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 A B S T R A C T

The increasing demands for high accuracy in mechatronic systems necessitate the incorporation of parameter 
variations in feedforward control. The aim of this paper is to develop a data-driven approach for direct learning 
of parameter-varying feedforward control to increase tracking performance. The developed approach is based 
on kernel-regularized function estimation in conjunction with iterative learning to directly learn parameter-
varying feedforward control from data. This approach enables high tracking performance for feedforward 
control of linear parameter-varying dynamics, providing flexibility to varying reference tasks. The developed 
framework is validated on a benchmark industrial experimental setup featuring a belt-driven carriage.
. Introduction

Feedforward control is capable of suppressing known disturbances 
n motion control, specifically a reference trajectory. Feedforward con-
rol is widely applied in numerous applications, including nanoposition-
ng [1] and robotics [2]. The reference tracking performance of feedfor-
ard control is directly determined by the accuracy of estimating the 
ystem’s inverse dynamics [3]. As systems are designed progressively 
ore complex, accurately describing their inverse dynamics becomes 
ncreasingly challenging.
Increasing complex dynamics in mechatronic systems can effectively 

e modeled using Linear Parameter-Varying (LPV) descriptions [4,5]. 
orward LPV models can be identified through various methods [6–9]. 
he tracking performance of inversion-based LPV feedforward control 
s then directly determined by the quality of the identified forward LPV 
odel [10–12]. The two-step approach of forward LPV identification 
nd inversion often degrades performance due to the intricate link 
etween tracking performance and inverse quality, and properties such 
s stability are not guaranteed since inversion is typically done through 
ptimization methods.

I This work is part of the research programme VIDI with project number 15698, which is (partly) financed by, The Netherlands Organisation for Scientific 
esearch (NWO).
I This research has received funding from the ECSEL Joint Undertaking under grant agreement 101007311 (IMOCO4.E). The Joint Undertaking receives support 
rom the European Union Horizon 2020 research and innovation programme.
H This paper was recommended for publication by Associate Editor Peter Hehenberger.
∗ Corresponding author.
E-mail address: m.j.v.haren@tue.nl (M. van Haren).

The limitations of inversion-based feedforward control for LPV sys-
tems have led to several approaches that directly optimize the feed-
forward controller based on the tracking performance. In Butcher and 
Karimi [13], LPV feedforward controllers are directly determined based 
on input–output data, while de Rozario et al. [14] optimizes an LPV 
feedforward controller using Iterative Learning Control (ILC) [15]. 
Both Butcher and Karimi [13] and de Rozario et al. [14] restrict 
the dependence on the scheduling sequence to a generally unknown 
predefined structure, resulting in limited tracking performance. Fur-
thermore, Kon et al. [16] employs a neural network to directly identify 
an LPV feedforward controller. However, its practical applicability 
remains limited due to the added complexity of estimating the zero 
dynamics of LPV systems and since the neural network is not directly 
capable of utilizing physical insights, which can improve estimation 
quality. Finally, direct data-driven control approaches for LPV or linear 
time-varying systems, such as [17–19], generally do not allow for 
the incorporation of physical insights, and their computational com-
plexity limits their practical applicability. Overall, the applicability of 
current approaches for direct optimization of LPV feedforward con-
trollers based on tracking performance is limited, as the structure of the
ttps://doi.org/10.1016/j.mechatronics.2025.103337
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dependency on the scheduling sequence must be known in advance, 
and no physical insights can be utilized. 

Although several techniques have been developed for LPV feed-
forward control, there is currently no method that directly optimizes 
the tracking performance without constraining the dependence on the 
scheduling sequence, while also allowing for the incorporation of phys-
ical insights. In this paper, feedforward parameter functions are iden-
tified through kernel-regularized function estimation [20], and the 
estimates are refined by iteratively minimizing the tracking error. 
Kernel methods have been successfully applied in control, including 
system identification [20–22], learning control [23,24], and feedfor-
ward control [25,26]. The main advantage of kernel-regularized func-
tion estimation is that it does not restrict the estimated function to a 
specific structure, but is searched over a possibly infinite-dimensional 
functional space that admits a finite-dimensional representation with a 
closed-form solution [20]. Furthermore, kernel-regularized estimation 
makes it particularly easy to incorporate physical insights of the sys-
tem by enforcing high-level properties of the estimated function, such 
as periodicity. Additionally, the iterative nature enhances estimation 
quality, improving tracking performance. The following contributions 
are distinguished.

(C1) Iteratively learning the feedforward parameter functions, which 
enhances estimation quality and improves tracking performance.

(C2) Identifying feedforward parameter functions through kernel-
regularized estimation, allowing any dependence on the schedul-
ing sequence to be modeled.

(C3) Experimental characterization and validation of the developed 
framework for a low-cost belt-driven carriage, which exhibits 
position-dependent behavior.

This work extends earlier research presented in [27,28] by generaliz-
ing these studies to iteratively learn continuous parameter variations 
and apply a generic parameterization in the feedforward controller, 
including experimental validation.
Notation. The discrete-time index is denoted by 𝑘 ∈ Z[0,𝑁−1]. The 
amount of samples in a measurement period is equal to 𝑁 . Scalars 
and row and column vectors are denoted by lowercase letters, e.g., 𝑥. 
Matrices are denoted by capitals, e.g., 𝑋. Functions and time-dependent 
signals are denoted explicitly, e.g., 𝑥(𝑘). Time-dependent signals are 
vectorized as 
𝑥 =

[

𝑥⊤(0) 𝑥⊤(1) … 𝑥⊤(𝑁 − 1)
]⊤ . (1)

Systems are denoted calligraphically, e.g., . LPV systems are described 
using the discrete-time state-space 

 (𝜌) ∶

{

𝑥(𝑘 + 1) = 𝐴(𝜌(𝑘))𝑥(𝑘) + 𝐵(𝜌(𝑘))𝑢(𝑘),
𝑦(𝑘) = 𝐶(𝜌(𝑘))𝑥(𝑘) +𝐷(𝜌(𝑘))𝑢(𝑘),

(2)

with scheduling sequence 𝜌(𝑘). The response of system (𝜌) to input 
𝑢(𝑘) is denoted with 𝑦(𝑘) = (𝜌)𝑢(𝑘). Let 𝑥(𝑘) = 0 for 𝑘 = 0, and 𝑢(𝑘) = 0
for 𝑘 < 0 and 𝑘 ≥ 𝑁 , to obtain the finite-time LPV convolution 
⎡

⎢

⎢

⎢

⎢

⎣

𝑦(0)
𝑦(1)
⋮

𝑦(𝑁−1)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏟⏞⏞⏟
𝑦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐷 (𝜌 (0)) 0 ⋯ 0
𝐶 (𝜌 (1))𝐵 (𝜌 (0)) 𝐷 (𝜌 (1)) ⋯ 0

⋮ ⋮ ⋱ ⋮
𝐶 (𝜌 (𝑁−1))

∏𝑁−2
𝑘=1 𝐴 (𝜌 (𝑘))𝐵 (𝜌 (0)) ⋯ ⋯ 𝐷 (𝜌 (𝑁−1))

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐻

×

⎡

⎢

⎢

⎢

⎢

⎣

𝑢(0)
𝑢(1)
⋮

𝑢(𝑁−1)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏟⏞⏞⏟
𝑢

,

(3)

with LPV convolution matrix 𝐻 . Linear Time-Invariant (LTI) systems 
are described using the forward shift operator 𝑞𝑢(𝑘) = 𝑢(𝑘 + 1).
2 
2. Problem formulation

In this section, a motivating application and the problem setting are 
shown for LPV feedforward control. Finally, the problem addressed in 
this paper is defined.

2.1. Motivating application

The problem addressed in this paper is directly motivated by the 
belt-driven carriage in Fig.  1, which represents a transmission used 
regularly for mechatronic systems. Specifically, the belt-driven carriage 
in Fig.  1 exhibits position-dependent dynamics, which are commonly 
observed in mechatronic systems and can be accurately modeled using 
LPV system descriptions. The objective of the setup is to accurately 
position the carriage in the 𝑦-direction by using the BrushLess AC 
(BLAC) motor. Belt-driven motion systems are typically used in appli-
cations such as printing, where the accuracy during constant velocity 
motion is important. The BLAC motor is connected to the carriage 
via a toothed pulley and a timing belt. The belt-driven carriage suf-
fers from position-dependent dynamics due to several effects, includ-
ing pulley out-of-roundness, pulley-teeth interactions, motor cogging, 
misalignment of the linear guide, and position-dependent drivetrain 
stiffness [29, Section 4.2], which is shown in Example  1. 

Example 1.  By modeling the timing belt in Fig.  1 as an elastic element 
under pretension with Young’s modulus 𝐸 and cross-sectional area 𝐴, 
the perceived stiffness at the driven pulley is 

𝑘(𝜌) = 𝐸𝐴
1
2𝐿 + 𝜌𝑅

+ 𝐸𝐴
1 1
2𝐿 − 𝜌𝑅

, (4)

for scheduling 𝜌 being the angular rotation of the driven pulley, re-
sulting in quasi-LPV behavior. The system is modeled as a mass–spring 
system with continuous-time inverse dynamics [28] 

𝑢(𝑡) =
(

𝑚𝑅 + 𝐽
𝑅

) 𝑑2𝑦 (𝑡)
𝑑𝑡2

+ 𝑚𝐽
𝑅

𝑑2

𝑑𝑡2

(

1
𝑘 (𝜌 (𝑡))

𝑑2𝑦 (𝑡)
𝑑𝑡2

)

=
∑

𝑖∈{2,3,4}

𝑑𝑖𝑦(𝑡)
𝑑𝑡𝑖

𝜃𝑖 (𝜌(𝑡)) ,
(5)

consisting of derivatives of the desired output 𝑑𝑖𝑦(𝑡)𝑑𝑡𝑖  and LPV parameter 
functions 𝜃𝑖 (𝜌(𝑡)).

LPV descriptions of complex mechatronic systems, including belt-
driven carriages such as the system in Fig.  1, directly motivate the 
development of parameter-varying feedforward control.

2.2. Problem setting

The control structure is seen in Fig.  2. The considered class of LPV 
systems  is described using the convolution in (3). The system is 
operating in feedback with LTI controller , as seen in Fig.  2. The 
tracking error, assuming zero initial state and error, is given by the 
interconnection of the system  and controller  by 
𝑒(𝑘) =  (𝜌) (𝑟(𝑘) − 𝜈(𝑘)) −  (𝜌) 𝑓 (𝑘), (6)

with LPV sensitivity (𝜌) and process sensitivity  (𝜌). LTI feedforward 
is not capable of compensating for the LPV dynamics in (6), resulting 
in residual error. Motivated by the inverse dynamics of LPV systems, 
for example (5) in Example  1, the goal in this paper is to decrease the 
tracking error using the parameter-varying feedforward signal 
𝑓 (𝑘) = 𝜓 (𝑟 (𝑘)) 𝜃(𝜌(𝑘)), (7)

with basis functions 𝜓 (𝑟 (𝑘)) ∈ R1×𝑛𝜃  and feedforward parameter 
functions 𝜃(𝜌(𝑘)) ∈ R𝑛𝜃×1. For motion systems, the basis functions 
𝜓 (𝑟 (𝑘)) are often chosen as derivatives of the reference signal, such 
as the reference velocity and acceleration [30,31]. The feedforward 
parameterization (7) is flexible to task variations due to the dependency 
on 𝑟(𝑘) in the basis function 𝜓(𝑟(𝑘)).
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Fig. 1. Experimental setup considered, where the position of the belt-driven carriage 
𝑦 is to be controlled using the input to the motor 𝑢.

Fig. 2. Control structure considered.

2.3. Problem definition

The problem considered in this paper is as follows. Given a reference 
signal 𝑟(𝑘), corresponding choice of basis functions 𝜓 (𝑟 (𝑘)) ∈ R1×𝑛𝜃 , a 
model of the system ̂, and the measured scheduling sequence 𝜌(𝑘), 
determine the 𝑛𝜃 feedforward parameter functions 𝜃(𝜌(𝑘)) ∈ R𝑛𝜃×1, 
such that the tracking error (6) is minimized using the feedforward 
parameterization (7).

3. Learning feedforward parameter functions

In this section, feedforward parameter functions are iteratively 
learned through kernel-regularized estimation. The non-parametric na-
ture of kernel-regularized estimation enables modeling any dependence 
on the scheduling sequence, and iterative learning improves estimation 
quality, both contributing to C1 and C2. Furthermore, the design of 
kernels and the developed procedure are presented.

3.1. Iterative learning of feedforward parameter functions

The key idea is to iteratively learn the feedforward parameter 
functions 𝜃(𝜌(𝑘)) in (7) such that the tracking error is minimized. The 
error (6) is approximated in the next trial 𝑗 + 1 for feedforward signal 
(7) based on a model of the process sensitivity ̂  as 
𝑒𝑗+1(𝑘) = 𝑒𝑗 (𝑘) − ̂

(

𝜌𝑗
)

𝜓
(

𝑟𝑗 (𝑘)
) (

𝜃𝑗+1
(

𝜌𝑗 (𝑘)
)

− 𝜃𝑗
(

𝜌𝑗 (𝑘)
))

. (8)

The parameters are then iteratively learned by minimizing a certain 
cost function with respect to the approximated error, that is 
min
𝜃𝑗+1

𝑉
(

𝑒𝑗+1
)

. (9)

As a result, the feedforward parameters are iteratively updated over 
iterations or trials 𝑗 as 
𝜃𝑗+1(𝜌∗) = 𝜃𝑗 (𝜌∗) + 𝜃𝛥𝑗 (𝜌

∗), (10)

for arbitrary scheduling value 𝜌∗. 
3 
Remark 2.  By choosing 𝑉 (

𝑒𝑗+1
)

=
∑𝑁−1
𝑘=0 𝑒

2
𝑗+1(𝑘) and optimizing for 

LTI feedforward parameters 𝜃𝑗 (𝜌(𝑘)) ≡ �̄�𝑗 ∀𝜌(𝑘), LTI ILC with basis 
functions [32] is recovered.

The iterative procedure is effective since it directly minimizes the 
least-squares tracking error, and uses both a model of the process 
sensitivity and the measured data, thus reducing the requirements on 
the modeling quality [33]. A key challenge is to learn 𝜃𝛥𝑗 (𝜌∗) in (10) 
without constraining the estimated function to a certain structure, 
which is presented in the next section. 

3.2. Kernel-regularized learning of feedforward parameter functions

Unlike traditional estimation methods that restrict the estimated 
function 𝜃𝛥𝑗 (𝜌∗) in (10) to a specific structure, the function 𝜃𝛥𝑗 (𝜌∗) is 
estimated in a possibly infinite-dimensional function space ℋ  and can 
be evaluated at any arbitrary 𝜌∗ ∈ R. Specifically, the feedforward pa-
rameter functions are estimated by iteratively minimizing the predicted 
least-squares tracking error (8) with a regularization term 𝐽 to prevent 
overfitting and ill-posedness, i.e., 

min
𝜃𝛥𝑗 ∈ℋ

𝑁−1
∑

𝑘=0
𝑒2𝑗+1(𝑘) + 𝛾𝐽

(

𝜃𝛥𝑗
)

. (11)

The regularizer 𝐽 can be chosen to penalize unwanted behavior of the 
estimated functions 𝜃𝛥𝑗 . For example, the energy of the estimated func-
tions 𝜃𝛥𝑗  can be reduced by penalizing with 𝐽 (𝜃𝛥𝑗 ) = ∫

(

𝜃𝛥𝑗 (𝜌)
)⊤

𝜃𝛥𝑗 (𝜌) 𝑑𝜌.
Properties of the estimated function are effectively enforced through 

designing ℋ  as a Hilbert space, and choosing the regularizer as the 
squared norm in this space, 

min
𝜃𝛥𝑗 ∈ℋ

𝑁−1
∑

𝑘=0
𝑒2𝑗+1(𝑘) + 𝛾‖𝜃

𝛥
𝑗 ‖

2
ℋ , (12)

with Reproducing Kernel Hilbert Space (RKHS) norm ‖𝜃𝛥𝑗 ‖2ℋ =
⟨

𝜃𝛥𝑗 , 𝜃
𝛥
𝑗

⟩

ℋ
 [20]. The RKHS ℋ  is associated with a kernel function that 

is capable of reproducing every function in the space, in this case the 
𝑛𝜃 × 𝑛𝜃 kernel function matrix 

𝐾
(

𝜌∗, 𝜌
)

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑘11 (𝜌∗, 𝜌) 𝑘12 (𝜌∗, 𝜌) ⋯ 𝑘1𝑛𝜃 (𝜌
∗, 𝜌)

𝑘21 (𝜌∗, 𝜌) 𝑘22 (𝜌∗, 𝜌) ⋯ 𝑘2𝑛𝜃 (𝜌
∗, 𝜌)

⋮ ⋮ ⋱ ⋮
𝑘𝑛𝜃1 (𝜌

∗, 𝜌) 𝑘𝑛𝜃2 (𝜌
∗, 𝜌) ⋯ 𝑘𝑛𝜃𝑛𝜃 (𝜌

∗, 𝜌)

⎤

⎥

⎥

⎥

⎥

⎦

, (13)

where each kernel function 𝑘𝑖𝑗 describes the correlation between feed-
forward parameters 𝑖 and 𝑗. As a result, the kernel functions enable 
to enforce desired properties of the estimated function 𝜃𝛥𝑗 (𝜌∗), such as 
smoothness or periodicity. 

Remark 3.  Cross-correlation between different feedforward parame-
ters, which is commonly observed for motion systems [28], is directly 
enabled by setting 𝑘𝑖𝑗 ≠ 0 ∀𝑖 ≠ 𝑗.

Since the kernel-regularized estimates of the feedforward parameter 
functions are estimated in the possibly infinite dimensional space ℋ , 
the function estimates are not restricted to a specific class of functions 
and are thus capable of modeling any feedforward parameter function.

Although the feedforward parameter functions are modeled in a 
possibly infinite dimensional space ℋ , it admits a finite-dimensional 
solution through the representer theorem [20, (63)] 

𝜃𝛥𝑗
(

𝜌∗
)

=
𝑁−1
∑

𝑘=0
𝐾

(

𝜌∗, 𝜌𝑗 (𝑘)
)

𝜓⊤
(

𝑟𝑗 (𝑘)
)

̂
(

𝜌𝑗
)

𝑐𝑗 (𝑘), (14)

where kernel function matrix 𝐾(𝜌∗, 𝜌𝑗 (𝑘)) ∈ R𝑛𝜃×𝑛𝜃  is determined with 
(13). The (modified) representers 𝑐𝑗 =

[

𝑐𝑗 (0) 𝑐𝑗 (1) ⋯ 𝑐𝑗 (𝑁 − 1)
]⊤

∈ R𝑁  are given by [20, (64) and (70b)] 

𝑐 =
(

𝐽 𝛹 𝐾 𝛹⊤𝐽⊤ + 𝛾𝐼
)−1

𝑒 , (15)
𝑗 𝑗 𝑗 𝑗 𝑗 𝑗 𝑁 𝑗
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with convolution matrix 𝐽𝑗 ∈ R𝑁×𝑁  of LPV system ̂  evaluated at 
the measured scheduling sequence 𝜌𝑗 using (3), and the kernel matrix 
𝐾𝑗 ∈ R𝑁𝑛𝜃×𝑁𝑛𝜃  is evaluated by

𝐾𝑗 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐾
(

𝜌𝑗 (0), 𝜌𝑗 (0)
)

𝐾
(

𝜌𝑗 (0), 𝜌𝑗 (1)
)

⋯ 𝐾
(

𝜌𝑗 (0), 𝜌𝑗 (𝑁−1)
)

𝐾
(

𝜌𝑗 (1), 𝜌𝑗 (0)
)

𝐾
(

𝜌𝑗 (1), 𝜌𝑗 (1)
)

⋯ 𝐾
(

𝜌𝑗 (1), 𝜌𝑗 (𝑁−1)
)

⋮ ⋮ ⋱ ⋮
𝐾

(

𝜌𝑗 (𝑁−1) , 𝜌𝑗 (0)
)

𝐾
(

𝜌𝑗 (𝑁−1) , 𝜌𝑗 (1)
)

⋯ 𝐾
(

𝜌𝑗 (𝑁−1) , 𝜌𝑗 (𝑁−1)
)

⎤

⎥

⎥

⎥

⎥

⎦

.

(16)

Note that the feedforward parameters for the next trial in (14) are 
calculated based on the scheduling sequence measured in the current 
trial. The basis function matrix 𝛹𝑗 ∈ R𝑁×𝑁𝑛𝜃  is constructed such that 
𝑓𝑗 = 𝛹𝑗𝜃𝑗 as 

𝛹𝑗 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜓
(

𝑟𝑗 (0)
)

0 ⋯ 0
0 𝜓

(

𝑟𝑗 (1)
)

⋯ 0
⋮ ⋮ ⋱ ⋮
0 ⋯ 0 𝜓

(

𝑟𝑗 (𝑁 − 1)
)

⎤

⎥

⎥

⎥

⎥

⎦

. (17)

The feedforward parameters for the next trial (10) are estimated by 
propagating the feedforward update using the representer theorem (14) 
over the trials, resulting in 

𝜃𝑗+1
(

𝜌∗
)

=
𝑗
∑

𝑖=0

𝑁−1
∑

𝑘=0
𝐾

(

𝜌∗, 𝜌𝑖(𝑘)
)

𝜓⊤
(

𝑟𝑖 (𝑘)
)

̂
(

𝜌𝑖
)

𝑐𝑖(𝑘). (18)

Kernel-regularized learning of LPV feedforward parameter functions 
in (18) estimates the functions without restricting the dependence on 
the scheduling sequence, while allowing for the incorporation of prior 
knowledge. 

Remark 4.  For the special case where the scheduling sequence during 
iterative learning is constant, i.e., 𝜌𝑗 (𝑘) = 𝜌(𝑘) ∀𝑗, the parameter update 
(18) simplifies to 

𝜃𝑗+1
(

𝜌∗
)

= 𝜃𝑗
(

𝜌∗
)

+
𝑁−1
∑

𝑘=0
𝐾

(

𝜌∗, 𝜌(𝑘)
)

𝜓⊤
(

𝑟𝑗 (𝑘)
)

̂ (𝜌) 𝑐𝑗 (𝑘). (19)

Remark 5.  The convergence of learning feedforward parameter func-
tions (18) is primarily influenced by

1. the quality of model ̂ ;
2. the choice of kernel functions in (13); and
3. the regularization coefficient 𝛾 in (12) and (15).

Generally, the regularization parameter 𝛾 can be increased to ensure 
convergence of the framework. For a trial-invariant basis function 
𝛹𝑗 = 𝛹 ∀𝑗 and scheduling sequence 𝜌𝑗 = 𝜌 ∀𝑗, which leads to 𝐽𝑗 =
𝐽 , 𝐾𝑗 = 𝐾 ∀𝑗, and no modeling uncertainty 𝐽 = 𝐽 , the propagation 
of feedforward parameters (18) and (19) is written in vector notation 
𝜃 =

[

𝜃(𝜌(0)) 𝜃(𝜌(1)) ⋯ 𝜃(𝜌(𝑁 − 1))
]⊤ as 

𝜃𝑗+1 = 𝜃𝑗 +𝐾𝛹⊤𝐽⊤
(

𝐽𝛹𝐾𝛹⊤𝐽⊤ + 𝛾𝐼𝑁
)−1 𝑒𝑗

= 𝛾
(

𝐾𝛹⊤𝐽⊤𝐽𝛹 + 𝛾𝐼𝑁𝑛𝜃
)−1

𝜃𝑗 + (…)𝑆
(

𝑟𝑗 − 𝜈𝑗
)

,
(20)

with 𝑒𝑗 from (6). Monotonic convergence of the feedforward param-
eters 𝜃𝑗+1 at the trial-invariant scheduling 𝜌 (20) is guaranteed if 
�̄�
(

𝛾
(

𝐾𝛹⊤𝐽⊤𝐽𝛹 + 𝛾𝐼𝑁𝑛𝜃
)−1

)

< 1 [32], with �̄� the largest singu-
lar value. Furthermore, ILC with basis functions and its associated 
convergence properties [32] are recovered by 𝐾 (𝜌∗, 𝜌) = 𝐼 and 𝛾 = 0.

Remark 6.  The robustness against modeling uncertainties of ILC [32] 
allows the use of LTI model ̂ (𝑞) instead of the LPV model ̂ (

𝜌
)

.
𝑗

4 
3.3. Design of Kernel functions

The developed update law requires the design of kernel functions 
𝑘𝑖𝑗 (𝜌∗, 𝜌) in matrix 𝐾 (𝜌∗, 𝜌) in (13). Many different kernel functions 
are possible, and the suitable choice depends on the problem at hand. 
Three examples of high-level properties that can be enforced on the 
feedforward parameters through the use of kernel functions are the 
following.

1. Constant feedforward parameter functions are realized by the 
constant kernel 
𝑘𝑐𝑖𝑗

(

𝜌∗, 𝜌
)

= 𝜎2, (21)

with hyperparameter 𝜎2 determining the average distance of the 
function to its mean.

Remark 7.  The constant kernel recovers LTI ILC with basis func-
tions [32], with parameters estimated using Tikhonov regularization 
for 𝛾 > 0 and without regularization for 𝛾 = 0.

2. Smooth feedforward parameter functions are estimated using the 
squared-exponential kernel 

𝑘𝑆𝐸𝑖𝑗
(

𝜌∗, 𝜌
)

= 𝜎2 exp
(

−
(𝜌∗ − 𝜌)2

2𝓁2

)

, (22)

where 𝜎2 has the same function as for the kernel (21), and the 
hyperparameter 𝓁 determines the level of smoothness of the 
estimated function.

3. Periodic feedforward parameter functions are realized through 
the periodic kernel 

𝑘𝑝𝑒𝑟𝑖𝑗
(

𝜌∗, 𝜌
)

= 𝜎2 exp

(

−
2 sin2 (𝜋 |𝜌∗ − 𝜌| ∕𝑝)

𝓁2

)

, (23)

where 𝜎2 and 𝓁 have the same role as in the squared-exponential 
kernel (22), and the hyperparameter 𝑝 forces the feedforward 
parameter functions to be periodic with period 𝑝.

In addition, multiple kernels can be combined such that they have the 
properties of various kernels, and can be trivially extended for multidi-
mensional inputs [34]. The choice of kernel functions is determined by 
the situation at hand, where several guidelines are given in Pillonetto 
et al. [20] and Rasmussen [34, Chapter 4]. Considering the timing-
belt system in Fig.  1, periodicity along the pulley circumference can 
be embedded in the feedforward parameter functions through the use 
of a periodic kernel. 

Remark 8.  The LPV feedforward signal should in some cases be 
dynamically dependent, meaning that it should be dependent on deriva-
tives or time-shifted values of 𝜌 [16,28]. The kernel functions can be 
straightforwardly extended by using these values as additional input to 
the kernel.

3.4. Procedure

The developed procedure that iteratively learns feedforward param-
eter functions through kernel-regularized estimation is summarized in 
Procedure  9.

Procedure 9 (Iterative kernel-regularized learning of LPV feedforward 
parameters). 
Inputs: Model ̂ , reference signal 𝑟𝑗 , choice of basis functions in 𝜓 , which 
(measured) signals are the scheduling sequence 𝜌𝑗 , kernel function matrix 
𝐾(𝜌∗𝑗 , 𝜌𝑗 ) from (13) and corresponding hyperparameters.

1. Initialize 𝜃0 (𝜌∗), e.g., 𝜃0 (𝜌∗) = 0 ∀𝜌∗.
2. For 𝑗 ∈ Z
[0,𝑁𝑡𝑟𝑖𝑎𝑙−1]
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Fig. 3. Reference 𝑟 ( ), scaled reference velocity �̇� ( ), and scaled reference 
acceleration ( ) applied to the experimental setup.

(a) Compute basis functions 𝜓(𝑟𝑗 (𝑘)) in (7) using the reference 
𝑟𝑗 (𝑘), and construct basis function matrix 𝛹𝑗 using (17).

(b) Compute 𝑓𝑗 (𝑘) with (7).
(c) Apply 𝑓𝑗 (𝑘) and 𝑟𝑗 (𝑘) to the system in Fig.  2, and measure 

error 𝑒𝑗 (𝑘) and scheduling sequence 𝜌𝑗 (𝑘).
(d) Construct convolution matrix 𝐽𝑗 using (3) with model ̂  and 

measured scheduling sequence 𝜌𝑗 (𝑘). 

• If no LPV model is available, set ̂ (

𝜌𝑗
) to an LTI 

approximate, i.e., ̂ (𝑞).

(e) Determine kernel matrix 𝐾𝑗 based on measured scheduling 
sequence 𝜌𝑗 using (16).

(f) Calculate the representers 𝑐𝑗 for trial 𝑗 using (15).
(g) Compute the feedforward parameters for the next trial 𝑗 +

1 based on the current measured scheduling sequence 𝜌𝑗 , 
meaning 𝜃𝑗+1(𝜌𝑗 (𝑘)), using (18).

4. Experimental setup characterization

In this section, the experimental setup is introduced and char-
acterized, leading to an appropriate parameter-varying feedforward 
parameterization, hence contributing to C3. Specifically, several pre-
liminary experiments are performed to determine which feedforward 
structure and kernels will be used.

4.1. Experimental setup

The experimental setup considered is a 1 degree-of-freedom belt-
driven carriage, which is mounted on a linear guide, as shown in 
Section 2.1 and Fig.  1. The BLAC motor is equipped with a rotary 
encoder having a resolution of 8192 counts per revolution, in addition 
to a linear encoder on the linear guide with a resolution of 100 nm. The 
timing belt has a tooth pitch of 2 mm, which is made of rubber with 
an added carbon fiber core for additional stiffness. The pulleys have 
15 teeth per revolution, and hence, a circumference of 0.03 m. The 
distance between the pulleys is 𝐿 = 0.3 m. The goal is to track a third-
order scanning motion with the carriage using the input to the motor 
𝑢, consisting of a large constant velocity part, which is seen in Fig.  3. 
The performance is evaluated during constant velocity, since this type 
of drivetrain is typically used in scanning applications such as printing 
systems.

The control scheme in Fig.  2 is used, where the LTI feedback 
controller is a discrete-time lead filter with an additional low-pass filter 
described by the transfer function 

(𝑞) = 2169𝑞−1 − 381𝑞−2 − 1747𝑞−3

1 − 2.421𝑞−1 + 1.961𝑞−2 − 0.5337𝑞−3
. (24)

The settings during experimentation are shown in Table  1.
5 
Table 1
Experimental settings.
 Variable Abbreviation Value Unit  
 Sampling time 𝑇𝑠 2.5 ⋅ 10−4 s  
 Number of samples N 4630 –  
 Reference stroke – 0.171 m  
 Maximum velocity – 0.2 m/s  
 Maximum acceleration – 4 m/s2 

Fig. 4. During constant velocity ( ), the experimental tracking error for 5 repetitions 
of the reference in Fig.  3 with zero feedforward 𝑓𝑗 = 0 ( ) and their sample mean 
( ) show highly repeatable position-dependent effects.

4.2. Characterization of position-dependent dynamics

The tracking error with zero feedforward 𝑓𝑗 = 0 for 5 repetitions 
of the reference in Fig.  3 is shown in Fig.  4. The following is observed 
from the tracking error in Fig.  4.

• The tracking error is highly repeatable, and hence, an iterative 
approach is suitable.

• The large offset in the tracking error indicates that both Coulomb 
and viscous friction feedforward might be necessary.

• During acceleration, the error reaches its maximum, motivating 
the need for acceleration feedforward.

• The tracking error has a period of 0.15 s during a constant 
velocity of 0.2 m/s, resulting in a spatial period of 0.03 m, which 
is the circumference of the pulley.

The spatial periodic effect is further analyzed with a power spec-
trum of the tracking error during constant velocity as a function of the 
number of pulley revolutions in Fig.  5. The spatial power spectrum 
shows that during constant velocity, the error is dominated by the 
zero frequency, the fundamental frequency [1/rev], its second har-
monic [2/rev] and marginally by its fourth harmonic [4/rev]. The 
zero frequency contribution is mainly caused by the lack of Coulomb 
friction feedforward, which is also seen from the constant offset of the 
tracking error in Fig.  4. The fundamental frequency, and second and 
fourth harmonic are most likely caused due position-dependent effects 
introduced by pulley out-of-roundness or motor cogging.

5. Experimental application

In this section, both LTI feedforward control and the developed LPV 
feedforward control methods are compared on the experimental setup, 
further contributing to C3. Both the learning procedure and the tracking 
results are shown.
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Fig. 5. Power spectrum of the tracking error during constant velocity for 5 times 
tracking the reference in Fig.  3 with zero feedforward 𝑓𝑗 = 0 ( ) and their sample 
mean ( ) shows highly repetitive behavior in spatial domain.

Fig. 6. The LTI model ̂(𝑞) ( ) is constructed to approximate the measured frequency 
response function ( ) of the experimental belt-driven carriage.

5.1. Experimental learning settings

The model of the process sensitivity ̂  is determined by using a sim-
plified LTI model of the system  in feedback with the controller  in 
(24). The simplified LTI model ̂ is determined by using the measured 
frequency response function in Fig.  6. As a result, the simplified LTI 
model ̂ consists of a mass with a damper attached to the fixed world, 
and is discretized with a zero order hold, resulting in 

̂(𝑞) = 2.82𝑞−1 + 2.798𝑞−2

1 − 1.978𝑞−1 + 0.9775𝑞−2
⋅ 10−8. (25)

After interconnecting ̂ with the controller  from (24), the LTI model 
of the process sensitivity is 

̂ (𝑞) =
2.82𝑞−1 − 4.029𝑞−2 − 1.244𝑞−3 + 3.982𝑞−4 − 1.493𝑞−5

1 − 4.399𝑞−1 + 7.727𝑞−2 − 6.779𝑞−3 + 2.972𝑞−4 − 0.522𝑞−5 ⋅ 10−8.

(26)

The reference tracking task is constant during learning 𝑟𝑗 = 𝑟 ∀𝑗
and the same as in Section 4.1, shown in Fig.  3. The reference signal is 
used as scheduling sequence 𝜌𝑗 = 𝑟 ∀𝑗, since this is relatively close to 
the position of the carriage 𝑦, and it is known in advance of the tracking 
experiment.

The observations in Section 4.2 motivate using viscous friction, 
Coulomb friction, and acceleration feedforward in (7), which is widely 
applied in feedforward control [35], i.e., 

𝑓 (𝑘) = 𝜃𝑎 (𝜌 (𝑘)) �̈� (𝑘) + 𝜃𝑣 (𝜌 (𝑘)) �̇� (𝑘) + 𝜃𝑐 (𝜌 (𝑘)) sign (�̇� (𝑘)) , (27)
𝑗 𝑗 𝑗 𝑗

6 
Fig. 7. Surface plot of kernel function 𝑘𝑝𝑒𝑟22 (𝜌
∗ , 𝜌) evaluated at a scheduling sequence 

𝜌∗, 𝜌 ∈ R[0.08,0.16] ( ), which enforces a smooth and periodic function having a period of 
𝑝 = 0.03 m.

with discrete-time derivatives �̈�(𝑘) and �̇�(𝑘). The corresponding basis 
functions and feedforward parameters from (7) are 

𝜓 (𝑟 (𝑘)) =
[

(

𝑞−𝑞−1
2𝑇𝑠

)2
𝑟(𝑘) 𝑞−𝑞−1

2𝑇𝑠
𝑟(𝑘) sign

(

𝑞−𝑞−1
2𝑇𝑠

𝑟(𝑘)
)

]

,

𝜃𝑗 (𝜌 (𝑘)) =
[

𝜃𝑎𝑗 (𝜌 (𝑘)) 𝜃𝑣𝑗 (𝜌 (𝑘)) 𝜃𝑐𝑗 (𝜌 (𝑘))
]⊤
,

(28)

where discrete-time derivatives �̈�(𝑘) and �̇�(𝑘) from (27) are computed 
using the central difference. The 3 × 3 kernel function matrix (13) is 
defined such that the estimated feedforward parameters 𝜃𝑗 (𝜌 (𝑘)) do 
not correlate, and the acceleration and Coulomb friction feedforward 
parameter functions are enforced to be constant using the kernel (21), 
i.e., 

𝐾
(

𝜌∗, 𝜌
)

=
⎡

⎢

⎢

⎣

𝑘𝑐 (𝜌∗, 𝜌) 0 0
0 𝑘22 (𝜌∗, 𝜌) 0
0 0 𝑘𝑐 (𝜌∗, 𝜌)

⎤

⎥

⎥

⎦

. (29)

The hyperparameters of the constant kernels for the acceleration and 
coulomb friction feedforward parameter functions are respectively 𝜎2 =
1 and 𝜎2 = 3. The amount of trials is set to 10 and the regularization 
coefficient 𝛾 from (12) to 𝛾 = 5 ⋅ 10−5.

LTI feedforward control and the developed LPV feedforward con-
trol are compared by using a constant or varying viscous friction 
feedforward parameter function. Specifically, the compared methods 
use the following kernel functions for the viscous friction feedforward 
parameter.

• LTI feedforward: constant kernel from (21), 𝑘22 (𝜌∗, 𝜌) = 𝑘𝑐 (𝜌∗, 𝜌),
with hyperparameter 𝜎2 = 20.

• LPV feedforward: periodic kernel from (23), 𝑘22 (𝜌∗, 𝜌) = 𝑘𝑝𝑒𝑟22
(𝜌∗, 𝜌), with hyperparameters 𝜎2 = 20, 𝓁 = 1 m and 𝑝 = 3 ⋅ 10−2 m.

Note that the LTI feedforward approach recovers ILC with basis func-
tions, where the feedforward parameters are estimated using Tikhonov 
regularization, see Remark  7. The spatial periodic effect of the tracking 
error in Section 4.2 motivates to select 𝑘22 being periodic in the pulley 
circumference. A surface plot of the kernel function 𝑘𝑝𝑒𝑟22  is shown in Fig. 
7. LTI feedforward control recovers LTI ILC with basis functions [33], 
where Tikhonov regularization is used to estimate the feedforward 
parameters.

5.2. Experimental results

The learned viscous, Coulomb, and acceleration feedforward pa-
rameter functions are shown in Figs.  8 and 9, which demonstrate that 
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Fig. 8. Feedforward parameter function 𝜃𝑣𝑗 (𝜌(𝑘)) over the trials estimated by the 
developed LPV feedforward method ( ) and LTI feedforward method 𝜃𝑣𝑗  ( ).

Fig. 9. Constant feedforward parameters 𝜃𝑐𝑗  and 𝜃𝑎𝑗  estimated by LTI feedforward 
control ( ) and LPV feedforward control ( ).

the learning has converged. The viscous friction feedforward parameter 
function clearly shows the periodic behavior enforced by the periodic 
kernel. The Coulomb friction and acceleration feedforward parame-
ters do not show any significant difference between the LTI and LPV 
feedforward methods.

The converged feedforward signal in the final trial from (27) using 
the feedforward parameters from Figs.  8 and 9 for the reference in Fig. 
3 is shown in Fig.  10.

The converged reference tracking performance is illustrated through 
the Root-Mean-Squared (RMS) tracking errors in Fig.  11, the tracking 
error in the final trial in Fig.  12, and the power spectrum of the 
final tracking error in Fig.  13. In addition, several error metrics that 
are particularly relevant for systems performing scanning motions, 
including the RMS and maximum value of the error during constant 
velocity 𝑒𝑣𝑗 , are presented in Table  2. The following observations are 
made concerning the tracking performance.

• The RMS error during constant velocity in the final trial is 43% 
lower for LPV feedforward than for LTI feedforward as shown in 
Fig.  11 and Table  2.

• The maximum absolute error in the final trial ‖
‖

𝑒10‖‖∞ during 
constant velocity improved by 25% by using LPV feedforward 
compared to LTI feedforward, as illustrated in Fig.  12 and Table  2.
7 
Fig. 10. The feedforward signal during the final trial 𝑓10 shows the periodic effect 
obtained by the LPV feedforward signal ( ) compared to the LTI feedforward signal 
( ).

Fig. 11. The RMS error during constant velocity 𝑒𝑣𝑗  converges faster and to a lower 
value for the developed iterative kernel-regularized estimates of LPV parameters ( ) 
compared to the LTI feedforward parameters ( ).

Fig. 12. During constant velocity ( ), the tracking error in the final trial 𝑒10 is reduced 
by the developed iterative kernel-regularized estimates of LPV feedforward parameters 
( ) compared to the LTI feedforward parameters ( ).

• The amplitude of the first and second harmonic are decreased by 
respectively a factor 6 and 2.3 in terms of their power, as shown 
in Fig.  13 and Table  2.

The observations show that learning feedforward parameter functions 
using the developed iterative kernel-regularized estimator increases 
performance significantly for motion systems.
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Fig. 13. The power of the tracking error for the final trial 𝑒10 is significantly lower 
for the developed LPV feedforward control ( ) compared to LTI feedforward control 
( ) and zero feedforward 𝑓𝑗 = 0 ( ).

Table 2
Experimental error metrics during constant velocity for LTI and LPV feedforward.
 Metric LTI LPV Unit  
 ‖𝑒𝑣10‖2∕

√

𝑁 3.85 ⋅ 10−5 2.2 ⋅ 10−5 [m]  
 ‖𝑒𝑣10‖∞ 8.1 ⋅ 10−5 6.1 ⋅ 10−5 [m]  
 Power 𝑒𝑣10 (1/rev) 8.65 ⋅ 10−10 1.44 ⋅ 10−10 [m2] 
 Power 𝑒𝑣10 (2/rev) 2.54 ⋅ 10−10 1.10 ⋅ 10−10 [m2] 

6. Conclusions

The results in this paper enable data-driven learning of parameter-
variations in feedforward control, which can significantly improve the 
tracking performance of LPV systems. The key idea is to iteratively 
learn LPV feedforward parameter functions using kernel-regularized es-
timation. Kernel-regularized function estimation is advantageous since 
it is non-parametric, meaning no specific structure needs to be enforced 
on the dependency on the scheduling sequence. The iterative learning 
approach directly optimizes the tracking error, which enhances the es-
timation quality without the need for accurate system models. The de-
veloped framework is experimentally validated on a belt-driven motion 
system, demonstrating effective compensation of position-dependent 
drivetrain dynamics. The developed method demonstrates significant 
potential for industrial applications, particularly in mechatronic sys-
tems, by enabling improved tracking performance.

Future work includes experimental comparison of the developed 
framework to other LPV or non-linear feedforward control approaches.
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