
 
 

Delft University of Technology

Quantifying uncertainty about future antimicrobial resistance
Comparing structured expert judgment and statistical forecasting methods
Colson, Abigail R.; Megiddo, Itamar; Alvarez-Uria, Gerardo; Gandra, Sumanth; Bedford, Tim; Morton, Alec;
Cooke, Roger M.; Laxminarayan, Ramanan
DOI
10.1371/journal.pone.0219190
Publication date
2019
Document Version
Final published version
Published in
PLoS ONE

Citation (APA)
Colson, A. R., Megiddo, I., Alvarez-Uria, G., Gandra, S., Bedford, T., Morton, A., Cooke, R. M., &
Laxminarayan, R. (2019). Quantifying uncertainty about future antimicrobial resistance: Comparing
structured expert judgment and statistical forecasting methods. PLoS ONE, 14(7), 1-18. Article e0219190.
https://doi.org/10.1371/journal.pone.0219190
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1371/journal.pone.0219190
https://doi.org/10.1371/journal.pone.0219190


RESEARCH ARTICLE

Quantifying uncertainty about future

antimicrobial resistance: Comparing

structured expert judgment and statistical

forecasting methods

Abigail R. ColsonID
1,2*, Itamar MegiddoID

1,2, Gerardo Alvarez-Uria3, Sumanth Gandra1,2,

Tim Bedford1, Alec Morton1, Roger M. Cooke4,5, Ramanan Laxminarayan1,2,6

1 Department of Management Science, University of Strathclyde, Glasgow, Scotland, United Kingdom,

2 Center for Disease Dynamics, Economics & Policy, Washington, DC, United States of America,

3 Department of Infectious Diseases, Rural Development Trust Hospital, Bathalapalli, Andhra Pradesh, India,

4 Resources for the Future, Washington, DC, United States of America, 5 TU Delft, Delft, The Netherlands,

6 Princeton Environmental Institute, Princeton University, Princeton, New Jersey, United States of America

* abigail.colson@strath.ac.uk

Abstract

The increase of multidrug resistance and resistance to last-line antibiotics is a major global

public health threat. Although surveillance programs provide useful current and historical

information on the scale of the problem, the future emergence and spread of antibiotic resis-

tance is uncertain, and quantifying this uncertainty is crucial for guiding decisions about

investment in antibiotics and resistance control strategies. Mathematical and statistical mod-

els capable of projecting future rates are challenged by the paucity of data and the complex-

ity of the emergence and spread of resistance, but experts have relevant knowledge. We

use the Classical Model of structured expert judgment to elicit projections with uncertainty

bounds of resistance rates through 2026 for nine pathogen-antibiotic pairs in four European

countries and empirically validate the assessments against data on a set of calibration ques-

tions. The performance-weighted combination of experts in France, Spain, and the United

Kingdom projected that resistance for five pairs on the World Health Organization’s priority

pathogens list (E. coli and K. pneumoniae resistant to third-generation cephalosporins and

carbapenems and MRSA) would remain below 50% in 2026. In Italy, although upper bounds

of 90% credible ranges exceed 50% resistance for some pairs, the medians suggest Italy

will sustain or improve its current rates. We compare these expert projections to statistical

forecasts based on historical data from the European Antimicrobial Resistance Surveillance

Network (EARS-Net). Results from the statistical models differ from each other and from the

judgmental forecasts in many cases. The judgmental forecasts include information from the

experts about the impact of current and future shifts in infection control, antibiotic usage,

and other factors that cannot be easily captured in statistical forecasts, demonstrating the

potential of structured expert judgment as a tool for better understanding the uncertainty

about future antibiotic resistance.
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Introduction

The U.S. Centers for Disease Control and Prevention (CDC) estimates that antibiotic-resistant

pathogens cause more than 2 million infections and 23,000 deaths in the United States annu-

ally [1], and its European counterpart estimates that 25,000 deaths in Europe every year are

due to antibiotic resistance [2]. Antibiotic resistance is increasing around the world, in both

high- and low-income countries, and to first-line and last-resort antibiotics [3]. In response to

growing antibiotic resistance, world leaders have discussed the issue at meetings of the G7,

G20, and United Nations General Assembly [4–7], and public investment in research targeting

the problem exceeds $1 billion annually [8,9]. Understanding the future risk of antibiotic resis-

tance is important to guide high-level policy and investments addressing the problem.

Antibiotic resistance surveillance programs provide crucial information on the current

state of the problem, underscore the need for action, and identify current priority targets

[10,11], but surveillance programs can only describe the past and current situation. Due to the

long timeframe required to identify, develop, and bring new antibiotics to market, decisions

about prioritizing and investing in antibiotic development must consider the future trajectory

of resistance in addition to the current situation. However, the future emergence and spread of

antibiotic resistance is uncertain, so quantifying this uncertainty is crucial for guiding deci-

sions about investment in new antibiotics and resistance control strategies. Unfortunately,

research on projected resistance rates is sparse. Researchers from different fields have used a

variety of methodologies to investigate related questions, such as ecology and evolutionary

biology models that predict and explain the emergence and spread of new resistance genes

[12–16]; historical time series or before-and-after studies that look at past trends, correlations,

or the impact of a specific policy or intervention [17–21]; and compartmental or simulation

models that try to understand specific dynamics related to the spread of resistance or consider

hypothetical scenarios [22–25]. Although essential for better understanding antibiotic resis-

tance, none of that work aims to project or quantify uncertainty about future rates resistance.

Some studies use time series methods to make short-term projections (e.g., six months) of

resistance at a single healthcare facility or unit based on its history of antibiotic resistance and

consumption (e.g. [26–31]). While useful for decision-making at a single facility, the results

are not informative for policy at the national or global level.

One study used resistance and consumption data from 2001 to 2007 to project country-

level annual rates of Escherichia coli resistance to fluoroquinolones through 2013 in 18 Euro-

pean countries and the United States [32], but the study assumed antibiotic consumption in

each country was fixed, and there has been no follow-up on other pathogen-antibiotic combi-

nations or updating the results for future years. The projections were based on data from the

European Antimicrobial Resistance Surveillance System (EARSS), the predecessor to the cur-

rent European Antimicrobial Surveillance Network (EARS-Net). The study’s projections typi-

cally overestimated resistance rates compared to what EARS-Net reported in 2013 [33]. The

observed resistance rate in 2013 was below the projected rate in 17 of the 18 European coun-

tries studied and below the lower bound of the 95% confidence interval in 11 countries.

Mathematical models capable of projecting country-level resistance rates are challenged by

the large number of interacting determinants of the emergence and spread of antibiotic resis-

tance [34,35]. For example, an observed rise in resistance rates for a particular antibiotic may

be followed by physicians prescribing it less, which influences the future resistance rate, imply-

ing resistance does not grow at a steady rate. Statistical forecasting methods struggle to process

and cannot anticipate fundamental changes to the environment [36], so they may be problem-

atic for projecting antibiotic resistance, given the shifting policy landscape around antibiotic

use and infection control and the possibility of new drugs coming on the market or new
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resistance mechanisms emerging. Experts, however, have extensive domain knowledge about

these issues that is relevant for thinking about the future trajectory of resistance and its

uncertainty.

While all forecasting involves some expert judgment, for example, in the choice of data or

model structure [37,38]. Experts can also directly supply forecasted values, a technique that is

especially useful when historical data are not available or have limited predictive value [39].

Expert judgment can be subject to a range of biases [40], but a set of techniques called “expert

elicitation” enable experts to provide estimates and quantify their uncertainty about parame-

ters of interest—including projecting future events and values—in a way that minimizes

opportunities for bias [38,41,42]. One such method, the Classical Model of structured expert

judgment, has been used in over 80 applications, including estimating the burden of foodborne

disease [43–45] and forecasting volcanic activity on the island of Montserrat [46–48], the

introduction of invasive species in the Great Lakes [49], and future sea level rise caused by ice

sheet melt [50]. Common across these application areas is the need to make evidence-based

decisions but a lack of adequate data and/or models upon which to rely. The Classical Model is

unique among expert elicitation techniques in that the performance of experts and their com-

binations is validated against empirical data [51], and the method itself has been extensively

evaluated based on its performance predicting both in- and out-of-sample data [52–54]. This

element of validation makes the method well-suited for expert judgment applications involv-

ing public policy.

In this study, we use the Classical Model to quantify uncertainty about the future rate of

resistance for nine pathogen-antibiotic combinations (Escherichia coli and fluoroquinolones,

E. coli and third-generation cephalosporins, E. coli and carbapenems, Klebsiella pneumoniae
and third-generation cephalosporins, K. pneumoniae and carbapenems, Staphylococcus aureus
and methicillin (MRSA), Streptococcus pneumoniae and penicillins, Neisseria gonorrhoeae and

third-generation cephalosporins, and Pseudomonas aeruginosa and any available treatment) in

four European countries (France, Italy, Spain, and the United Kingdom). We compare the

results from the Classical Model to standard statistical forecasting approaches and discuss the

strengths and weaknesses of both in the context of understanding the trajectory of and uncer-

tainty about future rates of antibiotic resistance.

Methods

Expert elicitation and combination with the Classical Model

This study does not involve human participants. We conducted interviews with experts about

their field of expertise. We did not use human subjects. Thus, ethics committee approval was

not required for the study.

In the Classical Model, experts express their uncertainty about unknown quantities by pro-

viding specified quantiles from their subjective probability distributions [51]. Experts provide

these assessments for two types of questions: variables of interest and calibration questions

(also called “seed questions”). The variables of interest are the focus of the elicitation; they are

questions that cannot be adequately addressed with existing data or models, so expert judg-

ment is needed. Calibration questions are items which are closely related to the variables of

interest, but the true values for these questions are known to the study team, either at the time

of the expert interview or later during the study period. The calibration questions enable

empirical validation of the experts’ hypotheses. Experts are scored based on their assessments

on the calibration questions, and their assessments on the variables of interest are weighted

according to the scores and combined.

Uncertainty about future antimicrobial resistance
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Experts’ assessments on the calibration questions are scored in two ways. First, the statisti-
cal accuracy (also called “calibration”) score reflects how the well an expert’s assessments and

the realization data agree. It is based on the Kullback-Leibler divergence measure I(s,p):

I s; pð Þ ¼
X6

i¼1

siln
si
pi
;

where 6 is the number of intervals created by dividing the range of outcomes based on the pro-

vided five quantiles, si is the observed proportion of the realizations that fall within interval i,
and pi = (0.05,0.20,0.25,0.25,0.20,0.05) is the expected proportion of realizations to fall within

interval i. The statistical accuracy of each expert e is then defined as:

statistical accuracy ðeÞ ¼ 1 � w2

5
ð2N � Iðs; pÞÞ;

where N is the number of calibration questions and w2
5

is the cumulative distribution function

of a Chi-squared distribution with 5 degrees of freedom. Thus, the statistical accuracy score is

the p-value at which the hypothesis that the expert is statistically accurate would be falsely

rejected; the scores range from 0 to 1, and higher scores are better.

Second, the information score reflects how concentrated or spread out an expert’s distribu-

tions are. An expert that provides narrow ranges receives a higher information score than an

expert with wide ranges. It is measured as the Shannon relative information with respect to a

background measure. As is standard in applications of the Classical Model, we chose a uniform

background measure with a 10 percent overshoot, meaning that for each question the mini-

mum and maximum value of the background distribution was determined by taking the small-

est interval containing all the expert assessments and the realization (for calibration questions)

and extending the interval by plus and minus 10 percent.

The product of statistical accuracy and information is the combined score. Performance-

weighted combinations are a weighted average of the experts’ assessments, with each expert’s

relative weight wi defined as:

wi ¼ statistical accuracy ðeiÞ � information ðeiÞ � cutoff indicatorðeiÞ;

where the cutoff indicator equals 1 if the expert’s statistical accuracy score exceeds the cutoff

threshold α and equals 0 otherwise. The weights are then normalized to sum to one. The

proper scoring rule constraint imposes the use of a cutoff on statistical accuracy, beneath

which an expert is unweighted, but does not determine the value of the cutoff. This value is

therefore chosen to maximize the combined score of the resulting combination of experts. The

resulting weights are asymptotically strictly proper scoring rules, meaning that an expert maxi-

mizes her long run expected weight by stating her true beliefs.

More information on the Classical Model’s scoring and weighting mechanisms can be

found elsewhere [49,51–53,55,56]. The Classical Model is implemented in the Excalibur soft-

ware [57].

We identified relevant areas of expertise, including microbiology, epidemiology, public

health, and clinical infectious diseases. As we were interested in understanding nationwide

trends in resistance rates, an ideal expert would have experience working on antimicrobial

resistance at a macro level, rather than only have advanced clinical or laboratory skills.

Although antimicrobial resistance has important environmental and veterinary components,

we did not recruit experts from these fields as our questions focused solely on human health.

We identified experts through our knowledge of relevant clinical and microbiology researchers

active in the four countries of interest: France, Italy, Spain, and the United Kingdom. We

asked experts to nominate other suitable experts from these countries, who we also contacted
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and asked to identify additional experts. We repeated this process until no additional new

names were provided. We recruited experts from government, health systems, and academia.

Although experts from industry would also have knowledge relevant for these questions, they

were not included to avoid conflicts of interest.

We conducted remote one-on-one interviews with the experts by web-conference in Sep-

tember–November 2016. Some interviews were two-on-one, with two elicitors and one expert.

The elicitor explained the motivation for the study and the use of expert judgment, the use of

quantiles to quantify uncertainty, and the scoring mechanisms of the Classical Model. The

interview also included three training questions to ensure experts understood how to provide

their uncertainty assessments. During the interviews, the elicitor(s) prompted the experts to

state the rationale for their assessments, including any data, models, assumptions, and other

factors they considered when making judgments, and took notes on their responses. Collecting

expert rationales enables the elicitor to check if the quantitative assessments match the qualita-

tive story provided by an expert and can bring to light any differences between how the experts

interpret questions so that issues can be clarified. The rationales also help with interpreting

and understanding the elicitation results, particularly if there are differences of opinion. The

experts were not provided any background information beyond what was contained in the

elicitation protocol, and none of the experts reported consulting with data or other sources

when explaining how they made their judgements.

The elicitation protocol included 10 calibration questions which drew on data released by

the EARS-Net [33,58] and the European Gonococcal Antimicrobial Surveillance Programme

(Euro-GASP) [59]. Prior to assessing calibration questions, the protocol introduced potential

sources of noise in the calibration data (e.g., the laboratories reporting to EARS-Net may not

be consistent from year to year), and experts were instructed to incorporate this uncertainty in

their distributions. The protocol had 30 total variables of interest, which concerned future

rates of resistance in different pathogen-antibiotic pairs in each of the four countries (France,

Italy, Spain, and the United Kingdom). We asked about resistance rates in 2018, 2021, and

2026 for following pathogen-antibiotic pairs, focusing on resistance in invasive isolates:

1. E. coli and fluoroquinolones

2. E. coli and third-generation cephalosporins

3. E. coli and carbapenems

4. K. pneumoniae and third-generation cephalosporins

5. K. pneumoniae and carbapenems

6. S. aureus and methicillin (MRSA)

7. Streptococcus pneumoniae and penicillins

8. Neisseria gonorrhoeae and third-generation cephalosporins

9. Pseudomonas aeruginosa and any available treatment

We also asked experts about resistance rates in 2021 for select non-invasive isolates.

The protocols reported and elicited country-specific resistance rates but were otherwise

identical across countries. For each item, we asked experts to provide five values: the 5th, 25th,

50th, 75th, and 95th percentiles from their uncertainty distributions. The 50th percentile was

the expert’s median assessment for the item; the expert believed it was equally likely that the

true value for the question falls above or below that value. The values for an expert’s 5th and

95th percentiles form a 90% credible range; the expert believed there was a 90% chance the
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true answer fell between those two values. Similarly, the 25th and 50th percentiles form a 50%

credible range. In this way, an expert’s assessments create a statistical hypothesis that can be

evaluated against realized data.

The full elicitation protocols and elicited data, including anonymized individual expert

responses, are available in in a university-maintained, accessible data repository [60].

Statistical forecasting

We tested several exponential smoothing and autoregressive integrated moving average

(ARIMA) models on the EARS-Net data. Our objective was to compare their outcomes with

the expert elicitation outcomes, and not necessarily to find the best fit model. The EARS-Net

time-series data includes the percent of tested pathogen-antibiotic pairs that were resistant for

each of the countries from 2000 to 2015; the first year of testing varies by country and patho-

gen-antibiotic pair from 2000 to 2007. Since the data is in the format of a ratio (the number of

isolates resistant / the number of isolates tested) with zero values we applied an adjusted logit

transformation using the car package in R [61], mapping values to the interval (0+�,1−�). We

then fit models to the time-series and forecast the future rates and 50% and 90% prediction

intervals for each pathogen-antibiotic-country triplet described previously. We did the analysis

using the R forecast and forecastHybrid packages [62–64].

For comparability with expert uncertainty intervals, we applied exponential smoothing

models using the “ets” function from the forecast package, which adds an underlying stochastic

state space model. The prediction intervals are the percentiles of simulated sample paths. We

explore a number of different exponential smoothing methods: simple exponential smoothing

with additive errors, which is suitable if the historical data shows no underlying trend or sea-

sonal patterns; Holt’s linear trend with additive errors, which is more suitable for forecasting

when we observe a trend in historical data; and lastly Holt’s linear method with a dampened

trend, which has been shown to successfully adjust for over-forecasting by Holt’s linear

method when the time-horizon is significant [39]. As our data is annual and we do not observe

seasonality, we do not consider models with seasonality. For each model, we also computed

the corrected Akaike information criterion (AICc) (as described in [39]). S1 Appendix pro-

vides further detail on the exponential smoothing models.

Next, we fit the data to an ARIMA(p,d,q) model:

ydt ¼ cþ
Xp

i

�iy
d
t� i þ

Xq

i

yiet� i þ et;

where ydt is the transformed time series differenced d times, c is a constant term, ϕi is the ith

autoregressive parameter, θi is the ith moving average parameter, and et is white noise. We fit the

ARIMA parameters using the “auto.arima” function in the forecast package, which determines

the number of differences, d, based on Kwiatkowski–Phillips–Schmidt–Shin (KPSS) unit root,

and minimizes the AICc to determine values for p and q (as described in [39]). The maximum

values for p, d, and q were set to 2. The point predictions of an ARIMA model with p, d, q of

(0,1,1) without a constant are equivalent to the point predictions from simple exponential

smoothing, an ARIMA(0,2,2) without a constant model’s point predictions are equivalent to

those from the Holt’s linear trend, and an ARIMA(1,1,2) model’s point predictions are equiva-

lent to those from exponential smoothing with a damped linear trend. After evaluating the

results from the automatic procedure and determining if errors deviated from white noise, we

adjusted models as necessary for three of the pathogen-antibiotic-country triplets (K. pneumo-
niae and carbapenems in France, Italy, and Spain). We conducted additional unit root tests (aug-

mented Dickey Fuller [ADF]), evaluated the autocorrelation (ACF) and partial autocorrelation
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(PACF) functions, plotted the ACF of the residuals, and conducted Ljung Box tests. We used the

identified models to project point estimates and prediction intervals. Lastly, since combining

forecasts using different methods often leads to better accuracy [65], we also combined results

from the “auto.arima” and “ets” functions using equal weighting [64]. The Supplementary Infor-

mation provides the mean absolute scaled error (MASE) for each forecasting model considered

(Table A in S1 Appendix), which is based on in-sample predictions.

Results

Expert scores

Table B in S1 Appendix shows the statistical accuracy and information scores for the experts

and two combinations of the experts, called “decision makers.” Two weighting schemes are

presented: the equal-weight decision maker (EW) assigns all experts the same weight, and the

performance-weight decision maker (PW) assigns experts a constant weight for all questions

based on their performance on the calibration questions. We also considered item-specific per-

formance weights, but they are not presented as the results in each country were identical or

only nominally different from the PW shown. Expert and decision maker scores are based on

the calibration questions; assessments for these items are presented in Figs A-D in S1

Appendix.

The France and Italy panels both had one expert who could be deemed “statistically accu-

rate,” meaning their statistical accuracy scores exceeded 0.05, the traditional p-value cut-off

used in hypothesis testing. In France, the expert with the highest statistical accuracy score was

also the most informative. None of the Spanish experts were statistically accurate, and the

United Kingdom panel had two statistically accurate experts. The PW was both more statisti-

cally accurate and more informative than the EW in all four countries, and both PW and EW

had acceptable statistical accuracy in France, Italy, and the United Kingdom. In Spain, how-

ever, both equally-weighting each the experts and weighting the experts according to perfor-

mance produced a combination of assessments that did not perform well, as seen by the low

statistical accuracy score. In Italy and France only one expert received weight in the PW,

which happens in about one-third of Classical Model applications [53,66].

Variables of interest

Fig 1 shows the PW assessment for the variables of interest associated with E. coli resistance to

fluoroquinolones, third-generation cephalosporins, and carbapenems; K. pneumoniae resis-

tance to cephalosporins and carbapenems; and MRSA. Both the experts and historical data,

from the European Antimicrobial Resistance Surveillance Network (EARS-Net) only consider

invasive isolates [33,58]. Figs E-H in S1 Appendix provide the individual expert assessments

for these items, and Figs I-K in S1 Appendix give both the individual expert and decision

maker assessments for the additional combinations not discussed here.

The PW’s 90% credible ranges indicate resistance rates for all pathogen-antibiotic pairs in

each country could decrease, except when resistance is near zero (e.g., E. coli and carbapenems

in all countries). The PW’s median trajectories show a steady increase in resistance (e.g. K.

pneumoniae and third-generation cephalosporins everywhere but Italy), a steady decline in

resistance (e.g., MRSA everywhere except the UK), or a plateau around the current resistance

rate, sometimes with a slight near-term increase before coming down (e.g., E. coli and third-

generation cephalosporins everywhere but the UK). The EW’s median estimates are typically

similar to the PW’s; the two decision makers’ medians differ by less than five percentage points

in 75% of cases. MRSA in France is the only combination with the upper bound of the PW’s

90% credible range falling below the current value. Most of the PW distributions are right-
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Fig 1. Performance-weight decision maker assessments. Solid lines depict EARS-Net data. Dots indicate the median assessment, dark grey is the 50% credible range, and

light grey is the 90% credible range. Experts assessed rates for 2018, 2021, and 2026. Plots linearly extrapolate other future years.

https://doi.org/10.1371/journal.pone.0219190.g001
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skewed, indicating the possibility of large increases in resistance rates. The PW’s 90% credible

ranges are narrower than the EW’s, which tend to be even more right-skewed (Figs A-D in S1

Appendix).

In addition to providing quantitative assessments, experts also gave qualitative information

on their rationale behind their judgments. Experts in all countries thought antibiotic steward-

ship and hospital infection control initiatives would continue and would have an impact on

resistance rates for all of the antibiotics discussed. As the use of carbapenems increases,

though, experts said E. coli and K. pneumoniae resistance to carbapenems would also increase,

and many experts talked specifically about the threat of carbapenemases. In Italy, where K.

pneumoniae resistance to carbapenems already exceeds 30% [33], experts thought the attention

given to infection control in reaction to the large spike in resistance could make the rate stabi-

lize or decline in the future, but further increases are also possible. All four countries agreed

that MRSA control would continue to be effective, so rates would likely decline or improve-

ments in MRSA rates would be sustained in the future. In the United Kingdom, where MRSA

rates were near 50% in the early 2000s [33], some experts thought there was a chance rates

could rise near that level again if control efforts became lax or a new resistant clonal group

emerged.

Comparison to statistical forecasts

We created a series of exponential smoothing and autoregressive integrated moving average

(ARIMA) forecasting models (Figs M-S in S1 Appendix). Here, we present some comparisons

illustrating the differences that exist between the various methods.

E. coli resistance to carbapenems has not yet exceeded 1% in any of the countries [58]. The

statistical forecasts in the UK all produce narrow 90% prediction intervals with the upper

bound less than 1% (Fig 2). This pattern also holds in France and Spain (Figs M-S in S1

Appendix). Experts, however, thought resistance would slowly increase, and the PW assess-

ments reflect at least a 50% chance of E. coli resistance to carbapenems exceeding 1% in 2026

(Fig 1). While the statistical models only take into account the low historical rates of resistance,

experts considered the increased consumption of carbapenems. However, most experts also

thought resistance would not exceed 10% (i.e., the upper bounds of their 90% credible ranges

do not exceed 10%), as carbapenems are not used in the community and hospital infection

control should contain its spread.

Experts in Italy described a similar story, and observed rates of E. coli resistance to carbape-

nems in Italy have also remained below 1%. However, the pattern and variance of the EAR-

S-Net observations is different, Italy observed two years with a resistance rate of 0%, and the

statistical forecasts vary (Fig 2). The upper bounds of the exponential smoothing model with

no additive trend and the ARIMA model (Fig 2, Panels C and F) are much higher than that of

the PW combination, the other statistical forecasts, or any of the individual experts (Fig F in S1

Appendix). The additive trend model is the only forecast with a median projection in 2026

greater than 1% (Fig 2, Panel D). The upper bound of the damped trend model is 1.9% (Fig 2,

Panel E), much lower than the upper bound from any of the other forecasts.

The proportion of K. pneumoniae isolates resistant to carbapenems in Italy rose from 1.3%

in 2009 to 26.7% in 2011 [33]. Experts thought the attention given to infection control in reac-

tion to the large spike in resistance could make the rate stabilize, but further increases are pos-

sible and regional variation within the country increased uncertainty around the median (Fig

3). The exponential smoothing model with no trend and the ARIMA model both produce

median estimates similar to the experts, but with much more uncertainty. The exponential

smoothing model’s 90% prediction interval ranges from 1% to 99% (Fig 3, Panel C), and the
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Fig 2. PW and forecasting results for E. coli resistance to carbapenems in Italy and the United Kingdom. All forecasts begin with 2018, 3 years after the most recent

historical data. Black lines indicate the median, dark grey indicates the 50% prediction interval, and light grey indicates the 90% predication interval. The experts only

assessed 2018, 2021, and 2026. The ETS models use exponential smoothing with additive error, no seasonality, and either no trend (Panel C), an additive trend (Panel D),

or a damped trend (Panel E). ARIMA models (Panel F) are labelled with the ARIMA(p,d,q), values selected for that country-pathogen-antibiotic model, where p = the

order of the autoregressive model, d = the degree of differencing, and q = the order of the moving average model.

https://doi.org/10.1371/journal.pone.0219190.g002

Fig 3. PW and forecasting results for K. pneumoniae resistance to carbapenems in Italy and Spain. All forecasts begin with 2018, 3 years after the most recent historical

data. Black lines indicate the median, dark grey indicates the 50% prediction interval, and light grey indicates the 90% predication interval. The experts only assessed 2018,

2021, and 2026.

https://doi.org/10.1371/journal.pone.0219190.g003
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ARIMA model’s 50% prediction interval ranges from 0% to 100% (Fig 3, Panel F). Both models

give a high likelihood of extreme scenarios. The additive trend model (Fig 3, Panel D), how-

ever, projects that near-complete K. pneumoniae resistance to carbapenems in Italy is almost

certain, with the 90% prediction interval in 2026 ranging from 98.7% to 99.9%. Damping the

trend (Fig 3, Panel E) decreases the median and widens the prediction interval relative to the

non-damped additive trend, but the median projection in 2026 is still higher than the experts

or the other two statistical forecasts.

Experts in the other three countries thought K. pneumoniae resistance to carbapenems

would follow a similar pattern as E. coli resistance, but with a higher ceiling, reflecting that K.

pneumoniae is harder to remove from the environment, resistance genes spread more quickly

among K. pneumoniae, and Italy experienced a sharp increase in resistance for this pathogen-

antibiotic pair, demonstrating a rapid change is possible. The statistical forecast models in

Spain, however, all overestimate the future resistance and/or the uncertainty about future

resistance relative to the experts (Fig 3). As the additive trend model (Fig 3, Panel D) identifies

a linear trend in the data and cannot increase above 100%, the model indicates increasing cer-

tainty into the future. The ARIMA model has extremely wide prediction intervals, reflecting

high variability in errors that, due to the second-order differencing, are based on only a few

observations.

Experts everywhere thought MRSA control would continue to be effective, but in some

countries experts also said that MRSA rates could hit a floor and not fall further. This logic and

the corresponding PW estimates align with some of the statistical forecasts. The median of the

PW in France, for example, is similar to the median projections of three of the four statistical

forecast models (Fig 4), though the models’ 90% prediction intervals are narrower than the

PW’s 90% credible range. In the UK, the PW estimates and credible ranges are similar to the

exponential smoothing model with a damped trend (Fig 4, Panel E). In this case, the intuition

Fig 4. PW and forecasting results for MRSA in France and United Kingdom. All forecasts begin with 2018, 3 years after the most recent historical data. Black lines

indicate the median, dark grey indicates the 50% prediction interval, and light grey indicates the 90% predication interval. The experts only assessed 2018, 2021, and 2026.

https://doi.org/10.1371/journal.pone.0219190.g004
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of the model matches the logic of the experts, who thought resistance would decline at a

decreasing rate as it approaches a floor (i.e., a damped trend). The upper bound of the UK

PW’s credible range reflects that some experts thought the MRSA rate could approach 50%, as

it did in the early 2000s 30, if control weakened or a new clonal group emerged. This is coinci-

dentally similar to the upper bound of the damped trend model’s prediction interval. However,

the exponential smoothing model with no trend has a better fit to the historical data, as deter-

mined by minimizing the corrected Akaike’s Information Criterion (AICc), a standard

approach for choosing among exponential smoothing or ARIMA models.

Discussion

In this paper, we present estimates and uncertainty ranges—from judgmental forecasts and

statistical forecasts—for the future trajectory of resistance for six pathogen-antibiotic pairs.

Four of these pairs—E. coli and K. pneumoniae resistance to third-generation cephalosporins

and carbapenems—are critical public health priorities according to the World Health Organi-

zation’s (WHO) 2017 priority pathogens list [67], and MRSA is a high priority. Experts in

France, Spain, and the United Kingdom thought resistance for all of these priority pathogens

would remain below 50% in 2026, according to the PW’s 90% credible ranges. The EW’s 90%

credible ranges are wider, but its 50% credible ranges also stay below 50% resistance for all of

these combinations except fluoroquinolone-resistant E. coli in Spain in 2026, when the upper

bound of the 50% credible range is 52.5% resistance. In Italy, the PW’s 95th percentile estimates

reach or exceed 50% resistance for E. coli and third-generation cephalosporins, K. pneumoniae
and third-generation cephalosporins, and K. pneumoniae and carbapenems, but the medians

suggest Italy will sustain or improve its current rates for these pairs.

The experts’ judgments were based on their belief that the increasing local, national, and

global focus on antibiotic stewardship in hospitals and the community and hospital infection

control will continue and will positively impact resistance rates. These results do not mean

antibiotic resistance control efforts can be relaxed, but that experts believe they have had and

will continue to have a positive impact on resistance rates. The distributions from the experts

are conditional on their expectations that these programs will continue or expand and do not

represent what would happen if the programs ended, although some experts discussed this

possibility when determining the upper bound of their 90% credible interval. Although we did

not ask about future resistance in a specific scenario with decreasing or no antibiotic steward-

ship and infection control, many of the experts mentioned these programs were a key factor in

their estimates, underscoring their importance for preserving antibiotic effectiveness. Future

work could ask experts about the trajectory of resistance under different policy or intervention

scenarios, to get more information on the impact of specific policies.

The experts’ assessments also indicate the role antibiotic resistance surveillance programs

play in preserving antibiotic effectiveness. Experts who discussed a possible future increase in

MRSA mentioned a scenario in which a new clonal resistant strain emerges and establishes

quickly, undoing previous improvements in the rate of MRSA. Effective surveillance systems

with timely information sharing are needed to identify and contain new resistant strains

quickly after they emerge to prevent this.

Our study includes three of the six pathogens included in the AMR Review report on the

burden of antimicrobial resistance (the AMR Review also included HIV, tuberculosis, and

malaria) [68]. The AMR Review estimates burden building on two commissioned reports that

make assumptions about future rates of resistance through 2050. The RAND Europe report

includes resistance changing to 5%, 40%, and 100% across all countries and pathogens [69],

and the KPMG report considers increasing resistance to 40% higher than reported 2011 rates
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or to 100% [70]. Although our projections only go through 2026–10 years from the time of the

interviews—the AMR Review scenarios are not consistent with the findings presented here.

We show two approaches to forecasting, a purely judgment-based method and a suite of

statistical approaches. The statistical methods make most explicit use of the historical data,

interpreted through specific underlying mathematical modelling, but are not able to anticipate

changes in antibiotic use and infection control, the emergence of new resistant strains, or the

introduction of new antibiotics. Experts have relevant knowledge about these issues and their

impact on future resistance rates, which should be included in forecasts. Expert forecasts can

be limited by heuristics and biases, but structured elicitation approaches, such as the Classical

Model, are a way to minimize their impact on results [41].

We present these as separate methods, but judgmental and statistical forecasts can also be

combined in different ways [37,71]. Results from the two approaches can be averaged, for

example either with equal weight given to the experts and statistical forecast or using the Clas-

sical Model’s performance weights and producing distributions for the calibration questions

from the statistical forecasts. This does not resolve the choice of which statistical forecast to

use, however, as different model structures can produce different results, as seen here.

An expert, rather than AICc or another measure of model fit, can choose the modelling

approach and structure (e.g., selecting an exponential smoothing model with a damped trend

for some pathogen-antibiotic pairs and a model with no trend for others). Experts can also

introduce additional model parameters to make statistical forecasts better reflect what they

anticipate will happen (e.g., the idea that in practice resistance wouldn’t rise above some

threshold, see Fig R in S1 Appendix). Making these judgments requires experts who have both

subject-matter expertise relevant for understanding future resistance rates and technical exper-

tise enabling informed choice on model structure and parameters. This introduces additional

cognitive burden on the experts and may be a less natural way for them to think about future

resistance rates.

Another method to combine approaches is to use the statistical forecasts as an “input” in

judgmental forecasts, as background material given to the experts. If this is done, however,

care must be given in the elicitation to discourage experts from anchoring on the historical

trend and inadequately adjusting their assessments (anchoring and adjustment are discussed

in [40]). The problem could possibly be minimized by sharing a range of forecasts and discuss-

ing the likelihood of the various results and the factors contributing to different scenarios. Ask-

ing the experts for the rationale for their judgments and challenging any assumptions they

make, best practice in any elicitation, could also help reduce bias if statistical forecasts were

used in this way.

If experts anticipate recent and future events are more important than characterizing past

trends for forecasting the future, statistical forecasting might not improve judgmental fore-

casts. Conversely, for outcomes for which the past is a good predictor of the future, expert

judgment would not have additional value relative to statistical forecasting. In this study,

experts demonstrated relevant knowledge about future rates of resistance that was not cap-

tured in the statistical forecasts, indicating the potential of expert judgment in this application.

Our study has several important limitations. The resistance rate forecasts presented only

apply to invasive isolates; neither the experts nor the statistical forecasts consider resistance

rates in hospital- or community-acquired urinary tract infections, skin and soft tissue infec-

tions, or other non-invasive infections. Resistance rates in non-invasive isolates may differ

from rates in invasive isolates, limiting the interpretation of our results. We did ask the experts

three questions about resistance rates for certain non-invasive isolates at one point of time

(2021), and these results are in the Supplemental Information (Fig L in S1 Appendix), but elic-

iting comparisons of invasive versus non-invasive isolates for all relevant combinations and
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timeframes was not practical. Also, we consider only the rate of resistance, not the number of

resistant infections. Resistance rates are an important indicator to inform decisions about con-

trol strategies or the need for new drugs, but they do not tell the complete story, and informa-

tion about the incidence of resistant infections is also needed to guide policy and research

[72,73].

The results from our experts indicate most of the antibiotics studied will likely remain effec-

tive in the next decade for treating the majority of infections caused by the pathogens discussed

in France, Italy, Spain, and the United Kingdom. This result may not hold for all countries,

especially mid-income countries like Brazil, India, and China which have recently seen the

largest increases in antibiotic consumption [74]. We considered the rate of resistance for each

pathogen-antibiotic pair at each point of time to be independent. However, experts discussed

dependencies between these rates. Rising resistance to third-generation cephalosporins, for

example, could lead to increased use of carbapenems and thus higher carbapenem-resistance

rates in the future. We may underestimate the probability of increased resistance if we ignore

this dependency. Future work is needed to better understand the magnitude of this issues and

its implications for managing the risks of antibiotic resistance.

The judgmental forecasts presented here reflect the experts’ estimation of the uncertainty

about future resistance rates in autumn 2016, when the elicitations were conducted. However,

the experts’ understanding is constantly evolving as antibiotic resistance surveillance programs

continue and expand, new research improves knowledge about the dynamics of resistance,

and relevant polices change. Future iterations of this work are needed to allow experts to

update their forecasts to reflect this changing information. Researchers conducted an expert

elicitation exercise predicting risks from volcanic activity on the island of Montserrat for 14

years [46,48]. A similar ongoing elicitation exercise could be conducted on future rates of resis-

tance, with experts regularly updating their quantitative assessments to reflect the changing

landscape of resistance, providing up-to-date information to decision makers. Future work

should also evaluate the accuracy of these expert and statistical projections once resistance

data from 2018 becomes available.
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