
Provably Sound Typechecking of JavaScript

Bachelor Thesis
By

Matthijs Bijman

Supervisors:
Sven Keidel

Dr. Sebastian Erdweg

Delft University of Technology
Faculty of Electrical Engineering, Mathematics, and Computer Science

July 3, 2018

Provably Sound Typechecking of JavaScript

Matthijs Bijman

Abstract— Since its inception in 1995, JavaScript usage has
grown far beyond its initial domain of interactive websites.
As the size of applications developed in the language grows,
so does the desire for static analysis such as typechecking
to provide safety and reliability. Many developments have
been made in recent years on increasing the precision of
analysis of JavaScript. This work introduces a concrete and a
type interpreter for LambdaJS implemented within the Sturdy
framework. The goal of this work is to evaluate the feasi-
bility of implementing a shared interpreter using the Sturdy
framework, evaluate the correctness of the concrete interpreter,
and evaluate the feasibility of proving the typechecker sound.
The resulting interpreters are tested experimentally with two
test suites. The experimental evaluation gives confidence in the
correctness of the concrete and abstract interpreter. A small
part of the abstract interpreter is proven sound to evaluate the
difficulty of creating a complete soundness proof. The successful
implementation of the interpreters shows that implementing a
shared arrow-based interpreter within the Sturdy framework is
feasible for languages with complex semantics, that the utilities
available reduce the effort required to do so, and that proving
the abstract interpreter sound is simplified by using the library.

I. INTRODUCTION
In recent years JavaScript has grown to become one of

the most widely used programming languages in the world.
Originally created for creating interactive websites, it has
far exceeded this purpose and has expanded to areas such
as server-side and desktop programming. Developed as a
simple scripting language however, its type system is weak
and dynamic. Strong type systems can help a programmer
in several ways. Simple type system can ensure that
variables are structured consistently, while more advanced
type systems can guarantee memory safety[1][2], and
prevent data races across threads[2]. Moreover, they make
static analysis easier due to the abundance of information
available through type annotations. This allows modern
IDEs to automatically refactor code with high accuracy.
Due to the weak and dynamic nature of JavaScript, the
type system gives very little guarantees and consequently
static analysis tools have been less common, powerful, and
accurate[3][4].

Type systems attempt to give strong guarantees about
program behaviour, but many contain gaps that cause
the typechecker to accept programs which can fault at
runtime[5][6]. The extent to which a typechecker is able
to reject faulty programs is called the soundness of a type
system. The weak type system in JavaScript means that it is
exceptionally unsound, which can cause unexpected errors
to happen at runtime. Scripts running within a browser
sandbox might not require very strong guarantees, but the

increasing usage of JavaScript in larger, critical applications
has lead to the development of tools improving safety by
either defining a new language[7], extending JavaScript
with annotations[8], or analyzing plain JavaScript[9]. Most
of the existing work must allow for gaps in the type system
to be compatible with pure JavaScript, or contain complex
soundness proof that are difficult to verify.

This work differs from existing work by focusing
on proving soundness using Sturdy. It describes a
provably sound typechecker for LambdaJS[10], a reduction
semantics for JavaScript, implemented using the Sturdy
framework[11]. Sturdy is a Haskell library containing
utilities for creating abstract interpreters, reducing the
burden of proof and enabling compositional soundness
proofs. The implementation of this work consists of a
concrete interpreter, a typechecker, and a shared interpreter
interface describing the shared semantics. Validation of the
concrete interpreter is done using two test suites. A set
of 98 simple tests testing interpretation of operations and
expressions independently, and an existing test suite used
to test the LambdaJS desugarer, consisting of 76 tests. The
concrete interpreter is also used for testing the abstract
interpreter, since the output of the typechecker must always
be an approximation of the concrete interpreter. Finally, a
part of the typechecker is proven sound to give an indication
of the feasibility and complexity of constructing a complete
soundness proof for an interpreter implemented using Sturdy.

We evaluate this work by asking and answering three
research questions.

• Q1: Is it feasible to implement a concrete and abstract
arrow-based interpreter for JavaScript using Sturdy?

We specifically investigate whether the utilities offered by
the library make the implementation easier.

• Q2: Is the implementation of the concrete interpreter
correct?

Correctness of the concrete interpreter is important to en-
sure that the implemented semantics match the LambdaJS
specification, since this work is built upon the LambdaJS
desugarer.

• Q3: Is it feasible to prove the abstract interpreter sound?

While proving the entire typechecker sound is outside of the
scope of this work, a soundness proof for a small part of the
typechecker is included, the exception semantics, to give an
indication of the complexity of a complete proof.

class Arrow c => AbstractValue v c | c -> v where
-- values
objectVal :: c [(Ident, v)] v
getField :: c Expr v -> c (v, Expr) v
-- environment/store ops
lookup :: c Ident v
apply :: c Expr v -> c (v, [v]) v
set :: c (v, v) ()
get :: c v v
-- control flow
label :: c Expr v -> c (Label, Expr) v
break :: c (Label, v) v
catch :: c Expr v -> c (Expr, Expr) v
throw :: c v v
... [some omitted]

Fig. 1. Part of the arrow interface implemented by both interpreters

eval :: (ArrowChoice c, AbstractValue v c,
Show v) => c Expr v
eval = proc e -> do
case e of
EId id -> lookup -< id
EApp body args -> do

lambda <- eval -< body
args <- mapA eval -< args
apply eval -< (lambda, args)

EGetField objE fieldE -> do
obj <- eval -< objE
getField eval -< (obj, fieldE)

ESetRef locE valE -> do
loc <- eval -< locE
val <- eval -< valE
set -< (loc, val)
returnA -< loc

EThrow e -> do
val <- eval -< e
throw -< val

EFinally e1 e2 -> do
res <- eval -< e1
eval -< e2
returnA -< res

... [some omitted]

Fig. 2. Part of the shared interpreter, with calls to the functions of the
interface defined in fig. 1

newtype ConcreteArr x y = ConcreteArr
(Except
(Either String Exceptional)
(Environment Ident Value

(StoreArrow Location Value
(State Location (->)))) x y)

Fig. 3. Concrete arrow transformer stack

newtype TypeArr x y = TypeArr
(Except

String
(Environment Ident Type'

(StoreArrow Location Type'
(State Location (->)))) x y)

Fig. 4. Abstract arrow transformer stack

II. SEMANTICS
Understanding the semantics of the subject language is

necessary to understand the challenges in creating a sound
and precise static analysis. This section will describe part of
the semantics of LambdaJS. The full semantics of LambdaJS
are described by Guha et al.[10]. The semantics discussed
here are limited to exceptions, labels, references, objects,
and sequences of expressions, as these are largely unique
to LambdaJS. The language of course includes operations
for arithmetic, control flow, etc. but the semantics of these
expressions are greatly simplified in the desugaring process
of JavaScript to LambdaJS, and are commonly found in
other languages. The entire interface implemented by the
concrete and abstract interpreters is shown in fig. 1. A shared
interpreter, shown in fig. 2, uses the interface to delegate
the actual interpretation to either the concrete or abstract
interpreters. This way the common interpretation structure
between the implementations is shared. An example of this
is the finally expression. The interpretation of this expression
does not rely on the interface. This means that a new
implementation of the interface does not need to explicitly
support this expression, and that a soundness proof for such
an implementation does not need to prove finally sound.

try {
throw 1.0;

} catch (x) {
x;

}

(ECatch

(EThrow (ENumber 1.0))

(ELambda ["x"] (EId "x")))

Fig. 5. Example of throw and catch semantics, evaluates to 1.0

A. Exceptions
Exceptions in LambdaJS are equivalent to exceptions

in JavaScript, meaning arbitrary values can be thrown and
caught. A throw expression is accompanied by a value, and
will unwind the stack propagating this value until a catch
expression is found. The finally expression contains two
expressions. The first expression is evaluated, after which
the second is evaluated regardless of thrown exceptions in
the first evaluation, with the result of the first expression
then being returned. The combination of throw, catch, and
finally is enough to implement the common try-catch-finally
structure in JavaScript, even though evaluation of finally is
orthogonal to the other two expressions. The implementation
of exceptions is done by implementing the throw and catch
functions of the abstract interface shown in fig. 1. The finally
expression is expressed in terms of the rest of the interface
and does not need to be specialized. An example of try and
catch semantics is shown in fig. 5. The first branch of the
catch expression throws the value 1.0. This exception is then
caught in the second branch, which simply returns the value.

Concrete interpretation of exceptions is implemented
using the Except arrow transformer, parameterized with
the Exceptional type, as visible in fig. 3. This allows the
interpreter to return an exceptional value indicating an
exception occurred, which can then be handled explicitly by
the implementation of the catch expression.

The abstract interpreter does not return an exceptional
value as visible in fig. 4 in the lack of the Exceptional type,
since it is unknown during analysis if the throw expression
is actually executed at runtime. Instead, the thrown value is
added to the set of possible output types of that expression,
which then propagates upwards as long as the expression
remains uncaught.

1 label f1 = proc (l, e) -> do

2 (l, res) <- tryCatchA (second f1) (proc

3 ((label, _), err) ->

4 case err of

5 Left s -> failA -< Left s

6 Right (Break l1 v) -> case l1 == label of

7 True -> returnA -< (label, v)

8 False -> failA -< (Right \$ Break l1 v)

9 Right (Thrown v) -> do

10 failA -< (Right \$ Thrown v)) -< (l, e)

11 returnA -< res

12

13 break = proc (l, v) -> do

14 failA -< Right (Break l v)

Fig. 6. Implementation of the label and break arrow operations

B. Labels

Labels in LambdaJS are a more powerful version of labels
in JavaScript. Whereas in JavaScript only labels can only
be used with loops and referenced in continue and break
statements, LambdaJS allows for labeling any expression.
If the expression contained within a label breaks to that
label, the value accompanying the break is the result of
the expression. If the contained expression does not break,
or breaks to a different label, then the label expression
propagates the result. The concrete implementation of labels
is shown in fig. 6. The implementation uses the tryCatchA
arrow operation, part of Sturdy, for implementing exceptional
control flow. By using this arrow operation, we can intercept
exceptional values to check if the value was the result of
a break (case on line 6), and if so, if the accompanying
label name matches the name of this label (comparison
on line 6). If this is the case, we return the wrapped
value (case on line 7). In all other cases (thrown value,
interpretation error, or normal value) we propagate the result.

An example of a label expression is shown in fig. 7.
The LambdaJS code wraps a seq expression with a label
expression. The first branch of the snippet breaks to the
label with the numeric value of 1.0, while the second branch
returns the value undefined. The result of the expression is

the number 1.0, as the second branch of the seq expression
is never reached.

var x;
label1:
{
x = 1.0;
break label1;
x = undefined;

}
x;

(ELabel

(Label "label1")

(ESeq

(EBreak (Label "label1") (ENumber 1.0))

(EUndefined)))

Fig. 7. Example of label semantics, evaluates to 1.0. The JavaScript snippet
does not directly desugar to the LambdaJS code but shows similar semantics.

Similarly to exceptions, concrete interpretation of labels
is implemented using the Except arrow transformer,
parameterized with the Exceptional type. The Exceptional
type can either contain a thrown value or a pair of a
label and a value. The first corresponds to an exception,
the second corresponds to a label. The implementation
of the Label expression explicitly handles exceptional
return values. If it contains a label-value pair with a
matching label, the expression results in the accompanying
value. If the exceptional value contains a thrown value
or if the label doesn’t match, it propagates the value upwards.

The abstract interpretation of labels happens in the same
way as exceptions. The label type is added to the set
of possible result types and is propagated as long as no
matching label is found. No stack unwinding happens in
abstract interpretation, since it is unknown during abstract
interpretation if the exception is thrown at runtime.

C. References

References are the primary mechanism for allowing read
and write side-effects. References are explicitly created and
dereferenced in LambdaJS as opposed to JavaScript. A
reference expression evaluates an expression, puts the result
on the heap, and returns the location of the value on the heap.
Dereferencing this location evaluates to the value on the
heap corresponding to that location, and a value on the heap
can be updated. Identifiers in LambdaJS always evaluate
to a location (if the identifier is valid), and thus must be
explicitly dereferenced. An example of references is shown
in fig. 8. First, the variable a is declared and set to 1.0. Then
in the first branch of the seq, the value is updated to 2.0.
Finally, in the second branch, the value of a is returned. If
this expression was implemented without references it would
evaluate to 1.0, since the mutation in the first branch of
the seq expression would not propagate to the second branch.

var a = 1;
a = 2.0;
a;

(ELet

[("a", ERef $ ENumber 1.0)]

(ESeq

(ESetRef (EId "a") (ENumber 2.0))

(EDeref (EId "a"))))

Fig. 8. Example of reference semantics, evaluates to 2.0

1 getField = proc (VObject obj, VString name) -> do

2 let fieldV = find (\(fn, fv) -> fn == name) obj

3 case fieldV of

4 -- E-GetField

5 Just (n, v) -> returnA -< v

6 Nothing ->

7 let proto = find isProtoField obj in

8 case proto of

9 -- E-GetField-Proto-Null

10 Just (_, VNull) -> do

11 returnA -< VUndefined

12 -- E-GetField-Proto

13 Just (_, VRef l) -> do

14 protoVal <- read -< (l, ())

15 getField_ -< (protoVal, VString name)

16 -- Other type of proto

17 Just (_, _) -> returnA -< VUndefined

18 -- E-GetField-NotFound

19 Nothing -> returnA -< VUndefined

Fig. 9. Implementation of the GetField operation

Concrete interpretation of references makes use of the
Environment and Store arrow transformers as visible in fig.
3. The environment contains a mapping from identifiers to
locations, and the store contains a mapping of locations to
values. The location corresponding to an identifier is lost
once the scope containing the variable declaration is exited,
i.e. a let or lambda expression. An identifier introduced by
these expressions is only visible in the expressions within
it. Appropriately, the environment is not part of the output
of evaluating an expression.

Abstract interpretation of references closely matches con-
crete interpretation. The environment contains a mapping
from identifiers to sets of locations, as the location an
identifier might map to can depend on the control flow of
the program. Similarly, the store contains a mapping from
locations to sets of types, because the values written to
certain locations can depend on control flow of the program.
The differences between the concrete arrow transformer stack
and the abstract arrow transformer stack are visible in fig. 3
and in fig. 4 respectively, by noting that the Environment and
StoreArrow are parameterized with different types: Location
vs. Location’ (set of locations), and Value vs. Type’ (set of
types).

D. Objects

Objects in LambdaJS are the immutable equivalent
of JavaScript objects. Operators for getting, setting, and
deleting fields of an object return a new object with the
changes applied to it. To change an object on the heap a
combination of operations must be performed. A location
must be dereferenced to obtain the value, the desired
mutation must be applied, and the location on the heap
must be updated to the resulting object. Attempting to read
a field of an object that does not contain the field evaluates
to an undefined value, similar to JavaScript. Deleting a
non-existent field returns the original object. Updating a
non-existent field is the same as creating a new field with the
given value. An example of a getfield expression is shown in
fig. 10. The example shows that reading a field of an object
will walk up the prototype chain if the field cannot be found.

Prototypes are supported in LambdaJS, with simplified
semantics compared to JavaScript. When a read operation
is performed on an object not containing the specified field,
and if that object contains a prototype object, the interpreter
attempts to read the field from the prototype object, moving
up the chain of prototypes until the field is found or until
no prototype object is found. The implementation for this
operation is visible in fig. 9. The implementation returns
the field with the given name if is found (line 5). If not,
it searches for the prototype field. If this field exists and is
a reference, a recursive call is made searching for the same
field but in the prototype. If the prototype doesn’t exist or is
of the wrong type the function returns undefined. Prototypes
are the most complex part of these semantics. The delete
and write operations do not consider prototypes and are thus
considerably simpler.

({
a: 1.0,
b: 2.0,
__proto__: { c: 3.0 }

}).c;

(EGetField

(EObject

[("a", ENumber 1.0),

("b", ENumber 2.0),

("$proto",

ERef (EObject [("c", ENumber 3.0)]))])

(EString "c"))

Fig. 10. Example of object semantics, both snippets evaluate to 3.0

Objects in the concrete interpretation are simply
implemented using a map from identifiers to values, with
some special logic for handling non-existent fields. The
abstract interpreter can deal with objects in a variety of
ways, greatly influencing the accuracy of the analysis.
For simplicity, only references to fields of an object that
are certain to exist are considered valid. If the existence

of a field within an object depends on control flow, it is
considered to be a type error if that field is referenced.

E. Sequential Expressions

There are no blocks in LambdaJS like in JavaScript. The
body of a function is only a single expression. To support a
sequential list of statements an expression consisting of two
expressions is implemented. These expression are evaluated
sequentially. The result of the entire expression is the result
of the second contained expression. An example of a seq
expression can be seen in fig. 8, where both branches
are executed sequentially. If the first expression throws an
exception or breaks to a label then the second expression is
not evaluated.

Concrete interpretation of a sequential expression is
simple. The expression evaluated first can only have an
effect on the output of the program either by mutating the
store or by producing an exceptional value (i.e. label or
throws).

Abstract interpretation follows similar semantics. If the
set of types produced by the first expression contains an
exceptional type, this exceptional type is merged with the
output of the second expression. Moreover, mutations to the
store from the first expression are propagated to the store
used in the interpretation of the second expression.

III. EVALUATION

This section contains the evaluation of the research. The
goal of this work was to answer three research questions.
First, is it feasible to implement a concrete and abstract
arrow-based interpreter for JavaScript using Sturdy? Second,
is the concrete interpreter correct?. And finally third, is
it feasible to prove the abstract interpreter correct? For
each question, the limitations and open questions are also
discussed.

A. Q1: Implementing Interpreters

Implementing a concrete and abstract arrow-based
interpreter for JavaScript has been done by implementing
the interpreters for LambdaJS and using the existing
JavaScript to LambdaJS desugarer. The complexity of the
LambdaJS specification is much lower than the JavaScript
specification, thus making the implementation of the
interpreters feasible. Moreover, the utilities present in the
Sturdy library such as the Store, Environment, and arrow
operations such as tryCatchA made the implementation of
the effects of the language very concise.

The results of testing indicate that both the concrete
and abstract interpreter implement the majority of the
specification properly. We conclude that it is therefore
feasible to implement a concrete and abstract arrow-based

interpreter for LambdaJS using Sturdy. Since this work is
based on the JavaScript to LambdaJS desugarer we can
extend this conclusion to include JavaScript.

While it is shown that it is feasible to implement
a JavaScript interpreter using Sturdy, there are some
limitations of the current implementation that must be
mentioned. First, the eval statement of JavaScript is
currently not implemented. This is due to limitations of
the desugarer, but there is work ongoing into fixing this
limitation. Second, parts of the JavaScript standard library
are not implemented. This is similarly due to limitations of
the desugarer, but are more easily fixed than the eval issue.
Third, there are some missing features in the interpreter
itself, e.g. regex operations, since their implementation was
not directly important to answering the research question.
Finally, while the typechecker supports the same features
as the concrete interpreter, the precision of the interpreter is
limited, and thus its usability. An interesting continuation
of this work would be to improve the precision while
maintaining soundness.

B. Q2: Correct Concrete Interpreter

Correctness of the concrete interpreter is an important
property as it implies adherence to the LambdaJS
specification, which is necessary for the interpreter to
properly process the output of the JavaScript to LambdaJS
desugarer. If the interpreter contains large gaps or errors,
the output of the desugarer would be wrongly processed.

The concrete interpreter has been tested thoroughly,
giving confidence in its correctness. The interpreter has
been tested with a total of 174 tests. 98 of these tests
consist of testing basic features such as math operations,
branching, function calls, and objects. 76 tests, adapted
from the LambdaJS project, test more complex features
such as scoping, environments, and closures. These tests
each include the initialization of the entire standard library.
Morover, they test the entire language pipeline, as they are
parsed as JavaScript, desugared to LambdaJS code, and
finally interpreted by the concrete interpreter. There are 3
tests in this test suite that do not produce the correct result,
due to missing implementations of Array.prototype.length
and Array.prototype.join.

This test suite gives confidence in its correctness, however
it is no guarantee that it is fully correct. The test suite
used is thorough enough to ensure that the most important
semantics of the LambdaJS semantics are implemented
properly. Future work could include expanding the test suite
to include all LambdaJS tests, including those derived from
the SpiderMonkey JavaScript engine.

C. Q3: Sound Abstract Interpreter

The soundness of the type interpreter guarantees that the
output it produces is an approximation of the concrete inter-
preter, i.e. the concrete interpreter will never output a value
that is not part of the approximation made by the abstract
interpreter. This characteristic can be formally defined, as
in eq. 1. Soundness of the type interpreter is an important
property. An unsound typechecker can produce incorrect
results, meaning the properties that it attempts to prove as
part of the typechecking process (e.g. reject programs that
contain invalid operations) cannot be taken as guarantees.

α({eval e p | p ∈ γ(p̂)}) ⊆ ˆeval e p̂ (1)

For many applications complete soundness of the
languages semantics and typechecker is not a necessity.
This allows some typecheckers to sacrifice soundness in
exchange for better precision and speed, or to allow a
language to include features that are desirable but not safe.
Other applications require strong guarantees about program
properties (e.g. memory safety) which poses restrictions on
the semantics of the programming language used. While
JavaScript was not designed for use in critical applications,
and its semantics allow for many potentially unwanted or
implicit operations, the language has become commonly
used in applications with higher reliability requirements.
This has created a demand for a sound typechecker that can
improve reliability of these applications by proving these
operations do not happen.

The goal of this work is to develop a typechecker for
LambdaJS within the Sturdy framework and investigate the
effort required to prove it sound. Creating a soundness proof
for the entirety of the typechecker is outside of the scope of
this work. Instead, a small part of the semantics is proven
sound to give an indication of the complexity of such a
proof. The part of the semantics that is proven sound is
the typechecking of exception throwing and catching. The
benefit of using Sturdy for creating a sound typechecker is
that the soundness of each arrow operation (shown in 1)
can be proven seperately. Moreover, the shared code (shown
in 2) must only be proven sound once, instead of for each
implementation.

The soundness proof of exceptions can be found in the
Appendix. This proof indicates that a full soundness proof
is feasible, but more effort is required before this can be
confirmed. The complete set of operations that must be
proven sound can be seen in fig. 1. The difficulty of proving
an operation sound is highly dependent on the complexity
of the operation. Some simple operations in the interface,
such as numVal, boolVal, nullVal, are trivial to prove sound.
Some complex operations that use the Sturdy library such
as lookup, set, new, and get, are much easier to prove sound
due to them relying on the Sturdy library. Finally, some
operations such as getField, apply, label, and break are
complex, and are less dependent on the Sturdy library, and

as such their soundness proof will be more complex.

For a more conclusive answer, the remaining complex
operations of the interface should also be proven sound.
Particularly the soundness proofs of the operations that
heavily rely on the Sturdy library will give an indication
of the reduction in proof complexity due to the usage of
the library utilities. Ideally a full soundness proof would be
done as this would give a full view of the complexity of the
proof and confirm that it is feasible to prove a language with
complex semantics sound with the help of the Sturdy library.

IV. RELATED WORK

The research questions of this work are aimed at the
implementation of shared arrow-based interpreters within
the Sturdy framework. These questions are specific to
this framework, and the typechecker is not very precise.
Nevertheless, we discuss related work in the area of static
analysis of JavaScript to discuss applications and future
work of this research.

LambdaJS[10] is a small reduction semantics for
JavaScript. Creating a typechecker for the entire semantics
of JavaScript is infeasible due to the large and informal
specification. By limiting the scope of the interpretation to
LambdaJS instead of JavaScript, the surface area that must
be covered is greatly reduced. The reduced complexity of
the specification is what enabled this work to implement
a comprehensive interpreter and typechecker, and to test it
with real JavaScript code.

Jensen et al.[9] developed a pure JavaScript program
analyzer, with no type annotations or other changes
to the language. Because the subject language is pure
JavaScript, the analysis can be easily adopted for use in
existing projects. The results of their work show reasonable
precision in a set of benchmarks, however in some cases
the runtime performance was low and memory usage was
high. This work is relevant as it also aims to develop an
analyzer without changing the JavaScript syntax. The work
also mentions soundness, but no proof was present. Future
work could use this proof as a benchmark to compare the
complexity of the soundness proof.

TeJaS[12] is a framework for building type systems for
JavaScript. Due to the dynamic nature of JavaScript, what
should be considered an error differs from project to project.
TeJaS defines a core type language for JavaScript that can
be extended to include domain specific rules. Their work
has been validated by extending the core type system with
several extensions. While the goal of TeJaS is different from
the goal in this work, their approach on domain specific
rules is interesting. By implementing a typechecker with
such rules using Sturdy, a large part of the interpreter
could potentially be shared with an existing implementation.
Interesting future work would be to investigate the feasibility
of proving a large amount of similar analyzers (differing by

domain specific rules) with many shared semantics.

TypeScript[7] is a strict superset of JavaScript, adding
classes, interfaces, modules, and gradual typing to the
language. The gradual type system makes it possible
to transform an existing codebase towards typechecking.
Moreover, the compiler emits JavaScript, and thus TypeScript
is usable in the same environments as JavaScript. TypeScript
is widely used and under active development by Microsoft.
While the semantics of TypeScript allows for typechecking
beyond what is possible with regular JavaScript, it still
requires a user to change their code before analysis becomes
useful. The scope of TypeScript extends beyond improving
the safety of JavaScript by providing programmers with
tools to write more maintainable software. Soundness of
the desugaring of TypeScript to JavaScript is essential
as mistakes in this process could lead to faults in many
applications. A potential application for this work could be
to create a provably sound analysis with domain specific
rules for checking the generated JavaScript code.

FlowJS[8] is a type interpreter for plain JavaScript with
optional type annotations to improve precision. Similarly to
TypeScript it allows for gradual addition of type annotations
to improve results of the analysis. It differs from TypeScript
in that it does not add language features beyond type
annotations. The type inference algorithms used by Flow
has been proven sound. Similarly to TypeScript, FlowJS has
a considerably different approach to improving the safety of
JavaScript. The inference algorithm used by FlowJS could be
used to improve the precision of the typechecker presented
in this work. The complexity of the inference algorithm is
much greater than that of the typechecker, which would lead
to interesting challenges in maintaining soundness.

V. FUTURE WORK

This work has been limited to investigating the feasibility
of implementing sound and/or correct interpreters using
Sturdy. The positive results indicate that future work could
be worthwhile in better understanding the value of Sturdy.
A complete soundness proof for the typechecker presented
in this work would make it possible to better understand
the role of Sturdy in reducing proof complexity, with
existing soundness proofs for JavaScript analyzers serving
as comparison. Specifically a complete soundness proof
for the complex semantics such as objects and exceptions
would be valuable.

To the same end, it would be valuable to implement
additional abstract interpreters under the same interface
to evaluate the benefit of proof composition enabled by
Sturdy. Especially abstract interpreters that share much of
their implementation, e.g. typecheckers with various levels
of strictness, could benefit from simpler soundness proofs.

Other areas for future work could include creating
analyzers with high precision, as presented in related work,

while maintaining soundness. To create usable and valuable
abstract interpreters the precision must be improved. An
interesting challenge would be to create several sound
abstract interpreters for various domains, e.g. control flow
analysis, escape analysis, heap analysis, etc., combining
their results to create more precise type analysis.

VI. CONCLUSION
The goal of this work was to research the feasibility of

implementing correct and sound interpreters for JavaScript
within the Sturdy framework. Specifically the goal was
to evaluate the feasibility of implementing the complete
JavaScript semantics, testing the correctness of the concrete
interpreter, and to evaluate the feasibility of proving the
abstract interpreter sound.

By using the JavaScript to LambdaJS desugarer, the
complexity of the interpreters was reduced considerably. As
the test results show, the majority of the semantics have
been implemented. Moreover, the results give a reasonable
confidence in the correctness of the concrete interpreter. A
small part of the abstract interpreter has been proven sound,
giving an indication of the complexity of a full soundness
proof. The partial proof is a positive result indicating that a
full soundness proof is feasible.

REFERENCES

[1] N. Swamy, M. Hicks, G. Morrisett, D. Grossman, and T. Jim,
“Safe manual memory management in cyclone,” Science of Computer
Programming, vol. 62, no. 2, pp. 122–144, 2006.

[2] N. D. Matsakis and F. S. Klock, II, “The rust language,” Ada Lett.,
vol. 34, pp. 103–104, Oct. 2014.

[3] M. Schäfer, “Refactoring tools for dynamic languages,” in Proceedings
of the Fifth Workshop on Refactoring Tools, WRT ’12, (New York, NY,
USA), pp. 59–62, ACM, 2012.

[4] A. Feldthaus, T. Millstein, A. Møller, M. Schäfer, and F. Tip, “Tool-
supported refactoring for javascript,” in Proceedings of the 2011 ACM
International Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’11, (New York, NY, USA),
pp. 119–138, ACM, 2011.

[5] N. Amin and R. Tate, “Java and scala’s type systems are unsound: the
existential crisis of null pointers,” in Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pp. 838–848, ACM, 2016.

[6] “Rustlang Unsoundness Issues.” https://github.com/
rust-lang/rust/issues?q=is%3Aopen+is%3Aissue+
label%3A%22I-unsound+%F0%9F%92%A5%22, 2018. [Online;
accessed 7-June-2018].

[7] G. Bierman, M. Abadi, and M. Torgersen, “Understanding typescript,”
in Proceedings of the 28th European Conference on ECOOP 2014 —
Object-Oriented Programming - Volume 8586, (New York, NY, USA),
pp. 257–281, Springer-Verlag New York, Inc., 2014.

[8] A. Chaudhuri, P. Vekris, S. Goldman, M. Roch, and G. Levi, “Fast
and precise type checking for javascript,” CoRR, vol. abs/1708.08021,
2017.

[9] S. H. Jensen, A. Møller, and P. Thiemann, “Type analysis for
javascript,” in International Static Analysis Symposium, pp. 238–255,
Springer, 2009.

[10] A. Guha, C. Saftoiu, and S. Krishnamurthi, “The essence of
javascript,” in European conference on Object-oriented programming,
pp. 126–150, Springer, 2010.

[11] “Sturdy.” https://github.com/svenkeidel/sturdy, 2018.
[Online; accessed 7-June-2018].

[12] B. S. Lerner, J. G. Politz, A. Guha, and S. Krishnamurthi, “Tejas:
Retrofitting type systems for javascript,” SIGPLAN Not., vol. 49, pp. 1–
16, Oct. 2013.

APPENDIX

SOUNDNESS PROOF EXCEPTION SEMANTICS

A. Concrete and Abstract Semantics

Concrete
e1 ↪→ except v1 e2[x := v1] ↪→ v2

catch e1 e2 ↪→ v2
e1 ↪→ v

catch e1 e2 ↪→ v

Abstract

e1 ↪→ t1 except ∈ t1 e2 ↪→ t2
catch e1 e2 ↪→ t1 ∪ t2
e1 ↪→ t1 except ∈ t1
catch e1 e2 ↪→ t1

B. Proof

Hypothesis 1

α({eval e1 p | p ∈ γ(p̂)}) ⊆ ˆeval e1 p̂

Hypothesis 2

α({eval e2 p | p ∈ γ(p̂)}) ⊆ ˆeval e2 p̂

Goal

α({eval (catch e1 e2) p | p ∈ γ(p̂)})
⊆ ˆeval (catch e1 e2) p̂

Case Distinction

Case 1
ˆeval e1 p̂ = X ∪ { ˆExcept} | ˆExcept /∈ X

From rule 1 of the abstract semantics it follows:

ˆeval (catch e1 e2) p̂ ≡ ˆeval e1 p̂ ∪ ˆeval e2 p̂ (2)

With this we proof our goal as follows:

α({eval (catch e1 e2) p | p ∈ γ(p̂)})
⊆ α({eval e1 p | p ∈ γ(p̂) ∧ eval e1 p ∈ γ(X)}

∪ {eval e2 p | p ∈ γ(p̂) ∧ eval e1 p ∈ γ({ ˆExcept})}) [case dist.]

⊆ α({eval e1 p | p ∈ γ(p̂)} ∪ {eval e2 p | p ∈ γ(p̂)}) [set laws]

⊆ α({eval e1 p | p ∈ γ(p̂)}) ∪ α({eval e2 p | p ∈ γ(p̂)}) [Galois laws]

⊆ ˆeval e1 p̂ ∪ ˆeval e2 p̂ [Hypothesis 1 and 2]

⊆ ˆeval (catch e1 e2) p̂ [from eq. 4]

Case 2
ˆeval e1 p̂ = X | ˆExcept /∈ X

From rule 2 of the abstract semantics it follows:

ˆeval (catch e1 e2) p̂ ≡ ˆeval e1 p̂ (3)

With this we proof our goal as follows:

α({eval (catch e1 e2) p | p ∈ γ(p̂)})
⊆ α({eval e1 p | p ∈ γ(p̂) ∧ eval e1 p ∈ γ(X)}) [case dist.]

⊆ α({eval e1 p | p ∈ (p̂)}) [set laws]

⊆ ˆeval e1 p̂ [Hypothesis 1]

⊆ ˆeval (catch e1 e2) p̂ [from eq. 5]

By combining the results of the case distinction we prove
our goal:

α({eval (catch e1 e2) p | p ∈ γ(p̂)})
⊆ ˆeval (catch e1 e2) p̂

