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Abstract

Particle-laden internal turbulent flows are very commonplace, for example, in petrochemical flow-
lines, oil wells and so on. From an engineering view point, modelling such flows in a 3D or even
2D fashion may not be reasonable in terms of computational cost, especially when the flow domain
is sufficiently long, and a large number of grid cells are needed to resolve the flow field. On the
other hand, 1D models are quite fast but only take into account the stream-wise variations of the
flow characteristics, without providing any information on their cross-sectional distribution. In this
work, a novel quasi-1D modelling framework was introduced, which is able to capture the flow
field in both stream-wise and cross-stream directions and yet stay computationally more efficient
than the 3D or 2D models.

The quasi-1D modelling framework was developed based on the one-way coupling of a RANS
model for the single-phase turbulent flow with an Eulerian model for the transport of the dispersed
particle phase. The nucleation, agglomeration and breakup events were also taken into considera-
tion through the generic population balance equation, the solution of which was provided using the
direct quadrature method of moments.

The results of the quasi-1D single-phase flow model were verified and shown to be in accordance
with those of the ANSYS Fluent 2D model for different test cases. The computational cost analysis
revealed that the simulation CPU time of the quasi-1D model increases linearly with the number
of stream-wise grid cells (Nx), whereas that of the 2D model scales with N1.6

x , implying that the
quasi-1D model will perform faster than the 2D model from a certain number of grid cells on.

The quasi-1D multi-phase-flow tool was then used to address the transport and deposition of as-
phaltenes in oil wells, as an example of particle-laden internal turbulent flows. To this end, a
simulation test case was set up with several simplifications, and the results were compared with
those of a simpler 1D model in the literature, as the benchmark. Due to the lack of an appropriate
model for the collision efficiency of asphaltene particles, a model associated with liquid droplets
was adopted and tuned to obtain a match between the results of this study and the benchmark. The
outcome of the sensitivity analysis demonstrated that the collision efficiency plays an important
role in determining the asphaltene deposition profile along the well bore and needs to be modeled
accurately.
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Introduction
Particle-laden internal turbulent flows are of high importance in a variety of natural and engineering
applications. Transport of slurries in pipes, species in petrochemichal flowlines and hydrocarbon
precipitants in oil wells are among the imaginable examples. Such flows have been studied for
decades using various experimental and computational techniques. However, there is still room to
conduct more investigations and contribute to the knowledge in this filed.

One of the several methods for modelling the particle-laden turbulent flows is referred to as the
Eulerian-Eulerian or two-fluid approach, which considers the carrier fluid as the continuous phase
and the particles as the dispersed phase. The conservation of mass and momentum are formulated
for each phase through ensemble averaging and may involve different levels of complexity, arising
from the particle-fluid and particle-particle interactions (see e.g. Schwarzkopf et al., 2011).

Depending on the physical nature of the flow, the corresponding conservation equations may be
applied in 3D, 2D and 1D modes. On the one hand, when the flow domain is very long and a
large number of grid cells are required to resolve the flow field in the stream-wise direction, the
implementation of 3D and 2D models would be computationally expensive. On the other hand,
even though a 1D model can be very fast, it only takes into account the stream-wise variation of
the flow characteristics and provides no information on their distribution over the cross section. A
novel quasi-1D modelling approach will be developed in this work, which not only captures the
flow field in both the stream-wise and cross-stream directions, but also stays computationally more
efficient than a 2D model.

The basic idea of the quasi-1D approach is to split the 2D conservation equations into 1D equations
over the stream-wise and cross-stream directions and solve them in an interative manner, which
will allow to achieve a less computational cost, compared with a 2D model, and yet be able resolve
the flow field in both directions, as apposed to a 1D model. For the sake of simplicity, the quasi-
1D modelling concept and the corresponding equations will be presented for a channel geometry.
However, it should be noted that a similar procedure can be followed to derive the equations for a
pipe geometry as well.

In this work, the one-way coupling assumption will be made, base on which only the carrier fluid
influences the particles movement, and the inter-particle forces are also neglected. A RANS model
will be employed to describe the turbulent flow of the continuous phase, and an Eulerian model
will be used to account for the particles transport. Moreover, the nucleation, agglomeration and
breakup of the particles will be taken into consideration through the population balance equation,
which will be solved using the direct quadrature method of moments.

An application of the quasi-1D multi-phase-flow tool is in modelling the transport and deposition
of asphaltenes in oil wells. The crude oil is composed of a broad diversity of components, ranging
from very light to very heavy. Asphaltenes are the most polar and aromatic fraction of the crude
oil heavy components (Schutte, 2016). Depending on the pressure and temperature conditions, the
asphaltenes may precipitate out of the crude oil in the form of either liquid drops or solid particles,
which are totally referred to as asphaltene particles in this work.

The crude oil is produced from a reservoir in the subsurface and flows through a vertical well
up to the surface. The pressure and temperature variations along the well bore may trigger the
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asphaltenes to precipitate. The precipitated particles will be transported along with the flow in both
stream-wise and cross-stream directions and will undergo various processes such as agglomeration
and breakage. They can also deposit on the walls of the well bore and reduce its diameter, which
will cause higher pressure drop and restrict the flow rate.

Numerous approaches have been developed so far to address the deposition of asphaltenes in oil
wells, which can be classified into two major groups. In the first group of approaches, empirical
multi-phase-flow models are employed to obtain the pressure and temperature distributions along
the well bore, based on which the concentration of precipitated asphaltenes is calculated using a
thermodynamic equation of state (EOS). Then, the in-situ deposition flux is attained from an em-
pirical expression, which may involve various deposition mechanisms such as Brownian diffusion,
turbulent diffusion etc., without taking into account the processes associated with the particles
transport (Ramirez-Jaramillo et al., 2006, Kor; R. Kharrat, 2016). The second group of methods
couple a thermodynamic EOS with a one-dimensional transport equation for the concentration of
asphaltenes. The EOS describes the precipitation rate as a function of the pressure and temperature
variations, which then serves as input to the transport equation to determine how the particles will
move along with the flow and deposit on the walls of the domain. The depletion of mass due to
the deposition is also taken into account via a source term in the transport equation (Vargas et al.,
2010 and Kurup et al., 2011).

A one-dimensional transport equation only takes into account an average concentration over each
cross section. However, if the concentration highly varies in the cross-stream direction, the average
of the corresponding profile will be completely different from the concentration at the position of
the wall, which determines the deposition flux (Fig. 1). This might lead to an unreliable prediction
of the deposition profile along the well bore.

Fig. 1: Cross-sectional asphaltene concentration profile

The above-mentioned issue will be addressed in this work using the quasi-1D modelling approach,
which can resolve the profile of the concentration over each cross section and accurately determine
the respective value at the wall.
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Outline
In chapter 1, the basic idea of the quasi-1D approach will be elaborated on for a single-phase
turbulent channel flow using a RANS model. The quasi-1D form of the conservation equations will
be derived from the corresponding 2D equations, and the solution procedures will be discussed.
The simulation results will be presented for different test cases and verified against those of the
ANSYS Fluent 2D model.

In chapter 2, an Eulerian model will be employed to describe the transport of particles based on the
one-way coupling assumption, and the generic population balance equation will be incorporated
to take into account the nucleation, agglomeration and breakup events. The application of the
direct quadrature method of moments (DQMOM) in solving the population balance equation will
be explained. Following a similar procedure as in chapter 1, the quasi-1D form of the particle
transport equations will be derived and the respective solution algorithms will be provided.

In chapter 3, the quasi-1D multi-phase-flow tool will be used in to address the transport and
deposition of asphaltenes in oil wells, as an example of particle-laden internal turbulent flows. A
simulation test case will be set up according to the work of Kurup et al., 2011, who used a simpler
1D model, and the corresponding results will be compared.
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Chapter 1
Fluid Flow Modeling

This chapter is dedicated to steady state modeling of single-phase turbulent fluid flow in a channel
within the quasi-1D framework. In the first place, the theory and applicability of the quasi-1D
condition will be elaborated on. Then, the respective governing conservation equations will be
presented in both differential and discretized forms, followed by the corresponding algorithms used
to solve this set of equations. The reliability of the model will be investigated for different test cases
by validating its results with those of the academic version of Ansys Fluent 2019.

1.1 Philosophy of Quasi-1D Assumption
In many fluid dynamical processes such as flow in pipelines, channels, rivers etc., the change of
flow properties in one direction is much more rapid than in the other directions. Therefore, from
an engineering point of view, it might be sufficient to pay more attention to the direction where
a greater level of variations is occurring rather than trying to resolve the physics involved in all
the directions. This is where the quasi-1D idea comes into play, which can lead to satisfactorily
accurate results with less computational effort, when compared with 3D or 2D simulations.

Fig. 1.1: Quasi-1D channel geometry

In order to comprehend the quasi-1D concept clearly, consider a channel geometry whose width
is gradually decreasing in the stream-wise direction (Fig. 1.1), which is essentially the same as
a pipeline with gradually reducing diameter. Note that the x coordinate, starting from the inlet,
points towards the stream-wise direction, and the y coordinate, with its reference on the bottom
wall, points towards the cross-stream direction. For the sake of simplicity, suppose that the flow is
laminar and at steady state.

If the channel width did not change along the x-axis, the x-velocity field U would stay uniform in
the stream-wise direction based on the fully developed flow condition:

∂U

∂x
= 0
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However, now that the channel width is incrementally varying, it can be inferred that the velocity
will also change very slowly in the x direction. On the other hand, it is well established that the
cross-sectional profile of the x-velocity U(y) is of a parabolic shape as illustrated in Fig. 1.2.

Fig. 1.2: Laminar flow cross-sectional velocity profile

It is clearly seen that the variation of the x-velocity in the cross-stream direction is much more
extreme than in the stream-wise direction, or in other words:

∂U

∂y
≫ ∂U

∂x

which implies that the velocity field can be obtained by resolving the cross-sectional profiles of
the x-velocity along the channel. To do so, the 2D flow equation is split into a stream-wise 1D
equation and a cross-stream 1D equation. The former is used to obtain the distribution of the
average x-velocity along the channel, based on which the latter is applied to construct the cross-
sectional velocity profiles, providing information again to correct how the average x-velocity will
vary stream-wise. This is the basic idea of the quasi-1D approach, which is presumed to achieve
more or less the same results as a 2D model but in the hope of less computational cost.

Even though only explained for a simple steady-state laminar flow in a gradually contracting
channel, the quasi-1 framework can embed any transport phenomena with variations in one direction
dominating over the other directions, a good example of which is the transport and deposition of
asphaltene particles in oil wells that will be addressed in chapter 3.

1.2 Quasi-Steady-State Condition
The single-phase flow model, to be developed in this chapter, will later on evolve into a model for
particle-laden flows, where the walls of the flow domain are continuously being displaced due to
the deposition of particles, which will itself influence the flow characteristics. In case this process
occurs very slowly, the flow can be considered to be at a steady state at any given time, and the time
derivative terms can be neglected. This is referred to as the quasi-steady-state condition.
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1.3 Development of Quasi-1D Methodology
Modeling of any transport phenomena including fluid flow starts with working out the governing
conservation equations for the system of interest, which will then be simplified using some reason-
able assumptions. The two conservation laws used to describe the incompressible fluid flow are
the continuity and Navier-Stokes equations:

∂Uc

∂x
+ ∂Vc

∂y
= 0 (1.1)

∂Uc

∂t
+ ∂U 2

c

∂x
+ ∂(UcVc)

∂y
= −1

ρ

∂Pc

∂x
+ ∂

∂x

(
ν
∂Uc

∂x

)
+ ∂

∂y

(
ν
∂Uc

∂y

)
(1.2)

where U and V represent the fluid velocity in the stream-wise and cross-stream directions, respec-
tively, each bearing the subscript c standing for "continuous phase". One may decide to achieve the
steady state for the flow by solving the corresponding steady equations directly. However, this will
lead to convergence problems if the steady-state solution of the equations is too far from the initial
guess for the solution. An effective way of resolving this issue is to consider a pseudo time term,
as appears in Eqn. (1.2), start from an ”artificial” initial condition, and solve the equations until the
flow characteristics do not vary in time anymore.

The effect of turbulence is taken into account by introducing the Reynolds averaged form of the
Navier-Stokes and continuity equations:

∂⟨Uc⟩
∂x

+ ∂⟨Vc⟩
∂y

= 0 (1.3)

∂⟨Uc⟩
∂t

+ ∂⟨Uc⟩2

∂x
+ ∂(⟨Uc⟩⟨Vc)⟩

∂y
+ ∂⟨U ′2

c ⟩
∂x

+ ∂⟨U ′
c V

′
c ⟩

∂y
= −1

ρ

∂⟨Pc⟩
∂x

+ ∂

∂x

(
ν
∂⟨Uc⟩
∂x

)
+

∂

∂y

(
ν
∂⟨Uc⟩
∂y

) (1.4)

that are derived through substituting the Reynolds decomposition of the velocity components and
the pressure, defined as:

Uc = ⟨Uc⟩ + U ′
c

Vc = ⟨Vc⟩ + V ′
c

Pc = ⟨Pc⟩ + P ′
c

into Eqn. (1.1) and (1.2), and then applying the ensemble averaging (notated by angle bracket) to
the resulting equations. Ignoring the cross-stream mean flow velocity ⟨Vc⟩ and also the stream-wise
variation of the turbulence, Eqn. (1.3) and (1.4) will be reduced to:

∂⟨Uc⟩
∂x

= 0 (1.5)

∂⟨Uc⟩
∂t

+ ∂⟨U ′
c V

′
c ⟩

∂y
= −1

ρ

∂⟨Pc⟩
∂x

+ ∂

∂y

(
ν
∂⟨Uc⟩
∂y

)
(1.6)
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In order to close the last term (Reynolds Stress Flux) on the right hand side of Eqn. (1.6), the
Boussinesq hypothesis is used as follows:

− ⟨U ′
c V

′
c ⟩ = 2νt

∂⟨Uc⟩
∂y

(1.7)

where νt is the turbulent viscosity. Combining this relation with Eqn. (1.6) yields:

∂⟨Uc⟩
∂t

+ ∂⟨Uc⟩2

∂x
= −1

ρ

∂⟨Pc⟩
∂x

+ ∂

∂y

(
(ν + νt)

∂⟨Uc⟩
∂y

)
(1.8)

which may be rewritten into:

∂⟨Uc⟩
∂t

+ ∂⟨Uc⟩2

∂x
= −1

ρ

∂⟨Pc⟩
∂x

+ ∂τ
∂y

(1.9)

with τ referring to the total shear stress. This equation along with Eqn. (1.5) constitute the starting
point for quasi-1D modelling of the flow. As mentioned in Section 1.1, the basis of the quasi-1D
approach is to split the flow equation in the stream-wise and cross-stream directions and, instead
of a 2D equation, solve two 1D equations in an iterative manner. To this end, Eqn. (1.5) and (1.9)
are integrated with respect to y, from 0 to H:∫ H

0

∂⟨Uc⟩
∂x

dy = 0 (1.10)

∫ H

0

∂⟨Uc⟩
∂t

dy +
∫ H

0

∂⟨Uc⟩2

∂x
dy =

∫ H

0
−1
ρ

∂⟨Pc⟩
∂x

dy +
∫ H

0

∂τ
∂y

dy (1.11)

which can be manipulated into:

∂

∂x

∫ H

0
⟨Uc⟩dy = 0 (1.12)

∂

∂t

∫ H

0
⟨Uc⟩dy + ∂

∂x

∫ H

0
⟨Uc⟩2dy = −1

ρ

∂

∂x

∫ H

0
⟨Pc⟩dy + τH − τ0 (1.13)

By introducing the cross-sectional average defined for any flow variable β(y) as:

β = 1
H

∫ H

0
β(y)dy ⇒

∫ H

0
β(y)dy = Hβ (1.14)

one may rewrite Eqn. (1.12) and (1.13) as:

∂(H⟨Uc⟩)
∂x

= 0 (1.15)
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∂(H⟨Uc⟩)
∂t

+ ∂(H⟨Uc⟩2)
∂x

= −1
ρ

∂(H⟨Pc⟩)
∂x

+ τH − τ0 (1.16)

The advection term on the left hand side of Eqn. (1.16) contains the mean squared velocity, which
can be converted to the squared mean velocity using the following definition:

⟨Uc⟩2 ≡ F ⟨Uc⟩
2

where F is the so-called averaging separation factor whose value would deviate more from unity as
the velocity profile becomes more nonlinear. In addition, the symmetry condition demands that the
total shear stress on the center line of the channel (τH) should be zero. After making these changes
to Eqn. (1.16), it turns out to:

∂(H⟨Uc⟩)
∂t

+ ∂(FH⟨Uc⟩
2)

∂x
= −1

ρ

∂(H⟨Pc⟩)
∂x

− τ0 (1.17)

This equation in conjunction with Eqn. (1.5) constitute the desired set of 1D equations in the
stream-wise direction, which will be used to obtain the distribution of the average flow velocity
⟨Uc⟩ and pressure ⟨Pc⟩ along the channel for a given stream-wise distribution of the shear-stress at
the wall (τ0).

The next step would be to acquire the cross-sectional profile of the flow velocity at any x-position
along the channel. To do so, the terms bearing x derivative in Eqn. (1.8) are lumped into a "source
term" Ψ, which is presumed not to be a function of y:

∂⟨Uc⟩
∂t

= ∂

∂y

(
(ν + νt)

∂⟨Uc⟩
∂y

)
+ Ψ (1.18)

It is obvious from this equation that any value of Ψ would result in a velocity profile with a unique
cross-sectional average (Fig. 1.3). However, the correct profile is the one whose cross-sectional
average is equal to the average velocity provided by Eqn. (1.17) at the respective x-position, which
implies that different values of Ψ should be tried until the profile of interest is achieved. For this
purpose, the false-position method is used in this work to guide the values of Ψ, for which the
initial guess can be calculated from:

Ψinitial = −∂(FH⟨Uc⟩
2)

∂x
− 1
ρ

∂(H⟨Pc⟩)
∂x

(1.19)

Once the velocity profiles are constructed along the channel, the x-distribution of the wall shear-
stress, to be re-substituted into Eqn. (1.17), will be updated. Therefore, an iterative procedure can
be considered between the stream-wise 1D equations (Eqn. 1.15 and 1.17) and the cross-stream
1D equations (Eqn. 1.8) through the wall shear-stress.
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Fig. 1.3: Effect of Ψ on velocity profile

1.3.1 k − ε Model
In this work, the turbulent viscosity νt is supplied by the k − ε model (see e.g. Schäfer, 2006) as:

νt = Cµ
k2

ε
(1.20)

where the turbulent kinetic energy k and its dissipation rate ε are given by their own transport
equations whose steady-state forms read:

− ∂

∂y

[
(ν + νt

σk

)∂k
∂y

]
= νt

(
∂⟨Uc⟩
∂y

)2

− ε (1.21)

− ∂

∂y

[
(ν + νt

σε

)∂ε
∂y

]
= Cε1νt

(
∂⟨Uc⟩
∂y

)2
ε

k
− Cε2

ε2

k
(1.22)

The constants Cµ, Cε1 and Cε2 are taken equal to 0.09, 1.44 and 1.92, respectively, which are the
standard values.

1.3.2 Standard Wall Function with Roughness
The dimensionless mean velocity and wall distance are introduced as:

u+ = ⟨Uc⟩
u∗

& y+ = yu∗

ν

where u∗ is called the friction velocity and defined as:

u∗ =
√
τ0

ρ
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Fig. 1.4 illustrates the universal behavior of the dimensionless mean flow velocity near a smooth wall
with various distinguishable regions (Tab. 1.1). In the logarithmic region, the following relation
exists between the mean velocity and the the distance from the wall:

⟨Uc⟩L
u∗

= 1
κ

ln
(
yLu∗

ν

)
+ 4.88 (1.23)

in which κ is Von Karman constant, taken roughly equal to 0.41, and subscript L refers to the
logarithmic layer.

Fig. 1.4: Dimensionless mean velocity profile as a function of dimensionless wall distance for a turbulent
pipe flow with Reynolds numbers between 4 × 103 and 36 × 106 (Nieuwstadt et al., 2016)

Viscous Sublayer Buffer Layer Logarithmic Layer

y+ ≤ 5 5 < y+ < 30 30 ≤ y+ ≤ 0.22H+

Table 1.1: Near-Wall Flow Regions
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Eqn. (1.23) is called the standard wall function for smooth walls and can be used as the boundary
condition to Eqn. (1.18) in numerical simulations. Application of the wall function in fact has
the advantage of skipping the need for an unacceptably large number of grid cells to resolve all
the near-wall flow layers since it directly relates the mean velocity in the logarithmic layer to the
shear-stress at the wall. This requires the size of the grid cell adjacent to the wall to be set such that
the cell center falls into the logarithmic range (Fig. 1.5).

Fig. 1.5: Wall function grid cell

In most particle-laden flows, Eqn. (1.23) is not applicable since the wall surface does not remain
smooth anymore, due to the particles deposition. Apsley, 2007 developed a wall function to cope
with arbitrarily rough surfaces, with the ability to reproduce the Darcy friction factor, as follows:

⟨Uc⟩L
u∗

= 1
κ

ln
(
yGu∗

ν

)
+B (1.24)

with:
B = 8 − 1

κ
ln
(
ksu∗

ν
+ 3.152

)

where ks represents the absolute roughness. In addition, assuming that the production and dissi-
pation of the turbulent kinetic energy are in equilibrium within the logarithmic layer, the values
of the turbulent kinetic energy and its dissipation rate can be estimated at yG, to be utilized as the
boundary condition to Eqn. (1.21) and Eqn. (1.22), respectively:

kL = u2
∗√
Cµ

(1.25)

εL = u3
∗

κ(yL − yd)
(1.26)

where:

y+
d =


B − 1

κ
(ln κ+ 1) B − 1

κ
ln κ ≥ 0

− 1
κ
e−κ(B− 1

κ
ln κ) B − 1

κ
ln κ ≤ 0

Page 11 TU Delft



1.3.3 Iteration Procedure
As mentioned before, the solution of the single-phase flow model within the quasi-1D framework
is achieved through iterating between the stream-wise and cross-stream 1D equations, which has
been schematically depicted below:

Fig. 1.6: Iteration procedure for single-phase flow

Each of the steps 2 and 3 includes inner iteration, which will be expanded on in the subsequent
section.

1.4 Numerical Solution for Flow Equations
Since no analytical solution exists for the flow equations derived in the former section, the numerical
approaches such as finite difference, finite volume and so on come into play, the basis of which is
to discretize the differential equations on the domain of interest that is already meshed and solve
the resulting set of algebraic equations, written in the matrix form as follows, simultaneously:

AX = B (1.27)

where A, X and B are the matrix of coefficients, the vector of unknowns and the vector of knowns,
respectively. Since all the differential equations to be discretized in the quasi-1D framework are 1D,
the resulting A matrix will turn out to be tridiagonal, so that the very efficient Thomas algorithm
(see Appendix) can be used to solve Eqn. (1.27).

In this study, the spatial derivatives are approximated using the central differencing scheme, es-
sentially because it is second-order accurate and also leads to a tri-diagonal configuration for the
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above-mentioned matrix A, which is not the case when applying higher-order methods. Besides,
the time derivative is discretized by the Eulerian first-order backward differencing scheme whose
implicit nature helps to circumvent the instability issues associated with the time step size ∆t
selection. However, this does not necessarily mean that ∆t can be set as large as possible since it
might destroy the connectivity between the equations under iteration. Note that using higher-order
methods for approximating the time derivative is unnecessary regarding the fact that the final goal
here is to reach a steady state, at which the flow characteristics are independent of time.

1.4.1 Stream-Wise 1D Equations (SIMPLE Algorithm)
The two unknowns that are going to be determined here are the average velocity and pressure along
the channel, for a given stream-wise distribution of the wall shear-stress. The discretization of Eqn.
(1.15) and (1.17) is accomplished on an equidistant staggered grid, where the velocities are placed
on the cell interfaces and the pressures occur at the cell centers (Fig. 1.7).

Fig. 1.7: Stream-wise grid stencil

The SIMPLE algorithm (see e.g. Anderson et al., 1995) is used to generate coupling between the
pressure and the velocity, which helps to avoid the well known checkerboard pattern in the pressure
distribution. In this algorithm, the velocity and pressure at the current time level n+ 1 are written
as:

⟨Uc⟩
n+1 = ⟨Uc⟩

∗ + ⟨Uc⟩
′

⟨Pc⟩
n+1 = ⟨Pc⟩

∗ + ⟨Pc⟩
′

The superscript ∗ denotes the guessed quantity that will be iterated until converging to the actual
value, and the term with prime is the residual. The discretized version of Eqn. (1.17) for ⟨Uc⟩

∗ on
the cell interface i+1

2 assumes the following form:

Ai-1
2
⟨Uc⟩

∗
i-1

2
+ Ai+1

2
⟨Uc⟩

∗
i+1

2
+ Ai+3

2
⟨Uc⟩

∗
i+3

2
= Bi+1

2
(1.28)
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where:

Ai-1
2

= −
Hi

(
⟨Uc⟩

∗
i-1

2
+ ⟨Uc⟩

∗
i+1

2

)
4∆x

Ai+1
2

=
Hi+1

2

∆t
−
Hi

(
⟨Uc⟩

∗
i-1

2
+ ⟨Uc⟩

∗
i+1

2

)
4∆x

+
Hi+1

(
⟨Uc⟩

∗
i+1

2
+ ⟨Uc⟩

∗
i+3

2

)
4∆x

Ai+3
2

=
Hi+1

(
⟨Uc⟩

∗
i+1

2
+ ⟨Uc⟩

∗
i+3

2

)
4∆x

Bi+1
2

=
Hi+1

2

∆t
⟨Uc⟩

n

i+1
2

−
(
Hi+1

2

ρ∆x
+ ∆H

2ρ

)
⟨Pc⟩

∗
i+1 +

(
Hi+1

2

ρ∆x
− ∆H

2ρ

)
⟨Pc⟩

∗
i − τ0i+1

2

Note that the velocity also appears in the coefficients of this equation, which results from the
linearization of the nonlinear advection term. This requires the velocity to be obtained in an
iterative fashion.

The residual pressure at the grid point i is also connected to its counterparts at i-1 and i+1 via the
Poisson equation:

−
(
Hi- 1

2

∆x
−

∆Hi- 1
2

2

)
⟨Pc⟩

′
i-1 +

[(
Hi- 1

2

∆x
+

∆Hi- 1
2

2

)
+
(
Hi+ 1

2

∆x
−

∆Hi+ 1
2

2

)]
⟨Pc⟩

′
i

−
(
Hi+ 1

2

∆x
+

∆Hi+ 1
2

2

)
⟨Pc⟩

′
i+1 = ρ

∆t
(
Hi- 1

2
⟨Uc⟩

∗
i- 1

2
−Hi+ 1

2
⟨Uc⟩

∗
i+ 1

2

) (1.29)

which is known as the corrector step in the SIMPLE algorithm. Note that the terms with ∆H
account for the extra pressure pushing against the fluid element due to its oblique top and bottom
surfaces (Fig. 1.8).

Fig. 1.8: Extra pressure forcing against the fluid element

The way Eqn. (1.28) and (1.29) should be iterated to achieve a convergent solution within a single
time step is illustrated in Fig. 1.9.
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Fig. 1.9: SIMPLE algorithm iteration procedure

The initial guess for ⟨Pc⟩
∗ can be adopted from the pressure distribution in the previous time step.

1.4.2 Cross-Stream 1D Equations
The grid stencil on which the cross-stream 1D equations will be discretized is shown in the figure
below:

Fig. 1.10: Cross-stream grid stencil

The following are the discrete forms of Eqn. (1.8), (1.21) and (1.22), respectively:
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−
[

(νt + ν)
∆y

]
j- 1

2

⟨Uc⟩n+1
j-1 +

 1
∆t

+
[

(νt + ν)
∆y

]
j- 1

2

+
[

(νt + ν)
∆y

]
j+ 1

2

⟨Uc⟩n+1
j

+
[

(νt + ν)
∆y

]
j+ 1

2

⟨Uc⟩n+1
j+1 =

⟨Uc⟩n
j

∆t
+ Ψ∆yj

(1.30)

−
[(ν + νt

σk
)

∆y

]
j- 1

2

kj-1 +


[(ν + νt

σk
)

∆y

]
j- 1

2

+
[(ν + νt

σk
)

∆y

]
j+ 1

2

+
(
ε

k
∆y

)
j

kj

−
[(ν + νt

σk
)

∆y

]
j+ 1

2

kj+1 =
(
νt

∆t

)
j

(
⟨Uc⟩n+1

j+ 1
2

− ⟨Uc⟩n+1
j- 1

2

) (1.31)

−
[(ν + νt

σε
)

∆y

]
j- 1

2

εj-1 +


[(ν + νt

σε
)

∆y

]
j- 1

2

+
[(ν + νt

σε
)

∆y

]
j+ 1

2

+
(
Cε2

ε

k
∆y
)

j

εj

−
[(ν + νt

σε
)

∆y

]
j+ 1

2

εj+1 =
(
Cε1

νt

∆t
ε

k

)
j

(
⟨Uc⟩n+1

j+ 1
2

− ⟨Uc⟩n+1
j- 1

2

) (1.32)

As mentioned before, these three equations should be solved for all the cross sections along the
channel independently. This is done by varying the value of Ψ at each cross section, using the false-
position method, to achieve a velocity profile whose average matches the value already provided by
Eqn. (1.28) at the corresponding x-position. The flowchart below explains the iteration procedure
applied to arrive at a convergent solution to the above-mentioned equations:

Fig. 1.11: Iteration procedure for cross-stream 1D equations
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Note that in each iteration loop, the boundary conditions for ⟨Uc⟩, k and ε should be updated using
Eqn. (1.24), (1.25) and (1.22), respectively. Moreover, the initial values of these variables, to start
the new iteration with, can be adopted from the previous iteration results.

1.4.3 Convergence Criterion
In this study, the following convergence criterion is used to determine whether or not the steady
state has been reached: ∣∣∣∣∣ξn+1 − ξn

∆t

∣∣∣∣∣ < E

where ξ refers to any flow variable such as velocity, and E is an input threshold.

1.5 Results and Discussion
The development of the quasi-1D flow model was thoroughly explained, and the respective equations
were worked out. Now, the results of the model will be presented for certain test cases and validated
with those of academic ANSYS Fluent 2019 2D model as a benchmark. Fig. 1.12 displays the
geometries of the two cases for which the flow simulations were carried out. The first geometry
represents a channel whose width linearly decreases down to half of its initial value at the inlet,
and the second one depicts a parabolic contraction followed by an expansion. The fluid properties,
inlet and outlet boundary conditions, number of stream-wise and cross-stream grid cells (Nx,Ny)
and time step size (∆t) have been reported in Tab. 1.2.

(a) Case1

(b) Case2

Fig. 1.12: Geometries of flow simulation test cases
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Density (kg/m3) 1000

Viscosity (Pa.s) 5×10-3

Inlet Velocity (m/s) 1

Outlet Pressure (Pa) 105

Nx & Ny 100 & 30

∆t(s) 0.2

Table 1.2: Fluid properties and simulation parameters

The velocity and pressure fields of Case1 and Case2 obtained from both the quasi-1D and ANSYS
Fluent 2D models are shown in Fig. 1.13 and 1.15, respectively, where the Reynolds. In order to
draw a more noticeable comparison, the velocity profiles at the two cross sections x = 20m and
x = 80m have also been plotted for both cases (Fig.1.14 and 1.16). It is clearly seen that the results
pertaining to the quasi-1D model are in good agreement with those of ANSYS Fluent for both test
cases, with a minor discrepancy essentially arising from the fact that the quasi-1D model assumes
zero mean flow velocity in the cross-stream direction. As also expected, the pressure field only
varies along the channel and is almost uniform within each cross section.

Fig. 1.13: Velocity and pressure fields of Case1 obtained from Quasi-1D model and ANSYS Fluent 2D model
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Fig. 1.14: Comparison between velocity profiles of Quasi-1D model and ANSYS Fluent 2D model at cross sections
x = 20m and x = 80m for Case1

Fig. 1.15: Velocity and pressure fields of Case2 obtained from Quasi-1D model and ANSYS Fluent 2D model
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Fig. 1.16: Comparison between velocity profiles of Quasi-1D model and ANSYS Fluent 2D model at cross sections
x = 20m and x = 80m for Case2

An interesting subject of curiosity is to investigate to what extent the quasi-1D model stays in
accordance with the ANSYS Fluent 2D model. Towards this end, consider the Case1 geometry
again, where the contraction angle θ refers to the angle at which the walls of the channel deviate
from the horizontal. The aim is to start from θ ≈ 0 and increase it by reducing the length of the
channelLwhile keeping the inlet and the outlet width constant in order to see how the mean velocity
field of the quasi-1D model changes relative to that of the ANSYS Fluent 2D model. Before doing
so, first take a look at Fig. 1.17, which compares the velocity profiles of the two models for θ = 0.
In theory, when the geometry is fully 1D, no mean velocity exists in the cross-stream direction, so
that the results must be exactly the same. However, a slight discrepancy is still observed, probably
due to some differences between the turbulence model parameters used in this study and ANSYS
Fluent. This should be taken into account in the rest of the validations.

Fig. 1.17: Comparison of mean velocity profiles of Quasi-1D and ANSYS Fluent 2D models for θ = 0
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Consider an error parameter defined as:

Err = Max


∣∣∣∣∣⟨Uc⟩Quasi−1D − ⟨Uc⟩ANSY SF luent

⟨Uc⟩ANSY SF luent

∣∣∣∣∣
×100

which is calculated throughout the channel and can be taken as a measure of the departure of the
quasi-1D model from the ANSYS Fluent 2D model. Note that the denominator is never close
to zero since the minimum velocity within each cross section comes from the logarithmic layer.
Fig. 1.18 plotsErr as a function of θ, where it is observed that the higher the contraction angle, the
larger the error parameter such that as θ is increased above 5◦, the agreement between the quasi-1D
and ANSYS Fluent 2D models gets more and more degraded. This has also been demonstrated
in Fig. 1.19, where the velocity profiles of the two models have been compared for increasing θ
at the stream-wise dimensionless position x

L
= 0.2. However, one may still conclude that the

quasi-1D model can be perfectly applied to practical problems such as the deposition of asphaltene
in oil wells, to be addressed in chapter 3, where the deposit layer thickness varies gradually in the
stream-wise direction.

Fig. 1.18: Error parameter as a function of contraction angle
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Fig. 1.19: Comparison of mean velocity profiles of Quasi-1D and ANSYS Fluent 2D models at x
L = 0.2

An important aspect of any numerical framework is its computational efficiency with respect to the
grid resolution. As mentioned before, one of the main incentives to develop the quasi-1D model
was its less computational cost compared with the 2D model. To investigate this, the simulation of
Case1 was repeated using both the quasi-1D and ANSYS Fluent 2D models for a set of increasing
numbers stream-wise grid cells Nx (from 500 to 25000), and the corresponding CPU times, as a
measure of the computational cost, were recorded after 100 time steps. Fig. 1.20 displays how the
CPU time of each model varies as a function ofNx (note that both axes have logarithmic scale). The
two graphs should not be exactly compared since, for example, the definitions of the convergence
criterion in the quasi-1D code and ANSYS Fluent are different, or there is still room to optimize
the quasi-1D code, which is not in the scope of this work, as it is focused on the proof of concept
of the quasi-1D approach. However, of primary interest here is the trend based on which the CPU
time of each model depends on the number of grid cells. As it is seen, the CPU time of the ANSYS
Fluent scales roughly with N1.6

x whereas that of the quasi-1D code varies linearly with Nx, which
reveals that, from a certain number of grid cells on, the quasi-1D model will absolutely perform
faster. This essentially owes to the fact that the 2D flow equations in the quasi-1D framework are
converted to 1D equations, leading to tridiagonal configuration of the matrix of coefficients A in
Eqn. (1.27) whose solution method is of first-order arithmetic complexity.
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Fig. 1.20: CPU times of quasi-1D and ANSYS Fluent 2D Models as a function of the number of stream-wise grid cells
Nx

It is also worth mentioning that a quasi-1D code is massively parallelizable simply because the set
of equations for each cross section are solved independently from the other cross sections, implying
that the cross-sectional profiles along the channel can be obtained in parallel if sufficient number
of CPU nodes are available.

1.6 Conclusions
The steady-state flow of a single-phase incompressible fluid was modeled within the quasi-1D
framework; the results and performance were validated and compared with those of the ANSYS
Fluent 2D model as a benchmark. The following conclusions can be made from what was presented
in this chapter:

• The results of the quasi-1D and ANSYS Fluent 2D models were in line with each other for
the cases tested.

• For contraction angles smaller than 5◦, the quasi-1D model showed an error of less than
10% with respect to the ANSYS Fluent 2D model, which assures that the quasi-1D approach
can be applied to the problem of asphaltenes transport and deposition in oil wells, where the
stream-wise variation the deposit layer thickness is presumed to occur with a local contraction
angle of much less than 1◦.

• The CPU time analysis revealed that the computational cost of the quasi-1D model increases
linearly with the number of stream-wise grid cells (Nx), whereas that of the ANSYS Fluent
2D model scales roughly with N1.6

x . This denotes that, from a certain number of grid cells
on, the Quasi-1D code will definitely run faster than ANSYS Fluent.
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Chapter 2
Particle Transport Modelling

This chapter begins with modelling the transport of a single-sized particulate phase in a turbulent
channel flow using the Eulerian approach, which will then be generalized to particles of a continuous
size distribution undergoing various physical processes, including nucleation, aggregation and
breakage, by taking advantage of the population balance equation (PBE). Following a similar work-
flow as in chapter 1, the relevant 2D governing equations will be presented and modified based on
the quasi-1D strategy, followed by the corresponding discrete forms plus the iterative algorithms
applied to solve them.

2.1 Eulerian Model (Two-Fluid Model)
One of the several methods that have been developed to model multi-phase flows is referred to
as the Eulerian-Eulerian or two-fluid approach. The basis of this technique is the formulation of
a set of conservation equations (mass and momentum) for each phase, which can be carried out
by ensemble-averaging the continuity and Navier-Stokes equations. Since the averaged quantities
exist every where in space, it is commonly said that the two-fluid model regards the dispersed phase
(here particles) as a “continuum”.

In the two-fluid model, the interaction between one phase with the others is accounted for via inter-
phase forces that appear in the phase momentum equations and need to be closed using empirical
relations. This work is based on the one-way coupling assumption, stating that the continuous
phase poses force on and is not influenced by the particulate phase, and no interactive forces also
exist between the particles themselves. The continuity and momentum equations for the phase p
are as follows:

∂αp

∂t
+ ∂(αp⟨Up⟩)

∂x
+ ∂(αp⟨Vp⟩)

∂y
= 0 (2.1)

∂(αp⟨Up⟩2)
∂x

+ ∂(αp⟨Vp⟩⟨Up⟩)
∂y

+
∂(αp⟨U ′

pU
′

p⟩)
∂x

+
∂(αp⟨V ′

p U
′

p⟩)
∂y

= 18ναp

D2
p

(⟨Ucp⟩ − ⟨Up⟩) − 18ννt

D2
p δsc

∂αp

∂x

(2.2)

∂(αp⟨Up⟩⟨Vp⟩)
∂x

+ ∂(αp⟨Vp⟩2)
∂y

+
∂(αp⟨U ′

pV
′

p ⟩)
∂x

+
∂(αp⟨V ′

p V
′

p ⟩)
∂y

= −18ναp

D2
p

⟨Vp⟩ − 18ννt

D2
p δsc

∂αp

∂y

(2.3)
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where the angle brackets denote ensemble average, αp is particle volume fraction, ⟨Up⟩ particle
mean velocity in the stream-wise direction, ⟨Vp⟩ particle mean velocity in the cross-stream direction,
⟨Ucp⟩ stream-wise mean flow velocity at the particle position and Dp particle diameter and δsc the
turbulent schmidt number, which takes the value of 0.7 in case of perfect-tracer particles. These
equations are comparable to the Reynolds-averaged continuity and Navier-Stokes equations, plus
some extra terms such as stokes drag (first term on the right-hand side of the phase momentum
equations) and drift flux (second term on the right-hand side of the phase momentum equations)
that represent the physical forces and mechanisms accounting for the particles motion. Remember
that the fluid flow is presumed not to occur in the cross-stream direction, which is the reason why
the term ⟨Vcp⟩ does not appear in Eqn. (2.3). Moreover, similar to the way of achieving the steady
state for the single-phase fluid flow in chapter 1, the steady state for the particles transport will
be attained by considering a pseudo time term in the phase continuity equation and solving for
the particulate phase characteristics until they do not vary in time. However, there is no need to
incorporate the time term in the phase momentum equations as well, assuming that the forces acting
on the particles are instantly at equilibrium.

When studying particle-laden flows, it is usually of high interest to discover how the particles tend
to move in the cross-stream direction and eventually contribute to the total flux of deposition at
the wall. Eqn. (2.3). accounts for the particles cross-stream movement under the two following
mechanisms:

• Turbophoresis (last term on the left-hand side): Based on this mechanism, uniformly
distributed particles tend to move towards the region with less turbulence intensity.

• Drift Flux (last term on the right-hand side): This mechanism causes the particles in
a medium with homogeneous turbulent intensity to move towards the region with lower
particle concentration.

These mechanisms are also present in the stream-wise direction but are expected to play a minor
role since the particles are mainly under the influence of the drag force exerted by the mean flow
(the first term on the right-hand side of Eqn. (2.2)).

Assuming that the particle fluctuations are determined by the turbulent fluctuations, the local
equilibrium model can be used to close the components of the particle-phase Reynolds stress as
follows:

⟨U ′
pU

′
p⟩ = Γ⟨U ′

cU
′

c ⟩

⟨V ′
p U

′
p⟩ = Γ⟨V ′

c U
′

c ⟩

⟨V ′
p V

′
p ⟩ = Γ⟨V ′

c V
′

c ⟩

(2.4)

where the coefficient Γ is given by:

Γ = Tt

Tt + τp

(2.5)

The turbulence time scale Tt and the particle relaxation time τp are also computed from the
expressions below:

Tt =
√

2
3
Cµ
k

ε
(2.6)
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τp =
ρpD

2
p

18µc

(2.7)

In case of very small particles, the relaxation time is much smaller than the turbulence time scale,
implying that the particles will completely adjust to the turbulence (Γ ≈ 1). However, very large
particles will not be influenced by the turbulent fluctuations (Γ ≈ 0). Note that the usage of this
model is not essential to this work, and other closure relations could be used as well.

2.2 Population Balance Equation
In contrary to what discussed above, now suppose that the particulate phase is characterized by a
continuous distribution of sizes and subject to various processes including nucleation, aggregation
and breakage. In such a case, the continuity equation in the Eulerian model should be replaced
with the population balance equation (PBE).

2.2.1 Particle Size Distribution
Any population of particles can be described by a unique particle size distribution (PSD), an
example of which can be found in Fig. 2.1.

Fig. 2.1: An example of particle size distribution

In this figure, β represents a size-related property such as volume (V ) or length (L), and n(β) is
called the number density function, based on which the particles number density ω within the size
range (β, β+dβ ) can be computed as:

ω(β, β+dβ) = n(β)dβ (2.8)

From now on in this work, the length of the particles is chosen to be their size property. The
characteristics of a PSD can be described by its moments, defined as:

mk =
∫ ∞

0
Lkn(L)dL k = 0, 1, ... (2.9)

where k refers to the order of the moment. It is seen, for example, that m0 represents the total
number density of the particles, m1 equals the mean of the PSD and so on. Therefore, one will be
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able to reconstruct the PSD if its moments are known, which will be more elaborated on later in
this section.

2.2.2 Gaussian Quadrature Rule
According to the Gaussian Quadrature rule (see e.g. Mukhtar et al., 2012), the one-dimensional
integral of any function f(x), defined over the domain (a, b) and weighted by an arbitrary non-
negative function ψ(x), can be approximated as follows:

I =
∫ b

a
ψ(x)f(x)dx ≈

N∑
i=1
ωif(xi) (2.10)

where N is the number of quadrature points, and ωi is the weight corresponding to the quadrature
abscissa xi (see Fig. 2.2 as an example).

Fig. 2.2: Gaussian quadrature abscissas and weights

If the number density function n(L) is chosen to be the weight function, Eqn. (2.10) for any particle
length function f(L) turns into:

I =
∫ b

a
n(L)f(L)dL ≈

N∑
i=1
ωsf(Ls) (2.11)

where ωs and Ls are the quadrature weights and abscissas of the corresponding PSD. This equation
is very useful, for example, in approximating the moments of the PSD as below:

mk =
∫ ∞

0
Lkn(L)dL ≈

N∑
s=1
ωsL

k
s (2.12)

2.2.3 Formulation of Population Balance Equation
In order to identify a population of particles at any position in space and time, it is only needed to
determine the corresponding PSD at that position. This comes true using the population balance
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equation, which is essentially a transport equation for the number density function. According to
Marchisio et al., 2007, the length-based form of the PBE reads:

∂n(L)
∂t

+
∂
(
⟨Up|L⟩n(L)

)
∂x

+
∂
(
⟨Vp|L⟩n(L)

)
∂y

= S(L) (2.13)

where ⟨Up|L⟩ and ⟨Vp|L⟩ are the mean velocity of the particles with length L in the stream-wise
and cross-stream directions, respectively. The source term S(L) can be written as follows:

S(L) =

I︷ ︸︸ ︷
∂n(L)
∂t

∣∣∣∣∣
Nuc

+

II︷ ︸︸ ︷
L2

2

∫ L

0
E
(
(L3 − λ3)

1
3 , λ

)β((L3 − λ3) 1
3 , λ

)
(L3 − λ3) 1

3
n
(
(L3 − λ3)

1
3
)
n(λ)dL

−

III︷ ︸︸ ︷
n(L)

∫ ∞

0
β(L, λ)n(λ)dλ+

IV︷ ︸︸ ︷∫ ∞

L
a(λ)b(L|λ)n(λ)dλ−

V︷ ︸︸ ︷
a(L)n(L)

which primarily consists of 5 terms, introduced along with the respective parameters below:

I: Nucleation particle size distribution (NPSD)

II: Formation of particles with size L from aggregation of smaller ones

• β(L, λ): Rate of collision of particles with sizes L and λ (Collision Kernel)
• E(L, λ): Collision efficiency of particles with sizes L and λ

III: Collision of particles of size L with any others leading to formation of larger aggregates

IV: Formation of particles with size L from breakage of larger aggregates

• a(λ): Rate of breakage of particles with size λ (Breakage Kernel)
• b(L|λ): Number of particles with size L formed from breakage of an aggregate with

size λ (Fragment Distribution Function)

V: Breakage of particles with size L

In case of single-sized nucleating particles, the NPSD can be modeled using the Dirac delta function
as:

∂n(L)
∂t

∣∣∣∣∣
Nuc

= J0δ(L− L0)

where J0 is the nucleation rate, and L0 indicates the size of the nucleating particles. In this work,
the nucleation process is presumed to take place over the size range (La , Lb), which is taken into
account via approximating the delta function by a step function (Fig. 2.3). However, note that any
choices other than the step function could also be made.
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Fig. 2.3: Approximation of nucleation particle size distribution

2.2.4 Solution Methods of Population Balance Equation
The following are a number of the available techniques used to solve the PBE:

• Discrete Method: This method discretizes the PBE into a finite number of size intervals, for
each of which the PDS can be directly calculated. It is useful particularly when the whole
particle size range is known a priory and does not span more than two or three orders of
magnitude. However, it is computationally expensive if a large number of intervals is needed
(ANSYS Fluent 12.0 manual).

• Standard method of moments (SMM): In this approach, the PBE is transformed into a set
of transport equations for the moments of the PSD. It is generally sufficient to solve for only
a few first moments of the PSD, typically up to the order three to six, which may provide
a significant reduction in the number of equations to be solved compared with the discrete
approach. Note also that the moment equations are formulated in a closed form involving
only functions of the moments themselves, however, this exact closure requirement poses
a serious limitation, as aggregation (with the exception of the constant aggregation kernel)
and breakage phenomena cannot be written as functions of moments (ANSYS Fluent 12.0
manual).

• Quadrature method of moments (QMOM): This method also deals with the transport
equations for the moments of the PSD and has a similar advantage as SMM in terms
of computational cost. However, the exact closures needed by SMM are replaced with
approximate closures using the Gaussian Quadrature rule, which allows application of the
QMOM to a broad range of phenomena including aggregation and breakage, without any
limitations (ANSYS Fluent 12.0 manual). The main drawback of this method is that it
assigns the whole particle range a uniform velocity field based on the mean particle size,
which becomes problematic especially in case of multi-variate distribution functions.

• Direct quadrature method of moments (DQMOM): In this method, a set of transport
equations are worked out directly for the quadrature abscissas and weights of the PSD instead

Page 29 TU Delft



of its moments. Each quadrature abscissa is assumed to occupy an independent velocity
field, which allows to address the multi-variate PSD′s as well. A thorough explanation on
the DQMOM will be given in the next subsection, as this approach will be employed in this
study.

2.2.5 Direct Quadrature Method of Moments (DQMOM)
The outline of the DQMOM has been summarized below:

• Solving the transport equations for the quadrature weights and abscissas of the PSD.

• Obtaining the moments of the PSD using its quadrature weights and abscissas.

• Reconstructing the PSD from its moments.

Derivation of the transport equations for the quadrature abscissas and weights of the PSD starts with
modelling the number density function n(L) as a summation of weighted Dirac delta functions:

n(L) =
N∑

s=1
ωsδ(L− Ls) (2.14)

whereN is the number of delta functions and ωs is the weight of node s. In other words, this model
divides the whole particle range into N separate classes, each represented by the characteristic
length Ls and number density ωs. It should be noted that Ls and ωs are essentially the same as the
abscissas and weights of the Gaussian quadrature rule, as is also implied by the name of the method.
Theoretically speaking, the higher the number of nodes N , the more accurate the DQMOM will
be but at the expense of higher computational effort. In this study, the practical value of N = 3 is
used, which most of the time leads to acceptable results with reasonable computational cost.

Substituting Eqn. (2.14) into Eqn. (2.13) and applying some mathematical manipulations (see
Marchisio et al., 2005), the following transport equations can be worked out for the weights
(ωs) and the abscissas (Ls):

∂ωs

∂t
+
∂(⟨Up⟩sωs)

∂x
+
∂(⟨Vp⟩sωs)

∂y
= as (2.15)

∂(ωsLs)
∂t

+
∂(⟨Up⟩sωsLs)

∂x
+
∂(⟨Vp⟩sωsLs)

∂y
= bs (2.16)

The source terms as and bs are obtained from the following set of 2N equations:

(1−k)
N∑

s=1
Lk

sas + k
N∑

s=1
Lk-1

s bs = SN
k k = 0, 1, ..., 2N−1 (2.17)

where:

SN
k = (Lk+1

b − Lk+1
a )J0

(k + 1)(Lb − La)
+ 1

2

∫ ∞

0

∫ ∞

0
(L3 + λ3)

k
3β(L, λ)n(L)n(λ)dLdλ

−
∫ ∞

0
Lkn(L)

∫ ∞

0
β(L, λ)n(λ)dλdL+

∫ ∞

0
a(λ)n(λ)bk(λ)dλ−

∫ ∞

0
a(L)Lkn(L)dL
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The new term bk(λ) is called the daughter distribution function and defined as:

bk(λ) =
∫ ∞

0
Lkb(L|λ)dL

As an example, Eqn. (2.17) for N = 3 can be written in the matrix form below:



1 1 1 0 0 0

0 0 0 1 1 1

-L2
1 -L2

2 -L2
3 2L1 2L2 2L3

-2L3
1 -2L3

2 -2L3
3 3L2

1 3L2
2 3L2

3

-3L4
1 -3L4

2 -3L4
3 4L3

1 4L3
2 4L3

3

-4L5
1 -4L5

2 -4L5
3 5L4

1 5L4
2 5L4

3





a1

a2

a3

b1

b2

b3


=



S3
0

S3
1

S3
2

S3
3

S3
4

S3
5


(2.18)

Taking advantage of Eqn. (2.11), all the integral terms present in SN
k can be approximated by

summations as follows:

SN
k = (Lk+1

b − Lk+1
a )J0

(k + 1)(Lb − La)
+ 1

2

N∑
s=1

N∑
t=1
ωsωt(L3

s − L3
t )

k
3β(Ls, Lt)

−
N∑

s=1

N∑
t=1
ωsωtL

k
s β(Ls, Lt) +

N∑
s=1
ωsa(Ls)bk(Ls) −

N∑
s=1
ωsL

k
s a(Ls)

Note also that the mean velocities appearing in the advection terms of Eqn. (2.15) and (2.16)
are acquired from Eqn. (2.2) and (2.3), where the volume fraction of each particle class can be
calculated from:

αs = π

6
L3

sωs (2.19)

2.2.6 PSD Reconstruction
Once the quadrature weights and abscissas of the PSD are obtained from the respective transport
equations in the DQMOM, the moments of the PSD can be acquired from Eqn. (2.12), which are used
to reconstruct the PSD. Different possible methods have been developed allowing reconstruction
of a PSD from its moments (John et al., 2007) such as:

• Prescribed function method: The fastest and easiest way of constructing a PSD, knowing
only some of its moments, is fitting it to a prescribed mathematical function. This method
is limited to simple shapes and also requires a prior knowledge about the solution of the
problem.
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• Spline-based reconstruction: In this method, the whole particle size range is divided into a
number of intervals based on the number of moments available. Then, the shape of the PSD
will be approximated by a piecewise polynomial function. The advantage of this methos is
that no prior assumptions are needed about the shape of the PSD, and any arbitrary number
of moments can be used. However, it is computationally more expensive than the prescribed
function method, and also the system of equations solved to obtain the polynomial coefficients
is very ill-conditioned.

In this work, the prescribed function method will be used due to its computational efficiency
and simple implementation. As mentioned above, the choice of the mathematical function in
this method is completely problem-dependent. For example, consider a population of particles,
which are nucleated with a symmetric size distribution and then continue growing in size due to
aggregation, as applies to the asphaltenes transport in oil wells discussed in chapter 3. In this
case, as the transport process goes on, the PSD will keep on being skewed more and more towards
the larger particles. Therefore, in order to describe the shape of such a PSD based on this prior
knowledge, Gamma function would be a good choice since it take various shapes depending on the
skewness and kurtosis values deduced from the respective moment data (Heinz, 2003):

f(x) = µµx(µ−1)exp(−µx/x)
Γ(µ)xµ

(2.20)

where:
µ = x2

σ2 and Γ(µ) =
∫ ∞

0
zµ−1ezdz

The mean size x and the standard deviation σ are obtained from the first three moments of the PSD
as:

x = m1

m0
and σ = m1

m0

√
m0m2

m1
− 1

It should be noted thatm0 is not unity since, by definition, it is equal to the total number of particles
per unit volume.

2.3 Quasi-1D Model for Particulate Phase
The transport of a population of particles with a continuous size distribution in turbulent flow was
modeled using the PBE coupled to the Eulerian model. Now, the quasi-1D idea will be applied
again to convert the 2D equations into separate 1D equations in the stream-wise and cross-stream
directions, which can be solved in an iterative fashion.

2.3.1 Stream-Wise 1D Equations
Integrating Eqn. (2.2), (2.3), (2.15) and (2.16) with respect to y from 0 to H and then applying the
averaging definition, presented by Eqn. (1.14), yields:
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∂
(
FU1sHαs⟨Up⟩2s

)
∂x

−
(
αs⟨Vp⟩s⟨Up⟩s

)
0

+
∂
(
FU2sHαs⟨U ′

pU
′

p⟩
s

)
∂x

= 18FU3sHναs

L
2
p

⟨Ucp⟩s

−18FU4sHναs

L
2
p

⟨Up⟩s − 18FU5sHννt

L
2
s δsc

∂αs

∂x

(2.21)

∂
(
FV1sHαs⟨Up⟩s⟨Vp⟩s

)
∂x

−
(
αs⟨Vp⟩2s

)
0

+
∂
(
FV2sHαs⟨U ′

pV
′

p ⟩
s

)
∂x

= −18FV3sHναs

L
2
s

⟨Vp⟩s

−18FV4sHννt

L
2
s δsc

∂αs

∂y

(2.22)

∂
(
Hωs

)
∂t

+
∂
(
FωsH⟨Up⟩sωs

)
∂x

−
(
⟨Vp⟩sωs

)
0

= Has (2.23)

∂
(
FL1sHωsLs

)
∂t

+
∂
(
FL2sH⟨Up⟩sωsLs

)
∂x

−
(
⟨Vp⟩sωsLs

)
0

= Hbs (2.24)

which are used to attain the stream-wise distributions of the average particle mean velocities ⟨Up⟩s
and ⟨Vp⟩s, number density ωs and length Ls, respectively. The terms bearing the subscript 0 are in
fact fluxes at the wall and behave exactly in the same way as the wall shear-stress does in Eqn. (1.17).
The average volume fraction αs appearing in Eqn. (2.21) and (2.22) is calculated from:

αs = π

6
FαsL

3
sωs (2.25)

and the source terms as and bs on the right-hand side of in Eqn. (2.23) and (2.24) can be obtained
from the averaged form of Eqn. (2.17):

FaksH(1−k)
N∑

s=1
L

k
s as + FbksHk

N∑
s=1

L
k-1
s bs = HS

N
k (2.26)

where:

S
N

k = (FPbkL
k+1
b − FPakL

k+1
a )J0

(k + 1)(Lb − La)
+ 1

2

N∑
s=1

N∑
t=1

FABkstωsωt(L
3
s − L

3
t )

k
3β(Ls, Lt)

−
N∑

s=1

N∑
t=1

FADkstωsωtL
k

s β(Ls, Lt) +
N∑

s=1
FBBksωsa(Ls)bk(Ls) −

N∑
s=1

FBDksωsL
k

s a(Ls)

All the F parameters are the averaging separation factors, similar to the one used to convert the
mean squared flow velocity to its squared mean in section 1.3. One should notice that only the
subscripts k, s and t are counted over, and the rest have been used for naming purpose.
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2.3.2 Cross-Stream 1D Equations
Lumping the terms with the x-derivative in Eqn. (2.2), (2.3), (2.15) and (2.16) into a "source term"
Ψ, which is assumed to be uniform with respect to y, the following 1D equations in the cross-stream
direction are worked out:

∂
(
αs⟨Vp⟩s⟨Up⟩s

)
∂y

+
∂
(
αs⟨V ′

p U
′

p⟩
s

)
∂y

= 18ναs

L2
s

(
⟨Ucp⟩s − ⟨Up⟩s

)
+ ΨU

(2.27)

∂
(
αs⟨Vp⟩2s

)
∂y

+
∂
(
αs⟨V ′

p V
′

p ⟩
s

)
∂y

= −18ναs

L2
s

⟨Vp⟩s − 18ννt

L2
pδsc

∂αs

∂y
+ ΨV

(2.28)

∂ωs

∂t
+
∂(⟨Vp⟩sωs)

∂y
= as + Ψω (2.29)

∂(ωsLs)
∂t

+
∂(⟨Vp⟩sωsLs)

∂y
= bs + ΨL (2.30)

which should be solved simultaneously for each cross-section to obtain the profiles of the particle
mean velocities ⟨Up⟩s and ⟨Vp⟩s, length Ls and number density ωs. This is carried out, in the same
way as Eqn. (1.18) was solved in chapter 1, by varying the value of Ψ in each equation until achieving
a profile for the respective variable whose cross-sectional average equals the value provided by the
corresponding stream-wise 1D equation at the x-position of interest. Once the profiles of all the
variables are constructed along the channel, the stream-wise distribution of the wall fluxes (terms
with subscript 0) in Eqn. (2.21), (2.22), (2.23) and (2.24) will be updated. Note that the initial
iteration guess for each Ψ can be estimated from:

ΨU−Initial = −
∂
(
Hαs⟨Up⟩2s

)
∂x

−
∂
(
Hαs⟨U ′

pU
′

p⟩
s

)
∂x

− 18Hννt

L
2
s δsc

∂αs

∂x
(2.31)

ΨV −Initial = −
∂
(
Hαs⟨Up⟩s⟨Vp⟩s

)
∂x

−
∂
(
Hαs⟨U ′

pV
′

p ⟩
s

)
∂x

(2.32)

Ψω−Initial = −
∂
(
H⟨Up⟩sωs

)
∂x

(2.33)

ΨL−Initial = −
∂
(
H⟨Up⟩sωsLs

)
∂x

(2.34)

2.3.3 Boundary Conditions
The following are among the possible boundary conditions for the particulate phase equations,
which can be applied depending on the problem under study:

• At the inlet, a fixed flux of particles can be specified to enter the domain with a velocity equal
to that of the carrier fluid.
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• At the outlet, zero derivative of the particles stream-wise and cross-stream mean velocities
can be imposed.

• Symmetry condition can be applied on the centerline of the channel, unless the effect of the
gravity is taken into account in the cross-stream direction.

• In proximity of the wall, it can be assumed that the particles move towards the wall without
any change in their velocity (free-flight boundary condition), which is especially the case for
large particles. However, for small particles, the free-flight condition should be modified to
incorporate the influence of the turbulent fluctuations as well.

2.3.4 Iteration Procedure
The following flowchart explains the iterative procedure considered between the stream-wise and
cross-stream 1D equations to arrive at a convergent solution:

Fig. 2.4: Iteration procedure for transport of particulate phase

Each of the steps 2 and 3 consists of inner iteration, which will be explained in the next section.
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2.4 Numerical Solution for Particulate Phase Equations
Following the numerical approach applied to the single-phase flow equations in chapter 1, the
particulate phase 1D equations in the stream-wise and cross-stream directions will be discretized
on the same grid stencils as in Fig. 1.7 and Fig. 1.10. The only difference here is that the spatial
derivatives in the transport equations for Ls and ωs are approximated using first-order upwind
scheme. In order to understand this scheme, consider the spatial derivative below as an example:

∂(UΩ)
∂x

where Ω is the quantity to be transported by the velocity U in the stream-wise direction. This
derivative can be discretized for the cell center i as follows:

Ui+ 1
2
Ωi+ 1

2
− Ui- 1

2
Ωi- 1

2

∆x

Supposing that the transport velocity is positive (U > 0), the information of the quantity Ω at the
cell interfaces i-1

2 and i+1
2 is coming from the corresponding upstream cell centers. In other words,

the values Ωi- 1
2

and Ωi+ 1
2

should be adopted from the cell centers i-1 and i, respectively. This is
called the first-order upwind scheme, which can be written in its general mathematical form as:

Ωi- 1
2

=


Ωi-1 Ui- 1

2
≥ 0

Ωi Ui- 1
2

≤ 0
and Ωi+ 1

2
=


Ωi Ui+ 1

2
≥ 0

Ωi+1 Ui+ 1
2

≤ 0

2.4.1 Discrete Form of Stream-Wise 1D Equations
Below are the discrete forms of

Eqn. (2.21):

Ai- 1
2
⟨Up⟩si- 1

2

+ Ai+ 1
2
⟨Up⟩si+ 3

2

+ Ai+ 3
2
⟨Up⟩si+ 3

2

= Bi+ 1
2

(2.35)

where:

Ai- 1
2

= −
FU1si

Hiαsi

(
⟨Up⟩si- 1

2

+ ⟨Up⟩si+ 1
2

)
4∆x

Ai+ 1
2

= −
FU1si

Hiαsi

(
⟨Up⟩si- 1

2

+ ⟨Up⟩si+ 1
2

)
4∆x

+
(

18FU3sHναs

L
2
s

)
i

+
FU1si+1Hi+1αsi+1

(
⟨Up⟩si+ 1

2

+ ⟨Up⟩si+ 3
2

)
4∆x

Ai+ 3
2

=
FU1si+1Hi+1αsi+1

(
⟨Up⟩si+ 1

2

+ ⟨Up⟩si+ 3
2

)
4∆x
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Bi+ 1
2

=
(
αs⟨Vp⟩s⟨Up⟩s

)
0i+ 1

2

+

(
FU2sHαs⟨U ′

pU
′

p ⟩
s

)
i

∆x
−

(
FU2sHαs⟨U ′

pU
′

p ⟩
s

)
i+1

∆x
+
(

18FU4sHναs

L
2
s

⟨Ucp⟩s

)
i+ 1

2

−
(

18FU5sHννt

L
2
sσsc

∂αs

∂x

)
i+ 1

2

Eqn. (2.22):

Ai-1⟨Vp⟩si-1
+ Ai⟨Vp⟩si

+ Ai+1⟨Vp⟩si+1
= Bi (2.36)

where:

Ai-1 = −
FV1si- 1

2
Hi- 1

2
(αsi-1 + αsi

)⟨Up⟩si- 1
2

4∆x

Ai = −
FV1si- 1

2
Hi- 1

2
(αsi-1 + αsi

)⟨Up⟩si- 1
2

4∆x
+
(

18FV3si
Hναs

L
2
s

)
i

+
FV1si+ 1

2
Hi+ 1

2
(αsi

+ αsi+1)⟨Up⟩si+ 1
2

4∆x

Ai+1 =
FV1si+ 1

2
Hi+ 1

2
(αsi

+ αsi+1)⟨Up⟩si+ 1
2

4∆x

Bi =
(
α⟨Vp⟩2

s

)
0i

+

(
FV2sHαs⟨U ′

pV
′

p ⟩
s

)
i- 1

2

∆x
−

(
FV2sHαs⟨U ′

pV
′

p ⟩
s

)
i+ 1

2

∆x
−
(

18FV4sHννt

L
2
sσsc

∂αs

∂y

)
i

Eqn. (2.23):

−
Fωsi- 1

2
Hi- 1

2
⟨Up⟩si- 1

2

∆x

ωn+1
si-1

+

Hi

∆t
+
Fωsi+ 1

2
Hi+ 1

2
⟨Up⟩si+ 1

2

∆x

ωn+1
si

=
(
Hi

∆t

)
ωn

si

+
(
⟨Vp⟩sωs

)
0i

+Hiasi

(2.37)

Eqn. (2.24):

−
FL2si- 1

2
Hi- 1

2
⟨Up⟩si- 1

2

ωn+1
si-1

∆x

Ln+1
si-1

+

FL1si
Hiωn+1

si

∆t
+
FL2si+ 1

2
Hi+ 1

2
⟨Up⟩si+ 1

2

ωn+1
si

∆x

Ln+1
si

=
(
FL1si

Hiωn
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)
L

n
si

+
(
⟨Vp⟩sωsLs

)
0i

+Hibsi

(2.38)
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Note that the upstream always points towards the inlet since the particle mean velocity in the
stream-wise direction is positive throughout the channel. Therefore, the upwind values of Ls and
ωs on any grid interface should be received from the corresponding back cell:

(ωsi+ 1
2
,Lsi+ 1

2
) = (ωsi

,Lsi
) and (ωsi- 1

2
,Lsi- 1

2
) = (ωsi-1 ,Lsi-1)

The iteration procedure used to arrive at a convergent solution for the above equations is described
in the following flowchart:

Fig. 2.5: Iteration procedure for stream-wise 1D equations

2.4.2 Discrete Form of Cross-Stream 1D Equations
Below are the discrete forms of

Eqn. (2.27):

Aj-1⟨Up⟩sj-1
+ Aj⟨Up⟩sj

+ Aj+1⟨Up⟩sj+1
= Bj (2.39)
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where:

Aj-1 = −
(αsj-1 + αsj

)⟨Vp⟩sj- 1
2

4

Aj = −
(αsj-1 + αsj

)⟨Vp⟩sj- 1
2

4
+
(

18ναp∆y
L2

s

)
j

+
(αsj

+ αsj+1)⟨Vp⟩sj+ 1
2

4

Aj+1 =
(αsj

+ αsj+1)⟨Vp⟩sj+ 1
2

4

Bj =
(

18ναs∆y⟨Ucs⟩
L2

s

)
j

+
(αsj-1 + αsj

)⟨V ′
p U

′
p⟩

sj- 1
2

2
−

(αsj
+ αsj+1)⟨V ′

p U
′

p⟩
sj+ 1

2

2
+ ΨU∆yj

Eqn (2.28):

Aj- 1
2
⟨Vp⟩sj- 1

2

+ Aj+ 1
2
⟨Vp⟩sj+ 1

2

+ Aj+ 3
2
⟨Vp⟩sj+ 3

2

= Bj+ 1
2

(2.40)

where:

Aj- 1
2

= −
αsj

(
⟨Vp⟩sj- 1

2

+ ⟨Vp⟩sj+ 1
2

)
4

Aj+ 1
2

= −
αsj
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2

+ ⟨Vp⟩sj+ 1
2

)
4

+
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18ναs∆y
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2

+
αsj+1

(
⟨Vp⟩sj+ 1

2
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2

)
4
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2
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′

p ⟩
s

)
j

−
(
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p V
′

p ⟩
s

)
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2

Eqn. (2.29):

−

⟨Vp⟩sj- 1
2

∆yj

ωn+1
sj+r

+
(

∆yj

∆t

)
ωn+1

sj
+

⟨Vp⟩sj+ 1
2

∆yj

ωn+1
sj+q

=
(

∆yj

∆t

)
ωn

sj
+ Ψω∆yj (2.41)

Eqn. (2.30):
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2

ωn+1
sj+r

∆yj

Ln+1
sj+r

+
(∆yjω

n+1
sj

∆t

)
Ln+1

sj
+

⟨Vp⟩sj+ 1
2

ωn+1
sj+q

∆yj

Ln+1
sj+q

=
(∆yjω

n
sj

∆t

)
Ln

sj

+ΨL∆yj

(2.42)

The upwind indices r and q appearing in Eqn. (2.41) and (2.42) are determined as follows:

r =


0 ⟨Vp⟩sj+ 1

2

≥ 0

1 ⟨Vp⟩sj+ 1
2

≤ 0
and q =


−1 ⟨Vp⟩sj- 1

2

≥ 0

0 ⟨Vp⟩sj- 1
2

≤ 0

The following is the flowchart of the solution algorithm for this set of equations:

Fig. 2.6: Iteration procedure for cross-stream 1D equations

2.5 Recommendations
When using the DQMOM, a primary source of numerical instability is associated with the solution
of Eqn. (2.17), which is very prone to become ill-conditioned. This problem occurs when the
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quadrature abscissas of the PSD get very proximal to each other, causing the determinant of the
corresponding matrix of coefficients to approach zero. The issue can be mitigated by taking into
account the following recommendations:

• As the number of quadrature nodes N increases, the distance between the quadrature abscissas
decreases (see Fig. 2.7 as an example), which denotes that the matrix of coefficients will
become more ill-conditioned since its columns get closer to each other. In practice, it is
usually suggested to select less than 5 nodes.

Fig. 2.7: Distance between quadrature abscissas for two different number of nodes

• The nucleation range has to be wide enough to make sure that the corresponding quadrature
abscissas are sufficiently distant from each other, and thus to avoid ill-conditioning of the
matrix of coefficients (see Fig. 2.8 as an example).

Fig. 2.8: Distance between quadrature abscissas for two different nucleation size range
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Chapter 3
Asphaltenes Deposition in Oil Wells

The quasi-1D multi-phase-flow tool, developed for particle-laden channel flows in the previous
chapters, will now be employed to study the deposition of asphaltenes in oil wells, as one of
the most critical flow assurance problems in petroleum industries. To begin with, a general
introduction to asphaltenes will be presented, followed by the corresponding modelling aspects
such as the closure relations for the population balance equation, the boundary conditions and so
on. Finally, a simulation will be conducted according to a benchmark case, and the results will be
compared. will be discussed a concise review of the relevant studies in this area, plus how this
work will contribute to the knowledge in this field.

3.1 Introduction to Asphaltenes
In this section, a number of available definitions for asphaltenes will be provided, the factors
triggering its precipitation out of crude oil will be discussed, and the corresponding transport
processes occurring from precipitation until depositing on the wall will be explained.

3.1.1 Definition of Asphaltenes
The term asphaltenes was first introduced in 1837 by the French chemist J.B. Boussingault who
defined it as the residue of the distillation of bitumen: insoluble in alcohol and soluble in turpentine.
Asphaltenes are the most polar and aromatic fraction of the crude oil heavy components, whose
presence results in a significant increase in the oil density and viscosity.

A common method for characterizing the composition of crude oils uses stability criteria to separate
the crude oil into four fractions: Saturates, Aromatics, Resins and Asphaltenes. Saturates are non-
polar molecules which consist of normal-, iso- and cyclo-alkanes, while aromatics are composed
of double-bonded hydrocarbon rings similar to benzene. Resins and asphaltenes form a continuum
of molecules with increasing weight, aromaticity and hetero-atom (nitrogen, sulfur,...) content.
The most commonly accepted definition of the asphaltene fraction is that asphaltenes are soluble
in toluene (C7H8) and insoluble in normal heptane (C7H16). However, some other definitions
also exist, for instance, by using other normal alkanes as the insoluble delimiter of the asphaltene
fraction.

Crude oil is a mixture of a very large number of chemical components. As a consequence of the
solubility-based definition, the asphaltene fraction may therefore not be explicitly described by a
tractable number of compounds. Asphaltenes are chemically ill-defined and, by definition, poly-
disperse. Nevertheless, it is generally agreed that most asphaltene molecules share some common
features. They all have a backbone formed from one or more poly-aromatic hydrocarbon cores,
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surrounded by peripheral side chains with some hetero-atoms attached. The common types of such
hetero-atoms are nitrogen, sulfur and oxygen, as well as several metalic atoms such as vanadium,
nickel and iron (see Schutte, 2016). Fig. 3.1 illustrates three of many possible asphaltene molecular
structures.

Fig. 3.1: Three possible asphaltene molecular structures (Akbarzadeh et al., 2007)

3.1.2 Stability of Aphaltenes-Crude Oil Dispersion
The stability of a crude oil/asphaltene dispersion is controlled by various factors such as the
asphaltene content, the overall oil composition, the pressure and, to a lesser extent, the tenperature.
A change in any of these factors might destabilize this dispersion and cause the asphaltenes to
precipitate out of the crude oil in either solid or liquid-like form; for convenience and short-hand
notation, both are referred to as particles from here on.

In this work, it is assumed that the temperature is homogeneously distributed along the well bore,
and also the oil composition stays permanently unaltered. Therefore, pressure is the only remaining
element that can trigger the asphaltens to precipitate. Fig. 3.2 exhibits an example of how the
asphaltenes solubility in crude oil varies with pressure for two different temperatures (solubility
curve).

Fig. 3.2: Asphaltene solubility curve (Kor; R. Kharrat; Ayoubi, 2017)
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It is seen that at any given temperature, there exists a pressure window, over which the precipitation
can take place. The upper and lower ends of the window are refered to as the asphaltene upper
onset pressure (AUOP) and lower onset pressure (ALOP), respectively. Moving along the well
bore from the bottom hole up to the surface, the pressure decreases, and once the AUOP is reached,
the asphaltene particles start nucleating out of the crude oil. This phenomenon continues until the
saturation pressure (SATP) (the pressure associated with the peak of the solubility curve), after
which the precipitated asphaltenes begin to get dissolved in the oil again.

3.1.3 From Precipitation to Deposit Formation
The formation of the asphaltene deposit layer on the inner surface of the well bore commences
with the nucleation of the primary asphaltene particles and ends when the asphaltene aggregates
reach and adhere to the wall. In the meantime, the particles can undergo different processes. For
example, they can grow as a result of further condensation on their surface, or they may collide
and get bonded, resulting in the formation of larger agglomerates. Moreover, non-uniformity of the
forces acting on the agglomerates can again break them up into smaller ones. It should be noted
that the type of interaction between the agglomerates and the wall determines whether they will
stick to or re-entrain from the wall at the instant of touching it.

Apart from the interaction forces between the individual particles and those between the particles
and the wall, the flow of the continuous medium (here crude oil) also significantly contributes to the
transport and behavior of the asphaltene disperse phase. Therefore, it can be generally said that the
competition between the forces induced by the flow on the asphaltene phase and the aforementioned
particle-particle/particle-wall interaction forces determines the rates at which the agglomeration,
breakup, deposition and re-entrainment processes occur.

Figure below sketches the evolution of the asphaltene particles from the phase separation stage
until depositing on the wall, which reduces the diameter of the well bore and thus restricts the oil
flow rate.

Fig. 3.3: Asphaltene precipitation windlow (Schutte, 2016)
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As indicated by the blue arrows, the thermodynamic modelling of the phase separation the as-
phaltenes is beyond the scope of this work, which will focuse more on the transport and deposition
processes.

3.2 Well Bore Geometry Simplification
After being produced from the reservoir, the crude oil comes to the surface through a vertical pipe,
whose geometry in this work is simplified using a vertical channel, as illustrated in the following
figure:

Fig. 3.4: Well bore geometry simplification

Note that all the equations worked out in the previous chapters can be applied to this geometry as
well.

3.3 Closure Models for Population Balance Equation
As explained in chapter 2, the spatial and temporal evolution of any population of particles under-
going nucleation, aggregation and breakage processes, as applies to asphaltenes, is described by
the population balance equation (PBE). The different parameters appearing in this equation such as
collision kernel, breakup kernel etc. need to be closed using proper models that take into account
the physics of the phenomenon under investigation. The closure models used in this study are
presented in the following subsections.

3.3.1 Nuclearion Size Range
Remember that the nucleation should be considered to occur over a size range (La,Lb), rather than
a single size, so as to avoid the numerical instability issues associated with the DQMOM. Mansur
et al., 2012 found that the asphaltene particles start precipitating out of the crude oil when reaching
the size of roughly 1 µm. Therefore, the nucleation in this work is presumed to take place within
the range (0.5 µm,1 µm).
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3.3.2 Nucleation Rate
The nucleation rate of the primary asphaltene particles can be determined using the asphaltene
solubility curve (Fig. 3.2), which is characterized by two roughly linear parts inside the precipitation
window. This work only focuses on a section of the well bore with a pressure distribution that falls
between the AUOP and the pressure associated with the peak of the solubility curve. In this region,
the weight percent of the precipitated asphaltene dW would be proportional to the pressure drop
dP :

dW = CdP (3.1)

where C = 7.7958×10-11( kga

kgo.P a
) is the slope of the solubility line (note that the subscripts a and

o in the unit of C refer to asphaltene and oil, respectively). Therefore, the precipitation rate can be
expressed as:

dW

dt
= C

dP

dt
(3.2)

which, by applying the chain rule, reads:

dW

dt
= C

dP

dx

dx

dt
= C

dP

dx
U (3.3)

where U is the mean flow velocity in the stream-wise direction. In a vertical well bore, the
hydrostatic pressure drop is dominant, so that the pressure gradient can be written as:

dP

dx
= ρcg (3.4)

with ρc standing for the density of the continuous phase (oil), and g representing the gravitational
acceleration. Substituting this in Eqn. (3.3) gives:

dW

dt
= CρcgU (3.5)

The unit of this precipitation rate is ( kga

kgo .s
), which should be converted to (number

m3
o .s

) to be consistent
with the unit of the nucleation rate J0, appearing in the PBE, as follows:

J0 = ρc

ρp

1
Vp

dW

dt
= Cρ

2
c gU

ρpVp

(3.6)

where ρp is the asphaltene density, and Vp represents the average volume of nucleating particles,
given by:

Vp = π

6
L3

p = π

6

(
La + Lb

2

)3
(3.7)
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3.3.3 Collision Kernel
Saffman et al., 1956 came up with an expression for the collision kernel due to fluid shear for
particles smaller than the Kolmogorov length scale in turbulent flows:

β(L, λ) = 1
8

√
8π
15

√
ε

ν
(L+ λ)3 (3.8)

where ε is the dissipation rate of the turbulent kinetic energy, ν is the fluid dynamic viscosity,
and the terms inside the brackets are the sizes of the particles to collide. In this work, the binary
collision assumption is made, according to which every collision occurs between not more than
two particles.

3.3.4 Collision Efficiency
In order to form an agglomerate, the two colliding particles should get bonded and adhere to each
other when touching. The probability of this to occur is referred to as the collision efficiency
E. No proper collision efficiency model for asphaltenes was found in the literature. Therefore,
it was decided to improvise a model based on the expectation that the larger the diameter of the
colliding particles, the lower the collision efficiency due to less contact time at the instant of
collision. Alopaeus et al., 1999 have proposed a model for the collision efficiency between two
liquid droplets, which has the following functionality of the droplets diameter (L, λ):

E(L, λ) = exp

[
−
(

Lλ

L+ λ

)4]
(3.9)

Even though the collision physics associated with the asphaltenes and droplets might be different,
the same functionality is employed in this work, except that two additional constants C1 and C2 are
incorporated for tuning purposes as follows:

E(L, λ) = C1exp

[
−C2

(
Lλ

L+ λ

)4]
(3.10)

3.3.5 Breakup Kernel
The breakup of agglomerates is caused by stresses that are induced as a result of the spatial
variations of hydrodynamic forces. Therefore, modelling the agglomerate fragmentation process
is much more complex than predicting how frequent the agglomerates collide with each other.
Closure relations for the breakup kernel are typically empirical, which relate the breakup rate to the
particle diameter and the shear stress in the fluid. Barthelmes et al., 2003 proposed the expression
below for the breakup rate of agglomerates with fractal structure:

a(L) = ϱGυV
1
3

p

(
L

Lp

) 3
Df

(3.11)

where G is the average fluid shear rate (G =
√

ε
ν

in a turbulent flow), Df agglomerate fractal
dimension, ϱ a proportionality constant, and υ (not to be confused with ν) a constant related to the
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aggregate strength. Choosing the values ϱ = 3.88×10-3 and υ = 2, as used by Faraji et al., 2010,
and assuming that the particles are spherical (Df = 3), Eqn. (3.11) takes the following form:

a(L) = 2.808×10-3G2L (3.12)

3.3.6 Daughter Distribution Function
The expression below has been suggested by Marchisio et al., 2003 for the daughter distribution
function:

bk(λ) = λkm
k/3 + nk/3

(m+ n)k/3 (3.13)

which, assuming symmetric binary fragmentation (m=1 & n=1), turns into:

bk(λ) = λk 21− k
3 (3.14)

3.4 Boundary Conditions

3.4.1 Stream-Wise 1D Equations
Neglecting the pressure variations at the bottom (inlet) and top (outlet) of the well bore section
under study, one may write:

⟨Pc⟩
∣∣∣
Inlet

= PI , ⟨Pc⟩
∣∣∣
Outlet

= PO

which translate into zero Dirichlet boundary conditions for Eqn. (1.29):

⟨Pc⟩
′∣∣∣

Inlet
= 0 , ⟨Pc⟩

′∣∣∣
Outlet

= 0

The boundary conditions for Eqn. (1.28) can be adopted from Eqn. (1.15):

∂(H⟨Uc⟩)
∂x

∣∣∣∣∣
Inlet

= 0 ,
∂(H⟨Uc⟩)

∂x

∣∣∣∣∣
Outlet

= 0

Assuming zero particle flux at the inlet leads to the following boundary conditions for

Eqn. (2.35):
αs⟨Up⟩s

∣∣∣
Inlet

= 0

Eqn. (2.36):
αs⟨Vp⟩s

∣∣∣
Inlet

= 0

Eqn. (2.37):
ωs|Inlet = 0
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Eqn. (2.38):
ωsLs|Inlet = 0

Furthermore, zero derivative of the mean particle-phase velocities are imposed at the outlet as the
boundary conditions for Eqn. (2.39) and (2.40):

∂⟨Up⟩s
∂x

∣∣∣∣∣
Outlet

= 0 ,
∂⟨Vp⟩s
∂x

∣∣∣∣∣
Outlet

= 0

3.4.2 Cross-Stream 1D Equations
The symmetry condition applies to all the cross-stream 1D equations as follows:

∂(···)
∂y

∣∣∣∣∣
y=H

= 0

where (···) refers to any fluid or particulate phase variable, excluding the cross-stream mean particle
velocity, which will be zero along the centerline of the channel:

⟨Vp⟩s
∣∣∣
y=H

= 0

The same near-wall boundary conditions as used for the turbulent kinetic energy, turbulent dissi-
pation rate, and cross-stream 1D RANS equations in Chapter 1, are applied here as well. Close to
the wall, the turbulent fluctuations vary drastically, which will highly affect the velocity field of the
particulate phase. However, because of using wall function in this work, no information is available
on the profiles of the turbulent kinetic energy and its dissipation rate between the logarithmic layer
and the wall. Therefore, the particle-phase momentum equations cannot be solved in this region. A
possible solution to this issue is to specify the boundary conditions of these equations at the center
the wall-function grid cell (Fig. 3.5) rather than at the wall, which requires estimation of the mean
particle velocity components at this position. In fact, this allows to sort of skip the region between
the logarithmic layer and the wall.

Fig. 3.5: Mean velocity components of a particle when it arrives at the wall-function grid point
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Supposing that the particles act as perfect tracers when arriving at y= yG, their stream-wise mean
velocity would be equal to that of the fluid:

⟨Up⟩sG
= ⟨Uc⟩G

which will serve as the boundary condition for Eqn. (2.39). In the cross-stream direction, no
mean flow velocity exists, so that the particles move mainly under the influence of the turbulent
fluctuations. According to Eskin et al., 2011, the most probable fluctuating velocity of the particles
towards the wall at y= yG can be approximated by:

⟨Vp⟩sG
=
√

⟨V ′
c V

′
c ⟩

G

2π
(3.15)

where ⟨V ′
c V

′
c ⟩

G
is the root-mean-square cross-stream fluid fluctuating velocity at the wall-function

grid point. This will provide the boundary condition for Eqn. (2.40).

Apart from the discussion above, the velocity of the particles at the position of the wall is still needed
to update the wall fluxes appearing in the stream-wise 1D equations (the terms with the subscript
0). In this work, it is presumed that any particle only has a cross-stream velocity component at the
moment of touching the wall (Fig. 3.6).

Fig. 3.6: Cross-stream mean velocity of a particle at the moment of touching the wall

This velocity, also referred to as the deposition velocity, can be estimated from:

⟨Vp⟩s0
=
√

⟨V ′
c V

′
c ⟩0

2π
(3.16)

where ⟨V ′
c V

′
c ⟩0 is the root-mean-square cross-stream fluid fluctuating velocity at the particle center,

which can be obtained from the empirical model proposed by Guha, 2008:√
⟨V ′

c V
′

c ⟩0 = 5 × 10−3(δ+
s )2

1 + 2.923 × 10−3(δ+
s )2.128u∗ 0 < δ+

s < 200 (3.17)

where δ+
s is the dimensionless distance of the particle center from the wall:

δ+
s = Rs0u∗

ν
Based on this model, larger particles will experience greater turbulent fluctuations and thus will
have higher deposition velocity.
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3.5 Deposition Flux
When studying the transport of asphaltene particles in oil wells, it is of high importance to determine
the deposition flux at the wall of the well bore, which reveals how the deposit layer thickness will
grow along the well bore and also in time. In the DQMOM, the deposition flux for each particle
class is computed from:

Qs = Φπ
6
(
L3

s ωs⟨Vp⟩s
)

0
(3.18)

where Ls, ωs and ⟨Vp⟩s are the characteristic length, number density and deposition velocity of the
particle class, respectively. The symbol Ψ is called the deposition efficiency and is taken equal to
unity in case of a fully absorbing wall. The total deposition flux results from the summation over
the contributions from all the particle classes:

Q = Φπ
6

N∑
s=1

(
L3

s ωs⟨Vp⟩s
)

0
(3.19)

3.6 Results and Discussion
A general quasi-1D model was developed for internal particle-laden flows in the previous chapters,
by one-way coupling of a single-phase flow model, the Eulerian-Eulerian model and the population
balance equation. In this chapter, the closure expressions, boundary conditions, simplifications
etc., required for modelling the problem of asphaltenes transport and deposition in oil wells,
were provided. Now, a simulation test case will be set up according a benchmark case, and the
corresponding results will be presented and compared.

3.6.1 Test Case Setup
The work of Kurup et al., 2011 is considered as the benchmark case, according to which the
simulation test case will be set up. They developed a simulator to predict the thickness profile of
the asphaltene deposit layer in oil well bores, which consists of a thermodynamic module and a
deposition module. The thermodynamic module uses the PC-SAFT equation of state to determine
the asphaltene precipitation rate, which then serves as input to the deposition module to obtain the
magnitude of the deposition flux along the well bore. This simulator was employed to study the
deposition in the Kuwait’s Marrat well bore, for which the measurements of the deposition profile
have been reported in the literature. The well bore operating conditions and parameters and the
corresponding fluid data can be found in the following table:

Well bore depth (ft) 15000

Tube diameter (in) 2.75

Flow rate (ST B/Day) 5000

Oil density (kg/m3) 850

Oil viscosity (cp) 3.95

Table 3.1: Well bore operating conditions and parameters

Page 51 TU Delft



In addition, Fig. 3.7 shows the phase behavior of the Kuwait’s Marrat oil in terms of asphaltene
precipitation, where the oblique grey solid line represents the oil path going through the UAOP (red
circle), SATP (blue square) and LAOP (green triangle). It is seen that the temperature also varies
along the well bore.

Fig. 3.7: Phase behavior of Kuwait’s Marrat oil in terms of asphaltene precipitation

In this study, the following simplifications are made:

• The focus is only put on a section of the well bore where the precipitation is taking place
(the region between the AUOP and SATP). According to Fig. (3.7), the UAOP and SATP
are equal to 3000 psi and 7000 psi, which approximately translate into the depths of 8000 ft
and 19000 ft, respectively, considering only the hydrostatic pressure drop and assuming that
the well bore opens up to the atmospheric pressure at the surface. This means that the
precipitation is ongoing from the bottom hole at 15000 ft up to the depth of 8000 ft.

• As explained in section 3.3.2, the temperature is assumed to be uniform along the well bore,
leading to a roughly constant asphltene precipitation rate, which can be calculated using
Eqn. (3.6) to be 8.44×1012 (number

m3
o .s

). Note that the asphaltene density has been taken equal
to that of the oil.

For the simulation test case, the length of the well-bore section under study is considered to be
7000 ft, with the bottom and top located at the depths of 15000 ft and 8000 ft, respectively. The
number of grid cells in the stream-wise (Nx) and cross-stream (Ny) directions are set 75 and 10.
The pseudo time step size is chosen 0.005 s, and the steady-state convergence criterion is set to be
10-12.
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3.6.2 Test Case Results
The following figure shows the thickness profile of the asphaltene deposit layer, obtained in this
study using the quasi-1D model, after two months of oil production along with the one reported by
Kurup et al., 2011 and a measured well data:

Fig. 3.8: Comparison between the thickness profiles of the deposit layer,
associated with this work and Kurup et al., 2011, after two months of oil
production, plus a measured well data

As it is seen, the results generally match each other but are still slightly different. This is essentially
due to the fact that the temperature variation, causing the precipitation rate to change along the well
bore, has not been taken into account in this study, as apposed to the work of Kurup et al., 2011. It
should be noted that this match was obtained by tuning the constants C1 and C2, appearing in the
collision efficiency model, to be 8.5×10-2 and 4×1022, respectively. The simulation was repeated
for the double and half of these values as well, to investigate how the deposition profile will vary
with respect to these constants. The corresponding results have been exhibited in the following
figures:
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Fig. 3.9: Sensitivity analysis with respect to C1

Fig. 3.10: Sensitivity analysis with respect to C2

which suggest that the collision efficiency plays a prominent role in determination of the asphaltene
deposition profile and needs to be modeled properly. In order to make an interpretation of these
graphs, it is necessary to take a look at Fig. 3.11 and 3.12, which describe the collision efficiency
as a function of the particle diameter for the same values of C1 and C2 as used above:
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Fig. 3.11: The effect of change in C1 on the collision efficiency

Fig. 3.12: The effect of change in C2 on the collision efficiency

One can clearly see that decreasing C1 or increasing C2 leads to the reduction of the collision
efficiency, in which case the aggregation process will occur less frequently, and the average particle
size will decrease. As also mentioned before, the smaller particles tend to have lower deposition
velocity, which in turn results in the less growth of the deposit layer thickness over a given period
of time.
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3.7 Conclusions
The quasi-1D multi-phase-flow model was used to study the problem of asphaltenes deposition in
oil wells. A simulation test case was set up according to the work of Kurup et al., 2011, and the
corresponding results were presented and compared, based on which the following conclusions can
be made:

• The deposition profile predicted by the quasi-1D model was generally in line with the one
reported by Kurup et al., 2011.

• The results of the sensitivity analysis with respect to the collision efficiency revealed that
this parameter plays an important role in determining of the deposition profile and needs to
be modeled accurately.

3.8 Recommendations
The recommendations below should be considered to improve the capability of the quasi-1D model
in predicting the asphaltenes deposition profile in oil wells:

• It is of high importance to accurately account for the effects of the pressure and temperature
variations along the well bore on the phase behavior of the crude oil and thus the asphaltenes
precipitation rate, by coupling the quasi-1D model with an appropriate thermodynamic
model.

• The collision efficiency of the asphaltenes should be modeled properly, by taking into account
the physics involved in the collision of the corresponding particles.

• It is also desirable to develop a wall function for describing the near-wall velocity field of
the particles, which can serve as the boundary condition for the particle-phase momentum
equations.
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Appendix

Thomas algorithm is used to solve the matrix form of a system of algebraic equations and is in fact a
simplified version of the Gaussian Elimination method, which is applicable when the corresponding
matrix of coefficients is tri-diagonal. This algorithm has been explained below for a 5×5 matrix
equation as an example:

• Step1:

W1 = c1

b1
G1 = d1

b1

• Step2:
Wi = ci

bi − diWi-1
i = 2, 3, 4, 5

• Step3:

Gi = di − aiGi-1

bi − aiWi-1
i = 2, 3, 4, 5

• Step4:
x5 = G5

• Step5:
xi = Gi −Wixi+1 i = 1, 2, 3, 4
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