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Abstract

Context-free grammars (CFGs) provide awell-known formalism for the specification
of programming languages. They describe the structure of a program in terms of parse
trees. One major issue of CFGs is ambiguity, where one sentence can sometimes have
multiple different parse trees. Some formalisms like SDF3 or YACC allow annotating a
grammar with disambiguation rules, such as priority or associativity. Disambiguation
rules filter out certain parse trees, making a grammar less ambiguous. Giving a formal
semantics for these disambiguation rules is still an ongoing research topic. In this the-
sis we verify an existing semantics for these rules by Souza Amorim and Visser (2019)
for a subset of expression grammars. These grammars may contain infix, prefix, and
postfix expressions. We verify the semantics by proving that it is both safe and complete.
Safety states adding disambiguation rules will not change the underlying language of
the grammar, meaning each sentence in the language will have at least one valid parse
tree that does not get filtered out. Completeness guarantees that a grammar is unambigu-
ous, meaning that each sentence in the language will have at most one valid parse tree
that does not get filtered out. We have mechanized the proofs in the Coq Proof Assistant,
increasing the confidence in their correctness. As part of the proofs, we also provide a
verified implementation for disambiguation rules.
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Chapter 1

Introduction

Context-free grammars (CFGs) provide a well-known formalism for the specification of pro-
gramming languages. A CFG describes the structure of a program in terms of parse trees. A
parser can be seen as an implementation for a specific CFG, which maps sentences to parse
trees. These parsers are typically created by a parser generator, which compiles a CFG into
a parser. Figure 1.1 shows a simple CFG for arithmetic expression using SDF3 (syntax defini-
tion formalism) (Vollebregt, Kats, and Visser 2012; Spoofax Development Team 2020; Souza
Amorim and Visser 2020).

The issue with plain context-free grammars, is that they can potentially introduce ambi-
guities. Meaning that a sentence in the language sometimes corresponds to multiple parse
trees. A classic example of this are arithmetic expressions. It is generally understood that the
expression 15´ 3 ¨ 4 should be read as 15´ (3 ¨ 4), because multiplication takes priority over
subtraction. However, the context-free grammar from Figure 1.1 does not convey this spe-
cific information, and therefore it specifies that the expression can also be read as (15´ 3) ¨ 4.
The expressions 15 ´ 3 ´ 4 is also ambiguous. We know this should be read left-to-right as
(15´ 3)´ 4, because subtraction is left associative. Our CFG specifies that 15´ (3´ 4) is also
a valid order.

Grammar Rewriting These ambiguities can be resolved by grammar rewriting. For in-
stance, to resolve the ambiguity issue between subtraction and multiplication, we can look
at the CFG from Figure 1.2. We have simplified it such that it only contains productions for
subtraction and multiplication. In this rewritten grammar, a subtraction cannot appear in-
side of a multiplication. We accomplished this by creating an additional nonterminal MulExp,
where a MulExp can be derived from Exp (line 3), but not the other way around. Because mul-
tiplication is a part of MulExp and subtraction belongs to Exp, we ensure that subtractions can
not be derived before multiplications.

In Figure 1.3 we give the full rewritten grammar for our arithmetic language. The prob-
lem is that grammar rewriting defeats one of the desirable features of context-free grammars,

1 context-free syntax
2     Exp.Lit     = NUM
3     Exp.Add     = Exp "+" Exp
4     Exp.Sub     = Exp "-" Exp
5     Exp.Minus   = "-" Exp
6     Exp.Mul     = Exp "*" Exp
7     Exp.Div     = Exp "/" Exp

Figure 1.1: CFG for simple arithmetic expressions, using SDF3 syntax.

1



1. Introduction

1 context-free syntax
2     MulExp.Lit     = NUM
3     MulExp.Mul     = MulExp "*" MulExp
4     Exp.M          = MulExp
5     Exp.Sub        = Exp "-" Exp

Figure 1.2: Unambiguous CFG for subtraction and multiplication.

1 context-free syntax
2     LitExp.Lit          = NUM
3     MinExp.LitExp       = LitExp
4     MinExp.Min          = "-" MinExp
5     MulDivExp.MinExp    = MinExp
6     MulDivExp.Mul       = MulDivExp "*" MinExp
7     MulDivExp.Div       = MulDivExp "/" MinExp
8     Exp.MulDivExp       = MulDivExp
9     Exp.Add             = Exp "+" MulDivExp

10     Exp.Sub             = Exp "-" MulDivExp

Figure 1.3: Rewritten grammar of Figure 1.1

which is to provide a concise and readable description for the syntax of languages. If some-
body asks for the syntax of a language, we would rather give them Figure 1.1 than Figure 1.3.
Grammar rewriting introduces complexity and the result can be difficult to read.

Disambiguation Rules We will call disambiguation using priority or associativity declara-
tive disambiguation rules. The term precedence is often used to describe priority. Declarative
disambiguation rules are not uncommon. Take the Java Language Specification as an exam-
ple. Despite the fact that the full syntax of Java inside the Java Language Specification is
unambiguous due to a rewritten grammar, descriptions of the syntax using precedence and
associativity are spread throughout the many tutorials (Gosling et al. 2020). The same holds
formany other programming languages. Reason being that declarative disambiguation rules
are easy to understand. The syntax definition formalisms YACC (Johnson et al. 1975) and
SDF3 both include mechanisms for specifying priority and associativity rules. Their corre-
sponding parser generators take these rules into account when creating a parser. Figure 1.4
shows the same arithmetic expression grammar as Figure 1.1with addedpriority and associa-
tivity declarations. The left keyword specifies left-associativity, whereas > specifies priority.
Apart from the keyword right also being usable (corresponding to right-associativity), SDF3
includes many other disambiguation rules (such as non-assoc) which will not be discussed
within this thesis. The focus here will solely lie on priority and associativity.

Formal Semantics The many uses of declarative disambiguation rules begs the question:
What are the formal semantics of these rules? A draft paper by Souza Amorim and Visser (2019)
attempts to answer this question by introducing the first direct semantics for declarative dis-
ambiguation rules. They define the semantics as filters over parse trees. Each disambiguation
rule added in the grammar, adds another layer to the filter. Trees that pass all layers of the
filter are accepted and considered valid.

The paper makes two claims about the semantics. The first is that the semantics are safe
under certain conditions. Safety means that disambiguation preserves the underlying lan-
guage of a grammar. In other words, there should always be at least one valid parse tree

2



1 context-free syntax
2     Exp.Lit     = NUM
3     Exp.Add     = Exp "+" Exp {left}
4     Exp.Sub     = Exp "-" Exp {left}
5     Exp.Minus   = "-" Exp
6     Exp.Mul     = Exp "*" Exp {left}
7     Exp.Div     = Exp "/" Exp {left}
8 context-free priorities
9     Exp.Minus > {left: Exp.Div Exp.Mul} > {left: Exp.Add Exp.Sub}

Figure 1.4: CFG for simple arithmetic expressions with priority and associativity declara-
tions.

´

15 ´

3 4

´

´

15 3

4

repair

Figure 1.5: Repairing an incorrect parse tree into the correct version.

per sentence. Disambiguation is unsafe if there is a sentence for which all the parse trees
are being filtered out. The second is that the semantics are complete under certain conditions.
Meaning that the disambiguation rules make a grammar completely unambiguous, i.e., each
sentence in the language should have at most one parse tree. In Chapter 2 we define these con-
cepts formally. Souza Amorim and Visser (2019) have provided sketches of proofs to these
claims.

Proof Mechanization The original goal of this thesis was to mechanize these proofs in the
Coq Proof Assistant (Coq Development Team 2020). A proof assistant is a software tool that
aids in giving formal proofs. It allows someone to write down logical definitions and theo-
rems, and prove those theorems. The theoremproving aspect is done interactively, where the
user can use tactics that apply some logical deduction to the proof. The advantage of proof
assistants over regular handwritten paper proofs is that each step in the proof is checked for
correctness. As such, it provides greater certainty that a proof is actually free from errors.

Parse Tree Repairing As said before, we tried to mechanize the safety and completeness
proofs from SouzaAmorim andVisser (2019) in Coq. Apart from resolving any errors, mech-
anizing the proofs has shown to be quite a hurdle due to difficult challenges such as showing
termination of a rewrite system. Therefore this thesis contains its own new alternative proofs
to safety and completeness. In Section 8.1 we go in more detail into the original proof, elab-
orate on the difficulties faced, and compare it to our alternative proof.

The key idea behind our proof is parse tree repairing. Recall that the expression 15´ 3´ 4
is ambiguous because there are two ways of reading it: 15´ (3´4) and (15´3)´4. The first
we consider to be the incorrect, and the second the correct version. In Figure 1.5 we show
the two parse trees corresponding to these expressions. The idea of parse tree repairing is
that we have some function repair. This function takes a parse tree as input and, if incorrect,
is able to transform the tree into the correct version. In Chapter 4 we show how this works.

3



1. Introduction

We can use this function to prove safety and completeness. In Chapter 5 we show that
safety corresponds to soundness of repair, meaning that the output repair(t) = t1 is indeed
always a valid parse tree for all well-formed trees t, with t and t1 corresponding to the same
sentence. In Chapter 6 we show that completeness of the semantics corresponds to complete-
ness of repair: If we have a valid parse tree t1 that corresponds to the same sentence as a tree
t, then repair(t) = t1. This would show that t1 is the only unique valid parse tree.

Themain reason this functionwas conceived, is to aid in proving safety and completeness.
However, the function by itself can be considered interesting, as it can be seen an implemen-
tation of disambiguation rules. This could be a step towards creating a first verified parser
generator for CFGs that may include disambiguation rules.

Contributions For this thesis we limited ourselves to a small subset of CFGs, namely IPP
Grammars. These contain infix, prefix, and postfix expressions.

The contributions are as follows:

1. We define an algorithm that is able to repair parse trees, such that they follow the dis-
ambiguation rules.

2. We prove that the semantics from Souza Amorim and Visser (2019) is both safe and
complete under certain restrictions. We do this by showing the repair function is both
sound and complete respectively. Note that for grammars that contain all three types
of expressions (infix, prefix, and postfix), we only managed to produce a partial proof
for completeness. More details can be found in Section 7.3.

3. Weprove that the restrictions given for safety and completeness aremost general. Mean-
ing that loosening the restriction will violate either safety or completeness.

4. We mechanized the semantics and proofs in the Coq Proof Assistant.1

Document Outline This document is structured as follows:

• In Chapter 2 we recap the semantics of disambiguation rules from Souza Amorim and
Visser (2019). We limit ourselves here to infix expression grammars.

• Chapter 3 is an intermezzo, in which we give an overview of all the proofs that we will
give in the three subsequent chapters.

• We show an implementation of these semantics in Chapter 4, by means of parse tree
repairing.

• In Chapter 5 we discuss when a grammar is considered safe and provide a proof for
the safety property.

• Chapter 6 does the same for the completeness property.

• In Chapter 7 we extend the semantics we give in Chapter 2 and implementation in
Chapter 4 to also include prefix and postfix expressions.

• We discuss work related to this thesis in Chapter 8, which includes a comparison to the
original proofs sketches by Souza Amorim and Visser (2019).

• A summary of themathematical notations and symbols usedwithin this document can
be found in Appendix A.

1https://zenodo.org/record/4680987#.YHRVeOgzZjE
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• The definitions, lemmas, and theorems (excluding proofs) written in Coq can be found
in Appendix B.

• Appendix C contains the the full algorithm for repairing parse trees, both using math-
ematical notation as well as a Coq implementation.
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Chapter 2

Grammars and Declarative
Disambiguation Rules

The main question we will try to answer in this chapter is: What is the semantics of declara-
tive disambiguation rules?. We will mostly summarize the semantics from the paper by Souza
Amorim and Visser (2019). This semantics is of the most interest as it is the first direct se-
mantics for declarative disambiguation rules.

In Section 2.1 we recap the textbook definitions of context-free grammars and languages.
Section 2.2 shows the general idea of the semantics for disambiguation rules by means of a
filter over parse trees. We also define what it means for a filter to be safe and complete. Finally,
in Section 2.3 we give the specifics of the filter for infix expression grammars, which is a small
subset of context-free grammars. In Chapter 7 we will extend this to also include prefix and
postfix expressions.

2.1 General Context-free Grammars
Before formally defining disambiguation rules, in this sectionwewill first define context-free
grammars (CFGs) and languages in the classic way.

Definition 2.1 (Context-FreeGrammar). Acontext-free grammarG is a tuple (Σ, N, P ), with
Σ a set of terminal symbols, N a set of non-terminals symbols, and P a set of productions.
Denote VG as the set of symbols Σ Y N . A production has the form A.C = X1...Xn with
A P N , n ě 0, Xi P VG, and C a unique constructor name. C is used to identify individual
productions in a parse tree.

The syntax used for productions corresponds to the syntax of the SDF3 formalism. Fig-
ure 1.1 is an example of a CFG for arithmetic expressions with a single nonterminal Exp and
terminals {NUM, +, -, *, /}.

Definition 2.2 (Well-Formed Parse Trees). For the tree syntax: a plain symbol represents a
leaf of a tree. The notation [A.C = t1...tn] represents a tree node with A.C being the label of
the node, and t1...tn its subtrees. If the context allows it, we omit the labelA.C and just write
[t1...tn].

We define the family TX
G ofwell-formed parse trees on a grammarG = (Σ, N, P ), indexed

over X P VG, representing the root of the tree, inductively as follows:

a P Σ

a P T a
G

(A.C = X1...Xn) P P, @ 1 ď i ď n. ti P T
Xi
G

[A.C = t1...tn] P T
A
G

7



2. Grammars and Declarative Disambiguation Rules

Add

1 + Mul

2 ˚ Sub

3 ´ 4

Add

1 + Sub

Mul

2 ˚ 3

´ 4

1 + 2 ˚ 3´ 4

Mul

Add

1 + 2

˚ Sub

3 ´ 4

Sub

Add

1 + Mul

2 ˚ 3

´ 4

Sub

Mul

Add

1 + 2

˚ 3

´ 4

yield yield

yield
yield

yield

Figure 2.1: Parse trees whose yield is 1 + 2 ˚ 3 ´ 4 for a grammar G = (Σ, N, P ) with Σ =
tNUM,+,´, ˚u, N = tExpu, and the productions P = tLit, Add, Sub, Mulu defined in the usual
way.

We say t P TG if there exists an X P VG for which t P TX
G . 1

As an example, Figure 2.1 shows several tree diagrams. All of these parse trees are well-
formed on the grammar from Figure 1.1.

Definition 2.3 (Yields). The yield w P Σ˚ of a parse tree t, written w = yield(t), is the con-
catenation of its leaves.

The parse trees from Figure 2.1 all have the same yield. This immediately shows that the
grammar is ambiguous, as an unambiguous grammar would only have at most one corre-
sponding parse tree for a w P Σ˚. If we included the disambiguation rules from Figure 1.4,
then the tree in the bottom middle of the figure would be allowed: [[1 + [2 ˚ 3]]´ 4].

Definition 2.4 (Language). A sequence of terminals w P Σ˚ is in the language of G, if there
is a parse tree t P TG such that w = yield(t). Let LG denote the language of G. The sequence
w is called a sentence in LG.

We could have also chosen to define a language using derivations rather than using parse
trees. This would have been an equivalent definition (Aho et al. 2007). With a derivation
you start with a symbol such as Exp, and keep rewriting using the productions until you get
a sentence. For example:

ExpÑ Exp+ ExpÑ Exp+ Exp´ ExpÑ Exp+ Exp ˚ Exp´ ExpÑ ...Ñ 1 + 2 ˚ 3´ 4.

However, aswe shall see in Section 2.2, the semantics for disambiguation ruleswill be defined
as filters over parse trees. This made yields a more fitting candidate than derivations for
defining languages.

1Usually a context-free grammar also needs a start symbol S P VG. However, for the purpose of the disam-
biguation semantics, this is not a requirement. If it did have a start symbol S, then t P TG only if t P TS

G .
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2.2. Disambiguation Filters

+

1 ˚

2 ´

3 4

+

1 ´

˚

2 3

4

1 + 2 ˚ 3´ 4

˚

+

1 2

´

3 4

´

+

1 ˚

2 3

4

´

˚

+

1 2

3

4

yield yield

yield
yield yield

Figure 2.2: Parse trees with highlighted conflicts.

2.2 Disambiguation Filters
Intuitively, what disambiguation does is tell you which parse trees are valid and which are
not. The semantics in this chapter are designed in exactly this way. Figure 2.2 is a flash-
forward of what we are going to build towards. In this figure we have highlighted certain
conflicts within the parse trees. A conflict can be considered two nodes in the tree that are po-
sitioned in an invalid manner. What is considered a conflict depends on the disambiguation
rules. Conflict-free trees are accepted by the filter and considered valid. In this section we
give definitions thatmake the idea of filters and conflict patterns concrete. In the next section
we explain how this relates to specific disambiguation rules. Describing disambiguation by
means of filters has first been introduced by Klint and Visser (1994).

Definition 2.5 (Disambiguation Filter). For a grammar G, a disambiguation filter is a func-
tion F : TG Ñ bool. It tells whether if a parse tree t is ”valid” or not.

Definition 2.6 (Disambiguated Language). A sequence of terminals w P Σ˚ is in the disam-
biguated language of G using F , denoted by LF

G, if there is a parse tree t P TG, such that
F (t) = true, and yield(t) = w.

Now thatwe have formalized the idea of filters, we start with formalizing the idea of conflicts.
To achieve this, we say that each conflict is represented by some pattern the tree can match.
Suppose we have a set of these supposed patterns. If a tree t matches any of these patterns,
we want F (t) to return false, or true otherwise. The following definitions make this more
concrete.

Definition 2.7 (Tree Patterns). Wedefine the set TPG of well-formed tree patterns on a gram-
mar G inductively as follows:

X P VG

_ P TPX
G

(A.C = X1...Xn) P P, @ 1 ď i ď n. qi P TPXi
G

[A.C = q1...qn] P TPA
G

9



2. Grammars and Declarative Disambiguation Rules

Where q P TPG if there is an X P VG and q P TPX
G .

Tree patterns can be viewed as ordinary parse trees that have ’holes’ in them, represented
by underscores _. A parse tree matches a tree pattern, if the holes in the pattern can be
substituted such that they become equal.

Definition 2.8 (Matching). For a grammar G, a tree t P TG and pattern q P TPG, define
M(t, q) (t matches q) inductively as follows:

M(t, _)
@ 1 ď i ď n. M(ti, qi)

M([A.C = t1...tn], [A.C = q1...qn])

Definition 2.9 (Set Matching). For a grammar G, a tree t P TG and set of tree patterns Q Ď

TPG, we say M(t,Q) (t matches Q) if there exists a q P Q such that M(t, q).

Definition 2.10 (Subtree Exclusion and Conflict Patterns). For a grammar G and Q Ď TPG

a set of tree patterns, also called the conflict patterns. We define the set TQ
G of well-formed

parse trees under subtree exclusion inductively as follows:

a P Σ

a P TQ
G

t P TG, ␣M(t,Q), @ 1 ď i ď n. ti P T
Q
G

t = [A.C = t1...tn] P T
Q
G

This means that for t to be a well-formed parse tree under subtree exclusion, both t and all
of its subtrees are not allowed to match any conflict pattern in Q. In this case, t is called a
conflict-free parse tree.

Definition 2.11 (Subtree Exclusion Filter). For a set of tree patterns Q, define the filter FQ,
called the subtree exclusion filter, as follows:

FQ(t) =

#

true if t P TQ
G

false if t R TQ
G

The question regarding the semantics now becomes: How do we determine the set Q of
subtree exclusion patterns in an intuitive way? We will answer this question in Section 2.3.
What we can still do here is define the core properties we want our semantics to adhere to.
These are safety and completeness.

Definition 2.12 (Safe Filter). Given a grammar G, a disambiguation filter F is a safe filter
if it does not change the underlying language, so LG = LF

G. In other words, for all w P LG,
there should be at least one t P TG such that F (t) = true and yield(t) = w.

The reason why we want a safe filter, is because we do not want to accidentally reject sen-
tences from our language by introducing disambiguation rules. The goal of disambiguation
is to reduce the number of valid parse trees per sentence, not all of the parse trees

Definition 2.13 (Complete Filter). Given a grammar G, a disambiguation filter F is a com-
plete filter if for all w P LG, there is at most one valid corresponding parse tree t. Formally: If
t1, t2 P TG, F (t1) = F (t2) = true, and yield(t1) = yield(t2), then t1 = t2.

A complete filter guarantees us that our new disambiguated language is unambiguous.
Looking back at Figure 2.2: Safety and completeness together should mean that there is

exactly one tree that is conflict-free. This should apply to all sentences.

10



2.3. Disambiguation Semantics for Infix Expression Grammars

1 context-free syntax
2     Exp.Lit = NUM
3     Exp.Add = Exp "+" Exp
4     Exp.Sub = Exp "-" Exp
5     Exp.Mul = Exp "*" Exp

Figure 2.3: Example of an Infix Expression Grammar

2.3 Disambiguation Semantics for Infix Expression Grammars
In this thesis we limit ourselves to expression grammars, as they are the most applicable for
associativity and priority disambiguation rules. An expression grammar is a CFG that only
has one nonterminal A. Souza Amorim and Visser (2019) specify how to obtain the set of
conflict patterns Q from an expression grammar. They do this incrementally for expression
grammars of increasing complexity, startingwith the simplest form: Infix expression grammars.
In this thesis we will follow this pattern by starting with these infix grammars. In Chapter 7
we will extend this to also include prefix and postfix expressions.

Definition 2.14 (Infix Expression Grammar). An infix expression grammar (IG) is a tuple
(L,Oin), where L and Oin are disjoint sets of lexical and infix operator symbols. It represents
a context-free grammar G = (LYOin, tAu, P ). Here, A is a single nonterminal symbol. The
set P contains productions

A.C = l (Atomic Productions), and
A.C = A o A (Infix Productions)

for all l P L and o P Oin.

Figure 2.3 shows an example of an infix expression grammar. The production on line 2
is an atomic production, and the productions on lines 3-5 are infix productions. The parse
trees from Figure 2.1 are also well-formed for this grammar.

Because each operator o and lexical symbol l is unique, for simplicity we can use those
symbols to denote productions rather than using their corresponding constructor names C.
For denoting parse trees, we often ignore the A.C label of a node. Instead we can just write
[t1 o t2] rather than [A.C = t1 o t2]. For a visual tree diagram we can also use the terminals
to label nodes (see Figure 2.2 as an example).

We will now move on to defining disambiguation rules.

Definition 2.15 (Disambiguation Rules for Infix Grammars). A disambiguation rule set PR
for an IG G = (L,Oin) is a tuple (ą, left, right). This consists of a priority relation ą and
associativity relations left and right between the infix productions ofG. Soą, left, right Ď
Oin ˆ Oin. The disambiguation rules are well-formed if there is at most one rule for a pair of
operators. For instance, having both o1 left o2 and o1 right o2 is not allowed.

The well-formedness property we enforce on the disambiguation rules PR differs from
the well-formedness property by Souza Amorim and Visser (2019). We will justify our def-
inition at the end of this section. In Sections 5.1 and 6.1 we give additional comparisons to
the different restrictions.

In Figure 2.4 we define a set of disambiguation rules for the grammar of Figure 2.3. We
defined it in what should be the intuitive way: Meaning that multiplication takes priority
over addition and subtraction, and everything else should be left-associative.

We now want to create a logical set of conflict patterns Q, for usage in the subtree exclu-
sion method fromDefinition 2.10. It should reflect the following wanted behavior of priority
and associativity:

11



2. Grammars and Declarative Disambiguation Rules

Exp.Add left Exp.Sub, Exp.Sub left Exp.Add,
Exp.Add left Exp.Add, Exp.Sub left Exp.Sub,
Exp.Mul > Exp.Add, Exp.Mul > Exp.Sub, Exp.Mul left Exp.Mul

Figure 2.4: A set of disambiguation rules for the grammar of Figure 2.3

o1

o2

_ _

_

o1

_ o2

_ _

Figure 2.5: The common infix conflict patterns CL (left) and CR (right)

1. If o1 ą o2, it means that we do not want to allow parse trees where a node o1 has an o2
node as a direct subtree.

2. If o1 left o2, we do not want an o2 node to appear as a direct right subtree of an o1 node.

3. If o1 right o2, we do not want an o2 node to appear as a direct left subtree of an o1 node.

Definition 2.16 (Common Infix Conflict Patterns). There are two types of tree patterns that
will be commonly used. We define them here as functions:

CL(o1, o2) = [[_ o2 _] o1 _]
CR(o1, o2) = [_ o1 [_ o2 _]]

CL is also called a left-conflict and CR a right-conflict.

Informally, thismeans that ifwe haveCL(o1, o2) orCR(o1, o2) in the set of conflict-patterns
Q, then an o2 node is not allowed to be a direct left-subtree or a direct right-subtree of an o1
node, respectively. Figure 2.5 shows these two conflict patterns visually.

Definition 2.17 (Infix Conflict Patterns). Let G be an infix expression grammar and PR =
(ą, left, right) a disambiguation rule set for G. We define the set Q(PR) of conflict patterns
as follows:

o1 ą o2

CR(o1, o2) P Q(PR)
o1 ą o2

CL(o1, o2) P Q(PR)
o1 left o2

CR(o1, o2) P Q(PR)
o1 right o2

CL(o1, o2) P Q(PR)

Figure 2.6 shows all the conflict patterns generated by the disambiguation rules from
Figure 2.4. In Figure 2.7 we have redrawn the parse trees for the expression 1+2 ˚ 3´ 4with
each conflict highlighted. It shows that the tree we considered to be correct (the bottom-
center one), is indeed the only conflict-free parse tree for this yield.

Restrictions on Disambiguation Rules In Definition 2.15 we imposed a well-formedness
restriction on disambiguation rules PR. That is, a pair of infix operators (o1, o2) can belong in
at most one of the tree relations ą, left, or right. Now that we have given the semantics in
Definition 2.17 we can justify these restrictions. Suppose we have o1 left o2 and o1 right o2.
This generates the conflict patterns CR(o1, o2) and CL(o1, o2). These same conflict patterns

12



2.3. Disambiguation Semantics for Infix Expression Grammars

+

´

´

+

+

+

´

´

˚

+

˚

+

˚

´

˚

´

˚

˚

Figure 2.6: Conflict patterns for the disambiguation relations from Figure 2.4. The under-
scores have been hidden so as not to cause confusion with the minus symbol.

+

1 ˚

2 ´

3 4

+

1 ´

˚

2 3

4

1 + 2 ˚ 3´ 4

˚

+

1 2

´

3 4

´

+

1 ˚

2 3

4

´

˚

+

1 2

3

4

yield yield

yield
yield yield

Figure 2.7: Parse trees with highlighted conflicts. This figure is a copy of Figure 2.2, as it has
been a few pages back.
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2. Grammars and Declarative Disambiguation Rules

can be obtained by having rule o1 ą o2. Therefore it is impractical to make two operators
be both left- as well as right-associative. Similarly, if we have o1 ą o2, then adding the rules
o1 left o2 or o1 right o2 will have no effect.

Later in this thesis, wewill impose additional restrictions on the disambiguation rules PR.
This would include properties such as priority ą being transitive and irreflexive. Associativ-
ity should be symmetric. These restrictions will together ensure safety and completeness of
the filter. However, we defer defining these restrictions to the relevant parts about safety
(Chapter 5) and completeness (Chapter 6).
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Chapter 3

Intermezzo — Overview of Proofs

This short intermezzo exists as an overview for Chapters 4 to 6. In these we will prove that
the semantics we gave in Chapter 2 is both safe and complete for infix expression grammars.
Figure 3.1 gives an overview of every definition relevant to to safety and completeness, in-
cluding every relation between them which we have proven.

Safety andCompleteness inGeneral Back in Section 2.3wementioned thatwewill impose
restrictions on the disambiguation rules PR. These restrictions are needed as a premise for
safety and completeness. In total, we will have three different definitions of safety, as well as
three for completeness:

1. Safety and completeness of disambiguation rules PR (Definitions 5.3 and 6.3).

2. Safety and completeness of the conflict patterns Q(PR) (Definitions 5.1 and 6.1).

3. Safety and completeness of the subtree exclusion filter FQ(PR) (Definitions 2.12 and
2.13).

Safety and completeness of PR andQ(PR) are the restrictions wewill impose to ensure safety
and completeness of the filter. When we speak of safety and completeness in general terms,
we talk about the relation between these three. Safety in general means

safe PRñ safe Q(PR)^ safe Q(PR)ñ safe FQ(PR).

Similarly, completeness in general means

complete PRñ complete Q(PR)^ complete Q(PR)ñ complete FQ(PR).

Most General Restrictions While proving the implications above is the core goal of those
chapters, we will also show some extra properties hold. For safety, we also show that the
restrictions we impose on PR or Q(PR) are the most general restrictions we can have for
safety of FQ(PR). In other words, we show the following:

safe PRð safe Q(PR)^ safe Q(PR)ð safe FQ(PR).

Unfortunately, we did not manage to find a most general set of restrictions for complete-
ness. However, we do show the completeness restrictions are most general for safe disam-
biguation rules. In other words, assuming we have a safe set of disambiguation rules PR, the
following holds:

complete PRð complete Q(PR)^ complete Q(PR)ð complete FQ(PR).

15



3. Intermezzo — Overview of Proofs

Restrictions by
Souza Amorim and Visser (2019)

Definition 6.5

^

Safe PR
Definition 5.3 ^

Complete PR
Definition 6.3

Safe Q(PR)
Definition 5.1 ^

Complete Q(PR)
Definition 6.1

Safe repair Complete repair

Safe FQ(PR)
Definition 2.12

Complete FQ(PR)
Definition 2.13

6.6 6.6

6.6

5.4

6.4

6.45.4

5.7

6.2

6.10

5.8 6.11

5.2

Figure 3.1: Overview of relevant definitions and the proven relations between them. Each
node represents a property, for which we give the corresponding definition. Each edge rep-
resents an implicationwhichwe have proven in this thesis, for whichwe also give a reference
to where we have proven it.

Restrictions by SouzaAmorim andVisser (2019) The paper by SouzaAmorim andVisser
(2019) also impose restrictions on the disambiguation rules PR. However, they define it
slightly differently. Instead of just safety and completeness restrictions, the paper also adds a
well-formedness property to the disambiguation rules that is tighter than ourwell-formedness
property from Definition 2.15. However, the essence of the restrictions is exactly the same.
This gives rise to the following property:

well-formed PR^ safe PR^ complete PR
ðñ

restrictions by Souza Amorim and Visser (2019) on PR.

The Repair Function In Chapter 4 we define the repair function. This function has three
main purposes:

1. Being an implementation for disambiguation rules.

2. Assisting in proving safety.
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3. Assisting in proving completeness.

As we shall see in Chapter 5, proving safety requires the ability to transform any well-
formed parse tree into a conflict-free parse tree that has the same yield. We call this repairing
the tree, as we are fixing a parse tree by removing all its conflicts. In other words, safety of
repair implies safety of FQ(PR). Instead of safety of repair, we also sometimes use the term
soundness.

Similarly, we prove completeness by also showing repair is complete. Repair is complete
if for any two yield-equivalent trees t and t1, if t1 is conflict-free, then repair(t) = t1.
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Chapter 4

Implementation for Disambiguation
Semantics

In this chapter we will propose an implementation for the disambiguation semantics for in-
fix expression grammars (IGs) discussed in Chapter 2. Before doing that, we first have to
answer the question: What can even be considered an implementation for disambiguation
semantics? The obvious answer is to literally copy the semantics, i.e., a filter that takes a set
of a parse trees as input and removes all parse trees that have conflicts. This is however ter-
ribly inefficient. A sentence that contains just 15 infix operators will have nearly 10 million
different well-formed parse trees. The bottleneck here lies in the parser. We expect it to give
us all well-formed parse trees as input for our filter. This is an unreasonable thing to ask.
Existing implementations, such as YACC and SDF3, handle this by compiling disambigua-
tion rules directly into the parser itself (Johnson et al. 1975; Souza Amorim and Visser 2020).
The problem with this method is that it makes it a more difficult candidate for verification.
Ideally we want to split the parsing process from the disambiguation process.

Repairing Parse Trees The solution to this problem actually originally comes from our
attempt to prove safety in Chapter 5. Proving safety requires the ability to transform any
well-formed parse tree into a conflict-free parse tree that has the same yield. We therefore
construct a repair function, which has also shown to be useful in proving completeness (Chap-
ter 6).

So how can this algorithm be used as an effective implementation of disambiguation
rules? Firstly, because instead of requiring the parser to give us all well-formed parse trees,
we reduce the problem to just finding one. We can apply repair on this parse tree to obtain a
parse tree that follows the disambiguation semantics. The only restriction is that the disam-
biguation rulesPR (Definition 2.15) should be safe, otherwise repair(t)will not be conflict-free.
We will elaborate on this in Chapter 5.

Since repair(t) will always produce exactly one result, it can be problematic if the disam-
biguation rules might still allow ambiguities. This means that this is not really a full imple-
mentation of the semantics. Therefore PR should also be complete in order to make repair(t)
the unique result we want it to be. This will be elaborated on in Chapter 6.

4.1 The Repair Function
As mentioned above, we will craft a function repair : TG Ñ TG. So the goal is to transform
a parse tree t into a tree repair(t) = t1 such that yield(t) = yield(t1) and t1 has no conflicts.
We will construct t1 in a bottom-up manner: First we start with an ’empty’ t1. Then we will
iterate through all symbols in t in a right-to-left order, inserting each symbol to the left side
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4. Implementation for Disambiguation Semantics

´

˚

2 3
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1 ´

˚

2 3
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´
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1 ˚

2 3

4

´

˚

+

1 2

3

4

insert(1 +)

insert(1 +)

insert(1 +)

Figure 4.1: Multiple possibilities for left-insertion.

4 ´

3 4

´

˚

2 3

4

´

+

1 ˚

2 3

4

insert(3 ´)

insert(2 ˚)

insert(1 +)

Figure 4.2: Repairing a tree with yield 1 + 2 ˚ 3 ´ 4 using left-insertion. Note that insert
corresponds to Definition 4.1.

of t1. Each insertion should be safe, i.e., not introduce any conflicts. The result is a tree t1 that
has the same yield as t and is also conflict-free. Figure 4.2 illustrates this concept.

Insertion Howdowe approach insertion into a tree? Supposewe have some lexical symbol
l and infix operator o, there are several ways to insert this to the leftmost side of a tree. Take
a look at Figure 4.1. There we start with the tree [[2 ˚ 3]´ 4]. The goal is to insert the number
”1”, and the ”+” operator to the left side of the tree. There are exactly three places we can
do this: Above the minus sign, in between the minus and multiplication, and below the
multiplication. In all cases the yield becomes 1 + 2 ˚ 3 ´ 4. Which of these three should
we pick? Our goal is to not introduce any conflicts. Using the disambiguation rules from
Figure 2.4 we have that CR(+,´) and CL(˚,+) are in Q. We have highlighted the parts in
the trees that match these conflict patterns. This means that the only valid insertion from
Figure 4.1 is the middle tree, as it does not match any of the conflict patterns.

Now that the basic concept has been explained, we will formalize this idea of repairing
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4.1. The Repair Function

trees using three separate functions:

1. repair : TG Ñ TG, the top level repair function.

2. repairin : (TG ˆ Oin ˆ TG)Ñ TG, for repairing infix nodes. The term repairin(t1, o, t2) is
used to repair a tree [t1 o t2].

3. insertin : (LˆOinˆTG)Ñ TG, also for repairing infix nodes, butwhere the left subtree is
(or has been reduced to) a lexical symbol in L. The function has the insertion behavior
discussed before. If we call insertin(l1, o, t2), it means we try to repair a tree [l1 o t2] by
left-inserting the symbols l1 and o safely in t2.

We used this naming convention in anticipation of prefix and postfix grammars (Chapter 7),
where we will also have a insertpre and a insertpost function.

Remark: Before we give the full definitions of these three functions, first we give a remark
to help avoid confusion. We just introduced insertin by giving it the header (LˆOinˆTG)Ñ
TG. In our definition we will generalize this so that the first argument in L can also be an
entire tree in TG. Meaning that the header is actually (TGˆOinˆTG)Ñ TG. Doing this allows
inserting entire trees into another tree, rather than just a lexical symbol. When we introduce
prefix and postfix expression in Chapter 7, this will have practical use cases. Furthermore,
this generalized function will be useful when proving completeness in Chapter 6.

Definition 4.1 (IG insertin). For an infix grammarG = (L,Oin)with a set of conflict patterns
Q, we define the function insertin : (TG ˆOin ˆ TG)Ñ TG as follows:

insertin(t1, o, t2) =

$

’

&

’

%

[t1 o l2], if t2 = l2 P L

[t1 o [t21 o2 t22]], if t2 = [t21 o2 t22] and CR(o, o2) R Q
[insertin(t1, o, t21) o2 t22], if t2 = [t21 o2 t22] and CR(o, o2) P Q

The behavior of this function is that it tries to insert t1 and o as high as possible in the
tree t2. If it would introduce a right-conflict (CR-conflict), we recursively try to insert it in
the left branch of t2. Note how our function only explicitly avoids right-conflicts and not left-
conflicts. In Chapter 5, which is about safety, we will prove that it also avoids left-conflicts
under certain conditions.

Definition 4.2 (IG repairin). For an infix grammarG = (L,Oin)with a set of conflict patterns
Q, we define the function repairin : (TG ˆOin ˆ TG)Ñ TG as follows:

repairin(t1, o, t2) =
#

insertin(l1, o, t2), if t1 = l1 P L

repairin(t11, o1, repairin(t12, o, t2)) if t1 = [t11 o1 t12]

This function reduces the left subtree in order to be able to use insertion. This has the
right-to-left iteration behavior as we mentioned at the start of this section. We iterate on the
input tree t1 from right-to-left, inserting each symbol to the left of the tree t2.

Now we can finally define the repair function.

Definition 4.3 (IG repair). For an infix grammar G = (L,Oin) with a set of conflict patterns
Q, we define the function repair : TG Ñ TG as follows:

repair(t) =
#

l, if t = l P L

repairin(t1, o, repair(t2)), if t = [t1 o t2]
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4. Implementation for Disambiguation Semantics

What repair essentially boils down to is a composite application of insertin for all symbols
of the tree. Let us take a random example tree from before, that has conflicts. We are going
to fix the tree [[1 + 2] ˚ [3´ 4]], which corresponds to the bottom-left tree from Figure 2.7.

repair([[1 + 2] ˚ [3´ 4]]) = repairin([1 + 2], ˚, repair([3´ 4]))

= repairin([1 + 2], ˚, repairin(3,´, repair(4)))
= repairin([1 + 2], ˚, repairin(3,´, 4))
= repairin(1,+, repairin(2, ˚, repairin(3,´, 4)))
= insertin(1,+, insertin(2, ˚, insertin(3,´, 4)))
= See Figure 4.2

4.2 The Repair Function and Yields
While the two most interesting properties of repair, safety1 and completeness, will be dis-
cussed in Chapter 5 and Chapter 6, we can already state two useful and easy to prove prop-
erties of repair. The first property states that repair preserves the yield of a tree. Meaning
that the resulting tree has the same yield as the input tree t. The second property states that
repair is ’fully dependent’ on the yield of the tree. Meaning that the function will produce
the same result for any trees that have the same yields. Another way to state this is that yield
equivalence is the same as repair equivalence.

Lemma 4.4 (Repair Preserves Yields). For all trees t P TG and conflict patterns Q, it follows that
yield(t) = yield(repair(t)).

Proof. By the fact that insertion iterates over trees in right-to-left order, and each symbol
gets inserted on the left-most side of the tree. We can formally prove this by first proving
the auxiliary properties yield(insertin(t1, o, t2)) = yield([t1 o t2]) and yield(repairin(t1, o, t2)) =
yield([t1 o t2]). The former can be shown by induction over the structure of tree t2, and the
latter by induction over t1.

Lemma 4.5 (Repair is Fully Yield-Dependent). For any two trees t1, t2 P TG and conflict patterns
Q, if yield(t1) = yield(t2), then it follows that repair(t1) = repair(t2).

Proof. Suppose we have a tree t. Expanding repair(t) results in a nested application of insertin
on the yield of t. We can also express this using the equations

repair(t) = insertin(l1 o1, ...insertin(ln´1 on´1, ln)...)

yield(t) = l1 o1 ... ln´1 on´1 ln.

To help explain this, we can take the example from the previous section:

repair([[1 + 2] ˚ [3´ 4]]) = ... = insertin(1,+, insertin(2, ˚, insertin(3,´, 4)))

Concatenating each terminal symbol from the final expression here gives 1+2˚3´4, which
is the yield of [[1 + 2] ˚ [3´ 4]].

We formalize this idea with a parse function that takes as input a sentence and outputs a
tree.

parse(w) =

$

’

&

’

%

l, if w = l P L

insertin(l, o, parse(wt)), if w = l o wt

error, otherwise
1Safety here can also be interpreted as soundness.
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4.2. The Repair Function and Yields

Note that this parser returns an error in case the input w is not a valid sentence. It is not hard
to show that parse(yield(t)) = repair(t). Therefore, if we have yield(t1) = yield(t2), we get
the equality parse(yield(t1)) = parse(yield(t2)), which in turn can be rewritten to repair(t1) =
repair(t2).

For the proof of Lemma 4.5 we built a parser for infix expression grammars. We could
turn this into a verified parser by also giving a soundness proof (i.e., if parse(w) = t, then
yield(t) = w). While not that difficult, this lies outside of the scope of this thesis. Building a
parser for (infix) expression grammars is easy. Our interest lies more in disambiguating an
existing tree using repair.
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Chapter 5

Safe Disambiguation

InDefinition 2.12we defined a safe filter as one that does not change the underlying language.
Meaning that if we have a sentence in the language, that sentence should also be in the dis-
ambiguated language. If we expand this definition for the subtree exclusion filter, it says the
following: For all sentences w, if there exists a well-formed parse tree t with yield(t) = w,
then there should also exists a well-formed conflict-free parse tree t1 with yield(t1) = w. To
obtain the tree t1, in Chapter 4 we have created a function repair : TG Ñ TG from trees to
conflict-free trees. This function preserves the yield of the input tree t (Lemma 4.4). The
only thing we have not proven is that the output t1 is indeed conflict-free.

In this chapter wewill provide a proof that repair indeed only produces conflict-free trees,
and therefore that subtree exclusion is also safe for infix expression grammars (IGs). How-
ever, we shall see that safety does not hold for all disambiguation rules PR. In Section 5.1 we
impose restrictions on the rules. Souza Amorim and Visser (2019) also impose restrictions,
but are more restrictive that the ones we will propose in this section. In Section 5.2 we prove
these indeed guarantee safety.

1 context-free syntax
2     Exp.Lit = NUM
3     Exp.Add = Exp "+" Exp
4     Exp.Mul = Exp "*" Exp

Exp.Mul > Exp.Add, Exp.Add > Exp.Mul

1 + 2 ˚ 3

˚

+

1 2

3

+

1 ˚

2 3

yield yield

Figure 5.1: Example of unsafe disambiguation rules.
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5. Safe Disambiguation

5.1 Safe Disambiguation Rules
As mentioned, safety is not guaranteed for all sets of disambiguation rules PR. A simple
example would be if two productions both have priority over each other. In Figure 5.1 we
made the unnatural decision of having addition have priority over multiplication and multi-
plication have priority over addition. This demonstrates that a simple expression with just
those two operators is already unsafe, because all corresponding parse trees have conflicts.
To resolve this issue, we impose the following restrictions on the disambiguation rules:

Definition 5.1 (Safe Infix Conflict Patterns). For a disambiguation rule set PR, its conflict
patternsQ(PR) is safe if for each pair of infix operators (o1, o2), the conflict patternsCR(o1, o2)
and CL(o2, o1) are not both in Q(PR).

In Section 5.2 we will show that these restrictions indeed imply safety. In this section we
show that these restrictions are also a lower bound for safety. Meaning that if we have safety,
then Q(PR) is also safe.

Lemma 5.2 (Lower Bound for Safety). Assuming we have at least one atomic production, if a
subtree exclusion filter for PR is safe, then Q(PR) is safe.

Proof. By contraposition, suppose Q(PR) is unsafe. This means that there exist two infix
operators o1 and o2 forwhichwe haveCR(o1, o2),CL(o2, o1) P Q(PR). Let l be a lexical symbol
for which we have an atomic production. The sentence w = l o1 l o2 l has exactly two well-
formed parse trees:

1. t = [l o1 [l o2 l]], which conflicts with CR(o1, o2).

2. t = [[l o1 l] o2 l], which conflicts with CL(o2, o1).

Because there are no conflict-free parse trees whose yield outputs w, we have that w is not in
the disambiguated language. This means that the subtree exclusion filter for PR is not safe.
Figure 5.1 is a visual example that demonstrates this concept.

Relation toDisambiguationRules InDefinition 5.1we define safety of the disambiguation
rules in terms of the conflict patterns it produces. We can also define it directly using the
disambiguation rules.

Definition 5.3 (Safe Infix Disambiguation Rules). A disambiguation rules set PR is safe if
and only if for each pair of infix operators (o1, o2), a maximum of one of the following two
properties holds:

1. o1 ą o2 or o1 left o2

2. o2 ą o1 or o2 right o1

Lemma 5.4. A disambiguation rule set PR is safe if and only if its conflict patterns Q(PR) is also
safe.

Proof. Following the rules from 2.17, Definition 5.3 is logically equivalent to 5.1.

Restrictions by SouzaAmorim andVisser (2019) The restrictions in Definition 5.3 are less
restrictive than the original restrictions by Souza Amorim and Visser (2019). This is partially
due to the fact that they also impose rather strict well-formedness properties on PR, on top of
safety properties. We give the full Definition in Section 6.1.

While their restrictions make sense intuitively, they prevents us from examining the least
restrictive set of rules for safety. Meaning that we would not be able to state Lemma 5.2.
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5.2. Infix Disambiguation is Safe

1 context-free syntax
2     Exp.Lit     = NUM
3     Exp.Add     = Exp "+" Exp {left}
4     Exp.Mul     = Exp "*" Exp {left}
5 context-free priorities
6     {right: Exp.Mul} > Exp.Add

Figure 5.2: An unsafe grammar in SDF3.

Restrictions by SDF3 Ideally, parser generators should check whether the safety (and also
completeness) restrictions hold. They should give the user either an error or a warning if
they do. We investigated the syntax definition formalism SDF3 1 and compared it to our
restrictions.

SDF3 does not statically check any of the safety properties. It is possible in SDF3 to write
rules such as Exp.Add > Exp.Add. This causes an expression such as 1 + 2 + 3 to give a parse
error. It is also possible to make some production both left- as well as right-associative with
itself. In Figure 5.2 multiplication is left-associative, as well as right-associative, causing an
expression such as 1 ˚ 2 ˚ 3 to give a parse error.

To avoid unsafe disambiguation rules, SDF3 would have to change two things. Firstly,
to avoid a case such as in Figure 5.2, SDF3 can remove the feature where a language devel-
oper can write an associativity rule inline for a production. For example, the left keyword
should not be allowed on line 3 and line 4. Instead these should bewritten in the context-free
priorities section of the grammar. Secondly, SDF3 should statically disallow cases where a
production appears more than once in the context-free priorities section. This prevents cases
where a production has priority over itself.

5.2 Infix Disambiguation is Safe
Our goal is to show that if we have a sentence in the language, that it is also in the disam-
biguated language. Meaning that we have to be able to transform a well-formed parse tree
t into a conflict-free parse tree t1 with equivalent yields. For this we will apply the repair
function from Chapter 4 on t. Lemma 4.4 already shows that the yields are equivalent. So
what is left is to prove that repair(t) is conflict-free. For this we will use the restrictions from
Definition 5.1.

The most crucial part of proving this is to first show that the function insertin is safe. In
other words, if t2 is conflict-free, then insertin(l1, o, t2) should be conflict-free. Because repair
is just a repeated application of insertin, repair will also be safe.

Before we go into the formal proof, we give a brief intuition as to why it should work.
Back in Section 4.1 we noted how the function explicitly avoids right-conflicts (conflicts of
the formCR(o1, o2)). The idea is that our safety restrictions on PR also cause the avoidance of
left-conflicts. Figure 5.3 shows this. Here we try to left-insert the operator o2 to the left of an
o1 node. The insertin function first tries to place o2 above o1, causing a potential right-conflict
ofCR(o2, o1), marked using red color in the figure. If this indeed conflicts, insertin will instead
try to insert it one level lower. This would potentially cause a left-conflict CL(o1, o2), which
we marked blue in the figure. However, due to the safety restrictions we imposed, these can
not both be conflict patterns (Definition 5.1). This means that insertin both avoids left- as well
as right-conflicts.

We will prove this more formally here:

1Specifically the version of SDF3 included in Spoofax version 2.5.14 (Kats and Visser 2010).
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o1

. . . . . .

o2

l o1

. . . . . .

o1

o2

l . . .

. . .

insert(l o2) insert(l o2)

Figure 5.3: The function insertin avoids both right- and left-conflicts under safety restrictions.

Lemma 5.5 (IG insertin is safe). Suppose PR is safe and t2 is a conflict-free tree, then
t1 = insertin(l1, o, t2) is also conflict-free.

Proof. By induction over the structure of t2.

1. Suppose t2 = l2 P L, then we have

t1 = insertin(l1, o, l2)
= [l1 o l2].

The tree [l1 o l2] is conflict-free.

2. Suppose t2 = [t21 o2 t22] with CR(o, o2) R Q, then we have

t1 = insertin(l1, o, [t21 o2 t22])
= [l1 o [t21 o2 t22]].

Because t2 = [t21 o2 t22] is conflict-free, and o does not right-conflict with o2, we have
that t1 is conflict-free.

3. Suppose t2 = [t21 o2 t22] with CR(o, o2) P Q, then we have

t1 = insertin(l1, o, [t21 o2 t22])
= [insertin(l1, o, t21) o2 t22]
= [t1

1 o2 t22]

with t1
1 = insertin(l1, o, t21). Because t2 is conflict-free, we have that its subtrees t21 and

t22 are also conflict free. By the induction hypothesis and the fact that t21 is conflict-
free, it means that t1

1 is also conflict free. We know that o2 does not right-conflict with
t22, because t2 is conflict-free. To finish the proof that t1 is conflict-free, we still have to
show that o2 also does not left-conflict with t1

1.
The uppermost operator of t1

1 is either o, or it is the top operator from t21 (assuming
it has one). This follows directly from the definition of insertin. The latter case is the
easiest, due to the fact that t2 is conflict-free, we already have that o2 does not left-
conflict with the uppermost operator of t21. What remains is to show that o2 does not
left-conflict with o. Remember that we assumed that CR(o, o2) P Q. By safety of PR
this means that CL(o2, o) R Q. In other words, o2 does indeed not left-conflict with o.
To conclude, we have that t1

1 and t22 are conflict-free, o2 does not left-conflict with t1
1,

and it does not right-conflict with t22. This means that t1 = [t1
1 o2 t22] is also conflict-free.
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5.2. Infix Disambiguation is Safe

Generalizing the lemma Note the insertin function allows for the first argument to be an en-
tire tree t1 rather than being limited to a lexical symbol l1. We could generalize this lemma by
supporting an arbitrary tree input t1. To do this we have to impose restrictions on t1: Firstly,
it should be conflict-free. Secondly, the input o should not left-conflict with t1. Because this
generalization will not be important until the inclusion of prefix and postfix grammars in
Chapter 7, we did not do this for this chapter.

Lemma 5.6 (IG repairin is safe). Suppose PR is safe and t2 is a conflict-free tree, then
t1 = repairin(t1, o, t2) is also conflict-free.

Proof. Follows directly by safety of insertin (Lemma 5.5) using induction over the structure
of t1.

Lemma 5.7 (IG repair is safe). Suppose PR is safe, then for all trees t we have t1 = repair(t) is
conflict-free.

Proof. By induction over the structure of t.

1. Suppose t = l P L, then t1 = l is conflict-free.

2. Suppose t = [t1 o t2], then t1 = repairin(t1, o, repair(t2)). By the induction hypothesis we
have that repair(t2) is conflict-free. Using Lemma 5.6 we get that t1 is conflict-free.

We conclude this chapter with one final theorem that summarizes the core idea.

Theorem 5.8 (IG safety). The subtree exclusion filter for infix expression grammars is safe if and
only if the disambiguation rules PR is safe, assuming the grammar has at least one atomic production.

Proof. By Lemmas 5.2 and 5.4 we have that if the subtree exclusion filter is safe, then PR is
safe. Conversely, suppose PR is safe. To show the filter is safe, we have to prove that for
a sentence w in the language of the grammar, w is also in the disambiguated language. If
w P LG, we have that there is a well-formed tree t P TG with yield(t) = w. Because the tree
repair(t) is both conflict-free (Lemma 5.7) and has yield w (Lemma 4.4), we have that w is in
the disambiguated language.
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Chapter 6

Complete Disambiguation

In Definition 2.13we defined a complete filter as one that causes the disambiguated language
to be unambiguous. Meaning that if we have a sentence in the language, it should have at
most one correspondingwell-formed and conflict-free parse tree. Ifwe expand this definition
for subtree exclusion, it says the following: If there exist two well-formed and conflict-free
parse trees t1, t2 with yield(t1) = yield(t2), then t1 = t2. Similarly to how we have proven
safety in Chapter 5, we are going to use the repair function from Chapter 4 to prove complete-
ness. By Lemma 4.5 we already get that repair(t1) = repair(t2) if yield(t1) = yield(t2). If we
can also show that for all conflict-free trees t, we have repair(t) = t, we are done.

Similarly to how safety does not hold for all disambiguation rules PR, completeness also
does not hold. Therefore we impose restrictions on PR in Section 6.1. We also give a compari-
son to our restrictions and the restrictions by SouzaAmorim andVisser (2019). In Section 6.2
we prove that our restrictions indeed guarantee completeness.

6.1 Complete Disambiguation Rules
As mentioned, completeness is not guaranteed for all sets of disambiguation rules PR. In
Figure 6.1 we made subtraction left-associative with addition. However, we deliberately de-

1 context-free syntax
2     Exp.Lit = NUM
3     Exp.Add = Exp "+" Exp
4     Exp.Sub = Exp "-" Exp

Exp.Add left Exp.Add, Exp.Sub left Exp.Sub,
Exp.Sub left Exp.Add

1 + 2´ 3

´

+

1 2

3

+

1 ´

2 3

yield yield

Figure 6.1: Example of incomplete disambiguation rules.
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l o3

o2

o1

l l

l

l

o3

l l

o3

o2

l l

l

o1

l o3

o2

l l

l

insert(o3 l)

insert(o2 l) insert(o1 l)

‰

Figure 6.2: Repairing a conflict-free tree, giving another tree. This shows ambiguity. Here
CR(o1, o2), CR(o2, o3) are conflict patterns, but CR(o1, o3) is not.

cided that addition is not left-associative with subtraction. From this wemanage to construct
two conflict-free parse trees that have equivalent yields. To resolve this issue, we impose the
following restrictions on the disambiguation rules:

Definition 6.1 (Complete Infix Conflict Patterns). For a disambiguation rule set PR, its con-
flict patterns Q(PR) is complete if the following properties hold:

1. One of CR(o1, o2) and CL(o2, o1) should be in Q(PR).

2. If CR(o1, o2),CR(o2, o3) P Q(PR), then CR(o1, o3) P Q(PR)

3. If CL(o1, o2),CL(o2, o3) P Q(PR), then CL(o1, o3) P Q(PR)

The first property of this Definition would fix the ambiguity in Figure 6.1. The usefulness
of the second and third properties are slightly harder to see. While we could give examples
of two conflict-free and yield-equivalent trees to show ambiguity, it would still not be clear
as to why this happens. Instead we will give an example that uses the repair function to show
why repair(t) ‰ t for some conflict-free t if one of the properties does not hold.

We are going to try and repair the already conflict-free tree [[l o1 l] o2 ] l o3 l] (see Fig-
ure 6.2), but our set of conflict patternsQwill violate the second property: Suppose we have
designed the disambiguation rules such that CR(o1, o2), CR(o2, o3) P Q, but CR(o1, o3) R Q.
With these conflict patterns, inserting o2 goes well. The issue arises when inserting o1: It
is being inserted above o3 because there is no right-conflict, even though we want it to get
inserted below o2. This problem arises when something should be inserted deep in the tree,
but lacks the required conflict relationwith the operators that are higher in the tree. A similar
example can be constructed from disambiguation rules that violate the third property.

For safety, we managed to come up with a most general set of restrictions, as shown by
Lemma 5.2. Unfortunately, we did not manage to the same for completeness. However, the
restrictions in Definition 6.1 are most general under the assumption that they are also safe.

Lemma 6.2 (Lower Bound for Completeness). Suppose we have at least one atomic production
and a safe set of disambiguation rules PR (Definition 5.1). If the subtree exclusion filter for PR is
complete, then Q(PR) is complete.
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6.1. Complete Disambiguation Rules

Proof. By contraposition, suppose Q(PR) is incomplete. This gives three cases, for which we
will construct counter-examples to show that the subtree exclusion filter is also not complete.

1. Suppose both CR(o1, o2) and CL(o2, o1) are not in Q(PR). This gives an ambiguous
sentence w = l o1 l o2 l with two different conflict-free trees (Figure 6.1).

2. Suppose CR(o1, o2) and CR(o2, o3) are in Q(PR), but CR(o1, o3) is not in Q(PR). By
safety of Q(PR) we get that CL(o2, o1) and CL(o3, o2) are not conflict patterns in Q(PR).
The sentence w = l o1 l o2 l o3 has two conflict-free trees (Figure 6.2).

3. Suppose CL(o1, o2) and CL(o2, o3) are in Q(PR), but CL(o1, o3) is not in Q(PR). Analo-
gous to the previous case, the sentence w = l o3 l o2 l o1 has two conflict-free trees.

Relation to Disambiguation Rules In Definition 6.1 we defined completeness of the dis-
ambiguation rules in terms of the conflict patterns it produces. We can also define it directly
using the disambiguation rules.

Definition 6.3 (Complete Disambiguation Rules). A disambiguation rule set PR is complete
if the following conditions hold for all operators:

1. o1 ą o2 _ o1 left o2 _ o2 ą o1 _ o2 right o1

2. If o1 ą o2, and o2 ą|left|right o3, then o1 ą o3

3. If o1 ą|left|right o2, and o2 ą o3, then o1 ą o3

4. If o1 left o2, and o2 left o3, then o1 left o3

5. If o1 right o2, and o2 right o3, then o1 right o3

6. If o1 left o2, then o2 right o3 should not hold for all o3

7. If o1 right o2, then o2 left o3 should not hold for all o3.

Note that we use the notation ą|left|right to denote the union of the three relations.

Lemma 6.4. For a well-formed and safe disambiguation rule set PR, it is complete if and only if its
conflict patterns Q(PR) is also complete. 1

Definition 6.5 (Restrictions by Souza Amorim and Visser (2019)). A set of disambiguation
rules iswell-formed according to SouzaAmorimandVisser (2019) if the followingproperties
hold:

1. The priority relation ą is transitive and irreflexive.

2. Associativity relations left and right are transitive and symmetric.

3. A production is in at most one associativity relation, i.e.,

domain(left)X domain(right) =H

4. Associativity groups have the same priority, i.e., if p1 ą p2 and p2 left|right p3, then
p1 ą p3, and if p1 left|right p2 and p2 ą p3, then p1 ą p3.

1Due to the numerous cases required, we have not shown the proof here. However, each case is relatively
simple, and we have proven them in the Coq Proof Assistant.
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6. Complete Disambiguation

1 context-free syntax
2     Exp.Lit     = NUM
3     Exp.Add     = Exp "+" Exp
4     Exp.Sub     = Exp "-" Exp
5     Exp.Mul     = Exp "*" Exp
6     Exp.Div     = Exp "/" Exp
7     Exp.Pow     = Exp "^" Exp
8 context-free priorities
9     {left: Exp.Pow} > {Exp.Mul Exp.Div} > {left: Exp.Add Exp.Sub}

Figure 6.3: An incomplete grammar in SDF3.

PR is safe if each pair of productions belong to at most one relation (ą, left, right). PR is
complete if each pair of productions belong to at most one relation (ą, left, right).

Lemma 6.6. The combination of the well-formedness restriction (Definition 2.15), safety restriction
(Definition 5.3), and completeness restrictions (Definition 6.3), is logically equivalent to the combi-
nation of well-formedness, safety, and completeness as defined by Souza Amorim and Visser (2019).

This Lemmagives a formal justification for thewell-formedness properties SouzaAmorim
and Visser (2019) impose on the disambiguation rules. It shows that without these restric-
tions, either safety or completeness will not hold.

Restrictions in SDF3 Back in Section 5.1 we stated that SDF3 does enforce the safety prop-
erties. The same holds for the majority of the completeness properties. There are two rules
that are enforced:

1. Transitivity of the priority relation, i.e., if o1 ą o2 and o2 ą o3, then o1 ą o3.

2. Symmetry of the associativity relations, e.g., if o1 left o2, then o2 left o1.

These rules do not take the form of restrictions, but rather as properties that are semanti-
cally guaranteed by SDF3. For instance, writing Exp.Pow ą Exp.Mul ą Exp.Add also means
that Exp.Pow ą Exp.Add is a disambiguation rule. Similarly, writing {left: Exp.Add Exp.Sub}
means both Exp.Add left Exp.Sub as well as Exp.Sub left Exp.Add.

Note that while symmetry of the associativity relations is not included in our restrictions
fromDefinition 6.1, it is a property that follows if we have both safety as well as completeness.

In Section 5.1 we proposed some static semantics to SDF3 to guarantee safety. This in-
cluded each production having at most one occurrence in the context-free priorities section
of the grammar. For completeness we want each production appearing at least once in this
section. Furthermore, each priority group should be annotated with an associativity rule.
For example, the grammar in Figure 6.3 should give either a warning or an error, because
the priority group {Exp.Mul Exp.Div} is missing an associativity rule. Lastly, if a production
occurs in some priority group with the left or right rule, this production should then also
be left- or right-associativity with itself. In Figure 6.3 this would mean that Exp.Add and Exp
.Sub should be left-associative with themselves. The current implementation of SDF3 does
not do this. Strangely enough, if a priority group only contains one production, such as
{left: Exp.Pow}, then that production will actually be left-associative with itself.

6.2 Infix Disambiguation is Complete
In the previous section we already gave examples that give an intuition as to why the com-
pleteness restrictions are necessary. In this section we will give a formal proof that these
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6.2. Infix Disambiguation is Complete

restrictions are sufficient. The goal is the prove that repair(t) = t if t is conflict-free. By expan-
sion, this requires proving that repairin(t1, o, t2) = [t1 o t2] given that [t1 o t2] is conflict-free. As
it turns out, this is quite difficult to show directly. Instead we will show that repairin(t1, o, t2)
rewrites to insertin(t1, o, t2). The idea being that solving the problem for insertin is easier than
for repairin. This is one of the reasons we allowed the first input argument of insertin to be an
entire tree t1 rather than just a lexical symbol l1.

Lemma 6.7. Suppose PR is complete. We have that repairin(t1, o, t2) = insertin(t1, o, t2) if t1 is
conflict-free and o does not left-conflict with t1, i.e., if t1 = [t11 o1 t12], then CL(o, o1) R Q.

Proof. By induction over the structure of t1.
Base case: if t1 = l1 is a lexical symbol, then repairin(l1, o, t2) = insertin(l1, o, t2) by definition.
Inductive case: t1 = [t11 o1 t12].

repairin(t1, o, t2) = repairin([t11 o1 t12], o, t2)
= repairin(t11, o1, repairin(t12, o, t2))
= insertin(t11, o1, repairin(t12, o, t2)) (IH, 1)
= insertin(t11, o1, insertin(t12, o, t2)) (IH, 2)
= insertin([t11 o1 t12], o, t2) (Lemma 6.8)
= insertin(t1, o, t2)

Here we justify the usages of the induction hypothesis:

1. Because t1 is conflict-free, we have that o1 does not left-conflict with t11, and t11 is
conflict-free. This permits usage of the induction hypothesis.

2. Because t1 is conflict-free, we have that o1 does not left-conflict with t11, and t12 is
conflict-free. In order to be able to use the induction hypothesis, we still need to show
that o does not left-conflict with the top operator of t12, call it o12. We will show this
by contradiction: Suppose o conflicts with o12, i.e. CL(o, o12) is a conflict pattern. We
have that CR(o1, o12) is not a conflict pattern, therefore by completeness it must follow
that CL(o12, o1) is a conflict pattern. Because CL(o, o12) and CL(o12, o1) are both con-
flict patterns, then by Lemma 6.4 we get that CL(o, o1) is a conflict pattern. This is a
contradiction because we assumed that o does not left-conflict with t1.

Lemma 6.8. Suppose PR is complete. We have that

insertin([t11 o1 t12], o, t2) = insertin(t11, o1, insertin(t12, o, t2))

if [t11 o1 t12] is conflict-free and CL(o, o1) R Q(PR).

Proof. By induction over the structure t2. Note that by completeness of PRwe get CR(o1, o) P
Q(PR).

1. Base case: t2 = l2 is a lexical symbol. Then we get

insertin([t11 o1 t12], o, t2) = insertin([t11 o1 t12], o, l2)
= [[t11 o1 t12] o l2]

= [insertin(t11, o1, t12) o l2] (Lemma 6.9)
= insertin(t11, o1, [t12 o l2])
= insertin(t11, o1, insertin(t12, o, l2))
= insertin(t11, o1, insertin(t12, o, t2))
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6. Complete Disambiguation

2. Suppose t2 = [t21 o2 t22] and CR(o, o2) R Q(PR). This case is analogous to the previous
case.

3. Suppose t2 = [t21 o2 t22] and CR(o, o2) P Q(PR). Note that by Lemma 6.4 we also get
CR(o1, o2) P Q(PR).

insertin([t11 o1 t12], o, t2) = insertin([t11 o1 t12], o, [t21 o2 t22])
= [insertin([t11 o1 t12], o, t21) o2 t22]
= [insertin(t11, o1, insertin(t12, o, t21)) o2 t22] (IH)

= insertin(t11, o1, [insertin(t12, o, t21) o2 t22])
= insertin(t11, o1, insertin(t12, o, [t21 o2 t22])
= insertin(t11, o1, insertin(t12, o, t2))

Lemma 6.9 (IG insertin is complete). If [t1 o t2] is conflict-free, then

insertin(t1, o, t2) = [t1 o t2]

Proof. If [t1 o t2] has no conflicts, then o does not right-conflict with t2. Thus by definition it
follows directly that insertin(t1, o, t2) = [t1 o t2].

With this relation between repairin and insertin, our proof that repair(t) = t for a conflict-
free t just became a lot easier.

Lemma 6.10 (IG repair is complete). If PR is complete and t is a conflict-free tree, then repair(t) = t.

Proof. By induction over the structure of t.

1. Base case: t = l gives repair(t) = l

2. Inductive case: t = [t1 o t2], which gives

repair(t) = repair([t1 o t2])
= repairin(t1, o, repair(t2))
= repairin(t1, o, t2) (IH)
= insertin(t1, o, t2) (Lemma 6.7)
= [t1 o t2] (Lemma 6.9)
= t

We conclude this chapter with the final completeness theorem:

Theorem 6.11. The subtree exclusion filter for infix grammars is complete if the disambiguation rules
PR is complete. The converse holds if PR is safe as well.

Proof. To show the subtree exclusion filter is safe, we have to prove that if yield(t1) = yield(t2)
holds holds for two conflict-free parse trees t1 and t2, then t1 = t2. By Lemma 4.5 we get that
repair(t1) = repair(t2). Lemma 6.10 tells us that repair(t1) = t1 and repair(t2) = t2. Thus we
have t1 = t2.

The converse holds from Lemma 6.2.
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Chapter 7

Extending with Prefix and Postfix
Expressions

So far we have only considered expression grammars that contain infix and atomic expres-
sions. In this chapter we extend the semantics and corresponding proofs with prefix and
postfix expressions.

Definition 7.1 (IPP Expression Grammar). An IPP expression grammar (IPPG) is a tuple
(L,Oin, Opre, Opost), where L, Oin, Opre, and Opost are disjoint sets of lexical, infix operator, pre-
fix operator, and postfix operator symbols respectively. It represents a context-free grammar
G = (L Y Oin Y Opre Y Opost, tAu, P ), with A a single nonterminal symbol and where there
are productions

A.C = l (Atomic Productions)
A.C = A oin A (Infix Productions)
A.C = opre A (Prefix Productions)
A.C = A opost (Postfix Productions)

for all l P L, oin P Oin, opre P Opre, and opost P Opost.

Figure 7.1 shows an example of an IPP grammar. The Minus and Lambda 1 productions are
both prefix expressions, whereas Incr is a postfix production.

In this chapter we will extend the semantics from Chapter 2 to also support IPP gram-
mars (Section 7.1). The new semantics will introduce more complexity. It has new types of

1The Lambda production can be considered a prefix production, because the terminals lambda, ID, and the
dot . can be conjoined into one single terminal.

1 context-free syntax
2     Exp.Lit    = NUM
3     Exp.Var    = ID
4     Exp.Add    = Exp "+" Exp {left}
5     Exp.Minus  = "-" Exp
6     Exp.Lambda = "lambda" ID "." Exp
7     Exp.Incr   = Exp "++"
8 context-free priorities
9     {left: Exp.Minus Exp.Incr} > Exp.Add > Exp.Lambda

Figure 7.1: Example of an IPP Grammar
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7. Extending with Prefix and Postfix Expressions

conflict patterns, that include prefix and postfix nodes. Furthermore, we define new types
of matching, where a node can conflict with another node deeper in the tree (deep match-
ing). This allows us to keep ensuring completeness. In Sections 7.2 and 7.3 we extend our
repair function from Chapter 4 to support prefix and postfix expressions respectively. The
extended repair function will take these new concepts into account.

7.1 Semantics for IPP Grammars
Back in Chapter 2we used the disambiguation rules to generate conflict patterns. We expand
the semantics from Definition 2.17, which only work for infix productions, to also include
prefix and postfix productions.

This section is also directly based on the semantics given by Souza Amorim and Visser
(2019). The differences between their semantics and the semantics we provide in this section
aremostly notational. Wewrite almost every possible combination disambiguation rules and
conflicts between the different types operators. While our notation gives an explicit overview
of every possible case, making it an easier candidate tomechanize in the Coq Proof Assistant,
the notation used by Souza Amorim and Visser (2019) is more compact and pleasing to the
eye.

First we update our common conflict patterns CR and CL to also include tree patterns
that have prefix and postfix nodes.

Definition 7.2 (Common IPP Conflict Patterns).

CLin,in(o1, o2) = [[_ o2 _] o1 _] CRin,in(o1, o2) = [_ o1 [_ o2 _]]
CLin,pre(o1, o2) = [[o2 _] o1 _] CRpre,in(o1, o2) = [o1 [_ o2 _]]
CRin,post(o1, o2) = [_ o1 [_ o2]] CLpost,in(o1, o2) = [[_ o1 _] o1]
CRpre,post(o1, o2) = [o1 [_ o2]] CLpost,pre(o1, o2) = [[_ o2] o1]

These new conflict patterns will be used in Definition 7.6. Note that this list at first seems
to be incomplete. For instance, the pattern CRin,pre(o1, o2) = [_ o1 [o2 _]] is not included. This
pattern causes unsafe semantics as we can construct example sentences that get completely
filtered out. For instance, using the grammar fromFigure 7.1, supposeCRin,pre(+, lambda ID.) =
[_ + [lambda ID. _]] is a conflict pattern. The sentence 5+lambda x. x only has onewell-formed
tree: [5 + [lambda x. x]]. This tree unfortunately matches the conflict pattern. The same prob-
lem would hold for a conflict pattern CLin,post(o1, o2) = [[_ o2] o1 _]. Therefore these two
types conflicts patterns are not allowed to be constructed and we excluded them from the
definition. Similarly, we have also not defined the conflict patterns CRpre,pre and CLpost,post.

Incomplete Semantics It now seems intuitive to include prefix and postfix expressions to
our semantics of priority and associativity rules in the samemanner aswedid for infix expres-
sions in Definition 2.17. However, completeness becomes a new issue. First we will discuss an
example that works as we would expect, then we will show one that gives rise to ambiguity
in the grammar.

Take the grammar from Figure 7.1. In particular, take the priority rule Minus ą Add. Fol-
lowing the same logic in Definition 2.17, this should give rise to the conflict pattern
CRpre,in(´,+) = [´ [_ + _]]. Suppose we have the expression ´5 + 3, which has two parse
trees [´[5 + 3]] and [[´5] + 3]. The first correctly gets filtered out, whereas the second is
conflict-free. Safety and completeness are consistently guaranteed for priority rules where
we have a prefix or postfix production that has priority over an infix production. Meaning
that the conflict pattern types CRpre,in and CLpost,in work as we would expect.

A problem arises when we have an infix production, that has priority over a prefix or
postfix production. As an example, take the priority rule Add ą Lambda. The idea behind

38



7.1. Semantics for IPP Grammars

Add

Lambda

lambda x.

+

Add

...

Lambda

lambda x.

+

Figure 7.2: A shallowpriority conflict (left) compared to a deeppriority conflict (right) based
on the grammar from Figure 7.1.

Lambda having low priority, is that body of a lambda expression should extend to the right as
far as possible. For instance, the body of the lambda expression in the sentence lambda x. ´
x + 5 + 3, should encompass the entire expression ´x + 5 + 3. With the conflict pattern
CLin,pre(+, lambda ID.) = [[lambda ID. _] + _], this particular sentence will only have one
conflict-free tree and is therefore correctly unambiguous. Unfortunately, we can also con-
struct sentences that are ambiguous. Take the expression 5 + lambda x. 6 + 7. This has two
conflict-free parse trees

[5 + [lambda x. [6 + 7]]

[[5 + [lambda x. 6]] + 7].

It should be clear that we want the second parse tree to be filtered, as the lambda expression
does not extend all the way to the right. The problem is that it does not match the conflict
pattern [[lambda ID. _] + _]. The semantics is incomplete.

DeepPriorityConflicts This problemoccurs because the lambda expression is nesteddeeper
inside the tree, while the conflict pattern is only able to handle shallow conflicts. Figure 7.2
gives a visual example of the occurring problem. The left tree gets properly filtered as it
matches the conflict pattern. The problem occurs when the lambda production occurs fur-
ther down in the tree, as a rightmost descendant. We will call these deep priority conflicts.
Deep priority conflicts can also occur if we have an infix production that has priority over a
postfix production. Similarly, any disambiguation rule between a prefix and postfix produc-
tion can also create deep priority conflicts. These types of conflicts can not be filtered out
using our shallow conflict patterns. To solve this problem, Souza Amorim and Visser (2019)
introduce deep conflict patterns.

It is not enough to just define regular shallow matching as in Definition 2.8. We define
the concept of right- and left-most matching.

Definition 7.3 (Right-Most and Left-Most Matching). For a grammar G, a tree t P TG and
pattern q P TPG, define M rm(t, q) and M lm(t, q) inductively as follows:

M(t, q)

M rm(t, q)

M rm(tn, q)

M rm([... tn], q)

M(t, q)

M lm(t, q)

M rm(t1, q)

M lm([t1 ...], q)

The idea is that t right-most matches q if t either shallowly matches q, or any of its right-
most descendants do. Left-most matching works analogously.
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7. Extending with Prefix and Postfix Expressions

How can we apply this new matching scheme for our ’problematic’ conflict patterns?
Take the previous example where CLin,pre(+, lambda ID.) = [[lambda ID. _] + _] is a conflict
pattern. Suppose we have a tree [t1 + t2]. This tree shouldmatch this pattern, if t1 right-most
matches the pattern [lambda ID. _]. This would filter any trees that have a shape of the form
as shown in Figure 7.2.

Definition 7.4 (DeepMatching). For a grammarG, a tree t P TG and pattern q P TPG, define
Drm(t, q) and Dlm(t, q) inductively as follows:

@ 1 ď i ď n. M rm(ti, qi)

Drm([A.C = t1...tn], [A.C = q1...qn])

@ 1 ď i ď n. M lm(ti, qi)

Dlm([A.C = t1...tn], [A.C = q1...qn])

For a set of tree patternsQ Ď TPG, we sayDrm(t,Q) if there is a q P Q such thatDrm(t, q). We
define Dlm(t,Q) analogously.

Let us take a look back at the example tree t = [[5+[lambda x. 6]]+7]. The conflict pattern
q = [[lambda ID. _] + _]does not shallowlymatch the tree, i.e.,M(t, q)does not hold. However,
it does right-most deeply match the tree. Below we give a derivation for this claim:

M([lambda x. 6], [lambda ID. _])
M rm([lambda x. 6], [lambda ID. _])

M rm([5 + [lambda x. 6]], [lambda ID. _])
Drm([[5 + [lambda x. 6]] + 7], [[lambda ID. _] + _])

Before we had only one set Q of shallow conflict patterns. Now we have a tuple Q =
(Qi, Qrm, Qlm)with three sets of conflict patterns. Qi, handles shallow conflicts, whereasQrm,
and Qlm, handle left-most and right-most deep priority conflicts. Below we redefine what it
means for a tree to be well-formed under subtree exclusion.

Definition 7.5 (Subtree Exclusion). For a grammar G = (Σ, N, P ) and Q = (Qi, Qrm, Qlm)

withQi, Qrm, Qlm Ď TPG sets of tree patterns, we define the set TQ
G of well-formed parse trees

under subtree exclusion inductively as follows:

a P Σ

a P TQ
G

t P TG, ␣M(t,Qi), ␣Drm(t,Qrm), ␣Dlm(t,Qlm), @ 1 ď i ď n. ti P T
Q
G

t = [A.C = t1...tn] P T
Q
G

Now that we have redefined subtree exclusion to also support prefix and postfix expres-
sions, we can finally show how to obtain the conflict patterns from the disambiguation rules
PR.

Definition 7.6 (IPP Conflict Patterns). Let G = (L,Oin, Opre, Opost) be an IPP expression
grammar and PR = (ą, left, right) a disambiguation rule set for G. We define the tuple
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7.2. Repairing for Prefix and Infix Expressions

Q(PR) = (Qi(PR), Qrm(PR), Qlm(PR)) as follows:

o1, o2 P Oin, o1 ą o2

CRin,in(o1, o2) P Q
i(PR)

o1, o2 P Oin, o1 left o2
CRin,in(o1, o2) P Q

i(PR)
o1, o2 P Oin, o1 ą o2

CLin,in(o1, o2) P Qi(PR)
o1, o2 P Oin, o1 right o2
CLin,in(o1, o2) P Qi(PR)

o1 P Opre, o2 P Oin, o1 ą o2

CRpre,in(o1, o2) P Q
i(PR)

o1 P Opre, o2 P Oin, o1 left o2
CRpre,in(o1, o2) P Q

i(PR)
o1 P Oin, o2 P Opre, o1 ą o2

CLin,pre(o1, o2) P Qrm(PR)
o1 P Oin, o2 P Opre, o1 right o2

CLin,pre(o1, o2) P Qrm(PR)

o1 P Opost, o2 P Oin, o1 ą o2

CLpost,in(o1, o2) P Qi(PR)
o1 P Opost, o2 P Oin, o1 right o2

CLpost,in(o1, o2) P Qi(PR)
o1 P Oin, o2 P Opost, o1 ą o2

CRin,post(o1, o2) P Q
lm(PR)

o1 P Oin, o2 P Opost, o1 left o2
CRin,post(o1, o2) P Q

lm(PR)

o1 P Opre, o2 P Opost, o1 ą o2

CRpre,post(o1, o2) P Q
lm(PR)

o1 P Opre, o2 P Opost, o1 left o2
CRpre,post(o1, o2) P Q

lm(PR)
o1 P Opost, o2 P Opre, o1 ą o2

CLpost,pre(o1, o2) P Qrm(PR)
o1 P Opost, o2 P Opre, o1 right o2

CLpost,pre(o1, o2) P Qrm(PR)

Take Figure 7.3 as an example, where we give the conflict patterns for a specific IPP gram-
mar. In Figure 7.4 we give an example of a sentence for that grammar, with its corresponding
parse trees. We highlighted the conflicts occurring in those parse trees.

For our safety and completeness proofs, we impose restrictions on the disambiguation
rules PR analogous to how we defined them in Sections 5.1 and 6.1. We elevated the Defini-
tions 5.3 and 6.3 to also include prefix and postfix operators in the exact same manner.2

7.2 Repairing for Prefix and Infix Expressions
In this section we will update our repair function from Chapter 4 in order to support parse
trees with both infix and prefix expressions (IP Grammars). For the purpose of this section,
let an IP grammar be defined analogously to IPP grammars, with the postfix operators Opost
and productions excluded.

Due to our new deep conflict patterns, it may seem like the function will suddenly take
on a much higher complexity. This is not the case. Recall that we designed repair in such a
way that we only avoid creating right-conflicts, i.e., conflicts of the CR type. The idea is that
safety of the disambiguation rules ensures that left-conflicts also be avoided. Luckily, with
prefix expressions, the only deep conflict pattern is CLin,pre. This is a left-conflict, which we
ignore. The right-conflict pattern CRpre,in is a shallow conflict. We start by extending our
insertin function to support insertion into prefix nodes.

Definition 7.7 (IP insertin). For an IP grammar G = (L,Oin, Opre) with conflict patterns
Q = (Qi, Qrm), we define the function insertin : (TG ˆOin ˆ TG)Ñ TG as follows:

2Unlike with Infix Expression Grammars, we have not proven that if the subtree exclusion filter is safe, then
the conflict patterns Q(PR) is safe. Although we do conjecture it holds for IPP Grammars.
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7. Extending with Prefix and Postfix Expressions

1 context-free syntax
2     Exp.Lit    = NUM
3     Exp.Var    = ID
4     Exp.Add    = Exp "+" Exp {left}
5     Exp.Minus  = "-" Exp
6     Exp.Lambda = "lambda" ID "." Exp
7     Exp.Incr   = Exp "++"
8 context-free priorities
9     {left: Exp.Minus Exp.Incr} > Exp.Add > Exp.Lambda

Qi(PR) Minus

´ Add

+

Incr

Add

+

++

Add

+ Add

+

Qrm(PR) Incr

Lambda

lambda ID.

++

Add

Lambda

lambda ID.

+

Qlm(PR) Minus

´ Incr

++

Figure 7.3: A disambiguated IPPGrammar, togetherwith corresponding conflict pattern sets
Qi, Qrm, and Qlm.

Add

Incr

Minus

´ 3

++

+ 5

Add

Minus

´ Incr

3 ++

+ 5

´3++ + 5

Minus

´ Add

Incr

3 ++

+ 5

yield yield

yield

Figure 7.4: Parse trees with highlighted conflicts. Note that the bottom parse tree contains
two conflicts. The dashed line represents a deep conflict.
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7.2. Repairing for Prefix and Infix Expressions

insertin(t1, o, t2) =
$

’

’

’

’

&

’

’

’

’

%

[t1 o l2], if t2 = l2 P L

[t1 o [t21 o2 t22]], if t2 = [t21 o2 t22], o2 P Oin, and CRin,in(o, o2) R Qi

[insertin(t1, o, t21) o2 t22], if t2 = [t21 o2 t22], o2 P Oin, and CRin,in(o, o2) P Qi

[t1 o [o2 t21]] if t2 = [o2 t21], o2 P Opre

The bottom case is the newly added case where we insert into prefix nodes. Because
CRin,pre is not a type of conflict pattern, we do not have to account for this and guarantee
safety from at least right-conflicts.

The next step is to add another function insertpre : (Opre ˆ TG)Ñ TG to allow insertion of
a prefix operator into an arbitrary tree.

Definition 7.8 (IP insertpre). For an IP grammar G = (L,Oin, Opre) with conflict patterns
Q = (Qi, Qrm), we define the function insertpre : (Opre ˆ TG)Ñ TG as follows:

insertpre(o, t2) =
$

’

’

’

’

&

’

’

’

’

%

[o l2], if t2 = l2 P L

[o [t21 o2 t22]], if t2 = [t21 o2 t22], o2 P Oin, and CRpre,in(o, o2) R Qi

[insertpre(o, t21) o2 t22], if t2 = [t21 o2 t22], o2 P Oin, and CRpre,in(o, o2) P Qi

[o [o2 t21]] if t2 = [o2 t21], o2 P Opre

This function works similarly to insertin in that we explicitly avoid all right-conflicts. In
this case we recursively insert the input operator o deeper in the tree if it would conflict with
an operator o2 with CRpre,in(o, o2) P Qi.

Definition 7.9 (IP repairin). For an IP grammar G = (L,Oin, Opre) with conflict patterns
Q = (Qi, Qrm), we define the function repairin : (TG ˆOin ˆ TG)Ñ TG as follows:

repairin(t1, o, t2) =
$

’

&

’

%

insertin(l1, o, t2), if t1 = l1 P L

repairin(t11, o1, repairin(t12, o, t2)), if t1 = [t11 o1 t12], o1 P Oin

insertpre(o1, repairin(t11, o, t2)), if t1 = [o1 t11], o1 P Opre

Definition 7.10 (IP repair). For an IP grammarG = (L,Oin, Opre)with a set of conflict patterns
Q = (Qi, Qrm), we define the function repair : TG Ñ TG as follows:

repair(t) =

$

’

&

’

%

l, if t = l P L

repairin(t1, o, repair(t2)), if t = [t1 o t2], o P Oin

insertpre(o, repair(t1)), if t = [o t1], o P Opre

Both Definition 7.9 and 7.10 should be self-explanatory. These extensions with prefix
expression follow the same logic as they did with just infix expressions.

Safety and Completeness Proof We have proven this new repair function is indeed both
safe and complete using the Coq Proof Assistant. The proofs work similarly to the proofs in
Chapter 5 and Chapter 6 for infix expression grammars. Giving the full proof here would be
rather tedious, as the proof contains many cases. So instead of a full proof, we will work out
one very specific case, which shows that insertpre is free from any deep conflicts. This should
give an idea as to how we worked with these deep priority conflicts in the proofs.
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7. Extending with Prefix and Postfix Expressions

Lemma 7.11. LetG = (L,Oin, Opre) be an IP Grammar and PR a safe set of disambiguation rules for
G. For operators o P Opre and a conflict-free infix node t2 = [t21 o2 t22]with CRpre,in(o, o2) P Qi(PR),
we have that t1 = insertpre(o, t2) does not match any deep conflicts in Qrm(PR).

Proof. By definition, we get t1 = insertpre(o, t2) = [insertpre(o, t21) o2 t22]. We have to show that
the tree does not deeply match any conflict pattern in Qrm(PR). Note that the all patterns in
Qrm have the type CLin,pre.

We will give a proof by contradiction: Suppose t1 deeply matches some conflict pattern
CLin,pre(x1, x2) = [[x2 _] x1 _]. This means that x1 = o2 and that the subtree insertpre(o, t21)
right-most matches the pattern [x2 _]. By performing case analysis on insertpre(o, t21), it can
be shown that either o = x2, or t21 right-most matches the pattern [x2 _].

1. Suppose o = x2. Recall that we also had that o2 = x1. This means that both
CRpre,in(o, o2) and CLin,pre(o2, o) are conflict patterns. By safety of PR this can not occur.

2. Suppose t21 right-most matches the pattern [x2 _]. Recall that we assumed that the tree
t2 = [t21 o2 t22] is conflict-free. This means it should not match our conflict pattern
CLin,pre(x1, x2). Because we had x1 = o2, this can only occur if t21 does not right-most
match the pattern [x2 _].

7.3 Repairing for Postfix, Prefix, and Infix Expressions
In the previous section we have extended our repair function to support prefix expressions.
In this section we will also include postfix expressions. Appendix C contains the full unin-
terrupted raw definitions for the function.

Wewill start by updating insertin again. Recall that we only care about explicitly avoiding
right-conflicts. With prefix expression we got lucky, because all possible right-conflicts are
shallow conflicts. With the addition of postfix expressions, we get two types of deep right-
most conflicts: CRin,post and CRpre,post. Our updated insertin function has to take these deep
conflicts into account. To help simplify our design for insertion, we give another definition
that formalizes that idea of right-conflicts and left-conflicts:

Definition 7.12 (Right- and Left-Conflicts). Suppose we have an IPP grammar
G = (L,Oin, Opre, Opost) with conflict patterns Q = (Qi, Qrm, Qlm). For an operator o P Oin Y
Opre and t2 P TG, we define RQ(o, t2) (o right-conflicts with t2) as follows:

o P Oin, o2 P Oin, q = CRin,in(o, o2) P Q
i,M([t21 o2 t22], q)

RQ(o, [t21 o2 t22])

o P Opre, o2 P Oin, q = CRpre,in(o, o2) P Q
i,M([t21 o2 t22], q)

RQ(o, [t21 o2 t22])

o P Oin, o2 P Opost, q = CRin,post(o, o2) P Q
lm, Dlm([t21 o2], q)

RQ(o, [t21 o2])

o P Opre, o2 P Opost, q = CRpre,post(o, o2) P Q
rm, Drm([t21 o2], q)

RQ(o, [t21 o2])

Define LQ(o, t1) (o left-conflicts with t1) with o P Oin YOpost and t1 P TG analogously.

Using this new mechanism will help us more easily extend our insertion functions.
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Definition 7.13 (IPP insertin). For an IPP grammar G = (L,Oin, Opre, Opost) with conflict pat-
terns Q, we define the function insertin : (TG ˆOin ˆ TG)Ñ TG as follows:

insertin(t1, o, t2) =
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

[t1 o l2], if t2 = l2 P L

[t1 o [t21 o2 t22]], if t2 = [t21 o2 t22], o2 P Oin, and ␣RQ(o, t2)

[insertin(t1, o, t21) o2 t22], if t2 = [t21 o2 t22], o2 P Oin, and RQ(o, t2)

[t1 o [o2 t21]] if t2 = [o2 t21], o2 P Opre

[t1 o [t21 o2]], if t2 = [t21 o2], o2 P Opost, and ␣RQ(o, t2)

[insertin(t1, o, t21) o2], if t2 = [t21 o2], o2 P Opost, and RQ(o, t2)

As before, the first four cases handle insertion into an atomic, infix, or prefix nodes. We
have slightly changed how we defined insertion into infix nodes to make use of our newly
defined relation RQ, but the principle remains the same: We wish to explicitly avoid right-
conflicts. The main difference from before is that we now also check for deep conflicts.

The last two cases involve insertion into postfix nodes. Because insertion to the top can
introduce right-conflicts, these are handled analogously to infix nodes.

We will now extend insertpre in a similar way.

Definition 7.14 (IPP insertpre). For an IPP grammarG = (L,Oin, Opre, Opost)with conflict pat-
terns Q, we define the function insertpre : (Opre ˆ TG)Ñ TG as follows:

insertpre(o, t2) =
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

[o l2], if t2 = l2 P L

[o [t21 o2 t22]], if t2 = [t21 o2 t22], o2 P Oin, and ␣RQ(o, t2)

[insertpre(o, t21) o2 t22], if t2 = [t21 o2 t22], o2 P Oin, and RQ(o, t2)

[o [o2 t21]], if t2 = [o2 t21], o2 P Opre

[o [t21 o2]], if t2 = [t21 o2], o2 P Opost, and ␣RQ(o, t2)

[insertpre(o, t21) o2], if t2 = [t21 o2], o2 P Opost, and RQ(o, t2)

For repairing postfix expressions, we introduce a new function insertpost : (TG ˆOpost)Ñ
TG. Calling insertpost(t1, o) repairs the tree [t1 o] by right-inserting o into t1.

Definition 7.15 (IPP insertpost). For an IPP grammar G = (L,Oin, Opre, Opost) with conflict
patterns Q, we define the function insertpost : (TG ˆOpost)Ñ TG as follows:

insertpost(t1, o) =
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

[l1 o], if t1 = l1 P L

[[t11 o1 t12] o], if t1 = [t11 o1 t12], o1 P Oin, and ␣LQ(o, t1)

[t11 o1 insertpost(t12, o)], if t1 = [t11 o1 t12], o1 P Oin, and LQ(o, t1)

[[o1 t12] o], if t1 = [o1 t12], o1 P Opre, and ␣LQ(o, t1)

[o1 insertpost(t12, o)], if t1 = [o1 t12], o1 P Opre, and LQ(o, t1)

[[t11 o1] o], if t1 = [t11 o1], o1 P Opost

This function is defined analogously to insertpre. Note how, unlike in all previous cases,
we explicitly avoid left-conflicts instead of right-conflicts. This is because we insert in the
opposite direction. This makes more sense for postfix expressions, where the operator is
found on the opposite side.

Now we will also extend repairin to handle postfix nodes.
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Definition 7.16 (IPP repairin). For an IPP grammar G = (L,Oin, Opre, Opost) with conflict pat-
terns Q, we define the function repairin : (TG ˆOin ˆ TG)Ñ TG as follows:

repairin(t1, o, t2) =
$

’

’

’

’

&

’

’

’

’

%

insertin(l1, o, t2), if t1 = l1 P L

repairin(t11, o1, repairin(t12, o, t2)), if t1 = [t11 o1 t12], o1 P Oin

insertpre(o1, repairin(t11, o, t2)), if t1 = [o1 t11], o1 P Opre

insertin([t11 o1], o, t2), if t1 = [t11 o1], o1 P Opost

This new case repairin([t11 o1], o, t2) = insertin([t11 o1], o, t2) seems counter-intuitive. How-
ever, back in Chapter 4 we hinted that there would be cases where we use insertin to insert
entire trees, rather than just a lexical symbol l1. To explain why we are allowed to insert the
entire tree [t11 o1], we first explainwhat insertin actually requires: The tree t1 = insertin(t1, o, t2)
is conflict-free if

1. t2 is conflict-free, and

2. t1 is conflict-free, and

3. o does not left-conflict with t1.

These requirements are there because insertin only fixes right-conflicts between o and t2. So
what about if t1 = [t11 o1] like we use it in repairin? The second requirement states that this
should be conflict-free. This is the case if we let the top-level repair function recursively repair
the subtree t1 first, like it already does with t2. The third requirement states that o should
not left-conflict with [t11 o1]. This requirement holds because there exists no conflict pattern
CLin,post, nor does a deep conflict pattern exist where o can conflict deeper in t11.

Definition 7.17 (IPP repair). For an IPP grammar G = (L,Oin, Opre, Opost) with conflict pat-
terns Q, we define the function repair : TG Ñ TG as follows:

repair(t) =

$

’

’

’

’

&

’

’

’

’

%

l, if t = l P L

repairin(repair(t1), o, repair(t2)), if t = [t1 o t2], o P Oin

insertpre(o, repair(t1)), if t = [o t1], o P Opre

insertpost(repair(t1), o), if t = [t1 o], o P Opost

Note that this new definition of repair also recursively repairs the left-subtree t1 of infix
nodes. This is to account for the case in repairin where we required t1 to be conflict-free in
case it is a postfix node.

Safety and Partial Completeness Proof Using this new repair function, we have proven
that the semantics is indeed safe and partially proven it is complete using the Coq Proof As-
sistant. Themissing part of the completeness proof is the lemma that states that repair is fully
dependant on the yield of the tree (Lemma 4.5). This was one of the properties we used for
proving completeness for infix and prefix grammars.

Conjecture 7.18 (IPPG Repair is fully yield-dependent). For any two trees t1, t2 P TG and sets
of conflict patterns Q = (Qi, Qrm, Qlm), if yield(t1) = yield(t2), then it follows that repair(t1) =
repair(t2).
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The reason why we were able to prove this for infix and prefix grammars, but not when
we also add postfix, is because the repair function now has inconsistent behavior for yield-
equivalent trees. For infix expression grammars, repairing a tree t resulted in a nested appli-
cation of insertin on the yield of t. We gave the following example to illustrate this concept:

repair([[1 + 2] ˚ [3´ 4]]) = ... = insertin(1,+, insertin(2, ˚, insertin(3,´, 4)))

No matter how you reorder the tree [[1 + 2] ˚ [3 ´ 4]], it will eventually reduce to this same
nested application of insertin. The same idea holds when we add prefix expressions:

repair(´[1 + [´2]]) = ... = insertpre(´, insertin(1,+, insertpre(´, 2)))

The reason this works is because we consistently use left-insertion andwe only insert one
symbol at a time. As soon as you introduce both prefix and postfix, this same consistency is
difficult to achieve. Postfix nodes are easier to repair with right-insertion and we also have
cases where we insert entire trees with insertin. For example, take the expression 1 ˚ 2++,
which has two parse trees [1 ˚ [2++]] and [[1 ˚ 2]++]. Repairing these gives the following
behaviors:

repair([1 ˚ [2++]]) = insertin(1, ˚, repair([2++])) = insertin(1, ˚, [2++]) = ...

repair([[1 ˚ 2]++]) = insertpost(repair([1 ˚ 2]),++) = insertpost([1 ˚ 2],++) = ...

The first parse tree uses insertin, whereas the second parse tree uses insertpost to get the result.
This especially becomes complicated when you get to even larger trees with a mixture of all
types of expressions. This made proving the property much more difficult compared with
we had just infix and prefix expressions.
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Chapter 8

Related Work

In this chapter we compare this thesis to some of the other work in literature. We begin very
close to the subject of this thesis, and compare our proof the original proof idea by Souza
Amorim and Visser (2019) in Section 8.1. In Section 8.2 we compare the semantics of dis-
ambiguation rules from Souza Amorim and Visser (2019) to some other ideas for semantics
in literature. Lastly, in Section 8.3 we look at some other proof mechanizations related to
context-free grammars. In particular, we will look at some verified parser generators, as
quite a handful of them can be found throughout literature.

8.1 Alternate Safety and Completeness Proof
Our safety and completeness proofs from Chapters 5 and 6 were made using tree insertion.
We constructed conflict-free and unique trees in a bottom-up fashion. This entire thesis is
built on the draft paper by Souza Amorim and Visser (2019), which first introduced the
direct semantics for disambiguation rules. There they used a different approach to proving
safety and completeness using tree reorderings. The original idea of this thesiswas to complete
the proofs using that approach, but instead we deviated and used the tree insertion method.
In this section we will show what tree reorderings are and how they could potentially be
used to prove safety and completeness. For simplicity, we will only consider the context of
infix expression grammars in this section.

Definition 8.1 (Infix Reordering). We define the relation RI
Ñ over parse trees inductively as

follows:

[t1 o [t21 o2 t22]]
RI
Ñ [[t1 o t21] o t22]

t1
RI
Ñ t1

1

[t1 o t2]
RI
Ñ [t1

1 o t2]

t2
RI
Ñ t1

2

[t1 o t2]
RI
Ñ [t1 o2 t

1
2]

Let RI˚
ÐÑ be the reflexive, symmetric, transitive closure of RI

Ñ. We say a tree t2 is a reordering
of t1 if t1 RI˚

ÐÑ t2.

In Figure 8.1 we show all parse trees for the expression 1+ 2 ˚ 3´ 4 (with the traditional
arithmetic grammar). The figure shows that all these parse trees are reorderings of each
other. In fact, we can generalize this relation between yields and reorderings in the following
lemma:

Lemma8.2 (InfixYields andReorderings). For two parse trees t1 and t2, it follows that yield(t1) =
yield(t2) iff t1

RI˚
ÐÑ t2.

Proof. As shown by Souza Amorim and Visser (2019).
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Figure 8.1: Parse tree reorderings.

So far, the reordering relation does not take ambiguity into account. For that we define a
subset of reorderings that attempt to repair conflicts.

Definition 8.3 (Infix Disambiguation Reordering). Wedefine the relation DI
Ñ over parse trees

inductively as follows:

CR(o, o2) P Q
[t1 o [t21 o2 t22]]

DI
Ñ [[t1 o t21] o t22]

t1
DI
Ñ t1

1

[t1 o t2]
DI
Ñ [t1

1 o t2]

CL(o, o1) P Q
[[t11 o1 t12] o t2]

DI
Ñ [t11 o1 [t12 o t2]]

t2
DI
Ñ t1

2

[t1 o t2]
DI
Ñ [t1 o2 t

1
2]

Let DI˚
ÝÑ be the reflexive and transitive closure of DI

Ñ.

This new relation repairs a conflict with each step. If there are no longer any conflicts in
a tree t, it is in normal form, i.e., there exists no t1 such that t DI

Ñ t1. We can use this to try and
prove both safety and completeness.

ProvingSafety Recall that the goal of proving safety is to find a yield-equivalent and conflict-
free tree for any tree t. We can use DI˚

ÝÑ to find such a tree. If we have t DI˚
ÝÑ t1, with t1 in normal

form, it means we are done. In other words, we must show that DI
Ñ is terminating (or strongly

normalizing). Note that termination requires proving that each path in DI
Ñ is finite. For safety,

we only need one finite path for each tree to a normal form. So an alternative is proving the
relation is weakly normalizing: Dt1, t

DI˚
ÝÑ t1 with t1 in normal form for each t.

Proving Completeness To show completeness, we should have that each conflict-free tree
is unique within its yield equivalence class. In terms of reordering using DI

Ñ, we must show
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that two yield-equivalent trees will have the same unique normal form. Assuming we have
already proven termination from before, Souza Amorim and Visser (2019) shows that all we
still need to do is prove DI

Ñ is locally confluent: If t DI
Ñ t1 and t

DI
Ñ t2, then there exists a t1 with

t1
DI˚
ÝÑ t1 and t2

DI˚
ÝÑ t1.

Comparison with Insertion Proving termination and local confluence can be quite difficult.
This caused the deviation in this thesis into a different approach, using the bottom-up in-
sertion method from Chapter 4. This does not mean there are no large similarities between
the two approaches. The first thing that may come to mind is Lemma 8.2. It is effectively
almost the same as Lemmas 4.4 and 4.5, which together state that yield equivalence is the
same as repair equivalence. In a way, this means that repair(t) = t1 can be seen as a very
specific reordering between t and t1. This specific reordering can then be used to prove the
weak normalization property, required for proving safety.

8.2 Alternate Semantics
While the formalism and semantics for context-free grammars are already well-established,
and first developed in the mid-1950s (Hopcroft and Ullman 1979), the semantics for disam-
biguation rules are relatively new and still an active research topic.

Souza Amorim and Visser (2019) distinguishes between two different types of semantics
for disambiguation rules: indirect and direct. Indirect approaches use a translation into an-
other formalism, whereas direct approaches do not use a translation and directly describe
the behavior of associativity and priority rules. The semantics in Souza Amorim and Visser
(2019), which we also used in this thesis, define the semantics as disambiguation filters over
parse trees. This is an example of a direct semantics.

Indirect Semantics Indirect approaches are generally undesirable, as those require under-
standing of another formalism. Johnson et al. (1975) define the semantics of these disam-
biguation rules by means how a parser would solve shift/reduce conflicts. This requires un-
derstanding of the workings and generation of an LR parse table. Adams and Might (2017)
use tree automata (Comon 1997) to describe disambiguation, which is also an indirect ap-
proach.

Direct Semantics Direct semantics throughout literature are mostly done with the idea of
negatively using a set of ’illegal’ sub-parse trees, and was first introduced by Thorup (1994)
and Klint and Visser (1994) by means of disambiguation filters. Thorup (1996) shows this
method guarantees that the language remains unchanged, i.e., safety. The semantics of SDF2
(predecessor of SDF3) (Visser et al. 1997; Visser et al. 1995) are defined as tree patterns that
filter over subtrees directly using disambiguation filters. These semantics can be seen as the
predecessor to Souza Amorim and Visser (2019), on which this thesis is based. The SDF2
semantics have been shown to be unsafe for some grammars by Afroozeh et al. (2013). This
lead to the creation of this new semantics, which also introduced deep conflict patterns.

Unlike the semantics discussed before, Afroozeh et al. (2013) uses a filter over derivations
rather than parse trees. We brieflymentioned derivations in Section 2.1 as the alternative and
more classical way of describing the semantics of context-free grammars. Similarly to how
we defined tree patterns, they defined patterns for derivations. This is also a direct semantics.
As an implementation for the semantics, they used grammar rewriting to transform a context-
free grammar into another context-free grammar. This can be seen as an alternative to our
method of parse tree repairing.

51



8. Related Work

8.3 Verified Parsing
This thesis is not the first to include a context-free grammar related mechanization in a proof
assistant. Verified parser generators in particular have taken their own spot literature.

Definition 8.4 (Parsers). A parser for a context-free grammar G = (Σ, N, P ) is defined as a
function parse : Σ˚ Ñ P(TG).

A parser is sound if for all sentences w P Σ˚ and t P parse(w), we have yield(t) = w.
Conversely, a parser is complete if for all sentences w P Σ˚ and trees t P TG with yield(t) = w,
we have t P parse(w).

A parser is considered verified if there is a proof (in a proof assistant) for both soundness
and completeness. We found five verified parser generators which we will list in this section.

Barthwal andNorrish (2009)made the first verifiedparser generator, which supports SLR
grammars (DeRemer 1969). This was done in the HOL theorem prover (HOL Development
Team 2019).

Jourdan, Pottier, and Leroy (2012) support LR(1) grammars, which is a class of context-
free grammars higher than SLR grammars. However, the main difference with Barthwal and
Norrish (2009) is that this is not a parser generator, but a verified parser validator. A validator
takes a parser as input and checks whether it is sound and complete. Note that this validator
can give false negatives. Meaning that it can reject sound and complete parsers. The validator
itself is implemented in the Coq Proof Assistant.

Lasser et al. (2019) made a verified parser generator for LL(1) grammars. This is a class
of grammars that supports significantly fewer grammars than SLR and LR(1) grammars.
However, unlike the previous cases, they also have a proof that guarantees that the parser
also terminates.

There are twoverifiedparser interpreters byKoprowski andBinsztok (2010) andBlaudeau
and Shankar (2020). The former implemented in the Coq Proof Assistant and the latter in the
PVS Specification and Verification System (PVS Development Team 2014). The grammars
they support are Parsing Expression Grammars (PEGs) (Ford 2004), which is an alternative
to context-free grammars. One difference is that PEGs are closer to an implementation of a
parser than CFGs. As such, PEGs are not compiled down to a parse table first, but are used
directly with a parser interpreter.
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Chapter 9

Future Work

This chapter lists some of the direct future work that may arise from this thesis.

Full Completeness Proof We managed to proof both safety and completeness for gram-
mars that contain both infix and prefix expressions. In Section 7.3 we mentioned that we
were unable to fully proof completeness for expression grammars that also contain postfix
expressions. This is probably the biggest disappointment of this thesis. In that section we
mention the specific problem with our attempt to prove it. We hope that future work will
include a solution.

MoreCFGSupport The largest set of context-free grammarswe supported in this thesis are
IPP grammars, which contain infix, prefix, and postfix expressions. As future work, it makes
sense to extend this to support more types of CFGs. This means extending the semantics
of associativity and priority to support them, as well as verifying safety and completeness
for the new semantics. In particular, there are some extensions already supported by Souza
Amorim and Visser (2019). We will specifically mention some of these below. For some we
may include an intuition as to how a safety and completeness proof could look like for the
grammars, by proposing an extension to the repair function.

Closed Expressions In this thesis we have not included closed expressions. These are pro-
ductions of the form A.C = o1 A o2, with o1 and o2 being terminals. These expressions are
easy to include because they do not introduce any ambiguity. A simple example of a practi-
cal closed production is the bracket production: Exp = ( Exp ). In fact, bracket expressions in
particular are often used for explicit disambiguation. With explicit disambiguation a user can
use these expressions to explicitly encode some order in a sentence. The sentence 1 + 2 ´ 3
should be read as (1+2)´3 because of left-associativity. However, with a bracket expression
you can choose to write down 1 + (2´ 3), explicitly giving priority to the minus operator.

Although these expressions do not introduce any ambiguity, for a safety and complete-
ness proof we still need to update our repair function from Chapter 4. This can be done by
first repairing each closed node [o1 t o2] in the parse tree, by recursively repairing the inner
tree t. Then you can treat each of these closed nodes as if they were a lexical symbol.

MixfixExpressions Amixfix expression grammarpermits productionswhere you canhave
an arbitrary number of terminals interleaved with the nonterminal A. A mixfix expression
grammar simply covers all expression grammars: Which is a CFG with only a single nonter-
minal A. We exclude the trivial production A.C = A.

Figure 9.1 shows an example of a Mixfix Expression Grammar. In particular, the Cond,
IfElse, Idx, and While production we were not able to express using IPP grammars.
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1 context-free syntax
2     Exp.Lit    = NUM
3     Exp.Var    = ID
4     Exp.Add    = Exp "+" Exp
5     Exp.Minus  = "-" Exp
6     Exp.Incr   = Exp "++"
7     Exp.Cond   = Exp "?" Exp ":" Exp
8     Exp.IfElse = "if" Exp "then" Exp "else" Exp
9     Exp.Idx    = Exp "[" Exp "]"

10     Exp.While  = "while" Exp "do" Exp "end"

Figure 9.1: Example of a Mixfix Expression Grammar

The trick to repairing parse trees containing mixfix expression nodes, is to pretend they
are a mixture of closed expressions, and one of infix, prefix, or postfix. In particular, we
distinguish between infix mixfix, prefix mixfix, postfix mixfix, and closed mixfix. For instance, in
Figure 9.1, the Cond production is an example of infix mixfix. This is because we have two
nonterminals on two far sides of the production and all terminals are on the inside. Similarly,
IfElse is prefix mixfix, Idx is postfix mixfix, and While is closed mixfix.

First take the While production as an example. This may have two nonterminals on the
inside, but has the exact same behavior as an ordinary closed expression. We can repair a
parse tree containing While nodes, by recursively repairing the two inner nodes, then treating
it as if it were a plain terminal (atomic node).

Now take the IfElse production. We can split this production into two parts: The closed
part and the prefix part. The closed part is the beginning "if" Exp "then" Exp "else". When
repairing a parse tree containing an IfElse node, we can first recursively repair the two inner
trees of its closed part. Recall that we can now treat this as if it were an ordinary terminal,
whichwewill call c. This new expression has the form c Exp. By pretending c is just a terminal
symbol, we can treat this entire production as it if were a prefix production, and repair it the
same way we would an ordinary prefix node.

For infix and postfix mixfix productions such as Cond and Idx, we can similarly split them
up into a closed part and infix or postfix part. After repairing the closed part, we can treat
them as if they were infix and postfix productions.

Operator Overlap In our definition for IPP grammarsG = (L,Oin, Opre, Opost), we assumed
that the terminal sets L, Oin, Opre, and Opost have no overlap. Operator overlap can intro-
duce ambiguities that associativity and priority rules cannot solve. Souza Amorim and
Visser (2019) distinguish between two types of ambiguities: Reordering ambiguities and non-
reordering ambiguities.

Reordering ambiguities are the type which we have supported throughout this thesis.
Back in Section 8.1 we explained how yield-equivalent parse trees can be considered reorder-
ings of each other. These parse trees are made up out of the same productions. The ambigu-
ity arises when these productions appear in different positions, but can be solved through
reordering.

Non-reordering ambiguities do not have the property where two ambiguous parse trees
can be reordered into each other. Take the grammar with operator overlap from Figure 9.2.
Suppose we have the expression 1 ´ ´2. This sentence is ambiguous because it has two
corresponding parse trees: [Exp.Sub = 1´ [Exp.Min = ´2]] and [Exp.Sub = [Exp.Dec = 1´]´ 2].
This is a non-reordering ambiguity, because these twoparse trees aremade up out of different
productions, and as such can not be reordered into each other.
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1 context-free syntax
2     Exp.Lit    = NUM
3     Exp.Sub    = Exp "-" Exp
4     Exp.Min    = "-" Exp
5     Exp.Dec    = Exp "-"

Figure 9.2: Example of an Expression Grammar with Operator Overlap

Non-reordering ambiguities will have no effect on the safety of the semantics, but will
influence completeness. Looking at our proof for completeness, this non-reordering ambiguity
will give problems to the property stated in Lemma 4.5. It states that if two parse trees have
equivalent yield yield(t1) = yield(t2), then they repair to the same tree repair(t1) = repair(t2).
This only works if t1 and t2 are reorderings of each other. This is because repair can be seen
as a specific reordering. It does not change the productions the tree is made of.

Souza Amorim and Visser (2019) consider different types of operator overlap, and pro-
pose a classification between harmless and harmful overlap. Harmful overlap, such as the one
in Figure 9.2 should be explicitly forbidden, because they will cause ambiguities. Future
work could include verifying safety and completeness for grammars that allow non-harmful
overlap. But also verify that harmful overlap indeed cause ambiguities.

Remark: In our Coq proof for safety and completeness, we permitted overlap between
prefix and infix operators. This is because it is a non-harmful overlap and therefore did not
stand in the way of proving completeness.

Generalising Completeness Constraints In Chapter 5, we defined some constraints on the
disambiguation rules that ensure safety. We showed that safety holds if and only if the dis-
ambiguation rules are safe. Meaning that if the disambiguation rules are not safe, then we
can also guarantee that the grammar will be unsafe.

The same does not hold for the completeness constraints we have defined in Chapter 6.
Lemma 6.2 does state this, but only under the condition that the disambiguation rules are
also safe. It is desirable to find a set of constraints, such that if these constraints do not hold,
that a grammar is guaranteed to be ambiguous. In other words, we wish to generalize the
completeness constraints.

Proof for General Constraints of IPP Grammars We have not extended Lemmas 5.2 and
6.2, which are about most general safety and completeness constraints, for IPP Grammars.
Although we do conjecture that this holds, this has not been formally proven yet.

Verified Implementation Probably the most far-reaching out of all the future work sugges-
tions in this chapter, a semantics means there could be a potential verified implementation
of that semantics. In Section 8.3 we listed some verified parsers, but none of them support
ambiguous grammars. New research territorywould be creating a new parser generator that
also supports grammars with disambiguation rules. The idea of repairing parse trees could
serve a potential big role in such an implementation.

IDE Support Suppose a language developer is developing their new programming lan-
guage using the Spoofax Language Workbench (Kats and Visser 2010), which is a platform
for developing (domain-specific) programming languages. It includes SDF3 for specifying
the syntax of the language. As of writing this thesis, Spoofax does not warn a user for poten-
tial ambiguities in the SDF3 code. Using the safety and completeness proof from this thesis as
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justification, the platform could give the language developer a warning if their disambigua-
tion rules do not fit the completeness constraints fromChapter 6. Thewarningmessage could
suggest potential disambiguation rules between productions. Wemade some suggestions for
this in Sections 5.1 and 6.1.
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Chapter 10

Conclusion

In this thesis we aimed at solving the problem of safety and completeness for the semantics of
disambiguation rules from Souza Amorim and Visser (2019). That is, give formal and mech-
anized proofs for these two properties. We succeeded in solving this problem for expression
grammars containing infix and prefix expressions (IP grammars). When also adding postfix
expressions (IPP grammars), we alsomanaged a safety proof, but only a partial completeness
proof. The proofs are implemented in the Coq proof assistant 1, which gives an additional
layer of certainty that the proof is correct.

We did this by means of parse tree repairing, which by itself is interesting even without
considering safety and completeness. Parse tree repairing can be considered a new imple-
mentation for disambiguation rules, and as such is open for further research.

For safety of infix expression grammars, wemanaged to find amost general possible con-
straints on the disambiguation rules. It is most general in the sense that we can guarantee a
grammar is not safe if the disambiguation rules do not follow these constraints. Wemanaged
to do the same for completeness, but under the assumption that the disambiguation rules are
also safe. Our safety and completeness restrictions are logically equivalent to the restrictions
imposed by Souza Amorim and Visser (2019), which shows that those restrictions are also
most general for safety and completeness.

Lastly, we made some suggestions for syntax definition formalisms, such as SDF3, to
enforce safe and complete disambiguation rules.

1https://zenodo.org/record/4680987#.YHRVeOgzZjE
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Appendix A

Mathematical Symbols and Notation

This appendix list all the mathematical symbols used throughout this thesis.

G := a context-free grammar (CFG)
a P Σ := terminals

w P Σ˚ := words, sequences of terminal symbols
A P N := nonterminals

X P V = ΣYN := symbols
(A.C = X1...Xn) P P := productions

l P L Ď Σ := lexical symbols
o P O Ď Σ := operator symbols

Numbers, mathematical operators such as + and ´, and the terms NUM and ID are also often
used as an examples for terminals in Σ. The term Exp is often used as a specific example for
a nonterminal in N .

t P TG := parse trees
q P Q Ď TPG := tree patterns / conflict patterns

Symbols inΣ are used to represent leaves of trees. The notation [A.C = t1...tn] represents
a node in a tree, or just [t1...tn] if A.C is clear from the context. A node [t1 o t2] represents an
infix node, [o t] a prefix node, and [t o] a postfix node. An underscore _ represents the empty
tree pattern.

61





Appendix B

Coq Definitions and Theorems

ThisAppendix contains all definitions and theorems (safety and completeness) for IPP gram-
mars. Not included are:

• Definitions and Theorems for Infix Expression grammars and IP grammars. We have
proven these separately, but since IPP grammars covers all of these grammars, showing
those would be unnecessary.

• The proofs, as these would be unreadable without the use of an actual interactive Coq
IDE.

• The definition of the repair function (see Appendix C).

• Each individual (sub) Lemma.

These items can still be found in the full source code.

IPP Grammars
1 Inductive prod OP :=
2 | InfixProd : OP Ñ prod OP
3 | PrefixProd : OP Ñ prod OP
4 | PostfixProd : OP Ñ prod OP.
5

6 Record ippg := mkIppgrammar {
7 LEX : Type;
8 OP : Type;
9 prods: prod OP Ñ Prop

10 }.
11

12 Definition word g := list (LEX g + OP g).

Well-formed Parse Trees
1 Inductive parse_tree (g : ipg) :=
2 | AtomicNode : LEX g Ñ parse_tree g
3 | InfixNode : parse_tree g Ñ OP g Ñ parse_tree g Ñ parse_tree g
4 | PrefixNode : OP g Ñ parse_tree g Ñ parse_tree g
5 | PostfixNode : parse_tree g Ñ OP g Ñ parse_tree g.
6

7 Inductive wf_parse_tree g : parse_tree g Ñ Prop :=
8 | Atomic_wf l :
9 wf_parse_tree g (AtomicNode l)
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10 | Infix_wf t1 o t2 :
11 g.(prods) (InfixProd o) Ñ
12 wf_parse_tree g t1 Ñ
13 wf_parse_tree g t2 Ñ
14 wf_parse_tree g (InfixNode t1 o t2)
15 | Prefix_wf o t :
16 g.(prods) (PrefixProd o) Ñ
17 wf_parse_tree g t Ñ
18 wf_parse_tree g (PrefixNode o t)
19 | Postfix_wf o t :
20 g.(prods) (PostfixProd o) Ñ
21 wf_parse_tree g t Ñ
22 wf_parse_tree g (PostfixNode t o).

Yields

1 Fixpoint yield {g} t : word g :=
2 match t with
3 | AtomicNode l ñ [inl l]
4 | InfixNode t1 o t2 ñ yield t1 ++ inr o :: yield t2
5 | PrefixNode o t ñ inr o :: yield t
6 | PostfixNode t o ñ yield t ++ [inr o]
7 end.

Tree Patterns

1 Inductive tree_pattern g :=
2 | HPatt : tree_pattern g (* Empty Tree Pattern *)
3 | InfixPatt : tree_pattern g Ñ OP g Ñ tree_pattern g Ñ tree_pattern g
4 | PrefixPatt : OP g Ñ tree_pattern g Ñ tree_pattern g
5 | PostfixPatt : tree_pattern g Ñ OP g Ñ tree_pattern g.

Shallow Matching

1 Inductive matches {g} : parse_tree g Ñ tree_pattern g Ñ Prop :=
2 | HMatch t :
3 matches t HPatt
4 | InfixMatch t1 t2 q1 q2 o :
5 matches t1 q1 Ñ
6 matches t2 q2 Ñ
7 matches (InfixNode t1 o t2) (InfixPatt q1 o q2)
8 | PrefixMatch t q o :
9 matches t q Ñ

10 matches (PrefixNode o t) (PrefixPatt o q)
11 | PostfixMatch t q o :
12 matches t q Ñ
13 matches (PostfixNode t o) (PostfixPatt q o).
14

15 Definition matches_set {g} t (Q : tree_pattern g Ñ Prop) : Prop :=
16 exists q, Q q ^ matches t q.

Deep Rightmost Matching

1 Inductive matches_rm {g} : parse_tree g Ñ tree_pattern g Ñ Prop :=
2 | Match_rm t q :
3 matches t q Ñ
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4 matches_rm t q
5 | InfixMatch_rm t1 o t2 q :
6 matches_rm t2 q Ñ
7 matches_rm (InfixNode t1 o t2) q
8 | PrefixMatch_rm o t q :
9 matches_rm t q Ñ

10 matches_rm (PrefixNode o t) q.
11

12 Inductive matches_drm {g} : parse_tree g Ñ tree_pattern g Ñ Prop :=
13 | InfixMatch_drm t1 t2 q1 q2 o :
14 matches_rm t1 q1 Ñ
15 matches_rm t2 q2 Ñ
16 matches_drm (InfixNode t1 o t2) (InfixPatt q1 o q2)
17 | PrefixMatch_drm t q o :
18 matches_rm t q Ñ
19 matches_drm (PrefixNode o t) (PrefixPatt o q)
20 | PostfixMatch_drm t o q :
21 matches_rm t q Ñ
22 matches_drm (PostfixNode t o) (PostfixPatt q o).
23

24 Definition matches_drm_set {g} t (Q : tree_pattern g Ñ Prop) : Prop :=
25 exists q, Q q ^ matches_drm t q.

Deep Leftmost Matching

1 Inductive matches_lm {g} : parse_tree g Ñ tree_pattern g Ñ Prop :=
2 | Match_lm t q :
3 matches t q Ñ
4 matches_lm t q
5 | InfixMatch_lm t1 o t2 q :
6 matches_lm t1 q Ñ
7 matches_lm (InfixNode t1 o t2) q
8 | PostfixMatch_lm o t q :
9 matches_lm t q Ñ

10 matches_lm (PostfixNode t o) q.
11

12 Inductive matches_dlm {g} : parse_tree g Ñ tree_pattern g Ñ Prop :=
13 | InfixMatch_dlm t1 t2 q1 q2 o :
14 matches_lm t1 q1 Ñ
15 matches_lm t2 q2 Ñ
16 matches_dlm (InfixNode t1 o t2) (InfixPatt q1 o q2)
17 | PrefixMatch_dlm t q o :
18 matches_lm t q Ñ
19 matches_dlm (PrefixNode o t) (PrefixPatt o q)
20 | PostfixMatch_dlm t o q :
21 matches_lm t q Ñ
22 matches_dlm (PostfixNode t o) (PostfixPatt q o).
23

24 Definition matches_dlm_set {g} t (Q : tree_pattern g Ñ Prop) : Prop :=
25 exists q, Q q ^ matches_dlm t q.

Subtree Exclusion

1 (* Free from shallow conflicts *)
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2 Inductive i_conflict_free {g} (Q : tree_pattern g Ñ Prop)
3 : parse_tree g Ñ Prop :=
4 | Atomic_cf l :
5 i_conflict_free Q (AtomicNode l)
6 | Infix_cf t1 o t2 :
7 ␣ matches_set (InfixNode t1 o t2) Q Ñ
8 i_conflict_free Q t1 Ñ
9 i_conflict_free Q t2 Ñ

10 i_conflict_free Q (InfixNode t1 o t2)
11 | Prefix_cf t o :
12 ␣ matches_set (PrefixNode o t) Q Ñ
13 i_conflict_free Q t Ñ
14 i_conflict_free Q (PrefixNode o t)
15 | Postfix_cf t o :
16 ␣ matches_set (PostfixNode t o) Q Ñ
17 i_conflict_free Q t Ñ
18 i_conflict_free Q (PostfixNode t o).
19

20 (* Free from deep rightmost conflicts *)
21 Inductive drm_conflict_free {g} (Q : tree_pattern g Ñ Prop)
22 : parse_tree g Ñ Prop :=
23 | Atomic_drmcf l :
24 drm_conflict_free Q (AtomicNode l)
25 | Infix_drmcf t1 o t2 :
26 ␣ matches_drm_set (InfixNode t1 o t2) Q Ñ
27 drm_conflict_free Q t1 Ñ
28 drm_conflict_free Q t2 Ñ
29 drm_conflict_free Q (InfixNode t1 o t2)
30 | Prefix_drmcf t o :
31 ␣ matches_drm_set (PrefixNode o t) Q Ñ
32 drm_conflict_free Q t Ñ
33 drm_conflict_free Q (PrefixNode o t)
34 | Postfix_drmcf t o :
35 ␣ matches_drm_set (PostfixNode t o) Q Ñ
36 drm_conflict_free Q t Ñ
37 drm_conflict_free Q (PostfixNode t o).
38

39 (* Free from deep leftmost conflicts *)
40 Inductive dlm_conflict_free {g} (Q : tree_pattern g Ñ Prop)
41 : parse_tree g Ñ Prop :=
42 | Atomic_dlmcf l :
43 dlm_conflict_free Q (AtomicNode l)
44 | Infix_dlmcf t1 o t2 :
45 ␣ matches_dlm_set (InfixNode t1 o t2) Q Ñ
46 dlm_conflict_free Q t1 Ñ
47 dlm_conflict_free Q t2 Ñ
48 dlm_conflict_free Q (InfixNode t1 o t2)
49 | Prefix_dlmcf t o :
50 ␣ matches_dlm_set (PrefixNode o t) Q Ñ
51 dlm_conflict_free Q t Ñ
52 dlm_conflict_free Q (PrefixNode o t)
53 | Postfix_dlmcf t o :
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54 ␣ matches_dlm_set (PostfixNode t o) Q Ñ
55 dlm_conflict_free Q t Ñ
56 dlm_conflict_free Q (PostfixNode t o).
57

58 (* Free from all conflicts *)
59 Definition conflict_free {g} (Qi Qrm Qlm : tree_pattern g Ñ Prop) t :=
60 i_conflict_free Qi t ^ drm_conflict_free Qrm t ^ dlm_conflict_free Qlm t.

Disambiguation Rules

1 Record drules g := mkDrules {
2 prio : prod g.(OP) Ñ prod g.(OP) Ñ Prop;
3 left_a : prod g.(OP) Ñ prod g.(OP) Ñ Prop;
4 right_a : prod g.(OP) Ñ prod g.(OP) Ñ Prop;
5 }.

Common Conflict Patterns

1 Definition CL_infix_infix {g} o1 o2 : tree_pattern g :=
2 InfixPatt (InfixPatt HPatt o2 HPatt) o1 HPatt.
3 Definition CR_infix_infix {g} o1 o2 : tree_pattern g :=
4 InfixPatt HPatt o1 (InfixPatt HPatt o2 HPatt).
5 Definition CL_infix_prefix {g} o1 o2 : tree_pattern g :=
6 InfixPatt (PrefixPatt o2 HPatt) o1 HPatt.
7 Definition CR_infix_postfix {g} o1 o2 : tree_pattern g :=
8 InfixPatt HPatt o1 (PostfixPatt HPatt o2).
9 Definition CR_prefix_infix {g} o1 o2 : tree_pattern g :=

10 PrefixPatt o1 (InfixPatt HPatt o2 HPatt).
11 Definition CL_postfix_infix {g} o1 o2 : tree_pattern g :=
12 PostfixPatt (InfixPatt HPatt o2 HPatt) o1.
13 Definition CR_prefix_postfix {g} o1 o2 : tree_pattern g :=
14 PrefixPatt o1 (PostfixPatt HPatt o2).
15 Definition CL_postfix_prefix {g} o1 o2 : tree_pattern g :=
16 PostfixPatt (PrefixPatt o2 HPatt) o1.

IPP Conflict Patterns

1 (* shallow conflict patterns (Qi) *)
2 Inductive i_conflict_pattern {g} (pr : drules g) : tree_pattern g Ñ Prop :=
3 | CLeft o1 o2 :
4 pr.(left_a) (InfixProd o1) (InfixProd o2) Ñ
5 i_conflict_pattern pr (CR_infix_infix o1 o2)
6 | CRight o1 o2 :
7 pr.(right_a) (InfixProd o1) (InfixProd o2) Ñ
8 i_conflict_pattern pr (CL_infix_infix o1 o2)
9 | CPrio_infix_infix_1 o1 o2 :

10 pr.(prio) (InfixProd o1) (InfixProd o2) Ñ
11 i_conflict_pattern pr (CL_infix_infix o1 o2)
12 | CPrio_infix_infix_2 o1 o2 :
13 pr.(prio) (InfixProd o1) (InfixProd o2) Ñ
14 i_conflict_pattern pr (CR_infix_infix o1 o2)
15 | CPrio_prefix_infix o1 o2 :
16 pr.(prio) (PrefixProd o1) (InfixProd o2) Ñ
17 i_conflict_pattern pr (CR_prefix_infix o1 o2)
18 | CLeft_prefix_infix o1 o2 :
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19 pr.(left_a) (PrefixProd o1) (InfixProd o2) Ñ
20 i_conflict_pattern pr (CR_prefix_infix o1 o2)
21 | CPrio_postfix_infix o1 o2 :
22 pr.(prio) (PostfixProd o1) (InfixProd o2) Ñ
23 i_conflict_pattern pr (CL_postfix_infix o1 o2)
24 | CRight_postfix_infix o1 o2 :
25 pr.(right_a) (PostfixProd o1) (InfixProd o2) Ñ
26 i_conflict_pattern pr (CL_postfix_infix o1 o2).
27

28 (* deep rightmost conflict patterns (Qrm) *)
29 Inductive rm_conflict_pattern {g} (pr : drules g) : tree_pattern g Ñ Prop :=
30 | CPrio_infix_prefix o1 o2 :
31 pr.(prio) (InfixProd o1) (PrefixProd o2) Ñ
32 rm_conflict_pattern pr (CL_infix_prefix o1 o2)
33 | CRight_infix_prefix o1 o2 :
34 pr.(right_a) (InfixProd o1) (PrefixProd o2) Ñ
35 rm_conflict_pattern pr (CL_infix_prefix o1 o2)
36 | CPrio_postfix_prefix o1 o2 :
37 pr.(prio) (PostfixProd o1) (PrefixProd o2) Ñ
38 rm_conflict_pattern pr (CL_postfix_prefix o1 o2)
39 | CRight_postfix_prefix o1 o2 :
40 pr.(prio) (PostfixProd o1) (PrefixProd o2) Ñ
41 rm_conflict_pattern pr (CL_postfix_prefix o1 o2).
42

43 (* deep leftmost conflict patterns (Qlm) *)
44 Inductive lm_conflict_pattern {g} (pr : drules g) : tree_pattern g Ñ Prop :=
45 | CPrio_infix_postfix o1 o2 :
46 pr.(prio) (InfixProd o1) (PostfixProd o2) Ñ
47 lm_conflict_pattern pr (CR_infix_postfix o1 o2)
48 | CLeft_infix_postfix o1 o2 :
49 pr.(left_a) (InfixProd o1) (PostfixProd o2) Ñ
50 lm_conflict_pattern pr (CR_infix_postfix o1 o2)
51 | CPrio_prefix_postfix o1 o2 :
52 pr.(prio) (PrefixProd o1) (PostfixProd o2) Ñ
53 lm_conflict_pattern pr (CR_prefix_postfix o1 o2)
54 | CLeft_prefix_postfix o1 o2 :
55 pr.(left_a) (PrefixProd o1) (PostfixProd o2) Ñ
56 lm_conflict_pattern pr (CR_prefix_postfix o1 o2).

Conflict-free w.r.t. Disambiguation Rules

1 Definition cfree {g} (pr : drules g) t : Prop :=
2 conflict_free
3 (i_conflict_pattern pr)
4 (rm_conflict_pattern pr)
5 (lm_conflict_pattern pr) t.

Disambiguated Language

1 Definition dlanguage {g} (pr : drules g) w : Prop :=
2 exists t, wf_parse_tree g t ^ yield t = w ^
3 cfree pr t.

Safety
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1 Definition safe {g} (pr : drules g) : Prop :=
2 forall w, language w Ñ dlanguage pr w.

Completeness

1 Definition complete {g} (pr : drules g) : Prop :=
2 forall t1 t2,
3 yield t1 = yield t2 Ñ
4 cfree pr t1 Ñ
5 cfree pr t2 Ñ
6 t1 = t2.

Safe Disambiguation Rules

1 Definition safe_pr {g} (pr : drules g) : Prop :=
2 forall p1 p2,
3 (pr.(prio) p1 p2 _ (pr.(left_a)) p1 p2) Ñ
4 (pr.(prio) p2 p1 _ (pr.(right_a)) p2 p1) Ñ
5 False.

Complete Disambiguation Rules

1 Record complete_pr {g} (pr : drules g) := mkComplete_pr {
2 complete_1 : forall o1 o2,
3 pr.(prio) o1 o2 _ pr.(left_a) o1 o2 _
4 pr.(prio) o2 o1 _ pr.(right_a) o2 o1;
5

6 complete_2 : forall o1 o2 o3,
7 pr.(prio) o1 o2 Ñ pr.(prio) o2 o3 Ñ pr.(prio) o1 o3;
8

9 complete_3 : forall o1 o2 o3,
10 pr.(prio) o1 o2 Ñ pr.(prio) o2 o3 Ñ pr.(prio) o1 o3;
11 complete_4 : forall o1 o2 o3,
12 pr.(prio) o1 o2 Ñ pr.(left_a) o2 o3 Ñ pr.(prio) o1 o3;
13 complete_5 : forall o1 o2 o3,
14 pr.(prio) o1 o2 Ñ pr.(right_a) o2 o3 Ñ pr.(prio) o1 o3;
15 complete_6 : forall o1 o2 o3,
16 pr.(left_a) o1 o2 Ñ pr.(prio) o2 o3 Ñ pr.(prio) o1 o3;
17 complete_7 : forall o1 o2 o3,
18 pr.(right_a) o1 o2 Ñ pr.(prio) o2 o3 Ñ pr.(prio) o1 o3;
19

20 complete_8 : forall o1 o2 o3,
21 pr.(left_a) o1 o2 Ñ pr.(left_a) o2 o3 Ñ pr.(left_a) o1 o3;
22 complete_9 : forall o1 o2 o3,
23 pr.(right_a) o1 o2 Ñ pr.(right_a) o2 o3 Ñ pr.(right_a) o1 o3;
24

25 complete_10 : forall o1 o2 o3,
26 pr.(left_a) o1 o2 Ñ pr.(right_a) o2 o3 Ñ False;
27 complete_11 : forall o1 o2 o3,
28 pr.(right_a) o1 o2 Ñ pr.(left_a) o2 o3 Ñ False;
29 }.

Safety Theorem

1 Theorem safety {g} (pr : drules g) :
2 safe_pr pr Ñ
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3 safe pr.
4 Proof.
5 (* proof is here *)
6 Qed.

Completeness Theorem
1 Theorem completeness {g} (pr : drules g) :
2 complete_pr pr Ñ
3 complete pr.
4 Proof.
5 (* proof is here *)
6 Qed.
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Appendix C

Repair Function in Full

Examining the full repair function from Chapter 7 may be annoying as it is interleaved with
explanations and justifications. This appendix shows it in full for IPP grammars, together
with the corresponding Coq implementation.

C.1 As Mathematical Notation
repair : TG Ñ TG

repair(t) =
$

’

’

’

’

&

’

’

’

’

%

l, if t = l P L

repairin(repair(t1), o, repair(t2)), if t = [t1 o t2], o P Oin

insertpre(o, repair(t1)), if t = [o t1], o P Opre

insertpost(repair(t1), o), if t = [t1 o], o P Opost

repairin : (TG ˆOin ˆ TG)Ñ TG

repairin(t1, o, t2) =
$

’

’

’

’

&

’

’

’

’

%

insertin(l1, o, t2), if t1 = l1 P L

repairin(t11, o1, repairin(t12, o, t2)), if t1 = [t11 o1 t12], o1 P Oin

insertpre(o1, repairin(t11, o, t2)), if t1 = [o1 t11], o1 P Opre

insertin([t11 o1], o, t2), if t1 = [t11 o1], o1 P Opost

insertin : (TG ˆOin ˆ TG)Ñ TG

insertin(t1, o, t2) =
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

[t1 o l2], if t2 = l2 P L

[t1 o [t21 o2 t22]], if t2 = [t21 o2 t22], o2 P Oin, and ␣RQ(o, t2)

[insertin(t1, o, t21) o2 t22], if t2 = [t21 o2 t22], o2 P Oin, and RQ(o, t2)

[t1 o [o2 t21]] if t2 = [o2 t21], o2 P Opre

[t1 o [t21 o2]], if t2 = [t21 o2], o2 P Opost, and ␣RQ(o, t2)

[insertin(t1, o, t21) o2], if t2 = [t21 o2], o2 P Opost, and RQ(o, t2)
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insertpre : (Opre ˆ TG)Ñ TG

insertpre(o, t2) =
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

[o l2], if t2 = l2 P L

[o [t21 o2 t22]], if t2 = [t21 o2 t22], o2 P Oin, and ␣RQ(o, t2)

[insertpre(o, t21) o2 t22], if t2 = [t21 o2 t22], o2 P Oin, and RQ(o, t2)

[o [o2 t21]], if t2 = [o2 t21], o2 P Opre

[o [t21 o2]], if t2 = [t21 o2], o2 P Opost, and ␣RQ(o, t2)

[insertpre(o, t21) o2], if t2 = [t21 o2], o2 P Opost, and RQ(o, t2)

insertpost : (TG ˆOpost)Ñ TG

insertpost(t1, o) =
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

[l1 o], if t1 = l1 P L

[[t11 o1 t12] o], if t1 = [t11 o1 t12], o1 P Oin, and ␣LQ(o, t1)

[t11 o1 insertpost(t12, o)], if t1 = [t11 o1 t12], o1 P Oin, and LQ(o, t1)

[[o1 t12] o], if t1 = [o1 t12], o1 P Opre, and ␣LQ(o, t1)

[o1 insertpost(t12, o)], if t1 = [o1 t12], o1 P Opre, and LQ(o, t1)

[[t11 o1] o], if t1 = [t11 o1], o1 P Opost

o P Oin, o2 P Oin, q = CRin,in(o, o2) P Q
i,M([t21 o2 t22], q)

RQ(o, [t21 o2 t22])

o P Opre, o2 P Oin, q = CRpre,in(o, o2) P Q
i,M([t21 o2 t22], q)

RQ(o, [t21 o2 t22])

o P Oin, o2 P Opost, q = CRin,post(o, o2) P Q
lm, Dlm([t21 o2], q)

RQ(o, [t21 o2])

o P Opre, o2 P Opost, q = CRpre,post(o, o2) P Q
rm, Drm([t21 o2], q)

RQ(o, [t21 o2])

o P Oin, o1 P Oin, q = CLin,in(o, o2) P Qi,M([t11 o1 t12], q)

LQ(o, [t11 o1 t12])

o P Opost, o1 P Oin, q = CLpost,in(o, o1) P Qi,M([t11 o1 t12], q)

LQ(o, [t11 o1 t12])

o P Oin, o1 P Opre, q = CLin,pre(o, o1) P Qrm, Drm([o1 t12], q)

LQ(o, [o1 t12])

o P Opost, o2 P Opre, q = CLpost,pre(o, o1) P Qlm, Dlm([o1 t12], q)

LQ(o, [o1 t12])
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C.2 As Coq Implementation

1 Fixpoint insert_in {g} (pr : drules g) t1 o t2 : parse_tree g :=
2 match t2 with
3 | InfixNode t21 o2 t22 ñ
4 if is_i_conflict_pattern pr (CR_infix_infix o o2)
5 then InfixNode (insert_in pr t1 o t21) o2 t22
6 else if has_infix_lm_conflicts pr o t2
7 then InfixNode (insert_in pr t1 o t21) o2 t22
8 else InfixNode t1 o t2
9 | PostfixNode t21 o2 ñ

10 if has_infix_lm_conflicts pr o t2
11 then PostfixNode (insert_in pr t1 o t21) o2
12 else InfixNode t1 o t2
13 | _ ñ InfixNode t1 o t2
14 end.
15

16 Fixpoint insert_pre {g} (pr : drules g) o t2 : parse_tree g :=
17 match t2 with
18 | InfixNode t21 o2 t22 ñ
19 if is_i_conflict_pattern pr (CR_prefix_infix o o2)
20 then InfixNode (insert_pre pr o t21) o2 t22
21 else if has_prefix_lm_conflicts pr o t2
22 then InfixNode (insert_pre pr o t21) o2 t22
23 else PrefixNode o t2
24 | PostfixNode t21 o2 ñ
25 if has_prefix_lm_conflicts pr o t2
26 then PostfixNode (insert_pre pr o t21) o2
27 else PrefixNode o t2
28 | _ ñ PrefixNode o t2
29 end.
30

31 Fixpoint insert_post {g} (pr : drules g) t1 o : parse_tree g :=
32 match t1 with
33 | InfixNode t11 o1 t12 ñ
34 if is_i_conflict_pattern pr (CL_postfix_infix o o1)
35 then InfixNode t11 o1 (insert_post pr t12 o)
36 else if has_postfix_rm_conflicts pr t1 o
37 then InfixNode t11 o1 (insert_post pr t12 o)
38 else PostfixNode t1 o
39 | PrefixNode o1 t12 ñ
40 if has_postfix_rm_conflicts pr t1 o
41 then PrefixNode o1 (insert_post pr t12 o)
42 else PostfixNode t1 o
43 | _ ñ PostfixNode t1 o
44 end.
45

46 Fixpoint repair_in {g} (pr : drules g) t1 o t2 : parse_tree g :=
47 match t1 with
48 | InfixNode t11 o1 t12 ñ repair_in pr t11 o1 (repair_in pr t12 o t2)
49 | PrefixNode o1 t12 ñ insert_pre pr o1 (repair_in pr t12 o t2)
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50 | _ ñ insert_in pr t1 o t2
51 end.
52

53 Fixpoint repair {g} (pr : drules g) t : parse_tree g :=
54 match t with
55 | AtomicNode l ñ AtomicNode l
56 | InfixNode t1 o t2 ñ repair_in pr (repair pr t1) o (repair pr t2)
57 | PrefixNode o t2 ñ insert_pre pr o (repair pr t2)
58 | PostfixNode t1 o ñ insert_post pr (repair pr t1) o
59 end.
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