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Indoor Smartphone SLAM With Acoustic Echoes
Wenjie Luo , Qun Song , Member, IEEE, Zhenyu Yan , Member, IEEE, Rui Tan , Senior Member, IEEE,

and Guosheng Lin , Member, IEEE

Abstract—Indoor self-localization has become a highly desir-
able system function for smartphones. The existing systems based
on imaging, radio frequency, and geomagnetic sensing may have
sub-optimal performance when their limiting factors prevail. In
this paper, we present a new indoor simultaneous localization and
mapping (SLAM) system that is based on the smartphone’s built-in
audio hardware and inertial measurement unit (IMU). Our system
uses a smartphone’s loudspeaker to emit near-inaudible chirps
and then the microphone to record the acoustic echoes from the
indoor environment. The echoes contain the smartphone’s loca-
tion information with sub-meter granularity. To enable SLAM,
we apply contrastive learning to train an echoic location feature
(ELF) extractor, such that the loop closures on the smartphone’s
trajectory can be accurately detected from the associated ELF
trace. The detection results effectively regulate the IMU-based
trajectory reconstruction. The reconstructed trajectories are used
for trajectory map superimposition and room geometry reconstruc-
tion. Extensive experiments show that our SLAM achieves median
localization errors of 0.1 m, 0.53 m, and 0.4 m in a living room, an
office, and a shopping mall, and outperforms both the Wi-Fi and
geomagnetic SLAM systems. The room geometry reconstruction
achieves up to 4× lower errors compared with the latest echo-based
approaches.

Index Terms—Simultaneous localization and mapping (SLAM),
contrastive learning, acoustic sensing.

I. INTRODUCTION

LOCATION awareness is a fundamental requirement for
mobile operating systems. As of 2023, more than 70% of
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the top 100 Android apps require location information. Various
smartphone’s built-in sensing modalities, including Wi-Fi [1],
BLE [2], GSM [3], FM radio [4], visible light [5], imaging [6],
acoustic background [7], and geomagnetism [8] have been
exploited for indoor location sensing. However, these sensing
modalities have their own limiting factors. For instance, ra-
dio frequency (RF) signals are susceptible to electromagnetic
noises. Visible light sensing suffers blockage. Visual imag-
ing may incur privacy concerns in certain spaces and times.
The acoustic background only provides room-level granularity.
Therefore, exploiting new modalities based on smartphones’
built-in hardware to enrich location-sensing services has been
an interest of research.

Using a smartphone’s audio system for active indoor location
sensing receives increasing research interest [9], [10], [11], [12],
[13], [14]. The active sensing uses smartphone’s loudspeaker to
emit excitation signals in the target indoor space and microphone
to capture the acoustic echoes that carry location information.
The existing approaches for location sensing can be divided into
two categories. The analytic approach [12], [13], [14] analyzes
the sound reflection processes from nearby surfaces (e.g., walls)
for location estimation. However, when the indoor spaces are
complicated (e.g., with irregular surfaces, many nearby objects
with complex structures, etc), accurate object association be-
comes intractable. Thus, the existing analytic approaches often
make simplifying assumptions that the major reflectors are at
most two nearby walls [12], [13], [14]. The fingerprint ap-
proach [9], [10], [11] uses the echoes captured by the smartphone
as the fingerprints of the locations and then applies supervised
machine learning to build localization models. However, finger-
print data collection at spatially fine-grained locations incurs a
high overhead. Thus, the existing studies focus on room-level
location sensing [9], [11] or recognize a limited number of
locations (11 closed locations in [10]).

Nevertheless, the fingerprint approach exhibits the potential
to offer good generalizability as it does not make specific
assumptions about the surroundings. To investigate whether
satisfactory resolutions can be maintained when the number of
fingerprinted locations increases, we conduct a measurement
study of fingerprinting 128 locations using active sensing in
a 16× 28 m2 office. We train a recognition model using la-
beled data. Results show that the fingerprint approach achieves
sub-meter location sensing accuracy. Thus, acoustic echo is a
promising modality for building indoor localization services on
smartphones.

To unleash the fingerprint approach from the laborious train-
ing data collection process, in this paper, we aim to design a
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simultaneous localization and mapping (SLAM) system using
the smartphone’s inertial measurement unit (IMU) data and the
acoustic echoes collected by the microphone. Specifically, when
a user carrying the smartphone moves in the indoor space, if
he/she returns to a previously visited location, the user trajectory
forms a loop closure. If the loop closures can be correctly
detected using the acoustic echo, the IMU-based dead reckoning
result, which is prone to sensor errors, can be regulated to obtain
an accurate trajectory. As a result, the reconstructed trajectory
and the associated echo data form a trajectory map.

As a key step of SLAM, loop closure detection requires an
effective feature embedding to determine if two echo samples
are collected at the same/different locations. However, it is
challenging to find such an effective embedding for acoustic
echoes. Our experiments show that the generic acoustic features,
e.g., power spectral density (PSD), spectrogram, and principal
component analysis (PCA), are ineffective for location dis-
crimination. Thus, we resort to finding an effective embedding
using deep neural networks (DNNs). The embeddings learned
via supervised learning become ineffective on the data out of
the training dataset. Differently, contrastive learning (CL) is a
self-supervised learning technique that constructs effective em-
beddings from unlabeled data. Applied to our SLAM problem,
CL can be used to learn an acoustic representation from the
unlabeled echo data and only requires the information of whether
two echoes are collected at close locations. Thus, we apply CL
to train a feature extractor that outputs a new representation
called echoic location feature (ELF). Then, we compute ELFs’
similarity to detect loop closures.

We make the following four designs to realize the ELF-based
SLAM. First, we design a trajectory-level CL procedure to
learn the trajectory-specific ELFs for loop closure detection.
It consists of pre-training a basic ELF extractor based on the
incremental learning scheme, and fine-tuning the extractor for
target room adaptation using limited unlabeled echoes. Second,
we design a loop closure curation approach to remove the false
positives by exploiting prior knowledge of the user’s movement.
Third, we design a floor-level CL procedure to superimpose
the crowdsourced trajectory maps to form a single floor map.
The procedure can effectively reconcile the differences among
the ELFs from multiple trajectory maps at the same spot caused
by the smartphone orientation. Lastly, we use the echoes to
estimate the wall distances and then leverage the estimated
distances and the rectified user trajectory for room geometry
reconstruction.

The main contributions of the paper are:
� We conduct extensive measurement studies to investigate

the spatial property of the acoustic echo. The acoustic
echo exhibits a sub-meter spatial resolution limit and is
promising for designing an accurate indoor location sens-
ing system.

� We design CL and learn ELFs for loop closures detection.
We further design ELF-SLAM using IMU data and learned
ELFs on a smartphone. We also apply CL to superimpose
the crowdsourced trajectory maps.

� We leverage the reconstructed trajectory and estimate the
wall distance for room reconstruction. Evaluations show

that our system outperforms the existing echo-based room
reconstruction systems.

� We conduct extensive experiments in various indoor envi-
ronments. ELF-SLAM achieves sub-meter mapping and
localization accuracy and outperforms SLAM systems
based on Wi-Fi and geomagnetism. We also study the
allowable intensities and/or needed mitigation for various
practical affecting factors, including nearby people, audi-
ble noises, and space layout changes.

Paper Organization: Section II reviews related work. Sec-
tion III presents the measurement study. Section IV presents the
ELF-SLAM design. Section V presents room geometry recon-
struction. Section VI presents evaluation results. Section VII
discusses several potential approaches to improve the system.
Section VIII concludes the paper.

II. RELATED WORK

� Acoustics-based indoor location sensing: The ubiquity of
speakers and microphones on consumer electronics has pro-
moted acoustics-based indoor location sensing in the last few
decades [17]. In [18], [19], [20], a device’s indoor position can be
estimated by receiving and analyzing the sound emitted from the
deployed acoustic beacons. However, the infrastructure-based
approaches may incur the undesirable overhead of deploying
dedicated sound beacons or receivers. Thus, we mainly review
infrastructure-free approaches as summarized in Table I. The
analytic approach analyzes the sound propagation processes for
location sensing. It either senses the sounds from the external
source or generates probing signals and analyzes the echoes.
VoLoc [15] uses a speaker to detect the angle of arrival of the
user’s voice for localization. EchoSpot [14] uses a device to emit
near-inaudible signals and analyze the signals’ times of flight
reflected off the human body. However, Voloc and EchoSpot
require prior knowledge of the sound reflectors for triangulation.
Another application of the analytic approach is indoor mapping,
which estimates the wall distances to the smartphone. To build
the room contour, studies [12], [13] require a user to walk along
the walls for data collection. Then, the IMU data is used to
construct the user trajectory and the echo data is used to estimate
the wall distances. These two studies presume an accurate IMU-
based trajectory. However, IMU-based dead reckoning is prone
to sensor errors and subject to error accumulation problems.
In this work, we reconstruct the room based on the accurate
trajectory reconstructed by the proposed ELF-based SLAM.

The fingerprint approach collects acoustic echoes from dif-
ferent spots of a room and trains recognition models for loca-
tion inference [7], [9], [10], [11], [16]. Early studies [7], [9],
[16] apply conventional feature engineering and require either
long data collection time that may incur privacy concerns or
full-spectrum recording that is susceptible to interference like
ambient noise [11]. DeepRoom [11] applies deep learning to
reduce the requirements on recording time and spectrum usage.
The studies [7], [9], [11], [16] address semantic or room-level
location sensing. EchoTag [10] uses echoic fingerprints to tag up
to 11 spots at centimeter spatial resolution. When the fingerprint
approach is extended to a large indoor space, the blanket process
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TABLE I
SUMMARY OF INFRASTRUCTURE-FREE ACOUSTIC INDOOR LOCALIZATION AND MAPPING

Fig. 1. (a) Probing signal: a logarithmic chirp sweeping the 15–20 kHz band
within 10 ms; (b) Recorded time-series echoes; (c) Correlated result using the
received echo and probing signal template.

of collecting labeled training data at dense locations incurs high
overhead.

Besides location sensing, acoustic echo has been used for
other applications. A detailed review can be found in [21].
� SLAM: A SLAM system can construct the indoor map and

localize the user device simultaneously based on a certain signal.
Here, we review existing SLAM systems according to the used
sensing modalities. Radar SLAM [22], mmWave SLAM [23],
and Lidar SLAM [24] are based on point clouds generated by
radar, mmWave and high-profile lidar, which are unavailable
on most smartphones. Visual SLAM [25] uses imaging for
landmark detection and map construction. The imaging may in-
troduce privacy concerns. Wi-Fi SLAM [26] detects the received
signal strength indicators (RSSIs) from nearby Wi-Fi access
points. However, Wi-Fi RSSI is time-varying. Geomagnetic
SLAM [27] exploits the spatially varying magnetic field. Elec-
tromagnetic radiation (EMR) SLAM [28] uses the smartphone’s
earphone as a side-channel sensor to sense the EMR from
the powerlines. However, side-channel sensing may experience
weak signal strength if the earphone is far from the powerlines.
This paper employs geomagnetic, EMR, and Wi-Fi SLAMs as
the main baselines for evaluation.

Compared with the previous work [21], several major ex-
tensions are made in this paper. First, a new model pre-training

scheme based on incremental learning is proposed. The new
training scheme addresses the lack of training data and allows
the model to be updated incrementally with small datasets.
Second, the impact of model pre-training and fine-tuning on
ELF-SLAM is comprehensively evaluated. The results show
that both steps are essential to learn effective ELFs. Third,
an in-depth analysis of the spatial resolution of WiFi RSSI,
geomagnetism, and ELFs is provided. Lastly, a new case study of
room geometry reconstruction based on the rectified trajectory
and the echoes is presented. The room geometry reconstruction
performance is shown to outperform the existing echo-based
room reconstruction systems.

III. MEASUREMENT STUDY

A. Signal Design and Processing

� Probing signal: In this paper, we use a smartphone to
emit a near-inaudible logarithmic chirp sweeping the 15–20 kHz
band within 10 ms as the probing signal for location sensing, as
shown in Fig. 1(a). The 15–20 kHz frequency range causes little
annoyance to humans. A wide bandwidth (i.e., 5 kHz) also ben-
efits pulse compression [29], which helps capture finer-grained
spatial features. In addition, we apply a Hanning window on
the chirp to reduce the damped oscillation of the speaker and
increase the signal-to-noise ratio (SNR) that benefits distance
measurement.
� Echo extraction: We develop an application that uses

the smartphone’s loudspeaker to emit the probing signal and
microphone to record the 100 ms echo at 44.1 ksps. We assume
the smartphone is held around 30 to 40 cm in front of the chest.
Ideally, the speaker and the microphone should be unobtrusive.
In the received data, we discard the first 10 ms due to the direct
propagation from the loudspeaker to the microphone. We also
discard the subsequent 1 ms data, which usually contains the
echoes reflected by the human body that is around 30− 40 cm
apart from the smartphone. The subsequent 50 ms data, which
are collectively referred to as echo trace and illustrated in
Fig. 1(b), are used for location recognition. Fig. 1(c) shows
the cross-correlated result between the received signal shown in
Fig. 1(b) and the chirp template. The peaks in Fig. 1(c) represent
echoes generated from the nearby sound reflectors.
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LUO et al.: INDOOR SMARTPHONE SLAM WITH ACOUSTIC ECHOES 6637

Fig. 2. Spectrograms of echoes received at three spots. The spots of (a) and
(b) are 10 cm apart from each other; the spot of (c) is 2 m apart from those of (a)
and (b).

� Acoustic spectrogram extraction: We apply short-time
Fourier transform (STFT) on echo data to extract the acous-
tic spectrogram feature. Specifically, a 96-point Hann win-
dow with a step length of 48 points is slid on echo data,
resulting in a 49× 48 spectrogram. The frequency bins that
are below 15 kHz are discarded, yielding a 12× 48 image
as the final result. Fig. 2 shows the generated spectrograms,
the spectrograms at far-part locations exhibit significant differ-
ences. The horizontal axis represents the echo length, which is
50 ms. The vertical axis represents the chirp frequency, which
ranges from 15 to 20 kHz. The noticeable differences among
the spectrograms suggest that collected echoes vary at different
spots.

B. Spatial Distinctness of Echoes

To gain insights into acoustic echoes, we conduct a set of
measurement studies in a 16× 28 m2 lab space. We use a
Google Pixel 4 smartphone to excite the space at 128 spots and
collect 1,700 data samples at each spot. To understand echo’s
distinctness limit, we use a supervised learning approach to
investigate the achievable spatial resolution and scalability with
respect to the number of spots. The analysis results are presented
as follows.
� Spatial resolution: For each location, 1,700 spectrograms

are collected and split into training and testing data at an 8:2 ratio.
The spot’s spatial locations are used as ground truth labels. To
understand how the inter-spot distance affects location recogni-
tion accuracy, we divide the 128 spots into multiple groups with
different densities. As a result, the average inter-spot distances
of the groups range from 0.25 m to 3 m. For each group, we
use spectrograms to train a recognition model. We opt to use
the ResNet model [30], which is a popular DNN architecture
used for image recognition. Specifically, we select ResNet-18,
a ResNet variant that achieves high recognition accuracy while
maintaining a relatively low model complexity for echo data.
The spot recognition accuracy and the mean localization error
are both measured. Fig. 3(a) shows the measured results with
respect to the average inter-spot distance. The evaluation is
repeated multiple times to get the error bars. The recognition
accuracies stay around 90% and the localization errors remain
less than 1 m. The results suggest that the acoustic echoes can
achieve sub-meter spatial resolution with increased inter-spot
distance.
� Scalability: To gain an understanding on acoustic echo’s

scalability, we gradually increase the number of spots handled

Fig. 3. Acoustic echoes’ spatial distinctness.

Fig. 4. PSDs of the echoes when several factors vary.

by a single DNN model (denoted by k). For each k setting,
we randomly draw k spots from the 128 spots, train and test
a DNN model. The process is repeated 20 times for each k
setting. Fig. 3(b) shows the results. The recognition accuracy
gradually decreases withk and becomes flat whenk exceeds 100.
This result complies with the understanding that the complexity
of deep learning increases with the class numbers. The mean
localization error also remains within 1 m. The results suggest
that a DNN model does not present a bottleneck when the
number of spots increases.

C. Robustness of Acoustic Echoes

This section studies the robustness of acoustic echoes against
several potential affecting factors.
� Altitude: We ask a user to hold the phone at different

altitudes to simulate the users with different heights. As typical
adult heights are within 150–194 cm [31] and we assume the
phone is held at two-thirds of user height. The phone’s altitude to
the ground is around 100 cm to 130 cm. Fig. 4(a) shows the PSDs
of the acoustic echoes. We can see that the altitude variations of
less than 30 cm introduce little impact on echo PSDs. Hence, the
acoustic echoes are robust to the user height and hand altitude
variations.
� Phone orientation: As a smartphone’s loudspeaker and

microphone are not omnidirectional, the received signal at the
same spot could be affected by the phone’s orientation. Fig. 4(b)
shows the echo PSDs when the phone has orientation deviations
from −20◦ to 20◦. The results show that the orientation devia-
tions within 40◦ do not introduce many changes on the collected
echoes. However, the echoes exhibit larger differences when
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Fig. 5. Overview of ELF-SLAM. It consists of three parts, namely, trajectory map construction, trajectory map superimposition, and room geometry construction.

the orientation deviation increases. Thus, the impact of phone
orientation must be taken into consideration when multiple echo
traces collected at the same spot are in different orientations. We
address the phone orientation issue in Section IV-E.
� Temporal stability: We evaluate acoustic echoes’ temporal

stability at a fixed location over one month. The layout of the
room has no significant changes in this period. From Fig. 4(c),
the echo PSDs remain consistent over time. In practice, the con-
structed floor map can be updated whenever a user contributes
a trajectory map. In Appendix B, available online, we further
evaluate the impact of significant layout changes on our system
and a mitigation approach beyond map update.

IV. DESIGN OF ELF-SLAM

The spatial distinctness of acoustic echoes shown in the
measurement study is the basis of the fingerprint approach. To
unleash the fingerprint approach from laborious training data
collection, we design ELF-SLAM based on acoustic echoes and
IMU data captured by a smartphone.

A. Approach Overview

Fig. 5 illustrates the overview of ELF-SLAM. The mapping
phase of ELF-SLAM consists of trajectory map construction
and trajectory map superimposition: The former focuses on a
single trajectory and the latter combines available trajectories
such that the combined map can cover the mostly visited spots
in the target space.
�Trajectory map construction: The acoustic echoes and IMU

data are collected simultaneously using the developed program
on the phone. The IMU-based dead reckoning [32] is used to
reconstruct the user’s trajectory and loop closures are detected
using the collected acoustic echoes. The dead reckoning relies
on the regulation provided by the loop closure to combat its
long-run drifting problem. Due to the ineffectiveness of generic
acoustic features, ELF-SLAM extracts a custom ELF using CL
for loop closure detection. This trajectory-level CL consists of
model pre-training that is based on incremental learning and
fine-tuning using genuine data collected in the target space.
ELF-SLAM detects loop closures based on a proposed similar-
ity metric called echo sequence similarity (ESS) between two
sequences of ELF traces. Then, a clustering-based approach is
developed to remove the false positive loop closures. Lastly, a

graph-based optimization constructs an accurate trajectory map
of ELFs for the user.
� Trajectory map superimposition: A unified floor map

will be obtained after superimposing multiple trajectory maps
through crowdsensing. The superimposition reconciles different
trajectory maps’ ELFs that are collected at the same spot but in
different phone orientations. To achieve this, different users’ tra-
jectory maps are first aligned into a common coordinate system.
The alignment can be achieved based on the initial positions of
the users (e.g., the room entrance) and/or prior knowledge about
the accessible passages of the target indoor space [33]. Then,
we apply the floor-level CL to train a floor-wide ELF extractor
using the acoustic data from all trajectory maps. Thus, the floor
map covers all spots on the available trajectory maps, where
each spot is associated with a unique floor-level ELF.

B. Graph-Based SLAM Formulation

Graph-based SLAM [34] constructs a graph with nodes rep-
resenting the agent’s poses and edges representing the kinetic
constraints relating two poses. In this paper, by letting xk

denote the node (i.e., location) corresponding to the kth detected
footstep based on the IMU data, the acoustic echo trace captured
between the kth and (k + 1)th footsteps is the measurement
associated with the node xk and used to detect whether xk is
at the same location as any previous node (i.e., loop closure
detection). The edge connecting two nodes is associated with
the IMU-based odometry. The user trajectory is estimated via
graph-based optimization after the loop closures are identified.
The estimation method is as follows. For a total of N detected
footsteps, let X = {x1, . . . ,xN} denote the sequence of nodes
describing the user trajectory andui,j denote the edge constraint
between nodes xi and xj . Let C denote the set of footstep index
pairs of the detected loop closures. The essence of the trajectory
reconstruction can be described by:

X∗ = argmin
∑

∀i∈[1,...,N−1]

‖f (xi,ui,i+1)− xi+1‖2

+
∑

∀〈i,j〉∈C
‖f (xi,ui,j)− xj‖2 ,

where ‖x− y‖ denotes the euclidean distance between x and y,
f(xi,ui,j) represents the prediction of xj based on xi and ui,j .
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Fig. 6. ESS traces with respect to footstep i. Peaks indicate loop closures at
footstep i+ 58, i+ 58 × 2, and i+ 58 × 3.

In this paper, the SLAM algorithm is implemented using a gen-
eral graph optimization framework [35], which also addresses
the uncertainty of the prediction f(xi,ui,j).

C. ELF for Loop Closure Detection

Constructing an effective feature embedding for loop closure
detection is critical to SLAM. In this section, we first demon-
strate the ineffectiveness of the generic features and then propose
using CL to construct a learning-based feature.

1) Ineffectiveness of Generic Features.: We conduct a con-
trolled experiment to evaluate several generic acoustic features’
performance on loop closure detection. A user is asked to walk
4 rounds to collect the echo data in a lab space. Each round
consists of the same 58 footsteps. We extract the following
features of the echo data: PSD, spectrogram, t-SNE, and PCA.
Then, we compute the similarity between the features collected
at footstep i in the first round with those at all footsteps in
all rounds. The echo sequence similarity (ESS) is used as the
metric to compute the similarity of the echo data obtained at
two footsteps, which is defined as follows. For two footsteps
i and j at which Ki and Kj numbers of echoes are collected,
the ESS between them is obtained by averaging the Ki ×Kj

pair-wise cosine similarity among the two sets of echoes. Fig. 6
shows the resulting ESS traces with footstep i (where i = 4) in
the first round and j being all footsteps of all rounds sequentially.
In this experiment, for footstep i, loop closures are formed at the
footsteps i+ 58, i+ 58× 2, and i+ 58× 3. If the used feature
is effective, ESS peaks should be observed at these footsteps.
However, from the plots in the first five rows of Fig. 6, no salient
peaks are observed. This suggests that the raw data and the
used generic features are ineffective for loop closure detection.
Note that although t-distributed stochastic neighbor embedding
(t-SNE) [36] is effective for finding feature embeddings of
clustered data, it is ineffective on the echo samples collected
in the spatial continuum that do not exhibit clustered patterns.

The ineffectiveness of generic features for loop closure de-
tection motivates us to apply CL to construct a custom feature,

Fig. 7. Trajectory-level CL to learn trajectory-specific ELFs.

i.e., ELF. CL [37] is a popular unsupervised learning technique
that aims to learn useful representations from unlabeled data.
CL maximizes the agreement between similar samples while
minimizing the agreement between dissimilar samples during
the model training. The quality of feature learning relies on the
effectiveness of data pairing, which constructs similar samples
and dissimilar samples from unlabeled data.

In what follows, we present our CL design to learn the ELF
for loop closure detection. Fig. 7 depicts the workflow, which
consists of three steps, i.e., data pairing, model pre-training, and
model fine-tuning.

2) Learning-Based ELF.: Data pairing forms similar sam-
ples and dissimilar samples needed by CL. The spatial perturba-
tions for similar sample construction, such as resizing, cropping,
and blurring in image recognition tasks may destruct the subtle
location-related information embedded in the echo signal. Our
data pairing design is based on the empirical observation that
the echoes are similar if collected at close locations and different
if collected at locations apart. This is illustrated in Fig. 2, the
spectrograms of the acoustic echoes received at two nearby spots
exhibit similar patterns, whereas the spectrogram of the echo
received at a faraway spot is different. Thus, we construct similar
data samples using echoes collected at close locations and dis-
similar data samples using echoes at locations apart. Specifically,
echoes collected consecutively are treated as similar samples.
For each training step, we randomly select 256 pairs of similar
samples as a training batch from the entire dataset. According
to our design in Section III, the time difference between two
consecutive echoes is 0.1 s, the spatial distance between these
two echoes is about 0.14 m. This average separation is smaller
than the achievable spatial resolution of the echo modality as
evaluated in Section III. Thus, using two consecutive echoes dur-
ing the user’s movement as similar samples is a good heuristic.
The data from different pairs are treated as dissimilar samples.

Model pre-training exploits CL to build a basic ELF ex-
tractor, which will be specialized by the model fine-tuning
step. CL often requires abundant unlabeled training data to
learn useful feature representation. However, there is a lack
of publicly available echo data for model pre-training. To
address this issue, we propose an incremental learning-based
model pre-training scheme. It consists of two steps. First, we
utilize a room acoustics simulator, pyroomacoustic [38],
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to generate a substantial amount of simulated training data.
Thepyroomacoustic package offers an intuitive application
programming interface (API) for simulating sound reverberation
within indoor environments. Specifically, a SoundSource, a
MicrophoneArray, and a Room are constructed for data
collection. The SoundSource emits the designed inaudible
chirp, while the MicrophoneArray records the sound in
the constructed room. The pyroomacoustic employs the
image source modeling method to simulate sound propagation
in indoor spaces. The SoundSource and the Microphon-
eArray are placed 15 cm apart to mimic their relative positions
on a smartphone. Multiple rooms with varying configurations are
generated to enhance location-related data diversity. Within each
of these rooms, extensive echo data is collected at fine-grained
points to cover a wide range of locations. We adhere to the
procedures outlined in Section III-A to extract the spectrogram
feature and train a base feature extractor using CL. This enables
us to obtain a base model capable of discerning locations effec-
tively. Second, we adapt the pre-trained model to real indoor
environments by incrementally updating the feature extractor
when new training data are contributed by new users. Though
using simulated data for model pre-training allows us to obtain
a location-aware feature extractor, the simulated and the real
captured data still exhibit differences as the simulator cannot
fully model room conditions (e.g., the wall reflection/absorption
coefficients, small reflectors like chairs, tables, etc) and the audio
hardware characteristics of a smartphone. By incrementally
updating the pre-trained model using collected echo data, it can
gradually learn environmental and hardware-related features.
Therefore, the pre-trained model can be fine-tuned to a new
environment more quickly and accurately. The beneficial perfor-
mance of the proposed model pre-training scheme is presented in
Section VI-D.

The architecture of the feature extractor is adapted from [39],
which consists of a ResNet-18 encoder and a 3-layer projection
head, the model architecture is shown in the right part of Fig. 7.
The input of the model is the echo’s spectrogram and the output is
a 128-dimensional ELF. We minimize the following contrastive
loss for model training:

�i,j = − log
exp (sim (zi, zj) /τ)∑2M

k=1 1[k 	=i] exp (sim (zi, zk) /τ)
,

where 1[k 	=i] ∈ {0, 1} is evaluated to 1 if and only if k 	= i,
sim(·, ·) denotes cosine similarity, z is the feature vector, i
and j indicate a similar data pair, M is batch size, and τ is
the temperature parameter. With the above contrastive loss,
the pre-training increases the feature similarity for echoes at
close locations and decreases the feature similarity for those
at locations apart. As a result, the loop closure detection can
be implemented by comparing the ELFs in terms of the cosine
similarity.

Model fine-tuning uses limited unlabeled data collected by
users in the target space to adapt the pre-trained model such that
the environment-specific characteristics can be captured. We
follow the same CL procedure described above and construct
the data pairs using genuine data for model fine-tuning. The

Fig. 8. Reconstructed traj w/wo loop closure curation.

Fig. 9. ESS matrix with trend curves.

resulting model can generate trajectory-specific ELFs in the
target space.

The last row of Fig. 6 shows the ESS trace computed us-
ing ELF. Peaks at footstep i+ 58, i+ 58× 2, and i+ 58× 3
marked by the green arrows are effectively detected loop clo-
sures. A visualization of ELF is shown in Appendix A.1, avail-
able online. However, an unexpected peak close to the footstep
i+ 58× 2 marked by a red arrow is also observed. It represents
a false positive loop closure based on ELF. Unfortunately, the
SLAM is often sensitive to false positive loop closures – a
small number of false positives can degrade the SLAM perfor-
mance [28]. Thus, a loop closure curation algorithm is needed
to remove the false positives.

D. Loop Closure Curation

We propose a clustering-based algorithm which is based on
the ESS matrix defined as follows to curate the loop closures.

ESS matrix: Consider a user’s trajectory that consists of N
footsteps. The pair-wise ESSs between any two footsteps form a
(N − 1) × (N − 1) ESS matrix (0 indexed), where the (i, j)th
element is the ELF-based ESS between the footsteps i and j.
Thus, the ESS matrix is symmetric. Two ELFs have a high
similarity if a large ESS is observed, signaling a potential loop
closure. We apply a threshold value of 0.4 to identify most
true positives while capturing acceptably low false positives
to be removed shortly. The ESS matrix is binarized by the
threshold, where the positive elements represent loop closure
candidates. Fig. 9 shows the constructed ESS matrix using the
ELFs collected in a shopping mall. Both horizontal and vertical
axes are footstep numbers. The black dots in the ESS matrix
represent the positive elements.

Clustering-based approach for loop closure curation: The
goal of loop closure curation is to remove the false positives
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Fig. 10. Loop closure curation: (a) Slicing, (b) clustering in each slice, and
(c) concatenated line regression results.

from the ESS matrix. The true positives form trend lines in the
binarized ESS matrix due to the user movement. For example,
consider an ideal case in which the user walks at a constant speed,
the true loop closures of footsteps 0, 1,..., and 10 are footsteps
0 + L, 1 + L,..., and 10 + L, where L is the loop length. As
a result, the (0, 0 + L)th, (1, 1 + L)th,..., and (10, 10 + L)th
elements of the ESS matrix should be positives and form a trend
line. In contrast, the false positives tend to appear at random
positions, as shown in Fig. 9. This observation inspires us to
propose a clustering-based approach to isolate the true positives
from the scattered false positives, which is described as follows.

First, we slice the ESS matrix at a length of 16 footsteps as
illustrated in Fig. 10(a). With the slicing, it is easier to identify
the true positive clusters in each slice. Then, we apply the DB-
SCAN clustering algorithm [40] to identify the clusters. This is
illustrated by Fig. 10(b), where the clusters are differentiated by
colors. Although some false positives are classified by DBSCAN
as outliers, the remaining false positives close to the trend curves
are still in the clusters. To remove these false positives, we apply
the RANSAC [41] linear regression algorithm to detect a line
approximating the trend curve in each cluster. RANSAC is a
preferred regression algorithm when there are many outliers.
Concatenation of the regressed lines across all slices form the
clean trend curves as shown in Fig. 10(c). The trend curves
formed by the positives are effectively isolated from the scattered
noises. Since the negative impact of a false positive on SLAM
outweighs that of a false negative, we further curate the loop
closures by only retaining the positives that conform to the
symmetric property. Specifically, if the positive at the (i, j)th

of the ESS matrix has no counterpart positive at the (j, i)th, the
positive is excluded.

Fig. 8 shows the necessity of loop closure curation. First,
we use all positives in Fig. 9 as the loop closure information
to construct the trajectory. The plot labeled ”w/o curation” in
Fig. 8 shows the constructed trajectory. We can see that the
false positives devastate the trajectory optimization. The plot
labeled ”w/ curation” in Fig. 8 shows the trajectory using the
curated loop closures. Its shape is close to the ground truth as
marked by the blue line. The result demonstrates the effective-
ness of the proposed loop closure curation.

E. Trajectory Map Superimposition

A single user’s trajectory maps have limited coverage in a
room. For real applications, it is desirable to combine trajectory

maps from many users to form a floor map to cover most/all
accessible locations of an indoor space. We assume that the ab-
solute starting position of each trajectory map can be known. In
practice, location tagging [10] can be used to recognize the actual
entrance. With the known absolute position, the trajectory maps
can be collated into a common coordinate system. However, the
trajectory maps crossing the same spot from different directions
have different echoes, due to the echoes’ dependency on phone
orientation. Thus, we need to reconcile such differences.

We propose a floor-level CL approach to train a unified
feature extractor for map superimposition. It shares the same
model pre-training workflow as the trajectory-level CL except
the data pairing approach for model fine-tuning. Specifically,
the echo data collected at the same location regardless of the
phone orientation are treated as similar pairs, whereas those
collected from different locations are treated as dissimilar pairs.
The model trained via the floor-level CL outputs the floor-level
ELFs covering spots from all trajectory maps. As the quality of
the floor map is related to its spatial coverage, this floor-level
CL approach needs to scale well with the number of locations.
In Section VI, we evaluate this approach in handling 4,000
fine-grained spots with four phone orientations at each location.

When falling back to the scheme of learning a location recog-
nition model using supervised learning, a possible approach
to mitigate the echo data’s sensitivity on phone orientation
is to construct a training dataset with echo data and location
labels (regardless of orientation) from all the trajectory maps.
In Section VI, we evaluate the localization performance of this
supervised learning approach with our approach in terms of the
quality of the floor map.

F. Localization

When a trajectory map or floor map is available, a smart-
phone’s location can be determined by capturing the echoes in
response to the chirps. We consider two localization approaches,
i.e., one-shot localization and trajectory localization, depending
on whether the user is standing still or walking. In the former, an
ELF sequence containing multiple consecutive echoes collected
at a spot is matched against the map in terms of the ESS to
determine the location. In the latter, both the ELF sequence and
the IMU data during the user’s movement over a short time
period are used for localization. Specifically, we apply dead
reckoning to the IMU data to estimate the user’s trajectory, and
then apply a curve matching algorithm [42] to find the candidate
segments in the map that resemble the user’s trajectory. Among
the candidate segments, the one with the largest average ESS
from the captured ELF sequence is the output of the trajectory
localization.

V. ROOM GEOMETRY RECONSTRUCTION

Accurate smartphone-based room geometry sensing is de-
sirable for indoor navigation systems, virtual/augmented reality
applications and network condition prediction, etc. In this sec-
tion, we use the reconstructed user trajectory and the collected
acoustic echoes to construct the contour of a polyhedron room
with a fixed height. Specifically, the user is required to walk
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Fig. 11. (a) User holds a phone and moves along a side wall at 1.2 m away.
(b) Constructed peak distance profile.

Fig. 12. Peaks detection on the cross-correlated signal.

along the sidewalls and form a complete loop. After the IMU
trajectory is rectified using the trajectory map construction, the
wall distances are estimated using the acoustic echoes. Next,
the room geometry is determined by the trajectory and the
estimated wall distances. In what follows, we present our room
reconstruction procedures.

A. Wall Distance Measurement

We conducted a measurement study to verify if the recorded
echoes are effective for measuring the phone-wall distances. A
user is asked to hold a smartphone and walk along a sidewall
in a living room for a few meters. A total of 95 echo traces
are collected in the experiment. Fig. 13(a) shows the layout of
the tested environment, where sofas, a table and a TV occupy
the room. Fig. 11(a) shows the user’s distances to the walls:
the phone-floor, phone-sidewall, and phone-ceiling are 0.9 m,
1.2 m, and 1.6 m, respectively. The room height is 2.8 m.

Peaks selection: We cross-correlate the received signal with
the chirp template to find the peaks generated by main reflectors
in a room (e.g., walls, floor and ceiling). Fig. 12 shows an
example, where the peaks represent the main reflectors. To
determine the peaks’ index, we apply the envelope detector on
the correlated signals and search for the local maximas. The
conversion of peaks’ index to distance is calculated by nc

2f ,
where n is a peak’s index, c is the speed of sound in air, f
is the microphone’s sampling rate (i.e., 44, 100Hz). The result
represents the estimated distance between the reflector and the
smartphone.

The cross-correlated signals contain many peaks generated
by nearby objects. It is difficult to associate each peak with its
corresponding reflector. However, for room reconstruction, we
only need to identify peaks from the main reflectors, e.g., side

walls, the ceiling, and the floor. Our peak selection procedure
is as follows. First, we normalize the cross-correlated signal to
between 0 and 1. Next, we discard peaks with an amplitude
less than 0.15, as they are generated from smaller objects and
can be safely disregarded. In Fig. 12, the peaks marked by
stars are retained and red crosses are discarded. We further
discard peaks beyond 4 m from the smartphone. This is based
on the assumption that when a user walks along the sidewalls
for data collection, the smartphone’s distance to the sidewalls,
ceiling, and floor can be maintained within 4 m. In addition, the
peak candidates with a distance larger than 4 m are generally
caused by the multi-path reflections, which are difficult for
object association.

Peak distance profile: In each echo trace, we apply the ex-
traction and selection procedures described above to generate
the candidate peaks. Then, we stack peaks selected from all
echo traces to form a peak distance profile (PDP) as shown in
Fig. 11(b). The horizontal axis represents the peaks’ distance to
the smartphone and the vertical axis represents the echo’s index.
The grayscale intensity represents the peaks’ amplitude, which
ranges from 0.15 to 1. A darker dot represents a higher ampli-
tude. In Fig. 11(b), four vertical lines are formed by the peaks.
Lines 1, 2, and 3 are located at the distances of 0.9 m, 1.2 m, and
1.6 m, respectively. These lines correspond to the distances of
phone-floor, phone-sidewall, and phone-ceiling. Note that line 4
located at 2.8 m is also observed, whose distance is equal to the
room height. This line is generated by the echoes that travel a full
round in the vertical direction of a room (i.e., via smartphone
→ floor → ceiling → smartphone, or smartphone → ceiling
→ floor → smartphone). The red line in Fig. 11(b) represents
the summation of the peaks’ amplitude along the vertical axis.
We can see that the peaks corresponding to the distances of
the phone-floor, phone-sidewall, phone-ceiling, and room height
stand out in the PDP. The reason is that the walls’ distance
to the phone remains constant while a user is walking along a
sidewall, while other objects’ distance changes (e.g., TV, sofas,
etc). As shown in Fig. 11(b), although it is difficult to associate
the peaks to the objects in a single echo trace, aggregation of
echoes collected along a specific wall renders peaks from main
reflectors more salient than those of the furniture inside the room.
Thus, the PDP is effective to find the phone-wall distances along
a sidewall.

B. Room Geometry Reconstruction Procedure

We describe the room geometry reconstruction procedure in
this section. As shown in Fig. 5, the room reconstruction consists
of PDPs construction and Peaks association.

PDPs construction: We construct PDP for each sidewall to
obtain wall distances. The wall numbers are determined based
on the shape of constructed user trajectory. Note that we use the
rectified user trajectory to get a more accurate approximation.
We track the heading directions of the IMU data and record
the sheer direction changes as the corners between walls. The
sidewall numbers are equal to the detected corners. Then, we
split the echoes into clusters based on the timestamps of the
detected corners. Since the IMU data and the echoes are collected
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Fig. 13. Floor plans and trajectory reconstruction results in the living room.

Fig. 14. t-SNE visualization of finetuned feature from different pre-trained
models: (a) pre-trained using cross-entropy loss (CEL), (b) pre-trained via
CL, using synthetic data (SYN) only, (c) pre-trained via CL, using proposed
incremental learning scheme (INC).

simultaneously, each cluster contains the echo traces collected
while the user walks along a specific sidewall. We use the
echo traces in each cluster to construct PDPs. If the echoes
are correctly associated with the phone-floor, phone-sidewall,
phone-ceiling, and the room height distances in PDPs, the room’s
geometry is also determined.

Peaks association: To correctly associate the phone-floor,
phone-sidewall, phone-ceiling, and the room height distances to
the peaks in the constructed PDPs, we leverage the knowledge
that the room height equals to the summation of the phone-floor
and phone-ceiling distances. These three distances generally
remain constant while a user holds the phone and moves within
the room. Thus, we can determine these three distances in each
PDP and then identify the subsequent largest peak as the phone-
sidewall distance. The procedure is as follows. First, we combine
PDPs from all sidewalls to form a unified PDP (u-PDP). Since
the phone-floor, phone-ceiling, and the room height distances
remain consistent in each PDP, their appearance will be more
salient in the aggregated u-PDP. In u-PDP, we identify the echo
with the largest peak as phone-floor distance. This is because
the used bottom microphone for recording is closer to the floor
when held by a user. Thus, the peak amplitude at phone-floor
distance generally has the largest value. We then associate the
phone-ceiling distance and room height by looking for peaks that
have the summation relationship with the identified phone-floor
distance in the u-PDP. To reduce ambiguity, we assume the
phone-ceiling distance is larger than phone-floor distance. Then,
we visit each PDP and exclude the echoes that are closest to the
identified phone-floor, phone-ceiling and room height distances.
The subsequent echo with the largest peak is identified as the
phone-sidewall distance. Finally, we use the rectified trajectory

and the estimated wall distances to determine the vertexes of the
polyhedron.

VI. SYSTEM EVALUATION

A. Experiment Setup

Evaluation environments: We evaluate ELF-SLAM in three
indoor environments, i.e., a living room (60m2) shown in
Fig. 13(a), an office (360m2), and a shopping mall (2, 000m2).
The floorplans of the latter two can be found in Appendix C,
available online. To conduct comparative evaluation side by
side, we employ the SLAM systems using two smartphone’s
built-in sensing modalities, i.e., Wi-Fi RSSI and geomagnetism,
as the baselines. This is the same as the evaluation methodology
adopted in [28] that studies powerline EMR SLAM. Note that
we also compare the results of ELF-SLAM and EMR SLAM.
To implement Wi-Fi SLAM, we deploy Wi-Fi access points
(APs) in the living room and office, as illustrated by the stars
in the floorplans. The shopping mall has dense APs deployed
by the tenants. The number of Wi-Fi APs observable is around
5 to 10 when conducting experiments in the mall. Note that
random people hung around in the shopping mall during the
data collection.

Data collection: We develop an Android app on a Google
Pixel 4 smartphone to collect acoustic echoes, Wi-Fi RSSI,
geomagnetic field signals, and IMU data. The app uses the
available WifiManager Android API to scan the Wi-Fi APs
and collect RSSI data at a sampling rate of 0.8 sps. We do
not use Wi-Fi channel state information (CSI), because CSI
sampling requires rooting the smartphone [43]. The app uses
the phone’s built-in magnetometer to sample the geomagnetic
field at 50 sps. During data collection, the smartphone is held
around 30 to 40 cm in front of the user’s chest. The data
is collected by walking on a marked trajectory for multiple
rounds in each of the evaluated environments. Note that the
purpose of trajectory marking is to obtain the location ground
truth.

Loop closure detection for baseline modalities: For Wi-Fi
SLAM, we use the euclidean distance between two Wi-Fi RSSI
vectors for loop closure detection [28]. For geomagnetic SLAM,
we first normalize the triaxial magnetic data and then apply
dynamic time warping for loop closure detection [27]. We apply
the same loop closure curation and graph-based optimization
algorithms on all modalities.

Model training details: The model training is implemented
using PyTorch [44]. The model is trained for 200 epochs with
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TABLE II
MAPPING ERROR STATISTICS (UNIT: METER)

TABLE III
LOCALIZATION ERROR STATISTICS (UNIT: METER)

a batch size of 256. The learning rate is set to 0.0001. The
temperature parameter τ is set to 0.1. The model is trained on a
workstation equipped with two NVIDIA GeForce RTX 2080 Ti
GPUs. The model pre-training and fine-tuning are implemented
using the same hyperparameters. The model training time de-
pends on the used data volume. On our workstation, the model
training time is around 15 minutes when the model is trained on
120 minutes of data.

B. Trajectory Map Construction Performance

Fig. 13 shows the map construction results of three modalities
in the living room. The results of the office and the shopping
mall can be found in Appendix C, available online. The tra-
jectories reconstructed by ELF-SLAM are the closest to the
ground truth among the three modalities in all evaluated en-
vironments. Table II lists the detailed mapping error statistics.
ELF-SLAM achieves sub-meter mapping accuracy in all en-
vironments, whereas Wi-Fi SLAM and geomagnetic SLAM’s
mapping errors increase in the large indoor space, i.e., office
and mall. In [28], EMR SLAM using the smartphone earphone
as the side-channel sensor yields about 1 m to 2 m median
mapping errors in the evaluated office and lab spaces. Thus,
ELF-SLAM outperforms Wi-Fi SLAM, geomagnetic SLAM,
and EMR SLAM in map construction.

C. Localization Performance

We evaluate both the one-shot localization and trajectory
localization of the three sensing modalities. Table III lists the lo-
calization error statistics. For one-shot localization, ELF-SLAM
achieves sub-meter median error in the three environments and
outperforms both Wi-Fi SLAM and geomagnetic SLAM. For
trajectory localization, each short trajectory consists of 8 con-
secutive footsteps. For Wi-Fi and geomagnetic SLAMs, the tra-
jectory localization errors are less than the one-shot localization
errors. For ELF-SLAM, trajectory localization does not bring

Fig. 15. Fine-tuning loss trend.

much accuracy improvement over one-shot localization, because
the latter has already achieved a high localization accuracy.

We also conduct experiments in the living room to study the
impact of various affecting factors on ELF-SLAM, including
nearby people, audible noises, and space layout changes. The
results can be found in Appendix B, available online.

D. In-Depth Analysis

1) Impact of Model Pre-Training: We investigate the neces-
sity of the CL pre-training by comparing the trajectory map
reconstruction performance using the ELF extractors learned
with and without the model pre-training step. The row “ELF w/o
pre-train” in Table II is for the case without model pre-training.
Compared with the result with model pre-training (row “ELF”),
the median mapping errors increase to 0.73 m, 1.16 m, and
1.69 m in the three environments, respectively. This result shows
that model pre-training is essential to learn effective ELFs. We
further evaluate the effectiveness of the proposed incremental
learning-based scheme. We visualize the fine-tuned feature em-
beddings by applying different pre-trained schemes. The first
scheme adopts cross-entropy loss (CEL) and applies supervised
learning for model pre-training. The second scheme applies CL
with synthetic data (SYN) only for model pre-training, and the
third scheme applies CL with the proposed incremental learn-
ing (INC), i.e., incrementally updating the pre-trained model
with real data. Fig. 14 shows the t-SNE [36] visualization of
fine-tuned features, where (a), (b), and (c) corresponds to three
pre-training schemes, respectively. The ELFs are extracted from
the data collected in the office and colors represent different
locations. We can see that the feature embeddings learned using
the proposed incremental learning scheme are more compact
and distinct than those learned using the other two schemes.
The pre-training scheme based on the CEL yields the worst
result. We further investigate the finetuning loss using different
pre-trained models, the results are shown in Fig. 15. It is observed
that finetuning using the model pre-trained from the proposed
incremental learning converges fastest and yields the smallest
loss, whereas the finetuning from the model pre-trained by
CEL yields the largest loss. This observation shows that the
proposed incremental contrastive learning is effective to learn
location-dependent features and the pre-trained model can be
finetuned with fewer epochs. The model trained via CEL does
not generalize well if the labeling information is missing.

We also investigate how much data is needed by the proposed
incremental learning scheme to achieve optimal performance.
We first train the model using the synthetic data only. Then, we
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Fig. 16. Evaluation of fine-tuning time and localization performance.

Fig. 17. ESS matrixes of different modalities in the mall.

Fig. 18. Superimposition of small-scale real echoes.

Fig. 19. Superimposition of large-scale synthetic echoes.

update the model by incrementally adding the real data. Fig. 16
shows the fine-tuning time and localization errors versus the
model pre-training data volume. The data used for fine-tuning
is collected in the living room and the total length is around
10 minutes. The results show that the localization error decreases
as the model is pre-trained using more data. The localization
error saturates when pre-training data reaches 120 minuntes. In
addition, the required model fine-tuning time also decreases as
it requires fewer training epochs to converge.

2) Impact of Model Fine-Tuning: We investigate the impact
of model finetuning on trajectory map construction performance.
The row “ELF w/o fine-tune” in Table II is for the case without
model fine-tuning. The ELFs extracted without model fine-
tuning cannot provide any loop closure information to be used
by the SLAM optimization algorithm. The results are reported

using the un-rectified IMU trajectory. Thus, model fine-tuning
is essential to learn effective ELFs.

3) Spatial Distinctness of Different Modalities: We analyze
the spatial distinctness of ELF, WiFi RSSI and geomagnetic
field. We construct the ESS matrixes of three modalities using
the data collected in the shopping mall. Fig. 17 shows the results.
In each ESS matrix, the true positive loop closures form the trend
curves and the false positive loop closures appear as random
noises. We compare the true positives and the false positives
among different modalities: the number of true positives de-
tected using geomagnetic field and WiFi RSSI is around 75%
and 40% of that of the ELF. Meanwhile, the number of false
positives detected using the geomagnetic field and the WiFi
RSSI are around 10 and 4 times higher than that of the ELF.
ELF generates more true positive loop closures and fewer false
positives compared with the other two modalities. Thus, ELF is
more spatial distinct than the geomagnetic field and the WiFi
RSSI and achieves the best SLAM performance.

E. Trajectory Map Superimposition

We use one-shot localization to evaluate the performance of
map superimposition as described in Section IV-E.

Evaluation on a small-scale dataset: The experiments are
conducted in the living room. We follow the marked trajectory
in Fig. 13(a) and walk in two opposite directions to generate
two different trajectory maps. Then, we apply the proposed
map superimposition to obtain a unified map and evaluate the
localization performance. Fig. 18 shows the results. The plot
labeled “same direction” is obtained when the smartphone’s
orientation at the localization phase is the same as the used map.
The median localization error is 0.1 m. The plot labeled “oppo
direction” is for the case when the smartphone’s orientation at
the localization phase is different from the trajectory map. The
median localization error increases up to 3.8 m. The increased
error is caused by the phone orientation deviations. The plot
labeled “superimposed” shows the localization results using
the proposed map superimposition via the CL. The median
localization error is 0.1 m, which is the same as the “same
direction” result. This small-scale experiment in the living room
shows that the CL-based map superimposition can improve the
ELF-based localization performance when trajectory maps are
constructed using echoes from opposite directions.

Evaluation on a large-scale synthetic dataset: We also eval-
uate whether the proposed map superimposition is scalable
to handle massive echo data when many trajectory maps are
available. We omit the trajectory map construction step and only
focus on evaluating the superimposition performance. Similarly,
we evaluate the one-shot localization performance on the con-
structed floor map. To allow a large-scale evaluation, we use the
pyroomacoustic simulator to generate the synthetic echoes
in an indoor space that has a polyhedron shape as shown in
Fig. 20(a). The data is collected from 4,000 spots in the grey
area. The distance between two neighbor spots is 10 cm. At each
spot, we simulate the scenario where the echoes are collected by
a phone in different orientations. In Fig. 20(a), the red arrows at
spot A represent the simulated orientations. We collect 100 echo
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Fig. 20. (a) Simulated space. (b) Spot A’s echo PSDs on directions 1 to 4 and
Spot B’s echo PSD at direction 1.

samples for each orientation. We apply random perturbations to
the echo data such that they are slightly different. As a result,
we generate 16 million echo samples in the simulated room.
The first four rows of Fig. 20(b) show the synthetic echoes’
PSDs for four directions at spot A. They are slightly different
from each other. The last row of Fig. 20(b) shows the echo’s
PSD at spot B. It is different from all PSDs obtained at spot
A. This shows that the simulator can generate both orientation-
and location-dependent echoes that can be used to evaluate map
superimposition performance. Note that it is infeasible to collect
such a large-scale dataset in a real environment. Based on our
estimation, collecting the same amount of data in the real world
requires about 400 hours of manual labor.

ELF visualization after map superimposition is shown in
Appendix A.2, available online. The result shows that map
superimposition is effective in reconciling the ELFs’ differences
due to phone orientations. Fig. 19 shows the localization results
on the synthetic data. The plot labeled “diff direction” shows the
CDF when the CL-based map superimposition is not applied and
the evaluated samples are in a different phone orientation from
that in the trajectory map. The mean localization error is 3.2 m.
This poor result shows the necessity of differences reconcilia-
tion. The plot labeled “superimposed” shows the results obtained
using the floor map constructed by the floor-level CL. The
mean localization error decreases to 0.24 m. We also employ the
supervised fingerprint approach as a baseline, which forms
the training dataset by labeling the echoes synthesized at the
same spot with the same location label and trains a DNN to
classify the 4,000 spots. The CDF curve labeled “supervised”
shows the results. The mean localization error is 0.56 m. The su-
pervised fingerprint approach is inferior to the proposed solution
that performs localization using the floor map.

F. Room Geometry Reconstruction

Evaluation environments: We conduct experiments in two
polyhedron-shape rooms. The first one is a 4× 6.5× 2.8 m3

living room filled with furniture like TV and sofas. The second
one is an 18× 20× 3.2 m3 relatively empty exhibition hall. In
each room, a user holds the smartphone and walks along the
sidewalls to collect the IMU and the echo data.

Evaluation results: Fig. 21 shows the room reconstructions
of both rooms. The polyhedron labeled ”Un-rectified” is the
estimated room shape using the un-rectified IMU trajectory and

Fig. 21. Room construction results.

Fig. 22. Room construction performance.

the estimated wall distances. This plot represents the essence
of [12], [13], where the performance of the mapping relies on
the accuracy of the estimated IMU trajectory. The polyhedron
labeled ”Rectified” is constructed using the rectified IMU trajec-
tory via the ELF-SLAM and the estimated wall distances. The re-
sults show that the room geometry constructed upon the rectified
user trajectories is closer to the ground truth compared to those
constructed using the un-rectified trajectories. We calculate the
distances between the constructed and the ground-truth walls to
obtain the CDF of the room reconstruction errors. Fig. 22 shows
the results. The median construction errors for the ”Un-rectified”
approach are about 0.32 m, and 1.2 m in the living room and
the exhibition hall, respectively. The errors decrease to about
0.15 m and 0.35 m for ”Rectified” approach, representing a 2×
and 4× error reduction. Thus, our room geometry reconstruction
outperforms [12], [13] that rely on the un-rectified IMU results.

Application consideration: Our system requires the user to
walk a full loop along the walls of a room. The amount of
data needed depends on the size of the room. Considering the
average human walking speed of 1.2m/s, the time needed for
data collection is about 18 s and 64 s in the living room and the
exhibition hall, respectively. Thus, the data collection for room
geometry reconstruction incurs little overhead.

G. System Overhead

We evaluate the computation overheads of the ELF-based
SLAM on a Google Pixel 4 smartphone. Specifically, we perform
real-time one-shot localization on the floor map constructed by
the floor-level CL. To customize the ELF extractor for the phone,
we use Pytorch-Mobile [45] to optimize and compress
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Fig. 23. Model execution overhead.

the model to about 96 MB. The real-time localization module
performs one-shot localization using the 2D map.

1) App’s Response Time and Processor Utilization.: At the
localization stage, the smartphone processor utilization remains
at around 20% when we vary the ELF sequence length from
0.2 s to 1.6 s, as shown in Fig. 23. The storage of ELFs requires
moderate memory. The disk usage of storing 4,000 spots’ ELFs
is less than 4 MB. We also measure the app’s response time,
which includes the ELF’s extraction time and feature matching
time against the floor map. The App’s response time increases
from 0.18 s to 1.2 s, when the ELF sequence length varies from
0.2 s to 1.6 s. The increased response time is from the localization
phase, because the computation overhead of the feature match-
ing increases with the ELF sequence length. From Appendix
B.1, available online, by setting the ELF sequence length to be
0.6 s, our system achieves 0.1 m median localization error, while
the corresponding measured response time is about 0.5 s. Thus,
the user can get the localization result in about 1.1 s.

2) App’s Network Bandwidth and Battery Usage.: The app’s
bandwidth usage is around 90 kbps while continuously transmit-
ting echo and IMU data to the cloud server for map construction.
This data rate is similar to that of Advanced Audio Coding
(AAC), a widely adopted standard for lossy audio compression.
Note that as the localization phase of ELF-SLAM is performed
locally on the phone, it requires no data transmission. We use
the battery historian [46] to estimate the app’s energy
usage. The app’s energy usage per hour is around 270 mAh
when the app performs localization continuously. This energy
usage is similar to that of the Google Map app in continuous
navigation, i.e., around 280 mAh and much lower than a visual
SLAM [47], whose measured energy consumption is around
450 mAh. Thus, our ELF-based localization system introduces
acceptable overhead.

VII. DISCUSSION

ELF-SLAM is an acoustic-based indoor location sensing
system and its performance can be affected by various fac-
tors as evaluated in this paper. We discuss several potential
approaches that can be considered to improve the localization
system’s performance in future work. First, the soft information
(SI)-based approach [48], [49], [50] can be employed to enhance
the robustness of the system. ELF-SLAM uses hard information
(i.e., the estimated distance) for map construction. However,
the estimated distance is not always accurate. To address this
issue, the SI-based approach considers the uncertainty of the
measurement and generates Gaussian distribution to improve

the accuracy of the map. Second, different sources of informa-
tion (e.g., map information, smartphone inertial measurements,
geomagnetic field, WiFi RSSI, etc) can be incorporated for
cooperative localization [51], [52]. Such a cooperative approach
can be more robust to environmental changes and can reduce
the uncertainty of the localization as compared with the system
developed upon the single modality.

VIII. CONCLUSION

This paper presents ELF-SLAM, an indoor smartphone
SLAM system using acoustic echoes. ELF-SLAM uses a smart-
phone’s audio hardware to emit near-inaudible chirps and record
acoustic echoes in an indoor space, then uses the echoes to detect
loop closures that regulate the IMU-based dead reckoning. To
effectively capture loop closures, we design a trajectory-level
contrastive learning procedure and apply it to the echoes to learn
ELFs. Then, we design a clustering-based approach to remove
the false detection results and curate the loop closures. Third,
we apply the rectified trajectory map to reconstruct the room’s
geometry. Lastly, we design floor-level contrastive learning to
superimpose the trajectory maps. Our extensive experiments
show that ELF-SLAM achieves sub-meter accuracy in both
mapping and localization, and outperforms both Wi-Fi RSSI
and geomagnetic SLAMs. The room geometry reconstruction
also outperforms the latest echo-based systems.
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