
A Proof of Nielsen'k Conjecture on the GPS Dilution 
of Precision 

The dilution of precision terms for relative positioning as 
defined in [l], are bounded from above by the corresponding 
dilution of precision terms for point positioning. In [l], this result 
is proven for the case of four satellites and conjectured to be valid 
for the case of more than four satellites. A proof of this conjecture 
is given. We also extend the result by giving two different lower 
bounds for the dilution of precision terms. The first lower bound 
depends on the receiveir-satellite geometry, whereas the second 
does not. The proof of the bounds is based on the solution of a 
generalized eigenvalue problem. 

I .  INTRODUCTION 

Double-difference processing of the 
NAVSTAWGlobal Positioning System (GPS) satellite 
signals has been employed by the surveying and 
geodetic community for some time [2]. In analogy 
with HDOP and VDOP (the horizontal and vertical 
dilution of precision terms of point positioning), 
Nielsen [ 11 introduces corresponding dilution of 
precision (DOP) terms for relative positioning 
using double differences and demonstrates for 
the four-satellite case that his DOP values for 
relative positioning are bounded from above by the 
corresponding DOP values of point positioning. In 
this contribution we extend Nielsen's result to an 
arbitrary number of satellites. We also show how the 
relevant DOP values are bounded from below. This 
enables us to identify the condition for which the two 
types of DOP values coincide. Section I1 summarizes 
Nielsen's result arid conjecture, while Section I11 gives 
the solution of a generalized eigenvalue problem. It 
forms the basis of our main result, which is stated and 
proven in Section IV. 

I I. N I ELSEN'S CCINJ ECTURE 

Let (xi, y i , ~ i ) T  be the unit direction vector between 
the ith satellite and the approximate receiver location, 
and define the two matrices 

rxl  yI  z l l  

Lx, Y ,  z,' 
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where 
and e,-' denotes the vector which has all its 
m - 1 entries equal to one. The m x 3 matrix A, 
captures the receiver-satellite geometry of the m 
satellites and the (m - 1) x m matrix D: equals the 
differencing operator that transforms single-difference 
measurements to double-difference measurements 
having satellite m as reference. Note that the 
double-difference measurements are referenced to a 
common satellite. For Nielsen's result to be valid, the 
need for such a common reference was already shown 
in [l]. 

The design matrix for point positioning is denoted 
as H, and its counterpart for relative positioning based 
on double-difference measurements is denoted as G,. 
These two matrices are given as 

denotes the unit matrix of order m - 1 

H, = [A,,e,], G, = DfA,. (2) 
Since both matrices are assumed to be of full rank, we 
must have m 2 4. For m = 4, H, corresponds with [l, 
eq. (4)] and G, with [ l ,  eq. (lo)]. 

as 
The DOP terms for point positioning are defined 

HDOP, = J[H,TH,];,: + [H3Ym],k 
17) 
\ - I  

VDOP, = d[HzH,]3,: 

where [HiH,],' is the ith element on the main 
diagonal of [H;H,]-'. The corresponding DOP terms 
for relative positioning are defined in [ l ]  as 

VDOP,,,, = \/[GZG,l,: 

where [GiG,];i' is the ith element on the main 
diagonal of [G;G,]-'. 

inequalities 
The main result of [l] is the proof of the two 

HDOP,,,, 5 HDOP, for m = 4 

VDOP,,,, 5 VDOP, for m = 4. 
( 5 )  

For m > 4 however, the two inequalities are 
conjectured to be true. In order to prove this 
conjecture, we need to compare the two matrices 
[H~H,]-' and [G;G,]-'. This is done in Section I11 
by means of a generalized eigenvalue problem. 

I l l .  GENERALIZED EIGENVALUE PROBLEM 

Since the two matrices [HzH,]-' and [G;G,]-' 
are of a different order, respectively 4 and 3 ,  we first 
need to find an expression for the first three rows and 
columns of matrix [H,H,]-' .  It is easily verified that 
the inverse of 
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is given as 

[H:Hm]-' = 

From substituting (14) into (9), the result (10) is now 
easily verified. 

1 1 
m - - [Fz  F,] -' ALe, 

1 1  
m m2" [F:F,]-' - + -eTA [FzF,]-'Afe, J 

(7) 

where F, = P,A,, with the orthogonal projector 
P, = I, - (1 /m)e,eL. Since the first three rows and 
columns of [HLH,]-l are captured by the matrix 
[F;F,]-', the two DOP terms of (3) can be expressed 
in matrix F, as 

HDOP, = L / [ 4 ~ F m 1 ~ ~  + [FLF,l,h 

VDOP,  = d-. (8) 

Thus in order to compare the DOP terms, we need to 
compare the two matrices [F,F,]-' and [G:G,]-'. 
This comparison can be based on the following 
generalized eigenvalue problem. 

THEOREM Let A, and J;, i = 1,2,3, be the eigenvalues 
resp. eigenvectors of the generalized eigenvalue problem 

[GzG,]-'f = A[F~F,]- ' f .  (9) 

with f, = G;~l l l - l  

with f 2 ,  t; l. [G~GIII1- lG~@l, , - l  

Then 
1 

= 1 - ;e:&/,>!-l 

i * : = A , = l  

(10) 

where Pc, = G,[G;G,]-'G; is the orthogonal 
projector that projects onto the range space of G ,  and 
along the null space of G;. 
PROOF Since P, projects along e, and onto the 
orthogonal complement of e,, which is the range 
space of D,, the projector can be represented in the 
following two ways 

P, = Z, - -e 1 e' = D,[D~D,]- 1 T  D,. (11) m" 
This shows, since Fm = P,A, and G ,  = DgA,, that 

F,TF, = Gi[DLD,]-'G,. (12) 

e' (13) 

From (1) it follows that D:Dm = 

1 
thus 

+ em-lei- l  and 

[D:Dm1-' =Zm-l  - ;em-l 

Substitution of (13) into (12) gives F:F, = GLG, - 
(1 /m)G:e,-l G,  and after inversion 

[F~F,l-' = [G;G,]-' 

[G; Gm 1 -' Gzem - 1 e f  - 1 Gm [G;Gm 1 -' 
m -  ei-lPG,e,-l 

+ 

(14) 

IV. MAIN RESULT 

We are now in a position to prove the conjecture 
of Nielsen and to give an extension by including 
lower bounds on the DOP terms as well. As a direct 
consequence of the above theorem we have the 
following bounds for the Raleigh quotient 

for all non-null f and m 2 4. By choosing f 
respectively as f = (l,O,O)T, f = (0, l,O)T and f = 
(O,O, 1)*, it follows that 

I rGfG,l,: I fF,F,l<;. 

By taking the square roots, the corresponding bounds 
for the HDOP and V D O P  terms follow as 

1 / I  - K e ; - l ~ c m e , - l ~ ~ ~ ~ ,  5 HDOP,,,, 5 HDOP, 

(17) 

5 VDOP,,,, 5 VDOP,. 

This result extends (5)  in two ways. Apart from the 
upper bounds, lower bounds are now included as well. 
Moreover, these bounds are not only valid for m = 4, 
but also for m > 4. 

Note that HDOP,,,, = HDOP, and VDOP,,,, = 
VDOP,, when G;e,-l = 0. From (1) and (2) it 
follows that this happens when 

. m-1 
1 

m - 1  
x, = --EXi, 

i= 1 

i=l 

m-1 
n 

2, = -zzi m -  1 
i=  1 

i.e., when one of the m satellites is located at 
the "center of gravity" of the receiver-satellite 
configuration. 
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The two lower bounds of (17) depend on the 
receiver-satellite gelometry through the matrix G, . 
Lower bounds that are independent of this geometry 
can be given as wel!l. Since the eigenvalues of a 
projector are either 0 or 1, it follows that 

With ef-, PG, ern-l :< m - 1, the geometry independent 
bounds follow from (17) as 

1 -VDOP, 5 VDOP,,,, 5 VDOP,. 
fi 

V. CONCLUSION 

We have proven Nielsen’s conjecture by showing 
that his DOP terms for relative positioning are also 
bounded from above by the corresponding DOP terms 
for point positioning when more than four satellites 
are tracked. This result was extended by giving 
lower bounds as well. It was also shown that the two 
types of DOP coincide when one of the satellites is 
located at the center of gravity of the receiver-satellite 
configuration. 
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An Approach for Accurate GPS Navigation With SA 

An approach is presented for more accurate GPS navigation 
with selective availability. In this approach, a linearized 
perturbation model has been obtained. Using the measurement 
perturbation difference approach, the model is made suitable 
to formulate the Kalman fdter to obtain the estimate of state 
perturbation and thereby the estimate of the user position and 
velocity. Simulation results are provided to confirm the efficacy of 
the approach. 

I. INTRODUCTION 

The Global Positioning System (GPS) is capable 
of easily providing 100 m level accuracy for a great 
number of users worldwide with almost any type 
of GPS receiver using built-in, real time software to 
convert the pseudo-range measurements into positions. 

The GPS navigation task is principally to 
determine an unknown user position and velocity, 
receiver clock bias, and clock drift from at least four 
known satellite positions, velocities, clock corrections 
and measured pseudo-ranges and delta ranges to each 
satellite. The satellite positions as well as the user 
positions are all referenced to an Earth-centered and 
Earth-fixed (ECEF) coordinate system . 

The observed GPS pseudo-range varies from the 
true range because of range measurement errors. All 
of these error sources are described and it is shown 
[l] that selective availability (SA) is the dominant 
error source in terms of sheer magnitude. 

version of the Kalman filter and is widely used 
for position estimation [2, 31 in GPS receivers. An 
approach for faster implementation of the EKF for 
GPS navigation is given in [4]. However, the EKF is 
formulated with the assumption that the measurement 
noise is white. Since the SA is not a white noise 
process the EKF cannot be used for accurate GPS 
navigation. Hence, it is good to derive an EKF which 
specifically accounts for non-white behavior of SA. 
The SA on GPS can be modeled as a second-order 
Gauss-Markov process [5].  This random process 
would be included in the measurement model by 
augmenting the state vector, and these states would 
then be estimated along with the other states. The 
second-order model introduces two additional states 

The extended Kalman filter (EKF) is a nonlinear 
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