directions and is easily distinguishable.

Currently, few measures can be used to classify the semantic class Open-
ing in a polygon soup. A measure that can be useful is symmetry, because
most windows are represented as a rectangle, which is composed of two
identical triangles. This method will fall short however, if a window has a
circular or unusual shape.

thematic features All thematic features are present in the model are,
in this research, labelled as Building or Terrain. CityGML defines much
more thematic features. An example is the thematic class Bridge. In the
description of this class, different semantic classes are described. The main
function of a bridge however, is not very well defined and leaves room for
interpretation. In Oxford Dictionaries (2015), a bridge is defined as: ”A
structure carrying a road, path, railway, etc. across a river, road, or other
obstacle”. By using this definition, a bridge can be automatically detected or
generated if two features of the class TransportationComplex, like Tracktype,
RoadType or WaterBody, cross. An example of a bridge were a TrackType
and RoadType cross is given in Figure 8.1

Before implementing the proposed changes, possible side effects should
be discussed. In this discussion, the trade off between creating models
which represent the built environment in the most realistic way and the
necessity and possibility to automate the 3D modelling process should be
central.

My personal opinion is that automation should be the central concept
in the creation of 3D city models for the use in a GIS. This means that the
thematic and semantic classes should be defined in a way that allows the for-
mulation of a logic that can be translated into machine readable commands.
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Figure 8.1: 3D Scene were a TrackType feature and a RoadType feature cross. Source:
esri.com

8.2 the detection of overlap relationships
with polygons instead of triangles

Because the city models that functioned as input in this research are all
triangulated meshes, the overlap relationships have to be calculated with
triangle-triangle intersection methods. This is extensively described in sec-
tion 5.6.

Future work should therefore focus on testing this approach with polygon
meshes. Working with triangles is in this approach, not only computation-
ally less efficient than working with non-triangulated surfaces, the compu-
tations also become more ambiguous.

8.3 more constraints in the region grow-
ing of the regions

Limitation 6.6.2 describes that some regions do contain triangles with a dif-
ferent semantic class. This is a limiting factor in the current implementation.
Therefore, future work should focus on developing more constraints in the
region growing algorithm, which prevents that one region can contain trian-
gles from a different semantic class.

8.4 testing the possibility to combine the
dutch bag and bgt datasets

The possibility to automatically semantically enrich a 3D city model may
create new possibilities to combine different datasets in the creation of a 3D

city model. This is explained with an example where two datasets from the
Netherlands are used: the BAG and the BGT.
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Goorman (2010) did research on two key registers on the spatial data ad-
ministration in Zwolle, the Netherlands, and explains that two topographic
datasets are created: the BAG and the BGT.

A difference between the two is the kind of geometry that is stored. For
the BGT, the ground-level building geometry is captured, while for the BAG
register, the choice was made to record the shape of a building as seen from
above (‘top-down’) (Goorman, 2010). This difference is shown in Figure 8.2,
which contains two screenshots. One from a building in the BAG and the
other of the same building in the BGT. Figure 8.3 is a photograph from the
buildings mapped in Figure 8.2.

Figure 8.2: The Bag and the BGT of the same area in Delft

Figure 8.3: Example of the buildings which overlap in Figure 8.2

Future research should focus on combining these two datasets and data
from aerial and terrestrial laser scanners to create a semantically rich 3D city
model. Because with the extraction of different height values from the LiDAR

data, it should be possible to compute the height of these different buildings,
allowing the creation of a 3D city model with overhanging buildings. A
problem with combining these two datasets is that the geometry between
both datasets may have an offset of around one meter (Goorman, 2010).
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A REFLECT ION

This reflection is a mandatory part of this thesis. The aim of this reflection
is to look back and see if the proposed approaches work and to understand
the “how” and ”why”, and, subsequently to learn from this. In other words,
this chapter reflects on the different processes of the conducted research.

The reflection is organised in the following way. First, the relationship
between the research and the wider social context is discussed. Second, the
relationship between the research and the field of Geomatics is elaborated
on. Third, the relationship between the methodical line of approach of the
Master Geomatics and the method in this framework is discussed. This
chapter ends with a discussion about how and why the proposed method-
ology did work, and to what extend. Thereby, the process and planning of
the research are discussed.

a.1 my research in its social context
In the past years there has been a growing interest for 3D city models. These
city models are used in 3D GIS, but also function as the backbone for ’the city
of things’, in where the city is monitored and managed by a wide range of
sensors. A central concept in these new developments, and therefore in this
research, is the standard CityGML. CityGML allows for integrated storage,
processing and exchange of these city models. Thereby, the CityGML stan-
dard is easily adaptable to a certain use case, while it still allows the storage
of attribute data, which is information about the different city objects. More
important, the standard is fastly becoming the de facto standard for 3D city
models.

This research focusses on the automatic enrichment of the geometry in
a 3D city model with thematic and semantic information. In other words,
the proposed methodology takes an unstructured set of triangles, which
represents a city, and structures this geometry in single buildings, while
adding semantic information to the triangles in these buildings. Semantic
information, in this case, means what a surface represents, for example a
WallSurface, a GroundSurface or a OuterCeilingSurface. 5 Different classes
are distinguished. This semantic information is crucial in the use of 3D city
models and is needed to create city models that are fit for use.

a.2 my research in the field of geomatics
The growing demand for 3D city models is triggered by new developments
in remote sensing techniques. These techniques are LiDAR and photogram-
metry, and allow the capturing of 3D data of the human environment. These
techniques create huge datasets, which are, among other things, used to
create 3D city models.
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A central concept in the field of Geomatics is the automation of data
processing techniques. Automated data processing, in this case, means com-
puter guided extraction of information from large (combined) datasets. This
automation process allows the up-scaling of techniques, creating economic
benefits and increased access to up to date data and, in the scope of this
research, an improved understanding of the built environment in a machine
readable format. This research aimed at creating a methodology that allows
automatic classification of 3D city models.

a.3 the methodical line of approach
The MSc Geomatics focusses on the management of geographical data. The
methodical line of approach, in this sense, is merely based on automating
these data management processes. The methodology that is created dur-
ing this research is based on this line of approach. This is done with the
following in mind.

The way humans perceive the physical reality around them is based on
complex reasoning, the social and cultural context, earlier experiences and/or
human perception and knowledge. A computer simply needs commands.
The approach taken in this research is to define commands a computer can
understand, in order to interpret data in a way that humans do it. This is
done by extending the current definitions in the CityGML data with heuris-
tics rules, that, in the scope of this research, are straightforward rules or
knowledge gained from the human perception about its living environment.

a.4 results
The results showed that by defining these rules, a 3D city model can be
automatically enriched with semantic and thematic information. With clean
input data, a 100% accuracy in the semantic classification can be achieved.

a.5 lessons learned
The most important lessons I have learned in respect to writing this thesis
are described in the coming sections.

The biggest challenge for me was to focus on the methodological ap-
proach, as I was completely focussed on delivering a product instead of
a piece or research. The realisation that my focus was on the wrong as-
pect came after writing the research paper, which forced me to restate and
overthink the problem statement, the challenges and the focus. Thereby, I
neglected the scientific perspective, whereby I focussed on finding a solution
as soon as possible.

a.6 process and planning
The planning of the research conducted has not always been optimal. Espe-
cially at the beginning, the lack of time and a underestimation of the amount
of work that was still ahead led to a postponement of the first P4 deadline.
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This also brought new possibilities. First the extra time was used to write
a paper. This paper has already been accepted and will be published in the
coming weeks. This paper helped to restructure the whole research and con-
cept. Next, another methodology was developed, with in mind the lessons
from the paper and the earlier developments.
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