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1
INTRODUCTION

In the study of partial differential equations from a functional analytic viewpoint, har-

monic analysis methods, like the theory of singular integral and Fourier multiplier oper-

ators, have been developed hand in hand with well-posedness and regularity theory for

such equations over the past decades. In contrast, harmonic analysis has not yet fully

made its entrance in the study of the stochastic counterparts of these partial differential

equations. In this dissertation we will develop new methods in vector-valued harmonic

analysis to treat stochastic partial differential equations from a functional analytic view-

point.

In this first chapter we will provide a stand-alone introduction to the results that can

be found in this dissertation, comment on works omitted from this dissertation and give

a brief outline of the rest of this dissertation. The subsequent chapters each have their

own, more elaborate introduction and can be read independently.

1.1. STOCHASTIC EVOLUTION EQUATIONS

Many naturally occurring phenomena can be mathematically modelled by partial differ-

ential equations. Think for example of the flow of water, the transfer of heat in a room,

the spread of a virus through a population, a chemical reaction or the formation of a

weather system. In many of these phenomena a source of noise is present, like thermal

fluctuations, turbulence or random interactions. When one wants to incorporate this

noise into the mathematical model, one obtains a stochastic partial differential equa-

tion.

As a motivating example let us zoom in on a polycrystalline material, for example a

metal. As depicted in Figure 1.1, the material is not uniform, but consists of microscopic

grains or crystals. In each of these grains the atoms form a lattice, but the lattices of dif-

ferent grains are not compatible (see Figure 1.2). A prototypical equation that models

the growth of such grains is the Allen–Cahn equation. It is a phase field model with

two phases, which in the case of grain growth corresponds to two lattice orientations.

Starting with a mixture of these two phases, the Allen–Cahn equation models the divi-

sion into two phase regions within a short timescale. Moreover, on a longer timescale, it

models the minimization of the energy in the system, which corresponds to the length

1



2 1. INTRODUCTION

Figure 1.1: Photograph of a polycrystalline metal
taken through a microscope. The grain bound-
aries are made visible by acid etching.

Figure 1.2: Differently oriented crystals and
their grain boundary in a polycrystalline
material.

of the boundary between the two phases. As with any mathematical model, there is not

a one-to-one correspondence between the grain growth in a metal and the Allen-Cahn

equation, but it does capture the characteristic dynamics of grain growth very well.

Turning to the mathematics, let us consider the Allen–Cahn equation on Rd . Given

an initial state u0 : Rd →R, we look for a function u : R+×Rd →R satisfying
du

dt
−∆u =−Ψ′(u) in R+×Rd ,

u(0, ·) = u0,

Figure 1.3: An example of a double
well potential

where Ψ : R→ R is a double well potential as depicted

in Figure 1.3. The evolution of u over time is driven

by a force towards the two stable states at the bot-

tom of the wells at ±1 respectively, which correspond

to the two crystal orientations in the material. This

force is in competition with a diffusion process, which

smoothens the transition between the two phases. The

width of the transition layer is determined by the depth

of the wells. We refer to [Emm03, Appendix 4.C] for a

physical deduction of the Allen-Cahn equation.

To account for thermal fluctuations in the material,

one can add a noise term in the mathematical model. This gives rise to the stochastic

Allen-Cahn equation. Given an initial state u0 : Rd → R, we look for a function u : Ω×
R+×Rd →R satisfying{

du −∆u dt =−Ψ′(u) dt +B(u) dW in R+×Rd ,

u(0, ·) = u0,

where W is a Brownian motion on a filtered probability space (Ω,F ,P) and B describes

the nature of the noise term. In the simplest case of additive noise one takes e.g. B(u) = ε
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for some ε> 0. This stochastic partial differential equation should be interpreted as the

integral equation

u(t , x) = u0(x)+
∫ t

0
∆u(s, x)−Ψ′(u(s, x)) ds +

∫ t

0
B(u(s, x)) dW (s), (t , x) ∈R+×Rd .

To study SPDEs like the stochastic Allen–Cahn equation from a functional analy-

sis viewpoint, one ‘hides’ the space variable in a Banach space X in order to obtain a

stochastic differential equation. One then looks for a function u : Ω×R+ → X satisfying{
du + Au dt = F (u) dt +G(u) dW in R+,

u(0) = u0,
(1.1.1)

where in general we have that A is a closed operator on X , F (u),G(u) : Ω×R+ → X are

adapted nonlinear forcing terms and the initial state u0 is for example an element of

the domain D(A). Many SPDEs fit into this abstract framework and specifically for the

stochastic Allen-Cahn equation on Rd one takes

A =−∆, F (u) =−Ψ′(u), G(u) = B(u).

For the Banach space X there are various choices, each with advantages and disadvan-

tages:

• A space of Hölder continuous functions (see [Lun95]).

• A Hilbert space, for example a Gelfand triple V ,→ H ,→ V ∗ (see [Lio69, LR15,

Roz90]) or X = L2(Rd ) (see [DZ14]).

• A Lebesgue space, i.e. X = Lq (Rd ) for q ∈ [1,∞] (see [Kry08, NVW15c, PS16]).

In this dissertation we will focus on the Lebesgue space case and look for solutions u in

the space Lp (R+;Lq (Rd )) with p, q ∈ (1,∞), or in the stochastic case actually p, q ∈ [2,∞).

From a harmonic and stochastic analysis viewpoint these spaces have much better ge-

ometric properties than spaces of smooth functions, but the price we pay is that we

can no longer work with classical solutions to (1.1.1) having classical smoothness, but

rather work with mild or strong solutions living in a Sobolev space. Of course, the Hilbert

space L2(R+×Rd ) has even better geometric properties, but in applications one often

requires large p and q to obtain better classical smoothness of u from Sobolev embed-

dings. Moreover p 6= q is often necessary due to criticality or scaling invariance, see e.g.

[AV20a, AV20b, KPW10, PSW18].

One approach to obtain existence and uniqueness of a solution to (1.1.1) is to prove

sharp estimates for the linear problem{
du + Au dt = f dt + g dW in R+,

u(0) = 0,
(1.1.2)
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where f , g : Ω×R+ → X are adapted linear forcing terms. Such sharp estimates imply

that there exists an isomorphism between the data f , g and the solution u in suitable

function spaces, which is called maximal Lp -regularity of A. Having established max-

imal Lp -regularity, the nonlinear problem can often be treated with quite simple tools,

like the Banach contraction mapping theorem and the implicit function theorem (see

[AV20a, AV20b, PS16]). Moreover initial conditions u(0) = u0 6= 0 can be established by

trace theory.

By the linear nature of (1.1.2), we can split the maximal Lp -regularity problem into a

deterministic and a stochastic part. Indeed, if u1,u2 : Ω×R+ → X satisfy{
du1 + Au1 dt = f dt , in R+,

u1(0) = 0,
(1.1.3)

and {
du2 + Au2 dt = g dW, in R+,

u2(0) = 0,
(1.1.4)

respectively, then u = u1 +u2 satisfies (1.1.2). The mild solutions u1 and u2 are given by

the variation of constants formulas

u1(t ) =
∫ t

0
e−(t−s)A f (s) ds,

u2(t ) =
∫ t

0
e−(t−s)A g (s) dW (s),

where (e−t A)t≥0 is a semigroup of bounded operators on X . In our motivating example

of the Allen–Cahn equation we have that A = −∆ on X = Lq (Rd ) for q ∈ (1,∞) and thus

(et∆))t≥0 is the heat semigroup on Lq (Rd ), which for h ∈ Lq (Rd ) is given by

et∆h(x) =
∫
Rd

1

(4πt )d/2
e−|x−y |/4t h(y) dy, (t , x) ∈R+×Rd . (1.1.5)

For the deterministic part we can work pointwise in Ω and we can therefore omit Ω.

We say that A has deterministic maximal Lp -regularity if for each f ∈ Lp (R+; X ), the mild

solution u1 to (1.1.3) satisfies Au ∈ Lp (R+; X ). For our motivating example this means

that u1 needs to be in the second order Sobolev space W 2,q (Rd ). We can reformulate de-

terministic maximal Lp -regularity in terms of the boundedness of an integral operator.

Indeed, A has maximal Lp -regularity if and only if

TK f (t ) :=
∫ ∞

0
K (t , s) f (s) ds (1.1.6)

with

K (t , s) = Ae−(t−s)A 1t>s , t , s ∈R+ (1.1.7)
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defines a bounded operator on Lp (R+; X ). We refer to [DHP03, KW04, PS16] for a de-

tailed discussion on the history of deterministic maximal Lp -regularity and to [KPW10,

PS16, PSW18] for applications to nonlinear PDE.

The kernel in (1.1.7) is singular in s = t . Indeed, we have

‖K (t , s)‖ <∼ 1
|t−s| , |t − s| ≤ 1

since t Ae−t A is uniformly bounded on [0,1]. This means that ‖K (t , s)‖ is not integrable

around t = s and therefore one needs sophisticated arguments that rely on cancellative

properties of K to prove the boundedness of TK . Operators TK with such kernels have

been studied thoroughly in harmonic analysis and are called Calderón–Zygmund op-

erators. Using operator-valued Calderón–Zygmund theory (see [RRT86]), it was shown

by Dore [Dor00] that one can deduce deterministic maximal Lp -regularity of TK for all

p ∈ (1,∞) from deterministic maximal Lp0 -regularity for some p0 ∈ [1,∞]. Moreover,

in the breakthrough paper by Weis [Wei01b], operator-valued Fourier multiplier theory

was developed to give a sufficient condition for the deterministic maximal Lp -regularity

of A on UMD Banach spaces, i.e. on Banach spaces such that the Hilbert transform is a

bounded operator on Lp (R; X ) (see [HNVW16]).

Turning to the stochastic version of maximal regularity, let Lp
F

(Ω×R+; X ) denote the

space of all g ∈ Lp (Ω×R+; X ) adapted to the filtration F . We say that A has stochas-

tic maximal Lp -regularity if for each g ∈ Lp
F

(Ω×R+; X ), the mild solution u2 to (1.1.3)

satisfies A
1
2 u2 ∈ Lp (R+; X ). For our motivating example this means that u2 needs to be

in the first order Sobolev space W 1,q (Rd ). Note that we only have half the regularity of

u2 compared to the regularity of u1, which is caused by the roughness of the involved

Brownian motion. We can reformulate stochastic maximal Lp -regularity in terms of the

boundedness of a singular stochastic integral operator. Indeed, A has stochastic maxi-

mal Lp -regularity if and only if

SK g (t ) :=
∫ ∞

0
K (t , s)g (s) dW (s), t ∈R+ (1.1.8)

with

K (t , s) = A
1
2 e−(t−s)A 1t>s , t , s ∈R+ (1.1.9)

defines a bounded operator from Lp
F

(Ω×R+; X ) to Lp (Ω×R+; X ). Note that the X -valued

stochastic integral in (1.1.8) only makes sense under certain geometric assumptions on

the Banach space X , e.g. if X has the UMD property (see [NVW07, NVW15c]). Moreover

A needs to be e.g. sectorial for A
1
2 to be well-defined (see [KW04]). We refer to [AV20c,

NVW12b, NVW15c] for a detailed discussion of stochastic maximal Lp -regularity and

to [Agr18, AV20a, AV20b, Brz95, Hor19, KK18, Kry99, NVW12a, PV19] for applications to

nonlinear SPDE.

The kernel in (1.1.9) is again singular in s = t with

‖K (t , s)‖ <∼ 1
|t−s|1/2 , |t − s| ≤ 1
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and ‖K (t , s)‖ is therefore not integrable with respect to W in t = s. However, unlike

the deterministic setting, there is no general theory for the Lp -boundedness of singular

stochastic integral operators of the form (1.1.8). For the specific kernel K in (1.1.9) the

Lp -boundedness of SK for p ∈ (2,∞) was obtained by van Neerven, Veraar and Weis in

[NVW12b]. They assumed that A has a so-called bounded H∞-functional calculus (see

[Haa06]) and X satisfies a certain geometric assumption, which is fulfilled for Lq , W s,q ,

etc. as long as q ∈ [2,∞). In the case that A =−∆ on Lq (Rd ) and p ≥ q ≥ 2 this result was

already obtained by Krylov in [Kry94b, Kry99, Kry00, Kry08] using sharp estimates for

stochastic integrals and sophisticated real analysis arguments. Moreover, by using PDE

arguments, the operator −∆ can be replaced by a second order elliptic operator with

coefficients depending on (ω, t , x) ∈Ω×R+×Rd .

The dichotomy between the available methods to analyse the deterministic and the

stochastic part of (1.1.2) leads us to the main goals of this dissertation:

• The first goal of this dissertation is to develop harmonic analysis methods to treat

singular stochastic integral operators. In particular we will develop an extrapo-

lation theory for stochastic singular integral operators resembling Calderón–Zyg-

mund theory for deterministic singular integral operators.

• Motivated by the use of the tensor extension of various classical operators preva-

lent in harmonic analysis in the study of (S)PDEs, the second goal of this disserta-

tion is to develop general sufficient conditions for a bounded operator on Lp (Rd )

to have a bounded tensor extension on Lp (Rd ; X ) when X is a Banach function

space.

1.2. VECTOR-VALUED HARMONIC ANALYSIS FOR SPDE

The behavior of the stochastic singular integral operators (1.1.8) is quite different from

their deterministic counterpart in (1.1.6). Due to the Itô isomorphism the stochastic

integrals converge absolutely, whereas in the deterministic case prototypical examples

of singular integral operators, like the Hilbert transform and the Riesz projections, have

kernels that rely on principle value integrals in their definition. As a consequence, in

contrast with the deterministic setting, the scalar-valued setting for stochastic singular

integral operators can easily be characterized using the Schur lemma for positive kernel

operators (see [Gra14b, Appendix A]).

In the operator-valued setting we may have ‖K (·, s)‖ ∉ L2(R+) for s ∈R+, but still have

cancellation of the form(∫ ∞

0
‖K (t , s)x‖2

X dt
)1/2 <∼ ‖x‖X , s ∈R+, x ∈ X . (1.2.1)

If the kernel indeed has cancellation of this form, one can check that SK is L2-bounded

using a simple Fubini argument. In particular, this method was used for the kernel in
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(1.1.9) in [DZ14, Section 6.3] for Hilbert spaces X . For X = Lq (Rd ) the cancellation in

(1.2.1) does often not hold. For example it fails for the important case A =−∆. However,

cancellation in this setting takes the form∥∥∥(∫ ∞

0
|K (t , s)x|2 dt

)1/2∥∥∥
Lq (Rd )

<∼ ‖x‖Lq (Rd ), s ∈R+, x ∈ X , (1.2.2)

which in a general Banach space can be reformulated using γ-radonifying operators (see

[HNVW17, Chapter 9].

Despite the rather different behaviour of stochastic singular integral operators com-

pared to their deterministic counterparts, as our first theorem on the boundedness of

singular stochastic integral operators we obtain a stochastic version of the classical ex-

trapolation result for Calderón–Zygmund operators.

Theorem 1.2.1. Let X be a UMD Banach space with type 2. Let K : R+ ×R+ → L(X )

be strongly measurable and assume that for every interval I ⊆ R+ we have the following

L2-Hörmander condition(∫
R+\I

‖K (t , s)−K (t ′, s)‖2 ds
)1/2 ≤C t , t ′ ∈ 1

2 I(∫
R+\I

‖K (t , s)−K (t , s′)‖2 dt
)1/2 ≤C s, s′ ∈ 1

2 I

for some constant C > 0 independent of I . Suppose that the mapping SK as defined in

(1.1.8) is bounded from Lp
F

(Ω×R+; X ) into Lp (Ω×R+; X ) for some p ∈ [2,∞). Then the

mapping

SK : Lq
F

(Ω×R+; X ) → Lq (Ω×R+; X )

is bounded for all q ∈ (2,∞).

The type 2 assumption on X (see [HNVW17, Chapter 7]) in Theorem 1.2.1 is nat-

ural in the stochastic setting and is actually necessary for the boundedness of SK for

many nontrivial kernels K (see [NVW15b]). By proving a general extrapolation result

for so-called singular γ-integral operators and using the Itô isomorphism for X -valued

stochastic integrals from [NVW07], a slightly more general version of Theorem 1.2.1 will

be proven in Chapter 4. In the γ-integral operator setting we also obtain the endpoint

estimates L2 → L2,∞ and L∞ → BMO.

1.2.1. SPARSE DOMINATION

For Calderón–Zygmund operators weighted bounds with weights in the so-called Muck-

enhoupt Ap -class are classical (see e.g. [Gra14a, Chapter 7]). Sharp dependence of the

estimates on the weight characteristic in this setting is known as the A2-theorem, which

was obtained in [Hyt12] by Hytönen. It settles the so-called A2-conjecture for standard

Calderón-Zygmund operators and states that under standard assumptions on the kernel

K one has for all p ∈ (1,∞) that

‖TK ‖Lp (Rd ,w)→Lp (Rd ,w)
<∼ [w]

max{ 1
p−1 ,1}

Ap
. (1.2.3)
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Originally the A2-conjecture was formulated for the Beurling–Ahlfors transform [AIS01],

where it was shown to imply quasiregularity of certain complex functions. Shortly after-

wards it was settled for this operator in [PV02] and subsequently many other operators

were treated, which eventually led to [Hyt12].

A new proof of the A2-theorem was obtained by Lerner in [Ler13], where it was

shown that any standard Calderón-Zygmund operator can be dominated by a so-called

sparse operator of the form ∑
Q∈S

〈| f |〉1,Q 1Q , f ∈ L1
loc(Rd )

for a sparse collection of cubes S in Rd . Here we denote 〈| f |〉1,Q := 1
|Q|

∫
Q | f (t )| dt and

we call a family of cubes S in Rd sparse if for every Q ∈ S there exists a measurable

set EQ ⊆ Q such that |EQ | ≥ η|Q| for some η ∈ (0,1) and such that the EQ ’s are pairwise

disjoint. Such sparse operators are easily shown to be bounded on Lp (Rd , w) for all

p ∈ (1,∞) and w ∈ Ap and for this reason the technique of controlling various operators

by such sparse operators has proven to be a very useful tool to obtain (sharp) weighted

norm inequalities for various operators in the past decade.

To be able to apply this approach to stochastic singular integral operators and obtain

a stochastic analogue of the A2-theorem, we generalize the sparse domination frame-

work to also include these operators. Let (S,d ,µ) be a space of homogeneous type, i.e. a

quasi-metric measure space satisfying a doubling condition (see [AM15]), and let X and

Y be Banach spaces. For a bounded linear operator T from Lp0 (S; X ) to Lp0,∞(S;Y ) and

α≥ 1 we define the sharp grand maximal truncation operator

M#
T,α f (s) := sup

B3s
esssup
s′,s′′∈B

∥∥T ( f 1S\αB )(s′)−T ( f 1S\αB )(s′′)
∥∥

Y , s ∈ S,

where the supremum is taken over all balls B ⊆ S containing s. In Chapter 3 we will

prove the following generalization of a sparse domination result of Lerner and Ombrosi

[LO20], which builds upon the efforts of various authors over the past decade.

Theorem 1.2.2. Let (S,d ,µ) be a space of homogeneous type and let X and Y be Banach

spaces. Take p0,r ∈ [1,∞) and take α≥ 1 large enough. Assume the following conditions:

• T is a bounded linear operator from Lp0 (S; X ) to Lp0,∞(S;Y ).

• M#
T,α is a bounded operator from Lp0 (S; X ) to Lp0,∞(S).

• For any disjointly and boundedly supported f1, . . . , fn ∈ Lp0 (S; X ) we have∥∥∥T
( n∑

k=1
fk

)
(s)

∥∥∥
Y
<∼

( n∑
k=1

∥∥T fk (s)
∥∥r

Y

)1/r
, s ∈ S.

Then for any boundedly supported f ∈ Lp0 (S; X ) there is a sparse collection of cubes S
such that

‖T f (s)‖Y <∼
( ∑

Q∈S

〈‖ f ‖X
〉r

p0,Q 1Q (s)
)1/r

, s ∈ S.
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Moreover, for all p ∈ (p0,∞) and w ∈ Ap/p0 we have

‖T ‖Lp (S,w ;X )→Lp (S,w ;Y ) <∼ [w]
max

{
1

p−p0
, 1

r

}
Ap/p0

,

The key novelty is the introduction of the parameter r ∈ [1,∞) in the third bullet of

Theorem 1.2.2, which expresses a form of sublinearity of the operator T when r = 1.

As r increases, this assumption becomes more restrictive and the sparse domination

and weighted bounds in the conclusion become stronger. Applying Theorem 1.2.2 with

p0 = r = 2 to a stochastic singular integral operator, we obtain the following stochastic

variant of the A2-theorem.

Theorem 1.2.3. Let X be a UMD Banach space with type 2. Let K :R+×R+ →L(X ,Y ) be

strongly measurable and assume that for some ε ∈ (0,1]

‖K (s, t )−K (s′, t )‖ ≤
( |s − s′|
|s − t |

)ε 1

|s − t |1/2
|s − s′| ≤ 1

2
|s − t |,

‖K (s, t )−K (s, t ′)‖ ≤
( |t − t ′|
|s − t |

)ε 1

|s − t |1/2
|t − t ′| ≤ 1

2
|s − t |.

Suppose SK as defined in (1.1.8) is bounded from Lp0

F
(Ω×R+; X ) into Lp0 (Ω×R+; X ) for

some p0 ∈ [2,∞). Then SK is bounded from Lp
F

(Ω×R+, w ; X ) to Lp (Ω×R+, w ; X ) for all

p ∈ (2,∞) and w ∈ Ap/2 with

‖SK ‖Lp (Ω×R+,w ;X )→Lp (Ω×R+,w ;X ) <∼ [w]
max{ 1

2 , 1
p−2 }

Ap/2
.

In Chapter 4 we will prove a more general version of this theorem using an L2-variant

of the Dini conditions from Calderón–Zygmund theory. We also prove that the above

estimate is sharp in terms of the dependence on the weight characteristic.

Although the main motivation for Theorem 1.2.2 comes from its applications to sin-

gular stochastic integral operators, it also has various interesting, new applications in

harmonic analysis. In particular, in Chapter 3 and Section 6.4 we will use a version of

Theorem 1.2.2 to prove:

• The A2-theorem for vector-valued Calderón–Zygmund operators with operator-

valued kernel in a space of homogeneous type. We use this A2-theorem to prove

an operator-valued, weighted, anisotropic, mixed-norm Mihlin multiplier theo-

rem.

• Sparse domination and quantitative weighted norm inequalities for both the lat-

tice Hardy–Littlewood and the Rademacher maximal operator.

• Sharp weighted norm inequalities for Littlewood–Paley operators.
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1.2.2. SUFFICIENT CONDITIONS FOR THE Lp -BOUNDEDNESS OF SK

In Theorem 1.2.1 and Theorem 1.2.3 one needs to starts with an Lp -bounded singular

stochastic integral operator. Only in the the Hilbert space setting in the convolution case

we obtain a full characterization of the boundedness of SK in terms of kernel conditions.

Outside the Hilbert space setting or for non-convolution kernels we do not have abstract

theory to ensure Lp -boundedness, so this has to be established on a case-by-case basis.

It would be interesting to find general sufficient conditions from which Lp -boundedness

can be derived, like a stochastic version of the T (1) and T (b)-theorems (see e.g. [HW06,

Hyt06, Hyt20, HH16]) or Fourier multiplier theory (see [HNVW16]).

In the important special case that K is the kernel from (1.1.9) , i.e.

K (t , s) = A
1
2 e−(t−s)A 1t>s , t , s ∈R+,

on X = Lq (O) for some domain O ⊆ Rd , we can push our approach further. Indeed, in

this case the operators K (s, t ) ∈L(Lq (O)) for s, t ∈R+ often have a kernel representation

of their own. For example if A = −∆ on Lq (Rd ), the heat semigroup (et∆)t≥0 is given by

(1.1.5). Therefore we can write SK as a stochastic-deterministic singular integral opera-

tor

SK g (t , x) =
∫ ∞

0

∫
O

k(t , x, s, y)g (s, y) dy dW (s), (t , x) ∈R+×O

for a kernel k : R+ ×O×R+ ×O → C. To establish Lp (Ω×R+, w ;Lq (O))-boundedness

with p, q ∈ (2,∞) and w ∈ Ap/2 for SK , we have seen in Theorem 1.2.1 and Theorem 1.2.3

that it suffices to have Lq (Ω×R+×O)-boundedness for SK and certain assumptions on

the kernel K . In applications it is easier to establish boundedness for SK on the Hilbert

space L2(Ω×R+×O). It is therefore desirable to deduce Lq (Ω×R+×O)-boundedness

for SK from L2(Ω×R+ ×O)-boundedness for SK . In the deterministic case, this can

be done using Calderón–Zygmund theory in the space R+×O with a parabolic metric.

For a class of elliptic operators of fractional order this theory was developed in [KKL15,

KKL16] under a parabolic Hörmander assumption on k. Using a parabolic stochastic

Hörmander condition on k, a stochastic version of these results was obtained in [Kim15,

KK20] and for the moments of SK a Calderón–Zygmund theory approach was recently

employed in [Kim20].

In Chapter 4 we will extend the results from [KK20] using the abstract sparse domi-

nation result in Theorem 1.2.2. We will use the space of homogeneous typeR+×O with a

parabolic metric, which is the main motivation to formulate Theorem 1.2.2 in a space of

homogeneous type. Under a (2,1)-Dini condition on the kernel k, which we will define

in Section 4.3, we obtain the following result:

Theorem 1.2.4. Let O ⊆Rd be a smooth domain, equip R+×O with the parabolic metric

d
(
(t , x)(s, y)

)= max
{|t − s|1/m , |x − y |}, (t , x), (s, y) ∈R+×O
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for some m > 0 and let k : R+×O×R+×O→C be a (2,1)-Dini kernel. Suppose that

Sk g (t , x) :=
∫ ∞

0

∫
O

k(t , x, s, y)g (s, y) dy dW (s), (t , x) ∈R+×O

is a well-defined, bounded operator from L2
F (Ω×R+×O) to L2(Ω×R+×O). Then Sk is

bounded from Lp
F

(Ω×R+, v ;Lq (O, w))) to Lp (Ω×R+, v ;Lq (O, w))) for all p, q ∈ (2,∞),

v ∈ Ap/2(R+) and w ∈ Aq (O).

We are also able to reverse the integration order of space and time in the conclusion

of Theorem 1.2.4, i.e. we also show Lr (Ω;Lq (O, w ;Lp (R+, w)))-boundedness for Sk with

p ∈ (2,∞) and q,r ∈ (1,∞). This reversed integration order allows one to deduce addi-

tional regularity results in applications to SPDE, see [Ant17, NVW15a]. Moreover, we are

able to put the expectation on the inside, i.e. we obtain estimates for the moments of Sk

as in [Kim20].

1.2.3. APPLICATIONS TO SPDE

Since stochastic maximal regularity can be reformulated in terms of the boundedness

of a stochastic singular integral operator, it follows from Theorem 1.2.1 that in many

instances stochastic maximal Lp -regularity for some p ∈ [2,∞) implies stochastic maxi-

mal Lq -regularity for all q ∈ (2,∞). Moreover Theorem 1.2.3 gives us weighted estimates

for the mild solution u. We will discuss various applications of this principle in Chapter

5. A typical example of the results that we will obtain reads as follows:

Theorem 1.2.5. Assume −A is the generator of a bounded C0-semigroup on a UMD Ba-

nach space X with type 2 and suppose A has stochastic maximal Lp -regularity for some

p ∈ [2,∞). Then A has stochastic maximal Lq -regularity for all q ∈ (2,∞) and the mild

solution u to (1.1.4) satisfies the following weighted estimates for all w ∈ Aq/2

‖A1/2u‖Lq (Ω×R+,w ;X ) <∼ [w]
max{ 1

2 , 1
q−2 }

Aq/2
‖g‖Lq (Ω×R+,w ;X ),

The use of temporal Aq/2-weights in stochastic maximal Lp -regularity is new. In

most of the results in [NVW12b, NVW15c] such weights can also be added without caus-

ing major difficulties, but it is very natural to deduce this from extrapolation theory.

Moreover with our method we actually obtain sharp dependence on the Aq/2-charac-

teristic. Power weights of the form tα have already been considered before in both the

deterministic (see [KPW10, PSW18]) and stochastic (see [AV20a, AV20b, AV20c, PV19])

evolution equations and can be used to allow for rough initial data. General Ap -weights

in deterministic parabolic PDEs have used in [DK18, DK19b, GV17a, GV17b] to derive

mixed Lp (Lq )-regularity estimates using Rubio de Francia extrapolation (see e.g. [GR85,

CMP11]).

For more concrete SPDEs, for example for the stochastic heat equation on a domain

O ⊆ Rd , SK can be written as a stochastic-deterministic singular integral operator with
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kernel k as in Theorem 1.2.4. The assumed (2,1)-Dini kernel assumption then trans-

lates to Green’s function estimates or heat kernel estimates, which are available in quite

general settings (see e.g. [EI70, KN14]). As a consequence we obtain time-weighted

stochastic maximal Lp -regularity on Lq (O, w) for p, q ∈ (2,∞) and w ∈ Aq (O) from un-

weighed stochastic maximal L2-regularity on L2(O). Power weights in space can be used

to allow for rough boundary conditions (see e.g. [HL19, Lin18, Lin20, LV20]), treat sin-

gularities due to corners in the domain (see e.g. [Cio20, CKL19, CKLL18, KN14, Naz01,

Sol01, PS04]), and handle the incompatibility of the boundary conditions and the noise

term (see e.g. [Kim04, KK04, KL99a, KL99b, Kry94a]).

1.3. BANACH FUNCTION SPACE-VALUED EXTENSIONS OF OPERATORS

For a bounded linear operator T on Lp (Rd ) and a Banach space X we define a linear

operator T̃ on Lp (Rd )⊗X by setting

T̃ ( f ⊗x) := T f ⊗x, f ∈ Lp (Rd ), x ∈ X ,

and extending by linearity. For p ∈ [1,∞) the space Lp (Rd )⊗ X is dense in the Bochner

space Lp (Rd ; X ) and it thus makes sense to ask whether the tensor extension T̃ extends

to a bounded operator on Lp (Rd ; X ). Motivated by the use of the boundedness of the

tensor extension of various classical operators prevalent in harmonic analysis in the

study of (S)PDE from a functional analytic viewpoint, we will develop general sufficient

conditions for the boundedness of T̃ on Lp (Rd ; X ) in the final part of this dissertation.

Tensor extensions of operators have been actively studied in the past decades. A cen-

terpoint of the theory is the result of Burkholder [Bur83] and Bourgain [Bou83] that the

tensor extension of the Hilbert transform is bounded on Lp (R; X ) if and only if the Ba-

nach space X has the UMD property. From this connection one can derive the bounded-

ness of the vector-valued extension of many operators in harmonic analysis, like Fourier

multipliers and Littlewood–Paley operators.

When X is a Banach function space, very general extension theorems are known.

These follow from the connection between the boundedness of the lattice Hardy–Little-

wood maximal operator on Lp (Rd ; X ), which is given by

MLat f := sup
B⊆Rd a ball

〈| f |〉1,B 1B , f ∈ L1
loc(Rd ; X ),

and the UMD property of X , shown by Bourgain [Bou84] and Rubio de Francia [Rub86].

The boundedness of the lattice Hardy–Littlewood maximal operator allows one to use

scalar-valued arguments to show the boundedness of the vector-valued extension of an

operator. Moreover it connects the extension problem to the theory of Muckenhoupt

weights. Combined this enabled Rubio de Francia to show a very general extension

principle in [Rub86], yielding vector-valued extensions of operators on Lp (T) satisfy-

ing weighted bounds. This result was subsequently extended by Amenta, Veraar and the

author in [11], replacing T by Rd and adding weights in the conclusion.
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As we have previously discussed, weighted bounds for operators in harmonic analy-

sis are nowadays often obtained through sparse domination. So, to deduce the weighted

boundedness of the vector-valued extension T̃ of an operator T using [Rub86] and its

generalization in [11], one typically goes through implications (1) and (3) in the follow-

ing diagram

Sparse domination for T

Sparse domination for T̃

Weighted bounds for T

Weighted bounds for T̃

(1)

(4)

(2) (3)

In this diagram implications (1) and (4) are well-known and unrelated to the operator T .

Another approach to obtain the weighted boundedness of the vector-valued extension

T̃ of an operator T , through implications (2) and (4) in this diagram, was obtained by

Culiuc, Di Plinio, and Ou in [CDO17] for X = `q .

The advantage of the route through implications (2) and (4) over the route through

implications (1) and (3) is that the Fubini-type techniques needed for implication (2) are

a lot less technical than the ones needed for implication (3). Moreover implication (4)

yields quantitative and in many cases sharp weighted estimates for T̃ , while the weight

dependence in the arguments used for implication (3) is certainly not sharp. A down-

side of the approach through implications (2) and (4) is the fact that one needs sparse

domination for T as a starting point, while one only needs weighted bounds in order to

apply (3).

1.3.1. EXTENSION OF OPERATORS USING FACTORIZATION

Implication (3) for X = `q with q ∈ (1,∞) follows easily from Rubio de Francia extrapo-

lation and Fubini’s theorem (see e.g. [CMP11]). A generalization of this result to general

UMD Banach function spaces was first proven by Rubio de Francia in [Rub86, Theorem

5]. Extended in [11] by Amenta, Veraar and the author, this theorem reads as follows:

Theorem 1.3.1. Let T be a bounded linear operator on Lp0 (Rd , v) for some p0 ∈ (1,∞)

and all v ∈ Ap0 and let X be a UMD Banach function space. Then T̃ extends uniquely to

a bounded linear operator on Lp (Rd , w ; X ) for all p ∈ (1,∞) and w ∈ Ap .

The proof of Theorem 1.3.1 in [Rub86] is based on the factorization of `r -bounded

families of operators on a r -convex Banach function space X through a weighted Lr -

space. The classical approach for this factorization comes from the work of Nikišin

[Nik70], Maurey [Mau73] and Rubio de Francia [Rub82, Rub86, Rub87] (see also [GR85]).

In Chapter 6 we will give a alternative approach to the proof of Theorem 1.3.1, which

will be based on the factorization of an `2-bounded family of operators on a (not nec-

essarily 2-convex!) Banach function space X through a weighted L2-space. This fac-
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torization result is a special case of a representation and factorization theory based on

Euclidean structures, which was developed in [4] by Kalton, Weis and the author.

Our approach yields quantitative bounds, allowing us to estimate the operator norm

of T̃ by a power of the UMD constant βp,X of X . Moreover, the original approach relies

upon the boundedness of the lattice Hardy-Littlewood maximal operator on Lp (Rd ; X )

whereas this will not be used in our approach. Since we will also prove a version of

Theorem 1.3.1 for sublinear operators, we will be able to use Theorem 1.3.1 to give a

quantitative proof of the boundedness of the lattice Hardy-Littlewood maximal operator

on UMD Banach function spaces.

Theorem 1.3.2. Let X be Banach function space. If X has the UMD property, then MLat

is bounded on Lp (Rd ; X ) for all p ∈ (1,∞) with

‖MLat‖Lp (Rd ;X )→Lp (Rd ;X )
<∼β2

p,X .

Combined with the sparse domination principle from Chapter 3, we also obtain

sparse domination and sharp weighted estimates for MLat in Chapter 6.

1.3.2. EXTENSION OF OPERATORS USING SPARSE DOMINATION

The proof of the sparse domination-based extension theorem depicted by implication

(2) relies on the following two key ingredients:

• The equivalence between sparse forms and the L1-norm of the bisublinear maxi-

mal function.

• A sparse domination result for the bisublinear lattice maximal operator on UMD

Banach function spaces.

Combining these two ingredients in Chapter 6, we will obtain the following theorem.

Theorem 1.3.3. Let T be a linear operator such that for any f , g ∈ L∞
c (Rd ) there exists a

sparse collection of cubes S such that∫
Rd

|T f | · |g | dt <∼
∑

Q∈S
〈| f |〉1,Q〈|g |〉1,Q |Q|.

Let X be a UMD Banach function space. Then for all simple functions f ∈ L∞
c (Rd ; X ) and

g ∈ L∞
c (Rd ) there exists a sparse collection of cubes S such that∫

Rd
‖T̃ f ‖X · |g | dt <∼

∑
Q∈S

〈‖ f ‖X
〉

1,Q

〈|g |〉1,Q |Q|.

In particular, T̃ extends uniquely to a bounded linear operator on Lp (Rd , w ; X ) for all

p ∈ (1,∞) and w ∈ Ap with

‖T̃ ‖Lp (Rd ,w ;X )→Lp (Rd ,w ;X )
<∼ [w]

max
{

1
p−1 ,1

}
Ap

.



1.3. BANACH FUNCTION SPACE-VALUED EXTENSIONS OF OPERATORS 15

Note that the sparse form domination for T in the assumption of Theorem 1.3.3 is

in particular satisfied if we have pointwise sparse domination for T as in Theorem 1.2.2

with p0 = r = 1, which follows by integrating against a g ∈ L∞
c (Rd ). We remark that in

Theorem 1.3.3 it actually suffices to assume that MLat is bounded on both Lp (Rd ; X )

and Lp ′
(Rd ; X ∗), which is implied by the UMD property of X and Theorem 1.3.2. This

observation allows us to also prove the converse of Theorem 1.3.2 in Chapter 6.

1.3.3. LITTLEWOOD–PALEY–RUBIO DE FRANCIA ESTIMATES IN BANACH FUNCTION SPACES

Theorems 6.1.1 and 6.1.4 and their multilinear, limited range counterparts in [3, 8] have

various interesting applications. They can for example be applied to obtain Banach

function space-valued boundedness of:

• The bilinear Hilbert transform.

• The variational Carleson operator.

• Multilinear Calderón–Zygmund operators.

• Bochner–Riesz multipliers.

• Spherical maximal operators.

For the details of these applications, we refer to [3, Section 6], [8, Section 5] and [11,

Section 5]. In this dissertation we will focus on one specific, quite elaborate application.

We will use Theorem 6.1.1 to deduce a vector-valued version of so-called Littlewood–

Paley–Rubio de Francia estimates and use these estimates to deduce operator-valued

Fourier multipliers on Banach function spaces.

To introduce these Littlewood–Paley–Rubio de Francia estimates, let SI denote the

Fourier projection onto the interval I ⊆ R, defined by S I f := (1I f̂ )∨ for Schwartz func-

tions f ∈ S(R). For a collection I of pairwise disjoint intervals in R and q ∈ (0,∞) we

consider the operator

SI,q ( f ) := ( ∑
I∈I

|S I f |q )1/q .

When∆ := {±[2k ,2k+1),k ∈Z}
is the dyadic decomposition ofR, the classical Littlewood–

Paley inequality states that for p ∈ (1,∞)∥∥S∆,2 f
∥∥

Lp (R) ' ‖ f ‖Lp (R), f ∈S(R).

A surprising extension of this classical Littlewood–Paley square function estimate was

shown by Rubio de Francia in [Rub85]: for all q ∈ [2,∞) and p ∈ (q ′,∞) and any collec-

tion I of mutually disjoint intervals in Rwe have∥∥SI,q f
∥∥

Lp (R)
<∼ ‖ f ‖Lp (R), f ∈S(R). (1.3.1)

This result (in particular the q = 2 case) is now known as the Littlewood–Paley–Rubio de

Francia inequality.
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The definition of S I extends directly to the X -valued Schwartz functions f ∈S(R; X )

for a Banach space X . Vector-valued extensions of Littlewood–Paley–Rubio de Francia

estimates for the case q = 2 case are studied in [BGT03, GT04, HP06, HTY09, PSX12] via

a reformulation in terms of random sums, i.e.

E
∥∥∥∑

I∈I
εI S I f

∥∥∥
Lp (R;X )

<∼ ‖ f ‖Lp (R;X ), f ∈S(R; X ),

where (εI )I∈I is a Rademacher sequence. If this estimate holds then we say that X has

the LPRp property. By the Khintchine inequalities and the result of Rubio de Francia it

follows that C has the LPRp property for all p ∈ [2,∞).

When q 6= 2, no analogue of the boundedness of SI,q for general Banach spaces is

known. However, when X is a Banach function space over a measure space (Ω,µ), the

operator SI,q is well-defined for f ∈S(R; X ) by interpreting the `q -sum pointwise in Ω.

Therefore one may wonder whether (1.3.1) holds for f ∈ S(R; X ). In Chapter 7 we will

show that this is indeed the case if the q ′-concavification

X q ′ = {|x|q ′
sgn x : x ∈ X

}= {
x : |x|1/q ′ ∈ X

}
has the UMD property.

Theorem 1.3.4. Let q ∈ [2,∞), and suppose X is a q ′-convex Banach function space such

that X q ′
has the UMD property. Then there exists a increasing function φ : R+ →R+ such

that for all p ∈ (q ′,∞), and w ∈ Ap/q ′

‖SI,q f ‖Lp (R,w ;X ) ≤φ([w]Ap/q′ )‖ f ‖Lp (R,w ;X ), f ∈S(R; X ).

We deduce this result directly from the scalar case X =C and the factorization-based

extension theorem in Theorem 1.3.1. The case q = 2 has previously been obtained by

Potapov, Sukochev and Xu in [PSX12, Theorem 3] using an ad hoc argument.

1.3.4. FOURIER MULTIPLIER OPERATORS ON BANACH FUNCTION SPACES

As a consequence of the Littlewood–Paley–Rubio de Francia estimates, Coifman, Rubio

de Francia and Semmes [CRdFS88] showed that if p ∈ (1,∞) and

1
s > ∣∣ 1

p − 1
2

∣∣,
then every m : R→ C of bounded s-variation uniformly on dyadic intervals induces a

bounded Fourier multiplier operator

Tm f := (
m · f̂

)∨, f ∈S(R).

This is analogous to the situation for the Marcinkiewicz multiplier theorem, which is the

s = 1 case of the Coifman–Rubio de Francia–Semmes theorem and which follows from

the classical Littlewood–Paley theorem.
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An operator-valued analogue of the Coifman–Rubio de Francia–Semmes theorem

was obtained by Hytönen and Potapov in [HP06], where the Banach space X was as-

sumed to satisfy the LPRp property. The main goal of Chapter 7 is to prove a wider range

of operator-valued Coifman–Rubio de Francia–Semmes type results when X is a Banach

function space. We will use Theorem 1.3.4 to prove such results under a UMD assump-

tion on a q-concavification X q of X . This naturally leads to an ‘`2(`q ′
)-boundedness’

condition on the range of m, which is a strengthening of uniform boundedness.

The following multiplier theorem is the fundamental result of Chapter 7. Let∆ again

denote the standard dyadic partition of R. Let X and Y be Banach function spaces,

and for a set of bounded linear operators Γ ⊆ L(X ,Y ) let V s (∆;Γ) denote the space of

functions m : R→ span(Γ) with bounded s-variation uniformly on dyadic intervals J ∈∆,

measured with respect to the Minkowski norm on span(Γ).

Theorem 1.3.5. Let q ∈ (1,2], p ∈ (q,∞), s ∈ [1, q), and let w ∈ Ap/q . Let X and Y

be Banach function spaces such that X q and Y have the UMD property. Suppose that

m ∈ V s (∆;Γ) for some absolutely convex, `2(`q ′
)-bounded Γ⊆L(X ,Y ). Then the Fourier

multiplier operator Tm is bounded from Lp (R, w ; X ) to Lp (R, w ;Y ).

The case q = 2 and w = 1 of Theorem 1.3.5 was considered in [HP06, Theorem 2.3]

for Banach spaces X = Y with the LPRp property. Our approach only works for Banach

function spaces, but these are currently the only known examples of Banach spaces with

LPRp . Note that as the parameter q decreases, we assume less of X , but more of Γ and

m.

We will also various extensions and modifications of Theorem 1.3.5 in Chapter 7. For

example, we will give sufficient conditions for the bounded s-variation assumption in

terms of Hölder regularity of m, give sufficient conditions for the `2(`q ′
)-boundedness

in terms of weighted estimates and prove a variant of Theorem 1.3.5 for general Banach

spaces which are complex interpolation space between a Hilbert space and a UMD Ba-

nach space.

1.4. WORK NOT INCLUDED IN THIS DISSERTATION

To keep this dissertation coherent and at a reasonable length, not all results obtained

during the PhD period are presented. We will sketch the content of the omitted results

below.

1.4.1. MULTILINEAR BANACH FUNCTION SPACE-VALUED EXTENSIONS OF OPERATORS

The results in Chapter 6 have been shown in a more general setting by Nieraeth and the

author in [3, 8]. In [8] the factorization-based extension theorem is shown in a multilin-

ear, limited range setting. In this setting we show that a bounded operator

T : Lp1 (Rd , w1)×·· ·×Lp1 (Rd , w1) → Lp (Rd , w)
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for p1, . . . , pn ∈ (0,∞), weights w1, · · · , wn in certain Muckenhoupt classes, 1
p = ∑n

k=1
1

pk

and w =∏n
k=1 w p/pk

k extends to a bounded operator

T̃ : Lp1 (Rd , w1; X1)×·· ·×Lpn (Rd , wn ; Xn) → Lp (Rd , w ; X )

for quasi-Banach function spaces X1, . . . , Xn satisfying a rescaled UMD condition and

X = ∏n
k=1 Xk . The proof is an extension of the original proof in the linear, full range

setting by Rubio de Francia [Rub86].

In [3] the sparse domination-based extension theorem is also shown in this multi-

linear, limited range setting. In this result we use the multilinear structure to its fullest,

i.e. we use a weight condition on the tuple (w1, · · · , wn) and a UMD condition on the

tuple (X1, . . . , Xn) rather than a condition on each individual weight and quasi-Banach

function space respectively. It is an interesting open problem whether the factorization-

based extension theorem can also be generalized to this fully multilinear setting.

1.4.2. EUCLIDEAN STRUCTURES AND OPERATOR THEORY IN BANACH SPACES

In [4], which could be a dissertation in itself, Kalton, Weis and the author developed a

general method to extend results on Hilbert space operators to the Banach space set-

ting by representing certain sets of Banach space operators Γ on a Hilbert space. The

assumption on Γ is expressed in terms of α-boundedness for a Euclidean structure α

on the underlying Banach space X . α-Boundedness is originally motivated by R- or

`2-boundedness of sets of operators and this representation result explains why R- or

`2-boundedness assumptions make their appearance in many results in vector-valued

harmonic analysis.

By choosing the Euclidean structure α accordingly, a unified and more general ap-

proach to the factorization theory of Kwapień and Maurey and the factorization theory

of Maurey, Nikišin and Rubio de Francia is obtained. The factorization theorem we use

for our factorization-based extension theorem in Chapter 6 is a special case of this the-

ory. Furthermore Euclidean structures are used to build vector-valued function spaces,

which enjoy the nice property that any bounded operator on L2 extends to a bounded

operator on these vector-valued function spaces, which is in stark contrast to the ex-

tension problem for Bochner spaces that we discuss in Chapter 6. Moreover, the rep-

resentation theorem is used to prove a quite general transference principle for sectorial

operators on a Banach space, which extends Hilbert space results for sectorial operators

to the Banach space setting. Moreover some sophisticated counterexamples for secto-

rial operators are constructed.

1.4.3. THE `s -BOUNDEDNESS OF A FAMILY OF INTEGRAL OPERATORS

In [12] Gallarati, Veraar and the author proved the `s -boundedness of a family of inte-

gral operators with an operator-valued kernel on Lq . The proof is based on Rubio de

Francia extrapolation and the factorization theory of Maurey, Nikishin and Rubio de
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Francia as discussed in Chapter 6. The results have been applied by Gallarati and Veraar

in [GV17b], where a new approach to maximal Lp -regularity for parabolic problems with

time-dependent generator is developed. An extension of the `s -boundedness result in

[12], in which Lq is replaced by a UMD Banach function space X , has been obtained by

the author in [7] using the boundedness of the lattice Hardy–Littlewood maximal oper-

ator.

1.5. OVERVIEW

After discussing the necessary preliminaries in Chapter 2, this dissertation consists of

two parts. Part I consists of Chapters 3-5 and is concerned with harmonic analysis meth-

ods to treat singular stochastic integral operators. Part II, consisting of Chapters 6 and

7, is devoted to the boundedness of Banach function space-valued extensions of opera-

tors.

In Part I we first develop the necessary harmonic analysis. In particular, we prove the

abstract sparse domination result in Theorem 1.2.2 and give some applications of this

result in harmonic analysis in Chapter 3. Afterwards, we develop the extrapolation the-

ory for singular stochastic integral operators with operator-valued kernel in Chapter 4.

In Chapter 5 we apply the results of Chapter 4 to obtain p-independence and weighted

bounds for stochastic maximal Lp -regularity.

We develop sufficient conditions for a bounded operator on Lp (Rd ) to have a bounded

Banach function space-valued extension in Chapter 6. In particular, we will prove The-

orems 1.3.1 and 1.3.3 and their consequences. Using Theorem 1.3.1, we prove Banach

function space-valued Littlewood–Paley–Rubio de Francia-type estimates and the opera-

tor-valued analogues of the Coifman–Rubio de Francia–Semmes Fourier multiplier the-

orem in Chapter 7.





2
PRELIMINARIES

In this chapter we will present the background material that will be used throughout

this dissertation. We start by introducing some basic notation.

• We denote the Lebesgue measure on Rn by dt and we denote the Lebesgue mea-

sure of a Borel set E ⊆Rn as |E |.

• For p ∈ [1,∞] we let p ′ be the Hölder conjugate of p, i.e. p ′ ∈ [1,∞] such that
1
p + 1

p ′ = 1.

• For s, t ∈Rwe define s ∨ t = max{s, t } and s ∧ t = min{s, t } and for vectors a,b ∈Cn

we write

a ·b :=
n∑

k=1
ak bk , a/b :=

n∑
k=1

ak

bk
.

For a multi-index α ∈ Nn we write |α| = ∑n
k=1αk and for t ∈ Rn we write tα :=∏n

k=1 tαk
k . Moreover we define the partial derivatives ∂α := ∂α1

1 · · ·∂αn
n .

• Let X , Y be a Banach spaces and (S,µ) a measure space. We write L(X ,Y ) for the

bounded linear operators from X to Y and we write L(X ) := L(X , X ). If we say

that a function f : S →L(X ,Y ) is strongly measurable, we mean that f is strongly

measurable in the strong operator topology on L(X ,Y ), i.e. s 7→ f (s)x is strongly

measurable for all x ∈ X . We denote the space of all strongly measurable functions

f : S → X by L0(S; X ).

For p ∈ [1,∞] we define the Bochner space Lp (S; X ) as the space of all f ∈ L0(S; X )

such that

‖ f ‖Lp (S;X ) :=
(∫

S
‖ f ‖p

X dµ
)1/p <∞, p <∞,

‖ f ‖L∞(S;X ) := esssup
s∈S

‖ f (s)‖X <∞, p =∞.

For p ∈ [1,∞) and q ∈ [1,∞] we define the X -valued Lorentz space Lp,q (S; X ) as

the space of all L0(S; X ) such that

‖ f ‖Lp,q (S;X ) := ∥∥t 7→ t ·µ(
{s ∈ S : ‖ f (s)‖X > t }

)1/p∥∥
Lq (R+, dt

t ) <∞.

21
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Note that ‖·‖Lp,q (S;X ) is only a quasi-norm. For p ∈ (1,∞) these spaces are normable,

i.e. there exists an equivalent norm on Lp,q (S; X ). For p ∈ [1,∞) we have Lp,p (S; X ) =
Lp (S; X ) with equivalent norms and if µ(S) <∞ we have the continuous embed-

ding Lp,∞(S) ,→ L1(S) with

‖ f ‖L1(S) <∼p µ(S)1/p ′‖ f ‖Lp,∞(S), f ∈ Lp,∞(S). (2.0.1)

• Let S be a quasi-metric space with a Borel measure µ. We denote a ball around

s ∈ S with radius r by B(s,r ). For a Banach space X and p ∈ [1,∞) we denote by

Lp
loc(S; X ) the space of all f ∈ L0(S; X ) such that f 1B ∈ Lp (S; X ) for all balls B ⊆ S.

Moreover let L∞
c (S; X ) be the space of all f ∈ L∞(S; X ) such that the support of f ,

denoted by supp f , is contained in some ball B ⊆ S. For f ∈ L1
loc(S; X ) and a Borel

set E ⊆ S with finite positive measure we write

〈 f 〉1,E :=
∫

E
f dµ := 1

µ(E)

∫
E

f dµ.

and if f ∈ Lp
loc(S) is positive, we write 〈 f 〉p,E := (〈 f p〉1,E

)1/p .

• For an interpolation couple of Banach spaces (X0, X1), θ ∈ (0,1) and q ∈ [1,∞],

we denote the real and complex interpolation spaces by (X0, X1)θ,q and [X0, X1]θ
respectively. For p0, p1 ∈ [1,∞] and θ ∈ [0,1], we define the interpolation exponent

[p0, p1]θ by
1

[p0, p1]θ
:= 1−θ

p0
+ θ

p1

with the interpretation 1/0 :=∞. This lets us write interpolation results such as

[Lp0 (S),Lp1 (S)]θ = L[p0,p1]θ (S)

in a pleasing compact form. For details on the real and complex interpolation

method we refer to [BL76, Tri78] and [HNVW16, Appendix C].

• We write Ca,b,... to denote a constant which only depends on the parameters a,b, . . .

and which may change from line to line. By<∼a,b,... we mean that there is a constant

Ca,b,... such that inequality holds and by 'a,b,... we mean that <∼a,b,... and >∼a,b,...

hold.

2.1. SPACES OF HOMOGENEOUS TYPE

A space of homogeneous type (S,d ,µ), originally introduced by Coifman and Weiss in

[CW71], is a set S equipped with a quasi-metric d and a doubling Borel measure µ. That

is, a metric d which instead of the triangle inequality satisfies

d(s, t ) ≤ cd
(
d(s,u)+d(u, t )

)
, s, t ,u ∈ S
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for some cd ≥ 1, and a Borel measure µ that satisfies the doubling property

µ
(
B(s,2r )

)≤ cµµ
(
B(s,r )

)
, s ∈ S, r > 0

for some cµ ≥ 1. Taking the least admissible cµ, we define the doubling dimension by

ν := log2 cµ. Then there is a C > 0 such that

µ(B(s,R)) ≤C
(R

r

)ν
µ(B(s,r )), s ∈ S, R > r > 0, (2.1.1)

µ(B(s,r )) ≤C
(
1+ d(s, t )

r

)ν
µ(B(t ,r )), s, t ∈ S, r > 0. (2.1.2)

Throughout this dissertation we will assume additionally that all balls B ⊆ S are Borel

sets and that we have 0 < µ(B) < ∞. We will write that an estimate depends on S if it

depends on cd and cµ.

It was shown in [Ste15, Example 1.1] that it can indeed happen that balls are not

Borel sets in a quasi-metric space. This can be circumvented by taking topological clo-

sures and adjusting the constants cd and cµ accordingly. However, to simplify matters

we just assume all balls to be Borel sets and leave the necessary modifications if this

is not the case to the reader. The size condition on the measure of a ball ensures that

taking the average 〈 f 〉p,B of a positive function f ∈ Lp
loc(S) over a ball B ⊆ S is always

well-defined.

As µ is a Borel measure, i.e. a measure defined on the Borel σ-algebra of the quasi-

metric space (S,d), the Lebesgue differentiation theorem holds and as a consequence

the continuous functions with bounded support are dense in Lp (S) for all p ∈ [1,∞).

The Lebesgue differentiation theorem (and consequently our results) remain valid if µ

is a measure defined on a σ-algebra Σ that contains the Borel σ-algebra as long as the

measure space (S,Σ,µ) is Borel semi-regular, see [AM15, Theorem 3.14] for the details.

For a thorough introduction to and a list of examples of spaces of homogeneous type we

refer to the monographs of Christ [Chr90] and Alvarado and Mitrea [AM15].

2.1.1. DYADIC CUBES

Let 0 < c0 ≤ C0 < ∞ and 0 < δ < 1. Suppose that for k ∈ Z we have an index set Jk , a

pairwise disjoint collection Dk = {Q j
k } j∈Jk of measurable sets and a collection of points

{zk
j } j∈Jk . We call D :=⋃

k∈ZDk a dyadic system with parameters c0, C0 and δ if it satisfies

the following properties:

(i) For all k ∈Zwe have S =⋃
j∈Jk

Qk
j .

(ii) For k ≥ l , Q ∈Dk and Q ′ ∈Dl we either have Q ∩Q ′ =∅ or Q ⊆Q ′.

(iii) For each k ∈Z and j ∈ Jk we have

B(zk
j ,c0δ

k ) ⊆Qk
j ⊆ B(zk

j ,C0δ
k ).



24 2. PRELIMINARIES

We will call the elements of a dyadic system D cubes. For a cube Q ∈ D we define the

restricted dyadic system D(Q) := {P ∈ D : P ⊆ Q}. We will say that an estimate depends

on D if it depends on the parameters c0, C0 and δ.

One can view zk
j and δk as the center and side length of a cube Qk

j ∈Dk . These have

to be with respect to a specific k ∈ Z, as this k may not be unique. We therefore think

of a cube Q ∈ D to also encode the information of its center z and generation k. The

structure of individual dyadic cubes Q ∈D in a space of homogeneous type can be very

messy and consequently the dilations of such cubes do not have a canonical definition.

Therefore for a cube Q ∈D with center z and of generation k we define the dilations αQ

for α≥ 1 as

αQ := B
(
z,α ·C0δ

k)
,

which are actually dilations of the ball that contains Q by property (iii) of a dyadic sys-

tem.

When S = Rn and d is the Euclidean distance, the standard dyadic cubes form a

dyadic system and, combined with its translates over α ∈ {0, 1
3 , 2

3 }n , it holds that any ball

inRn is contained in a cube of comparable size from one of these dyadic systems (see e.g.

[HNVW16, Lemma 3.2.26]). We will rely on the following proposition for the existence

of dyadic systems with this property in a general space of homogeneous type. For the

proof and a more detailed discussion we refer to [HK12].

Proposition 2.1.1. Let (S,d ,µ) be a space of homogeneous type. There exist constants

0 < c0 ≤C0 <∞, γ≥ 1, 0 < δ< 1 and m ∈N such that there are dyadic systems D1, . . . ,Dm

with parameters c0, C0 and δ, and with the property that for each s ∈ S and r > 0 there is

a j ∈ {1, . . . ,m} and a Q ∈D j such that

B(s,r ) ⊆Q, and diam(Q) ≤ γr.

As an example of a space of homogeneous type with a dyadic system, we now intro-

duce the anisotropic Euclidean spaces, which are for example used when one considers

parabolic equations in space-time Rn ×R+ .

Example 2.1.2 (Anisotropic Euclidean spaces). For a ∈ (0,∞)n let | · |a be the anisotropic

quasi-norm

|s|a :=
( n∑

k=1
|sk |2/ak

)1/2
, s ∈Rn . (2.1.3)

and define

Rn
a := (Rn , | ·− · |a , dt ).

Then Rn
a is a space of homogeneous type and e.g.

Da :=
{ n∏

k=1

(
2− j ak ([0,1)+mk )

)
: m ∈Zn , j ∈Z

}
is a dyadic system in Rn

a .
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We end this section with a covering lemma, which shows that we can partition a

space of homogeneous type S with a dyadic system D such that a certain set is contained

in a dilation of every element of the partition. This will be useful to turn our abstract

local sparse domination result in Chapter 3 into a global sparse domination result.

Lemma 2.1.3. Let (S,d ,µ) be a space of homogeneous type and D a dyadic system with

parameters c0, C0 and δ. Suppose that diam(S) =∞, take α≥ 3c2
d /δ and let E ⊆ S satisfy

0 < diam(E) <∞. Then there exists a partition D ⊆D of S such that E ⊆αQ for all Q ∈D.

Proof. For s ∈ S and k ∈ Z let Qk
s ∈ Dk be the unique cube such that s ∈ Qk

s and denote

its center by zk
s . Define

Ks := {
k ∈Z : E 6⊆ 2cdQk

s

}
,

where cd is the quasi-metric constant. If k ∈Z is such that

diam(2cdQk
s ) ≤ 4c2

dC0δ
k < diam(E),

then E 6⊆ 2cdQk
s , i.e. k ∈ Ks , so Ks is non-empty. On the other hand if k ∈ Z is such that

C0δ
k > sups′∈E d(s, s′), then

sup
s′∈E

d(s′, zk
s ) ≤ cd

(
sup
s′∈E

d(s, s′)+d(s, zk
s )

)≤ 2cdC0δ
k ,

so E ⊆ 2cdQk
s and thus k ∉ Ks . Therefore Ks is bounded from below.

Define ks := minKs and set D := {Qks
s : s ∈ S}. Then D is a partition of S. Indeed, sup-

pose that for s, s′ ∈ S we have Qks
s ∩Q

ks′
s′ 6=∅. Then using property (ii) of a dyadic system

we may assume without loss of generality that Qks
s ⊆ Q

ks′
s′ . Property (ii) of a dyadic sys-

tem then implies that ks ≥ ks′ . In particular s ∈Q
ks′
s′ , so by the minimality of ks we must

have ks = ks′ . Therefore since the elements of Dks are pairwise disjoint we can conclude

Qks
s =Q

ks′
s′ .

To conclude note that zks
s ∈ Qks

s ⊆ Qks−1
s by property (ii) of a dyadic system, which

implies d(zks−1
s , zks

s ) ≤C0δ
ks−1. Therefore, using the minimality of ks , we obtain

E ⊆ 2cdQks−1
s = B(zks−1

s ,2cdC0δ
ks−1) ⊆ B

(
zks

s ,
3c2

d

δ
·C0δ

ks
)
⊆αQks

s ,

which finishes the proof.

2.2. MAXIMAL OPERATORS

Let (S,d ,µ) be a space of homogeneous type with a dyadic system D and take q ∈ (0,∞).

We define the Hardy–Littlewood maximal operator Mq for an f ∈ Lq
loc(S) by

Mq f (s) := sup
B3s

〈| f |〉q,B , s ∈ S,
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where the supremum is taken over all balls B ⊆ S containing s. We define the dyadic

Hardy–Littlewood maximal operator MD
q by

MD
q f (s) := sup

Q∈D :s∈Q
〈| f |〉q,Q , s ∈ S

When q = 1 we write M := M1 and MD := MD
1 respectively. Obviously we have

MD
q f (s) <∼S,D ,q Mq f (s), s ∈ S.

Conversely, by Proposition 2.1.1 there are m dyadic systems D1, . . . ,Dm such that

Mq f (s) <∼S,q

m∑
j=1

MD
q f (s), s ∈ S. (2.2.1)

The Hardy–Littlewood maximal operator satisfies the following bounds:

Proposition 2.2.1. Let (S,d ,µ) be a space of homogeneous type and 0 < q < p <∞. Then

‖Mq f ‖Lp (S) <∼S,p,q ‖ f ‖Lp (S), f ∈ Lp (S),

‖Mq f ‖Lp,∞(S) <∼S,p,q ‖ f ‖Lp,∞(S), f ∈ Lp,∞(S),

‖Mq f ‖Lq,∞(S) <∼S,q ‖ f ‖Lq (S), f ∈ Lq (S).

The case q = 1 for the dyadic Hardy–Littlewood maximal operator follow from Doob’s

maximal inequalities (see [HNVW16, Theorem 3.2.3]). The same estimates for the non-

dyadic Hardy–Littlewood maximal operator then follow from (2.2.1). The case q 6= 1

follows by rescaling.

Remark 2.2.2. InRn one can also consider the Hardy–Littlewood maximal operator over

cubes, defined by

M cubes f (t ) := sup
Q3t

〈| f |〉1,Q , t ∈Rn ,

where the supremum is taken over all cubes Q in Rn with sides parallel to the axes con-

taining t . Then M cubes f (t ) is pointwise comparable with M f (t )

Let X be a Banach space. We define the sharp maximal operator for an f ∈ L1
loc(S; X )

by

M # f (s) := sup
B3s

∫
B

∥∥ f (t )−〈 f 〉1,B
∥∥

X dµ(t ), s ∈ S,

where the supremum is again taken over all balls B ⊆ S containing s. Note that it is

immediate from this definition that M # f ≤ 2M(‖ f ‖X ), so by Proposition 2.2.1 we have

in particular that

‖M # f ‖Lp (S) <∼S,p ‖ f ‖Lp (S;X ), f ∈ Lp (S; X ).

There is a partial converse to this statement, which is known as the Fefferman-Stein

inequality:
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Proposition 2.2.3 (Feffermann-Stein). Let (S,d ,µ) be a space of homogeneous type, X be

a Banach space, 1 < p <∞ and f ∈ Lp (S; X ). Then

‖M # f ‖Lp (S) <∼S,p ‖ f ‖Lp (S;X ) <∼S,p

{
‖M # f ‖Lp (S), µ(S) =∞,

‖M # f ‖Lp (S) +µ(S)−1/p ′‖ f ‖L1(S), µ(S) <∞.

For X = C the proof can be found in [Mar04, Proposition 3.1 and Theorem 4.2] or

[DK18, Theorem 2.3]. The general case follows analogously replacing absolute values by

norms.

Proposition 2.2.3 is not valid for p = ∞. In this case the space of all f ∈ L1
loc(S; X )

such that M # f ∈ L∞(S; X ) is strictly larger than L∞(S; X ). It includes all functions f ∈
L0(S; X ) which have bounded mean oscillation. We define BMO(S; X ) to be the space of

all f ∈ L1
loc(S; X ) such that

‖ f ‖BMO(S;X ) := sup
B

inf
c∈X

∫
B
‖ f (s)− c‖X dµ(s) <∞

where the supremum is taken over all balls B ⊆ S. Note that ‖·‖BMO(S;X ) is only a semi-

norm, since ‖c 1S‖BMO(S;X ) = 0 for any c ∈ X . In analogy with Proposition 2.2.3 we have

1

2
‖M # f ‖L∞(S) ≤ ‖ f ‖BMO(S;X ) ≤ ‖M # f ‖L∞(S).

We refer to [Gra14b, Chapter 3] for an introduction to BMO.

2.3. MUCKENHOUPT WEIGHTS

Let (S,µ) be a measure space. A weight is a function w : S → [0,∞). For p ∈ [1,∞), a

weight w and a Banach space X we let Lp (S, w ; X ) be the subspace of all f ∈ L0(S; X )

such that

‖ f ‖Lp (S,w ;X ) :=
(∫

S
‖ f ‖p

X w dµ
)1/p <∞.

If (S,d ,µ) is a space of homogeneous type we will say that a locally integrable weight w

lies in the Muckenhoupt class Ap (S) and write w ∈ Ap (S) if it satisfies

[w]Ap (S) := sup
B

〈w〉1,B 〈w−1〉 1
p−1 ,B <∞,

where the supremum is taken over all balls B ⊆ S and the second factor is replaced by

(essinfB w)−1 if p = 1. We will omit the space of homogeneous type S in our notation if

no confusion may arise.

Example 2.3.1 (Power weights). Let α ∈ (−n,∞) and define w : Rn → (0,∞) by w(x) :=
|x|α. Then w ∈ Ap (Rn) if and only α ∈ (−n,n(p −1)).

Let us note some basic properties of Muckenhoupt weights, the proofs of which can

be found in [Gra14a, Chapter 7] in the Euclidean setting and carry over to spaces of

homogeneous type (see also [HPR12]).
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Proposition 2.3.2. Let (S,d ,µ) be a space of homogeneous type and let w be a weight.

(i) Let p ∈ (1,∞). We have w ∈ Ap if and only if w− 1
p−1 ∈ Ap ′ with

[
w− 1

p−1
]

Ap′
= [w]

1
p−1

Ap
.

(ii) Let p ∈ (1,∞) and q ∈ [1, p). For w ∈ Aq we have w ∈ Ap with [w]Ap ≤ [w]Aq .

(iii) Let p ∈ (1,∞). For all w ∈ Ap there exists an ε> 0 such that w ∈ Ap−ε.

(iv) Let p ∈ [1,∞). For all w ∈ Ap there is a δ> 0 such that w1+δ ∈ Ap .

(v) For all p ∈ (1,∞) and all weights w we have

‖M‖Lp (S,w)→Lp (S,w)) <∼S,p [w]
1

p−1

Ap
<∼S,p ‖M‖p ′

Lp (S,w)→Lp (S,w))

Related to property (i) in Proposition 2.3.2 we define the dual weight w ′ := w− 1
p−1 for

p ∈ (1,∞). We then have Lp (S, w)∗ = Lp ′
(S, w ′)) under the duality pairing

〈 f , g 〉 =
∫

S
f g dµ, f ∈ Lp (S, w), g ∈ Lp ′

(S, w ′).

One of the most important features of the Muckenhoupt weight classes is the cele-

brated Rubio de Francia extrapolation theorem (see e.g. [GR85, Chapter IV]). This allows

one to deduce estimates for all p ∈ (1,∞) and all w ∈ Ap from the corresponding esti-

mates for a single p0 ∈ (1,∞) and all w ∈ Ap0 . For a nice exposition of the proof in the

Euclidean setting we refer to [CMP12]. The proof carries over directly to spaces of ho-

mogeneous type, see e.g. [DK18, Theorem 2.5].

Theorem 2.3.3 (Rubio de Francia extrapolation). Let (S,d ,µ) a space of homogeneous

type. Let f , g ∈ L0(S) and suppose that there is a p0 ∈ (1,∞) and a nondecreasing function

φ : R+ →R+ such that for all w ∈ Ap0

‖ f ‖Lp0 (S,w) ≤φ
(
[w]Ap0

)‖g‖Lp0 (S,w) (2.3.1)

Then for all p ∈ (1,∞) there exists a nondecreasing ψ :R+ →R+, depending on S,φ, p, p0,

such that for all w ∈ Ap

‖ f ‖Lp (S,w) ≤ψ
(
[w]Ap

)‖g‖Lp (S,w) (2.3.2)

Note that if (2.3.1) in Theorem 2.3.3 holds for a fixed function φ, all w ∈ Ap0 and all

( f , g ) ∈ F for some F ⊆ L0(S)×L0(S), then (2.3.2) also holds for a fixed ψ, all w ∈ Ap0

and all ( f , g ) ∈F . For a further introduction to the theory of Muckenhoupt weights and

Rubio de Francia extrapolation we refer to [Gra14a, Chapter 7] and [CMP12].
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2.4. BANACH SPACE GEOMETRY

A random variable ε on a probability space (Ω,P) is called a Rademacher if it is uniformly

distributed in {z ∈ C : |z| = 1}. A random variable γ on (Ω,P) is called a Gaussian if its

distribution has density

f (z) = 1

π
e−|z|

2
, z ∈C,

with respect to the Lebesgue measure on C. A Rademacher sequence (respectively Gaus-

sian sequence) is a sequence of independent Rademachers (respectively Gaussians). For

all our purposes we could equivalently use real-valued Rademacher and Gaussians, see

e.g. [HNVW17, Section 6.1.c].

Let X be a Banach space and let (εk )∞k=1 be a Rademacher sequence and (γk )∞k=1 a

Gaussian sequence. For p ∈ (0,∞) and x1, . . . , xn ∈ X the random sums∥∥∥ n∑
k=1

εk xk

∥∥∥
Lp (Ω;X )

and
∥∥∥ n∑

k=1
γk xk

∥∥∥
Lp (Ω;X )

,

play a major role in the study of the geometry of X . It is immediate from Hölder’s in-

equality that for 0 < q < p we have∥∥∥ n∑
k=1

εk xk

∥∥∥
Lq (Ω;X )

≤
∥∥∥ n∑

k=1
εk xk

∥∥∥
Lp (Ω;X )

and a similar estimate for Gaussian random sums. The converse of these inequalities

are known as the Kahane-Khintchine inequalities. For the proof we refer to [HNVW17,

Theorem 6.2.4 and 6.2.6].

Proposition 2.4.1 (Kahane-Khintchine inequalities). Let X be a Banach space and let

(εk )∞k=1 be a Rademacher sequence and (γk )∞k=1 a Gaussian sequence. For p, q ∈ (0,∞)

and x1, . . . , xn ∈ X we have∥∥∥ n∑
k=1

εk xk

∥∥∥
Lp (Ω;X )

<∼p,q

∥∥∥ n∑
k=1

εk xk

∥∥∥
Lq (Ω;X )∥∥∥ n∑

k=1
γk xk

∥∥∥
Lp (Ω;X )

<∼p,q

∥∥∥ n∑
k=1

γk xk

∥∥∥
Lq (Ω;X )

2.4.1. TYPE AND COTYPE

Let X be a Banach space and let (εk )∞k=1 be a Rademacher sequence on a probability

space (Ω,P). We say that X has type p ∈ [1,2] if there exists a constant C ≥ 0 such that for

x1, . . . , xn ∈ X we have ∥∥∥ n∑
k=1

εk xk

∥∥∥
Lp (Ω;X )

≤C
( n∑

k=1
‖xk‖p

X

)1/p
. (2.4.1)
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We say that X has cotype q ∈ [2,∞] if there exists a constant C ≥ 0 such that for x1, . . . , xn ∈
X we have ( n∑

k=1
‖xk‖q

X

)1/q ≤C
∥∥∥ n∑

k=1
εk xk

∥∥∥
Lq (Ω;X )

(2.4.2)

with the usual modification if q =∞. The least admissible constants C will be denoted

by τp,X and cq,X respectively. By Proposition 2.4.1 one may replace the Lp (Ω; X )-norm

in (2.4.1) and the Lq (Ω; X )-norm in (2.4.2) by the L2(Ω; X )-norm if q <∞.

Any Banach space has type 1 and cotype ∞. Moreover if X has type p0 ∈ [1,2] and

cotype q0 ∈ [2,∞], it also has type p ∈ [1, p0) and cotype q ∈ (q0,∞]. We say that X has

nontrivial type if X has type p ∈ (1,2] and finite cotype if X has cotype q ∈ [2,∞). Any

space with nontrivial type has finite cotype (see [HNVW17, Theorem 7.1.14]).

Type and cotype are dual notions. For the proof of the following proposition we refer

to [HNVW17, Proposition 7.1.3, 7.4.10 and 7.4.12].

Proposition 2.4.2. Let X be a Banach space.

(i) If X has type p ∈ [1,2], then X ∗ has cotype p ′.

(ii) If X has cotype q ∈ [2,∞] and nontrivial type, then X ∗ has type q ′.

As examples we note that for p ∈ [1,∞) the Lebesgue spaces Lp (Rn) and Sobolev

spaces W k,p (Rn) have type p∧2 and cotype p∨2. Any Hilbert space has type and cotype

2. Conversely, any Banach space with type and cotype 2 is isomorphic to a Hilbert space

(see [HNVW17, Theorem 7.3.1]).

If X has finite cotype, Rademacher and Gaussian random sums are comparable. For

the proof we refer to [HNVW17, Corollary 7.2.10]

Proposition 2.4.3. Let X be a Banach space and let (εk )∞k=1 be a Rademacher sequence

and (γk )∞k=1 a Gaussian sequence. For p ∈ (0,∞) and x1, . . . , xn ∈ X we have

∥∥∥ n∑
k=1

εk xk

∥∥∥
Lp (Ω;X )

<∼
∥∥∥ n∑

k=1
γk xk

∥∥∥
Lp (Ω;X )

,

If X has finite cotype, then

∥∥∥ n∑
k=1

γk xk

∥∥∥
Lp (Ω;X )

<∼X ,p

∥∥∥ n∑
k=1

εk xk

∥∥∥
Lp (Ω;X )

.

As a direct consequence of Proposition 2.4.3 we note that (2.4.1) and (2.4.2) imply

the same estimates with the Rademacher sequence replaced by a Gaussian sequence.

For a further introduction to type and cotype we refer to [HNVW17, Chapter 7].
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2.4.2. THE UMD PROPERTY

We say that a Banach space X has the UMD property, and write X ∈ UMD, if the martin-

gale difference sequence of any finite martingale in Lp (S; X ) on aσ-finite measure space

(S,µ) is unconditional for some (equivalently all) p ∈ (1,∞). That is, if there exists a con-

stant C > 0 such that for all finite martingales ( fk )n
k=0 in Lp (S; X ) and scalars |εk | = 1, we

have ∥∥∥ n∑
k=1

εk d fk

∥∥∥
Lp (S;X )

<∼
∥∥∥ n∑

k=1
d fk

∥∥∥
Lp (S;X )

, (2.4.3)

where (d fk )n
k=1 denotes the difference sequence of ( fk )n

k=0. The least admissible implicit

constant in (2.4.3) will be denoted by βp,X . It is equivalent to assume (2.4.3) only for

Paley-Walsh martingales (see [HNVW16, Theorem 4.2.5]).

Any Banach space with the UMD property is reflexive, has nontrivial type and finite

cotype (see [HNVW16, Theorem 4.3.3] and [HNVW17, Proposition 7.3.15]). Standard

examples of Banach spaces with the UMD property include reflexive Lebesgue, Lorentz,

(Musielak)-Orlicz, Sobolev, Bessel potential and Besov spaces.

We will also use randomized versions of the UMD property. We say that a Banach

space X has the UMD+ (respectively UMD−) property if for some (equivalently all) p ∈
(1,∞) there exists a constant β+ > 0 (respectively β− > 0) such that for all finite martin-

gales ( fk )n
k=1 in Lp (S; X ) we have

1

β−
∥∥∥ n∑

k=1
d fk

∥∥∥
Lp (S;X )

≤
∥∥∥ n∑

k=1
εk d fk

∥∥∥
Lp (S×Ω;X )

≤β+
∥∥∥ n∑

k=1
d fk

∥∥∥
Lp (S;X )

, (2.4.4)

where (εk )n
k=1 is a Rademacher sequence on (Ω,P). The least admissible constants in

(2.4.4) will be denoted by β+
p,X and β−

p,X . If (2.4.4) holds for Paley-Walsh martingales on

a probability space S we say that X has the dyadic UMD+ or UMD− property respectively

and denote the least admissible constants by β∆,+
p,X and β∆,−

p,X . As for the UMD property,

the (dyadic) UMD+ and UMD− properties are independent of p ∈ (1,∞) (see [Gar90]).

However, in contrast to the situation for the UMD property, it is not clear whether the

dyadic versions of the UMD+ and UMD− properties are equivalent to their non-dyadic

counterparts. We do have that β∆,+
p,X ≤ β+

p,X and β∆,−
p,X ≤ β−

p,X . Furthermore X has the

UMD property if and only if it has the UMD+ and UMD− properties with

max{β−
p,X ,β+

p,X } ≤βp,X ≤β−
p,Xβ

+
p,X ,

see [HNVW16, Proposition 4.1.16]. For a thorough introduction to the theory of UMD

Banach spaces we refer the reader to [HNVW16, Pis16].

2.5. BANACH LATTICES AND FUNCTION SPACES

A partially ordered vector space X is called a vector lattice if any two elements x, y ∈ X

have a least upper bound x ∨ y and a greatest lower bound x ∧ y . A Banach lattice X is a
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complete normed vector lattice such that order and norm are compatible, i.e.

|x| ≤ |y |⇒ ‖x‖X ≤ ‖y‖X , x, y ∈ X ,

where |x| = x∨−x for x ∈ X . We refer to [Mey91] or [Zaa67] for an introduction to Banach

lattices.

On a Banach lattice we can compare Rademacher sums and Gaussian sums with

square sums of the form ( n∑
k=1

|xk |2
)1/2

, x1, . . . , xn ∈ X ,

which are defined through the Krivine calculus, see e.g. [LT79, Theorem 1.d.1]. For the

proof of the following proposition we refer to [HNVW17, Proposition 7.2.13].

Proposition 2.5.1 (Khintchine–Maurey inequalities). Let X be a Banach lattice and let

(εk )∞k=1 be a Rademacher sequence on a probability space (Ω,P). For p ∈ (0,∞) and

x1, . . . , xn ∈ X we have∥∥∥( n∑
k=1

|xk |2
)1/2∥∥∥

X
<∼p

∥∥∥ n∑
k=1

εk xk

∥∥∥
Lp (Ω;X )

,

If X has finite cotype q ∈ [2,∞), then∥∥∥ n∑
k=1

εk xk

∥∥∥
Lp (Ω;X )

<∼p
p

q cq,X

∥∥∥( n∑
k=1

|xk |2
)1/2∥∥∥

X
.

A class of Banach lattices that we will frequently use is the class of Banach function

spaces. Let (Ω,µ) be a σ-finite measure space. A Banach lattice X ⊆ L0(Ω) with the

partial order given by x ≥ 0 if and only if x(ω) ≥ 0 for a.e. ω ∈ Ω is called a Banach

function space if it satisfies the following two additional properties

• Weak order unit: There is an x ∈ X with x(ω) > 0 for a.e. ω ∈Ω.

• Fatou property: If 0 ≤ xn ↑ x for (xn)∞n=1 in X and supn∈N‖xn‖X < ∞, then x ∈ X

and ‖x‖X = supn∈N‖xn‖X .

A Banach function space X is called order-continuous if for any sequence satisfying

0 ≤ xn ↑ x ∈ X we have ‖xn − x‖X → 0. As an example we note that all reflexive Banach

function spaces are order-continuous (see e.g. [Mey91, Section 2.4]). Order-continuity

of X ensures that its the dual X ∗ is also a Banach function space. In this case the duality

pairing is given by

〈x, x∗〉 =
∫
Ω

x(ω) · x∗(ω) dµ(ω), x ∈ X , x∗ ∈ X ∗.

For a Banach function space X and a Banach space Y we write X (Y ) for the Köthe-

Bochner space of all f ∈ L0(Ω;Y ) such that ω 7→ ‖ f (ω)‖Y ∈ X and define its norm by

‖ f ‖X (Y ) := ∥∥ω 7→ ‖ f (ω)‖Y
∥∥

X .

For an introduction to Banach function spaces we refer the reader to [LT79, Section

1.b] or [BS88].
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2.5.1. p-CONVEXITY AND q -CONCAVITY

On a Banach lattice X , the notions p-convexity and q-concavity are closely related to

type and cotype. We say X is p-convex with p ∈ [1,∞] if for x1, . . . , xn ∈ X∥∥∥( n∑
k=1

|xk |p
)1/p∥∥∥

X
<∼X ,p

( n∑
k=1

‖xk‖p
X

)1/p

and X is called q-concave with q ∈ [1,∞] if for x1, . . . , xn ∈ X( n∑
k=1

‖xk‖q
X

)1/q <∼X ,q

∥∥∥( n∑
k=1

|xk |q
)1/q∥∥∥

X
.

By renorming we may assume without loss of generality that the implicit constants are

equal to 1 (see [LT79, Theorem 1.d.8].

Any Banach lattice is 1-convex and ∞-concave and if X is p-concave and q-concave

for 1 ≤ p ≤ q ≤∞, then it is p0-convex and q0-concave for p0 ∈ [1, p) and q0 ∈ (q,∞]. The

duality of p-convexity and q-concavity is simpler than the duality of type and cotype, for

the proof we refer to [LT79, Theorem 1.d.4].

Proposition 2.5.2. Let X be a Banach lattice and p, q ∈ [1,∞]. If X is p-convex and q-

concave, then X ∗ is q ′-convex and p ′-concave.

The connection between type, cotype, p-convexity and q-concavity is captured in

the following proposition. For the proof we refer to [LT79, Proposition 1.f.3 and Corollary

1.f.9].

Proposition 2.5.3. Let X be a Banach lattice and 1 < p < r < q <∞.

(i) If X has type r , then it is p-convex.

(ii) If X is p-convex and q-concave, then it has type p ∧2.

(iii) If X has cotype r , then it is q-concave.

(iv) If X is q-concave, then it has cotype q ∨2.

If X is p-convex Banach function space for some p ∈ [1,∞], we can define its p-

concavification X p by

X p = {|x|p sgn x : x ∈ X
}= {

x : |x|1/p ∈ X
}

with norm

‖x‖X p = ∥∥|x|1/p∥∥p
X .

This definition can be extended to Banach lattices, see [LT79, Section 1.d]. In Chapter

7 we will often use p-convex Banach function spaces such that X p has the UMD prop-

erty, which we will abbreviate as X p ∈ UMD. We refer to [LT79, Chapter 1] for a further

introduction to p-convexity and q-concavity.
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2.6. R- AND `r -BOUNDEDNESS

For a family of bounded operators Γ from a Banach space X to a Banach space Y , we

will use the notionsR- and `r -boundedness, which are both a strengthening of uniform

boundedness for Γ.

Definition 2.6.1. Let X and Y be Banach spaces and Γ⊆L(X ,Y ).

• Let (εk )∞k=1 be a Rademacher sequence on a probability space (Ω,P). We say that

Γ is R-bounded if for all T1, · · · ,Tn ∈ Γ and x1, · · · , xn ∈ X ,∥∥∥ n∑
k=1

εk Tk xk

∥∥∥
L2(Ω;Y )

<∼
∥∥∥ n∑

k=1
εk xk

∥∥∥
L2(Ω;X )

.

The least admissible implicit constant is called the R-bound of Γ and is denoted

by ‖Γ‖R.

• If X and Y are Banach lattices, we say that Γ is `r -bounded for r ∈ [1,∞] if for all

T1, · · · ,Tn ∈ Γ and x1, · · · , xn ∈ X ,∥∥∥( n∑
k=1

|Tk xk |r
)1/r ∥∥∥

Y
<∼

∥∥∥( n∑
k=1

|xk |r
)1/r ∥∥∥

X
.

The least admissible implicit constant is called the `r -bound of Γ, and is denoted

by ‖Γ‖`r .

For R- and `2-boundedness it suffices to consider subsets of Γ in the defining in-

equality (see [CPSW00, KVW16]). For `r -boundedness with r 6= 2 this is not the case:

one must allow repeated elements. A singleton {T } can fail to be `r -bounded, as the

defining estimate may fail for arbitrarily long constant sequences (T, . . . ,T ) (see [KU14,

Example 2.16]).

If a set Γ ⊆ L(X ,Y ) is R- or `r -, then so is its closure in the strong operator topol-

ogy, and likewise its absolutely convex hull absco(Γ). This was proven in [KW04] for

R-boundedness and [KU14] for `r -boundedness. Moreover, if Γ1,Γ2 ⊆ L(X ) are R or

`2-bounded respectively, then Γ1 ∪Γ2 is R− or `2-bounded respectively. For duality we

have the following result, for the proof of (i) we refer to [HNVW17, Proposition 8.4.1] and

for (ii) follows from the duality X (`r
n)∗ = X ∗(`r ′

n ) (see [LT79, Section 1.d.]).

Proposition 2.6.2. Let X and Y be Banach spaces and let Γ⊆L(X ,Y ). Define the adjoint

family Γ∗ := {T ∗ : T ∈ Γ} ⊆L(X ∗,Y ∗).

(i) If X has nontrivial type and Γ is R-bounded, then Γ∗ is R-bounded.

(ii) If X and Y are Banach lattices and Γ is `r -bounded for some r ∈ [1,∞], then Γ∗ is

`r ′-bounded.
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If X has cotype 2 and Y has type 2, then it is direct from the definitions that any

uniformly bounded Γ⊆L(X ,Y ) is R-bounded with

‖Γ‖R ≤ cX ,2τY ,2 sup
T∈Γ

‖T ‖.

The converse is also true, i.e. if every uniformly bounded Γ ⊆ L(X ,Y ) is R-bounded,

then X has cotype 2 and Y has type 2 (see [HNVW17, Proposition 8.6.1]). In particular,

in the case X = Y , we have that R-boundedness coincides with uniform boundedness

if and only if X is isomorphic with a Hilbert space. Similar statements can be made for

`r -boundedness and r -convex and r -concave Banach lattices.

If X and Y are Banach lattices and X and Y have finite cotype, then R- and `2-

boundedness are equivalent by Proposition 2.5.1.

Proposition 2.6.3. Let X and Y be Banach lattices and let Γ⊆L(X ,Y ).

• If X has finite cotype q ∈ [2,∞) and Γ is R-bounded, then Γ is `2-bounded with

‖Γ‖`2 <∼
p

qcq,X ‖Γ‖R.

• If Y has finite cotype q ∈ [2,∞) and Γ is `2-bounded, then Γ is R-bounded with

‖Γ‖R <∼
p

qcq,Y ‖Γ‖`2 .

For a thorough discussion on the connection between R and `2-boundedness we

refer to [KVW16]. For a further introduction to R-boundedness we refer the reader to

[HNVW17, KW04], and for a further introduction to`r -boundedness see [KU14, Wei01a].

2.7. FOURIER MULTIPLIERS

In this section we will introduce operator-valued Fourier multiplier theory. For a de-

tailed historical description of vector-valued and operator-valued Fourier multiplier the-

ory we refer to [HNVW16, HNVW17] and for an introduction to scalar-valued Fourier

multiplier theory we refer to [Gra14a, Chapter 6].

Let X be a Banach space. The Fourier transform on Bochner spaces is defined simi-

larly to the scalar-valued case, i.e. for f ∈ L1(Rn ; X ) we define

f̂ (ξ) =F f (ξ) :=
∫
Rn

f (s)e−2πi s·ξ ds, ξ ∈Rn .

qf (ξ) =F−1 f (ξ) :=
∫
Rn

f (s)e2πi s·ξ ds, ξ ∈Rn .

We denote the space of X -valued Schwartz functions by S(Rn ; X ) and the space of X -

valued tempered distributions by S ′(Rn ; X ) :=L(S(Rn); X ). The space S(Rn ; X ) is dense

in Lp (Rn , w ; X ) (see [Gra14a, Exercise 7.4.1]) and Lp (Rn , w ; X ) is continuously embed-

ded in S ′(Rn ; X ) for w ∈ Ap and p ∈ [1,∞) .
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Let X and Y be Banach spaces. To a bounded, strongly measurable m : Rn →L(X ,Y )

we associate the Fourier multiplier operator

Tm : S(Rn ; X ) →S ′(Rn ;Y ), Tm f = (m f̂ )∨.

One may ask under which conditions on m the operator Tm extends to a bounded op-

erator from Lp (Rn , w ; X ) to Lp (Rn , w ;Y ) for L1
loc(Rn) and p ∈ [1,∞). If this is the case we

call m a bounded Fourier multiplier and Tm a Fourier multiplier operator.

The UMD property is intimately connected to the boundedness of Fourier multiplier

operators. Indeed, for prototypical examples of Fourier multiplier operators like the

Hilbert transform

H f := (
ξ 7→ −i sgn(ξ) · f̂ (ξ)

)∨ = 1

π
p.v.

∫
R

f (t )

s − t
dt , s ∈R, f ∈S(R; X )

and the Riesz projections for 1, · · · ,k

Rk f (s) := (
ξ 7→ −i

ξk

|ξ| · f̂ (ξ)
)∨(s) = cn ·p.v.

∫
Rn

s j − t j

|s − t |n+1 f (t ) dt , s ∈Rn , f ∈S(Rn ; X ),

we have the following result, which for the Hilbert transform was first proven by Burk-

holder [Bur83] and Bourgain [Bou83].

Theorem 2.7.1. Let X be a Banach space. The following are equivalent:

(i) X ∈ UMD.

(ii) The Hilbert transform H is bounded on Lp (R; X ) for some (all) p ∈ (1,∞).

(iii) The Riesz projections Rk for k = 1, . . . ,n are bounded on Lp (Rn ; X ) for some (all)

p ∈ (1,∞).

Another major breakthrough was given in [McC84], [Bou86] and [Zim89], where the

Marcinkiewicz–Mihlin multiplier theorem and Littlewood–Paley decomposition have

been obtained on Lp (Rn ; X ) for UMD Banach spaces X and p ∈ (1,∞).

A necessary condition for boundedness of an operator-valued Fourier multiplier

m : Rn →L(X ,Y ) is that the range of m is R-bounded. Following the breakthrough pa-

pers [Wei01b, CPSW00] there has been an extensive study of operator-valued multiplier

theory, in which R-boundedness techniques are central, see e.g. [AB02, HHN02, ŠW07,

Wei01b]. In Section 3.5 we will discuss a generalization of the operator-valued Mihlin

multiplier theorem and in Chapter 7 we will develop a generalization of the operator-

valued Marcinkiewicz multiplier theorem.

2.8. γ-RADONIFYING OPERATORS

We introduce the definition and some basic properties of γ-radonifying operators, for

details we refer to [HNVW17, Chapter 9]. Let X be a Banach space and H be a Hilbert
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space. We say that an operator T ∈L(H , X ) is γ-summing and write T ∈ γ∞(H , X ) if

‖T ‖γ∞(H ,X ) := sup
∥∥∥ n∑

k=1
γk Tϕk

∥∥∥
L2(Ω;X )

<∞,

where (γk )n
k=1 is a Gaussian sequence on a probability space (Ω,P) and the supremum

is taken over all finite orthonormal systems (ϕk )n
k=1 in H . Any finite rank operator T ,

i.e. T = ∑n
k=1 ek ⊗ xk , with e1, . . . ,en ∈ H and x1, . . . , xn ∈ X , belongs to γ∞(H , X ). We

denote the closure of the finite rank operators in γ∞(H , X ) by γ(H , X ). We thus have

γ(H , X ) ,→ γ∞(H , X ) ,→L(H , X ).

When X does not contain a subspace isomorphic to c0, so in particular if X has fi-

nite cotype, we have γ∞(H , X ) = γ(H , X ). When H is separable with orthonormal basis

(ϕk )∞k=1 we have

‖T ‖γ∞(H ,X ) = sup
n∈N

∥∥∥ n∑
k=1

γk Tϕk

∥∥∥
L2(Ω;X )

and if T ∈ γ(H , X ), then
∑∞

k=1γk Tϕk converges in L2(Ω; X ) and we have

‖T ‖γ(H ,X ) =
∥∥∥ ∞∑

k=1
γk Tϕk

∥∥∥
L2(Ω;X )

.

The spaces γ(H , X ) satisfy the following domination property:

Proposition 2.8.1 (Domination). Let X be a Banach space and let H1 and H2 be Hilbert

spaces. If T1 ∈ γ(H1, X ) and T2 ∈L(H2, X ) with

‖T ∗
2 x∗‖H2 ≤ ‖T ∗

1 x∗‖H1 , x∗ ∈ X ∗,

then T2 ∈ γ(H2, X ) with ‖T2‖γ(H2,X ) ≤ ‖T1‖γ(H1,X ).

We also have γ-versions of Fatou’s lemma and the dominated convergence theorem,

which we state next. For the γ-Fatou lemma we assume finite cotype in order to avoid

ending up in γ∞(H , X ).

Proposition 2.8.2 (γ-Fatou). Let X be a Banach space with finite cotype and H a Hilbert

space. If (Tn)∞n=1 is a bounded sequence in γ(H , X ) and T ∈L(H , X ) with

lim
n→∞〈Tnϕ, x∗〉 = 〈Tϕ, x∗〉, ϕ ∈ H , x∗ ∈ X ∗,

then T ∈ γ(H , X ) with ‖T ‖γ(H ,X ) ≤ liminfn→∞‖Tn‖γ(H ,X ).

Proposition 2.8.3 (γ-Dominated convergence). Let X be a Banach space and H a Hilbert

space. Let (Tn)∞n=1 be a sequence in L(H , X ) and T ∈ L(H , X ) such that limn→∞ T ∗
n x∗ =

T ∗x∗ for all x∗ ∈ X ∗. If there exists a U ∈ γ(H , X ) such that for n ∈N

‖T ∗
n x∗‖H ≤ ‖U∗x∗‖H , x∗ ∈ X ∗,

then Tn ,T ∈ γ(H , X ) and Tn → T in γ(H , X ).



38 2. PRELIMINARIES

For a measure space (S,µ), we write γ(S; H , X ) := γ(L2(S; H), X ) and in particular

γ(S; X ) := γ(L2(S), X ). Any strongly measurable f : S → X for which 〈 f , x∗〉 ∈ L2(S) for

all x∗ ∈ X ∗ defines a bounded linear operator T f : L2(S) → X by

T f ϕ :=
∫

S
f ϕ dµ, ϕ ∈ L2(S),

where the integral is well-defined in the Pettis sense (see [HNVW16, Theorem 1.2.37]). If

T f ∈ γ(S; X ) we say that f represents T f and write f ∈ γ(S; X ).

For a Hilbert space K we have γ(S;K ) = L2(S;K ) isometrically (see [HNVW17, The-

orem 9.2.10]). More generally, if the Banach space X has type 2 we have the following

embedding properties for the γ-spaces, which follow directly from [HNVW17, Theorem

9.2.10 and Proposition 7.1.20].

Lemma 2.8.4. Let X be a Banach space with type 2, H a Hilbert space and (S,µ) aσ-finite

measure space. Then we have the following embeddings

L2(S;γ(H ; X )) ,→ γ(S;γ(H ; X )) ,→ γ(S; H , X )

with both embedding constants bounded by τ2,X .

We also note that for disjointly supported functions we have the following square

function estimate, which follows from [HNVW17, Proposition 9.4.13].

Lemma 2.8.5. Let X be a Banach space with type 2 and let f1, . . . , fn ∈ γ(S; X ) be disjointly

supported. Then we have∥∥∥ n∑
k=1

fk

∥∥∥
γ(S;X )

≤ τ2,X

( n∑
k=1

‖ fk‖2
γ(S;X )

)1/2
.

To conclude the introduction of γ-radonifying operators we extend the γ-Fubini the-

orem for Lebesgue spaces in [HNVW17, Theorem 9.4.8] to Banach function spaces.

Proposition 2.8.6 (γ-Fubini). Let X be a Banach space, H a Hilbert space and let E be a

Banach function space over a measure space (S,µ). Then we have the embedding

γ(H ,E(X )) ,→ E(γ(H , X )).

If in addition E is q-concave for some q ∈ [1,∞), then we have the embedding

E(γ(H , X )) ,→ γ(H ,E(X )).

Proof. We make two preliminary observations. Since E is a Banach space, the triangle

inequality in E implies that for all simple functions ξ :Ω→ E

‖ξ‖E(L1(Ω)) ≤ ‖ξ‖L1(Ω;E). (2.8.1)
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By density this extends to a contractive embedding L1(Ω;E) ,→ E(L1(Ω)). The second

observation is that if E is q-concave for some q ∈ [1,∞), then we have for all simple

functions ξ : S → Lq (Ω),

‖ξ‖Lq (Ω;E) <∼X ,q ‖ξ‖E(Lq (Ω)). (2.8.2)

By density this can be extended to a contractive embedding E(Lq (Ω)) ,→ Lq (Ω;E).

Let (h j )n
j=1 be an orthonormal system in H and let f = ∑n

j=1 h j ⊗ξ j with ξ j ∈ E(X ).

Now setting ξ= ∥∥∑n
j=1γ jξ j

∥∥
X , where (γ j )n

j=1 is a Gaussian sequence, we can write

‖ f ‖γ(H ,E(X )) =
∥∥∥ n∑

j=1
γ jξ j

∥∥∥
L2(Ω;E(X ))

= ‖ξ‖L2(Ω;E),

‖ f ‖E(γ(H ,X )) =
∥∥∥ n∑

j=1
γ jξ j

∥∥∥
E(L2(Ω;X ))

= ‖ξ‖E(L2(Ω))

By the Kahane–Khintchine inequalities (see Proposition 2.4.1) replacing the L2(Ω)-norm

on the right-hand sides of the above identities with Lr (Ω) with r ∈ [1,∞) leads to an

equivalent norm. Taking r = 1 we have by (2.8.1) that

‖ f ‖E(γ(H ,X )) <∼ ‖ f ‖γ(H ,E(X )),

which by density proves γ(H ,E(X )) ,→ E(γ(H , X )).

For the second embedding note that by the above with r = q we find by (2.8.2) that

‖ f ‖γ(H ,E(X )) <∼X ,q ‖ f ‖E(γ(H ,X )).

Again by density this gives E(γ(H , X )) ,→ γ(H ,E(X )).

Remark 2.8.7. The result of Proposition 2.8.6 can also be extended to quasi-Banach

function spaces which are p-convex and q-concave. For the definition of γ(H , X ) for

quasi-Banach spaces we refer to [CCV18].

2.9. STOCHASTIC INTEGRATION IN BANACH SPACES

The γ-radonifying operators play a pivotal role in the development of stochastic inte-

gration in Banach spaces, which we will introduce now. For details of the introduced

notions we refer to [NVW07, NVW15c].

Let X be a Banach space and H a Hilbert space. Let (Ω,A,P) be a probability space

with filtration (Ft )t≥0. Functions G : Ω× (0,T ) →L(H , X ) of the form

G = 1(a,b]⊗h ⊗ξ, (2.9.1)

where 0 ≤ a < b < ∞, h ∈ H and ξ ∈ L∞(Ω; X ) is strongly Fa-measurable, are called a

rank-one adapted step processes and functions in the linear span of the rank-one adapted
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step processes are called finite rank adapted step processes. For p ∈ [1,∞), T ∈ (0,∞] and

a weight w on (0,T ) we let

Lp
F

(Ω;γ((0,T ); H , X )),

Lp
F

(Ω× (0,T ), w ;γ(H , X ))

denote the closure of the finite rank adapted step processes G : Ω× (0,T ) → L(H , X ) in

Lp (Ω;γ((0,T ); H , X )) and Lp (Ω× (0,T ), w ;γ(H , X )) respectively. We omit the weight w if

w ≡ 1. One has that f ∈ Lp
F

(Ω;γ((0,T ); H , X )) if and only if f ∈ Lp (Ω;γ((0,T ); H , X )) and

f (1[0,t ]⊗h) is strongly Ft -measurable and for all t ∈ (0,T ) and h ∈ H .

Let (S,µ) be a measure space, take p, q,r ∈ [1,∞), T ∈ (0,∞], let a v be weight on

(0,T ) and w a weight on S. For the specific case that X = Lq (S; w) we let

Lr
F (Ω;Lq (S, w ;L2((0,T ); H))),

Lr
F (Ω;Lp ((0,T ), v ;Lq (S, w ; H))),

Lr
F (Ω;Lq (S, w ;Lp ((0,T ), v ; H)))

denote the closure of the finite rank adapted step processes in the respective spaces,

where we omit the weights if v, w ≡ 1. In the case p = r there is some overlap with the

definitions for abstract Banach spaces X by the γ-Fubini theorem in Proposition 2.8.6

and the identification

γ((0,T ); H) = L2((0,T ); H).

Let W ∈ L(L2(R+; H),L2(Ω)) denote an isonormal mapping (see [Kal02]) such that

W f is Ft -measurable if f ∈ L2(R+; H) with f = 0 on (t ,∞). Define a cylindrical Brow-

nian motion (WH (t ))t≥0 by WH (t )h :=W(1[0,t ] h). For a rank-one adapted step process

G : Ω× (0,T ) →L(H , X ) as in (2.9.1) we define∫ s

0
G(t ) dWH (t ) := (WH (b ∧ s)−WH (a ∧ s))h ⊗ξ s ∈R+,

which is an element of Lp (Ω; X ). We extend the definition of the stochastic integral by

linearity.

The following result provides two-sided estimates for the stochastic integral with re-

spect to a H-cylindrical Brownian motion (WH (t ))t≥0. This in particular allows us to

define the stochastic integral
∫ T

0 f (t ) dWH (t ) for f ∈ Lp
F

(Ω;γ(0,T ; H , X )).

Theorem 2.9.1 (Itô isomorphism). Let X be a UMD Banach space, H a Hilbert space,

let p ∈ (1,∞) and T ∈ (0,∞]. For every adapted finite rank step process G : (0,T )×Ω→
L(H , X ), one has ∥∥∥∫ T

0
G(t ) dWH (t )

∥∥∥
Lp (Ω;X )

'p,X ‖G‖Lp (Ω;γ(0,T ;H ,X )).

In particular, G 7→ ∫ T
0 G(t ) dWH (t ) extends to an isomorphism from Lp

F
(Ω;γ((0,T ); H , X ))

to Lp (Ω; X ).
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3
`r -SPARSE DOMINATION IN A SPACE OF HOMOGENEOUS TYPE

This chapter is based on the paper

[5] E. Lorist. On pointwise `r -sparse domination in a space of homogeneous type. J.

Geom. Anal., 2020. Online first.

It is complemented by a few additional applications. In particular, the application to

Littlewood–Paley operators in Section 3.7 and the application to the unconditionality of

the Haar decomposition in Section 3.8 are unpublished.

Abstract. We prove a general sparse domination theorem in a space of homogeneous type,

in which a vector-valued operator is controlled pointwise by a positive, local expression

called a sparse operator. We use the structure of the operator to get sparse domination in

which the usual `1-sum in the sparse operator is replaced by an `r -sum.

This sparse domination theorem is applicable to various operators from both harmonic

analysis and (S)PDE. Using our main theorem, we prove the A2-theorem for vector-valued

Calderón–Zygmund operators in a space of homogeneous type, from which we deduce an

anisotropic, mixed norm Mihlin multiplier theorem. Furthermore we show quantitative

weighted norm inequalities for Littlewood–Paley operators and the Rademacher maxi-

mal operator. In the latter application the geometry of the underlying Banach space plays

a major role. Applications to (S)PDE will be given in Chapters 4 and 5.
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3.1. INTRODUCTION

The technique of controlling various operators by so-called sparse operators has proven

to be a very useful tool to obtain (sharp) weighted norm inequalities in the past decade.

The key feature in this approach is that a typically signed and non-local operator is dom-

inated, either in norm, pointwise or in dual form, by a positive and local expression.

The sparse domination technique comes from Lerner’s work towards an alternative

proof of the A2-theorem, which was first proven by Hytönen in [Hyt12]. In [Ler13] Lerner

applied his local mean oscillation decomposition approach to the A2-theorem, estimat-

ing the norm of a Calderón-Zygmund operator by the norm of a sparse operator. This

was later improved to a pointwise estimate independently by Conde-Alonso and Rey

[CR16] and by Lerner and Nazarov [LN18]. Afterwards, Lacey [Lac17] obtained the same

result for a slightly larger class of Calderón-Zygmund operators by a stopping cube ar-

gument instead of the local mean oscillation decomposition approach. This argument

was further refined by Hytönen, Roncal and Tapiola [HRT17] and afterwards made strik-

ingly clear by Lerner [Ler16], where the following abstract sparse domination principle

was shown:

If T is a bounded sublinear operator from Lp1 (Rn) to Lp1,∞(Rn) and the grand maxi-

mal truncation operator

MT f (s) := sup
Q3s

esssup
s′∈Q

|T ( f 1Rn \3Q )(s′)|, s ∈Rn

is bounded from Lp2 (Rn) to Lp2,∞(Rn) for some 1 ≤ p1, p2 <∞, then there is an η ∈ (0,1)

such that for every compactly supported f ∈ Lp0 (Rn) with p0 := max{p1, p2} there exists

an η-sparse family of cubes S such that

|T f (s)| <∼
∑

Q∈S
〈| f |〉p0,Q 1Q (s), s ∈Rn . (3.1.1)

We call a family of cubes S η-sparse if for every Q ∈ S there exists a measurable set

EQ ⊆Q such that |EQ | ≥ η|Q| and such that the EQ ’s are pairwise disjoint.

This sparse domination principle was further generalized in the recent paper [LO20]

by Lerner and Ombrosi, in which the authors showed that the weak Lp2 -boundedness

of the more flexible operator

M#
T,α f (s) := sup

Q3s
esssup
s′,s′′∈Q

|T ( f 1Rn \αQ )(s′)−T ( f 1Rn \αQ )(s′′)|, s ∈Rn

for some α ≥ 3 is already enough to deduce the pointwise sparse domination as in

(3.1.1). Furthermore they relaxed the weak Lp1 -boundedness condition on T to a con-

dition in the spirit of the T (1)-theorem.

3.1.1. MAIN RESULT

Our main result is a generalization of the main result in [LO20] in the following four

directions:
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(i) We replace Rn by a space of homogeneous type (S,d ,µ).

(ii) We let T be an operator from Lp1 (S; X ) to Lp1,∞(S;Y ), where X and Y are Banach

spaces.

(iii) We use structure of the operator T and geometry of the Banach space Y to replace

the `1-sum in the sparse operator by an `r -sum for r ≥ 1.

(iv) We replace the truncation T ( f 1Rn \αQ ) in the grand maximal truncation operator

by an abstract localization principle.

The extensions (i) and (ii) are relatively straightforward. The main novelty is (iii), which

controls the weight characteristic dependence that can be deduced from the sparse

domination. Generalization (iv) will make its appearance in Theorem 3.2.2 and can be

used to make the associated grand maximal truncation operator easier to estimate in

specific situations.

Let (S,d ,µ) be a space of homogeneous type and let X and Y be Banach spaces.

For a bounded linear operator T from Lp1 (S; X ) to Lp1,∞(S;Y ) and α ≥ 1 we define the

following sharp grand maximal truncation operator

M#
T,α f (s) := sup

B3s
esssup
s′,s′′∈B

∥∥T ( f 1S\αB )(s′)−T ( f 1S\αB )(s′′)
∥∥

Y , s ∈ S,

where the supremum is taken over all balls B ⊆ S containing s ∈ S. Our main theorem

reads as follows.

Theorem 3.1.1. Let (S,d ,µ) be a space of homogeneous type and let X and Y be Banach

spaces. Take p1, p2,r ∈ [1,∞) and set p0 := max{p1, p2}. Take α ≥ 3c2
d /δ, where cd is the

quasi-metric constant and δ is as in Proposition 2.1.1. Assume the following conditions:

• T is a bounded linear operator from Lp1 (S; X ) to Lp1,∞(S;Y ).

• M#
T,α is a bounded operator from Lp2 (S; X ) to Lp2,∞(S).

• There is a Cr > 0 such that for disjointly and boundedly supported f1, . . . , fn ∈ Lp0 (S; X )∥∥∥T
( n∑

k=1
fk

)
(s)

∥∥∥
Y
≤Cr

( n∑
k=1

∥∥T fk (s)
∥∥r

Y

)1/r
, s ∈ S.

Then there is an η ∈ (0,1) such that for any boundedly supported f ∈ Lp0 (S; X ) there is an

η-sparse collection of cubes S such that

‖T f (s)‖Y <∼S,α CT Cr

( ∑
Q∈S

〈‖ f ‖X
〉r

p0,Q 1Q (s)
)1/r

, s ∈ S,

where CT = ‖T ‖Lp1→Lp1,∞ +‖M#
T,α‖Lp2→Lp2,∞ .

As the assumption in the third bullet of Theorem 3.1.1 expresses a form of sublinear-

ity of the operator T when r = 1, we will call this assumption r -sublinearity. Note that

it is crucial that the constant Cr is independent of n ∈N. If Cr = 1 it suffices to consider

n = 2.
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3.1.2. SHARP WEIGHTED NORM INEQUALITIES

One of the main reasons to study sparse domination of an operator is the fact that

sparse bounds yield weighted norm inequalities and these weighted norm inequalities

are sharp for many operators. Here sharpness is meant in the sense that for p ∈ (p0,∞)

we have a β≥ 0 such that

‖T ‖Lp (S,w ;X )→Lp (S,w ;Y ) <∼ [w]βAp/p0
, w ∈ Ap/p0 (3.1.2)

and (3.1.2) is false for any β′ <β.

The first result of this type was obtained by Buckley [Buc93], who showed that β =
1

p−1 for the Hardy–Littlewood maximal operator. A decade later, the quest to find sharp

weighted bounds attracted renewed attention because of the work of Astala, Iwaniec

and Saksman [AIS01]. They proved sharp regularity results for the solution to the Bel-

trami equation under the assumption that β = 1 for the Beurling–Ahlfors transform for

p ≥ 2. This linear dependence on the Ap characteristic for the Beurling–Ahlfors trans-

form was shown by Petermichl and Volberg in [PV02]. Another decade later, after many

partial results, sharp weighted norm inequalities were obtained for general Calderón–

Zygmund operators by Hytönen in [Hyt12] as discussed before.

In Proposition 3.2.4 we prove weighted Lp -boundedness for the sparse operators

appearing in Theorem 3.1.1. As a direct corollary from Theorem 3.1.1 we then have:

Corollary 3.1.2. Under the assumptions of Theorem 3.1.1 we have for all p ∈ (p0,∞) and

w ∈ Ap/p0

‖T ‖Lp (S,w ;X )→Lp (S,w ;Y ) <∼CT Cr [w]
max

{
1

p−p0
, 1

r

}
Ap/p0

,

where the implicit constant depends on S, p0, p,r and α.

As noted before the main novelty in Theorem 3.1.1 is the introduction of the parame-

ter r ∈ [1,∞). The r -sublinearity assumption in Theorem 3.1.1 becomes more restrictive

as r increases and the conclusions of Theorem 3.1.1 and Corollary 3.1.2 consequently

become stronger. In order to check whether the dependence on the weight characteris-

tic is sharp one can employ e.g. [LPR15, Theorem 1.2], which provides a lower bound for

the best possible weight characteristic dependence in terms of the operator norm of T

from Lp (S; X ) to Lp (S;Y ). For some operators, like Littlewood–Paley or maximal opera-

tors, sharpness in the estimate in Corollary 3.1.2 is attained for r > 1 and thus Theorem

3.1.1 can be used to show sharp weighted bounds for more operators than precursors

like [LO20, Theorem 1.1].

3.1.3. HOW TO APPLY OUR MAIN RESULT

Let us outline the typical way how one applies Theorem 3.1.1 (or the local and more

general version in Theorem 3.2.2) to obtain (sharp) weighted Lp -boundedness for an

operator T :
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(i) If T is not linear it is often linearizable, which means that we can linearize it by

putting part of the operator in the norm of the Banach space Y . For example if T is

a Littlewood-Paley square function we take Y = L2 and if T is a maximal operator

we take Y = `∞. Alternatively one can apply Theorem 3.2.2, which is a local and

more abstract version of Theorem 3.1.1 that does not assume T to be linear.

(ii) The weak Lp1 -boundedness of T needs to be studied separately and is often al-

ready available in the literature.

(iii) The operator M#
T,α reflects the non-localities of the operator T . The weak Lp2 -

boundedness of M#
T,α requires an intricate study of the structure of the operator.

In many examples M#
T,α can be pointwise dominated by the Hardy–Littlewood

maximal operator Mp2 , which is weak Lp2 -bounded by Proposition 2.2.1. This

is exemplified for Calderón–Zygmund operators in the proof of Theorem 3.4.1.

Sometimes one can choose a suitable localization in Theorem 3.2.2 such that the

sharp maximal truncation operator is either zero (see e.g. Section 3.6 on the Rade-

macher maximal operator) or pointwise dominated by T (see e.g. Section 3.7 on

Littlewood–Paley operators).

(iv) The r -sublinearity assumption on T is trivial for r = 1, which suffices if one is not

interested in quantitative weighted bounds. To check the r -sublinearity for some

r > 1 one needs to use the structure of the operator and often also the geometric

properties of the Banach space Y like type r . See, for example, the proofs of The-

orems 3.6.1 and Theorem 4.4.11 how to check r -sublinearity in concrete cases.

3.1.4. APPLICATIONS

The main motivation to generalize the results in [LO20] comes from the applications to

stochastic singular integral operators in Chapter 4. Indeed, we will use Theorem 3.1.1

with p1 = p2 = r = 2 to prove a stochastic version of the vector-valued A2-theorem for

Calderón–Zygmund operators. Moreover using S =R+×Rn equipped with the parabolic

metric and the Lebesgue measure we will develop Calderón–Zygmund theory for singu-

lar mixed stochastic-deterministic integral operators. The fact that r = 2 and spaces of

homogeneous type likeR+×Rn are needed in these applications are the key motivations

to incorporate these generalizations in this chapter.

In this chapter we will focus on applications in harmonic analysis. We will provide

a few examples that illustrate the sparse domination principle nicely, and comment on

further potential applications in Section 3.8.

• As a first application of Theorem 3.1.1 we prove an A2-theorem for vector-valued

Calderón–Zygmund operators with operator-valued kernel in a space of homoge-

neous type. The A2-theorem for vector-valued Calderón–Zygmund operators with

operator-valued kernel in Euclidean space has previously been proven in [HH14]



48 3. `r -SPARSE DOMINATION IN A SPACE OF HOMOGENEOUS TYPE

and the A2-theorem for scalar-valued Calderón–Zygmund operators in spaces of

homogeneous type in [NRV13, AV14]. Our theorem unifies these two results.

• Using the A2-theorem, we prove a weighted, anisotropic, mixed norm Mihlin mul-

tiplier theorem, which is a natural supplement to the recent results in [FHL20] and

is particularly useful in the study of spaces of smooth, vector-valued functions.

• In our second application of Theorem 3.1.1 we prove sparse domination and quan-

titative weighted norm inequalities for the Rademacher maximal operator, ex-

tending the qualitative bounds in Euclidean space in [Kem13]. The proof demon-

strates how one can use the geometry of the Banach space to deduce r -sublinearity

for an operator.

• Thirdly we give a short proof of the sharp weighted norm inequalities of Littlewood–

Paley operators, recovering the result in [Ler11]. The proof illustrates nicely how

the structure of these operators yields 2-sublinearity.

Moreover, in Section 6.4 we will apply Theorem 3.1.1 to the lattice Hardy–Littlewood

maximal operator, which again demonstrates how one can use the geometry of the Ba-

nach space to deduce r -sublinearity for an operator.

3.2. POINTWISE `r -SPARSE DOMINATION

In this section we will prove a local version of the sparse domination result in Theorem

3.1.1, from which we will deduce Theorem 3.1.1 by a covering argument using Lemma

2.1.3. This local version will use an abstract localization of the operator T , since it de-

pends upon the operator at hand as to the most effective localization. For example in the

study of a Calderón–Zygmund operator it is convenient to localize the function inserted

into T , for a maximal operator it is convenient to localize the supremum in the defini-

tion of the maximal operator and for a Littlewood–Paley operator it is most suitable to

localize the defining integral.

Definition 3.2.1. Let (S,d ,µ) be a space of homogeneous type with a dyadic system D ,

let X and Y be Banach spaces, p ∈ [1,∞) and α≥ 1. For a bounded operator

T : Lp (S; X ) → Lp,∞(S;Y )

we say that a family of operators {TQ }Q∈D from Lp (S; X ) to Lp,∞(Q;Y ) is anα-localization

family of T if for all Q ∈D and f ∈ Lp (S; X ) we have

TQ ( f 1αQ )(s) = TQ f (s), s ∈Q, (Localization)∥∥TQ ( f 1αQ )(s)
∥∥

Y ≤ ∥∥T ( f 1αQ )(s)
∥∥

Y , s ∈Q, (Domination)

For Q,Q ′ ∈D with Q ′ ⊆Q we define the difference operator

TQ\Q ′ f (s) := TQ f (s)−TQ ′ f (s), s ∈Q ′.
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and for Q ∈D the localized sharp grand maximal truncation operator

M#
T,Q f (s) := sup

Q ′∈D (Q):
s∈Q ′

esssup
s′,s′′∈Q ′

∥∥(TQ\Q ′ ) f (s′)− (TQ\Q ′ ) f (s′′)
∥∥

Y , s ∈ S.

In order to obtain interesting results, one needs to be able to recover the bounded-

ness of T from the boundedness of TQ uniformly in Q ∈D . The canonical example of an

α-localization family is

TQ f (s) := T ( f 1αQ )(s), s ∈Q.

for all Q ∈ D , which allows one to recover weighted boundedness of T by the den-

sity of boundedly supported functions. Furthermore it is exactly this choice of an α-

localization family that will lead to our global sparse domination result in the introduc-

tion.

Theorem 3.2.2. Let (S,d ,µ) be a space of homogeneous type with dyadic system D and

let X and Y be Banach spaces. Take p1, p2,r ∈ [1,∞), set p0 := max{p1, p2} and takeα≥ 1.

Suppose that

• T is a bounded operator from Lp1 (S; X ) to Lp1,∞(S;Y ) with α-localization family

{TQ }Q∈D .

• M#
T,Q is bounded from Lp2 (S; X ) to Lp2,∞(S) uniformly in Q ∈D .

• For all Q1, . . . ,Qn ∈D with Qn ⊆ ·· · ⊆Q1 and any f ∈ Lp (S; X )

∥∥TQ1 f (s)
∥∥

Y ≤Cr

(∥∥TQn f (s)
∥∥r

Y +
n−1∑
k=1

∥∥TQk \Qk+1 f (s)
∥∥r

Y

)1/r
, s ∈Qn .

Then for any f ∈ Lp0 (S; X ) and Q ∈ D there exists a 1
2 -sparse collection of dyadic cubes

S ⊆D(Q) such that

∥∥TQ f (s)
∥∥

Y
<∼S,D ,α CT Cr

( ∑
P∈S

〈‖ f ‖X
〉r

p0,αP 1P (s)
)1/r

, s ∈Q,

with CT := ‖T ‖Lp1→Lp1,∞ + supP∈D‖M#
T,P‖Lp2→Lp2,∞ .

The assumption in the third bullet in Theorem 3.2.2 replaces the r -sublinearity as-

sumption in Theorem 3.1.1. We will call this assumption a localized `r -estimate.

Proof. Fix f ∈ Lp (S, X ) and Q ∈ D . We will prove the theorem in two steps: we will

first construct the 1
2 -sparse family of cubes S and then show that the sparse expression

associated to S dominates TQ f pointwise.

Step 1: We will construct the 1
2 -sparse family of cubes S iteratively. Given a collec-

tion of pairwise disjoint cubes Sk for some k ∈N we will first describe how to construct
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Sk+1. Afterwards we can inductively define Sk for all k ∈ N starting from S1 = {Q} and

set S :=⋃
k∈NSk .

Fix a P ∈Sk and for λ≥ 1 to be chosen later define

Ω1
P :=

{
s ∈ P : ‖TP f (s)‖Y >λCT

〈‖ f ‖X
〉

p0,αP

}
Ω2

P :=
{

s ∈ P :M#
T,P ( f )(s) >λCT

〈‖ f ‖X
〉

p0,αP

}
and ΩP :=Ω1

P ∪Ω2
P . Let c1 ≥ 1, depending on S, D and α, be such that µ(αP ) ≤ c1µ(P ).

By the domination property of the α-localization family we have

‖TP f (s)‖Y ≤ ‖T ( f 1αP )(s)‖Y , s ∈ P,

and by the localization property

M#
T,P ( f )(s) =M#

T,P ( f 1αP )(s), s ∈ P.

Thus by the weak boundedness assumptions on T and M#
T,P and Hölder’s inequality we

have for i = 1,2

µ(Ωi
P ) ≤

(‖ f 1αP‖Lpi (S;X )

λ
〈‖ f ‖X

〉
p0,αP

)pi =
〈‖ f ‖X

〉pi
pi ,αP

λpi
〈‖ f ‖X

〉pi
p0,αP

µ(αP ) ≤ c1

λ
µ(P ). (3.2.1)

Therefore it follows that

µ(ΩP ) ≤ 2c1

λ
µ(P ). (3.2.2)

To construct the cubes in Sk+1 we will use a local Calderón–Zygmund decomposition

(see e.g. [FN19, Lemma 4.5]) on

ΩP,ρ := {s ∈ P : MD (P )(1ΩP ) > 1
ρ }, ρ > 0

which will be a proper subset of P for our choice of λ and ρ. Here MD (P ) is the dyadic

Hardy–Littlewood maximal operator with respect to the restricted dyadic system D(P ).

The local Calderón–Zygmund decomposition yields a pairwise disjoint collection of cubes

SP ⊆D(P ) and a constant c2 ≥ 2, depending on S and D , such thatΩP,c2 =
⋃

P ′∈SP P ′ and

1
c2
µ(P ′) ≤µ(P ′∩ΩP ) ≤ 1

2 µ(P ′), P ′ ∈SP . (3.2.3)

Then by (3.2.2), (3.2.3) and the disjointness of the cubes in SP we have

∑
P ′∈SP

µ(P ′) ≤ c2
∑

P ′∈SP

µ(P ′∩ΩP ) ≤ c2µ(ΩP ) ≤ 2c1c2

λ
µ(P ).

Therefore, by choosing λ = 4c1c2, we have
∑

P ′∈SP µ(P ′) ≤ 1
2µ(P ). This choice of λ also

ensures thatΩP,c2 is a proper subset of P as claimed before. We define Sk+1 :=⋃
P∈Sk SP .
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Now take S1 = {Q}, iteratively define Sk for all k ∈ N as described above and set

S :=⋃
k∈NSk . Then S is 1

2 -sparse family of cubes, since for any P ∈S we can set

EP := P \
⋃

P ′∈SP

P ′,

which are pairwise disjoint by the fact that
⋃

P ′∈Sk+1 P ′ ⊆ ⋃
P∈Sk P for all k ∈ N and we

have

µ(EP ) =µ(P )− ∑
P ′∈SP

µ(P ′) ≥ 1

2
µ(P ).

Step 2: We will now check that the sparse expression corresponding toS constructed

in Step 1 dominates TQ f pointwise. Since

lim
k→∞

µ
( ⋃

P∈Sk

P
)≤ lim

k→∞
1

2k
µ(Q) = 0,

we know that there is a set N0 of measure zero such that for all s ∈Q \ N0 there are only

finitely many k ∈Nwith s ∈⋃
P∈Sk P . Moreover by the Lebesgue differentiation theorem

we have for any P ∈S that 1ΩP (s) ≤ MD (P )(1ΩP )(s) for a.e. s ∈ P . Thus

ΩP \ NP ⊆ΩP,1 ⊆ΩP,c2 =
⋃

P ′∈SP

P ′ (3.2.4)

for some set NP of measure zero. We define N := N0∪⋃
P∈S NP , which is a set of measure

zero.

Fix s ∈ Q \ N and take the largest n ∈ N such that s ∈ ⋃
P∈Sn P , which exists since

s ∉ N0. For k = 1, . . . ,n let Pk ∈ Sk be the unique cube such that s ∈ Pk and note that

by construction we have Pn ⊆ . . . ⊆ P1 =Q. Using the localized `r -estimate of T we split

‖TQ f (s)‖r
Y into two parts

∥∥TQ f (s)
∥∥r

Y ≤C r
r

(∥∥TPn f (s)
∥∥r

Y +
n−1∑
k=1

∥∥TPk \Pk+1 f (s)
∥∥r

Y

)
=: C r

r

(
A + B

)
.

For A note that s ∉ NPn and s ∉ ⋃
P ′∈Sn+1 P ′ and therefore by (3.2.4) we know that

s ∈ Pn \ΩPn . So by the definition of Ω1
Pn

A ≤λr C r
T

〈‖ f ‖X
〉r

p0,αPn
.

For 1 ≤ k ≤ n −1 we have by (3.2.2) and (3.2.3) that

µ
(
Pk+1 \ (ΩPk+1 ∪ΩPk )

)≥µ(Pk+1)−µ(ΩPk+1 )−µ(Pk+1 ∩ΩPk )

≥µ(Pk+1)− 1

2c2
µ(Pk+1)− 1

2
µ(Pk+1) > 0,

(3.2.5)

so Pk+1 \ (ΩPk+1 ∪ΩPk ) is non-empty. Take s′ ∈ Pk+1 \ (ΩPk+1 ∪ΩPk ), then we have
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∥∥TPk \Pk+1 f (s)
∥∥

Y ≤ ∥∥TPk \Pk+1 f (s)−TPk \Pk+1 f (s′)
∥∥

Y +∥∥TPk \Pk+1 f (s′)
∥∥

Y

≤M#
T,Pk

f (s′)+∥∥TPk (s′)
∥∥

Y +∥∥TPk+1 (s′)
∥∥

Y

≤ 2λCT
(〈‖ f ‖X

〉
p0,αPk

+〈‖ f ‖X
〉

p0,αPk+1

)
,

where we used the definition of M#
T,Pk

and TPk+1\Pk in the second inequality and s′ ∉
ΩPk+1 ∪ΩPk in the third inequality. Using (a +b)r ≤ 2r−1(ar +br ) for any a,b > 0 this

implies that

B ≤
n−1∑
k=1

2r 2r−1λr C r
T

(〈‖ f ‖X
〉r

p0,αPk
+〈‖ f ‖X

〉r
p0,αPk+1

)
≤

n∑
k=1

4rλr C r
T

〈‖ f ‖X
〉r

p0,αPk
.

Combining the estimates for A and B we obtain

∥∥TQ f (s)
∥∥

Y ≤ 5λCT Cr

( n∑
k=1

〈‖ f ‖X
〉r

p0,αPk

)1/r

= 5λCT Cr

( ∑
P∈S

〈‖ f ‖X
〉r

p0,αP 1P (s)
)1/r

.

Since s ∈Q \ N was arbitrary and N has measure zero, this inequality holds for a.e. s ∈Q.

Noting that λ= 4c1c2 and c1 and c2 only depend on S, α and D finishes the proof of the

theorem.

As announced Theorem 3.1.1 now follows directly from Theorem 3.2.2 and a cover-

ing argument with Lemma 2.1.3.

Proof of Theorem 3.1.1. We will prove Theorem 3.1.1 in three steps: we will first show

that the assumptions of Theorem 3.1.1 imply the assumptions of Theorem 3.2.2, then

we will improve the local conclusion of Theorem 3.2.2 to a global one and finally we

will replace the averages over the dilation αP in the conclusion of Theorem 3.2.2 by the

average over larger cubes P ′.
To start let D1, . . . ,Dm be as in Proposition 2.1.1 with parameters c0, C0, δ and γ,

which only depend on S.

Step 1: For any Q ∈D1 define TQ by TQ f (s) := T ( f 1αQ )(s) for s ∈Q. Then:

• {TQ }Q∈D1 is an α-localization family of T .

• For any Q ∈D1 and f ∈ Lp1 (S; X ) we have

M#
T,Q f (s) ≤M#

T,α( f 1αQ )(s), s ∈Q.

So by the weak Lp2 -boundedness of M#
T,α it follows that M#

T,Q f is weak Lp2 -

bounded uniformly in Q ∈D1.
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• For any f ∈ Lp (S; X ) and Q1, . . . ,Qn ∈ D1 with Qn ⊆ . . . ⊆ Q1 the functions fk :=
f 1αQk \αQk+1 for k = 1, . . . ,n −1 and fn := f 1αQn are disjointly supported. Thus by

the r -sublinearity of T

∥∥TQ1 f (s)
∥∥

Y ≤Cr

(∥∥TQn f (s)
∥∥r

Y +
n−1∑
k=1

∥∥TQk \Qk+1 f (s)
∥∥r

Y

)1/r
, s ∈Qn .

So the assumptions of Theorem 3.2.2 follow from the assumptions of Theorem 3.1.1.

Step 2: Let f ∈ Lp (S; X ) be boundedly supported. First suppose that diam(S) = ∞
and let E be a ball containing the support of f . By Lemma 2.1.3 there is a partition

D ⊆ D1 such that E ⊆ αQ for all Q ∈D. Thus by Theorem 3.2.2 we can find a 1
2 -sparse

collection of cubes SQ ⊆D1(Q) for every Q ∈D with

∥∥T f (s)
∥∥

Y
<∼S,α CT Cr

( ∑
P∈SQ

〈‖ f ‖X
〉r

p0,αP 1P (s)
)1/r

, s ∈Q,

where we used that TQ f = T ( f 1αQ ) = T f as supp f ⊆ αQ. Since D is a partition, S :=⋃
Q∈D SQ is also a 1

2 -sparse collection of cubes with

∥∥T f (s)
∥∥

Y
<∼S,α CT Cr

( ∑
P∈S

〈‖ f ‖X
〉r

p0,αP 1P (s)
)1/r

, s ∈ S, (3.2.6)

If diam(S) <∞, then (3.2.6) follows directly from Theorem 3.2.2 since S ∈D in that case.

Step 3: For any P ∈S with center z and side length δk we can find a P ′ ∈D j for some

1 ≤ j ≤ m such that

αP = B(z,αC0 ·δk ) ⊆ P ′, diam(P ′) ≤ γαC0 ·δk .

Therefore there is a c1 > 0 depending on S and α such that

µ(P ′) ≤µ(
B(z,γαC0 ·δk )

)≤ c1µ
(
B(z,c0 ·δk )

)≤ c1µ(P ).

So by defining EP ′ := EP we can conclude that the collection of cubes S ′ := {P ′ : P ∈ S}

is 1
2c1

-sparse. Moreover since αP ⊆ P ′ and µ(P ′) ≤ c1µ(P ) ≤ c1µ(αP ) for any P ∈ S , we

have 〈‖ f ‖X
〉

p0,αP ≤ c1
〈‖ f ‖X

〉
p0,P ′ .

Combined with (3.2.6) this proves the sparse domination in the conclusion of Theorem

3.1.1.

Remark 3.2.3. The assumptionα≥ 3c2
d /δ in Theorem 3.1.1 arises from the use of Lemma

2.1.3, which transfers the local sparse domination estimate of Theorem 3.2.2 to the global

statement of Theorem 3.1.1. To deduce weighted estimates the local sparse domination

estimate of Theorem 3.2.2 suffices by testing against boundedly supported functions.

However the operator norm of M#
T,α usually becomes easier to estimate for larger α, so

the lower bound on α is not restrictive.
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To conclude this section we will prove weighted bounds for the sparse operators in

Theorems 3.1.1 and 3.2.2, from which Corollary 3.1.2 follows directly. In the Euclidean

case such bounds are thoroughly studied and most of the arguments extend directly

to spaces of homogeneous type. For the convenience of the reader we will give a self-

contained proof of the strong weighted Lp -boundedness of these sparse operators in

spaces of homogeneous type, following the proof of [Ler16, Lemma 4.5]. For further

results for various special cases of the sparse operators in Theorems 3.1.1 and 3.2.2 we

refer to:

• Weak weighted Lp -boundedness (including the endpoint p = p0) can be found

[HL18, FN19].

• More precise bounds in terms of two-weight Ap -A∞-characteristics can be found

in e.g. [FH18, HL18, HP13, LL16].

Proposition 3.2.4. Let (S,d ,µ) be a space of homogeneous type, let S be an η-sparse col-

lection of cubes and take p0,r ∈ [1,∞). For p ∈ (p0,∞), w ∈ Ap/p0 and f ∈ Lp (S, w) we

have ∥∥∥( ∑
Q∈S

〈| f |〉r
p0,Q 1Q

)1/r ∥∥∥
Lp (S,w)

<∼ [w]
max

{
1

p−p0
, 1

r

}
Ap/p0

‖ f ‖Lp (S,w)

where the implicit constant depends on S, p0, p,r and η.

Proof. We first note that by Proposition 2.1.1 we may assume without loss of generality

that S ⊆ D , where D is an arbitrary dyadic system in (S,d ,µ). If p − p0 ≤ r we have

max
{ 1

p−p0
, 1

r

}= 1
p−p0

. Since `p−p0 ,→ `r , the case p−p0 ≤ r follows from the case p−p0 =
r , so without loss of generality we may also assume p ≥ p0 + r .

For a weight u and a measurable set E we define u(E) := ∫
E u dµ and we denote

dyadic Hardy–Littlewood maximal operator with respect to the measure u dµ by

MD ,u f (s) := sup
Q∈D

1

u(Q)

∫
Q
| f |u dµ ·1Q (s), s ∈ S,

which is bounded on Lp (S,u) for all p ∈ (1,∞) by Doob’s maximal inequality (see e.g.

[HNVW16, Theorem 3.2.2]). Take f ∈ Lp (S, w), set q := (p/r )′ = p
p−r and take

g ∈ Lq (S, w1−q ) = (
Lp/r (S, w)

)∗.

Then we have by the disjointness of the EQ ’s associated to each Q ∈S
∑

Q∈S
w(EQ )

( µ(Q)

w(Q)

)q〈|g |〉q
1,Q ≤ ∑

Q∈S

∫
EQ

MD ,w (g w−1)q w dµ

≤ ∥∥MD ,w (g w−1)
∥∥q

Lq (S,w)

<∼p,r ‖g‖q
Lq (S,w1−q )

(3.2.7)
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and similarly, setting σ := w1−(p/p0)′ , we have

∑
Q∈S

σ(EQ )
(µ(Q)

σ(Q)

) p
p0

〈| f |p0
〉p/p0

1,Q ≤ ∥∥MD ,σ(| f |p0σ−1)
∥∥p/p0

Lp/p0 (S,σ)

<∼p,p0 ‖ f ‖p
Lp (S,w)

(3.2.8)

using σ ·σ−p0/p = w . Define the constant

cw := sup
Q∈D

w(Q)1/r

w(EQ )
1
r − 1

p

σ(Q)1/p0

σ(EQ )1/p

1

µ(Q)1/p0
,

Then by Hölders inequality, (3.2.7) and (3.2.8) we have∫
S

( ∑
Q∈S

〈| f |〉r
p0,Q 1Q

)
· g dµ= ∑

Q∈S
µ(Q)

〈| f |p0
〉r /p0

1,Q 〈|g |〉1,Q

≤ cr
w

∑
Q∈S

(
σ(EQ )r /p

(µ(Q)

σ(Q)

)r /p0〈| f |p0
〉r /p0

1,Q

)
×

(
w(EQ )1/q µ(Q)

w(Q)
〈|g |〉1,Q

)
<∼p,p0,r cr

w

∥∥ f
∥∥r

Lp (S,w)‖g‖Lq (S,w1−q ).

(3.2.9)

So by duality it remains to show cw <∼ [w]
max

{
1

p−p0
, 1

r

}
Ap/p0

. Fix a Q ∈ D and note that by

Hölders’s inequality we have

µ(Q)p/p0 ≤ ηp/p0
(∫

EQ

w p0/p w−p0/p dµ
)p/p0 ≤ ηp/p0 w(EQ )σ(EQ )p/p0−1.

and thus

w(Q)

w(EQ )

( σ(Q)

σ(EQ )

)p/p0−1 ≤ ηp/p0
w(Q)

µ(Q)

(σ(Q)

µ(Q)

)p/p0−1 <∼S η
p/p0 [w]Ap/p0

.

Therefore we can estimate

cw = sup
Q∈D

[ w(Q)

µ(Q)

(σ(Q)

µ(Q)

) p
p0

−1] 1
p ·

[( w(Q)

w(EQ )

) 1
r − 1

p
( σ(Q)

σ(EQ )

) 1
p
]

<∼S [w]
1
p

Ap/p0
sup
Q∈D

[ w(Q)

w(EQ )

( σ(Q)

σ(EQ )

) p
p0

−1]max
{

1
r − 1

p , 1
p

p0
p−p0

}

<∼S,η [w]
1
p +max

{
1
r − 1

p , 1
p

p0
p−p0

}
Ap/p0

= [w]
max

{
1

p−p0
, 1

r

}
Ap/p0

,

which finishes the proof.
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3.3. GENERALIZATIONS OF `r -SPARSE DOMINATION

Our main sparse domination theorems, Theorem 3.1.1 and Theorem 3.2.2, allow for var-

ious further generalizations. One can for instance change the boundedness assump-

tions on T andM#
T,α, treat multilinear operators, or deduce domination by sparse forms

for operators that do not admit a pointwise sparse estimate. We end this section by

sketching some of these possible generalizations.

In [LO20, Section 3] various variations and extensions of the main result in [LO20]

are outlined. In particular, they show:

• The sparse domination for an individual function follows from assumptions on

the same function. This can be exploited to prove a sparse T (1)-type theorem, see

[LO20, Section 4].

• One can use certain Orlicz estimates to deduce sparse domination with Orlicz av-

erages.

• The method of proof extends to the multilinear setting (see also [Li18]).

Our sparse domination results can also be extended in these directions, which we leave

to the interested reader. In the remainder of this section, we will explore some further

directions in which our results can be extended.

Sparse domination techniques have been successfully applied to fractional integral

operators, see e.g. [CM13a, CM13b, Cru17, IRV18]. In these works sparse domination

and sharp weighted estimates are deduced for e.g. the Riesz potentials, which for 0 <
α< n and a Schwartz function f : Rn →C are given by

Iα f (s) :=
∫
Rn

f (t )

|s − t |d−α dt , s ∈Rn ,

A key feature of such operators is that they are not (weakly) Lp -bounded, but bounded

from Lp (Rn) to Lq (Rn), where p, q ∈ (1,∞) are such that 1
p = 1

q + α
d . The sparse domina-

tion that one obtains in this case involves fractional sparse operators, in which the usual

averages 〈| f |〉p,Q are replaced by fractional averages.

These operators fit in our framework with minimal effort. Indeed, upon inspection

of the proof of Theorem 3.2.2 it becomes clear that the only place where we use the

boundedness of T and M#
T,α is in (3.2.1). Replacing the bounds with the off-diagonal

bounds arising from fractional integral operators, we obtain the following variant of

Theorem 3.1.1. Weighted bounds for the fractional sparse operators in Theorem 3.3.1

can be found in [FH18]

Theorem 3.3.1. Let (S,d ,µ) be a space of homogeneous type and let X and Y be Banach

spaces. Take p0, q0,r ∈ [1,∞). Take α≥ 3c2
d /δ, where cd is the quasi-metric constant and

δ is as in Proposition 2.1.1. Assume the following conditions:
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• T is a bounded linear operator from Lp0 (S; X ) to Lq0,∞(S;Y ).

• M#
T,α is a bounded operator from Lp0 (S; X ) to Lq0,∞(S).

• T is r -sublinear.

Then there is an η ∈ (0,1) such that for any boundedly supported f ∈ Lp0 (S; X ) there is an

η-sparse collection of cubes S such that

‖T f (s)‖Y <∼S,α CT Cr

( ∑
Q∈S

µ(αP )
r

p0
− r

q0
〈‖ f ‖X

〉r
p0,Q 1Q (s)

)1/r
, s ∈ S,

where CT = ‖T ‖Lp0→Lp0,∞ +‖M#
T,α‖Lp0→Lp0,∞ and Cr is the r -sublinearity constant.

Proof. The proof is the same as the proof of Theorem 3.1.1, using an adapted version of

Theorem 3.2.2 with the canonical α-localization family

TQ f (s) = T (1αQ f )(s), s ∈Q.

The only thing that changes in the proof of Theorem 3.2.2 is the definition ofΩ1
P andΩ2

P
and the computation in (3.2.2). Indeed, we define

Ω1
P :=

{
s ∈ P : ‖TP f (s)‖Y >λCT µ(αP )

1
p0

− 1
q0

〈‖ f ‖X
〉

p0,αP

}
Ω2

P :=
{

s ∈ P :M#
T,P ( f )(s) >λCT µ(αP )

1
p0

− 1
q0

〈‖ f ‖X
〉

p,αP

}
and then by the assumptions on T and M#

T,P we have for i = 1,2

µ(Ωi
P ) ≤

( ‖ f 1αP‖Lp0 (S;X )

λµ(αP )
1

p0
− 1

q0
〈‖ f ‖X

〉
p0,αP

)q0 =
〈‖ f ‖X

〉q0
p0,αP

λq0
〈‖ f ‖X

〉q0
p0,αP

µ(αP ) ≤ c1

λ
µ(P ).

which proves (3.2.2). In Step 2 of the proof of Theorem 3.2.2 one needs to keep track of

the factor µ(αP )
1

p0
− 1

q0 in the estimates.

In the celebrated paper [BFP16] by Bernicót, Frey and Petermichl, domination by

sparse forms was introduced to treat operators falling outside the scope of Calderón–

Zygmund theory. This method was later adopted by Lerner in [Ler19] into his framework

to prove sparse domination for rough homogeneous singular integral operators. As our

methods are based on Lerner’s sparse domination framework, our main result can also

be generalized to the sparse form domination setting.

Let (S,d ,µ) be a space of homogeneous type with a dyadic system D , let X and Y be

Banach spaces, q ∈ (1,∞), p ∈ [1, q) and α≥ 1. For a bounded operator

T : Lp (S; X ) → Lp,∞(S;Y )
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with an α-localization family {TQ }Q∈D we define the localized sharp grand q-maximal

truncation operator for Q ∈D by

M#
T,Q,q f (s) := sup

Q ′∈D (Q):
s∈Q ′

(∫
Q ′

∫
Q ′

∥∥(TQ\Q ′ ) f (s′)− (TQ\Q ′ ) f (s′′)
∥∥q

Y dµ(s′) dµ(s′′)
)1/q

.

Note that for q =∞ one formally recovers the operator M#
T,Q .

We will prove a version of Theorem 3.2.2 for operators for which the truncation op-

erators M#
T,Q,q are bounded uniformly in Q ∈D using sparse forms. Of course taking

TQ f (s) := T ( f 1αQ )(s), s ∈Q.

for Q ∈ D as the α-localization family one can easily deduce a statement like Theorem

3.1.1 in this setting, which we leave to the interested reader. Weighted bounds for the

sparse forms in the following theorem can be found in [BFP16, FN19, Nie19]

Theorem 3.3.2. Let (S,d ,µ) be a space of homogeneous type with dyadic system D and

let X and Y be Banach spaces. Take q0 ∈ (1,∞), r ∈ (0, q0), p1, p2 ∈ [1, q0), set p0 :=
max{p1, p2} and take α≥ 1. Suppose that

• T is a bounded operator from Lp1 (S; X ) to Lp1,∞(S;Y ) with anα-localization family

{TQ }Q∈D .

• M#
T,Q,q0

is bounded from Lp2 (S; X ) to Lp2,∞(S) uniformly in Q ∈D .

• T satisfies a localized `r -estimate.

Then for any f ∈ Lp0 (S; X ), g ∈ L
( 1

r − 1
q0

)−1

(S) and Q ∈ D there exists a 1
2 -sparse collection

of dyadic cubes S ⊆D(Q) such that(∫
Q

∥∥TQ f
∥∥r

Y · |g |r dµ
)1/r <∼S,D ,α,r CT Cr

( ∑
P∈S

µ(P )
〈‖ f ‖X

〉r
p0,αP

〈|g |〉r
1

1
r − 1

q0

,P

)1/r

with CT := ‖T ‖Lp1→Lp1,∞ + supP∈D‖M#
T,P,q0

‖Lp2→Lp2,∞ and Cr the constant from the lo-

calized `r -estimate.

Proof. We construct the sparse collection of cubes S exactly as in Step 1 of the proof of

Theorem 3.2.2, using M#
T,P,q0

instead of M#
T,P in the definition ofΩ2

P . We will check that

sparse form corresponding to S satisfies the claimed domination property, which will

roughly follow the same lines as Step 2 of the proof of Theorem 3.2.2.

Fix f ∈ Lp0 (S; X ) and g ∈ L
( 1

r − 1
q0

)−1

(S). Note that for a.e. s ∈ Q there are only finitely

many k ∈Nwith s ∈⋃
P∈Sk P . So we can use the localized `r -estimate of T to split∫

Q

∥∥TQ f
∥∥r

Y · |g |r ≤C r
r

∑
k∈N

∑
P∈Sk

(∫
P\

⋃
P ′∈Sk+1 P ′

∥∥TP f
∥∥r

Y · |g |r

+ ∑
P ′∈Sk+1:P ′⊆P

∫
P ′

∥∥TP\P ′ f
∥∥r

Y · |g |r
)

=: C r
r

∑
k∈N

∑
P∈Sk

(
AP + BP

)
.

(3.3.1)
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Fix k ∈N and P ∈ Sk . As in the estimate for A in Step 2 of the proof of Theorem 3.2.2,

we have

AP ≤λr C r
T

〈‖ f ‖X
〉r

p0,αP

∫
P
|g |r ≤λr C r

T µ(P )
〈‖ f ‖X

〉r
p0,αP 〈|g |〉r

1
1
r − 1

q0

,

using Hölder’s inequality in the second inequality. For P ′ ∈ Sk+1 such that P ′ ⊆ P we

have as in (3.2.5) that

µ
(
P ′ \ (ΩP ′ ∪ΩP )

)≥ 1

4
µ(P ′).

Therefore we can estimate each of the terms in the sum in BP as follows∫
P ′

∥∥TP\P ′ f
∥∥r

Y · |g |r ≤ 2r
∫

P ′

∫
P ′\(ΩP∪ΩP ′ )

∥∥TP\P ′ f (s)−TP\P ′ f (s′)
∥∥r

Y · |g (s)|r dµ(s′) dµ(s)

+2r
∫

P ′

∫
P ′\(ΩP∪ΩP ′ )

∥∥TP\P ′ f (s′)
∥∥r

Y · |g (s)|r dµ(s′) dµ(s)

≤ 2r+2µ(P ′) inf
s′′∈P ′M

#
T,P,q0

f (s′′)r · 〈|g |〉r
1

1
r − 1

q0

,P ′

+22rµ(P ′)
∫

P ′\(ΩP∪ΩP ′ )

∥∥TP f
∥∥r

Y +∥∥TP ′ f
∥∥r

Y dµ · 〈|g |〉r
r,P ′

≤ 4r+2λr C r
T µ(P ′)

(〈‖ f ‖X
〉r

p0,αP +〈‖ f ‖X
〉r

p0,αP ′
)〈|g |〉r

1
1
r − 1

q0

,P ′

where we used Hölder’s inequality and the definitions ofM#
T,P,q0

and TP\P ′ in the second

inequality and the definitions of ΩP and ΩP ′ in the third inequality. Furthermore we

note that by Hölders inequality we have∑
P ′∈Sk+1:

P ′⊆P

µ(P ′)〈|g |〉r
1

1
r − 1

q0

,P ′ ≤
( ∑

P ′∈Sk+1:
P ′⊆P

∫
P ′
|g |

1
1
r − 1

q0 dµ
)1− r

q0 ·
( ∑

P ′∈Sk+1:
P ′⊆P

µ(P ′)
)r /q0

≤
(∫

P
|g |

1
1
r − 1

q0 dµ
)1− r

q0 ·µ(P )r /q0 =µ(P )〈|g |〉r
1

1
r − 1

q0

,P

Thus for BP we obtain

BP ≤ 4r+2λr C r
T

(
µ(P )

〈‖ f ‖X
〉r

p0,αP 〈|g |〉r
1

1
r − 1

q0

,P

+ ∑
P ′∈Sk+1:P ′⊆P

µ(P ′)
〈‖ f ‖X

〉r
p0,αP ′〈|g |〉r

1
1
r − 1

q0

,P ′

)
Plugging this estimate and the estimate for AP into (3.3.1) yields∫

Q

∥∥TQ f
∥∥r

Y · |g |r dµ≤ 4r+3λr C r
T C r

r

∑
P∈S

µ(P )
〈‖ f ‖X

〉r
p0,αP 〈|g |〉r

1
1
r − 1

q0

,P
.

Since λ = 4c1c2 and c1 and c2 only depend on S, α and D , this finishes the proof of the

theorem.
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3.4. THE A2-THEOREM FOR OPERATOR-VALUED CALDERÓN–ZYGMUND OP-
ERATORS

The A2-theorem, first proved by Hytönen in [Hyt12] as discussed in the introduction,

states that a Calderón–Zygmund operator is bounded on L2(Rn , w) with a bound that

depends linearly on the A2-characteristic of w . This bound is sharp, and by sharp Rubio

de Francia extrapolation (see [DGPP05]) one can obtain sharp weighted bounds for all

p ∈ (1,∞). Originally the A2-conjecture was formulated for the Beurling–Ahlfors trans-

form in [AIS01] where it is shown to imply quasiregularity of certain complex functions.

Shortly afterwards it was settled for this operator in [PV02] and subsequently many other

operators were treated, which eventually led to [Hyt12].

Since its first proof by Hytönen, the A2-theorem has been extended in various direc-

tions. We mention two of these extensions relevant for the current discussion:

• The A2-theorem for Calderón–Zygmund operators on a geometric doubling met-

ric space was first proven by Nazarov, Reznikov and Volberg [NRV13], afterwards

it was proven on a space of homogeneous type by Anderson and Vagharshakyan

[AV14] (see also [And15]) using Lerner’s mean oscillation decomposition method.

It was further extended to the setting of ball bases by Karagulyan [Kar19].

• The A2-theorem for vector-valued Calderón–Zygmund operators with operator-

valued kernel was proven by Hänninen and Hytönen [HH14], using a suitable

adapted version of Lerner’s median oscillation decomposition.

In this section we will prove sparse domination for vector-valued Calderón–Zygmund

operators with operator-valued kernel on a space of homogeneous type. This yields the

A2-theorem for these Caldeŕon–Zygmund operators, unifying the results from [AV14]

and [HH14].

As an application of this theorem, we will prove a weighted, anisotropic, mixed norm

Mihlin multiplier theorem in the next section. Moreover, we will use it to study maximal

regularity for parabolic partial differential equations in Chapters 4 and 5. In these appli-

cations S is (a subset of) the anisotropic Euclidean space Rn
a as introduced in Example

2.1.2.

In a different direction our A2-theorem can be applied in the study of fundamental

harmonic analysis operators associated with various discrete and continuous orthogo-

nal expansions, started by Muckenhoupt and Stein [MS65]. In the past decade there has

been a surge of results in which such operators are proven to be vector-valued Calderón–

Zygmund operators on concrete spaces of homogeneous type. Weighted bounds are

then often concluded using [RRT86, Theorem III.1.3] or [RT88]. With our A2-theorem

these results can be made quantitative in terms of the Ap -characteristic. We refer to

[BCN12, BMT07, CGR+17, NS12, NS07] and the references therein for an overview of the

recent developments in this field.
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Let (S,d ,µ) be a space of homogeneous type, X and Y be Banach spaces and let

K : (S ×S) \ {(s, s) : s ∈ S} →L(X ,Y )

be strongly measurable in the strong operator topology. We say that K is a Dini kernel if

there is a cK ≥ 2 such that

‖K (s, t )−K (s, t ′)‖ ≤ω
(d(t , t ′)

d(s, t )

) 1

µ
(
B(s,d(s, t ))

) , 0 < d(t , t ′) ≤ 1

cK
d(s, t ),

‖K (s, t )−K (s′, t )‖ ≤ω
(d(s, s′)

d(s, t )

) 1

µ
(
B(s,d(s, t ))

) , 0 < d(s, s′) ≤ 1

cK
d(s, t ),

where ω : [0,1] → [0,∞) is increasing, subadditive, ω(0) = 0 and

‖K ‖Dini :=
∫ 1

0
ω(t )

dt

t
<∞.

We will introduce variants of this condition and discuss their properties in Section 4.3.

Take p0 ∈ [1,∞) and let

T : Lp0 (S; X ) → Lp0,∞(S;Y )

be a bounded linear operator. We say that T has Dini kernel K if for every boundedly

supported f ∈ Lp0 (S; X ) and a.e. s ∈ S \ supp f we have

T f (s) =
∫

S
K (s, t ) f (t ) dt .

Theorem 3.4.1. Let (S,d ,µ) be a space of homogeneous type and let X and Y be Banach

spaces. Let p0 ∈ [1,∞) and suppose T is a bounded linear operator from Lp0 (S; X ) to

Lp0,∞(S;Y ) with Dini kernel K . Then for every boundedly supported f ∈ L1(S; X ) there

exists an η-sparse collection of cubes S such that

‖T f (s)‖Y <∼S,p0 CT
∑

Q∈S

〈‖ f ‖X
〉

1,Q 1Q (s), s ∈ S.

Moreover, for all p ∈ (1,∞) and w ∈ Ap we have

‖T ‖Lp (S,w ;X )→Lp (S,w ;Y ) <∼S,p,p0 CT [w]
max{ 1

p−1 ,1}

Ap

with CT := ‖T ‖Lp0 (S;X )→Lp0,∞(S;Y ) +‖K ‖Dini.

Proof. We will check the assumptions of Theorem 3.1.1 with p1 = p2 = r = 1. The weak

L1-boundedness of T with

‖T ‖L1(S;X )→L1,∞(S;Y ) <∼S,p CT .
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follows from the classical Calderón-Zygmund argument, see e.g. [RRT86, Theorem III.1.2].

The 1-sublinearity assumption on T follows from the triangle inequality, so the only

thing left to check is the weak L1-boundedness of M#
T,α. Let

α := 3c2
d max

{
δ−1,cK

}
with cd the quasi-metric constant, δ as in Proposition 2.1.1 and cK the constant from

the definition of a Dini kernel. Fix s ∈ S and a ball B = B(z,ρ) such that s ∈ B . Then for

any s′, s′′ ∈ B and t ∈ S \αB we have

d(s′, t ) ≥ 1

cd
d(z, t )−d(z, s′) ≥ αρ

cd
−ρ ≥ 2cK cd ρ =: ε

d(s′, s′′) ≤ 2cd ρ = c−1
K ε.

Therefore we have for any boundedly supported f ∈ L1(S; X )

‖T (1S\αB f )(s′)−TK (1S\αB f )(s′′)‖Y

≤
∫

S\αB

∥∥(
K (s′, t )−K (s′′, t )

)
f (t )

∥∥
Y dµ(t )

≤
∫

d(s′,t )>ε
ω

(d(s′, s′′)
d(s′, t )

) 1

µ
(
B(s′,d(s′, t ))

)‖ f (t )‖X dµ(t )

≤
∞∑

j=0
ω

(
c−1

K 2− j )∫
2 j ε<d(s′,t )≤2 j+1ε

1

µ
(
B(s′,d(s′, t ))

)‖ f (t )‖X dµ(t )

<∼S

∞∑
j=0

ω
(
2− j−1)∫

B(s′,2 j+1ε)
‖ f (t )‖X dµ(t )

≤ ‖K ‖Dini M
(‖ f ‖X

)
(s),

where the last step follows from s ∈ B(s′,2 j+1ε) for all j ∈N and

∞∑
j=0

ω
(
2− j−1)≤ ∞∑

j=0
ω

(
2− j−1)∫ 2− j

2− j−1

dt

t
≤

∞∑
j=0

∫ 2− j

2− j−1
ω(t )

dt

t
= ‖K ‖Dini. (3.4.1)

So, taking the supremum over all s′, s′′ ∈ B and all balls B containing s, we find that

M#
T,α f (s) <∼S ‖K ‖Dini M

(‖ f ‖X
)
(s). Thus by the weak L1-boundedness of the Hardy–

Littlewood maximal operator and the density of boundedly supported functions in L1(S; X )

we get ∥∥M#
T,α

∥∥
L1(S;X )→L1,∞(S;Y )

<∼S ‖K ‖Dini.

The pointwise sparse domination now follows from Theorem 3.1.1 and the weighted

bounds from Proposition 3.2.4.

Remark 3.4.2. In the proof of Theorem 3.4.1 it actually suffices to use the so-called Lr -

Hörmander condition for some r > 1, which is implied by the Dini condition. See [Li18,

Section 3] for the definition of the Lr -Hörmander condition and a comparison between

the Lr -Hörmander and the Dini condition.
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Note that Theorem 3.4.1 does not assume anything about the Banach spaces X and

Y and is therefore applicable in situations where for example Y = `∞. However, in var-

ious applications X and Y will need to have the UMD property in order to check the

assumed weak Lp0 -boundedness of T for some p0 ∈ [1,∞). For instance, for a large class

of operators the weak Lp0 -boundedness of T can be checked using theorems like the

T (1)-theorem or T (b)-theorem. See [Fig90] and [Hyt14] for these theorems in the vector-

valued setting, which assume the UMD property for the underlying Banach space.

3.5. THE WEIGHTED ANISOTROPIC MIXED-NORM MIHLIN MULTIPLIER THE-
OREM

One of the main Fourier multiplier theorems is the Mihlin multiplier theorem, which

was first proven in the operator-valued setting by Weis in [Wei01b]. The operator-valued

Mihlin multiplier theorem of Weis has since been extended in many directions. Recently

Fackler, Hytönen and Lindemulder extended the operator-valued Mihlin multiplier the-

orem to a weighted, anisotropic, mixed norm setting in [FHL20]. This is for example

useful in the study of spaces of smooth, vector-valued functions and has applications to

parabolic PDEs with inhomogeneous boundary conditions, see [Lin20]. In [FHL20] the

Mihlin multiplier theorem is shown using the following two approaches:

• Using a weighted Littlewood–Paley decomposition, they show a weighted, aniso-

tropic, mixed-norm Mihlin multiplier theorem for rectangular Ap -weights, i.e.

Ap -weights for which the defining supremum is taken over rectangles with sides

parallel to the coordinate axes instead of balls.

• Using Calderón–Zygmund theory, they show a weighted, isotropic, non-mixed-

norm Mihlin multiplier theorem for cubicular Ap -weights, i.e. Ap -weights for

which the defining supremum is taken over cubes with sides parallel to the co-

ordinate axes instead of balls, which is equivalent to the definition using balls in

Section 2.3

Both approaches have their pros and cons. The result using a Littlewood–Paley de-

composition only requires estimates of ∂θm for θ ∈ {0,1}, whereas the approach using

Calderón–Zygmund theory also requires estimates of higher-order derivatives. On the

other hand, the class of rectangular Ap -weights is a proper subclass of the class of cu-

bicular Ap -weights.

In applications it is be desirable to have the Mihlin multiplier theorem for cubic-

ular Ap -weights in the anisotropic, mixed-norm setting as well. This would remove

the need to distinguish between the isotropic and anisotropic setting in e.g. [Lin20,

(6) on p.64]. In order to obtain the Mihlin multiplier theorem for cubicular Ap -weights

in the anisotropic, mixed-norm setting, one needs Calderón–Zygmund theory in the

anisotropic Euclidean spaces of Example 2.1.2. Since these are a special cases of spaces
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of homogeneous type, we can use Theorem 3.4.1 to supplement the results of [FHL20],

which will be the main result of this section.

Let us introduce the anisotropic, mixed-norm setting. For a ∈ (0,∞)d we let Rd
a be

the anisotropic Euclidean space as introduced in Example 2.1.2. We write |a|1 :=∑d
j=1 a j

and |a|∞ := max j=1,...,d a j . Take n ∈N and d ∈Nn with
∑n

j=1 d j = d and consider the d -

decomposition of Rd :

Rd
d :=Rd1 × . . .×Rdn .

For a t ∈ Rd
d we write t = (t1, . . . , tn) with t j ∈ Rd j for j = 1, . . . ,n and similarly we write

a = (a1, . . . , an). For p ∈ [1,∞)n , a vector of weights w ∈ ∏n
j=1 Ap (R

d j
a j

) and a Banach

space X we define the weighted mixed-norm Bochner space Lp (Rd
d , w ; X ) as the space

of all strongly measurable f :Rd
d → X such that

‖ f ‖Lp (Rd
d ,w ;X ) :=

(∫
Rd1

. . .
(∫
Rdn

‖ f ‖pn
X wn dtn

) pn−1
pn . . . w1 dt1

) 1
p1

is finite.

Theorem 3.5.1. Let X and Y be UMD Banach spaces, set N = |a|1 +|a|∞+1 and let m ∈
L∞(Rd ;L(X ,Y )). Suppose that for all θ ∈Nd with a ·θ ≤ N the distributional derivative

∂θm coincides with a continuous function on Rd \ {0} and we have the R-bound∥∥{|ξ|a·θa ·∂θm(ξ) : ξ ∈Rd \ {0}
}∥∥

R ≤Cm .

for some Cm > 0. Then for every compactly supported f ∈ L1(Rd ; X ) there exists an η-

sparse collection of anisotropic cubes S such that

‖Tm f (s)‖Y <∼X ,Y ,a Cm
∑

Q∈S

〈‖ f ‖X
〉

1,Q 1Q (s), s ∈Rd .

Moreover, for all p ∈ (1,∞)n there is a function φ : Rn+ → R+, depending on X ,Y ,d , a, p

and nondecreasing in every variable, such that for all w ∈∏n
j=1 Ap j (R

d j
a j

) we have

‖Tm‖Lp (Rd
d ,w ;X )→Lp (Rd

d ,w ;Y ) ≤Cm ·φ
(
[w1]

Ap1 (R
d1
a1

)
, . . . , [wn]

Apn (Rdn
an )

)
.

Proof. We will check the conditions of Theorem 3.4.1. By [Hyt07, Theorem 3], which

trivially extends to the case X 6= Y , we know that Tm is bounded from L2(Rd ; X ) to

L2(Rd ;Y ) with

‖Tm‖L2(Rd ;X )→L2(Rd ;Y )
<∼X ,Y ,d ,a Cm .

By [Lin14a, Lemma 4.4.6 and 4.4.7] we know that qm coincides with a continuous func-

tion on Rd \ {0}, which is bounded away from 0 and moreover,

K (t , s) := qm(t − s), t 6= s
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is a Dini kernel on the space of homogeneous type Rd
a with

ω(r ) =Ca ·Cm · r ε, r ∈ [0,1]

with ε= min1≤k≤n ak . Now let f ∈ Lp (Rd ; X ) with compact support. Fix a c ∈Rd \ supp f

and take r > 0 such that B(c,2r )∩ supp f =∅. Take a sequence ( fk )∞k=1 in S(Rd ; X ) such

that supp fk ∩B(c,r ) =∅ and fk → f in L2(Rd ; X ). Then T fk → T f in L2(Rd ; X ) and, by

passing to a subsequence if necessary, we have fk (t ) → f (t ) and T fk (t ) → T f (t ) for a.e.

t ∈Rd . Fix k ∈N, then we have for all ϕ ∈C∞
c (Rd \ supp fk )

〈Tm fk ,ϕ〉 =
∫
Rd

m(s) f̂k (s)qϕ(s) ds

=
∫
Rd

qm(s)
∫
Rd

fk (t − s)ϕ(t ) dt ds

=
∫
Rd

∫
Rd

K (t , s) fk (s) dsϕ(t ) dt

from which we obtain for a.e. t ∈ B(c,r )

Tm f (t ) = lim
k→∞

Tm fk (t ) = lim
n→∞

∫
Rd

K (t , s) fk (s) ds =
∫
Rd

K (t , s) f (s) ds.

Covering Rd \ supp f by countably many such balls, we conclude that Tm has kernel K .

Therefore the sparse domination, as well as the weighted estimate in case n = 1, follows

from Theorem 3.4.1.

To conclude the proof we will show the case n = 2, the general case follows by iterat-

ing the argument. Take p ∈ (1,∞)2 and w ∈ Ap1 (Rd1
a1

)× Ap2 (Rd2
a2

). For v1 ∈ Ap2 (Rd1
a1

) note

that

v(t ) := v1(t1) ·w2(t2), t ∈Rd1 ×Rd2

belongs to Ap2 (Rd
a ), so by the case n = 1 we have

‖Tm f ‖Lp2 (Rd ,v ;Y )
<∼X ,Y ,d ,a,p2,v Cm · ‖ f ‖Lp2 (Rd ,v ;X )

for all f ∈ Lp2 (Rd , v ; X ). Since Rd2
a2

is a space of homogeneous type, we can use Rubio de

Francia extrapolation (Theorem 2.3.3) on the pairs of functions

( f , g ) ∈
{(‖Tm f ‖Lp2 (Rd2 ,w2;Y ),‖ f ‖Lp2 (Rd2 ,w2;X )

)
: f ∈S(Rd ; X )

}
to deduce the existence of a function φ : R2+ → R+, depending on X ,Y ,d , a, p and non-

decreasing in both variables, such that

‖Tm f ‖Lp (Rd
d ,w ;Y ) ≤Cm ·φ

(
[w1]

Ap1 (R
d1
a1

)
, [w2]

Ap2 (R
d2
a2

)

)
‖ f ‖Lp (Rd

d ,w ;X )

for all f ∈S(Rd ; X ), which implies the result by density.

Remark 3.5.2.
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(i) The nondecreasing function in Theorem 3.5.1 in the case n = 1 is

φ(t ) =CX ,Y ,d ,a,p · t max{ 1
p−1 ,1}, t ∈ [1,∞),

which is sharp. For n ≥ 2 the weight dependence our proof yields is more compli-

cated and not sharp for all choices of p ∈ (1,∞)n .

(ii) In the proof of Theorem 3.5.1 we only use the R-boundedness of the set{|ξ|a·θa ·∂θm(ξ) : ξ ∈Rd \ {0}
}

for θ ∈ {0,1}d . For all other θ ∈Nd with a ·θ ≤ N it suffices to know uniform bound-

edness of this set.

(iii) One could reduce the number of derivatives necessary in Theorem 3.5.1 by argu-

ing as in [Hyt04] instead of using [Lin14a, Lemma 4.4.6 and 4.4.7]. See also [FHL20,

Section 6].

(iv) Using the sparse domination in Theorem 3.5.1, one can also deduce two-weight

estimates for Tm as in [FHL20, Section 6].

3.6. THE RADEMACHER MAXIMAL FUNCTION

In this section we will apply Theorem 3.2.2 to the Rademacher maximal function. The

proofs will illustrate nicely how the geometry of the Banach space plays a role in de-

ducing the localized `r -estimate for this operator. In particular, we will use the type

of a Banach space X to deduce the localized `r -estimate for the Rademacher maximal

function.

The Rademacher maximal function was introduced by Hytönen, McIntosh and Por-

tal in [HMP08] as a vector-valued generalization of Doob’s maximal function that takes

into account the different “directions” in a Banach space. They used the Rademacher

maximal function to prove a Carleson’s embedding theorem for vector-valued functions

in connection to Kato’s square root problem in Banach spaces. The Carleson’s embed-

ding theorem for vector-valued functions has since found many other applications, like

the local vector-valued T (b) theorem (see [HV15]) and vector-valued multilinear multi-

plier theorems (see [DO18]).

Let (S,d ,µ) be a space of homogeneous type with a dyadic system D and let X be a

Banach space. For f ∈ L1
loc(S; X ) we define the Rademacher maximal function by

MD
Rad f (s) :=

sup
{∥∥∥ ∑

Q∈D :s∈Q

εQλQ〈 f 〉1,Q

∥∥∥
L2(Ω;X )

: (λQ )Q∈D finitely non-zero with
∑

Q∈D
|λQ |2 ≤ 1

}
,
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where (εQ )Q∈D is a Rademacher sequence on Ω. One can interpret this maximal func-

tion as Doob’s maximal function

f ∗(s) := sup
Q∈D :s∈Q

∥∥〈 f 〉1,Q
∥∥

X , s ∈ S,

with the uniform bound over the 〈 f 〉1,Q ’s replaced by the R-bound. Here the R-bound

of a set U ⊆ X is the R-bound of the family of operators Tx : C→ X given by λ 7→ λx for

x ∈U .

We say that the Banach space X has the RMF property if MD
Rad is a bounded operator

on Lp ([0,1); X ) for some p ∈ (1,∞), where D is the standard dyadic system in [0,1). It

was shown by Hytönen, McIntosh and Portal [HMP08, Proposition 7.1] that this implies

boundedness for all p ∈ (1,∞) and by Kemppainen [Kem11, Theorem 5.1] that this im-

plies boundedness of MD
Rad on Lp (S; X ) for any space of homogeneous type (S,d ,µ) with

a dyadic system D .

The relation of RMF property to other Banach space properties is not yet fully un-

derstood. However, we do have some necessary and sufficient conditions:

• If X has type 2, the R-bound of a set U ⊆ X is equivalent to the uniform bound

of U . Therefore if X has type 2 we have for any f ∈ L1
loc([0,1); X ) that MD

Rad f <∼
MD (‖ f ‖X ), so X has the RMF property.

• Any UMD Banach function space has the RMF property, which follows from the

boundedness of the lattice Hardy–Littlewood maximal operator on UMD Banach

function spaces. We will introduce the lattice Hardy–Littlewood maximal operator

and discuss this connection in Section 6.4

• Non-commutative Lp -spaces for p ∈ (1,∞) have the RMF property, see [HMP08,

Corollary 7.6].

• The RMF property implies nontrivial type, see [Kem11, Proposition 4.2]. Therefore

e.g. `1 does not have the RMF property.

It is an open problem whether nontrivial type or even the UMD property implies the

RMF property in a general Banach space. We refer to [HNVW16, Section 3.6.b] for a

further introduction to the RMF property.

Weighted bounds for the Rademacher maximal function in the Euclidean setting

were studied by Kemppainen [Kem13, Theorem 1]. The proof was based on a good-λ

inequality, which does not give sharp quantitative estimates in terms of the weight char-

acteristic. Using Theorem 3.2.2 we can prove sharp quantitative weighted estimates for

the Rademacher maximal function through sparse domination. We will not consider the

situation in which X has type 2, as this case follows directly from MD
Rad f <∼ MD (‖ f ‖X )

and the well-known sparse domination for the Hardy–Littlewood maximal operator.

We will need a version of the Rademacher maximal function for finite collections of

cubes. For a subcollection of cubes D ⊆D we define MD
Rad analogous to MD

Rad.
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Theorem 3.6.1. Let (S,d ,µ) be a space of homogeneous type with a dyadic system D and

let X be a Banach space with the RMF property. Assume that X has type r for r ∈ [1,2). For

any finite collection of cubes D ⊆D and f ∈ L1(S; X ) there exists an 1
2 -sparse collection of

cubes S ⊆D such that

MD
Rad f (s) <∼X ,S,D ,r

( ∑
Q∈S

〈‖ f ‖X
〉( 1

r − 1
2 )−1

1,Q 1Q (s)
) 1

r − 1
2

, s ∈ S

Moreover, for all p ∈ (1,∞) and w ∈ Ap we have

∥∥MD
Rad

∥∥
Lp (S,w ;X )→Lp (S,w ;X )

<∼X ,S,D ,p,r [w]
max

{
1

p−1 , 1
r − 1

2

}
Ap

.

Proof. Fix a finite collection of cubes D ⊆D . By [Kem11, Proposition 6.1] MD
Rad is weak

L1-bounded. We will view MD
Rad as a bounded operator

MD
Rad : L1(S; X ) → L1,∞(S;L(`2(D),L2(Ω; X )))

given by

MD
Rad f (s) =

(
(λQ )Q∈D 7→ ∑

Q∈D:s∈Q

εQλQ 〈 f 〉1,Q

)
, s ∈ S,

where (εQ )Q∈D is a Rademacher sequence on Ω.

For Q ∈D set

D(Q) := {P ∈D : P ⊆Q}

and define TQ := MD(Q)
Rad . Then {TQ }Q∈D is a 1-localization family for MD

Rad. Furthermore

we have for f ∈ L1(S; X ) and s ∈Q ∈D that

M#
MD

Rad,Q
f (s) = sup

Q ′∈D (Q):
s∈Q ′

esssup
s′,s′′∈Q ′

∥∥TQ\Q ′ f (s′)−TQ\Q ′ f (s′′)
∥∥
L(`2(D ),L2(Ω;X ))

= 0

where the last step follows from the fact that TQ\Q ′ f = MD(Q)\D(Q ′)
Rad f is constant on Q ′.

So M#
MD

Rad,Q
is trivially bounded from L1(S; X ) to L1,∞(S).

Set q := ( 1
r − 1

2 )−1. To check the localized `q -estimate for MD
Rad take Q1, . . . ,Qn ∈ D

with Qn ⊆ . . . ⊆Q1. Let (λQ )Q∈D ∈ `2(D) be of norm one and let (εQ )Q∈D and (ε′k )n
k=1 be

Rademacher sequences on Ω and Ω′ respectively. Define for k = 1, . . . ,n −1

λk :=
( ∑

Q∈D(Qk+1)\D(Qk )

|λQ |2
)1/2

, λn :=
( ∑

Q∈D(Qn )

|λQ |2
)1/2

Then for f ∈ L1(S; X ), setting fQ := εQλQ〈 f 〉1,Q , we have∥∥∥ ∑
Q∈D(Q1)

εQλQ〈 f 〉1,Q

∥∥∥
L2(Ω;X )
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=
∥∥∥ε′n ∑

Q∈D(Qn )

fQ +
n−1∑
k=1

ε′k
∑

Q∈D(Qk+1)\D(Qk )

fQ

∥∥∥
L2(Ω×Ω′;X )

<∼X ,r

(
λr

n

∥∥∥ ∑
Q∈D(Qn )

λ−1
n fQ

∥∥∥r

L2(Ω;X )
+

n−1∑
k=1

λr
k

∥∥∥ ∑
Q∈D(Qk+1)\D(Qk )

λ−1
k fQ

∥∥∥r

L2(Ω;X )

)1/r

≤
(∥∥∥ ∑

Q∈D(Qn )

εQλ
−1
n λQ〈 f 〉1,Q

∥∥∥q

L2(Ω;X )
+

n−1∑
k=1

∥∥∥ ∑
Q∈D(Qk+1)\D(Qk )

εQλ
−1
k λQ〈 f 〉1,Q

∥∥∥q

L2(Ω;X )

)1/q
,

using randomization (see [HNVW17, Proposition 6.1.11]) in the first step, type r of X in

the second step, and Hölder’s inequality and
∑n

k=1λ
2
k = 1 in the last step. Noting that for

k = 1, . . . ,n −1 ∑
Q∈D(Qk+1)\D(Qk )

|λ−1
k λQ |2 = 1,

∑
Q∈D(Qn )

|λ−1
n λQ |2 = 1,

this implies the localized `q -estimate for MD
Rad.

Having checked all assumptions of Theorem 3.2.2 for MD
Lat it follows that for any

Q ∈D there is a 1
2 -sparse collection of cubes SQ ⊆D(Q) such that∥∥TQ (s)

∥∥
Y
<∼X ,S,D ,r

( ∑
P∈S

〈‖ f ‖X
〉r

p,αP 1P (s)
)1/r

, s ∈Q.

Let D′ be the maximal cubes (with respect to set inclusion) of D, which are pairwise

disjoint. Then S :=⋃
Q∈D′ SQ is a 1

2 -sparse collection of cubes that satisfies the claimed

sparse domination as TQ (s) = MD
Rad f (s) for any s ∈ Q ∈ D′ and MD

Rad f is zero outside⋃
Q∈D′ Q. The weighted bounds follow from Proposition 3.2.4 and the monotone con-

vergence theorem.

We finish this section by showing that the weighted estimate in Theorem 3.6.1, and

consequently also the sparse domination in Theorem 3.6.1, is sharp. We take X = `r for

r ∈ (1,2], a prototypical Banach space with type r .

Proposition 3.6.2. Let p ∈ (1,∞) and r ∈ (1,2]. Suppose that for some β≥ 0 we have∥∥MD
Rad

∥∥
Lp ([0,1);`r )→Lp ([0,1);`r )

<∼p,r [w]βAp
.

for all w ∈ Ap . Then

β≥ max
{ 1

p −1
,

1

r
− 1

2

}
,

Proof. Since R-bounds are stronger than uniform bounds, we note that for any strongly

measurable f : [0,1) → `r we have

f ∗(s) ≤ MD
Rad f (s), s ∈ [0,1).

Thus by the corresponding result for Doob’s maximal operator (see [HNVW16, Proposi-

tion 3.2.4]), we have for p ∈ (1,∞)∥∥MD
Rad

∥∥
Lp ([0,1);`r )→Lp ([0,1);`r ) ≥

p

p −1
, (3.6.1)
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which implies

αM := sup
{
α≥ 0 : ∀ε> 0, limsup

p→1

∥∥MD
Rad

∥∥
Lp ([0,1);`r )→Lp ([0,1);`r )

(p −1)−α+ε
=∞

}
= 1.

Now let (en)∞n=1 be the canonical basis of `r and define

f (s) :=
∞∑

n=1
1[2−n ,2−n+1)(s)en , s ∈ [0,1).

For p ∈ (1,∞) we have

‖ f ‖Lp ([0,1);`r ) = 1.

To compute ‖MD
Rad f ‖Lp ([0,1);`r ) set I j := [0,2− j+1], take s ∈ and let m ∈ N be such that

2−m ≤ s ≤ 2−m+1. Then we have, using λI j = m−1/2 for j = 1, . . . ,m and Proposition 2.5.1,

that

MD
Rad f (s) ≥ 1

m1/2

∥∥∥ m∑
j=1

ε j 〈 f 〉1,I j

∥∥∥
L2(Ω;`r )

>∼
1

m1/2

∥∥∥( m∑
j=1

〈 f 〉2
1,I j

)1/2∥∥∥
`r

>∼
1

m1/2

∥∥∥ m∑
j=1

e j

∥∥∥
`r

>∼ m1/r−1/2 >∼ log(1/s)1/r−1/2.

Therefore we obtain

∥∥MD
Rad f

∥∥
Lp ([0,1);`r )

>∼
(∫ 1

0
log(1/s)p/r−p/2 ds

)1/p

=
(∫ ∞

1
xp/r−p/2e−x dx

)1/p

≥
( ∞∑

n=2
np/r−p/2e−n

)1/p

>∼ p1/r−1/2,

where we drop all terms except n = dpe in the last step. Thus, we find

γM = sup
{
γ≥ 0 : ∀ε> 0, limsup

p→∞

∥∥MD
Rad

∥∥
Lp ([0,1);`r )→Lp ([0,1);`r )

p−γ+ε =∞
}
= 1

r
− 1

2
.

The proposition now follows from [LPR15, Theorem 1.2].

3.7. LITTLEWOOD–PALEY OPERATORS

As a third application of our main sparse domination result we prove sparse domi-

nation and consequently sharp weighted norm estimates for Littlewood–Paley opera-

tors. Sharp weighted norm inequalities for Littlewood–Paley operators were obtained
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by Lerner [Ler11], who used his local mean oscillation decomposition to deduce sparse

domination for various Littlewood–Paley operators S. This implies

‖S‖Lp (Rn ,w)→Lp (Rn ,w) <∼ [w]
max

{
1

p−1 , 1
2

}
Ap

for all p ∈ (1,∞) and w ∈ Ap and the dependence on the weight characteristic is sharp

(see [Ler08]). The goal of this section is to show that these sharp weighted norm inequal-

ities are an almost direct corollary from Theorem 3.2.2 with r = 2 and the well-known

weak L1-boundedness of Littlewood–Paley operators.

In [Wil07] (see also [Wil08, Chapter 6]) Wilson introduced the so-called intrinsic

square function, which pointwise dominates the Lusin area integral, the Littlewood–

Paley g -function and their more modern, real-variable variants. Therefore it suffices to

show sparse domination for this intrinsic square function, which we will now introduce.

For α ∈ (0,1] let Cα be the family of functions ϕ : Rn → R supported in {x ∈ Rn : |x| ≤ 1},

satisfying
∫
Rn ϕ(x) dx = 0 and

|ϕ(x)−ϕ(x ′)| ≤ |x −x ′|α, x, x ′ ∈Rn .

Let Rn+1+ :=Rn ×R+ and define the cone of aperture β> 0 by

Γβ(x) := {(y, t ) ∈Rn+1
+ : |x − y | <βt }, x ∈Rn .

For f ∈ L1
loc(Rn) set

Aα( f )(y, t ) = sup
ϕ∈Cα

| f ∗ϕt (y)|, (y, t ) ∈Rn+1
+ ,

where ϕt (x) := t−nϕ(x/t ). We define the intrinsic square function of order α ∈ (0,1] and

aperture β> 0 by

Gα,β( f )(x) :=
(∫
Γβ(x)

Aα( f )(y, t )2 dy dt

t n+1

)1/2
, x ∈Rn .

We will prove sparse domination for a local variant of the intrinsic square function,

from which weighted bounds for Gα,β will follow by an approximation argument.

Theorem 3.7.1. Let α ∈ (0,1] and β> 0. For all p ∈ (1,∞) and w ∈ Ap we have

‖Gα,β‖Lp (Rn ,w)→Lp (Rn ,w) <∼α,β,p,n [w]
max

{
1

p−1 , 1
2

}
Ap

.

Proof. We will first check the assumptions of Theorem 3.2.2 for Gα,β. The weak L1-

bound follows from [Wil07, Section 1]. We will interpret Gα,β as a linear bounded op-

erator

Gα,β : L1(Rn) → L1,∞
(
Rn ;L2(Rn+1

+ ,
dy dt

t n+1

))
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given by

Gα,β( f )(x) := (t , y) 7→ 1Γβ(x)(y, t )Aα( f )(y, t ), x ∈Rn .

Fix a cube Q ⊆Rn and let D be a dyadic system in Rn containing Q. For P ∈D we define

the restricted cone of aperture β> 0 by

ΓP
β(x) := {

(y, t ) ∈Rn+1
+ : |x − y | <βt , t ≤ diam(P )

}
, x ∈Rn

and let GP
α,β be defined analogously to Gα,β with Γβ replaced by ΓP

β
. Then {TP }P∈D with

TP := GP
α,β is a (3+ 2β)-localization family for Gα,β. Indeed the localization property

follows from

Aα( f )(y, t ) = Aα( f 1E )(y, t ), (y, t ) ∈Rn+1
+

for any E ⊆Rn containing B(y, t ) and⋃{
B(y, t ) : (y, t ) ∈ ΓP

β(x) for some x ∈ P
}⊆ (1+2(1+β))P.

The domination property follows from Γ
ρ

β
(x) ⊆ Γβ(x) for any x ∈ Rn . The localized `2-

estimate in Theorem 3.2.2 for this localization family follows from the pairwise disjoint-

ness of

Γ
Pn
β

(x) and Γ
Pk
β

(x) \ΓPk+1
β

(x) k = 1, . . . ,n −1

for P1, . . . ,Pn ∈D with Pn ⊆ ·· · ⊆ P1.

Now let x ∈Rn and P,P ′ ∈D such that x ∈ P ′ ⊆ P . Then we have for any x ′ ∈ P ′ that

ΓP
β(x ′) \ΓP ′

β (x ′) ⊆ Γ1+β(x)

and thus

TP\P ′ f (x ′) ≤Gα,β+1( f )(x)

So M#
Gα,β,P f ≤ 2Gα,1+β f and since Gα,1+β is weak L1-bounded (see [Wil07, Section 1]),

it follows that M#
Gα,β,P is weak L1-bounded uniformly in P ∈D .

We can conclude by Theorem 3.2.2 that for any cube Q ⊆Rn and f ∈ L1(S; X ) there is

a 1
2 -sparse family of cubes S such that

GQ
α,β( f )(x) <∼α,β,n

( ∑
P∈S

〈| f |〉2
1,P 1P (x)

)1/2
, x ∈Q.

Combined with Proposition 3.2.4 this yields the claimed weighted bounds for GQ
α,β for

any cube Q ⊆ Rn . Taking an increasing sequence of cubes (Qk )k∈N with
⋃

k∈NQk = Rn

and using the monotone convergence theorem yields the same weighted bounds for

Gα,β, finishing the proof.

Remark 3.7.2.



3.8. FURTHER APPLICATIONS 73

• Using similar arguments as in the proof of Theorem 3.7.1 one can also treat the

dyadic square function with Theorem 3.2.2. This yields sharp weighted norm in-

equalities for the dyadic square function as obtained by Cruz-Uribe, Martell and

Perez [CMP12].

• Recently Bui and Duong [BD20] extended the result of Lerner [Ler11] to square

functions of a general operator L which has a Gaussian heat kernel bound and a

bounded holomorphic functional calculus on L2(S), where (S,d ,µ) is a space of

homogeneous type. The arguments they present can also be used to estimate our

sharp grand maximal truncation operator.

3.8. FURTHER APPLICATIONS

In this final section provide some further applications of our main theorems. We start

with a sparse domination result for the Haar decomposition of Lp (R; X ) for a UMD Ba-

nach space X . We will use this result in Chapter 6 to connect the UMD constant to a

sparsely dominated operator.

Let X be a Banach space, let D be the standard dyadic system in R and for I ∈ D

define the Haar function hI by

hI := |I | 1
2 (1I− −1I+ ),

where I+ and I− are the left and right half of I . For f ∈ L1
loc(R; X ) define the Haar projec-

tion D I by

D I f (t ) := hI (t )
∫
R

f (s)hI (s) ds, t ∈R. (3.8.1)

Theorem 3.8.1. Let X be a UMD Banach space, p ∈ (1,∞) and let D be the standard

dyadic system in R. Take εI ∈ {−1,1} for all I ∈ D . Then for any compactly supported

f ∈ L1(R; X ) there exists a 1
12 -sparse collection of intervals S such that∥∥∥ ∑

I∈D
εI D I f (t )

∥∥∥
X
<∼βp,X

( ∑
Q∈S

〈‖ f ‖X
〉

1,Q 1Q (t )
)
, t ∈R.

Moreover, for any w ∈ Ap and f ∈ Lp (R, w ; X ) we have∥∥∥ ∑
I∈D

εI D I f
∥∥∥

Lp (R,w ;X )
<∼p βp,X [w]

max
{

1
p−1 ,1

}
Ap

‖ f ‖Lp (R,w ;X )

Proof. Define for f ∈ L1(R; X ) the operator

T f (t ) := ∑
I∈D

εI D I f (t ), t ∈R.

Then T can be interpreted as a martingale transform and is therefore a bounded opera-

tor from L1(R; X ) to L1,∞(R; X ) with

‖T ‖L1(R;X )→L1,∞(R;X ) <∼βp,X
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by [HNVW16, Proposition 3.5.16 and Theorem 4.2.25]. For Q ∈D define TQ f = T ( f 16Q ).

Then {TQ }Q∈D is a 6-localization family of T and moreover for Q ′ ∈D we have that

TQ\Q ′ f = ∑
I∈D

εI D I ( f 16Q\6Q ′ ) = ∑
I∈D :Q ′(I

εI D I ( f 16Q\6Q ′ )

is constant on Q ′, so M#
T,Q = 0.

Now fix a compactly supported f ∈ L1(R; X ), set E = supp f and let D ⊆ D be a par-

tition of R as in Lemma 2.1.3. Then by Theorem 3.2.2 with p1 = p2 = r = 1 we obtain a
1
2 -sparse collection of dyadic intervals SQ ⊆D(Q) for every Q ∈D such that∥∥∥ ∑

I∈D
εI D I f (t )

∥∥∥
X
<∼βp,X

( ∑
P∈S

〈‖ f ‖X
〉

1,6P 1P (t )
)
, t ∈Q.

The claimed sparse domination now follows by taking

S := ⋃
Q∈D

{6P : P ∈SQ }.

The second claim follows from Proposition 3.2.4

To conclude this chapter we comment on some further potential applications of our

main theorems. We leave the details to the interested reader.

• Sparse domination and weighted bounds for variational truncations of Calderón–

Zygmund operators were studied in [HLP13, MTX15, MTX17, Zor20]. The argu-

ments presented in these references also imply the boundedness of our sharp

grand maximal truncation operator and thus by Theorem 3.1.1 yield sparse dom-

ination of the variational truncations of Calderón–Zygmund operators.

• In [LOR17] Lerner, Ombrosi and Rivera-Ríos show sparse domination for com-

mutators of a BMO function b with a Calderón–Zygmund operator, using sparse

operators adapted to the function b. By a slight adaptation of the arguments pre-

sented in the proof of Theorem 3.2.2, one can prove the main result of [LOR17] in

our framework and extend it to the vector-valued setting and to spaces of homo-

geneous type.

• Hörmander–Mihlin type conditions as in [GR85, Theorem IV.3.9] imply the weak

Lp1 -boundedness of our maximal truncation operator for p1 > n/a and thus sparse

domination for the associated Fourier multiplier operator by Theorem 3.1.1. Vector-

valued extensions under Fourier type assumptions can be found in [GW03, Hyt04]

and Theorem 3.1.1 may also be used to prove weighted results in that setting.

• Fackler, Hytönen and Lindemulder [FHL20] proved weighted vector-valued Little-

wood-Paley theory on a UMD Banach space in order to prove their weighted,

anisotropic, mixed-norm Mihlin multiplier theorems. Using Theorem 3.1.1 and

Proposition 3.2.4 on the Littlewood–Paley square function with smooth cut-offs,
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one can prove sparse domination and weighted estimates in the smooth cut-off

case. This can then be transferred to sharp cut-offs by standard arguments, recov-

ering [FHL20, Theorem 3.4].

• Theorem 3.3.1 can be used to show sparse domination and sharp weighted esti-

mates for fractional integral operators as in [CM13a, CM13b, Cru17, IRV18]. The

boundedness of the sharp grand maximal truncation operator associated to these

operators can be shown using a similar argument as we used in the proof of The-

orem 3.4.1.

• In [BFP16] Bernicot, Frey and Petermichl showed that the sparse domination prin-

ciple is also applicable to non-integral singular operators falling outside the scope

of Calderón–Zygmund operators. Sparse domination for square functions related

to these operators was studied in [BBR20]. The methods developed in these pa-

pers actually show the boundedness of the localized sharp grand q-maximal trun-

cation operator used in Theorem 3.3.2, so these results also fit in our framework.





4
SINGULAR STOCHASTIC INTEGRAL OPERATORS

This chapter is based on the first half of the paper

[6] E. Lorist and M.C. Veraar. Singular stochastic integral operators. To appear in

Anal. PDE, 2020.

It is complemented by a discussion on γ-Fourier multiplier operators from an unpub-

lished manuscript in Section 4.5 and extrapolation theory for stochastic-deterministic

singular integral operators from

[1] E. Lorist. Space-time weighted maximal regularity for parabolic (S)PDE. In prepa-

ration.

in Section 4.6.

Abstract. In this chapter we develop extrapolation theory for singular stochastic inte-

grals with operator-valued kernel. In particular, we prove Lp -extrapolation results under

a Hörmander condition on the kernel. Sparse domination and sharp weighted bounds

are obtained under a Dini condition on the kernel, leading to a stochastic version of the

solution to the A2-conjecture. We also discuss the closely related γ-Fourier multiplier op-

erators and develop an extrapolation theory for singular stochastic-deterministic integral

operators.
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4.1. INTRODUCTION

In the study of stochastic partial differential equations (SPDEs), one often needs sharp

regularity results for the linear equations. Together with fixed point arguments, this

can be used to obtain existence, uniqueness and regularity for the solution to nonlin-

ear SPDEs. In the last decades so-called maximal regularity results for SPDEs have been

obtained in many papers. We refer to [DZ14, Section 6.3] for an overview on the sub-

ject in the Hilbert space setting. In the Lq -setting sharp regularity results have been

obtained in [Kry99] by real analysis and PDE methods, and in [NVW12b] by functional

calculus techniques.

In the above approaches one needs to prove sharp regularity estimates for singular

stochastic integral operators of the form

SK G(s) :=
∫ T

0
K (s, t )G(t ) dWH (t ), s ∈ (0,T ), (4.1.1)

where X and Y are Banach spaces, G is an adapted process taking values in X , WH is a

cylindrical Brownian motion and K is a given operator-valued kernel K : (0,T )×(0,T ) →
L(X ,Y ) for some T ∈ (0,∞]. An important example of a kernel K is

K (s, t ) = e−(s−t )A 1t<s , s, t ∈ (0,T ) (4.1.2)

where −A is the generator of an analytic semigroup on X and Y is either the real inter-

polation space (X ,D(A))1/2,2, the complex interpolation space [X ,D(A)]1/2 or the frac-

tional domain space D((λ+ A1/2)), where λ ∈ ρ(−A). This kernel has a singularity of the

form ‖K (s, t )‖ ≤C (s−t )−1/2 for |s−t | ≤ 1. The Lp -boundedness of singular stochastic in-

tegrals with this kernel leads to stochastic maximal Lp -regularity, which we will discuss

in the next chapter..

For deterministic PDEs one analogously obtains deterministic maximal Lp -regularity

from the Lp -boundedness of

TK f (s) :=
∫ T

0
K (s, t ) f (t ) dt , s ∈ (0,T ),

where K is as in (4.1.2) with Y = D(A). This kernel satisfies

‖K (s, t )‖ ≤C (s − t )−1, |t − s| ≤ 1.

Operators TK with such kernels have been studied thoroughly in the field of harmonic

analysis. For example, using operator-valued Calderón–Zygmund theory as in Section

3.4, it was shown in [Dor00] that one can deduce that the Lp -boundedness of TK for all

p ∈ (1,∞) from maximal Lp0 -regularity for some p0 ∈ [1,∞]. Moreover, with the Mihlin

multiplier theorem as in Section 3.5, one can obtain the Lp -boundedness of TK for p ∈
(1,∞) from the R-boundedness of the family of bounded operators{

A (i t + A)−1 : t ∈R}⊆L(X ).
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The necessity of this R-boundedness condition was shown in [CP01].

Unlike in the deterministic setting, there is no general theory for the Lp -boundedness

of singular stochastic integral operators. The aim of this chapter is to provide a version

of this theory, which we will use to obtain new regularity results for abstract classes of

SPDEs and more concrete examples, such as the heat equation, in the next chapter.

4.1.1. SINGULAR STOCHASTIC INTEGRALS

The behavior of the stochastic singular integral operators in (4.1.1) is quite different

from the deterministic setting. Due to the Itô L2-isometry the integrals convergence

absolutely and thus no principal values are needed. As a consequence, in contrast with

the deterministic setting, the scalar-valued setting can easily be characterized, see Sub-

section 4.2.3. In the operator-valued setting cancellation can for example occur in the

following form:

(∫ T

0
‖K (s, t )x‖2

Y dt
)1/2 ≤C‖x‖X , s ∈ (0,T ), x ∈ X . (4.1.3)

If the kernel is of this form, then using a simple Fubini argument one can check that SK

is L2-bounded (see Propositions 4.2.3 and 4.2.10(i)). In particular, this method was used

for the kernel in (4.1.2) in the classical monograph [DZ14, Section 6.3]. A sophisticated

extension of this type of argument was used in [Brz95], [BH09] and [DL98] to cover Lp -

boundedness in the scale of real interpolation spaces (X ,D(A))θ,p .

The complex interpolation scale is more complicated. In particular, for X = Lp (Rd )

(4.1.3) is often not true. For example it fails for A = −∆. To obtain Lp -estimates in this

case, [Kry94b, Kry99, Kry08] use sharp estimates for stochastic integrals and sophisti-

cated real analysis arguments. Moreover, using PDE arguments, the operator A can be

replaced by a second order elliptic operator with coefficients depending on (t ,ω, x) ∈
(0,T )×Ω×Rd , where some regularity in x is assumed, but only progressive measura-

bility is assumed in (t ,ω). By an elaborate trick in [Kry00] the estimates were extended

to an Lp (Lq )-setting with p ≥ q ≥ 2. There are many variations of the above methods in

the literature, in which different operators than ∆ are considered and equations on dif-

ferent domains D ⊆Rd are treated (see e.g. [CKLL18, CKL19, Du20, Kim05, KK18, Kry09,

Lin14b] and references therein).

On the scale of tent spaces stochastic maximal regularity for elliptic operators in

divergence form is shown in [ANP14]. This is done through extrapolation using off-

diagonal estimates, which are substitutes for the classical pointwise kernel estimates of

Calderón-–Zygmund theory. See also [AKMP12] for the more general harmonic analysis

framework developed to analyse this scale.

In [NVW12b, NVW15c] the Lp -boundedness of stochastic singular integrals with ker-

nel (4.1.2) was obtained using the boundedness of the H∞-functional calculus together

with the sharp two-sided estimates for stochastic integrals in UMD Banach spaces de-

veloped in [NVW07]. One of the advantages of this approach is that it can be used for an
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abstract operator A as long as it has an H∞-calculus. Secondly, the stochastic integral

operator is automatically Lp -bounded for any p ∈ (2,∞). Some geometric restrictions

on X are required, but these are fulfilled for Lq , W s,q , etc. as long as q ∈ [2,∞) (see

Section 5.5). In particular, mixed Lp (Lq )-regularity can be obtained for all q ∈ [2,∞)

and p ∈ (2,∞), where p = q = 2 is allowed as well. The results of [NVW12b, NVW15c]

have been applied to semilinear equations in [NVW12a], to quasilinear equations in

[Hor19, AV20a, AV20b] and to fully nonlinear equations in [Agr18].

Recently, in [PV19] the framework of [NVW12b, NVW15c] has been extended to cover

the case where A depends on time and Ω, as long as D(A(t ,ω)) is constant. The method

is based on a reduction to the time andΩ-independent setting and gives a new approach

to [Kry99], which additionally includes new optimal space-time regularity estimates and

is applicable to a large class of SPDEs.

4.1.2. EXTRAPOLATION FOR SINGULAR STOCHASTIC INTEGRAL OPERATORS

A large part of the theory of maximal Lp -regularity for deterministic PDEs was devel-

oped after the Calderón-Zygmund theory for operator-valued kernels was founded. In

the stochastic case such a Calderón–Zygmund theory is not available yet, and our goal

motivation is to build such a theory and discover its potential for stochastic maximal Lp -

regularity (see Chapter 5). Despite the rather different behaviour of stochastic singular

integral operators compared to their deterministic counterparts, our first main theorem

on the boundedness of singular stochastic integral operators is a stochastic version of

the classical extrapolation result for Calderón–Zygmund operators, see [Hör60] for the

scalar case and e.g. [BCP62, GR85, HNVW2x, RRT86] for the operator-valued case.

Theorem 4.1.1 (Lp -boundedness of stochastic Calderón-Zygmund operators). Let X

and Y be Banach spaces with type 2 and assume Y has the UMD property. Take T ∈ (0,∞],

let K : (0,T )× (0,T ) →L(X ,Y ) be strongly measurable and assume that for every interval

I ⊆ (0,T ) we have the following Hörmander condition(∫
(0,T )\I

‖K (s, t )−K (s′, t )‖2 dt
)1/2 ≤C s, s′ ∈ 1

2 I (4.1.4)(∫
(0,T )\I

‖K (s, t )−K (s, t ′)‖2 ds
)1/2 ≤C t , t ′ ∈ 1

2 I (4.1.5)

for some constant C > 0 independent of I . Fix p ∈ [2,∞) and suppose that the mapping SK

as defined in (4.1.1) is bounded from Lp
F

(Ω× (0,T );γ(H , X )) into Lp (Ω× (0,T );Y ). Then

the mapping

SK : Lq
F

(Ω× (0,T );γ(H , X )) → Lq (Ω× (0,T );Y )

is bounded for all q ∈ (2,∞).

In Theorems 4.4.2 and 4.4.4 we prove a general extrapolation result for so-called

singular γ-integral operators. In this setting we also obtain the end point estimates

L2 → L2,∞ and L∞ → BMO. Singular γ-integral operators are connected to singular
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stochastic integral operators by the Itô isomorphism, see Proposition 4.2.3 and Proposi-

tion 4.2.5. Theorem 4.1.1 follows by combining the aforementioned results.

The conditions (4.1.4) and (4.1.5) are L2-variants of what is usually called the Hör-

mander condition. The Lr -variant for r ∈ [1,∞] also appears in [Hör60, Definition 2.1]

in the scalar case and in [RV17, Section 5.1] in the vector-valued case, where it was used

to extrapolate (deterministic) boundedness of operators from Lp into Lq with 1
p − 1

q = 1
r

to other pairs (u, v) satisfying 1 < u ≤ v <∞ and 1
u − 1

v = 1
r .

For Calderón–Zygmund operators weighted bounds are classical (see e.g. [Gra14a,

Chapter 7]) and the sharp dependence of the estimates on the weight characteristic in

this setting is known as the A2-theorem of Hytönen [Hyt12], which we discussed in Sec-

tion 3.4. By design, the abstract sparse domination principle in Theorem 3.1.1 is also

applicable to singular stochastic integral operators, which yields a stochastic version of

the A2-theorem.

Theorem 4.1.2 (Sharp weighted bounds). Let X and Y be Banach spaces with type 2

and assume Y has the UMD property. Take T ∈ (0,∞], let K : (0,T )× (0,T ) →L(X ,Y ) be

strongly measurable and assume that

‖K (s, t )−K (s′, t )‖ ≤ω
( |s − s′|
|s − t |

) 1

|s − t |1/2
|s − s′| ≤ 1

2
|s − t |,

‖K (s, t )−K (s, t ′)‖ ≤ω
( |t − t ′|
|s − t |

) 1

|s − t |1/2
|t − t ′| ≤ 1

2
|s − t |,

where ω : [0,1] → [0,∞) is increasing and subadditive, ω(0) = 0 and

(∫ 1

0
ω(r )2 dr

r

)1/2 <∞.

Suppose SK as defined in (4.1.1) is bounded from Lp
F

(Ω× (0,T );γ(H , X )) into Lp (Ω×
(0,T );Y ) for some p ∈ [2,∞). Then the mapping

SK : Lq
F

(Ω× (0,T ), w ;γ(H , X )) → Lq (Ω× (0,T ), w ;Y )

is bounded for all q ∈ (2,∞) and w ∈ Aq/2 with

‖SK ‖Lq (Ω×(0,T ),w ;γ(H ,X ))→Lq (Ω×(0,T ),w ;Y ) <∼ [w]
max{ 1

2 , 1
q−2 }

Aq/2
.

The above result follows from Proposition 4.2.3, Proposition 4.2.5 and Theorem 4.4.11.

We also prove that the above estimate is sharp in terms of the dependence on the weight

characteristic. Note that the difference with the A2-theorem for Calderón–Zygmund op-

erators (Theorem 3.4.1) occurs because the Lp -norm of (4.1.1) is equivalent to a certain

generalized square function. The conditions on the kernel are L2-versions of the Dini

condition. The integrability condition on ω holds in particular if ω(t ) = C t ε for some

C > 0 and ε ∈ (0,1]. We will discuss these kernel conditions thoroughly in Section 4.3.
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4.1.3. SUFFICIENT CONDITIONS FOR Lp -BOUNDEDNESS

In Theorem 4.1.1 and Theorem 4.1.2 one always needs to starts with an Lp -bounded

stochastic integral operator. Only in the the Hilbert space setting in the convolution case

we obtain a full characterization of the boundedness of SK in terms of kernel conditions,

see Corollary 4.4.9 and Corollary 4.4.13. Outside the Hilbert space setting or for non-

convolution kernels we do not have abstract theory to ensure Lp -boundedness, so this

has to be established on a case-by-case basis. It would be interesting to find general

sufficient conditions from which Lp -boundedness can be derived.

In the deterministic case Lp -boundedness can e.g. be derived using T (1) and T (b)-

theorems (see e.g. [HW06, Hyt06, Hyt20, HH16] for the operator-valued case). A stochas-

tic version of these theorems could have significant implications for the regularity the-

ory of SPDEs.

In the deterministic convolution case, i.e. if TK is a Calderón–Zygmund operator

with kernel K (s, t ) = k(s − t ) for some k : Rd \ {0} →L(X ,Y ), one can equivalently study

the Fourier multiplier operator Tm with with m = k̂. To deduce Lp -boundedness for T

one can then use the operator-valued Mihlin multiplier theorem, see Section 3.5. This

theorem relies on the boundedness of the Hilbert transform on Lp (R; X ), which is equiv-

alent to X having the UMD by Theorem 2.7.1. The stochastic analog of the Hilbert trans-

form, i.e. the stochastic integral operator with kernel K (s, t ) = 1
|s−t |1/2 , does not define

a bounded stochastic singular integral operator (see Example 4.2.13(ii)), so a stochas-

tic version of the Mihlin multiplier theorem would require a proper replacement of the

Hilbert transform.

Although we do not have a stochastic Mihlin multiplier theorem, we can use the

smoothness and decay of Fourier transform of k to check the L2-versions of the Hör-

mander and Dini conditions in Theorem 4.1.1 and Theorem 4.1.2. For the L1-variant of

Hörmander’s condition this is classical and for the Lr -variant of Hörmander’s condition

for r ∈ [1,∞] this has been done in [RV17, Section 5.2]. In Section 4.5 we will check the

L2-variant of Dini’s condition in terms of smoothness and decay of m, following the ar-

guments for the L1-variant of Hörmander’s condition in [HNVW2x]. Moreover, we will

prove a γ-Fourier multiplier extrapolation theorem, which is a consequence of the con-

nection with singular γ-integral operators and Theorem 4.4.11.

4.1.4. STOCHASTIC-DETERMINISTIC INTEGRAL OPERATORS

As noted before, an important kernel K for applications is given by

K (t , s) = A
1
2 e−(t−s)A 1t>s , t , s ∈ (0,T )

where −A is the generator of an analytic semigroup on X = Y . If X = Lq (O) for some

domain O ⊆ Rd , the operators K (s, t ) ∈L(Lq (O)) for s, t ∈ (0,T ) often have a kernel rep-

resentation of their own. For example if A =−∆ on Lq (Rd ), the heat semigroup (et∆)t≥0
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is for h ∈ Lq (Rd ) and t ∈R+ given by

et∆h(x) =
∫
Rd

1

(4πt )d/2
e−|x−y |/4t h(y) dy, x ∈Rd .

If the operators K (s, t ) ∈ L(Lq (O)) for s, t ∈ (0,T ) indeed have a kernel representa-

tion, we can write SK as

SK G(t , x) =
∫ T

0

∫
O

k(t , x, s, y)G(s, y) dy dWH (s), (t , x) ∈ (0,T )×O (4.1.6)

for a kernel

k : (0,T )×O× (0,T )×O→C

and adapted processes G : Ω×(0,T )×O→ H . To establish Lp (Ω×R+, w ;Lq (O))-bounded-

ness with p, q ∈ (2,∞) and w ∈ Ap/2((0,T )) for SK , we have seen in Theorem 4.1.1 and

Theorem 4.1.2 that it suffices to prove Lq (Ω×R+×O)-boundedness for SK and certain

assumptions on the kernel K . In applications it is easier to establish boundedness for SK

on the Hilbert space L2(Ω×R+×O). It is therefore desirable to deduce Lq (Ω×R+×O)-

boundedness for SK from L2(Ω×R+ ×O)-boundedness for SK . In the deterministic

case, this can be done using Calderón–Zygmund theory (see Section 3.4) in the space

(0,T )×O with a parabolic metric, which is a space of homogeneous type. For a class

of elliptic operators of fractional order this theory was developed in [KKL15, KKL16] un-

der a parabolic Hörmander assumption on k and this can be extended to the weighted

and p 6= q setting under a Dini condition on k using Theorem 3.4.1 and Rubio de Fran-

cia extrapolation. Using a parabolic stochastic Hörmander condition on k, a stochastic

version of these results was obtained in [Kim15, KK20] and for the moments of SK a

Calderón–Zygmund theory approach was recently employed in [Kim20].

In Section 4.6 we will extend the abstract result in [KK20] to the weighted and p 6= q

setting, using a parabolic stochastic Dini condition. For this we will once again use

the sparse domination framework developed in Chapter 3 and Rubio de Francia ex-

trapolation. This will allow us to deduce time- and space-weighted Lp (R+, v ;Lq (O, w))-

boundedness for SK from L2(R+ ×O)-boundedness for SK . Moreover, we are obtain

time- and space-weighted Lq (O, w ;Lp (R+), v)-boundedness for SK , in which case the

space integrability parameters q ∈ (1,∞) are allowed. In applications to SPDEs this

reversed integration order allows one to deduce additional regularity results, see also

[Ant17, NVW15a].

To formulate our result fix T ∈ (0,∞], m > 0 and a space of homogeneous type

(O,d ,µ). We define

OT := (0,T )×O
dT

(
(t , x), (s, y)

)
:= max

{|t − s|1/m ,d(x, y)
}

µT := dt ⊗ dµ,
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which is also a space of homogeneous type. In applications m will often be an even

integer and O a domain in Rd , equipped with the Euclidean distance and the Lebesgue

measure. We refer to Section 4.3 for the definition of a (2,1)-Dini kernel.

Theorem 4.1.3. Let K : OT ×OT →C be a (2,1)-Dini kernel. Suppose that

SK G(t , x) :=
∫ T

0

∫
O

K
(
(t , x), (s, y)

)
G(s, y) dµ(y) dWH (s), (t , x) ∈OT

is a well-defined, bounded operator from L2
F (Ω×OT ; H) to L2(Ω×OT ). For p ∈ (2,∞)

and q,r ∈ (1,∞) the following hold:

(i) The operator

SK : Lr
F (Ω;Lp (OT , w ; H)) → Lr (Ω;Lp (OT , w))

is bounded for all w ∈ Ap/2(OT ) with

‖SK ‖Lr (Ω;Lp (OT ,w ;H))→Lr (Ω;Lp (OT ,w)) <∼ [w]
max{ 1

p−2 ,1}

Ap (OT )
.

(ii) If q > 2, the operator

SK : Lr
F (Ω;Lp ((0,T ), v ;Lq (O, w ; H))) → Lr (Ω;Lp ((0,T ), v ;Lq (O, w)))

is bounded for all v ∈ Ap/2((0,T )) and w ∈ Aq (O).

(iii) The operator

SK : Lr
F (Ω;Lq (O, w ;Lp ((0,T ), v ; H))) → Lr (Ω;Lq (O, w ;Lp ((0,T ), v)))

is bounded for all v ∈ Ap/2((0,T )) and w ∈ Aq (O).

Theorem 4.1.3 will be proven in Section 4.6 using deterministic Calderón–Zygmund

theory, the abstract sparse domination result from Chapter 3 and Rubio de Francia ex-

trapolation.

Remark 4.1.4. By Fubini’s theorem and Rubio de Francia extrapolation, Theorem 4.1.3(i)

implies that the operator

SK : Lp ((0,T ), v ;Lq (O, w ;Lr (Ω; H))) → Lp ((0,T ), v ;Lq (O, w ;Lr (Ω)))

is bounded for p, q,r ∈ (2,∞), v ∈ Ap/2((0,T )) and w ∈ Aq/2(O) under suitable measura-

bility conditions. The case p = q and v ≡ w ≡ 1 of this result for second-order elliptic op-

erators has been treated in [Kim20]. In [Kim20] the solvability of the resulting parabolic

SPDEs, including a deterministic term, has also been obtained for p = q ≥ r . In [1] we

will extend Theorem 4.1.3 to also include such a deterministic term and obtain e.g. the

solvability of the parabolic SPDEs from [Kim20] for p, q,r ∈ (2,∞), v ∈ Ap/2((0,T )) and

w ∈ Aq/2(O).
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4.2. STOCHASTIC INTEGRAL OPERATORS

We start by introducing stochastic integral operators SK associated to a kernel K . The

reason we consider p ∈ [2,∞) will become clear in Subsection 4.2.3. Although we will not

assume Y to have type 2 for the moment, it follows from [NVW15b, Proposition 6.2] that,

already for very easy kernels K , in order to have boundedness of SK , a type 2 condition

on Y is necessary.

Definition 4.2.1 (Stochastic integral operator). Let X be a Banach space and Y a UMD

Banach space. Let p ∈ [2,∞), T ∈ (0,∞], let w be a weight on (0,T ) and let

K : (0,T )× (0,T ) →L(X ,Y )

be strongly measurable. We write K ∈KH
W (Lp ((0,T ), w)) if for f ∈ Lp

F
(Ω×(0,T ), w ;γ(H , X ))

and a.e. s ∈ (0,T ) the mapping t 7→ K (s, t ) f (t ) is in Lp
F

(Ω;γ(0,T ; H ,Y )) and the operator

SK given by

SK G(s) :=
∫ T

0
K (s, t )G(t ) dWH (t ), s ∈ (0,T )

is bounded from Lp
F

(Ω× (0,T ), w ;γ(H , X )) into Lp (Ω× (0,T ), w ;Y ). We norm the space

KH
W (Lp ((0,T ), w)) by

‖K ‖KH
W (Lp ((0,T ),w)) := ‖SK ‖Lp (Ω×(0,T ),w ;γ(H ,X ))→Lp (Ω×(0,T ),w ;Y ).

We omit the weight if w ≡ 1 and we omit the Hilbert space if H =R.

We want to study the boundedness properties of SK . In the next results we will re-

formulate this problem in a the deterministic setting using square functions (γ-norms

in time) and reduce considerations to the case H =R.

Definition 4.2.2 (γ-integral operator). Let X and Y be a Banach spaces. Let (S,µ) be a

measure space, p ∈ [2,∞), w be a weight on S and let

K : S ×S →L(X ,Y )

be strongly measurable. We say that K ∈KH
γ (Lp (S, w)) (resp. K ∈KH

γ (Lp,∞(S, w))) if for

f ∈ Lp (S, w ;γ(H , X )) and a.e s ∈ S the mapping t 7→ K (s, t ) f (t ) is in γ(S; H ,Y ) and the

operator TK given by

TK f (s) := K (s, ·) f (·), s ∈ S

is bounded from Lp (S, w ;γ(H , X )) into Lp (S, w ;γ(S; H ,Y )) (resp. from Lp into Lp,∞). We

norm these spaces by

‖K ‖KH
γ (Lp (S,w)) := ‖TK ‖Lp (S,w ;γ(H ,X ))→Lp (S,w ;γ(S;H ,Y )),

‖K ‖KH
γ (Lp,∞(S,w)) := ‖TK ‖Lp (S,w ;γ(H ,X ))→Lp,∞(S,w ;γ(S;H ,Y )).

We omit the weight if w ≡ 1 and we omit the Hilbert space if H =R.
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We start by connecting the definitions of stochastic and γ-integral operators.

Proposition 4.2.3 (Deterministic characterization). Let X be a Banach space and Y a

UMD Banach space. Let p ∈ [2,∞), T ∈ (0,∞] and let w be a weight on (0,T ). Then

KH
W (Lp ((0,T ), w)) =KH

γ (Lp ((0,T ), w))

isomorphically.

Proof. The proof follows directly from Theorem 2.9.1. Indeed, if K ∈KH
γ (Lp ((0,T ), w)),

then for G ∈ Lp
F

(Ω× (0,T ), w ;γ(H , X )) one has

‖SK G‖Lp (Ω;Lp ((0,T ),w ;Y )) 'p,Y ‖TK G‖Lp (Ω;γ((0,T );H ,Lp ((0,T ),w ;Y ))).

Therefore, by Fubini’s theorem and the γ-Fubini theorem (Proposition 2.8.6), we have

‖SK G‖Lp (Ω×(0,T ),w ;Y )) 'p,Y ‖TK G‖Lp (Ω;γ((0,T );H ,Lp ((0,T ),w ;Y )))

'p ‖TK G‖Lp (Ω;Lp ((0,T ),w ;γ(0,T ;H ,Y )))

≤ ‖K ‖KH
γ (Lp ((0,T ),w))‖G‖Lp (Ω;Lp ((0,T )w ;γ(H ,X )))

= ‖K ‖KH
γ (Lp ((0,T ),w))‖G‖Lp (Ω×(0,T ),w ;γ(H ,X )).

Conversely, taking f ∈ Lp (Ω× (0,T ), w ;γ(H , X )) independent of Ω, a similar argument

yields that K ∈KH
W (Lp ((0,T ), w)) implies K ∈KH

γ (Lp ((0,T ), w)).

Remark 4.2.4. For simplicity we took the Ω-integrability parameter equal to the time-

integrability parameter in the definition of KH
W (Lp ((0,T ), w)). As can be seen from the

proof of Proposition 4.2.3, for K ∈KH
W (Lp ((0,T ), w)) one actually has that SK is bounded

from Lr
F

(Ω;Lp ((0,T ), w ;γ(H , X ))) into Lr (Ω;Lp ((0,T ), w ;Y )) for any r ∈ (1,∞).

In the next result we show that one can take H = R. The result extends [AV20c, The-

orem 5.4], where a particular kernel was considered.

Proposition 4.2.5 (Independence of H). Let X and Y be a Banach spaces and (S,µ) a

measure space. Assume Y has type 2, let p ∈ [2,∞) and let w be a weight on S. Then

KH
γ (Lp (S, w)) =Kγ(Lp (S, w))

KH
γ (Lp,∞(S, w)) =Kγ(Lp,∞(S, w))

isomorphically.

Proof. By considering a 1-dimensional subspace of H , we immediately see that ⊆ holds.

For the converse let T H
K and T R

K be the γ-integral operators on Lp (S, w ;γ(H , X )) and

Lp (S, w ; X ) respectively. By Lemma 2.8.4 one has

‖T H
K f (s)‖γ(S;H ,Y ) <∼Y ‖T R

K f (s)‖γ(S;γ(H ,Y )) = ‖T R
K f (s)‖γ(H ,γ(S,Y ))
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Taking Lp (S, w)-norms and using Proposition 2.8.6 with E = Lp (S, w) we obtain

‖T H
K f ‖Lp (S,w ;γ(S;H ,Y )) <∼Y ‖T R

K f ‖Lp (S,w ;γ(H ,γ(S;Y )))

'p ‖T R
K f ‖γ(H ,Lp (S,w ;γ(S;Y )))

≤ ‖K ‖Kγ(Lp (S,w))‖ f ‖γ(H ,Lp (S,w ;X ))

'p ‖K ‖Kγ(Lp (S,w))‖ f ‖Lp (S,w ;γ(H ,X )).

The Lp,∞-case follows analogously.

4.2.1. TRUNCATIONS

We will now illustrate a major difference between stochastic and deterministic integral

operators. Indeed, we will show that even when the kernel K has a singularity, the “γ-

integrals” converge absolutely. In particular, we will show that if we truncate the sin-

gularity of K , then the operators associated to these truncations converge back to the

operator associated to K without any regularity assumptions on K . This in contrast to

the deterministic setting (cf. [Gra14a, Section 5.3]). Let (S,d ,µ) be a space of homo-

geneous type, let X and Y be Banach spaces and suppose that K : S × S → L(X ,Y ) is

strongly measurable. We define for ε> 0

Kε(s, t ) := K (s, t )1Aε (s, t ), s, t ∈ S,

where Aε := {(s, t ) ∈ S ×S : ε < d(s, t ) < ε−1}. Let p ∈ [2,∞) and let w be a weight on S.

If Kε ∈ Kγ(Lp (S, w)) for all ε > 0 we define for f ∈ Lp (S, w ; X ) the maximal truncation

operator

T?
K f (s) := sup

ε>0
‖TKε f (s)‖γ(S;Y ) s ∈ S.

Proposition 4.2.6 (Truncations). Let X and Y be Banach spaces, assume that Y has finite

cotype and let (S,d ,µ) be a space of homogeneous type. Let p ∈ [2,∞) and let w be a weight

on S. Let

K : S ×S →L(X ,Y )

be strongly measurable such that Kε ∈Kγ(Lp,∞(S, w)) for all ε> 0. Then for f ∈ Lp (S, w ; X )

we have

T?
K f (s) = ‖TK f (s)‖γ(S;Y ), s ∈ S,

and in particular

‖K ‖Kγ(Lp (S,w)) = sup
ε>0

‖Kε‖Kγ(Lp (S,w)),

‖K ‖Kγ(Lp,∞(S,w)) = sup
ε>0

‖Kε‖Kγ(Lp,∞(S,w)).

Furthermore if K ∈Kγ(Lp (S, w)), then TKε → TK in the strong operator topology.
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Proof. Fix f ∈ Lp (S; X ) and s ∈ S. Assume that ‖TK f (s)‖γ(S;Y ) <∞ and take ε> 0. Then

by Proposition 2.8.1

‖TKε f (s)‖γ(S;Y ) ≤ ‖TK f (s)‖γ(S;Y ) (4.2.1)

which yields T?
K f (s) ≤ ‖TK f (s)‖γ(S;Y ).

Conversely assume that T?
K f (s) <∞. Note that since γ(S,Y ) ,→L(L2(S),Y ), we have∫

S
|〈K (s, t ) f (t ), y∗〉|2 dt ≤ sup

ε>0

∫
S
|〈Kε(s, t ) f (t ), y∗〉|2 dt

≤ sup
ε>0

‖t 7→ Kε(s, t ) f (t )‖2
γ(S;Y )‖y∗‖2 <∞.

Therefore, t 7→ K (s, t ) f (t ) is weakly in L2 and thus TK f (s) is a bounded operator from

L2(S) into Y . Moreover, for all ϕ ∈ L2(S) and y∗ ∈ Y ∗, the dominated convergence theo-

rem yields that

〈TK f (s)ϕ, y∗〉 = lim
ε→0

〈TKε f (s)ϕ, y∗〉.
Now the γ-Fatou lemma (Proposition 2.8.2) yields

‖TK f (s)‖γ(S;Y ) ≤ lim
ε→0

‖TKε f (s)‖γ(S;Y ) = sup
ε>0

‖TKε f (s)‖γ(S;Y ),

where the equality follows again by domination. This concludes the proof of the equality

T?
K f (s) = ‖TK f (s)‖γ(S;Y ).

By taking Lp -norms we directly obtain

‖K ‖K(Lp (S,w)) = ‖T?
K ‖Lp (S,w) ≤ sup

ε>0
‖Kε‖K(Lp (S,w)),

and the converse inequality follows from (4.2.1). The estimate for Lp,∞ follows analo-

gously. Finally, the strong convergence follows from (4.2.1), the dominated convergence

theorem and the γ-dominated convergence theorem (Proposition 2.8.3).

Next we prove a version of the above result for stochastic integral operators. For this

let X and Y be Banach spaces, p ∈ [2,∞) and w a weight on R+. If Kε ∈KH
W (Lp (R+, w))

for all ε> 0, we define for f ∈ Lp
F

(Ω×R+;γ(H ,Y )) the operator

S?K f (s) = sup
ε>0

‖SKε f (s)‖Y , s ∈R+.

Theorem 4.2.7. Let X and Y Banach spaces and assume that Y has the UMD property.

Let p ∈ [2,∞) and let w be a weight on R+. Let

K : R+×R+ →L(X ,Y )

be strongly measurable such that Kε ∈KH
W (Lp (R+, w)) for all ε> 0. Then

‖S?K ‖L
p
F

(Ω×R+,w ;γ(H ,Y ))→Lp (Ω×R+,w) 'p sup
ε>0

‖Kε‖KH
W (Lp (R+,w)) 'Y ,p ‖K ‖KH

W (Lp (R+w))

Furthermore if K ∈KH
W (Lp (R+w)), then SKε → SK in the strong operator topology.
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Proof. It is clear from Propositions 4.2.3, 4.2.5 and 4.2.6 that the second and third ex-

pression are norm equivalent. Moreover, it is clear that

‖S?K ‖L
p
F

(Ω×R+,w ;γ(H ,Y ))→Lp (Ω×R+,w) ≥ sup
ε>0

‖Kε‖KH
W (Lp (R+,w)).

Thus it remains to prove the converse estimate. In order to show this let f ∈ Lp
F

(Ω×
R+, w ;γ(H ,Y )) and ε ∈ (0,1). Since K ∈ KH

W (Lp (R+, w)), by Doob’s maximal inequality

we can write

‖S?K f (s)‖Lp (Ω) ≤
(
E sup
ε>0

∥∥∥∫ max{s−ε,0}

max{s−1/ε,0}
K (s, t ) f (t ) dWH (t )

∥∥∥p

Y

)1/p

+
(
E sup
ε>0

∥∥∥∫ s+1/ε

s+ε
K (s, t ) f (t ) dWH (t )

∥∥∥p

Y

)1/p

≤ 4p

p −1
‖SK f (s)‖Lp (Ω;Y ).

Taking Lp (R+, w)-norms the desired estimate follows.

For the strong convergence note that by the proof of Proposition 4.2.3 we have

‖SK f −SKε f ‖Lp (Ω×R+,w ;Y ) 'p,Y ‖TK f −TKε f ‖Lp (Ω×R+,w ;γ(S;H ,Y )).

Here the right-hand side for fixed ω ∈ Ω is independent of H by Proposition 4.2.5, so

the strong convergence follows by Proposition 4.2.6 and the dominated convergence

theorem.

4.2.2. NECESSARY AND SUFFICIENT CONDITIONS

Before we turn to more involved results in the subsequent sections, we first analyse the

boundedness of γ-integral operators in a few special cases. We start with a necessary

condition for TK to be bounded if S is Rd or R+ and K is of convolution type.

Proposition 4.2.8 (Necessary condition for convolution type). Let X and Y be Banach

spaces, assume that Y has type 2 and let p ∈ [2,∞). Let k : Rd → L(X ,Y ) be strongly

measurable and set K (s, t ) := k(s − t ). If K ∈Kγ(Lp,∞(Rd )), then for all x ∈ X

‖t 7→ k(t )x‖γ(Rd ;Y ) ≤Cd ‖K ‖Kγ(Lp,∞(Rd ))‖x‖X .

The same holds for R+ instead of Rd , where we set K (s, t ) = 0 if s ≤ t .

Proof. We start with the Rd -case. Let r > 0, x ∈ X and set f = 1B(0,2r )⊗x. Then for all

s ∈ B(0,r ),

Lr := ‖t 7→ k(t )x‖γ(B(0,r );Y ) = ‖t 7→ k(s − t )x‖γ(B(s,r );Y )

= ‖TK f (s)‖γ(B(s,r );Y ) ≤ ‖TK f (s)‖γ(Rd ;Y ).
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Therefore, for any 0 <λ< Lr we find that

λ≤λ |B(0,r )|−1/p ∣∣{s ∈ B(0,r ) : ‖T f (s)‖γ(Rd ;Y ) >λ}
∣∣1/p

≤ |B(0,r )|−1/p ‖K ‖Kγ(Lp,∞(Rd ))‖ f ‖Lp (Rd ;X )

=Cd ‖K ‖Kγ(Lp,∞(Rd ))‖x‖X .

Taking λ= 1
2 Lr , we find that Lr ≤Cd ‖K ‖Kγ(Lp,∞(Rd ))‖x‖. Now the proposition follows by

letting r →∞ and applying the γ-Fatou lemma (see Proposition 2.8.2). The proof for R+
is analogous, taking s ∈ (r,2r ) instead.

Remark 4.2.9. If we replace Rd by (0,T ) with T ∈ (0,∞) in Proposition 4.2.8, we can

deduce that

‖t 7→ k(t )x‖γ((0, 1
2 T );Y ) ≤Cd ‖K ‖Kγ(Lp,∞(0,T ))‖x‖X .

For specific kernels one can stretch this estimate to the whole interval (0,T ) with a con-

stant dependent on T , see [AV20c, Lemma 4.2].

Next we provide some simple sufficient conditions on K for TK to be bounded using

Fubini’s theorem and Young’s inequality:

Proposition 4.2.10 (Simple sufficient conditions). Let X and Y be Banach spaces, as-

sume that Y has type 2 and suppose that K : Rd ×Rd → L(X ,Y ) is strongly measurable.

Then the following hold:

(i) If there is an A0 > 0 such that

‖s 7→ K (s, t )x‖L2(Rd ;Y ) ≤ A0 ‖x‖X , t ∈Rd , x ∈ X ,

then K ∈Kγ(L2(Rd )) with ‖K ‖Kγ(L2(Rd )) ≤ τ2,Y A0.

(ii) If ‖K (s, t )‖ ≤ k(s − t ) for some k ∈ L2(Rd ), then K ∈ Kγ(Lp (Rd )) for all p ∈ [2,∞)

with ‖K ‖Kγ(Lp (Rd )) ≤ τ2,Y ‖k‖L2(Rd ).

The same holds for (0,T ) with T ∈ (0,∞] instead of Rd , where K (s, t ) = 0 if s ≤ t .

Proof. For (i) we have by Lemma 2.8.4 that

‖TK f (s)‖γ(Rd ;Y ) ≤ τ2,Y

(∫
Rd

‖K (s, t ) f (t )‖2
Y dt

)1/2
, s ∈Rd .

Taking L2-norms on both sides and applying Fubini’s theorem we obtain

‖TK f ‖L2(Rd ;γ(Rd ;Y )) ≤ τ2,Y

(∫
Rd

‖s 7→ K (s, t ) f (t )‖2
L2(Rd ;Y )

dt
)1/2

≤ τ2,Y ‖ f ‖L2(Rd ;X ).
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For (ii) we have by Lemma 2.8.4

‖TK f (s)‖γ(Rd ;Y ) ≤ τ2,Y

(∫
Rd

|k(s − t )|2‖ f (t )‖2
Y dt

)1/2
, s ∈Rd .

Taking Lp -norms on both sides and applying Young’s inequality we obtain

‖TK f ‖Lp (Rd ;γ(Rd ;Y )) ≤ τ2,Y ‖k‖L2(Rd )‖ f ‖Lp (Rd ;X ).

The (0,T ) case follows similarly, where we extend K and f by 0 outside (0,T ) to apply

Young’s inequality for (ii).

If Y is a Hilbert space and K is of convolution type, we can actually characterize

the boundedness of TK , since in this case γ(Rd ;Y ) = L2(Rd ;Y ). In Corollaries 4.4.9 and

4.4.13 the following result will be improved under regularity conditions on K .

Corollary 4.2.11. Let X be a Banach space and Y be a Hilbert space. Let k :Rd →L(X ,Y )

be strongly measurable and set K (s, t ) := k(s − t ). Then the following hold:

(i) K ∈Kγ(L2(Rd )) if and only if ‖t 7→ k(t )x‖L2(Rd ;Y )
<∼ ‖x‖X .

(ii) If K ∈Kγ(Lp,∞(Rd )) for some p ∈ [2,∞), then K ∈Kγ(Lq (Rd )) for all q ∈ [2, p).

The same hold for (0,T ) with T ∈ (0,∞] instead of Rd , where we set K (s, t ) = 0 if s ≤ t .

Proof. One has for all t ∈Rd that

‖s 7→ K (s, t )x‖L2(Rd ;Y ) = ‖s 7→ k(s)x‖L2(Rd ;Y ) = ‖s 7→ k(s)x‖γ(Rd ;Y ),

from which (i) follows using Proposition 4.2.8 and 4.2.10(i). Part (ii) follows by combin-

ing Proposition 4.2.8, part (i) and Marcinkiewicz interpolation theorem (see [HNVW16,

Theorem 2.23]).

4.2.3. SCALAR KERNELS

If we allow X to be any Banach space with type 2, but restrict K to be scalar-valued, we

can easily characterize the boundedness of TK if K is of convolution type. This explains

why we study the more interesting operator-valued case.

Proposition 4.2.12. Let X be a Banach space with type 2, let p ∈ [2,∞), let k :Rd →K be

measurable and set K (s, t ) := k(s−t ). Then TK is bounded from Lp (Rd ; X ) to Lp (Rd ;γ(Rd ; X ))

if and only if k ∈ L2(Rd ). Moreover, in this case ‖K ‖Kγ(Lp (Rd )) ≤ τ2,X ‖k‖L2(Rd ).

Proof. Since k is scalar-valued, we have for x ∈ X

‖s 7→ k(s)x‖γ(Rd ;X ) = ‖x‖X ‖k‖L2(Rd ).

Therefore the result follows from Proposition 4.2.8 and Proposition 4.2.10(ii).
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In the scalar case, i.e. X = Y = K, the Lp -boundedness of TK can also be well-

understood from existing theory for non-convolution kernels. Indeed, in this case K ∈
Kγ(Lp (Rd )) is equivalent to∫

Rd

(∫
Rd

|K (s, t )|2g (t ) dt
)p/2

ds ≤C p‖g‖p

Lp/2(Rd )
, (4.2.2)

where we have set g (t ) = | f (t )|2. The validity of the above estimate is completely char-

acterized by the optimality of Schur’s lemma (see [Gra14b, Appendix A.2]) applied to the

positive kernel |K (s, t )|2. Moreover, in this case TK is also bounded in the vector-valued

setting when X = Y has type 2, since by Lemma 2.8.4

‖TK f ‖Lp (Rd ;γ(Rd ;X )) ≤ τ2,X

(∫
Rd

(∫
Rd

|K (s, t )|2g (t ) dt
)p/2

ds
)1/p

,

where g (t ) = ‖ f (t )‖2
X . Conversely, by considering a one-dimensional subspace of X , one

obtains that (4.2.2) is also necessary.

Example 4.2.13.

(i) Let d = 1 and K (s, t ) = 1
(s+t )1/2 1s,t>0. Then by [Gar07, Theorem 5.10.1] we know

that K ∈Kγ(Lp (R)) if and only if p ∈ (2,∞). More generally for 1 ≤ j ≤ d set

K j (s, t ) := (s j + t j )1/2∣∣s + t
∣∣(d+1)/2

1s j ,t j >0, s, t ∈Rd .

Then we know by [Osȩ17, Theorem 1] that K j ∈Kγ(Lp (Rd )) if and only if p ∈ (2,∞).

(ii) If K (s, t ) = 1
|s−t |1/2 , then for all p ∈ [2,∞), K ∉Kγ(Lp (R)), which is immediate from

Proposition 4.2.8.

Example 4.2.13(ii) can be seen as the analog of the Hilbert transform. It is not bounded

for any p ∈ [2,∞) due to the lack of cancellation in the stochastic, scalar-valued setting.

This further exemplifies the difference between the deterministic and the stochastic the-

ory.

Remark 4.2.14. The scalar case also shows why we only consider p ∈ [2,∞). Bounded-

ness for p < 2 holds if and only if K ≡ 0 (see [Kal78]). This also holds for the operator-

valued case since Lp -boundedness with p < 2 would imply that 〈K (t , s)x, y∗〉 = 0 a.e.

for all x ∈ X and y∗ ∈ Y ∗. By strong measurability of (t , s) 7→ K (t , s)x this implies that

for all x ∈ X , K (t , s)x ≡ 0. Thus by density of Lp (Rd ) ⊗ X in Lp (Rd ; X ), we find that

K (s, t ) f (t ) = 0.

4.3. SINGULAR KERNELS

Motivated by the connection between stochastic integral operators and γ-integral oper-

ators proven in Proposition 4.2.3 and Proposition 4.2.5, we want to systematically study
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of the Kγ-classes for more involved kernels than treated in Subsection 4.2.2. In partic-

ular, we want to study kernels that have a singularity in s = t . Let us first introduce the

abstract kernel classes that we will use.

We say that (S,d ,µ) is an n-product space of homogeneous type if it is the product

of n spaces of homogeneous type, i.e.

S = S1 ×·· ·×Sn

d (s, t ) = max
1≤k≤n

dk (sk , tk ), s, t ∈ S

µ=µ1 ⊗·· ·⊗µn .

(4.3.1)

for spaces of homogeneous type (Sk ,dk ,µk ) for k = 1, . . . ,n. For s ∈ S we write s =
(s1, . . . , sn) with sk ∈ Sk for k = 1, . . . ,n. Note that by the choice of the metric d we have

for s ∈ S and r > 0

B(s,r ) = B(s1,r )×·· ·×B(sn ,r ).

Important examples of n-product spaces of homogeneous type are (subsets of) the anis-

otropic Euclidean spaces introduced in Example 2.1.2.

For p ∈ [1,∞)n we define the p-volume

Vp (s, t ) :=
n∏

k=1
µk

(
B(sk ,d (s, t ))

)1/pk , s, t ∈ S

and set V (s, t ) :=V(1,...,1)(s, t ). By (2.1.2) we have

Vp (s, t ) 'Vp (t , s), s, t ∈ S (4.3.2)

with implicit constant depending on S and p .

Definition 4.3.1. Let X ,Y be a Banach spaces, (S,d ,µ) a n-product space of homoge-

neous type, p ∈ [1,∞)n and let

K : (S ×S) \ {(s, s) : s ∈ S} →L(X ,Y )

be strongly measurable.

(i) We say that K is an p-Hörmander kernel if there is a cK ≥ 2 such that for every ball

B ⊆ S ∥∥1S\B
(
K (·, t )−K (·, t ′)

)∥∥
Lp (S;L(X ,Y )) ≤C , t , t ′ ∈ 1

cK
B , (4.3.3)∥∥1S\B

(
K (s, ·)−K (s′, ·))∥∥Lp (S;L(X ,Y )) ≤C , s, s′ ∈ 1

cK
B (4.3.4)

for some constant C > 0 independent of s, t and B . The least admissible C will be

denoted by ‖K ‖p -Hörm.
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(ii) We say that K is a p-Dini kernel if there is a cK ≥ 2 such that

‖K (s, t )−K (s, t ′)‖ ≤ω
(

d(t , t ′)
d(s, t )

)
1

Vp (s, t )
, 0 < d(t , t ′) ≤ 1

cK
d(t , s), (4.3.5)

‖K (s, t )−K (s′, t )‖ ≤ω
(

d(s, s′)
d(s, t )

)
1

Vp (s,t ) , 0 < d(s, s′) ≤ 1
cK

d(s, t ), (4.3.6)

where ω : [0,1] → [0,∞) is increasing, subadditive, submultiplicative, ω(0) = 0 and

‖K ‖p -Dini := max
1≤k≤n

(∫ 1

0
ω(t )pk

dt

t

)1/pk <∞.

If n = 1 the submultiplicativity of ω can be omitted.

(iii) We say that K is an p-standard kernel if K is a p-Dini kernel with ω(t ) = C t ε for

some C ,ε> 0 and set

‖K ‖p -std := ‖K ‖p -Dini.

We do not track dependence on cK in our estimates.

Various special cases of Definition 4.3.1 are already present in the literature:

• For n = 1 and p = 1, Definition 4.3.1 contains the standard kernel assumption

from Calderón–Zygmund theory. In particular, Definition 4.3.1(ii) was already

used in Section 3.4 to prove the (deterministic) A2-theorem for operator-valued

Calderón–Zygmund operators in a space of homogeneous type. When (S,d ,µ)

is Rd with Euclidean distance and the Lebesgue measure, (4.3.5) takes the more

familiar form

‖K (s, t )−K (s, t ′)‖ ≤ |t − t ′|ε
|s − t |d+ε .

• If n = 1, (S,d ,µ) is Rd with Euclidean distance and the Lebesgue measure and K

is of convolution type, i.e. K (s, t ) = k(s − t ) for some k : Rd →L(X ,Y ), Definition

4.3.1 can be reformulated using a change of variables. Indeed, (4.3.3) and (4.3.4)

both simplify to (∫
1
2 |s|≥|t |

‖k(s − t )−k(s)‖p ds
)1/p ≤C t ∈Rd , (4.3.7)

which goes back to the work of Hörmander himself (see [Hör60]), where it was

used to extrapolate off-diagonal boundedness for integral operators. The operator-

valued version has been used in [RV17, Section 5.1].

• For n = 2 and p = (2,1), Definition 4.3.1(i) was introduced in [KK20, Kim20] to

study parabolic SPDE.

For our purposes the two main examples will be:
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• In our analysis of theKγ-classes, we will use n = 1, p = 2. Moreover in applications

of these results to SPDE, we will take S = (0,T ) for T ∈ (0,∞]. In this setting we of

course have Vp (s, t ) = 1
|s−t |1/2 .

• For our mixed-norm extrapolation results in Section 4.6, we will use n = 2, p =
(2,1) and let (S,d ,µ) be (0,T )×O for T ∈ (0,∞] and a domain O ⊆ Rd equipped

with an anisotropic metric and the Lebesgue measure.

By definition a p-standard kernel is also an p-Dini kernel. As in the case n = 1, p = 1,

a p-Dini kernel is also a p-Hörmander kernel. The proof is an adaptation of the proof in

the case n = 1, p = 1.

Lemma 4.3.2. Let X ,Y be a Banach spaces, (S,d ,µ) a n-product space of homogeneous

type, p ∈ [1,∞)n and suppose that

K : (S ×S) \ {(s, s) : s ∈ S} →L(X ,Y )

is a p-Dini kernel. Then K is a p-Hörmander kernel with

‖K ‖p -Hörm <∼S,p ‖K ‖p -Dini.

Proof. We will show that K satisfies (4.3.3), the proof of (4.3.4) is analogous. Let B =
B(t ,r ) ⊆ S be a ball and take u1,u2 ∈ 1

cK
B . Set

B j := B(t ,2 j+1r ) \ B(t ,2 j r ), j ∈N,

pmin = min1≤k≤n pk and q = (p1/pmin, . . . , pn/pmin). Since d(t ,uk ) ≤ 1
cK

r ≤ 1
cK

d(s, t ) for

any s ∈ S \ B and cK ≥ 2, we have by the p-Dini condition∥∥1S\B K (·,u1)−K (·,u2)
∥∥

Lp (S;L(X ,Y ))

≤
2∑

k=1

∥∥1S\B
(
K (·, t )−K (·,uk )

)∥∥
Lp (S;L(X ,Y ))

≤ 2
∥∥∥s 7→ 1S\B (s) ·ω

( r /2

d(s, t )

) 1

Vp (s, t )

∥∥∥
Lp (S)

≤ 2
( ∞∑

j=0

∥∥∥s 7→ 1B j (s) ·ω
( r /2

d(s, t )

)pmin 1

Vq (s, t )

∥∥∥
Lq (S)

)1/pmin

≤ 2
( ∞∑

j=0
ω(2− j−1)pmin

∥∥∥s 7→
n∏

k=1

1

µk (B(sk ,2 j r ))qk

∥∥∥
Lp (B j )

)1/pmin

<∼S,p ‖K ‖p -Dini

using (2.1.2) and a similar computation as in (3.4.1) in the final step.

If (S,d ,µ) is an anisotropic Euclidean space (see Example 2.1.2), we can check the

p-standard kernel conditions in terms of the derivatives of the kernel.
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Lemma 4.3.3. Let X ,Y be a Banach spaces, let a, p ∈ (0,∞)d and suppose that

K ∈C 1((Rd ×Rd ) \ {(s, s) : s ∈Rd };L(X ,Y )
)

is a kernel satisfying for some A0 > 0∥∥∂sk K (s, t )
∥∥≤ A0 |s − t |−(a/p+ak )

a s 6= t , k = 1, . . . ,d∥∥∂tk K (s, t )
∥∥≤ A0 |s − t |−(a/p+ak )

a s 6= t , k = 1, . . . ,d .

Then K is a p-standard kernel on Rd
a with ‖K ‖p -std <∼a A0.

Proof. We will only prove (4.3.5), as the proof of (4.3.6) is analogous. For (4.3.5) we need

to show

‖K (s, t )−K (s,u)‖ <∼
( |t −u|a
|t − s|a

)ε 1

|t − s|a/p
a

for all 0 < |t −u|a ≤ 1
cK

|t − s|a . Set cK := 2ca , where ca is the constant in the triangle

inequality for |·|a . Fix s, t ,u ∈ Rd with 0 < |t −u|a ≤ 1
cK

|t − s|a . Then we have for all

λ ∈ [0,1]

|t − s −λ(t −u)|a ≥ 1

ca
|t − s|a −|λ(t −u)|a

≥ 1

ca
|t − s|a −|t −u|a

≥ 1

2ca
|t − s|a .

Therefore, using the fundamental theorem of calculus, we obtain

∥∥K (s, t )−K (s,u)
∥∥=

∥∥∥∫ 1

0

∂

∂λ
K

(
s, t −λ(t −u)

)
dλ

∥∥∥
≤

d∑
k=1

∫ 1

0

∥∥(∂tk K )
(
s, t −λ(t −u)

) · (tk −uk )
∥∥ dλ

≤ A0

d∑
k=1

∫ 1

0

|t −u|ak
a

|s − t +λ(t −u)|a/p+ak
a

dλ

<∼a A0

( |t −u|a
|t − s|a

)ε 1

|t − s|a/p
a

with ε= min1≤k≤d ak , proving the lemma.

Remark 4.3.4. Lemma 4.3.3 remains valid if we replace Rd by a convex subset of Rd

with the Euclidean distance and the Lebesgue measure. Moreover it is also valid on a

smooth domain in Rd , as one can then locally reduce to the Rd+ case. Combining these

observations, we note that Lemma 4.3.3 remains valid on [0,T ]×D , with T ∈ (0,∞) and

D ⊆Rd a smooth domain.
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4.4. EXTRAPOLATION FOR γ-INTEGRAL OPERATORS

Having introduced the assumptions on our kernels, we will now extrapolate the Lp -

boundedness of an γ-integral operator TK to the (weighted) Lq -boundedness of TK for

all q ∈ (2,∞). We will first consider the unweighted setting under a 2-Hörmander as-

sumption on K , from which we will also obtain a weak L2- and a BMO-endpoint result.

This will follow by an adaptation of the arguments for singular integral operators as in

[HNVW2x], which we need to combine with ideas from [DM99] when 2 < q < p. After-

wards we will study sparse domination and weighted boundedness of TK under a 2-Dini

assumption on K , which will follow from the sparse domination framework developed

in Chapter 3.

4.4.1. EXTRAPOLATION FOR 2 < q < p

Let us start our analysis with an extrapolation result downwards. We will show that if

K ∈ Kγ(Lp,∞(S)) satisfies the 2-Hörmander condition, then also K ∈ Kγ(Lq (S)) for all

q ∈ (2, p) and K ∈ Kγ(L2,∞(S)). For this we will adapt the Calderón-Zygmund decom-

position technique for singular integral operators to the γ-case. Our main tool will be

the following Lq -Calderón–Zygmund decomposition. A similar statement in the case

X = C can for example be found in [BK03, Theorem 3.1], which caries over verbatim to

the vector-valued setting, replacing absolute values by norms.

Proposition 4.4.1 (L2-Calderón–Zygmund decomposition). Let X be a Banach space

and (S,d ,µ) a space of homogeneous type and q ∈ [1,∞). For every f ∈ Lq (S; X ) and

λ>
{

0 µ(S) =∞,

〈‖ f ‖X 〉2,S µ(S) <∞.

there exists a decomposition f = g +b with

‖g‖L∞(S;X ) ≤λ, ‖g‖Lq (S;X ) ≤ ‖ f ‖Lq (S;X )

and b =∑
j b j with

suppb j ⊆Q j

(∑
j
µ(Q j )

)1/q <∼λ−1‖ f ‖Lq (S;X )

‖b j ‖Lq (S;X ) <∼λµ(Q j )1/q ,
(∑

j
‖b j ‖q

Lq (S;X )

)1/q <∼ ‖ f ‖Lq (S;X )

for disjoint dyadic cubes {Q j }. All implicit constants depend on S and q.

Proof. Let D be a dyadic system in S, which exists by Proposition 2.1.1. Let {Q j } ⊆D be

the maximal dyadic cubes such that

λ> 〈‖ f ‖X 〉2,Q ,
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which exist by our choice of λ. By their maximality these cubes are pairwise disjoint and

their dyadic parents {Q̂ j } satisfy

〈‖ f ‖X 〉2,Q̂ ≤λ. (4.4.1)

By Proposition 2.2.1 we have∑
j
µ(Q j ) = ∥∥∑

j
1Q j

∥∥q
Lq (S) =

∥∥1{MD
q (‖ f ‖X )>λ}

∥∥q
Lq (S)

<∼S,q λ
−q‖ f ‖Lq (S;X ) (4.4.2)

Define b j := 1Q j f , for which we have by (4.4.1)

‖b j ‖Lq (S;X ) ≤ ‖1Q̂ j
f ‖Lq (S;X ) <∼µ(Q j )1/qλ,

which combined with (4.4.2) yields(∑
j
‖b j ‖q

Lq (S;X )

)1/q <∼ ‖ f ‖Lq (S;X ).

Set g = 1S\
⋃

j Q j f , which trivially implies ‖g‖Lq (S;X ) ≤ ‖ f ‖Lq (S;X ). For s ∈ S\
⋃

j Q j we have

that all dyadic cubes Q ∈ D containing s satisfy 〈‖ f ‖X 〉2,Q ≤ λ. Thus by the Lebesgue

differentiation theorem and Jensen’s inequality we have

‖g (s)‖X = ‖ f (s)‖X = lim
Q∈D :s∈Q

diam(Q)→0

〈‖ f ‖X
〉

1,Q ≤ lim
Q∈D :s∈Q

diam(Q)→0

〈‖ f ‖X
〉

q,Q ≤λ

for a.e. s ∈ S \
⋃

j Q j . Thus ‖g‖L∞(S;X ) ≤λ, which completes the proof.

In the deterministic setting the functions b j in a Calderón–Zygmund decomposition

are usually also taken such that
∫

Qk
b j = 0, but we will not be able to use this property for

γ-integral operators. Instead we use the L2-Calderón–Zygmund decomposition in a way

that is inspired by [DM99], which builds upon ideas developed in [DR96, Fef70, Heb90].

Theorem 4.4.2 (Extrapolation downwards). Let X and Y be Banach spaces with type 2

and (S,d ,µ) a space of homogeneous type. Let p ∈ [2,∞) and suppose that K ∈Kγ(Lp,∞(S))

satisfies the 2-Hörmander condition. Then

(i) K ∈Kγ(Lq (S)) for all q ∈ (2, p) with

‖K ‖Kγ(Lq (S)) <∼S,p,q

(
τ2,X τ2,Y ‖K ‖Kγ(Lp,∞(S)) +τ2,Y ‖K ‖2-Hörm

)
.

(ii) K ∈Kγ(L2,∞(S)) with

‖K ‖Kγ(L2,∞(S)) <∼S,p

(
τ2,X τ2,Y ‖K ‖Kγ(Lp,∞(S)) +τ2,Y ‖K ‖2-Hörm

)
.

Proof. It suffices to show (ii), as (i) then follows directly from the Marcinkiewicz inter-

polation theorem, see e.g. [HNVW16, Theorem 2.2.3].
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Let f ∈ L2(S; X )∩Lp (S; X ) be boundedly supported,λ> 0 and set A0 := ‖K ‖Kγ(Lp,∞(S)).

Let f = g+b be the L2-Calderón–Zygmund decomposition of f at levelκλ for someκ> 0

to be chosen later. Then we have

‖g‖p
Lp (S;X ) ≤ ‖g‖p−2

L∞(S;X )‖g‖2
L2(S;X ) ≤

(
κλ

)p−2‖ f ‖2
L2(S;X ), (4.4.3)

so in particular g ∈ Lp (S; X ). It follows that b = f − g ∈ Lp (S; X ), and thus

TK f = TK g +TK b

is well-defined.

To estimate the L2,∞(S;γ(S;Y ))-norm of TK f we need to analyse the size of the upper

level set
{‖TK f ‖γ(S;Y ) >λ

}
. We split as follows:

µ
({‖TK f ‖γ(S;Y ) >λ

})≤µ({‖TK g‖γ(S;Y ) > λ
2

})+µ({‖TK b‖γ(S;Y ) > λ
2

})
. (4.4.4)

For the term with the “good” part g we have by our assumption on TK and (4.4.3) that

µ
({‖TK g‖γ(S;Y ) >λ/2

})≤ Ap
0

(λ/2)p ‖g‖p
Lp (S;X )

≤ 2p Ap
0 κ

p−2
‖ f ‖2

L2(S;X )

λ2

For the term with the “bad” part b, let Q j be the dyadic cube corresponding to b j .

Let B j be the ball with the same center as Q j and radius cK ·diam(Q j ). Then Q j ⊆ B j and

µ(B j ) <∼S µ(Q j ). Set O :=⋃
j B j .

As a preparation for our estimates we will define some auxiliary operators. Let

S j : L2(S; X ) → L2(S;γ(S; X ))

be the γ-integral operator given by

S j h(s) :=
1Q j (s)

µ(Q j )1/2
·h, s ∈ S, h ∈ L2(S; X )

which is bounded by Lemma 2.8.4. We claim that
∑

j S j b j converges in Lp (S;γ(S; X )).

To prove this we first estimate for fixed j and a.e. s ∈ S

‖S j b j (s)‖2
γ(S;X ) ≤ τ2

2,X

1Q j (s)

µ(Q j )

∫
Q j

‖b j (t )‖2
X dµ(t ) <∼S τ

2
2,X (κλ)2 1Q j (s)

using Lemma 2.8.4 and the norm estimate of b j in terms of µ(Q j ). So summing over j

we get, using the disjointness of the Q j ’s, that

∥∥∑
j
‖S j b j ‖γ(S;X )

∥∥
Lp (S)

<∼S τ2,X κλ
(∑

j
µ(Q j )

)1/p
.
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Since
∑

j µ(Q j ) ≤ (κλ)−2‖ f ‖2
L2(S;X )

it follows that
∑

j S j b j converges in Lp (S;γ(S; X )) as

claimed and in particular we have∥∥∑
j

S j b j
∥∥

Lp (S;γ(S;X ))
<∼S τ2,X (κλ)1−2/p‖ f ‖2/p

L2(S;X )
. (4.4.5)

Next set

ψ(t ′, t ) :=∑
j

1

µ(Q j )1/2
1Q j (t ′)1Q j (t ), t , t ′ ∈ S

and define for a.e. s ∈ S

Tψb(s) :=
(
(t , t ′) 7→ K (s, t )ψ(t ′, t )b(t )

)
.

Since ‖ψ(·, t )‖L2(S) = 1 for t ∈ suppb we have∥∥〈Tψb(s), y∗〉∥∥L2(S×S) =
∥∥〈T b(s), y∗〉∥∥L2(S)

for every y∗ ∈ Y ∗. Thus by Proposition 2.8.1 it follows that Tψb(s) ∈ γ(S ×S;Y ) with∥∥TK b(s)
∥∥
γ(S;Y ) =

∥∥Tψb(s)
∥∥
γ(S×S;Y ).

Finally let

T̃K : γ(S;Lp (S; X )) → γ(S;Lp,∞(S;γ(S;Y )))

be the canonical extension of TK , which is trivially bounded with norm A0. By Lemma

2.8.4 and the γ-Fubini embedding in Proposition 2.8.6, T̃K is also bounded as an opera-

tor

T̃K : Lp (S;γ(S; X )) → Lp,∞(S;γ(S ×S;Y ))

with norm Cp τ2,Y A0. Combined with (4.4.5) this implies that
∑

j T̃K S j b j is well-defined.

Using these auxiliary operators we now decompose as follows:

µ
(
{‖TK b‖γ(S;Y ) >λ/2}

)=µ(
{‖Tψb‖γ(S×S;Y ) >λ/2}

)
≤µ

({∥∥Tψb −∑
j

T̃K S j b j
∥∥
γ(S×S;Y ) >λ/4

}
\O

)
+µ

({∥∥∑
j

T̃K S j b j
∥∥
γ(S×S;Y ) >λ/4

})+µ(O)

=: A + B + C

To estimate A we first note that by Chebyshev’s inequality and Lemma 2.8.4 we have

A ≤ τ2
2,Y

16

λ2

∫
S\O

∥∥Tψb −∑
j

T̃K S j b j
∥∥2

L2(S×S;Y ) dµ
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Using the fact that the b j ’s are disjointly supported on the cubes Q j ⊆ B j , Fubini’s theo-

rem and the 2-Hörmander condition we deduce∫
S\O

∥∥Tψb −∑
j

T̃K S j b j
∥∥2

L2(S×S;Y ) dµ

≤∑
j

1

µ(Q j )

∫
S\B j

∫
S

∫
S

∥∥(
K (s, t )−K (s, t ′)

)
1Q j (t ′)b j (t )

∥∥2
Y dµ(t ′) dµ(t ) dµ(s)

≤∑
j

1

µ(Q j )

∫
Q j

∫
Q j

∫
S\B j

‖K (s, t )−K (s, t ′)‖2‖b j (t )‖2
X dµ(s) dµ(t ) dµ(t ′)

≤ ‖K ‖2
2-Hörm

∑
j
‖b j ‖2

L2(S;X ).

Therefore by the norm estimate of the b j ’s in terms of f we have

A <∼S τ
2
2,Y ‖K ‖2

2-Hörm

‖ f ‖2
L2(S;X )

λ2 .

For B we use the boundedness of T̃K and (4.4.5) to obtain

B <∼S,p
(τ2,Y A0)p

λp

∥∥∑
j

S j b j
∥∥p

Lp (S;γ(S;X )))

<∼S,p
(
τ2,X τ2,Y A0

)p
κp−2

‖ f ‖2
L2(S;X )

λ2

and for C we have by the estimate of µ(Q j ) in terms of f that

C ≤∑
j
µ(B j ) <∼S

∑
j
µ(Q j ) <∼S κ

−2
‖ f ‖2

L2(S;X )

λ2 .

Plugging the estimate for g and the estimates for b into (4.4.4) and choosing κ :=
(τ2,X τ2,Y A0)−1, we now have

λ ·µ({‖TK f ‖γ(S;Y ) >λ
})1/2 <∼S,p

( (
τ2,X τ2,Y A0κ

)p +1

κ
+τ2,Y ‖K ‖2-Hörm

)
‖ f ‖L2(S;X )

= (
2τ2,X τ2,Y ‖K ‖Kγ(Lp,∞(S)) +τ2,Y ‖K ‖2-Hörm

)‖ f ‖L2(S;X ).

for all λ> 0 and boundedly supported f ∈ L2(S; X )∩Lp (S; X ), except when µ(S) <∞ and

κλ≤ 〈‖ f ‖X 〉2,S . However, this case is trivial, since

µ
({‖TK f ‖γ(Rd ;Y ) >λ

})1/2 ≤µ(S)1/2 ≤ 1

κλ
‖ f ‖L2(S;X ).

By density this estimate extends to all f ∈ L2(S; X ), which finishes the proof of the weak

L2-endpoint.

Remark 4.4.3. In general one can not expect TK ∈Kγ(L2(S)) in Theorem 4.4.2 , which is

already clear from the scalar case and S =R. For instance the kernel K (s, t ) = 1
(s+t )1/2 1s,t>0

of Example 4.2.13 is a 2-Hörmander kernel. However, Lp -boundedness holds only for

p ∈ (2,∞).
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4.4.2. EXTRAPOLATION FOR p < q <∞
We now turn our attention to extrapolation upwards for γ-integral operator. We will

show that if K ∈Kγ(Lp,∞(S)) satisfies the 2-Hörmander condition, then also K ∈Kγ(Lq (S))

for all q ∈ (p,∞) and we will prove a BMO-endpoint result. For this we will adapt the ar-

guments in [HNVW2x] for singular integral operators to the case of singular γ-integral

operators.

Theorem 4.4.4 (Extrapolation upwards). Let X and Y be Banach spaces, assume that Y

has type 2 and let (S,d ,µ) be a space of homogeneous type. Let p ∈ [2,∞) and suppose

K ∈Kγ(Lp,∞(S)) satisfies the 2-Hörmander condition. Then

(i) K ∈Kγ(Lq (S)) for all q ∈ (p,∞) with

‖K ‖Kγ(Lq (S)) <∼S,p,q

(
‖K ‖Kγ(Lp,∞(S)) +τ2,Y ‖K ‖2-Hörm

)
.

(ii) There exists a T̃K ∈L(L∞(S; X ),BMO(S;γ(S;Y ))) such that

‖T̃K ‖L∞→BMO <∼S,p

(
‖K ‖Kγ(Lp,∞(S)) +τ2,Y ‖K ‖2-Hörm

)
.

and T̃K f −TK f is constant for all f ∈ Lp (S; X )∩L∞(S; X ).

Remark 4.4.5. The extension of TK to all f ∈ L∞(S; X ) in Theorem 4.4.4(ii) is not in the

traditional sense, as even for f ∈ Lp (S; X )∩L∞(S; X ) the extension T̃K f may not coincide

with TK f . However, as T̃K f and TK f only differ by a constant in this case, they represent

the same function in the Banach space

BMO(S;γ(S;Y ))/γ(S;Y ).

Furthermore, we can not claim uniqueness, as Lp (S; X )∩L∞(S; X ) is not dense in L∞(S; X )

In order to prove Theorem 4.4.4, we need to introduce local versions of the operator

TK . For any cube Q in S we define the local operator

T Q
K : L∞(S; X ) → Lp (Q;γ(S;Y ))

for s ∈Q and ϕ ∈ L2(S) by

T Q
K f (s)ϕ := TK (1B f )(s)ϕ+

∫
Q

∫
S\B

(
K (s, t )−K (s′, t )

)
f (t )ϕ(t ) dµ(t ) dµ(s′),

where B is the ball with the same center as Q and radius cK ·diam(Q). Note that T Q
K is

well-defined since 1B f ∈ Lp (S; X ) and for a.e. s, s′ ∈Q we have∥∥(
K (s, ·)−K (s′, ·))1S\B f

∥∥
γ(S;Y ) ≤ τ2,Y ‖K ‖2-Hörm‖ f ‖L∞(S;X ). (4.4.6)

by Lemma 2.8.4. Heuristically one may think about T Q
K as

T Q
K f (s) = TK f (s)+

∫
Q

(
K (s′, ·)) f (·)1S\B (·) dµ(s′),
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which is, of course, not well-defined in general. These operators satisfy the following

properties:

Lemma 4.4.6. Let X and Y and be Banach spaces, assume that Y has type 2 and let

(S,d ,µ) be a space of homogeneous type with dyadic systems D and D ′. Let p ∈ [2,∞) and

suppose K ∈ Kγ(Lp,∞(S)) satisfies the 2-Hörmander condition. For dyadic cubes Q ∈ D

and Q ′ ∈D ′ the following hold

(i) For all f ∈ L∞(S; X ) we have∥∥T Q
K f

∥∥
Lp,∞(Q;γ(S;Y ))

<∼S,D ,p
(‖K ‖Kγ(Lp,∞(S)) +τ2,Y ‖K ‖2-Hörm

)
µ(Q)1/p‖ f ‖L∞(S;X ).

(ii) For all f ∈ Lp (S; X )∩L∞(S; X ) there exists a c ∈ γ(S;Y ) such that

TK f (s)−T Q
K f (s) = c, s ∈Q.

(iii) For all f ∈ L∞(S; X ) there exists a c ∈ γ(S;Y ) such that

T Q
K f (s)−T Q ′

K f (s) = c, s ∈Q ∩Q ′.

Proof. Let B ⊆ S be the ball with the same center as Q and radius cK ·diam(Q). De-

fine B ′ ⊆ S similarly. Take f ∈ L∞(S; X ), then by the assumption on TK we have, using

‖1Q‖Lp,∞(S) =µ(Q)1/p , that

‖TK (1B f )‖Lp,∞(S;γ(S;Y )) ≤ ‖K ‖Kγ(Lp,∞(S))‖1B f ‖Lp (S;X )

<∼S,D ,p ‖K ‖Kγ(Lp,∞(S))µ(Q)1/p‖ f ‖L∞(S;X ).

The estimate in (i) now readily follows using the definition of T Q
K f and (4.4.6).

Next take f ∈ Lp (S; X )∩L∞(S; X ) and let s, s′ ∈ Q. Define c := ∫
Q TK (1S\B f )(s′) ds′.

Then we have for a.e. s ∈Q that

TK f (s) = TK (1B f )(s)+TK (1S\B f )(s)−
∫

Q
TK (1S\B f )(s′) dµ(s′)+ c

= T Q
K f (s)+ c

proving (ii).

For (iii) by considering a larger cube Q ′′ ∈ D containing both Q and Q ′ we may as-

sume without loss of generality that Q ′ ⊆Q and B ′ ⊆ B . Fix ϕ ∈ L2(S) and define

g (s, s′, t ) := (
K (s, t )−K (s′, t )

)
f (t )ϕ(t ).

Then we have for a.e. s ∈Q ′ =Q ∩Q ′ by Fubini’s theorem

T Q
K f (s)ϕ−T Q ′

K f (s)ϕ
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= TK (1B\B ′ f )(s)ϕ+
(∫

Q

∫
S\B

−
∫

Q ′

∫
B\B ′

−
∫

Q ′

∫
S\B

)
g (s, s′, t ) dµ(t ) dµ(s′)

=
∫

Q ′
TK (1B\B ′ f )(s′)ϕ dµ(s′)+

∫
S\B

(∫
Q
−

∫
Q ′

)
g (s, s′, t ) dµ(s′) dµ(t )

=
∫

Q ′
TK (1B\B ′ f )(s′)ϕ dµ(s′)−

∫
S\B

(∫
Q
−

∫
Q ′

)
K (s′, t ) f (t )ϕ(t ) dµ(s′) dµ(t ).

As the final right-hand side does not depend on s, this proves (iii).

Using the properties of these local operators T Q
K we can prove an L∞-estimate of TK

involving the sharp maximal operator, introduced in Section 2.2.

Proposition 4.4.7. Let X and Y be Banach spaces, assume that Y has type 2 and let

(S,d ,µ) be a space of homogeneous type. Let p ∈ [2,∞) and suppose K ∈ Kγ(Lp,∞(S))

satisfies the 2-Hörmander condition. Then we have for all f ∈ Lp (S; X )∩L∞(S; X )∥∥M #(TK f
)∥∥

L∞(S)
<∼S,p

(‖K ‖Kγ(Lp,∞(S)) +τ2,Y ‖K ‖2-Hörm
)‖ f ‖L∞(S;X ).

Proof. Let B ⊆ S be a ball and let D be a dyadic system in (S,d ,µ) such that there is

a Q ∈ D with B ⊆ Q and diam(Q) <∼S diam(B), which exists by Proposition 2.1.1. Let

f ∈ Lp (S; X )∩L∞(S; X ) and, using Lemma 4.4.6(ii), choose c ∈ γ(S;Y ) such that

TK f (s)−T Q
K f (s) = c, s ∈Q.

Then, using (2.0.1) and Lemma 4.4.6(i), we have∫
B

∥∥TK f (s)− c
∥∥ dµ(s) <∼S

∫
Q

∥∥T Q
K f

∥∥
γ(S;Y ) dµ

<∼p µ(Q)−1+1/p ′ ∥∥T Q
K f

∥∥
Lp,∞(Q;γ(S;Y ))

<∼S,p
(‖K ‖Kγ(Lp,∞(S)) +τ2,Y ‖K ‖2-Hörm

)‖ f ‖L∞(S;X ).

It follows that∥∥M #(TK f
)∥∥

L∞(S)
<∼S,p (‖K ‖Kγ(Lp,∞(S)) +τ2,Y ‖K ‖2-Hörm)‖ f ‖L∞(S;X ),

which proves the proposition.

Using Proposition 4.4.7, the proof of Theorem 4.4.4(i) is now a straightforward ap-

plication of Stampacchia interpolation (see e.g. [GR85, Theorem II.3.7]).

Proof of Theorem 4.4.4(i). Let f ∈ Lp (S; X )∩L∞(S; X ). Since M # f ≤ 2 M(‖ f ‖γ(S;Y )), we

know by Proposition 2.2.1 that M # is bounded from Lp,∞(S;γ(S;Y )) to Lp,∞(S) and thus∥∥M #(TK f )
∥∥

Lp,∞(S)
<∼S,p

∥∥TK f
∥∥

Lp,∞(S;γ(S;Y ))

<∼S,p ‖K ‖Kγ(Lp,∞(S))‖ f ‖Lp (S;X ).
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Moreover, by Proposition 4.4.7, we know that∥∥M #(TK f
)∥∥

L∞(S)
<∼S,p

(‖K ‖Kγ(Lp,∞(S)) +τ2,Y ‖K ‖2-Hörm
)‖ f ‖L∞(S;X ),

We can therefore apply the Marcinkiewicz interpolation theorem (see e.g. [HNVW16,

Theorem 2.2.3]), to conclude that for all f ∈ Lp (S; X )∩L∞(S; X ) we have∥∥M #(TK f )
∥∥

Lq (S)
<∼S,p,q

(‖K ‖Kγ(Lp,∞(S)) +τ2,Y ‖K ‖2-Hörm
)‖ f ‖Lq (S;X ).

We consider two cases:

(i) If µ(S) =∞, we deduce by Proposition 2.2.3

‖TK f ‖Lq (S;γ(S;Y )) <∼S,q
∥∥M #(TK f )

∥∥
Lq (S)

<∼S,p,q
(‖K ‖Kγ(Lp,∞(S)) +τ2,Y ‖K ‖2-Hörm

)‖ f ‖Lq (S;X ).

for all f ∈ Lp (S; X )∩L∞(S; X ).

(ii) If µ(S) <∞, we deduce by Proposition 2.2.3, (2.0.1), K ∈Kγ(Lp,∞(S)) and Hölder’s

inequality

‖TK f ‖Lq (S;γ(S;Y )) <∼S,q
∥∥M #(TK f )

∥∥
Lq (S) +µ(S)−1/q ′‖TK f ‖L1(S)

<∼S,p,q
(‖K ‖Kγ(Lp,∞(S)) +τ2,Y ‖K ‖2-Hörm

)‖ f ‖Lq (S;X )

+µ(S)1/p ′−1/q ′‖K ‖Kγ(Lp,∞(S;X ))‖ f ‖Lp (S;X )

<∼
(‖K ‖Kγ(Lp,∞(S)) +τ2,Y ‖K ‖2-Hörm

)‖ f ‖Lq (S;X )

for all f ∈ Lp (S; X )∩L∞(S; X ).

As Lp (S; X )∩ L∞(S; X ) is a dense subspace of Lq (S; X ), assertion (i) of Theorem 4.4.4

follows.

Assertion (ii) of Theorem 4.4.4 does not follow directly from Proposition 4.4.7, since

Lp (S; X )∩L∞(S; X ) is not dense in L∞(S; X ) and therefore the extension of TK to all func-

tions in L∞(S; X ) is a nontrivial matter.

Proof of Theorem 4.4.4(ii). Let D1, . . . ,Dm be a dyadic systems in (S,d ,µ) as in Propo-

sition 2.1.1 and let (Qk )∞k=1 ⊆ ⋃m
j=1 D j be an increasing sequence of dyadic cubes such

that
⋃∞

k=1 Qk = S. For f ∈ L∞(S; X ) define

T̃K f (s) := T Qk
K f (s)−

∫
Q1

T Qk
K f dµ if s ∈Qk .

Then T̃K f ∈ L1
loc(S;γ(S;Y )) is well-defined. Indeed, by Lemma 4.4.6(ii) we have T Qk

K f ∈
L1(Qk ;γ(S;Y )), so in particular the average over Q1 is well-defined. Moreover if j > k,
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then by Lemma 4.4.6(iii) there is a c ∈ γ(S;Y ) such that T
Q j

K f (s)−T Qk
K f (s) = c for a.e.

s ∈Qk . Therefore

T Qk
K f (s)−

∫
Q1

T Qk
K f dµ= (

T
Q j

K f (s)− c
)−∫

Q1

(
T

Q j

K f − c
)

dµ

= T
Q j

K f (s)−
∫

Q1

T
Q j

K f dµ,

thus the definition of T̃K f (s) is independent of the choice of Qk 3 s.

If f ∈ Lp (S; X )∩L∞(S; X ), then for any k ∈N there exist c1,c2 ∈ γ(S;Y ) such that for

a.e. s ∈Qk

T Qk
K f (s)−TK f (s) = c1,

T Qk
K f (s)− T̃K f (s) = c2

by Lemma 4.4.6(ii) and the definition of T̃K f . As (Qk )∞k=1 is increasing and
⋃∞

k=1 Qk = S,

we see that c1 and c2 are independent of k, so T̃K f −TK f is indeed constant.

It remains to show that T̃K f ∈ BMO(S; X ) with the claimed norm estimate. Let B ⊆ S

be any ball and fix k ∈ N such that B ⊆ Qk . Take Q ∈ ⋃m
j=1 D j such that B ⊆ Q and

diam(Q) <∼S diam(B). By Lemma 4.4.6(iii) there exists a c3 ∈ γ(S;Y ) such that for a.e.

s ∈Q

T Qk
K f (s)−T Q

K f (s) = c3.

Therefore∥∥T̃K f
∥∥

BMO(S;γ(S;Y ))
<∼S

∫
Q

∥∥T̃K f − (c3 − c2)
∥∥
γ(S;Y ) dµ=

∫
Q

∥∥T Q
K f

∥∥
γ(S;Y ) dµ.

Now
∫

Q

∥∥T Q
K f

∥∥
γ(S;Y ) can be estimated exactly as in the proof of Proposition 4.4.7, which

yields the claimed norm estimate in Theorem 4.4.4(ii).

Remark 4.4.8. By inspection of the proof it can easily be seen that for the extrapolation

down in Theorem 4.4.2 one only needs(∫
S\B

‖(K (s, t )−K (s, t ′))x‖2
Y dµ(t )

)1/2 ≤C ‖x‖X , s, s′ ∈ 1
2 B , x ∈ X

which is implied by (4.3.4) of the 2-Hörmander condition. For the extrapolation up in

Theorem 4.4.4 one only needs the left hand side of (4.4.6) to be bounded, which is im-

plied by (4.3.3) of the 2-Hörmander condition.

Corollary 4.4.9 (γ-convolution operator with values in a Hilbert space). Let X be a Ba-

nach space and let Y be a Hilbert space. Suppose k :Rd →L(X ,Y ) is strongly measurable

and satisfies the 2-Hörmander condition in (4.3.7). Let K (s, t ) = k(s− t ). Then the follow-

ing are equivalent:
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(i) ‖t 7→ k(t )x‖L2(Rd ;Y ) ≤ A0 ‖x‖ for some A0 > 0.

(ii) K ∈Kγ(Lp (Rd )) for all p ∈ [2,∞).

(iii) K ∈Kγ(Lp,∞(Rd )) for some p ∈ [2,∞).

In particular we have for all p ∈ [2,∞) and A0 as in (i):

‖K ‖Kγ(Lp (Rd )) ≤Cp,d (A0 +‖K ‖2-Hörm).

Proof. The implication (i) ⇒ (ii) for p = 2 follows from Proposition 4.2.10(i) and for p ∈
(2,∞) we can apply Theorem 4.4.4. The implication (ii) ⇒ (iii) is trivial and (iii) ⇒ (i)

follows from Proposition 4.2.8.

4.4.3. SPARSE DOMINATION FOR γ-INTEGRAL OPERATORS

In this section we will obtain weighted bounds for a γ-integral operator TK under an

2-Dini condition on K . We will deduce these weighted bounds from the abstract sparse

domination principle obtained in Chapter 3, which will lead to a stochastic analogue of

the A2-theorem.

In order to apply this abstract sparse domination principle on a K ∈ Kγ(Lp (S)) we

need to check weak L2-boundedness of TK and M#
TK ,α and we need to check the 2-

sublinearity of TK . The weak L2-boundedness of TK was already obtained in Theorem

4.4.2. For a 2-Dini kernel the boundedness of M#
TK ,α is quite easy to check:

Lemma 4.4.10 (Boundedness of grand maximal truncation operator). Let X and Y be a

Banach spaces, assume that Y has type 2 and let (S,d ,µ) be a space of homogeneous type.

Let p ∈ [2,∞) and suppose K ∈Kγ(Lp,∞(S)) satisfies the 2-Dini condition. Then for any

f ∈ Lp (S; X ) and α≥ 3c2
d cK we have

M#
TK ,α f <∼S τ2,Y ‖K ‖2-Dini M2(‖ f ‖X ).

In particular, M#
TK ,α is bounded from L2(S; X ) to L2,∞(S) with

‖M#
TK ,α‖L2(S;X )→L2,∞(S) <∼S τ2,Y ‖K ‖2-Dini.

Proof. Let f ∈ Lp (S; X )∩L2(S; X ), s ∈ S and fix a ball B 3 s with radius r . Take s′, s′′ ∈ B

and let ε= 2cK cd r . Then

d(s′, t ) ≥ 1

cd
d(z, t )−d(z, s′) ≥ αr

cd
−ρ ≥ 2cK cd r = ε

d(s′, s′′) ≤ 2cd r = c−1
K ε

Therefore, applying Lemma 2.8.4 and using the 2-Dini condition, we obtain

‖TK (1S\αB f )(s′)−TK (1S\αB f )(s′′)‖γ(S;Y )
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≤ τ2,Y

(∫
S\αB

∥∥(
K (s′, t )−K (s′′, t )

)
f (t )

∥∥2
Y dt

)1/2

≤ τ2,Y

(∫
d(s′,t )>ε

ω
( ε/2

d(s′, t )

)2 1

µ(B(s′,d(s′, t )))
‖ f (t )‖2

X dt
)1/2

≤ τ2,Y

( ∞∑
j=0

ω(2− j−1)2 1

µ(B(s′,2 jε))

∫
2 j ε<d(s′,t )≤ε2 j+1

‖ f (t )‖2
X dt

)1/2

<∼S τ2,Y

( ∞∑
j=0

ω(2− j−1)2
∫

B(s′,2 j+1ε)
‖ f (t )‖2

X dt
)1/2

≤ τ2,Y ‖K ‖2-DiniM2
(‖ f ‖X

)
(s).

where the last step follows from s ∈ B(s′,2 j+1ε) for all j ∈ N and a similar computation

as in (3.4.1). Now, taking the essential supremum over s′, s′′ ∈ B and the supremum over

all balls B 3 s, we see that

M#
TK ,α f (s) <∼S τ2,Y ‖K ‖2-DiniM2

(‖ f ‖X
)
(s), s ∈ S.

The weak L2-boundedness follows from the corresponding bound for M2 in Proposition

2.2.1 and the density of Lp (S; X )∩L2(S; X ) in L2(S; X ).

With only the 2-sublinearity of TK left to check, we will now prove sparse domina-

tion, and thus also weighted boundedness, for the γ-integral operators

Theorem 4.4.11 (Sparse domination for γ-integral operators). Let X and Y be Banach

spaces with type 2 and let (S,d ,µ) be a space of homogeneous type. Let p ∈ [2,∞) and

suppose K ∈ Kγ(Lp,∞(S)) satisfies the 2-Dini condition. Then there is an η ∈ (0,1) such

that for every compactly supported f ∈ L2(S; X ) there exists an η-sparse collection of cubes

S such that

‖T f (s)‖γ(S;Y ) <∼X ,Y ,S,p CK

( ∑
Q∈S

〈‖ f ‖X
〉2

2,Q 1Q (s)
)1/2

, s ∈ S

with CK := ‖K ‖Kγ(Lp,∞(S)) +‖K ‖2-Dini. In particular, K ∈ Kγ(Lq (S, w)) for all q ∈ (2,∞)

and w ∈ Aq/2 with

‖K ‖Kγ(Lq (S,w)) <∼X ,Y ,S,p,q CK [w]
max

{
1
2 , 1

q−2

}
Aq/2

.

Proof. Since K is an 2-Dini kernel, it is also a 2-Hörmander kernel by Lemma 4.3.2 with

‖K ‖2-Hörm <∼S ‖K ‖2-Dini.

Therefore by Theorem 4.4.2 we know that T is bounded from L2(S; X ) to L2,∞(S;γ(S;Y ))

with norm

‖T ‖L2→L2,∞ <∼S,p

(
τ2,X τ2,Y ‖K ‖Kγ(Lp,∞(S)) +τ2,Y ‖K ‖2-Dini

)
.

By Lemma 4.4.10 we also know thatM#
T,α is bounded from L2(S; X ) to L2,∞(S) with norm

‖M#
T,α‖L2→L2,∞ <∼S ,τ2,Y ‖K ‖ω-Dini2
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for α > 0 large enough. Moreover for f1, . . . , fn ∈ L2(S; X ) with disjoint support we have

for a.e. s ∈ S that TK f1(s), . . . ,TK fn(s) have disjoint support as well and thus the 2-

sublinearity with constant τ2,Y follows from Lemma 2.8.5. The sparse domination there-

fore follows by applying Theorem 3.1.1 to TK . The weighted bounds follow directly from

Proposition 3.2.4 and the density of boundedly supported L2-functions in Lq (S, w ; X )

for all q ∈ [2,∞).

Remark 4.4.12.

(i) If we omit the type 2 assumption for X in Theorem 4.4.11 we can still conclude

that TK is sparsely dominated by larger sparse operator

f 7→
( ∑

Q∈S

〈‖ f ‖X
〉2

p,Q 1Q

)1/2

In the proof one then has to skip the step where Theorem 4.4.2 is applied. This is

in particular useful when p = 2.

(ii) Ap/2 is the largest class of weights one can expect in Theorem 4.4.11, since in the

case that X = Y =K, S = Rd and K (s, t ) = k(s − t ), Theorem 4.4.11 can be reduced

to a statement about deterministic convolution operators with positive kernel (see

Subsection 4.2.3). It is standard to check that the weighted boundedness of for

example

T f (s) :=
∫

S
λd e−λ|s−t | f (t ) dt , s ∈ S,

for all λ ∈ R+ implies the Ap -condition, see e.g. [Gra14a, Section 7.1.1]. Also the

dependence on the weight characteristic is sharp, see Proposition 4.4.14 below

Under a Dini type condition we obtain the following further characterization if Y is a

Hilbert space. The proof is immediate from Corollary 4.4.9, Theorem 4.4.11 and Remark

4.4.12(i).

Corollary 4.4.13. Let X be a Banach space and Y be a Hilbert space. Suppose k : Rd →
L(X ,Y ) is strongly measurable and satisfies the 2-Dini condition. Let K (s, t ) := k(s − t ).

Then statements (i)–(iii) in Corollary 4.4.9 are equivalent to

(iv) K ∈Kγ(Lp (Rd , w)) for all p ∈ (2,∞) and all w ∈ Ap/2.

In particular we have for all p ∈ (2,∞), w ∈ Ap/2 and A0 as in (i) of Corollary 4.4.9:

‖K ‖Kγ(Lp (Rd )) ≤Cp,d (A0 +‖K ‖ω-Dini2)[w]
max

{
1
2 , 1

q−2

}
Aq/2

.

We will show next that the dependence on the weight characteristic [w]Ap/2 in the

bounds for TK in Theorem 4.4.11 is actually optimal. Therefore Theorem 4.4.11 can be

thought of as a γ-analog of the A2-theorem in the deterministic setting.
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Proposition 4.4.14. Let X and Y be Banach spaces, p ∈ (2,∞) and β ≥ 0. There exists a

kernel

K : Rd ×Rd \ {(s, s) : s ∈Rd } →L(X ,Y )

satisfying the assumptions of Theorem 4.4.11 such that if for all w ∈ Ap/2 we have

‖K ‖Kγ(Lp (Rd ,w))
<∼ [w]βAp/2

,

then β≥ max
{ 1

2 , 1
q−2

}
.

Proof. By considering one dimensional subspaces, we may assume without loss of gen-

erality that X = Y =K. Define

K
(
(s1, s̄), (t1, t̄ )

)
:= (|s1|+ |t1|)1/2∣∣(|s1|, s̄)+ (|t1|, t̄ )

∣∣(d+1)/2
, (s1, s̄), (t1, t̄ ) ∈R×Rd−1.

Then by Lemma 4.3.3 we know that K is a 2-standard kernel.

Set Rd+ := {(s1, s̄) ∈ R×Rd−1 : s1 ≥ 0}, Rd− := Rd \Rd+ and define for q ∈ (1,∞) and f ∈
Lq (Rd+)

T1 f (s) := Γ((d +1)/2)

π(d+1)/2

∫
Rd+

s1 + t1

|s + t |d+1
f (t ) dt , s ∈Rd

+.

Then T1 is a bounded operator on Lq (Rd+) for all q ∈ (1,∞) with

‖T1‖Lq (Rd+)→Lq (Rd+) =
1

sin(π/q)

by [Osȩ17, Theorem 1]. For g ∈ Lp (Rd ) we have

‖TK g‖p

Lp (Rd )
= ‖TK (g 1

Rd+
+g 1Rd− )‖p

Lp (Rd+)
+‖TK (g 1

Rd+
+g 1Rd− )‖p

Lp (Rd−)

'd ‖T1h‖p/2

Lp/2(Rd+)

where h(s) := |g (s)+ g (−s)|2 for s ∈Rd+. Therefore

‖K ‖Kγ(Lp (Rd )) 'd ‖T1‖1/2
Lp/2(Rd+)→Lp/2(Rd+)

= 1

sin(2π/p)1/2
,

so K satisfies the assumptions of Theorem 4.4.11. Moreover

αK := sup
{
α≥ 0 : ∀ε> 0, limsup

p→2

‖K ‖Kγ(Lp (Rd ))

(p −2)−α+ε
=∞

}
= 1

2

γK := sup
{
γ≥ 0 : ∀ε> 0, limsup

p→∞

‖K ‖Kγ(Lp (Rd ))

p−γ+ε =∞
}
= 1

2
.

Thus by [FN19, Theorem 5.2] it follows that if

‖K ‖Kγ(Lp (Rd ,w))
<∼ [w]βAp/2

,

then

β≥ max
{
αK

2
q−2 ,γK

}= max
{ 1

q−2 , 1
2

}
.
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4.5. γ-FOURIER MULTIPLIER OPERATORS

If S =Rd and K is of convolution type, i.e. K (s, t ) = k(s−t ) for some k : Rd \{0} →L(X ,Y ),

a sufficient condition for the 2-Hörmander, 2-Dini and 2-standard kernel assumptions

can also be formulated in terms of smoothness and decay of the Fourier transform of k.

For the 1-Hörmander, 1-Dini and 1-standard kernels assumptions this is classical, see

e.g. [HNVW2x, Gra14a, Ste93] and Section 3.5. The r -Hörmander kernel assumptions

for r ∈ [1,∞] have been treated by similar methods in e.g. [RV17, Section 5.1]. In this

section we will check the 2-Dini kernel assumption for k in terms of smoothness and

decay of the Fourier transform of k, for which we will adapt the approach for 1-Dini

kernels and singular integral operators in [HNVW2x] to the 2-Dini kernel and γ-integral

operator setting. Using Theorem 4.4.11 this leads to an extrapolation theorem for γ-

Fourier multiplier operators, which we will now introduce:

Definition 4.5.1. Let X ,Y be a Banach spaces. For m ∈ L2,∞(Rd ;L(X ,Y )) we define the

γ-Fourier multiplier operator Tm for f ∈S(Rd ; X ) and ϕ ∈S(Rd ) by

Tm f (s)ϕ=F−1(m · ( f̂ ∗ ϕ̂ )
)
(s), s ∈Rd .

Let p ∈ [1,∞) and let w be a weight. We letMγ(Lp (Rd , w)) (respectivelyMγ(Lp,∞(Rd , w)))

be the space of all m ∈ L2,∞(Rd ;L(X ,Y )) such that Tm extends to a bounded operator

from Lp (Rd , w ; X ) to Lp (Rd , w ;γ(Rd ;Y )) (respectively Lp,∞(Rd , w ;γ(Rd ;Y ))). We norm

these spaces by

‖m‖Mγ(Lp (Rd ,w)) := ‖Tm‖Lp (Rd ,w ;X )→Lp (Rd ,w ;γ(Rd ;Y )),

‖m‖Mγ(Lp,∞(Rd ,w)) := ‖Tm‖Lp (Rd ,w ;X )→Lp,∞(Rd ,w ;γ(Rd ;Y )).

If w ≡ 1 we omit it.

Remark 4.5.2.

• Note that the inverse Fourier transform of m · ( f̂ ∗ ϕ̂) in Definition 4.5.1 is a well-

defined function, as we can estimate

‖m · f̂ ∗ ϕ̂‖L1(Rd ;Y ) ≤ ‖m‖L2,∞(Rd ;L(X ,Y ))

∥∥ f̂ ∗ ϕ̂∥∥
L2,1(Rd ;X ) <∞ (4.5.1)

where we used Hölder’s inequality for Lorentz spaces in the first step and the in-

clusion f̂ ∗ ϕ̂ ∈S(Rd ; X ) ,→ L2,1(Rd ; X ) in the second step.

• An m ∈Mγ(Lp,∞(Rd , w)) will typically not be a bounded function, but rather sat-

isfy an estimate of the form

‖m(ξ)‖ ≤ A0 |ξ|−d/2, ξ ∈Rd \ {0}

for some A0 > 0. This implies in particular that m ∈ L2,∞(Rd ;L(X ,Y )), which we

included in our definition of Mγ(Lp,∞(Rd , w)) to ensure that Tm is well-defined

on Schwartz functions.
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For compactly supported m we can easily connectγ-integral operators andγ-Fourier

multiplier operators, as we will show in the following proposition.

Proposition 4.5.3. Let X and Y be Banach spaces and let m ∈ L2,∞(Rd ;L(X ,Y )) be com-

pactly supported. Then for all f ∈S(Rd ; X ) and ϕ ∈S(Rd ) we have

Tm f (s)ϕ=
∫
Rd

k(s − t ) f (t )ϕ(t ), s ∈Rd ,

where k = qm.

Proof. Since m is compactly supported, we have m ∈ L1(Rd ;L(X ,Y )), so qm is well-defined.

Fix f ∈S(Rd ; X ). Using Fubini’s theorem, we can directly compute that for anyϕ ∈S(Rd )

and a.e. s ∈Rd

Tm f (s)ϕ=
∫
Rd

m(ξ)
(

f̂ ∗ ϕ̂)
(ξ)e2πi s·ξ dξ

=
∫
Rd

m(ξ)
(∫
Rd

f (t )ϕ(t )e−2πi t ·ξ dt
)

e2πi s·ξ dξ

=
∫
Rd

(∫
Rd

m(ξ)e2πi (s−t )·ξ dξ
)

f (t )ϕ(t ) dt

=
∫
Rd

qm(s − t ) f (t )ϕ(t ) dt .

Using smooth Littlewood–Paley functions we will reduce considerations to the com-

pactly supported case. For this fix a Schwartz function φ ∈ S(Rd ) such that 1B(0,1) ≤ φ̂≤
1B(0,2) and set

ψ̂(ξ) := φ̂(ξ)− φ̂(2ξ), ξ ∈Rd .

Then ψ̂ ∈S(Rd ) is nonnegative and evidently

(i) suppψ̂⊆ {
ξ ∈Rd :

1

2
≤ |ξ| ≤ 2

}
,

(ii)
∑
j∈Z

ψ̂(2− jξ) = 1 for all ξ ∈Rd \ {0}.

For any m ∈ L2,∞(Rd ;L(X ,Y )), j ∈Z and N ∈Nwe define

m j (ξ) := ψ̂(2− jξ)m(ξ), ξ ∈Rd , (4.5.2)

mN (ξ) := ∑
−N< j≤N

m j (ξ) = (
φ̂(2−Nξ)− φ̂(2Nξ)

)
m(ξ), ξ ∈Rd . (4.5.3)

Then both the m j ’s and the mN ’s are compactly supported away from the origin, which

in particular implies that m j ,mN ∈ L1(Rd ;L(X ,Y )).

We will now show that the Lp -boundedness of a Fourier γ-multiplier operator Tm is

equivalent to the uniform boundedness of the truncations TmN .

Proposition 4.5.4. Let X and Y be Banach spaces, assume that Y has finite cotype, let

p ∈ [2,∞) and let w ∈ Ap . Then the following hold:
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(i) If m ∈Mγ(Lp (Rd )), then mN ∈Mγ(Lp (Rd )) for all N ∈Nwith

‖mN‖Mγ(Lp (Rd )) ≤ ‖φ‖L1(Rd ) ‖m‖Mγ(Lp (Rd )).

(ii) If mN ∈Mγ(Lp (Rd , w)) uniformly for N ∈N, then m ∈Mγ(Lp (Rd , w)) with

‖m‖Mγ(Lp (Rd ,w)) ≤ ‖mN‖Mγ(Lp (Rd ,w)).

Moreover these statements are valid with Lp replaced by Lp,∞.

Proof. We will only prove the lemma for Lp , the proof for Lp,∞ is similar. For (i) we note

that for f ∈S(Rd ; X ) and all ϕ ∈S(Rd ) we have

TmN f (s)ϕ=F−1((φ̂(2−N ·)− φ̂(2N ·))m( f̂ ∗ ϕ̂)
)
(s)

=
∫
Rd

(
φ2−N (s − t )−φ2N (s − t )

)
Tm f (t )ϕ dt

= (
φ2−N ∗Tm f −φ2N ∗Tm f

)
(s)ϕ,

where φλ(s) :=λ−dφ(λ−1s). By Young’s inequality we have∥∥φλ∗Tm f
∥∥

Lp (Rd ;γ(Rd ;Y )) ≤ ‖φ‖L1(Rd )

∥∥Tm f
∥∥

Lp (Rd ;γ(Rd ;Y )),

so by density we deduce that mN ∈Mγ(Lp (Rd )) with the claimed estimate.

For (ii) we know by the properties of our smooth Littlewood-Paley functions that

mN (ξ) → m(ξ) for all ξ ∈Rd \{0}. Using (4.5.1) we can apply the Dominated convergence

theorem to obtain for f ∈S(Rd ; X ), ϕ ∈S(Rd ) and a.e. s ∈Rd that

lim
N→∞

TmN f (s)ϕ= lim
N→∞

∫
Rd

mN (ξ) · ( f̂ ∗ ϕ̂)(ξ)e2πi s·ξ dξ

=
∫
Rd

m(ξ) · ( f̂ ∗ ϕ̂)(ξ)e2πi s·ξ dξ= Tm f (s)ϕ.

Let (ϕk )∞k=1 ⊆S(Rd ) be an orthonormal basis of L2(Rd ) and (γk )∞k=1 a Gaussian sequence.

Then, using that γ∞(Rd ;Y ) = γ(Rd ;Y ) as Y has finite cotype, we have by Fatou’s lemma

for a.e. s ∈Rd

‖Tm f (s)‖γ(Rd ;Y ) = sup
n∈N

∥∥∥ n∑
k=1

γk Tm f (s)ϕk

∥∥∥
L2(Ω;Y )

≤ sup
n∈N

liminf
N→∞

∥∥∥ n∑
k=1

γk TmN f (s)ϕk

∥∥∥
L2(Ω;Y )

≤ liminf
N→∞

∥∥TmN f (s)
∥∥
γ(Rd ;Y ).

Using Fatou’s lemma once more, we see that

‖Tm f ‖Lp (Rd ,w ;γ(Rd ;Y )) ≤ liminf
N→∞

‖TmN f ‖Lp (Rd ,w ;γ(Rd ;Y )).

As S(Rd ; X ) is a dense subspace of Lp (Rd , w ; X ), the proposition follows.
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In view of Proposition 4.5.4 we can focus on the truncations m j and mN as defined

in (4.5.2) and (4.5.3). We start with a lemma that transfers the decay of m to decay of the

Fourier inverse of the truncated multipliers m j .

Lemma 4.5.5. Let X and Y be Banach spaces and let m : Rd \ {0} → L(X ,Y ) be strongly

measurable such that

‖∂αm(ξ)‖ ≤ A0 |ξ|−d/2−|α|, ξ ∈Rd \ {0}, |α| ≤ bd/2c+1

for some A0 > 0. Then for any k j := qm j , where m j is defined as in (4.5.2), we have for

0 ≤ n ≤ bd/2c+1

|s|n‖k j (s)‖ <∼d A0 (2 j )d/2−n , s ∈Rd , (4.5.4)

|s|n‖k j (s − t )−k j (s)‖ <∼d A0 (2 j )d/2−n min{2 j |t |,1}, |t | ≤ 1

2
|s|. (4.5.5)

Proof. Fix j ∈N and |α| ≤ bd/2c+1, then we have for all ξ ∈Rd \ {0} that

∂αm j (ξ) = ∂α(
ψ̂(2− jξ)m(ξ)

)= ∑
β≤α

(
α

β

)
2− j |β|∂βψ̂(2− jξ)∂α−βm(ξ).

Therefore it follows for all ξ ∈Rd \ {0}

∥∥∂αm j (ξ)
∥∥≤ A0

∑
β≤α

(
α

β

)
2− j |β| 12 j−1≤|ξ|≤2 j+1 |ξ|−d/2−|α−β|

≤ A0
∑
β≤α

(
α

β

)
2− j |β|(2 j−1)−d/2−|α|+|β|

<∼d A0 (2 j )−d/2−|α|.

(4.5.6)

Now take 0 ≤ n ≤ bd/2c+1 and define α := nel for some 1 ≤ l ≤ d . Then, using (4.5.6)

and the fact that m j is supported in the ball B(0,2 j+1), we have

sup
s∈Rd

‖sαk j (s)‖ <∼d ‖∂αm j ‖L1(Rd ;L(X ,Y ))

<∼d ‖∂αm j ‖L∞(Rd ;L(X ,Y ))‖1B(0,2 j+1)‖L1(Rd )

<∼d A0 (2 j )−d/2−n (2 j+1)d .

(4.5.7)

So |sl |n‖k j (s)‖ <∼d A0 (2 j )d/2−n for all s ∈ Rd and 1 ≤ l ≤ d , from which (4.5.4) follows

readily.

Now fix t ∈ Rd and note that k j (·− t )−k j (·) is the Fourier transform of the function

ξ 7→ (e2πi t ·ξ−1)m j (ξ). Suppose that |t | ≤ 2− j , then since

∂α
(
(e2πiξ·t −1)m j (ξ)

)= (e2πiξ·t −1)∂αm j (ξ)+ ∑
0 6=β≤α

(
α

β

)
(2πi )|β|tβe2πiξ·t∂α−βm j (ξ),
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we have that

sup
ξ∈Rd

∥∥∂α(
(e2πiξ·t −1)m j (ξ)

)∥∥<∼d A0

(
2 j |t |(2 j )−d/2−|α|+ ∑

0 6=β≤α

(
α

β

)
|t |β(2 j )−d/2−|α−β|

)
<∼d A0 2 j |t | · (2 j )−d/2−|α|.

So reasoning analogously as in (4.5.7), we obtain that

|s|n‖k j (s − t )−k j (s)‖ <∼d A0 2 j |t | · (2 j )d/2−n .

Now if |t | > 2− j we simply use the triangle inequality and (4.5.4) to deduce for all |s| ≥ 2|t |
that

‖k j (s − t )−k j (s)‖ ≤ ‖k j (s − t )‖+‖k j (s)‖
<∼d A0 (2 j )d/2−n(|s − t |−n +|s|−n)
<∼d A0 (2 j )d/2−n |s|−n .

Combining the estimates for |t | ≤ 2− j and |t | > 2− j yields (4.5.5).

Using Lemma 4.5.5 we can use estimates on the derivatives of m to check the 2-

standard kernel estimates for the kernels associated to mN independent of N ∈N, as we

announced at the start of this section.

Proposition 4.5.6. Let X and Y be Banach spaces and let m : Rd \{0} →L(X ,Y ) be strongly

measurable such that

‖∂αm(ξ)‖ ≤ A0 |ξ|−d/2−|α|, ξ ∈Rd \ {0}, |α| ≤ bd/2c+1

for some A0 > 0. Then for any N ∈N the kernel K N (s, t ) := qmN (s− t ), where mN is defined

as in (4.5.3), is a 2-standard kernel with

‖K N‖2-std <∼d A0.

Proof. Fix ε ∈ (0, 1
2 ) and define `= bd/2c+1. For j ∈N set k j := qm j , where m j is defined

as in (4.5.2). Since the k j ’s satisfy (4.5.5) by Lemma 4.5.5 and using `−d/2 ∈ { 1
2 ,1}, we

have for all |s| ≥ 2|t | that

‖kN (s − t )−kN (s)‖

<∼d A0

( ∑
2 j ≤|s|−1

(2 j )d/2+1|t |+ ∑
|s|−1≤2 j ≤|t |−1

(2 j )d/2−`+1

|s|` |t |+ ∑
2 j ≥|t |−1

(2 j )d/2−`

|s|`
)

<∼d A0

( |t |
|s|

1

|s|d/2
+

( |t |
|s|

)`−d/2 1

|s|d/2
log2

( |s|
|t |

)
+

( |t |
|s|

)`−d/2 1

|s|d/2

)
<∼ε,d A0

( |t |
|s|

)ε 1

|s|d/2
,

from which (4.3.5) and (4.3.6) for K follow by a change of variables.
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Remark 4.5.7. If in Proposition 4.5.6 either one of the following assumptions hold:

• d is even

• d is odd and we have smoothness of m up to order bd/2c+2

a slightly simpler argument than the one presented could be employed. On the other

hand, if d is even one can deduce a strong operator topology version of the 2-Hörmander

condition for K N using only bd/2c derivatives of m and nontrivial Fourier type of Y . We

refer to e.g. [FHL20, Hyt04, HNVW2x] for such results for classical Fourier multiplier

operators and [RV17, Section 5.2] for the r -Hörmander condition of K N for r ∈ [1,∞].

With the kernel estimates of Proposition 4.5.6, the approximation result of Proposi-

tion 4.5.4 and the connection between γ-Fourier multiplier operators and γ-integral op-

erators of Proposition 4.5.3 we can now use the sparse domination result in the previous

section to deduce a weighted extrapolation theorem for Fourier γ-multiplier operators.

Theorem 4.5.8. Let X and Y be Banach spaces with type 2 and let p ∈ [2,∞). Let m ∈
Mγ(Lp,∞(Rd )) be such that

‖∂αm(ξ)‖ ≤ A0 |ξ|−d/2−|α|, ξ ∈Rd \ {0}, |α| ≤ bd/2c+1

for some A0 > 0. Then m ∈Mγ(Lq (Rd , w)) for all q ∈ (2,∞) and w ∈ Aq/2 with

‖m‖Mγ(Lq (Rd ,w))
<∼X ,Y ,p,q,d [w]

max
{

1
2 , 1

q−2

}
Aq/2

(‖m‖Mγ(Lp,∞(Rd )) + A0
)

Proof. Let mN be defined as in (4.5.3). Then by Proposition 4.5.4 we know that mN ∈
Mγ(Lp,∞(Rd )) for all N ∈Nwith

‖mN‖Mγ(Lp,∞(Rd ))
<∼ ‖m‖Mγ(Lp,∞(Rd )).

Moreover by Proposition 4.5.3 we know that TmN is a γ-integral operator with kernel

K N (s, t ) := qmN (s − t ), which is a 2-standard kernel by Proposition 4.5.6. Therefore, by

Theorem 4.4.11, it follows that mN ∈Mγ(Lq (Rd , w)) for all q ∈ (2,∞) and w ∈ Aq/2 uni-

formly for N ∈N. So we also have that m ∈Mγ(Lq (Rd , w)) for all q ∈ (2,∞) and w ∈ Aq/2

by Proposition 4.5.4. The norm estimate follows from the norm estimate in Theorem

4.4.11 combined with the estimate ‖K N‖2-std <∼ A0 from Proposition 4.5.6.

Remark 4.5.9. In Theorem 4.5.8 we assume a priori that Tm is weak Lp -bounded. For

(classical) Fourier multiplier operators one can deduce a priori Lp -boundedness us-

ing the operator-valued Mihlin multiplier theorem (see also Section 3.5). For γ-Fourier

multiplier operators such a theorem is not (yet) available. It would be very interesting

to be able to give sufficient conditions on a multiplier m : Rd \ {0} → L(X ,Y ) such that

m ∈Mγ(Lp,∞(Rd )) for some p ∈ [2,∞).
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4.6. EXTRAPOLATION FOR STOCHASTIC-DETERMINISTIC INTEGRAL OPER-
ATORS

In this final section we will study singular stochastic integral operators in the important

special case X = Y = Lq (O) for q ∈ (1,∞) and a space of homogeneous type (O,d ,µ).

In this setting a stochastic singular integral operator SK with kernel K : (0,T )× (0,T ) →
L(Lq (O)) can often be represented by a kernel k : (0,T )×O× (0,T )×O→C in the form

SK G(t )(x) = SkG(t , x) =
∫ T

0

∫
O

k(t , x, s, y)G(s, y) dy dWH (s), (t , x) ∈R+×O

for adapted processes G : Ω× (0,T )×O → C. To study the boundedness of these op-

erators, as in Proposition 4.2.5, we can reduce to the case H = R. Furthermore, as in

Proposition 4.2.3, we may equivalently study the boundedness of γ-integral operators,

or in this setting rather L2-integral operators, of the form

Tk f (t , x) :=
(
s 7→

∫
O

k(t , x, s, y) f (s, y) dµ(y)
)
, (t , x) ∈ (0,T )×O.

from Lp ((0,T )×O) to Lp ((0,T )×O;L2(O)). The main result of this section will be the

weighted Lp ((0,T ), v ;Lq (O, w))- and Lq (O, w ;Lp ((0,T, v)))-boundedness of Tk , assum-

ing unweighted L2((0,T )×O)-boundedness and a (2,1)-Dini condition on k. From this

result we will deduce Theorem 4.1.3 in the introduction.

In the remainder of this section we will fix a 2-product space of homogeneous type

(S,d ,µ) = (S1,d1,µ1)× (S2,d2,µ2)

in the sense of (4.3.1). For the applications we have in mind it suffices to take S1 = (0,T )

with metric |·−·|1/m for some m ∈N and (S2,d2,µ2) = (O,d ,µ) as e.g. a Lipschitz domain

in Rd . Our main result is a follows:

Theorem 4.6.1. Let K : S ×S →C be a (2,1)-Dini kernel. Suppose that

TK f (s) :=
(
t1 7→

∫
S2

K (s, t ) f (t ) dµ2(t2)
)
, s ∈ S.

is a well-defined, bounded operator from L2(S) to L2,∞(S;L2(S1)). Then for p ∈ (2,∞),

q ∈ (1,∞) and CT := ‖TK ‖L2(S)→L2,∞(S;L2(S1)) +‖K ‖(2,1)-Dini the following hold:

(i) For w ∈ Ap/2(S) we have

‖TK ‖Lp (S,w)→Lp (S,w ;L2(S1)) <∼S,p CT [w]
max{ 1

p−2 ,1}

Ap/2(S) .

(ii) For v ∈ Ap/2(S1) and w ∈ Aq (S2) we have

‖TK ‖Lp (S1,v ;Lq (S2,w))→Lp (S1,v ;Lq (S2,w ;L2(S1))) ≤CT φ([v]Ap/2(S1), [w]Aq (S2)), q > 2,

‖TK ‖Lq (S2,w ;Lp (S1,v))→Lq (S2,w ;Lp (S1,v ;L2(S1))) ≤CT φ([v]Ap/2(S1), [w]Aq (S2)),

where φ : R2+ →R+ depends on S, p, q and is nondecreasing in both variables.
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We start by proving Theorem 4.6.1(i), which is a consequence of the abstract domi-

nation principle in Corollary 3.1.2.

Proof of Theorem 4.6.1(i). In order to apply Corollary 3.1.2 with p1 = p2 = 2 and r = 1

it suffices to show that the sharp grand maximal truncation operator M#
TK ,α : L2(S) →

L2,∞(S) is bounded for sufficiently large α > 0. Fix a boundedly supported f ∈ L2(S),

take s ∈ S andα≥ 3c2
d cK with cd the quasi-metric constant and cK the constant from the

definition of a (2,1)-standard kernel. Take a ball B = B(z,r ) containing s. For s′, s′′ ∈ B

and t ∈ S \αB we have

d (s′, t ) ≥ 1

cd
d (z, t )−d (z, s′) ≥ αr

cd
− r ≥ 2cd cK r := ρ,

d (s′, s′′) ≤ 2cd r = ρ

cK
.

So defining

B j = B(s′,2 j+1ρ) \ B(s′,2 jρ),

we have by the (2,1)-Dini kernel assumption on K , a similar computation as in (3.4.1)

and Hölder’s inequality∥∥TK ( f 1S\αB )(s′)−TK ( f 1S\αB )(s′′)
∥∥

L2(S1)

≤
(∫

S1

(∫
S2

∣∣K (s′, t )−K (s′′, t ) f (t )
∣∣1S\αB (t ) dµ2(t2)

)2
dµ1(t1)

)1/2

≤
∞∑

j=0

(∫
S1

(∫
S2

ω
(d(s′, s′′)

d(s′, t )

) | f (t )|1B j (t )

V(2,1)(s′, t )
dµ2(t2)

)2
dµ1(t1)

)1/2

≤
∞∑

j=0
ω(2− j−1)

(∫
S1

(∫
S2

| f (t )|1B(s′,2 j+1ρ)(t )

µ1
(
B(s′1,2 jρ)

)1/2
µ2

(
B(s′2,2 jρ)

) dµ2(t2)
)2

dµ1(t1)
)1/2

<∼S ‖K ‖(2,1)-Dini

(∫
B(s′,2 j+1ρ)

1

µ
(
B(s′,2 jρ)

) | f (t )|2 dµ(t )
)1/2

<∼S ‖K ‖(2,1)-Dini M2 f (s)

So taking the supremum over all s′, s′′ ∈ B and all balls B containing s we find that

M#
T,α f (s) <∼S ‖K ‖(2,1)-Dini M2

(‖ f ‖X
)
(s).

Thus, by the weak L2(S)-boundedness of M2 (see Proposition 2.2.1) and the density of

boundedly supported functions in L2(S), we deduce that M#
T,α is weak L2-bounded,

which proves (i) of Theorem 4.6.1

If we would now employ Rubio de Francia extrapolation to deduce (ii) of Theorem

4.6.1, we would be constrained to the case q > 2 and w ∈ Aq/2(S2). In order to obtain the

full statement of Theorem 4.6.1, we will employ Calderón–Zygmund theory once more,

this time only in the S1-variable. For this we will need the following lemma.
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Lemma 4.6.2. Let K : S ×S →C be a (2,1)-Dini kernel. Suppose that

TK f (t ) :=
(
s1 7→

∫
S2

K (s, t ) f (t ) dµ2(t2)
)
, s ∈ S.

is a well-defined bounded operator from L2(S) to L2,∞(S;L2(S1)). Then for p ∈ (2,∞) and

w ∈ Ap/2(S1) the kernel

K2 : S2 ×S2 \ {(s2, s2) : s2 ∈ S2} →L
(
Lp (S1, w),Lp (S1, w ;L2(S1))

)
given by

K2(s2, t2) f (s1) := K ((s1, s2), (·, t2)) f (·), s1 ∈ S1.

is a 1-Dini kernel with

‖K2‖1-Dini <∼S1,p [w]
1

p−2

Ap/2(S1)‖K ‖(2,1)-Dini.

Proof. We will first show the 1-Dini condition for K2, which we will afterwards use to

check that we have

K2(s2, t2) ∈L(
Lp (S1, w),Lp (S1, w ;L2(S1))

)
, s2 6= t2. (4.6.1)

Fix s2, t2, t ′2 ∈ S2 such that 0 < d2(t2, t ′2) ≤ 1
cK

d(s2, t2), set r := d2(s2, t2) and define for

f ∈ Lp (S1, w)

g (s1, t1) := K ((s1, s2), (t1, t2)) f (t1)−K ((s1, s2), (t1, t ′2)) f (t1), s1, t1 ∈ S1.

Then we have for any s1 ∈ S1, using the (2,1)-Dini kernel assumption on K , the submul-

tiplicativity of ω and a similar computation as in (3.4.1),

‖g (s1, ·)‖2
L2(S1)

≤
∫

d1(s1,t1)≤r
ω

(d2(t2, t ′2)

r

)2 | f (t1)|2
µ1(B(s1,r )) ·µ2(B(s2,r ))2 dµ1(t1)

+
∞∑

j=0

∫
2 j r<d1(s1,t1)≤2 j+1r

ω
(d2(t2, t ′2)

2 j r

)2 | f (t1)|2
µ1(B(s1,2 j r )) ·µ2(B(s2,2 j r ))2

dµ1(t1)

<∼S1

(
ω(1)2 +

∞∑
j=0

ω(2− j )2
)
·ω

(d2(t2, t ′2)

r

)2 · M2 f (s1)2

µ1(B(s2,r ))2

<∼ ‖K ‖(2,1)-Dini ·ω
( d2(t2, t ′2)

d2(s2, t2)

)2 1

V (s2, t2)2 ·M2 f (s1)2

Thus, taking Lp (S1, w)-norms for p ∈ (2,∞) and using Proposition 2.3.2(v) we obtain

(4.3.5). The proof of (4.3.6) is similar and an inspection of the involved constants yields

‖K2‖1-Dini <∼S1,p [w]
1

p−2

Ap/2(S1)‖K ‖(2,1)-Dini.
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We conclude the proof by checking (4.6.1). Take s2 6= t2 ∈ S, f ∈ Lp (S1, w), and r > 0.

By Theorem 4.6.1(i) we have for

g (u) := f (u1) ·1B(t2,r )(u2), u ∈ S

that ∥∥TK g ·1B(s2,r )
∥∥

Lp (S,w ;L2(S1))
<∼S,TK ,p,w ‖g‖Lp (S,w)

=µ2
(
B(t2,r )

)1/p‖ f ‖Lp (S1,w).

Therefore, if r is such that r < 1
cK

d2(s′2, t2) for all s′2 ∈ B(s2,r ), we have

‖K2(s2, t2) f ‖Lp (S1,w ;L2(S1))

≤
∥∥∥∫

B(s2,r )

∫
B(t2,r )

K2(s′2, t ′2) f dµ2(t ′2) dµ2(s′2)
∥∥∥

Lp (S1,w ;L2(S1))

+
∥∥∥∫

B(s2,r )

(
K2(s2, t2)−K2(s′2, t2)

)
f dµ2(s′2)

∥∥∥
Lp (S1,w ;L2(S1))

+
∥∥∥∫

B(s2,r )

∫
B(t2,r )

(
K2(s′2, t2)−K2(s′2, t ′2)

)
f dµ2(t ′2) dµ2(s′2)

∥∥∥
Lp (S1,w ;L2(S1))

≤
∥∥TK g ·1B(s2,r )

∥∥
Lp (S,w ;L2(S1))

µ2(B(s2,r ))1/p ·µ2(B(t2,r ))

+‖K2‖1-Dini · ‖ f ‖Lp (S1,w) ·ω
( r

d2(s2, t2)

) 1

V (s2, t2)

+‖K2‖1-Dini · ‖ f ‖Lp (S1,w) ·
∫

B(s2,r )
ω

( r

d2(s′2, t2)

) 1

V (s′2, t2)
dµ2(s′2)

<∼S,TK ,p,w,r,s2,t2 ‖ f ‖Lp (S1,w).

It follows that K2(s2, t2) is indeed a bounded operator from Lp (S1, w) to Lp (S1, w ;L2(S1)).

Now using the A2-theorem proven in Section 3.4 and Rubio de Francia extrapolation,

we can prove the second part of Theorem 4.6.1.

Proof of Theorem 4.6.1(ii). We will first prove the second inequality. Take v ∈ Ap/2(S1)

and f ∈ Lp (S, v) with bounded support and set

Y0 := Lp (S1, v),

Y1 := Lp (S1, v ;L2(S1)).

We view f as a function in Lp (S2;Y0) and note that TK is bounded from Lp (S2;Y0) to

Lp (S2;Y1) by part (i) and the fact that v ·1S2 ∈ Ap/2(S). For s2 ∈ S2 we have

TK f (s2) =
(
(s1, t1) 7→

∫
S2

K ((s1, s2), (t1, t2)) f (t2) dt2

)
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=:
∫

S2

K2(s2, t2) f (t2) dt2.

By Lemma 4.6.2 we know that

K2 : S2 ×S2 \ {(s2, s2) : s2 ∈ S2} →L(Y0,Y1)

is a 1-Dini kernel with ‖K2‖1-Dini <∼S1,p [v]
1

p−2

Ap/2(S1)‖K ‖(2,1)-std. Thus by Theorem 3.4.1 we

deduce for w ∈ Aq (S2)

‖TK ‖Lq (S2,w ;Y0)→Lq (S2,w ;Y1) <∼S,p,q CT [v]
max{ 1

p−2 ,1}

Ap/2(S1) [w]
max{ 1

q−1 ,1}

Aq (S2) , (4.6.2)

which proves the second inequality of (ii).

For the first inequality of (ii) we note that by (4.6.2) and Fubini’s theorem we have for

q > 2, v ∈ Aq/2(S1) and w ∈ Aq (S2) that

‖TK ‖Lq (S1,v ;Z0)→Lq (S1,v ;Z1) ≤CT [v]
max{ 1

q−2 ,1}

Aq/2(S1) [w]
max{ 1

q−1 ,1}

Aq (S2) .

with Z0 = Lq (S2, w) and Z1 = Lq (S2, w ;L2(S1)). Therefore the claim follows from the

Rubio de Francia extrapolation in Theorem 2.3.3.

Remark 4.6.3.

• Note that, even if we are only interested in estimates with the time variable S1 on

the outside, in the proof of Theorem 4.6.1(ii) we need to first put the time variable

S1 on the inside to deduce the optimal result with S1 on the outside. This is due

to the fact that we would otherwise only be able to obtain weighted estimates for

w ∈ Aq/2(S2).

• We need to start with a weak L2-estimate in Theorem 4.6.1, whereas results like

Theorem 4.4.11 require a weak Lp -estimate for some p ∈ [2,∞). The reason for

this dichotomy is that we do not see a way to extrapolate weak Lp - to weak L2-

boundedness for the operators in Theorem 4.6.1. Fortunately, in applications the

L2-estimate is the easiest to establish.

Remark 4.6.4. The weight dependence in 4.6.1(i) is sharp, which for 2 < p < 3 follows

from Proposition 4.4.14 by taking S2 =∅ and for p ≥ 3 by taking S1 =∅ and the sharp-

ness of the A2-theorem. However, the weight dependence one obtains in the proof of

the first inequality in Theorem 4.6.1(ii) is not sharp, due to the use of Rubio de Francia

extrapolation. One could also do the extrapolation with Calderón-Zygmund theory, i.e.

using similar arguments as in Lemma 4.6.2 and the first part of the proof of Theorem

4.6.1(ii). This would yield the first inequality in Theorem 4.6.1(ii) with

φ(s, t ) =CS,p,q · smax{ 1
p−2 , 1

2 } · t max{ 1
q−1 ,1}, s, t ∈R+,

which is sharp in terms of the weight dependence. The weight dependence one obtains

in the proof of the second inequality in Theorem 4.6.1(ii) (see (4.6.2)) is sharp for 2 < p ≤
3, but it is not sharp for p > 3 as can be seen from Theorem 4.4.11 by taking S2 =∅.
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Theorem 4.1.3 for mixed stochastic-deterministic integral operators now follows from

Theorem 4.6.1 using a similar argument as in Propositions 4.2.3 and 4.2.5.

Proof of Theorem 4.1.3. We will only prove Theorem 4.1.3(i) using Theorem 4.6.1(i), the

deduction of Theorem 4.1.3(ii) and (iii) from Theorem 4.6.1(ii) is similar. For f ∈ L2(OT )

define

TK f (t , x) :=
(
s 7→

∫
O

K
(
(t , x), (s, y)

)
f (s, y) dµ(y)

)
, (t , x).

Then by applying the Itô isomorphism (Theorem 2.9.1) twice and the L2-boundedness

of SK in between, we have for any h ∈ H with ‖h‖H = 1

‖TK f ‖L2(OT ;L2(0,T )) ' ‖SK ( f ⊗h)‖L2(Ω×OT )

≤ ‖SK ‖L2
F

(Ω×OT ;H)→L2(Ω×OT )‖ f ⊗h‖L2(Ω×OT ;H) = ‖ f ‖L2(OT ).

Thus, TK is a bounded operator from L2(OT ) to L2(OT ;L2(0,T )), which implies by The-

orem 4.6.1(i) that

TK : Lp (OT , w) → Lp (OT , w ;L2(0,T ))

is bounded for p ∈ (2,∞) and w ∈ Ap/2(OT ) with norm A0 as in Theorem 4.6.1(i). Now

take g ∈ Lr
F

(Ω;Lp (OT , w ;γ(H , X ))), then by applying the Itô isomorphism (Theorem

2.9.1), the γ-Fubini theorems (Proposition 2.8.6 and [HNVW17, Proposition 9.4.9]) and

Lemma 2.8.4, we obtain

‖SK g‖Lr (Ω;Lp (OT ,w)) 'p,r

∥∥∥(
s 7→

∫
O

K
(·, (s, y)

)
g (s, y) dµ(y)

)∥∥∥
Lr (Ω;γ((0,T );H ,Lp (OT ,w)))

<∼p,r

∥∥∥(
s 7→

∫
O

K
(·, (s, y)

)
g (s, y) dµ(y)

)∥∥∥
γ(H ,Lr (Ω;Lp (OT ,w ;L2(0,T ))))

≤ A0 ‖g‖γ(H ,Lr (Ω;Lp (OT ,w)))

'p,r A0 ‖g‖Lr (Ω;Lp (OT ,w ;H)),

proving the theorem.

Remark 4.6.5. We could also allow the kernel in Theorem 4.1.3 to be operator-valued,

i.e. K : OT ×OT → L(X ,Y ) for Banach spaces X and Y , which would e.g. allow one to

study a system of SPDEs with constants independent of the size of the system by using

X = Y =Cn .



5
STOCHASTIC MAXIMAL REGULARITY

This chapter is based on the second half of the paper

[6] E. Lorist and M.C. Veraar. Singular stochastic integral operators. To appear in

Anal. PDE, 2020.

It has been edited to make full use of the stochastic-deterministic extrapolation theory

developed in Section 4.6.

Abstract. In this chapter we apply the results of Chapter 4 to obtain p-independence and

weighted bounds for stochastic maximal Lp -regularity both in the complex and real inter-

polation scale. As a consequence, we obtain several new regularity results for the stochas-

tic heat equation and its time-dependent variants on Rd and on smooth and angular

domains. We also treat applications to Volterra equations and show the p-independence

of the R-boundedness of stochastic convolution operators

123
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5.1. INTRODUCTION

In this chapter we will apply the Calderón–Zygmund theory for stochastic singular in-

tegral operators we developed in Chapter 4 in the study of stochastic partial differential

equations (SPDEs). In particular we will study maximal regularity estimates for stochas-

tic evolution equations. Many SPDEs can be analysed as stochastic evolution equations

by using functional analytic tools. We refer to the monograph [DZ14] and the papers

[Brz97, NVW08].

Let T ∈ (0,∞] and consider the following linear stochastic evolution equation on a

Banach space X : {
du + Au dt =G dWH on (0,T ),

u(0) = 0.
(5.1.1)

Here (A(t ))t∈(0,T ) is a family of closed operators on X , H is a Hilbert space, WH is H-

cylindrical Brownian motion and G : (0,T )×Ω→ γ(H , X ) is adapted to the filtration F

associated to WH . In this chapter we will focus on these linear equations. Nonlinear

stochastic evolution equations can be studied by using suitable estimates for the linear

case (see [Brz97, DZ14]). In particular, stochastic maximal regularity estimates have

been applied to nonlinear SPDEs in [Agr18, AV20a, AV20b, Brz95, Hor19, KK18, Kry99,

NVW12a, PV19].

The mild solution to (5.1.1) is given by

u(t ) =
∫ t

0
S(t , s)G(s)dWH (s), t ∈ (0,T ),

where we have assumed that −A generates the strongly continuous evolution family

(S(t , s))0≤s≤t . In the case A does not depend on time, one has that S(t , s) = e−(t−s)A is

a strongly continuous semigroup. For details and unexplained terminology on semi-

groups and evolution families we refer to [EN00, Lun95, Paz83, Tan79, Yag10].

Definition 5.1.1 (Stochastic maximal regularity). Let X and Y be UMD Banach spaces

with type 2, H a Hilbert space, p ∈ [2,∞) and let w be a weight on (0,T ). We say that A

has stochastic maximal Lp ((0,T ), w ;Y )-regularity and write A ∈ SMR(Lp ((0,T ), w ;Y )) if

for all G ∈ Lp
F

(Ω× (0,T ), w ;γ(H , X )) the mild solution u to (5.1.1) satisfies

‖u‖Lp (Ω×(0,T ),w ;Y ) <∼ ‖G‖Lp (Ω×(0,T ),w ;γ(H ,X )). (5.1.2)

We omit the weight if w ≡ 1.

Abstract properties of stochastic maximal regularity have been studied in [AV20c]

and extensions to the case of time-dependent A have been obtained in [PV19]. An im-

portant choice for Y is the homogenous fractional domain space Ḋ(A1/2) with norm

‖x‖Ḋ(A1/2) = ‖A1/2x‖X .
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In [NVW12b] it has been shown that under certain geometric restrictions on X (see

also Section 5.5), the boundedness of the H∞-calculus of angle < π/2 of A (see [Haa06,

HNVW17]) implies

A ∈ SMR(Lp (R+;Ḋ(A
1
2 ))).

Stochastic maximal regularity can be reformulated using the stochastic integral op-

erators of Definition 4.2.1. Indeed, written out explicitly, the estimate (5.1.2) becomes

∥∥∥t 7→
∫ t

0
S(t , s)G(s)dWH (s)

∥∥∥
Lp (Ω×(0,T ),w ;Y )

<∼ ‖G‖Lp (Ω×(0,T ),w ;γ(H ,X )),

so A ∈ SMR(Lp (w ;Y )) if and only if K ∈KH
W (Lp ((0,T ), w)) for

K (t , s) := S(t , s)10≤s<t ∈L(X ,Y ),

where we implicitly assume that S(t , s) maps X into Y . From Theorem 4.1.1 we find that

in many instances stochastic maximal Lp -regularity for some p ∈ [2,∞) implies stochas-

tic maximal Lq -regularity for all q ∈ (2,∞). In the time-independent setting we obtain

the following result:

Theorem 5.1.2. Assume −A is the generator of a bounded C0-semigroup on a UMD Ba-

nach space X with type 2. Suppose A ∈ SMR(Lp (R+,Ḋ(A1/2))) for some p ∈ [2,∞). Then

for all q ∈ (2,∞) and w ∈ Aq/2(R+) one has A ∈ SMR(Lq (R+, w ;Ḋ(A1/2))). In particular,

the mild solution u to (5.1.1) satisfies

‖A1/2u‖Lq (Ω×R+,w ;X ) <∼ [w]
max{ 1

2 , 1
q−2 }

Aq/2(R+) ‖G‖Lq (Ω×R+,w ;γ(H ,X )).

A more general result is contained in Theorem 5.2.1 below. For this we should note

that the above Lp -boundedness assumption implies sectoriality of A of angle <π/2 (see

[AV20c, Theorem 4.1]). Theorem 5.1.2 with w ≡ 1 can be seen as the stochastic analogue

of a similar statement for deterministic maximal regularity in [Dor00, Theorem 7.1]. The

weighted estimates are a stochastic version of [CF14, Corollary 4] and [CK18, Theorem

5.1].

For many differential operators A one can directly apply the results in [NVW12b,

NVW15c] to obtain stochastic maximal Lp -regularity. However, there are numerous sit-

uations where this is not the case, for example if:

(i) A does not have a bounded H∞-calculus.

(ii) There is no explicit characterization of Ḋ(A1/2) known.

(iii) A(t ) and its domain D(A(t )) are time-dependent.

(iv) X does not satisfy the R-boundedness condition of [NVW12b, NVW15c].
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In Corollary 5.2.3 and Remark 5.2.4 we give a situation where (i) occurs, i.e. we give an

example of an operator A without a bounded H∞-calculus which has stochastic maxi-

mal Lp -regularity. In Example 5.2.15 both (i) and (ii) are open problems. In Section 5.3

we present applications to certain non-autonomous problems where (iii) occurs and in

Theorem 5.2.5 we have avoided the geometric restriction mentioned in (iv).

The use of temporal Aq/2-weights in stochastic maximal Lp -regularity is new. In

most of the results in [NVW12b, NVW15c] such weights can also be added without caus-

ing major difficulties, but it is very natural to deduce this from extrapolation theory.

Moreover with our method we actually obtain sharp dependence on the Aq/2-charac-

teristic. Power weights of the form tα have already been considered before in both the

deterministic (see [KPW10, PSW18]) and stochastic (see [AV20a, AV20b, AV20c, PV19])

evolution equations and can be used to allow for rough initial data. General Ap -weights

in deterministic parabolic PDEs have used in [DK18, DK19b, GV17a, GV17b] to derive

mixed Lp (Lq )-regularity estimates by Rubio de Francia extrapolation (see [GR85, CMP11]).

5.1.1. SPACE-TIME EXTRAPOLATION USING GREEN FUNCTION ESTIMATES

In the important special case that X = Lq (O) for a domain O ⊆ Rd , we can also employ

the Calderón–Zygmund theory for stochastic-deterministic integral operators in Theo-

rem 4.1.3, see Examples 5.2.8 and 5.3.5. The assumed kernel estimates in Theorem 4.1.3

then correspond to so-called Green’s function estimates or heat kernel estimates for the

studied (parabolic) SPDE. Such estimates are available in quite general settings, see e.g.

[EI70, KN14]. The advantage of this approach is that one reduces the study of stochas-

tic maximal Lp -regularity problem on Lq (O) to the study of stochastic maximal L2-

regularity problem on L2(O), for which one can employ Hilbert space techniques. More-

over, one obtains space-time weights in the conclusion. Power weights in space can e.g.

be used to allow for rough boundary conditions (see e.g. [HL19, Lin20, Lin18, LV20]),

treat singularities due to corners in the domain (see e.g. [Cio20, CKL19, CKLL18, KN14,

Naz01, Sol01, PS04]), and handle the incompatibility of the boundary conditions and

the noise term WH (see e.g. [Kim04, KK04, KL99a, KL99b, Kry94a]). One can also use the

obtained space-time weighted estimates to derive mixed Lp (Lq )- and Lq (Lp )-regularity

estimates by Rubio de Francia’s weighted extrapolation theorem [GR85, CMP11], which

is already included in the conclusion of Theorem 4.1.3. The reversed integration order

in stochastic maximal Lq (Lp )-regularity estimates allows one to deduce additional reg-

ularity results for the mild solution of (5.1.1), see also [Ant17, NVW15a]. Moreover one

can obtain estimates for the moments of the mild solution of (5.1.1) as in [Kim20], see

also Remark 4.1.4.

5.2. AUTONOMOUS CASE

We first turn to the time-independent case, in which we assume A to be the generator

of a strongly continuous semigroup (e−t A)t∈R+ . In fact, the maximal regularity estimates
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that we will assume imply that A is a sectorial operator of angle < π/2, so without loss

of generality we may include this in our assumptions. Let us recall the definition of a

sectorial operator, for their properties we refer to [KW04, Haa06, HNVW17, Yag10].

Let X be a Banach space and define for 0 <σ<π

Σσ = {z ∈C\ {0} : |arg(z)| <σ}.

A closed operator A with domain D(A) on X will be called sectorial if there is a σ ∈ (0,π)

such that C\Σσ ⊆ ρ(A) and there is a constant C > 0 such that

‖λ(λ− A)−1‖ ≤C , λ ∈C\Σσ.

The infimum over all suchσ is called the angle of sectoriality of A and is denoted byω(A).

A sectorial operator with ω(A) < π/2 generates an analytic semigroup (e−z A)z∈Σπ/2−σ for

ω(A) <σ<π/2.

Theorem 5.2.1 (Extrapolation in the semigroups case). Suppose X is a UMD Banach

space with type 2. Let A be a sectorial operator on X with ω(A) <π/2. Take r ∈ [2,∞) and

assume that Y is one of the following spaces

D(A1/2), Ḋ(A1/2), [X ,D(A)] 1
2

, or (X ,D(A)) 1
2 ,r , (5.2.1)

Suppose A ∈ SMR(Lp (R+;Y )) for some p ∈ [2,∞). Then for all q ∈ (2,∞) and w ∈ Aq/2(R+)

one has A ∈ SMR(Lq (R+, w ;Y )). In particular, the mild solution u to (5.1.1) satisfies

‖u‖Lq (Ω×R+,w ;Y ) <∼ [w]
max{ 1

2 , 1
q−2 }

Aq/2(R+ ‖G‖Lq (Ω×R+,w ;γ(H ,X )),

where the implicit constant only depends on X , A, p, q.

Proof. The space Y has type 2 with τ2,Y ≤ τ2,X , which is trivial for D(A1/2) and Ḋ(A1/2),

follows from [HNVW17, Proposition 7.1.3] for [X ,D(A)] 1
2

and follows from [Cob83, Corol-

lary 1] for (X ,D(A)) 1
2 ,r . In all cases except for Ḋ(A1/2) it follows from the proof of [AV20c,

Proposition 4.8] that A is invertible. We claim that in all cases

‖x‖Y ≤C ‖x‖
1
2
X ‖Ax‖

1
2
X , x ∈ D(A).

Indeed, this standard interpolation estimate follows from [Lun95, Corollary 1.2.7 and

Proposition 2.2.15], [Tri78, Theorem 1.10.3] and [Haa06, Proposition 6.6.4]. Since

t‖Ae−t A‖L(X ) ≤ M , t ≥ 0

for some M > 0 (see [EN00, Theorem II.4.6]), the above interpolation estimate implies

that

‖Ae−t A‖L(X ,Y ) ≤C M 3/2t−3/2, t ≥ 0.

Define K : R+ ×R+ → L(X ,Y ) by K (t , s) = e−(t−s)A 1t≥s . Then by assumption we have

K ∈KH
W (Lp (R+)). Applying Propositions 4.2.3 and 4.2.5 we obtain that K ∈Kγ(Lp (R+)).
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Next we will check the conditions of Theorem 4.4.11 for the space of homogeneous type

R+. By the analyticity of the semigroup and the above estimate, we find that for t 6= s ∈R+

‖∂t K (t , s)‖L(X ,Y ) = ‖∂s K (t , s)‖L(X ,Y ) = ‖Ae−(t−s)A‖L(X ,Y ) ≤C M 3/2 |t − s|−3/2.

Therefore, by Lemma 4.3.3 and Remark 4.3.4, we know that K is a 2-standard kernel, so

Theorem 4.4.11 gives that K ∈ Kγ(Lq (R+, w)). Propositions 4.2.3 and 4.2.5 then imply

that K ∈KH
W (Lq (R+, w)) with the claimed estimate.

Remark 5.2.2.

(i) Combining Theorem 5.2.1 with [AV20c, Section 5], similar results as in Theorem

5.2.1 hold on finite time intervals (0,T ). Alternatively, this can be deduced by ap-

plying Theorem 4.4.11 on (0,T ).

(ii) In general the result of Theorem 5.2.1 does not hold in the endpoint q = 2. A

counterexample can be found in [NVW12b, Section 6].

(iii) Arguing as in the proof of Theorem 5.2.1 but with

K (t , s) = (t − s)−θA
1
2 −θe−(t−s)A 1t≥s ,

and Y = X it follows that for any θ ∈ (0, 1
2 ) the property A ∈ SMRθ(p,∞) introduced

in [AV20c] is p-independent.

(iv) From the proof it is clear that Theorem 5.2.1 holds for any Banach space Y with

type 2 such that e−t A : X → Y with

‖e−t A‖L(X ,Y ) ≤C t−
1
2 , t > 0.

We have the following corollary in the case that X is a Hilbert space.

Corollary 5.2.3. Let X be a Hilbert space and let Y be any of the spaces in (5.2.1) with

r = 2. Suppose that A is a sectorial operator on X withω(A) <π/2. Then the following are

equivalent:

(i) There exists a constant C > 0 such that

‖t 7→ e−t A x‖L2(R+;Y ) ≤C ‖x‖X , x ∈ X .

(ii) For all p ∈ (2,∞) and w ∈ Ap/2(R+) (and p = 2, w ≡ 1) we have A ∈ SMR(Lp (R+, w ;Y )).

(iii) A ∈ SMR(Lp (R+,Y )) for some p ∈ [2,∞).

Proof. Note that Y is a Hilbert space. For (i)⇒(ii) define K (t , s) ∈L(X ,Y ) by

K (t , s) = e−(t−s)A 1t≥s .
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From Proposition 4.2.10(i) we obtain K ∈ Kγ(L2(R+)). Therefore K ∈ KH
W (L2(R+)) by

Propositions 4.2.3 and 4.2.5, so the result follows from Theorem 5.2.1. (ii)⇒(iii) is triv-

ial and (iii)⇒(i) follows from Proposition 4.2.8 combined with Propositions 4.2.3 and

4.2.5.

Remark 5.2.4.

(i) Corollary 5.2.3(i) is equivalent to the admissability of A1/2 and is connected to the

Weiss conjecture, which was solved negatively (See [JZ04], [LM03, Theorem 5.5]

and references therein).

(ii) It is well-known that there exist operators A on a Hilbert space X such that −A

generates an analytic semigroup which is exponentially stable and

‖t 7→ A
1
2 e−t A x‖L2(R+;X ) ≤C‖x‖X ,

but

c‖x‖X � ‖t 7→ A
1
2 e−t A x‖L2(R+;X ).

Such A can be constructed as in [LM03, Theorem 5.5] (see [AV20c, Section 5.2] for

details), and does not have a bounded H∞-calculus. On the other hand, Corollary

5.2.3 implies A ∈ SMR(Lp (R+, w ;D(A1/2))) for all p ∈ [2,∞) and w ∈ Ap/2 (with

w = 1 if p = 2), which shows that having a bounded H∞-calculus is not necessary

for stochastic maximal regularity.

For θ > 0 and p ∈ [1,∞] we define the real interpolation spaces D A(θ, p) by

D A(θ, p) = (X ,D(An))θ/n,p ,

where n ∈N is the least integer larger than θ. From Theorem 5.2.1 we obtain the follow-

ing result for stochastic maximal regularity with Y = D A(θ, p).

Theorem 5.2.5 (Real interpolation scale). Let E be a UMD Banach space with type 2.

Let A be a sectorial operator on E with ω(A) < π/2 and assume 0 ∈ ρ(A). Let θ ∈ (0,1)

and q ∈ [2,∞). Define X = D A(θ, q) and Y = D A(θ+ 1
2 , q). Then for all p ∈ (2,∞) and

w ∈ Ap/2(R+), one has A ∈ SMR(Lp (R+, w,Y )) (the case p = q = 2 and w = 1 is allowed as

well). In particular, the solution u to (5.1.1) satisfies

‖A
1
2 u‖Lp (Ω×R+,w ;D A (θ,q)) <∼ [w]

max{ 1
2 , 1

p−2 }

Ap/2(R+) ‖G‖Lp (Ω×R+,w ;γ(H ,D A (θ,q))), (5.2.2)

where the implicit constant only depends on E , A,θ, p, q.

First proof. Note that X is a UMD Banach space with type 2 by [HNVW16, Proposition

4.2.17] and −A is the generator of an exponentially stable analytic semigroup on X with

domain D A(θ+1, q) by [Lun95, Proposition 2.2.7]. Moreover, we have

Y = (X ,D A(θ+1, q)) 1
2 ,q .



130 5. STOCHASTIC MAXIMAL REGULARITY

It follows from [DL98] (see also [BH09, Theorem 5.1]) and [AV20c, Theorem 5.2] that

A ∈ SMR(Lq (R+;Y )). Therefore, the required result follows from Theorem 5.2.1. The

claimed norm estimate follows since A1/2 maps D A(θ+ 1
2 , q) isomorphically to D A(θ, q)

(see [Tri78, Theorem 1.15.2]).

Next we give a proof that only uses elementary properties of the real interpolation

spaces D A(θ, p).

Second proof. First consider the case p = q = 2. By Propositions 4.2.10(i), 4.2.3 and 4.2.5

and [Tri78, Theorem 1.15.2] it suffices to show

A :=
(∫ ∞

0
‖A

1
2 e−t A x‖2

D A (θ,2) dt
) 1

2 ≤C‖x‖D A (θ,2). (5.2.3)

Since D A(θ,2) = D A2 (θ/2,2) (see [Tri78, Theorem 1.15.2]), by [Tri78, Theorem 1.14.5] we

can write

A
2 '

∫ ∞

0
‖A

1
2 e−t A x‖2

D A2 (θ/2,2) dt

'
∫ ∞

0

∫ ∞

0
r 4(1− θ

2 )‖A
5
2 e−(r+t )A x‖2

E
dr

r
dt

<∼
∫ ∞

0

∫ ∞

0
(t + r )−3r 4(1− θ

2 )‖Ae−r A x‖2
E

dr

r
dt

= 2
∫ ∞

0
r 2(1−θ)‖Ae−r A x‖2

E
dr

r
' ‖x‖2

D A (θ,2)

which gives the required estimate (5.2.3).

From the previous case and Theorem 5.2.1 we obtain stochastic maximal Lp -regularity

for p ∈ [2,∞) in the case q = 2. Thus, using Propositions 4.2.3 and 4.2.5 to take H = R,

the mapping

SG(t ) :=
∫ t

0
A

1
2 e−(t−s)AG(s) dW (s), t ∈R+

is bounded from Lp (R+;D A(θ,2)) to Lp (R+×Ω;D A(θ,2)) for all θ ∈ (0,1) and p ∈ [2,∞).

By [Tri78, 1.10 and 1.18.4] one has

(Lq (R+;D A(θ−ε,2)),Lq (R+;D A(θ+ε,2))) 1
2 ,q = Lq (R+;D A(θ, q))

for ε ∈ (0,min{θ,1−θ}) and the same holds with R+ replaced by R+×Ω. It follows from

[Tri78, Theorem 1.3.3] that S is bounded from Lq (R+;D A(θ, q)) into Lq (R+×Ω;D A(θ, q)).

Applying Propositions 4.2.3 and 4.2.5 once more to recover a general cylindrical Brow-

nian motion WH , we obtain the stochastic maximal regularity for p = q ∈ [2,∞). Now

another application of Theorem 5.2.1 gives the result for all required p, q and weights

w ∈ Ap/2. The claimed norm estimate again follows since A1/2 maps D A(θ+ 1
2 , q) iso-

morphically to D A(θ, q) (see [Tri78, Theorem 1.15.2]).

Remark 5.2.6.
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(i) By carefully checking the proofs of Theorems 5.2.1 and 5.2.5 (and in particular

Proposition 4.2.3) one sees that Theorem 5.2.5 actually holds for all martingale

type 2 spaces E . As mentioned in Remark 5.2.2(i), Theorem 5.2.5 holds on finite

time intervals as well and in this case we only need that A+λ is a sectorial operator

with ω(A+λ) <π/2 for some λ ∈R.

(ii) Theorem 5.2.5 extends [BH09, Theorem 5.1] and [DL98] to the case where p 6= q

and to the weighted setting. Note that even for w = 1 one cannot obtain Theorem

5.2.5 from the case p = q and a real interpolation argument. Indeed, in general for

an interpolation couple (X0, X1) one has (see [Cwi74])

(Lp0 (Ω×R+; X0),Lp1 (Ω×R+; X1))θ,q 6= L[p0,p1]θ (Ω×R+; (X0, X1)θ,q ).

The equality does hold if q = [p0, p1]θ .

(iii) The assumption 0 ∈ ρ(A) in Theorem 5.2.5 is needed in general. Indeed, there

exists a bounded sectorial operator A on a Hilbert space E such that (5.2.3) does

not hold (see [HNVW16, Corollary 10.2.29 and Theorem 10.4.21]). Since in this

case D A(θ, p) = E for all θ ∈ (0,2) and p ∈ [1,∞], Propositions 4.2.3, 4.2.5 and 4.2.8

imply that (5.2.2) cannot hold.

We conclude with another result for real interpolation spaces. It extends [Brz95,

(4.10)] to the case p ∈ (2,∞) and to the setting of infinite time intervals.

Theorem 5.2.7. Let E be a UMD Banach space with type 2 and let A be a sectorial oper-

ator on E with ω(A) < π/2. Let X = D A( 1
2 ,2) and Y = Ḋ(A). Then for all p ∈ (2,∞) and

w ∈ Ap/2(R+), one has A ∈ SMR(Lp (R+, w,Y )) (the case p = 2 and w ≡ 1 is allowed as

well). In particular, the solution u to (5.1.1) satisfies

‖Au‖Lp (Ω×R+,w ;E) ≤C [w]
max{ 1

2 , 1
p−2 }

Ap/2(R+) ‖G‖Lp (Ω×R+,w ;γ(H ,D A ( 1
2 ,2))),

where C only depends on E , A, p.

Proof. Note that, as in the first proof of Theorem 5.2.5, A is a sectorial operator on X

with ω(A) < π/2. For p = 2, as in the second proof of Theorem 5.2.5, it suffices to prove

the following variant of (5.2.3)(∫ ∞

0
‖Ae−t A x‖2

E dt
) 1

2 ≤C‖x‖D A ( 1
2 ,2).

The latter estimate is immediate from the definition of D A( 1
2 ,2). It remains to apply

Theorem 5.2.1. For this (see Remark 5.2.2(iv)) it suffices to check ‖e−t A‖L(X ,Y ) ≤ C t−
1
2 ,

which follows from

sup
t>0

‖t
1
2 Ae−t A x‖E ≤ ‖x‖D A ( 1

2 ,∞)
<∼ ‖x‖D A ( 1

2 ,2),

where we used [Tri78, Theorems 1.3.3(d) and 1.14.5].
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5.2.1. THE STOCHASTIC HEAT EQUATION ON Rd

As a first concrete application, we will now use our abstract extrapolation results to the

stochastic heat equation on Rd . We will show that, using only extrapolation results for

stochastic singular integrals, one can deduce the stochastic maximal Lp (Lq )-regularity

results for −∆ in [Kry00] and [NVW12b]. Moreover we actually obtain results with space-

time weights. One can check that the proof of [NVW12b], based on the boundedness

H∞-calculus of −∆, also gives the result with weights in time, and moreover weights

in space could be added. Still we find it illustrative to show in the example below that

the L2(L2)-case can be combined with extrapolation arguments to deduce the weighted

Lp (Lq )-case for all p ∈ (2,∞) and q ∈ [2,∞).

We start with a result in Bessel potential spaces, for which we use the stochastic-

deterministic extrapolation developed in Section 4.6. For details on (weighted) Bessel

potential spaces we refer to [MV12, Tri78].

Example 5.2.8 (Stochastic heat equation in Bessel-potential spaces). Let m ∈ N, s ∈ R,

p ∈ (2,∞), q,r ∈ (1,∞), v ∈ Ap/2(R+) and w ∈ Aq (Rd ). On Rd consider{
du + (−∆)mu dt =G dWH , on R+,

u(0) = 0,
(5.2.4)

where G : Ω×R+ ×Rd → H is an adapted process. Then the mild solution u to (5.2.4)

satisfies∥∥(−∆)
m
2 u

∥∥
Lr (Ω;Lp (R+,v ;H s,q (Rd ,w))) ≤C‖G‖Lr (Ω;Lp (R+,v ;H s,q (Rd ,w ;H))), q > 2,∥∥(−∆)

m
2 u

∥∥
Lr (Ω;H s,q (Rd ,w ;Lp (R+,v))) ≤C‖G‖Lr (Ω;H s,q (Rd ,w ;Lp (R+,v ;H))),

where C is an increasing function of [v]Ap/2(R+) and [w]Aq (Rd ) and depends on p, q,r,m,d .

Proof. By lifting we may assume s = 0 (see [MV12, Proposition 3.9]). First suppose p =
q = 2 and v = w ≡ 1. It suffices to check Corollary 5.2.3(i). Note for any f ∈ L2(Rd ) by

Plancherel’s theorem∫
R+

∫
Rd

|(−∆)
m
2 e−t (−∆)m

f (x)|2 dx dt =
∫
R+

∫
Rd

(2π|ξ|)2me−2(2π|ξ|)2m t | f̂ (ξ)|2 dξ dt

=
∫
Rd

∫
R+

(2π|ξ|)2me−2(2π|ξ|)2m t | f̂ (ξ)|2 dt dξ

= 1

2

∫
Rd

| f̂ (ξ)|2 dξ= 1

2
‖ f ‖2

L2(Rd )
.

Therefore, by Corollary 5.2.3, we find∥∥(−∆)
m
2 u

∥∥
L2(Ω×R+×Rd ) ≤C‖G‖L2(Ω×R+×Rd ;H). (5.2.5)

Now fix |α| = m and define

SK G(t , x) := ∂αx u(t , x) =
∫
R+

∫
Rd

K
(
(t , x), (s, y)

)
G(s, y) dy dWH (s), (t , x) ∈R+×Rd
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with

K
(
(t , x), (s, y)

)
:=F−1(ξ 7→ (2π)mξαe−(2π|ξ|)2m (t−s))(x − y), (t , x), (s, y) ∈R+×Rd ,

From (5.2.5) it follows that SK is bounded from L2
F (Ω×R+×Rd ; H) to L2(Ω×R+×Rd ),

so by Theorem 4.1.3 it suffices to show that K is a (2,1)-standard kernel on the space of

homogeneous type R+×Rd with the anisotropic metric |·− ·|a as in Example 2.1.2 with

a = (2m,1, . . . ,1). Since K is of convolution type, by a change of variables and Lemma

4.3.3 (see also Remark 4.3.4) it suffices to show

|∂t k(t , x)| ≤ A0
1

|(t , x)|d+3m
a

(t , x) ∈ (R+×R) \ {0}. (5.2.6)

|∂βx k(t , x)| ≤ A0
1

|(t , x)|d+m+1
a

(t , x) ∈ (R+×R) \ {0}, |β| = 1, (5.2.7)

with

k(t , x) :=F−1(ξ 7→ (2π)mξαe−(2π|ξ|)2m t )(x), (t , x) ∈R+×Rd .

Fix (t , x) ∈ (R+×Rd ) \ {0}, let |γ| ≤ d +3m and set I := {
k ∈N : |γ|−3m

2m ≤ k ≤ |γ|}. Then we

have

|xγ∂t k(t , x)| ≤ (2π)3m−|γ|
∫
Rd

∣∣∂γ
ξ

(
ξα|ξ|2m ·e−(2π|ξ|)2m t )∣∣ dξ

<∼m,d

∑
k∈I

∫
Rd

|ξ|3m−(|γ|−k) · (|ξ|2m−1t )k ·e−(2π|ξ|)2m t dξ

'd

∑
k∈I

∫ ∞

0
r 3m+2mk−|γ|+d−1 · t k ·e−(2πr )2m t dr

'm t−
d+3m−|γ|

2m
∑
k∈I

∫ ∞

0
s3m+2mk−|γ|+d−1 ·e−(2π)2m s ds

<∼m t−
d+3m−|γ|

2m .

Thus combining the cases |γ| = 0 and |γ| = d +3m with the equivalence

|x|d+3m 'm,d

∑
|γ|=d+3m

|xγ|, x ∈Rd ,

we obtain (5.2.6). (5.2.7) follows from a similar computation, so K is a (2,1)-standard

kernel. Therefore the claimed estimates for (−∆)
m
2 u follow from Theorem 4.1.3 and the

norm equivalence∑
|α|=m

‖∂α f ‖Lp (Rd ,v ;X ) 'X ,p,m,d ‖(−∆)
m
2 f ‖Lp (Rd ,v ;X ), f ∈S ′(Rd ; X )

for any UMD Banach space X , which is a consequence of the Mihlin multiplier theorem

(see Section 3.5).
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Remark 5.2.9. As seen from the proof, the case p = q = r = 2 and v = w ≡ 1 is also

allowed in Example 5.2.8. From this one can also obtain the case p ∈ (2,∞), q = 2, r ∈
(1,∞), v ∈ Ap/2(R+) and w ≡ 1 using Theorem 5.2.1 and Remark 4.2.4. Moreover, using

Fubini’s theorem and Rubio de Francia extrapolation, we can also obtain results with

the integral over Ω on the inside, which will be done in [1] (see also Remark 4.1.4).

Next we prove a similar result on Besov spaces using the extrapolation result in The-

orem 5.2.5. For details on Besov spaces we refer to [Tri78].

Example 5.2.10 (Stochastic heat equation in Besov spaces). Let m ∈N, s ∈ R, p ∈ (2,∞),

q,r ∈ [2,∞), v ∈ Ap/2(R+) and w ∈ Aq (Rd ). On Rd consider{
du + (1−∆)mu dt =G dWH , on R+,

u(0) = 0,
(5.2.8)

where G ∈ Lp
F

(Ω×R+, v ;B s
q,r (Rd , w ; H)). Then the mild solution u to (5.2.8) satisfies

‖u‖Lp (Ω×R+,v ;B s+m
q,r (Rd ,w)) ≤C ‖G‖Lp (Ω×R+,v ;B s

q,r (Rd ,w ;H)),

where C is an increasing function of [v]Ap/2(R+) and [w]Aq (Rd ) and depends on p, q,r, s,m,d .

Proof. Again by lifting (see [MV12, Proposition 3.9]) we may assume s = 2mθ ∈ (0,2m).

Let E = Lq (Rd , w) and define

(A,D(A)) := (
(1−∆)m ,W 2m,q (Rd , w)

)
.

Then A is sectorial with ω(A) = 0 and 0 ∈ ρ(A) on E . Since D A(θ,r ) = B s
q,r (Rd , w) (see

[MV12, Proposition 6.1]), the result follows from Theorem 5.2.5 and another application

of [MV12, Proposition 3.9].

Remark 5.2.11.

(i) There is an inconsistency between the equations (5.2.4) and (5.2.8) (−∆ vs. 1−∆).

The reason to consider 1−∆ is that one has the restriction 0 ∈ ρ(A) in Theorem

5.2.5. With a different proof one can also consider Example 5.2.10 with 1−∆ re-

placed by −∆. For example one can obtain this by a real interpolation argument

in Example 5.2.8. To avoid adaptedness problems in the interpolation argument,

one can first consider deterministic G and afterwards apply Proposition 4.2.3.

(ii) The results of Examples 5.2.8 and 5.2.10 are incomparable except if q = r = 2 (see

[Tri83, Theorem 2.3.9]). A similar example could be proved for Triebel–Lizorkin

spaces, by using [NVW12b] and the boundedness of the H∞-calculus of (1−∆)m

on F s
q,r (Rd , w), which can be proved as in [HNVW17] with the Mihlin multiplier

theorem (Theorem 3.5.1). Alternatively one could use the`r -interpolation method

developed in [Kun15] on Example 5.2.8, again avoiding adaptedness problems us-

ing Proposition 4.2.3.
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5.2.2. STOCHASTIC HEAT EQUATION ON A WEDGE

Our next application is an Lp (Lq )-version of the stochastic maximal regularity result

in [CKLL18] for the stochastic heat equation on an angular domain. The deterministic

setting was considered in [Sol01, Theorem 1.1] and later improved in [Naz01, Theorem

1.1] and [PS07, Corollary 5.2]. At the moment it is unclear whether the Dirichlet Lapla-

cian −∆ on an angular domain has a bounded H∞-calculus, and how to characterize

D((−∆)1/2) in terms of weighted Sobolev spaces. Therefore, we can not apply [NVW12b]

and instead we will use [CKLL18] and Theorem 5.2.1 to derive Lp (Lq )-regularity results.

We will first need some properties of the heat semigroup on a wedge. Let κ ∈ (0,2π)

and define the wedge

O := {x ∈R2 : x = (r cos(ϕ),r sin(ϕ)), r > 0,ϕ ∈ (0,κ)}.

Consider heat equation: {
ut −∆u = 0, on R+×O,

u(0, x) = f (x), x ∈O.
(5.2.9)

Let Γ denote the Green kernel of the heat semigroup associated to (5.2.9). The solution

to (5.2.9) is given by (see [KN14, Lemma 3.7])

u(t , x) = e t∆ f (x) =
∫
O
Γ(x, y, t ) f (y) dy, (t , x) ∈R+×O.

In the next proposition we collect some properties of the heat semigroup (e t∆)t≥0 on

the wedge O. We let Ẇ 1,q (O, |·|θ−2) denote the usual homogenous Sobolev space of

distributions u such that ∂ j u ∈ Lq (O, |·|θ−2).

Proposition 5.2.12. Assume κ ∈ (0,2π), q ∈ (1,∞) and θ ∈R. The following hold:

(i) If −π
κ < θ

q < 2+ π
κ , then −∆ is a sectorial operator on Lq (O, |·|θ−2) withω(−∆) <π/2.

In particular, (e t∆)t≥0 is a bounded analytic semigroup on Lq (O, |·|θ−2).

(ii) If 1− π
κ < θ

q < 2+ π
κ , then

sup
t>0

t
1
2 ‖e t∆‖Lq (O,|·|θ−2)→Ẇ 1,q (O,|·|θ−2) <∞,

sup
t>0

t
1
2 ‖e t∆‖Lq (O,|·|θ−2)→Lq (O,|·|θ−2−q ) <∞.

Remark 5.2.13. Although −∆ is sectorial with ω(−∆) < π/2 for a large range of values of

θ, we do not know its domain on the full range of θ. If 2− π
κ < θ

q < 2+ π
κ , then by [PS07,

Corollary 5.2]

D(∆) = {
u : u,u/|·|2,∂αu ∈ Lq (O, |·|θ−2) for |α| = 2

}
.

The domain for other values of θ seems more difficult to characterize.
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Proof of Proposition 5.2.12(i). First suppose that 2− π
κ < θ

q < 2+ π
κ . Then it follows from

[PS07, Corollary 5.2] that −∆ has deterministic maximal regularity. Thus in this case (i)

follows from [Dor00, Section 4]. The case −π
κ < θ

q < π
κ follows by a duality argument,

since (
Lq (O, |·|θ−2)

)∗ = Lq ′
(O, |·|θ̃−2)

with θ̃ = (2q −θ)/(q −1). The remaining case π
κ ≤ θ

q ≤ 2− π
κ follows by complex interpo-

lation (see [Tri78, Theorem 1.18.5]).

For Proposition 5.2.12(ii) we will need the following technical lemma.

Lemma 5.2.14. Assume κ ∈ (0,2π), q ∈ (1,∞), σ > 0 and θ ∈ R. For 1
2 < µ < π

κ and t > 0

let kt :R2 → [0,∞) be defined by

kt (x, y) = ζµ−1(t , x)ζµ(t , y)t−1 exp(−σ|x − y |2/t ), x, y ∈R,

where ζ(t , x) = |x|
|x|+pt

. For 1−µ< θ
q < 2+µ one has

sup
t>0,y∈R2

∫
R2

k j
t (x, y)|x| θq |y |2− θ

q
dx

|x|2 <∞,

sup
t>0,x∈R2

∫
R2

k j
t (x, y)|x| θq |y |2− θ

q
dy

|y |2 <∞.

Proof. By a substitution replacing x and y by x
p

t and y
p

t , one can check that it suffices

to consider t = 1, and we set k(x, y) = k1(x, y). It suffices to considerσ ∈ (0,1]. Moreover,

since ζ(1, x) ≤ ζ(1, x/σ) ≤ 1
σζ(1, x), by a substitution one can reduce to σ = 1. Let a =

µ+2− θ
q . Then a > 0 by the assumptions in the lemma, and a simple rewriting shows

that

k(x, y)|x| θq |y |2− θ
q = |x|2µ+2−1−a

(|x|+1)µ−1

|y |a
(|y |+1)µ

e−|x−y |2 .

Step 1: First consider the integral with respect to x. One has∫
R2

k(x, y)|x| θq |y |2− θ
q

dx

|x|2 =
∫
R2

|x|2µ−1

(|x|+1)µ− j (|y |+1)µ

( |y |
|x|

)a
e−|x−y |2 dx

= S1 +S2 +S3,

where S1 is the integral over |x| ≤ 1
2 |y |, S2 is the integral over 1

2 |y | < |x| < 3
2 |y | and S3 is

the integral over |x| ≥ 3
2 |y |.

For S1 note that |x − y | ≥ |y |− |x| ≥ 1
2 |y |. Therefore, e−|x−y |2 ≤ e−

1
4 |y |2 and we find

S1 ≤ |y |ae−
1
4 |y |2

∫
|x|≤ 1

2 |y |
|x|2µ−1−a(|x|+1)1−µ dx

≤ 2π(|y |+1)|1−µ|+ae−
1
4 |y |2

∫ 1
2 |y |

0
r 2µ−a dr
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' (|y |+1)|1−µ|+a |y |2µ−a+1e−
1
4 |y |2 ≤C ,

where we used 2µ−a +1 =µ−1+ θ
q > 0. For S2 if |y | ≤ 1, then

S2 ≤
∫

1
2 |y |<|x|< 3

2 |y |

( |x|
|x|+1

)µ−1( |x|
|y |+1

)µ
dx

'
∫

1
2 |y |<|x|< 3

2 |y |
|x|2µ−1 dx ' |y |2µ ≤C ,

where we used 2µ> 0. If |y | > 1, then S1 '
∫
R2 e−|x−y |2 dx =C . For S3, note that |x − y | ≥

|x|− |y | ≥ 1
3 |x|. Thus e−|x−y | ≤ e−

1
9 |x|2 . Now if |y | > 1, then

S3 ≤ |y |a−µ
∫
|x|> 3

2 |y |
|x|µ−ae−

1
9 |x|2 dx

= 2π|y |a−µ
∫ ∞

3
2 |y |

rµ−a+1e−
1
9 r 2

dr

= 2π
∫ ∞

3
2

sµ−a+1|y |2e−
1
9 |y |2s2

ds

≤ 2π |y |2e−
1

36 |y |2
∫ ∞

3
2

sµ−a+1e−
1

36 |s|2 ds ≤C ,

where we used |y |s ≥ 1
2 (|y |+ s) for s, y > 1. If |y | ≤ 1, then

S3 ≤
∫
|x|> 3

2 |y |
|x|2µ−1−a(1+|x|)1−µe−

1
9 |x|2 dx

≤ 2π
∫ ∞

0
r 2µ−a(1+ r )|µ−1|e−

1
9 r 2

dx <∞,

because 2µ−a +1 =µ−1+ θ
q > 0.

Step 2: Next consider the integral with respect to y . One has∫
R2

k(x, y)|x| θq |y |2− θ
q

dy

|y |2 =
∫
R2

|x|2µ−1

(|x|+1)µ−1(|y |+1)µ

( |y |
|x|

)a−2
e−|x−y |2 dy

= T1 +T2 +T3,

where T1 is the integral over |y | ≤ 1
2 |x|, T2 is the integral over 1

2 |x| < |y | < 3
2 |x| and T3 is

the integral over |y | ≥ 3
2 |x|.

For T1 note that |x − y | ≥ |x|− |y | ≥ 1
2 |x|. Therefore, e−|x−y |2 ≤ e−

1
4 |x|2 and we find

T1 ≤ |x|2µ+1−a(|x|+1)|µ−1|e−
1
4 |x|2

∫
|y |≤ 1

2 |x|
|y |a−2 dy

= 2π|x|2µ+1−a(|x|+1)|µ−1|e−
1
4 |x|2

∫ 1
2 |x|

0
r a−1 dr

' |x|2µ+1(|x|+1)|µ−1|e−
1
4 |x|2 ≤C ,
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where we used a > 0 and 2µ+1 > 0. For T2 if |x| ≤ 1 we can write

T2 <∼
( |x|
|x|+1

)2µ−1
∫

1
2 |x|<|y |< 3

2 |x|
e−|x−y |2 dy <∼ |x|2µ+1 ≤C .

where we used 2µ−1 > 0. If |x| ≥ 1, then

T2 <∼
∫
R2

e−|x−y |2 dy =C .

For T3, note that |x − y | ≥ |y |− |x| ≥ 1
3 |y |. Thus e−|x−y | ≤ e−

1
9 |y |2 . If |x| > 1 we can write

T3 <∼
∫
|y |> 3

2 |x|

( |y |
|x|

)a−2−µ
e−

1
9 |y |2 dy

= 2π
∫ ∞

3
2 |x|

( r

|x|
)a−2−µ

e−
1
9 r 2

r dr

= 2π
∫ ∞

3
2

sa−1−µ|x|2e−
1
9 |x|2s2

ds

≤ 2π|x|2e−
1

36 |x|2
∫ ∞

3
2

sa−1−µe−
1

36 s2
ds ≤C .

If |x| ≤ 1, then since 2µ−a +1 ≥ 0,

T3 <∼
∫
|y |> 3

2 |x|
|y |a−2e−

1
9 |y |2 dy ≤ 2π

∫ ∞

0
r a−1e−

1
9 r 2

dr <∞.

This finishes the proof.

Proof of Proposition 5.2.12(ii). Let 1
2 < µ < π

κ be such that 1−µ < θ
q < 2+µ. We use the

following estimates for Γ (see [KN14, Theorem 3.10]):

|∂αxΓ(x, y, t )| ≤Cζµ−|α|(t , x)ζµ(t , y)t−
2+|α|

2 exp
(
− σ|x − y |2

t

)
, |α| ≤ 1

where ζ(t , x) = |x|
|x|+pt

and σ> 0. Therefore it suffices to prove for f ∈ Lq (O, |·|θ−2)

sup
t∈R+

∥∥∥x 7→
∫
O

kt (x, y) f (y) dy
∥∥∥

Lq (O,|·|θ−2)
≤C ‖ f ‖Lq (O,|·|θ−2),

where kt (x, y) is either

kt (x, y) = ζµ−1(t , x)ζµ(t , y)t−1 exp
(
− σ|x − y |2

t

)
, (5.2.10)

or

kt (x, y) = ζµ(t , x)ζµ(t , y)|x|−1t−1/2 exp
(
− σ|x − y |2

t

)
. (5.2.11)
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where (5.2.10) and (5.2.11) correspond to the bound in Ẇ 1,q (O, |x|θ−2) and Lq (O, |x|θ−2−q )

respectively. Since (5.2.11)≤(5.2.10) it suffices to prove the boundedness for the case

(5.2.10). A simple rewriting shows that it is enough to prove for g ∈ Lq (O, |·|−2)∥∥∥x 7→
∫
O

kt (x, y)|x| θq |y |2− θ
q g (y)

dy

|y |2
∥∥∥

Lq (O,|·|−2)
≤C ‖g‖Lq (O,|·|−2).

To prove the latter by Schur’s lemma it suffices to show

sup
t>0,y∈R2

∫
O

kt (x, y)|x| θq |y |2− θ
q

dx

|x|2 <∞,

sup
t>0,x∈R2

∫
O

kt (x, y)|x| θq |y |2− θ
q

dy

|y |2 <∞,

which follows from Lemma 5.2.14.

We are now ready to study the stochastic heat equation on the wedge O.

Example 5.2.15. On the wedge O consider the stochastic heat equation:{
du −∆u dt =G dWH , on R+,

u(0) = 0.
(5.2.12)

Let q ∈ [2,∞) and assume θ is such that

(1− π

κ
)q < θ < (1+ π

κ
)q.

Then for all p ∈ (2,∞) and w ∈ Ap/2 (the case p = q = 2 and w ≡ 1 is allowed as well) the

mild solution u to (5.2.12) satisfies

‖u‖Lp (Ω×R+,w ;Ẇ 1,q (O,|·|θ−2)) ≤C‖G‖Lp (Ω×R+,w ;Lq (O,|·|θ−2;H))

‖u‖Lp (Ω×R+,w ;Lq (O,|·|θ−2−q )) ≤C‖G‖Lp (Ω×R+,w ;Lq (O,|·|θ−2;H)),
(5.2.13)

where C is an increasing function of [w]Ap/2 and depends on p, q,θ,κ.

Proof. In [CKLL18] (5.2.13) was proved for p = q and w = 1, where it was stated for

bounded intervals (0,T ). Since it holds with T -independent constants one can let T →
∞ to find the result on R+. In order to prove the result for p 6= q and w ∈ Ap (R+) we will

use Theorem 5.2.1 with

X := Lq (O, |·|θ−2))

Y := Ẇ 1,q (O, |·|θ−2)∩Lq (O, |·|θ−2−q ).

By Proposition 5.2.12 −∆ is sectorial on X withω(−∆) <π/2 and ‖e t∆‖L(X ,Y ) ≤C t−1/2 for

t > 0, so that Y is allowed in Theorem 5.2.1 (see Remark 5.2.2(iv)), and hence the result

follows.
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5.3. NON-AUTONOMOUS CASE WITH TIME-DEPENDENT DOMAINS

We now turn to the time-dependent case. We will prove extrapolation results under

the conditions introduced by Acquistapace and Terreni [AT87] (see also [Acq88, AT92,

Ama95, Sch04, Tan97] and references therein). In the deterministic case extrapolation

of maximal Lp -regularity was proved in [CF14, CK18] under the Acquistapace–Terreni

conditions and the Kato–Tanabe conditions. Here the authors consider maximal Lp -

regularity onR andR+ respectively. Below we will consider maximal regularity results on

finite intervals (0,T ) for T ∈ (0,∞) in order to avoid exponential stability assumptions.

Next we introduce the (AT)-conditions due to Acquistapace and Terreni on a family

of closed operators (A(t ))t∈[0,T ] on a Banach space X . Let us write Aρ(t ) = A(t )+ρ for

ρ ≥ 0. We start with a uniform sectoriality condition:

(AT1) There exists a σ ∈ (0,π/2), ρ ≥ 0 and M > 0 such that for every t ∈ [0,T ], one

has σ(Aρ(t )) ⊆Σσ and

‖R(λ, Aρ(t ))‖ ≤ M

|λ|+1
, λ ∈C\Σσ.

The next condition is a Hölder continuity assumption, which depends on the change of

the domains D(A(t )).

(AT2) There exist 0 < µ,ν ≤ 1 with µ+ν > 1 and M ≥ 0 such that for all s, t ∈ [0,∞)

and λ ∈C\Σσ,

|λ|ν∥∥Aρ(t )R(λ, Aρ(t ))(Aρ(t )−1 − Aρ(s)−1)
∥∥
L(X ) ≤ M |t − s|µ.

When (A(t ))t∈[0,T ] satisfies both (AT1) and (AT2) we say that it satisfies (AT).

If the domains D(A(t )) all equal a fixed Banach space X1 and

‖A(t )− A(s)‖L(X1,X ) ≤C |t − s|µ

for some µ > 0, then (A(t ))t∈[0,T ] satisfies (AT2) with ν = 1. Indeed, this follows directly

from the equation Aρ(t )−1 − Aρ(s)−1 = Aρ(t )−1(Aρ(s)− Aρ(t ))Aρ(s)−1.

The following generation result is due to Acquistapace and Terreni (see [Acq88, AT92,

Sch04] for details).

Proposition 5.3.1 (Evolution family). Assume (AT) for (A(t ))t∈[0,T ]. There exists a unique

strongly continuous map

S :
{
(t , s) ∈ [0,T ]2 : t ≥ s

}→L(X )

such that

S(t , t ) = I , t ∈ [0,T ],
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S(t , s)S(s,r ) = S(t ,r ), t ≥ s ≥ r ≥ 0,
d

d t S(t , s) = A(t )S(t , s), t > s ≥ 0.

Moreover for all 0 ≤α≤ 1 there exists a constant C > 0 such that

‖Aρ(t )αS(t , s)‖L(X ) ≤C (t − s)−α, t ≥ s ≥ 0.

Given S as in Proposition 5.3.1, we call (S(t , s))t≥s the evolution family generated by

(A(t ))t∈[0,T ]. In order to state our extrapolation result we will need some notation. For

0 <α≤ 1 and t ∈R define

X t
α := D(Aρ(t )α).

endowed with the graph norm. Moreover set X t
0 = D(Aρ(t ))

‖·‖X . Note that since −ρ ∈
ρ(A(t )) we have

‖x‖X t
α
≤C ‖Aρ(t )αx‖X , x ∈ D(Aρ(t )α). (5.3.1)

Lemma 5.3.2. Let 0 < α ≤ 1. Let (X̃β)β∈[0,α] be an interpolation scale and assume for

β ∈ [0,α] one has X t
β
,→ X̃β uniformly in t ∈R. Then

‖S(t , s)− I‖L(X s
α,X̃β) ≤C (t − s)α−β, t ≥ s ≥ 0.

Proof. The result for β = α is clear from the assumption and [Sch04, (2.19)]. For β = 0,

the result follows from [Sch04, (2.16)]. The result for 0 <α< β follows by interpolation.

We can now prove our extrapolation theorem for (A(t ))t∈[0,T ] in the setting of Ac-

quistapace and Terreni:

Theorem 5.3.3 (Extrapolation in the evolution family case). Letα ∈ ( 1
2 ,1] and let (X̃β)β∈[0,α]

be an interpolation scale. Assume the following conditions:

• Both (A(t ))t∈[0,T ] and (A(t )∗)t∈[0,T ] satisfy (AT).

• For β ∈ [0,α] one has X t
β
,→ X̃β uniformly in t ∈ [0,T ].

• X̃ 1
2

is a UMD Banach space with type 2

Suppose A ∈ SMR(Lp (0,T ; X̃ 1
2

)) for some p ∈ [2,∞). Then for all q ∈ (2,∞) and w ∈ Aq/2

one has A ∈ SMR(Lq ((0,T ), w ; X̃ 1
2

)).

Proof. Set Y := X̃ 1
2

and let K : [0,T ]2 →L(X ,Y ) be the kernel given by

K (t , s) = S(t , s)1t≥s .

Then by our assumptions, Proposition 5.3.1 and Propositions 4.2.3 and 4.2.5 we know

that K ∈ Kγ(Lp (0,T )). Therefore by Theorem 4.4.11 it suffices to check the 2-standard

kernel conditions for K .
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To do so take t > s and note that by Proposition 5.3.1 and (5.3.1) for 0 ≤ s < t ≤ T ,

‖K (t , s)‖L(X ,Y ) ≤C ‖Aρ(t )
1
2 S(t , s)‖L(X ) ≤C (t − s)−1/2.

We first check (4.3.5) on [0,T ]. By [AT92, Theorem 6.4] we have for 0 ≤ s < t ≤ T that

‖S(t , s)A(s)‖L(X ) ≤C (t − s)−1. (5.3.2)

Therefore, using Proposition 5.3.1, we have∥∥ d
d s K (t , s)

∥∥
L(X ,Y ) = ‖S(t , s)A(s)‖L(X ,Y )

≤C ‖A(t )1/2S(t , s)A(s)‖L(X )

≤C ‖A(s)1/2S(s, s+t
2 )‖L(X )‖S( s+t

2 , t )A(t )‖L(X )

≤C (s − t )−
3
2 .

As in the proof of Lemma 4.3.3 we obtain that (4.3.5) holds with ω(r ) =Cr .

To check (4.3.6) on [0,T ] let α ∈ ( 1
2 ,1] be such that the conclusion of Lemma 5.3.2

holds and take |t − t ′| ≤ 1
2 |t − s|. If t < s, then also t ′ < s and there is nothing to prove.

Thus it suffices to consider the case t , t ′ > s. If t ′ > t , then

‖K (t ′, s)−K (t , s)‖L(X ,Y ) = ‖K (t ′, t )− I‖L(X t
α,Y )‖K (t , s)‖L(X ,X t

α)

≤C (t ′− t )α−
1
2 (t − s)−α

=C
∣∣∣ t − t ′

t − s

∣∣∣α− 1
2 |t − s|−1/2,

(5.3.3)

where we used Lemma 5.3.2 and Proposition 5.3.1. In the case t > t ′ the same estimate

holds with t and t ′ interchanged. Since t ′− s ≥ 1
2 (t − s), (4.3.6) also follows in this case.

We can therefore conclude that K is an 2-standard kernel with ε=α− 1
2 , which finishes

the proof.

Remark 5.3.4. If X and X̃ 1
2

are Hilbert spaces, the assumption that A ∈ SMR(L2(0,T ; X̃ 1
2

))

in Theorem 5.3.3 can be checked by showing

‖t 7→ S(t , s)x 1t>s ‖L2(0,T ;X̃ 1
2

)
<∼ ‖x‖X , x ∈ X , s ∈ [0,T ],

using Proposition 4.2.10(i). By the proof of [Ver10, Theorem 4.3] it is therefore sufficient

to check

‖t 7→ Aρ(s)
1
2 e t A(s)x‖L2((0,T );X ) <∼ ‖x‖, s ∈ [0,T ], x ∈ X .

5.3.1. STOCHASTIC HEAT EQUATION ON A DOMAIN WITH TIME-DEPENDENT NEUMANN

BOUNDARY CONDITION

As an application of the abstract extrapolation theory under Acquistapace-Terreni con-

ditions, we deduce stochastic maximal Lp -regularity for an operator family which was

previously considered in [Acq88, Sch04, Yag91] in the deterministic setting and in [SV03]

and [Ver10, Example 8.2] in the stochastic setting. In particular, stochastic maximal

L2(L2)-regularity was derived in the latter. Below we extend this to an Lp (Lq )-setting.
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Example 5.3.5. Let ε ∈ (0, 1
2 ) and T ∈ (0,∞). On a smooth bounded domain D ⊆ Rd

consider 
du + Au dt =G dWH , on [0,T ]×D ,

Cu = 0 on [0,T ]×∂D ,

u(0) = 0.

(5.3.4)

Here the differential operator A and boundary operator are given by

A(t , x)u =−
d∑

i , j=1
∂i ai j (t , x)∂ j u,

C (t , x)u =
d∑

i j=1
ai j (t , x)ni (x)∂ j u,

where for x ∈ ∂D , n(x) ∈Rd denotes the outer normal of D . Assume that the coefficients

(ai j ) are real-valued, symmetric and suppose that there exists a κ> 0 such that

n∑
i , j=1

ai j (t , x)ξiξ j ≥ κ|ξ|2, x ∈ D, t ∈ [0,T ], ξ ∈Rd .

(i) If D is a bounded C 2-domain and

ai j ∈C 1/2+ε([0,T ];C (D)),

ai j (t , ·) ∈C 1(D), t ∈ [0,T ]

∂k ai j ∈C ([0,T ]×D) t ∈ [0,T ]

for all i , j ,k ∈ {1, . . . ,d}, then for all p ∈ (2,∞) and v ∈ Ap/2(0,T ) (where p = 2 and

v = 1 is allowed as well) the mild solution u to (5.3.4) satisfies

‖u‖Lp (Ω×(0,T ),v ;W 1,2(D)) ≤C‖G‖Lp (Ω×(0,T ),v ;L2(D ;H)),

where C does not depend on G .

(ii) If D is a bounded C 3+ε-domain and

ai j ∈C 1+ ε
2 ,2+ε([0,T ]×D),

for all i , j ∈ {1, . . . ,d}, then for all p ∈ (2,∞), q,r ∈ (1,∞), v ∈ Ap/2(0,T ) and w ∈
Aq (D) the mild solution u to (5.3.4) satisfies

‖u‖Lr (Ω;Lp ((0,T ),v ;W 1,q (D,w))) ≤C ‖G‖Lp (Ω;Lp ((0,T ),v ;Lq (D,w ;H))), q > 2

‖u‖Lr (Ω;W 1,q (D,w ;Lp ((0,T ),v)) ≤C ‖G‖Lr (Ω;Lq (D,w ;Lp ((0,T ),v ;H))),

where C does not depend on G .
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Example 5.3.5(i) for p = q = 2 and w ≡ 1 has been shown in [Ver10, Example 8.2]. Us-

ing Theorem 5.3.3 we will extrapolate this to the case p > 2 and w ∈ Ap/2. In order to also

treat the case q 6= 2 in Example 5.3.5(ii), we will to check the assumptions of Theorem

4.1.3. To check these assumptions we will use the kernel estimates in [EI70, Theorem

1.1], which requires more smoothness on the domain and the coefficients. This explains

the difference in assumptions between (i) and (ii) in Example 5.3.5.

Proof of Example 5.3.5. For (i) note that in [Acq88, Sch04, Yag91] it is shown that the

realization of (A(t ))t∈[0,T ] on L2(D) with domain

D(A(t )) := {
u ∈W 2,2(D) : tr∂D (C (t , ·)u) = 0

}
satisfies (AT). Let X̃β = W 2β,2(D) for β ∈ (0,1] and X̃0 = L2(D). Then X t

β
,→ X̃β for all β ∈

[0,1] (see [Sch04, Example 2.8]) and we have A ∈ SMR(L2(0,T ; X̃ 1
2

)) by [Ver10, Example

8.2]. Therefore the result follows from Theorem 5.3.3.

For (ii) we will use Theorem 4.1.3. For this let Γ denote the Green kernel of the evo-

lution family associated to the realization of A on L2(D), which exists by [EI70, Theorem

1.1]. Then the mild solution u to (5.3.4) is given by

u(t , x) =
∫ t

0

∫
D
Γ(t , s, x, y)G(s, y) dy dWH (s), (t , x) ∈ (0,T )×D,

For |α| ≤ 1 define

Kα((t , x), (s, y)) = ∂αxΓ(t , s, x, y)1t>s , t , s ∈ (0,T ), x, y ∈ D.

By [Ver10, Example 8.2] we have that the operators

Tα : L2
F (Ω×R+×D ; H)) → L2(Ω×R+×D)

given by

TαG(t , x) :=
∫ t

0

∫
D

Kα((t , x), (s, y))G(s, y) dy dWH (s), (t , x) ∈R+×D,

are bounded for all |α| ≤ 1.

By [EI70, Theorem 1.1] we have for all t > s and x, y ∈ D∣∣∂βx Kα((t , x), (s, y))
∣∣<∼ 1

(t − s)(|α|+|β|+d)/2
exp

(
−c

|x − y |
(t − s)1/2

)
, |β| = 1, (5.3.5)

∣∣∂t Kα((t , x), (s, y))
∣∣<∼ 1

(t − s)(d+3)/2
exp

(
−c

|x − y |
(t − s)1/2

)
.

for some c > 0. Define a = (2,1, . . . ,1) and let |·|a be the anisotropic distance on R×Rd as

in Example 2.1.2. Using the uniform boundedness of r e−r for r > 0 and the boundedness

of D in case |α| = 0, we have for t > s and x, y ∈ D∣∣∂βx Kα((t , x), (s, y))
∣∣≤C

1

|(t , x)− (s, y)|d+2
a

, |β| = 1,
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∣∣∂t Kα((t , x), (s, y))
∣∣≤C

1

|(t , x)− (s, y)|d+3
a

.

Take |(t − t ′, x − x ′)|a ≤ 1
2 |(t − s, x − y)|a and first suppose that t , t ′ > s. Then, arguing as

in the proof of Lemma 4.3.3 (see also Remark 4.3.4), we deduce that Kα satisfies∣∣Kα((t , x), (s, y))−Kα((t ′, x ′), (s, y))
∣∣<∼ |(t − t ′, x −x ′)|a

|(t − s, x − y)|d+2
a

Next let us consider the case t > s > t ′. Then t − t ′ > t − s and thus also 1
2 |x − y |2 ≥ t − t ′.

Therefore using (5.3.5) with β= 0 we have the estimate

∣∣Kα((t , x), (s, y))−Kα((t ′, x ′), (s, y))
∣∣<∼ (t − s)1/2

(t − s)(d+2)/2
exp

(
−c

|x − y |
(t − s)1/2

)
<∼

|(t − t ′, x −x ′)|a
|t − s, x − y |d+2

a
.

The case t ′ > s > t follows analogously and the case s > t , t ′ is trivial, so Kα satisfies

(4.3.6) with ω(t ) = C t . The smoothness assumption (4.3.5) follows similarly by consid-

ering the adjoint problem. Therefore Kα is a (2,1)-standard kernel on the product space

of homogeneous type (0,T )×D with the metric |· − ·|a and the Lebesgue measure. We

have thus checked the assumptions of Theorem 4.1.3 for Tα for all |α| ≤ 1, which imme-

diately implies the conclusion of (ii).

5.4. VOLTERRA EQUATIONS

In [DL13] the results of [NVW12b] have been extended to the setting of integral equa-

tions:

U (t )+ A
∫ t

0

1

Γ(α)
(t − s)α−1U (s) ds =

∫ t

0

1

Γ(β)
(t − s)β−1U (s) dWH (s),

where α ∈ (0,2) and, β ∈ ( 1
2 ,2). The solution U is given by

U (t ) =
∫ t

0
Sαβ(t − s)G(s) dWH (s), t ∈R+,

where Sαβ is the so-called resolvent associated with A, α and β. The maximal regu-

larity result in [DL13, Theorem 3.1] gives Lp -estimates for Aθ∂
η
t U in terms of G , where

β−αθ−η = 1
2 with θ ∈ [0,1) and η ∈ (−1,1). In this case one has to estimate a stochas-

tic convolution with kernel k(t ) = Aθ∂
η
t Sαβ(t ). We will not go into details on Volterra

equations further now, but restrict ourselves to checking that K (t , s) := k(t − s)1t<s is a

2-standard kernel. Consequently our extrapolation theory can be applied to this setting

as well.

If η ∈ (− 1
2 ,1) we take ε ∈ (0, 1

2 ) such that η+ε ∈ (0,1). Then there is an M > 0 such that

(see [DL13, Remark 2.4])

‖∂εk(t )‖ ≤ M t−ε−
1
2 , t ∈R+.
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If η ∈ (−1,− 1
2 ), we let ε = −η. Then k(t ) = ∂−εt AθSαβ(t ) and there is an M > 0 such that

(see [DL13, Remark 2.4])

‖∂εk(t )‖ = ‖AθSαβ(t )‖ ≤ M t−ε−
1
2 , t ∈R+.

Thus, writing K (t , s) = ∂−εt ∂εt k(t−s)1t>s , in both cases it follows from Lemma 5.4.1 below

that K is a 2-standard kernel.

Lemma 5.4.1. Let Φ : R+ → L(X ,Y ) be strongly measurable and suppose there exists a

constant M > 0 and an ε ∈ (0, 1
2 ) such that

‖Φ(s)‖ ≤ M s−
1
2 −ε, s > 0.

Let k : R→L(X ,Y ) be defined by

k(s) := 1

Γ(ε)

∫ s

0
(s − r )ε−1Φ(r ) dr s ∈R+

Then K (t , s) := k(t − s)1t>s is an (ε,2)-standard kernel.

Proof. Let s > 0 and assume t ∈ [s, 3
2 s]. By a change of variables it suffices to show

‖k(s)−k(t )‖ ≤ M Cε
(t − s)ε

sε
1

s1/2
.

To show this note that

Γ(ε)‖k(s)−k(t )‖

≤
∫ t

s
(t − r )ε−1‖Φ(r )‖ dr +

∫ s

0

(
(s − r )ε−1 − (t − r )ε−1)‖Φ(r )‖ dr

≤ M
∫ t

s
(t − r )ε−1r−ε− 1

2 dr︸ ︷︷ ︸
A

+M
∫ s

0

(
(s − r )ε−1 − (t − r )ε−1)r−ε− 1

2 dr︸ ︷︷ ︸
B

.

For A note that

A ≤ s−ε−
1
2

∫ t

s
(t − r )ε−1 dr = ε−1 (t − s)ε

sε
1

s1/2
.

For B we write B = B1 + B2 where we have split the integral into parts over (0, s/2)

and (s/2, s). For B1 we can write

B1 = 1

1−ε
∫ s/2

0

∫ t−r

s−r
xε−2 dx r−ε− 1

2 dr

≤ 1

1−ε
∫ s/2

0
(t − s)(s − r )ε−2r−ε− 1

2 dr
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≤ (t − s)(s/2)ε−2

1−ε
∫ s/2

0
r−ε− 1

2 dr

≤ (t − s)(s/2)ε−2

(1−ε)( 1
2 −ε)

(s/2)
1
2 −ε = 2

p
2

(1−ε)( 1
2 −ε)

t − s

s

1

s1/2

where we used ε< 1
2 . Finally, using t ≥ s, we obtain

B2 ≤ (s/2)−ε−
1
2

∫ s

s/2

(
(s − r )ε−1 − (t − r )ε−1) dr

= ε−1(s/2)−ε−
1
2
(
(t − s)ε+ (s/2)ε− (t − s/2)ε

)
≤ ε−12ε+

1
2

(t − s)ε

sε
1

s1/2
,

which implies the required estimate.

5.5. p-INDEPENDENCE OF THE R-BOUNDEDNESS OF STOCHASTIC CON-
VOLUTIONS

In this final section we prove the p-independence of a Banach space property which was

introduced in [NVW15b]. Let X be a Banach space with type 2. For λ ∈C with Re(λ) > 0

let kλ :R+ →C be given by

kλ(s) =λ1/2e−λs , s ∈R+,

and define Tλ : Lp (R+; X ) → Lp (R+;γ(R+; X )) by

Tλ f (s) = kλ(s −·) f (·), s ∈R+.

Then by Proposition 4.2.12

‖k‖Kγ(Lp (R+)) ≤ τ2,X

( |λ|
2Re(λ)

)1/2
. (5.5.1)

The following p-dependent condition was introduced in [NVW15b, NVW15c]:

(Cp ) For each θ ∈ [0,π/2) the family T = {Tλ : |arg(λ)| ≤ θ} is R-bounded from

Lp (R+; X ) into Lp (R+;γ(R+; X )).

Note that (5.5.1) implies that T is uniformly bounded. In [NVW15c] the condition

(Cp ) was combined with the boundedness of the H∞-calculus in order to derive stochas-

tic maximal Lp -regularity.

From [NVW15b, Theorems 4.7 and 7.1] it can be seen that in the following case the

condition (Cp ) holds for all p ∈ (2,∞):

• X is a 2-convex Banach function space and the dual of its concavification X 2 has

the Hardy–Littlewood property, i.e. the lattice Hardy–Littlewood maximal oper-

ator is bounded on Lp (Rd ; (X 2)∗) for some (all) p ∈ (1,∞). See Section 6.4 for an

introduction to the Hardy–Littlewood property and lattice Hardy-Littlewood max-

imal operator.
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In particular, UMD Banach function spaces have the Hardy–Littlewood property, but

also e.g. L∞. In particular, the space Lq satisfies (Cp ) for any q ∈ [2,∞) and p ∈ (2,∞).

In the case q = 2 one can additionally allow p = 2. On the other hand, Lq for q > 2 fails

(C2) (see [NVW12b, Theorem 6.1] and the proof of [NVW15c, Theorem 7.1]). A Banach

function space with UMD and type 2 for which we do not know whether (Cp ) holds for

p ∈ (2,∞) is for instance `2(`4). Some evidence against this can be found in [NVW15b,

Theorem 8.2].

It was an open problem whether (Cp ) is p-independent. Below we settle this issue.

In the special case of Banach function spaces one could also derive this by rewriting

(Cp ) as a square function result (cf. [NVW15b, Theorem 7.1]) and using operator-valued

Calderón–Zygmund theory (see Section 3.4).

Theorem 5.5.1. Let X be Banach space with type 2 and let p ∈ [2,∞). If (Cp ) holds, then

for all θ ∈ [0,π/2), q ∈ (2,∞) and w ∈ Aq/2(R+) the family

T = {Tλ : |arg(λ)| ≤ θ}

is R-bounded from Lq (R+, w ; X ) into Lq (R+, w ;γ(R+; X )). In particular (Cq ) holds for all

q ∈ (2,∞).

Proof. Fix n ∈N. Let λ1, . . . ,λn ∈ Σθ , f1, . . . , fn ∈ Lq (R+, w ;γ(R+; X )). Let Radn(X ) be the

space X n endowed with the norm

‖(x j )n
j=1‖Radn (X ) :=

∥∥∥ n∑
j=1

ε j x j

∥∥∥
L2(Ω;X )

,

where (ε j )n
j=1 is a Rademacher sequence. Replacing the L2(Ω; X )-norm by Lr (Ω; X )

with r ∈ [1,∞) leads to an equivalent norm by the Kahane–Khintchine inequalities (see

[HNVW17, Theorem 6.2.4]). Define a diagonal operator k :R+ →L(Radn(X )) by

(k(s)x) j = kλ j (s)x j , j ∈ {1, . . . ,n}, x ∈ Radn(X ),

and set K (s, t ) := k(s−t )1s>t . To prove the requiredR-boundedness ofT , by the Kahane–

Khintchine inequalities, Fubini’s theorem and Proposition 2.8.6 it suffices to prove that

‖K ‖Kγ(Lq (R+,w)) ≤C , where C is independent of n. Now by (Cp ) we know the latter is true

for w = 1 and q = p. Therefore, by Theorem 4.4.11, it suffices to check that K satisfies the

2-standard kernel condition with constants only depending on θ. For this we check the

condition of Lemma 4.3.3. Moreover, since K is of convolution type it suffices to check

that ‖k ′(s)‖ ≤C s−3/2. Since k ′(s) is a diagonal operator we have for x ∈ Radn(X ):

‖K ′(s)x‖Radn (X ) =
∥∥∥ n∑

j=1
ε j k ′

λ j
(s)x j

∥∥∥
L2(Ω;X )

≤C s−3/2
∥∥∥ n∑

j=1
ε j x j

∥∥∥
L2(Ω;X )

,

where we used the Kahane contraction principle and

|s3k ′
λ j

(s)2| ≤ sup
λ∈Σθ

|λ|3e−2Re(λ) ≤ 27

8e3 cos3(θ)
:=C 2.

This implies the required estimates for K and therefore finishes the proof.
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BANACH FUNCTION SPACE-VALUED EXTENSIONS OF

OPERATORS

This chapter is based on a selection of the results from

[3] E. Lorist and B. Nieraeth. Sparse domination implies vector-valued sparse domi-

nation. arXiv:2003.02233.

[4] N.J. Kalton, E. Lorist, and L. Weis. Euclidean structures and operator theory in

Banach spaces. To appear in Mem. Amer. Math. Soc., 2021.

[9] T.S. Hänninen and E. Lorist. Sparse domination for the lattice Hardy–Littlewood

maximal operator. Proc. Amer. Math. Soc., 147(1):271–284, 2019.

It is complemented by some results from

[11] A. Amenta, E. Lorist, and M.C. Veraar. Rescaled extrapolation for vector-valued

functions. Publ. Mat., 63(1):155–182, 2019.

The presentation of these results in this chapter is original. Multilinear versions of the

main results in this chapter are contained in

[3] E. Lorist and B. Nieraeth. Sparse domination implies vector-valued sparse domi-

nation. arXiv:2003.02233, 2020.

[8] E. Lorist and B. Nieraeth. Vector-valued extensions of operators through multilin-

ear limited range extrapolation. J. Fourier Anal. Appl., 25(5):2608–2634, 2019.

Abstract. In this chapter we develop two methods to extend a bounded operator on Lp (Rd )

to a bounded operator on the Bochner space Lp (Rd ; X ), where X is a Banach function

space. The first method is based on a factorization principle, which is a more flexible

version of the factorization theory of Nikišin, Maurey and Rubio de Francia. The second

method is based on sparse domination, which we extensively studied in Chapter 3. Us-

ing these extension theorems, we prove quantitative connections between Banach space

properties like the (randomized) UMD property and the Hardy–Littlewood property.
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6.1. INTRODUCTION

For a bounded linear operator T on Lp (Rd ) and a Banach space X we can define a linear

operator T̃ on Lp (Rd )⊗X by setting

T̃ ( f ⊗x) := T f ⊗x, f ∈ Lp (Rd ), x ∈ X ,

and extending by linearity. For p ∈ [1,∞) the space Lp (Rd )⊗ X is dense in the Bochner

space Lp (Rd ; X ) and it thus makes sense to ask whether T̃ extends to a bounded operator

on Lp (Rd ; X ).

Such vector-valued extensions of operators prevalent in the theory of harmonic anal-

ysis have been actively studied in the past decades. A centerpoint of the theory is the

result of Burkholder [Bur83] and Bourgain [Bou83] that the Hilbert transform on Lp (R)

extends to a bounded operator on Lp (R; X ) if and only if the Banach space X has the

UMD property (see Theorem 2.7.1). From this connection one can derive the bounded-

ness of the vector-valued extension of many operators in harmonic analysis, like Fourier

multipliers and Littlewood–Paley operators, as we have already seen in Chapter 3.

In case X is a Banach function space, very general extension theorems are known.

These follow from a deep result of Bourgain [Bou84] and Rubio de Francia [Rub86] on

the connection between the boundedness of the lattice Hardy–Littlewood maximal op-

erator on Lp (Rd ; X ) and the UMD property of X . The boundedness of the lattice Hardy–

Littlewood maximal operator allows one to use scalar-valued arguments to show the

boundedness of the vector-valued extension of an operator. Moreover it connects the

extension problem to the theory of Muckenhoupt weights. Combined this enabled Ru-

bio de Francia to show an extension principle in [Rub86], yielding vector-valued exten-

sions of operators on Lp (T) satisfying weighted bounds. This result was subsequently

extended by Amenta, Veraar and the author in [11], replacingTbyRd and adding weights

in the conclusion.

As we saw in Chapter 3, weighted bounds for operators in harmonic analysis are

nowadays often obtained through sparse domination. So to deduce the weighted bound-

edness of the vector-valued extension T̃ of an operator T using [Rub86] and its gen-

eralization in [11], one typically goes through implications (1) and (3) in the following

diagram

Sparse domination for T

Sparse domination for T̃

Weighted bounds for T

Weighted bounds for T̃

(1)

(4)

(2) (3)

In this diagram implications (1) and (4) are well-known and unrelated to the operator T ,

as we saw in Proposition 3.2.4. Another approach to obtain the weighted boundedness
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of the vector-valued extension T̃ of an operator T , through implications (2) and (4) in

this diagram, was obtained by Culiuc, Di Plinio, and Ou in [CDO17] for X = `q .

The advantage of the route through implications (2) and (4) over the route through

implications (1) and (3) is that the Fubini-type techniques needed for implication (2) are

a lot less technical than the ones needed for implication (3). Moreover implication (4)

yields quantitative and in many cases sharp weighted estimates for T̃ , while the weight

dependence in the arguments used for implication (3) is certainly not sharp. A down-

side of the approach through implications (2) and (4) is the fact that one needs sparse

domination for T as a starting point, while one only needs weighted bounds in order to

apply (3).

In this chapter we will provide an alternative, more flexible approach to implication

(3) and extend implication (2) from `q to more general Banach function spaces X . Both

implications have also been extended to the multilinear limited range setting by Nier-

aeth and the author in [3, 8]. To keep this dissertation at a reasonable length and to

avoid the more involved notation of the multilinear limited range setting, we will stay in

the linear setting in this chapter and refer to the dissertation of Nieraeth [Nie20, Part 1
4 ]

for a detailed treatment of this generalization to the multilinear limited range setting.

6.1.1. EXTENSION OF OPERATORS USING FACTORIZATION

Implication (3) for X = `q with q ∈ (1,∞) follows easily from Rubio de Francia extrapo-

lation and Fubini’s theorem. Indeed if T is a bounded linear operator on Lp (Rd , w) for

all w ∈ Ap , we know by an application of Theorem 2.3.3 that T is a bounded linear op-

erator on Lq (Rd , w) for all w ∈ Aq . Thus T̃ is bounded on Lq (Rd , w ;`q ) for all w ∈ Aq by

Fubini’s theorem. Another application of Theorem 2.3.3 then yields boundedness of T̃

on Lp (Rd , w ;`q ) for all w ∈ Ap .

A generalization of this result, replacing `q by a UMD Banach function space, was

first proven by Rubio de Francia in [Rub86, Theorem 5]. Extended in [11] by Amenta,

Veraar and the author, this theorem reads as follows:

Theorem 6.1.1. Let X be a UMD Banach function space over a measure space (Ω,µ), let

p ∈ (1,∞) and w ∈ Ap . Let f , g ∈ Lp (Rd , w ; X ) and suppose that for some p0 ∈ (1,∞) there

is an increasing function φ : R+ →R+ such that for all v ∈ Ap0 we have

‖ f (·,ω)‖Lp0 (Rd ,v) ≤φ([v]Ap0
)‖g (·,ω)‖Lp0 (Rd ,v), ω ∈Ω.

Then there exists an increasing ψ : R+ →R+, depending on X ,φ, p, p0,d, such that

‖ f ‖Lp (Rd ,w ;X ) ≤ψ([w]Ap )‖g‖Lp (Rd ,w ;X ).

One obtains implication (3) as a direct corollary of Theorem 6.1.1 by taking g ∈
Lp (Rd , w)⊗X and f = T̃ g ∈ Lp (Rd , w)⊗X . Indeed, for g =∑m

j=1 g j ⊗x j with g1, · · · , gm ∈
Lp (Rd , w) and x1, · · · , xm ∈ X we have

T̃ g (t ,ω) =
m∑

j=1
T gm(t )xm(ω) = T g (·,ω)(t ), (t ,ω) ∈Rd ×Ω. (6.1.1)
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Therefore we obtain by density:

Theorem 6.1.2. Let X be a UMD Banach function space and let T be a bounded linear

operator on Lp0 (Rd , v) for some p0 ∈ (1,∞) and all v ∈ Ap0 . Suppose that there is an

increasing function φ : R+ →R+ such that

‖T ‖Lp0 (Rd ,v)→Lp0 (Rd ,v) ≤φ([v]Ap0
), v ∈ Ap0 .

Then T̃ extends uniquely to a bounded linear operator on Lp (Rd , w ; X ) for all p ∈ (1,∞)

and w ∈ Ap .

The right hand-side of (6.1.1) makes sense for any, not necessarily linear, operator

T . However, to obtain an analog of Theorem 6.1.2 one needs to take care when consid-

ering f (·,ω) and T̃ f (·,ω) for ω ∈Ω, as these are not necessarily functions in Lp0 (Rd , w)

for all w ∈ Ap0 . This technicality can in applications be circumvented by using e.g. sim-

ple functions or smooth compactly supported functions and appealing to density. This

density argument requires a little bit of structure of the operator. A sufficient condition

is for example

|T f −T g | ≤ |T ( f − g )|

for all f , g : Rd →C in the chosen dense subset of Lp (Rd , w).

Remark 6.1.3. In applications it is usually easily checked that a weighted estimate is de-

pendent on the Muckenhoupt characteristic [w]Ap , and not on any other information

coming from w . However, checking that this dependence is nondecreasing can some-

times be tricky (see e.g. [12, Theorem 3.10]). Moreover, this monotonicity is not always

explicitly stated in the literature. In Appendix 6.A we will show that the monotonicity

condition in Theorem 6.1.2 redundant: an estimate depending on [w]Ap with no mono-

tonicity assumption implies the same estimate with monotonicity.

The original proof of Theorem 6.1.1 is based on the factorization of `r -bounded

families of operators on a r -convex Banach function space X through a weighted Lr -

space. The classical approach for this factorization comes from the work of Nikišin

[Nik70], Maurey [Mau73] and Rubio de Francia [Rub82, Rub86, Rub87] (see also [GR85]).

This factorization is used to show that, on Banach function spaces, the UMD prop-

erty is self-improving, i.e. there exists an ε > 0 such that X r has the UMD property for

all 0 < r < 1+ ε. Using a Rubio de Francia iteration argument with the lattice Hardy–

Littlewood maximal operator (see Section 6.4 for an introduction) Theorem 6.1.1 then

follows (see [Rub86, Theorem 5])

We will give a alternative approach to the proof of Theorem 6.1.1, which has various

advantages over the original approach:

• Our approach yields quantitative bounds, allowing us to estimate the operator

norm of T̃ by a power of the UMD constant of X .
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• The original approach relies upon the boundedness of the lattice Hardy-Littlewood

maximal operator on Lp (Rd ; X ) whereas this will not be used in our approach.

Therefore we will be able to use Theorem 6.1.1 to give a quantitative proof of the

boundedness of the lattice Hardy-Littlewood maximal operator on UMD Banach

function spaces (see Theorem 6.4.6).

• Instead of assuming X to have the UMD property, we will formulate a more ab-

stract assumption in Theorem 6.3.1. This allows us to the deduce the UMD prop-

erty of X from e.g. the `2-sectoriality of differentiation operators (see Theorem

6.3.5).

Our approach will be based on the factorization of an `2-bounded family of operators

on a (not necessarily 2-convex!) Banach function space X through a weighted L2-space.

This factorization is a consequence of the abstract representation and factorization the-

ory of Euclidean structures, which has been developed in [4] by Kalton, Weis and the

author. We will not go into the details of this theory, as this could be a dissertation in

itself. Instead, we will formulate the necessary results from [4] in the setting of the Eu-

clidean structure `2, which gives rise to `2-boundedness. We will adapt the proofs of

these results to this specific choice of an Euclidean structure in Section 6.2 and refer to

[4, Chapter 1 and 2] for the general theory.

6.1.2. EXTENSION OF OPERATORS USING SPARSE DOMINATION

The proof of the sparse domination-based extension theorem depicted by implication

(2) relies on the following two key ingredients:

• The equivalence between sparse forms and the L1-norm of the bisublinear max-

imal function. This equivalence seems to have been used for the first time in

[CDO17] by Culiuc, Di Plinio, and Ou.

• A sparse domination result for the bisublinear lattice maximal operator on UMD

Banach function spaces.

For this second ingredient we will first study the lattice Hardy–Littlewood maximal op-

erator in Section 6.4, which on an order-continuous Banach function space X is given

by

MLat f := sup
B

〈| f |〉1,B 1B , f ∈ L1
loc(Rd ; X )

where the supremum is taken in the lattice sense over all balls B ⊆Rd . Using our abstract

sparse domination theory from Chapter 3 and the previously discussed factorization-

based extension principle, we will show sparse domination and sharp weighted esti-

mates for this operator if X has the UMD property. In particular, this yields a quanti-

tative version of the result of Bourgain [Bou84] and Rubio de Francia [Rub86] that MLat

is bounded on Lp (Rd ; X ) if X has the UMD property. Moreover, the sharpness of our
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sparse domination result allows us to compare the lattice Hardy–Littlewood maximal

operator to the Rademacher maximal operator, which was introduced in Section 3.6.

We will introduce the bisublinear version of the lattice Hardy–Littlewood maximal

operator, which we actually need to prove implication (2), in Section 6.5. This operator

is part of a much more general, multilinear theory, for which we refer to [3] or the disser-

tation of Nieraeth [Nie20, Part 1
4 ]. In Section 6.5 we will only treat the sparse domination

result needed for the extension theorem.

Combining these two ingredients, we obtain the following theorem:

Theorem 6.1.4. Let X be a UMD Banach function space over a measure space (Ω,µ) and

let T be a linear operator such that for any f , g ∈ L∞
c (Rd ) there exists a sparse collection of

cubes S such that ∫
Rd

|T f | · |g | dt ≤CT
∑

Q∈S
〈| f |〉1,Q〈|g |〉1,Q |Q|.

Then for all simple functions f ∈ L∞
c (Rd , X ) and g ∈ L∞

c (Rd ) there exists a sparse collection

of cubes S such that∫
Rd

‖T̃ f ‖X · |g | dt <∼X ,d CT
∑

Q∈S

〈‖ f ‖X
〉

1,Q

〈|g |〉1,Q |Q|.

In particular, T̃ extends uniquely to a bounded linear operator on Lp (Rd , w ; X ) for all

p ∈ (1,∞) and w ∈ Ap with

‖T̃ ‖Lp (Rd ,w ;X )→Lp (Rd ,w ;X )
<∼X ,p,d CT [w]max

{
1

p−1 ,1
}

.

As in Theorem 6.1.2, we can allow for more general (not necessarily linear) operators

T in Theorem 6.1.4 (see Theorem 6.6.1 and Corollary 6.6.2). Also note that the sparse

form domination for T in the assumption of Theorem 6.1.4 is in particular satisfied if

we have pointwise sparse domination for T as in Chapter 3 with r = 1, which follows by

integrating against a g ∈ L∞
c (Rd ).

As was the case for our factorization-based extension theorem, the techniques used

to prove Theorem 6.1.4 can also be used to deduce the UMD property of certain Banach

spaces. In particular, in Theorem 6.6.3, we will obtain the following results:

• We will deduce that a Banach function space X has the UMD property if MLat is

bounded on both Lp (Rd ; X ) and Lp ′
(Rd ; X ∗) for some p ∈ (1,∞). Moreover we

obtain a quantitative estimate of the UMD constant βp,X in terms of the operator

norm of MLat on Lp (Rd ; X ) and Lp ′
(Rd ; X ∗). Thus, combined with the previously

discussed converse implication, we have an alternative proof of this equivalence

by Bourgain [Bou84] and Rubio de Francia [Rub86].

• If X is a UMD Banach function space and Y is a UMD Banach space, we show

that the Köthe–Bochner space X (Y ) has the UMD property with a quantitative es-

timate between the respective UMD constants. The qualitative part of this state-

ment was first proven by Rubio de Francia [Rub86].
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6.1.3. APPLICATIONS

Theorems 6.1.1 and 6.1.4 and their multilinear, limited range counterparts in [3, 8] have

various interesting applications. They can for example be applied to obtain Banach

function space-valued boundedness of:

• The bilinear Hilbert transform

• The variational Carleson operator

• Multilinear Calderón–Zygmund operators

• Bochner–Riesz multipliers

• Spherical maximal operators

For the details of these applications, we refer to [3, Section 6], [8, Section 5] and [11,

Section 5]. In this dissertation we will focus on one specific, quite elaborate applica-

tion. In Chapter 7 we will use Theorem 6.1.1 to deduce Banach function space-valued

Littlewood–Paley–Rubio de Francia estimates, which we will enable us to prove Fourier

multiplier theorems in Banach function spaces with UMD concavifications.

6.2. FACTORIZATION OF `r -BOUNDED FAMILIES OF OPERATORS

In this section we will prove that `r -bounded families of operators on a Banach function

space X can be factored through a weighted Lr -space and specifically focus on the case

r = 2. We will start with the factorization theory from the work of Nikišin [Nik70], Maurey

[Mau73] and Rubio de Francia [Rub82, Rub86, Rub87]. We will not use this theorem in

subsequent sections, but we find it instructive to first show how this classical, simpler

factorization theorem works, before turning to our factorization theorem based on the

abstract representation and factorization theory of Euclidean structures.

The following theorem was shown by Rubio de Francia in the following special cases:

• X = Lp (Ω) in [Rub82],

• Γ= {T } for T ∈L(X ) in [Rub86, III Lemma 1],

see also [GR85]. An extensive description of the literature preceding the theorems of

Rubio de Francia is given in the monograph of Gilbert [Gil79].

Theorem 6.2.1. Take r ∈ [1,∞) and let X be an r -convex, order-continuous Banach func-

tion space over a measure space (Ω,µ) and let Γ ⊆ L(X ) be a family of operators. The

following are equivalent:

(i) Γ is `r -bounded.
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(ii) There exists a C > 0 such that for every nonnegative v ∈ (X r )∗, there is a w ≥ v with

‖w‖(X r )∗ ≤ 2‖v‖(X r )∗ and

‖T x‖Lr (Ω,w) ≤C ‖x‖Lr (Ω,w) x ∈ X , T ∈ Γ. (6.2.1)

Moreover C > 0 can be chosen such that 2−1/r C ≤ ‖Γ‖`r ≤ 21/r C .

Proof. We first prove (ii)⇒(i). Let x1, · · · , xn ∈ X and T1, · · · ,Tn ∈ Γ. As
∑n

k=1|Tk xk |r ∈ X r ,

we can find a nonnegative v ∈ (X r )∗ with ‖v‖(X r )∗ = 1 such that∥∥∥( n∑
k=1

|Tk xk |r
)1/r ∥∥∥r

X
=

∥∥∥ n∑
k=1

|Tk xk |r
∥∥∥

X r
=

∫
Ω

n∑
k=1

|Tk xk |r v dµ.

Then by assumption there exists a w ≥ v with ‖w‖(X r )∗ ≤ 2 and(∫
Ω

n∑
k=1

|Tk xk |r v dµ
)1/r ≤C

(∫
Ω

n∑
k=1

|xk |r w dµ
)1/r ≤ 2

1
r C

∥∥∥( n∑
k=1

|xk |r
)1/r ∥∥∥

X
,

so ‖Γ‖`r ≤ 21/r C .

Now for (i)⇒(ii) take a nonnegative v ∈ (X r )∗. Without loss of generality we may

assume that ‖v‖(X r )∗ ≤ 1. Let Y := Lr (Ω, v). Then ‖x‖Y ≤ ‖x‖X for all x ∈ X , i.e. X ,→ Y

contractively. We can therefore consider Γ as a family of operators from X to Y with( n∑
k=1

‖Tk xk‖r
Y

)1/r ≤
∥∥∥( n∑

k=1
|Tk xk |r

)1/r ∥∥∥
X
≤ ‖Γ‖`r

∥∥∥( n∑
k=1

|xk |r
)1/r ∥∥∥

X
. (6.2.2)

for all x1, · · ·xn ∈ X and T1, · · · ,Tn ∈ Γ. Define the sets

A :=
{( n∑

k=1
|xk |r ,

n∑
k=1

‖Tk xk‖r
Y

)
: xk ∈ X ,Tk ∈ Γ

}
⊆ X r ×R,

B :=
{

b ∈ (X r )∗ : ‖b‖(X r )∗ ≤ 1 and b ≥ 0
}

.

Then A and B are convex, and by the Banach-Alaoglu theorem B is weak∗-compact.

Define Φ : A×B →R by

Φ(a,b) :=
n∑

k=1
‖Tk xk‖r

Y −‖Γ‖r
`r

∫
Ω

n∑
k=1

|xk |r b dµ, a =
( n∑

k=1
|xk |r ,

n∑
k=1

‖Tk xk‖r
Y

)
.

Then Φ is linear in its first coordinate and affine in its second. Furthermore, by defini-

tion, Φ(a, ·) is weak∗-continuous for all a ∈ A, and by (6.2.2) for any a ∈ A

min
b∈B

Φ(a,b) =
n∑

k=1
‖Tk xk‖r

Y −‖Γ‖r
`r

∥∥∥( n∑
k=1

|xk |r
)1/r ∥∥∥r

X
≤ 0.

Thus, by the Minimax lemma (see [Gra14a, Appendix H]), we have

min
b∈B

sup
a∈A

Φ(a,b) = sup
a∈A

min
b∈B

Φ(a,b) ≤ 0,
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so there exists w1 ∈ B such thatΦ(a, w1) ≤ 0 for all a ∈ A. In particular, for any x ∈ X and

T ∈ Γ we find that∫
Ω
|T x|r v dµ−‖Γ‖r

`r

∫
Ω
|x|r w1 dµ=Φ(

(|x|r ,‖T x‖r
Y ), w1

)≤ 0.

Set w0 := v . Iterating the argument with wn in place of v yields a sequence (wn)∞n=0
satisfying (∫

Ω
|T x|r wn dµ

)1/r ≤ ‖Γ‖`r

(∫
Ω
|x|r wn+1 dµ

)1/r
, x ∈ X , T ∈ Γ

for all n ∈N. Then the weight w :=∑∞
n=0 2−n wn satisfies w ≥ v , ‖w‖(X r )∗ ≤ 2 and (6.2.1)

with C = 21/r ‖Γ‖`r .

In applications Theorem 6.2.1 is often applied as follows: for a fixed y1 ∈ X we take a

positive v ∈ (X r )∗ of norm one such that∫
Ω
|y1|r v dµ= ∥∥|y1|r

∥∥
X r = ‖y1‖r

X .

Taking w ≥ v as in Theorem 6.2.1, we then have that Γ is uniformly bounded on Lr (Ω, w)

and

‖x‖Lr (Ω,w) ≤ 2‖x‖X , x ∈ X , (6.2.3)

‖y1‖Lr (Ω,w) ≥ ‖y1‖X . (6.2.4)

Using (6.2.3) and (6.2.4), we can transfer the analysis of Γ back and forth between X and

Lr (Ω, w). There is a notable difference between (6.2.3) and (6.2.4): we obtain (6.2.3) for

all x ∈ X , whereas (6.2.4) only holds for one a prior fixed y1 ∈ X . One can not expect both

inequalities to hold for all x ∈ X unless X is isomorphic to a weighted Lp -space.

Using the abstract representation and factorization theory of Euclidean structures,

which was developed in [4] by Kalton, Weis and the author, we will now prove a version

of Theorem 6.2.1 with r = 2 for Banach function spaces which are not necessarily 2-

convex. A key observation for our theory to work is that one does only need (6.2.3) for

one fixed y0 ∈ X in applications. This will allow us to build a 2-convex Banach function

space Y based on y0 and y1, which is contractively embedded in X . The factorization

theory from [4] applied to Y will then yield us a theorem in the spirit of Theorem 6.2.1

with (6.2.3) only for x = y0, but for Banach function spaces X which are not necessarily

2-convex.

We will start with the technical heart of the proof, which is not yet specific to Banach

function spaces and `2-boundedness, i.e. the following lemma holds more generally for

any Euclidean structure α on a Banach space X , see [4, Lemma 2.5]. The proof of the

lemma in the case Γ=∅ is a variation of the proof of [AK16, Theorem 7.3.4], which is the

key ingredient to prove the Maurey-Kwapień theorem on factorization of an operator

T : X → Y through a Hilbert space (see [Kwa72a, Mau74]).
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Lemma 6.2.2. Let X be a Banach function space and let Y ⊆ X be a subspace. Suppose

that F : X → [0,∞) and G : Y → [0,∞) are positive homogeneous functions such that

( n∑
k=1

F (xk )2
)1/2 ≤

∥∥∥( n∑
k=1

|xk |2
)1/2

∥∥∥
X

, x1, . . . , xn ∈ X , (6.2.5)

∥∥∥( n∑
k=1

|yk |2
)1/2

∥∥∥
X
≤

( n∑
k=1

G(yk )2
)1/2

, y1, . . . , yn ∈ Y . (6.2.6)

Let Γ⊆L(X ) be an `2-bounded family of operators. Then there exists a Γ-invariant sub-

space Y ⊆ X0 ⊆ X and a Hilbertian seminorm ‖·‖0 on X0 such that

‖T x‖0 ≤ 2‖Γ‖`2‖x‖0 x ∈ X0, T ∈ Γ, (6.2.7)

‖x‖0 ≥ F (x) x ∈ X0, (6.2.8)

‖x‖0 ≤ 4G(x) x ∈ Y . (6.2.9)

Proof. Let X0 be the smallest Γ-invariant subspace of X containing Y , i.e. set Y0 := Y ,

define for N ≥ 1

YN :=
{

T x : T ∈ Γ, x ∈ YN−1

}
.

and take X0 :=⋃
N≥0 YN . We will prove the lemma in three steps.

Step 1: We will first show that G can be extended to a function G0 on X0, such

that 2G0 satisfies (6.2.6) for all y1, . . . yn ∈ X0. For this pick a sequence of real numbers

(aN )∞N=1 such that aN > 1 and
∏∞

N=1 aN = 2 and define bM := ∏M
N=1 aN for M ≥ 1. For

y ∈ Y we set G0(y) =G(y) and we will proceed by induction. Suppose that G0 is defined

on
⋃M

N=0 YN for some M ∈Nwith

∥∥∥( n∑
k=1

|yk |2
)1/2

∥∥∥
X
≤ bM

( n∑
k=1

G0(yk )2
)1/2

(6.2.10)

for any y1, . . . , yn ∈⋃M
N=0 YN .

For y ∈ YM+1 \
M⋃

N=0
YN pick a T ∈ Γ and an x ∈ YM such that T x = y and define

G0(y) := ‖Γ‖`2

aM+1 −1
·G0(x).

For y1, . . . , yn ∈⋃M+1
N=0 YN we let I = {k : yk ∈⋃M

N=0 YN }. For k ∉ I we let Tk and xk be as in

the definition of G0, i.e. Tk xk = yk . Then, by our definition of G0, we have∥∥∥( n∑
k=1

|yk |2
)1/2

∥∥∥
X
≤

∥∥∥( ∑
k∈I

|yk |2
)1/2

∥∥∥
X
+

∥∥∥( ∑
k∉I

|yk |2
)1/2

∥∥∥
X

≤ bM

( ∑
k∈I

G0(yk )2
)1/2 +bM‖Γ‖`2

( ∑
k∉I

G0(xk )2
)1/2
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≤ bM

( n∑
k=1

G0(yk )2
)1/2 +bM

(
aM+1 −1

)( n∑
k=1

G0(yk )2
)1/2

= bM+1

( n∑
k=1

G0(yk )2
)1/2

.

So G0 satisfies (6.2.10) for M +1. Therefore, by induction, we can define G0 on X0, such

that 2G0 satisfies (6.2.6) for all y1, . . . , yn ∈ X0.

Step 2: For x ∈ X define the function φx : X ∗ → R+ by φx (x∗) := |x∗(x)|2. We will

construct a sublinear functional on the space

V := span{φx : x ∈ X0}.

For this note that every ψ ∈V has a representation of the form

ψ=
nu∑

k=1
φuk −

nv∑
k=1

φvk +
nx∑

k=1

(
φTk xk −φ2‖Γ‖`2 xk

)
(6.2.11)

with uk ∈ X0, vk , xk ∈ X and Tk ∈ Γ. Define p :V→ [−∞,∞) by

p(ψ) = inf

{
16

nu∑
k=1

G0(uk )2 −
nv∑

k=1
F (vk )2

}
,

where the infimum is taken over all representations of ψ in the form of (6.2.11). This

functional clearly has the following properties

p(aψ) = ap(ψ), ψ ∈V, a > 0, (6.2.12)

p(ψ1 +ψ2) ≤ p(ψ1)+p(ψ2), ψ1,ψ2 ∈V, (6.2.13)

p(φT x −φ2‖Γ‖`2 x ) ≤ 0, x ∈ X0,T ∈ Γ, (6.2.14)

p(−φx ) ≤−F (x)2, x ∈ X0, (6.2.15)

p(φx ) ≤ 16G0(x)2, x ∈ X0. (6.2.16)

We will check that p(0) = 0. It is clear that p(0) ≤ 0. Let

0 =
nu∑

k=1
φuk −

nv∑
k=1

φvk +
nx∑

k=1

(
φTk xk −φ2‖Γ‖`2 xk

)
be a representation of the form of (6.2.11). So for any x∗ ∈ X ∗ we have

nu∑
k=1

|x∗(uk )|2 +
nx∑

k=1
|x∗(Tk xk )|2 =

nv∑
k=1

|x∗(vk )|2 +
nx∑

k=1
|x∗(2‖Γ‖`2 xk )|2. (6.2.17)

Let

u := (uk )nu
k=1, v := (vk )nv

k=1,
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x := (xk )nx
k=1, y := (Tk xk )nx

k=1,

be column vectors and define

ū =
(

u
y

)
, v̄ =

(
v

2‖Γ‖`2 x

)
.

Note that (6.2.17) implies, by the Hahn-Banach theorem, that

v1, · · · , vnv , x1, · · · , xnx ∈ span
{
u1, · · · ,unu ,T1x1, · · · ,Tnx xnx

}
.

Thus there exists a scalar matrix A with ‖A‖ = 1 such that v̄ = Aū. Therefore, applying the

boundedness of A pointwise and using the `2-boundedness of Γ, we have∥∥∥( nv∑
k=1

|vk |2 +2‖Γ‖`2

nx∑
k=1

|xk |2
)1/2∥∥∥

X
≤

∥∥∥( nu∑
k=1

|uk |2 +
nx∑

k=1
|Tk xk |2

)1/2∥∥∥
X

≤
∥∥∥( nu∑

k=1
|uk |2

)1/2∥∥∥
X
+ 1

2

∥∥∥2‖Γ‖`2

( nx∑
k=1

|xk |2
)1/2∥∥∥

X
.

In particular, by assumption (6.2.5) on F and (6.2.6) on 2G0, this implies( nv∑
k=1

F (vk )2
)1/2 ≤

∥∥∥( nv∑
k=1

|vk |2
)1/2∥∥∥

X
≤ 2

∥∥∥( nu∑
k=1

|uk |2
)1/2∥∥∥

X
≤ 4

( nu∑
k=1

G0(uk )2
)1/2

.

We conclude p(0) ≥ 0 and thus p(0) = 0. Now with property (6.2.13) of p we have

p(ψ)+p(−ψ) ≥ p(0) = 0,

so p(ψ) > −∞ for all ψ ∈V. Combined with properties (6.2.12) and (6.2.13) this means

that p is a sublinear functional.

Step 3. To complete the prove of the lemma, we construct a semi-inner product

from our sublinear functional p using the Hahn–Banach theorem. Indeed, by applying

the Hahn-Banach theorem (see [Rud91, Theorem 3.2]), we obtain a linear function f on

V such that f (ψ) ≤ p(ψ) for all ψ ∈V. By property (6.2.15) we know that p(−φx ) ≤ 0 and

thus f (φx ) ≥ 0 for all x ∈ X0.

We take the complexification of V

VC = {v1 + i v2 : v1, v2 ∈V}

with addition and scalar multiplication defined as usual. We extend f to a complex

linear functional on this space by f (v1+i v2) = f (v1)+i f (v2) and define a pseudo-inner

product on X0 by 〈x, y〉 = f (ρx,y ) with ρx,y : X ∗ →C defined as ρx,y (x∗) = x∗(x)x∗(y) for

all x∗ ∈ X ∗. This is well-defined since

ρx,y = 1

4

(
φx+y −φx−y + iφx+i y − iφx−i y

) ∈VC.
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On X0 we define ‖·‖0 by the seminorm induced by this semi-inner product, i.e.

‖x‖0 :=
√
〈x, x〉 =

√
f (φx ).

Then for x ∈ X0 and T ∈ Γ we have by property (6.2.14) of p

‖T x‖2
0 ≤ p(φT x −φ2‖Γ‖`2 x )+ f (φ2‖Γ‖`2 x ) ≤ 4‖Γ‖2

`2‖x‖2
0.

By property (6.2.15) of p we have

‖x‖2
0 = f (φx ) ≥−p(−φx ) ≥ F (x)2, x ∈ X0,

and by property (6.2.16) of p we have

‖y‖2
0 = f (φy ) ≤ p(φy ) ≤ 16G0(y)2 = 16G(y)2, y ∈ Y .

So ‖·‖0 satisfies (6.2.7)-(6.2.9).

We want use the lattice structure of X to make Lemma 6.2.2 more concrete. Let us

first note the following property of a Hilbertian seminorm on a function space.

Lemma 6.2.3. Let X ⊆ L0(Ω) be a vector space with a Hilbertian seminorm ‖·‖0. Suppose

that there is a C > 0 such that for x1 ∈ L0(S) and x2 ∈ X

|x1| ≤ |x2|⇒ x1 ∈ X and ‖x1‖0 ≤C ‖x2‖0.

Then there exists a seminorm ‖·‖1 on X such that

1
C ‖x‖0 ≤ ‖x‖1 ≤C ‖x‖0 x ∈ X ,

‖x1 +x2‖2
1 = ‖x1‖2

1 +‖x2‖2
1, x1, x2 ∈ X : x1 ∧x2 = 0.

Proof. Let Π be the collection of all finite measurable partitions of Ω, partially ordered

by refinement. We define

‖x‖1 = inf
π∈Π

sup
π′≥π

( ∑
E∈π′

‖x 1E‖2
0

)1/2
, x ∈ X ,

which is clearly a seminorm. For a π ∈ Π, write π = {E1, · · · ,En} and let (εk )n
k=1 be a

Rademacher sequence. Then we have for all x ∈ X that

n∑
k=1

‖x 1Ek ‖2
0 = E

n∑
j=1

n∑
k=1

ε jεk〈x 1E j , x 1Ek 〉 = E
∥∥∥ n∑

k=1
εk · x 1Ek

∥∥∥2

0
≤C 2 ‖x‖2

0

and, since
⋃n

k=1 Ek =Ω, we deduce in the same fashion

‖x‖2
0 ≤C 2E

∥∥∥ n∑
k=1

εk · x 1Ek

∥∥∥2

0
=C 2

n∑
k=1

‖x 1Ek ‖2
0 =C 2

n∑
k=1

‖x 1Ek ‖2
0.
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Therefore we have 1
C ‖x‖0 ≤ ‖x‖1 ≤C ‖x‖0 for all x ∈ X and π ∈Π. Furthermore if x, y ∈ X

with x ∧ y = 0, then for π≥ {supp x,Ω\ supp x} we have∑
E∈π

‖(x + y)1E‖2
0 =

∑
E∈π

‖x 1E‖2
0 +

∑
E∈π

‖y 1E‖2
0.

So we also get ‖x + y‖2
1 = ‖x‖2

1 +‖y‖2
1, which proves the lemma.

With this lemma at our disposal, we are now ready to reformulate Lemma 6.2.2 in a

way that resembles Theorem 6.2.1. Note that if X is 2-convex and order-continuous, we

can take Y = X and F (x) = ‖x‖L2(Ω,v) for v ∈ (X 2)∗ of norm 1 in the following lemma.

This yields the difficult implication of Theorem 6.2.1 for r = 2, since in this case X ⊆
L2(Ω, w) and (6.2.19) implies w >∼ v .

Lemma 6.2.4. Let X and Y be Banach function spaces over a measure space (Ω,µ). Sup-

pose that Y is 2-convex, order-continuous and Y ,→ X contractively. Let F : X → [0,∞) be

a positive homogeneous function such that( n∑
k=1

F (xk )2
)1/2 ≤

∥∥∥( n∑
k=1

|xk |2
)1/2

∥∥∥
X

, x1, . . . , xn ∈ X .

Let Γ ⊆ L(X ) be an `2-bounded family of operators. Then there exists a w ∈ (Y 2)∗ with

‖w‖(Y 2)∗ <∼ 1 such that

‖T x‖L2(Ω,w) <∼ ‖Γ‖`2‖x‖L2(Ω,w) x ∈ X ∩L2(Ω, w), T ∈ Γ. (6.2.18)

‖x‖L2(Ω,w) >∼ F (x), x ∈ Y . (6.2.19)

Moreover, the implicit constants are absolute.

Proof. Define G : Y → [0,∞) by G(x) = ‖x‖Y , for which (6.2.6) follows from the contrac-

tive embedding Y ,→ X and the 2-convexity of Y . For m ∈ L∞(Ω) let Tm be the pointwise

multiplication operator given by Tm x = m · x for x ∈ X and set

M= {Tm : m ∈ L∞(Ω),‖m‖L∞(Ω) ≤ 1} ⊆L(X ). (6.2.20)

Note that M is `2-bounded with ‖M‖`2 = 1, so if we define

Γ0 := ( 1
2‖Γ‖`2

·Γ)∪ ( 1
2 ·M

)
,

then Γ0 is `2-bounded with ‖Γ0‖`2 ≤ 1. Applying Lemma 6.2.2 to Γ0, we obtain a Γ- and

M-invariant subspace Y ⊆ X0 ⊆ X and a Hilbertian seminorm ‖·‖0 on X0 satisfying

‖T x‖0 ≤ 4‖Γ‖`2‖x‖0, x ∈ X0, T ∈ Γ, (6.2.21)

‖T x‖0 ≤ 4‖x‖0, x ∈ X0,T ∈M, (6.2.22)

‖x‖0 ≥ F (x) x ∈ X0, (6.2.23)

‖x‖0 ≤ 4‖x‖Y , x ∈ Y . (6.2.24)
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Then (6.2.22) implies that if x1 ∈ L0(Ω), x2 ∈ X0 and |x1| ≤ |x2|, we have x1 ∈ X0 with

‖x1‖ ≤ 4‖x2‖. Thus we may, at the the loss of an absolute constant in (6.2.21)-(6.2.24),

furthermore assume

‖x1 +x2‖2
0 = ‖x1‖2

0 +‖x2‖2
0, x1, x2 ∈ X : x1 ∧x2 = 0 (6.2.25)

by Lemma 6.2.3.

Let u ∈ Y such that u > 0 a.e. and define a measure

λ(E) = ‖u 1E‖2
0, E ∈Σ.

Using (6.2.25), the σ-additivity of this measure follows from

λ
( ∞⋃

k=1
Ek

)
=

∥∥∥ ∞∑
k=1

u 1Ek

∥∥∥2

0
= lim

n→∞

∥∥∥ n∑
k=1

u 1Ek

∥∥∥2

0
=

∞∑
k=1

λ(Ek )

for E1,E2, · · · ∈Σpairwise disjoint, where the second step is justified by the order-continuity

of Y and (6.2.24). Moreover, again using (6.2.24), we have for any E ∈Σ with µ(E) = 0

λ(E) = ‖u 1E‖2
0 <∼ ‖u 1E‖Y = ‖1∅‖Y = 0

so λ is absolutely continuous with respect to µ. Thus, by the Radon-Nikodym theorem,

we can find a f ∈ L1(Ω) such that

‖u 1E‖2
0 =λ(E) =

∫
E

f dµ

for all E ∈Σ. Define w = u−2 f , which is a weight since u, f ≥ 0 a.e.

Take x ∈ Y and let (vn)∞n=1 be a sequence of functions of the form

vn = u
mn∑
j=1

an
j 1E n

j
, an

j ∈C, E n
j ∈Σ,

such that |vn | ↑ |x|. Then limn→∞‖vn−x‖0 = 0 by the order- continuity of Y and (6.2.24).

Therefore we have, by (6.2.25) and the monotone convergence theorem, that

‖x‖2
0 = lim

n→∞

mn∑
j=1

|an
j |2‖u 1E n

j
‖2

0 = lim
n→∞

mn∑
j=1

∫
E n

j

|an
j |2u2w dµ=

∫
Ω
|x|2w dµ.

In particular, (6.2.19) now follows from (6.2.23) and by (6.2.24) we have

‖w‖(Y 2)∗ ≤ sup
‖x‖Y ≤1

∫
Ω
|x|2w dµ<∼ 1.

For T ∈ Γ and x ∈ Y define mn = min(1,nu · |T x|−1) for n ∈N. Then mn ·T x ∈ Y and

|mn ·T x| ↑ |T x|. So, by the monotone convergence theorem, (6.2.21) and (6.2.22), we

have

‖T x‖L2(Ω,w) = lim
n→∞

(∫
Ω
|mn ·T x|2w dµ

) 1
2

= lim
n→∞‖mn ·T x‖0

<∼ ‖Γ‖`2 ‖x‖L2(Ω,w).
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To conclude, note that Y is dense in X ∩L2(Ω, w) by order-continuity. Therefore, since

T is bounded on X as well, this estimate extends to all x ∈ X ∩ L2(Ω, w), i.e. (6.2.18)

holds

Lemma 6.2.4 does not only cover Theorem 6.2.1 in the case r = 2, but it also allows

for Y 6= X . This enables us to deduce a factorization theorem for Banach function spaces

X that are not 2-convex. For the special case X = Lp (S) the following result can be found

in the work of Le Merdy and Simard [LS02, Theorem 2.1]. See also Johnson and Jones

[JJ78] and Simard [Sim99].

Theorem 6.2.5. Let X be an order-continuous Banach function space over a measure

space (Ω,µ) and let Γ⊆L(X ). Then Γ is `2-bounded if and only if there exists a constant

C > 0 such that for all y0, y1 ∈ X there is a weight w such that

‖T x‖L2(Ω,w) ≤C ‖x‖L2(Ω,w), x ∈ X ∩L2(Ω, w), T ∈ Γ (6.2.26)

‖y0‖L2(Ω,w) <∼ ‖y0‖X , (6.2.27)

‖y1‖L2(Ω,w) >∼ ‖y1‖X . (6.2.28)

Moreover C > 0 can be chosen such that ‖Γ‖`2 'C and the implicit constants are absolute.

Proof. We will first prove the ‘if’ statement, which is very similar to the ’if’ statement of

Theorem 6.2.1. Let x1, . . . , xn ∈ X and T1, . . . ,Tn ∈ Γ. Define

y0 =
( n∑

k=1
|xk |2

) 1
2

, y1 =
( n∑

k=1
|Tk xk |2

) 1
2

.

Then we have, by applying (6.2.26)-(6.2.28), that

‖y1‖2
X
<∼

n∑
k=1

∫
Ω
|Tk xk |2w dµ≤C 2

n∑
k=1

∫
Ω
|xk |2w dµ<∼C 2‖y0‖2

X ,

so ‖Γ‖`2 <∼C .

Now for the converse take y0, y1, ũ ∈ X with ‖y0‖X = ‖y1‖X = ‖ũ‖X = 1 and ũ > 0 a.e.

Define

u := 1

3

(|y0|∨ |y1|∨ ũ
)
,

then ‖u‖X ≤ 1 and ‖y j u−1‖L∞(Ω) ≤ 3 for j = 0,1. Let

Y = {x ∈ X : x2u−1 ∈ X }

with norm ‖x‖Y := ‖x2u−1‖1/2
X . Then Y is an order-continuous Banach function space

and for x1, · · · , xn ∈ Y we have∥∥∥( n∑
k=1

|xk |2
)1/2∥∥∥

Y
=

∥∥∥ n∑
k=1

|xk |2u−1
∥∥∥1/2

X
≤

( n∑
k=1

∥∥|xk |2u−1∥∥
X

)1/2 =
( n∑

k=1
‖xk‖2

Y

)1/2
,
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i.e. Y is 2-convex. Moreover by Hölders inequality for Banach function spaces ([LT79,

Proposition 1.d.2(i)]), we have

‖x‖X ≤ ∥∥x2u−1∥∥1/2
X ‖u‖1/2

X ≤ ‖x‖Y , x ∈ Y ,

so Y is contractively embedded in X . Conversely we have for j = 0,1

‖y j ‖Y ≤ ‖y j ‖X
∥∥y j u−1∥∥

L∞(Ω) ≤ 3‖y j ‖X . (6.2.29)

Now define

F (x) =
{
‖x‖X , if x ∈ span{y1},

0, otherwise

and for x1, . . . , xn ∈ X let a1, . . . , an ∈C be such that xk = ak y1 if xk ∈ span{y1} and ak = 0

otherwise. Then we have( n∑
k=1

F (xk )2
)1/2 =

( n∑
k=1

|ak |2
)1/2 ≤

∥∥∥( n∑
k=1

|xk |2
)1/2∥∥∥

X
.

Therefore, applying Lemma 6.2.4, there is a weight w ∈ (Y 2)∗ with ‖w‖(Y 2)∗ <∼ 1 such that

(6.2.18) and (6.2.19) hold. In particular, using (6.2.29), this implies

‖y0‖L2(Ω,w) ≤
∥∥|y0|2

∥∥1/2
Y 2 ‖w‖1/2

(Y 2)∗
<∼ ‖y0‖Y ≤ 3‖y0‖X ,

‖y1‖L2(Ω,w) >∼ ‖y1‖X ,

proving the theorem.

6.3. EXTENSIONS OF OPERATORS I: FACTORIZATION

In this section we will apply Theorem 6.2.5 to obtain a more general version of Theorem

6.1.1. We will apply this factorization-based extension theorem to deduce the following

results:

• We will show that the dyadic UMD+ property is equivalent to the UMD property

on Banach function spaces.

• We will show that the UMD property is necessary for the `2-sectoriality of certain

differentiation operators on Lp (Rd ; X ), where X is a Banach function space.

Moreover, in the next section we will use it to prove the boundedness of the lattice

Hardy–Littlewood maximal operator on UMD Banach function spaces.

Let p ∈ [1,∞) and let w be a weight on Rd . For a bounded linear operator T on

Lp (Rd , w), we define the linear operator T̃ on Lp (Rd , w)⊗X by setting

T̃ ( f ⊗x) := T f ⊗x, f ∈ Lp (Rd , w), x ∈ X ,

and extending by linearity. If T̃ extends to a bounded operator on Lp (Rd , w ; X ) we de-

note this operator again by T̃ . For a family of bounded operators Γ ⊆ L(Lp (Rd , w)) we

denote Γ̃ := {T̃ : T ∈ Γ}.
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Theorem 6.3.1. Let X be an order-continuous Banach function space over a measure

space (Ω,Σ,µ), let p ∈ (1,∞) and w ∈ Ap . Assume that there is a family of operators Γ ⊆
L(Lp (Rd , w)) and an increasing function φ : R+ →R+ such that

• For all weights v : Rd → (0,∞) we have

[v]A2 ≤φ
(
sup
T∈Γ

‖T ‖L2(Rd ,v)→L2(Rd ,v)

)
.

• Γ̃ is `2-bounded on Lp (Rd , w ; X ).

Let f , g ∈ Lp (Rd , w ; X ) and suppose that there is an increasing function ψ : R+ →R+ such

that for all v ∈ A2 we have

‖ f (·,ω)‖L2(Rd ,v) ≤ψ([v]A2 )‖g (·,ω)‖L2(Rd ,v), ω ∈Ω.

Then there is an absolute constant c > 0 such that

‖ f ‖Lp (Rd ,w ;X ) ≤ c ·ψ◦φ(
c ‖Γ̃‖`2

)‖g‖Lp (Rd ,w ;X ).

Proof. Let u ∈ Lp (Rd , w) be such that there is a cK > 0 with u ≥ cK 1K for every compact

K ⊆Rd . Let x ∈ X be such that x > 0 a.e. and

‖u ⊗x‖Lp (Rd ,w ;X ) ≤ ‖g‖Lp (Rd ,w ;X ).

Since X is order-continuous, Lp (Rd , w ; X ) is an order-continuous Banach function space

over the measure space

(Rd ×Ω, w dt dµ).

So, by Theorem 6.2.5, we can find a weight v on Rd ×Ω and a numerical constant c > 0

such that

‖T h‖L2(Rd×Ω,v ·w) ≤ c ‖Γ̃‖`2 ‖h‖L2(Rd×Ω,v ·w) (6.3.1)

for all T ∈ Γ̃ and h ∈ Lp (Rd , w ; X )∩L2(Rd ×Ω, v ·w),∥∥|g |+u ⊗x
∥∥

L2(Rd×Ω,v ·w) ≤ c
∥∥|g |+u ⊗x

∥∥
Lp (Rd ,w ;X ), (6.3.2)

‖ f ‖L2(Rd×Ω,v ·w) ≥
1

c
‖ f ‖Lp (Rd ,w ;X ). (6.3.3)

Note that (6.3.2) and the definition of x imply

‖g‖L2(Rd×Ω,v ·w) ≤ 2c ‖g‖Lp (Rd ,w ;X ). (6.3.4)

Moreover (6.3.2) implies that u ∈ L2(Rd , v(·,ω) · w) for µ-a.e. ω ∈ Ω. Therefore by the

definition of u we know that v(·,ω) ·w is locally integrable on Rd . Let A be the Q-linear
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span of indicator functions of rectangles with rational corners, which is a a countable,

dense subset of both Lp (Rd , w) and L2(Rd , w(·,ω)) for µ-a.e. ω ∈Ω. Define

B = {
ψ⊗ (x 1E ) :ψ ∈A, E ∈Σ}⊆ Lp (Rd , w ; X )∩L2(Rd ×Ω, v ·w),

where the inclusion follows from u ⊗ x ∈ L2(Rd ×Ω, v ·w). Testing (6.3.1) on all h ∈B we

find that for all T ∈ Γ and ψ ∈A

‖Tψ‖L2(Rd ,v(·,ω)·w) ≤ c ‖Γ̃‖`2 ‖ψ‖L2(Rd ,v(·,ω)·w), ω ∈Ω.

Since A is countable and dense in L2(Rd , w(·, s)), we have by assumption that v(·,ω)w ∈
A2 with [v(·,ω) ·w]A2 ≤ φ(c ‖Γ̃‖`2 ) for µ-a.e. ω ∈ Ω. Therefore, using Fubini’s theorem,

our assumption, (6.3.3) and (6.3.4), we obtain

‖ f ‖Lp (Rd ,w ;X ) ≤ c
(∫
Ω

∫
Rd

| f |2v ·w dt dµ
)1/2

≤ c ·ψ◦φ(
c ‖Γ̃‖`2

)(∫
Ω

∫
Rd

|g |2v ·w dt dµ
)1/2

≤ 2c2 ·ψ◦φ(
c ‖Γ̃‖`2

)‖g‖Lp (Rd ,w ;X ),

proving the statement.

Let us point out some choices of Γ⊆L(Lp (Rd , w)) that satisfy the assumptions The-

orem 6.3.1 when X has UMD property:

• Γ= {H }, where H is the Hilbert transform.

• Γ= {Rk : k = 1, . . . ,d} where Rk is the k-th Riesz projection.

• Γ := {TB : B a ball in Rd }, where TB : Lp (Rd , w) → Lp (Rd , w) is the averaging opera-

tor

TB f (t ) := 〈 f 〉1,B 1B (t ), t ∈Rd .

In each of these cases one obtains Theorem 6.1.1 as a corollary:

Proof of Theorem 6.1.1. For j = 1, · · · ,d denote the k-th Riesz projection on Lp (Rd , w) by

Rk and set Γ= {Rk : k = 1, . . . ,d}. Then we have for any weight v on Rd

[v]A2
<∼d

(
sup
T∈Γ

‖T ‖L2(Rd ,v)→L2(Rd ,v)

)4
.

by [Gra14a, Theorem 7.4.7]. Moreover by the triangle inequality, the fact that we can test

`2-boundedness on distinct operators, Theorem 2.7.1 and Theorem 3.4.1 we have

‖Γ̃‖`2 ≤
d∑

k=1
‖Rk‖Lp (Rd ,w ;X )→Lp (Rd ,w ;X )

<∼X ,p,d [w]
max{ 1

p−1 ,1}

Ap
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Thus Γ satisfies the assumptions of Theorem 6.3.1. Now let f , g ∈ Lp (Rd , w ; X ) and sup-

pose that for some p0 ∈ (1,∞) there is an increasing function φ : R+ → R+ such that for

all v ∈ Ap0 we have

‖ f (·,ω)‖Lp0 (Rd ,v) ≤φ([v]Ap0
)‖g (·,ω)‖Lp0 (Rd ,v), ω ∈Ω.

Then by Rubio de Francia extrapolation (Theorem 2.3.3) there is an increasing function

ψ : R+ →R+, depending on φ, p, p0,d , such that for all v ∈ A2 we have

‖ f (·,ω)‖L2(Rd ,v) ≤ψ([v]A2 )‖g (·,ω)‖L2(Rd ,v), ω ∈Ω.

Therefore by Theorem 6.3.1 we obtain

‖ f ‖Lp (Rd ,w ;X ) ≤ c ·ψ(
CX ,p,d · [w]

max{ 4
p−1 ,4}

Ap

)‖g‖Lp (Rd ,w ;X )

which implies the conclusion of Theorem 6.1.1.

6.3.1. RANDOMIZED UMD PROPERTIES

As a first application of Theorem 6.3.1, we will prove the equivalence of the UMD prop-

erty and the dyadic UMD+ property, introduced in Subsection 2.4.2. Two natural ques-

tions regarding these randomized UMD properties are the following:

• Does either the UMD− property or the UMD+ property imply the UMD property?

For the UMD− property it turns out that this is not the case, as any L1-space has it,

see [Gar90]. For the UMD+ property this is an open problem. For general Banach

spaces it is known that one cannot expect a better than quadratic bound relating

βp,X and β+
p,X (see [Gei99, Corollary 5]).

• The dyadic UMD property implies its non-dyadic counterpart. Does the same

hold for the dyadic UMD+ and UMD− properties? For the UMD− property it is

known that the constants β−
p,X and β∆,−

p,X are not the same in general, as explained

in [CV11]. The relation between the norm of the Hilbert transform on Lp (T; X )

and β∆,+
p,X and β∆,+

p,X has recently been investigated in [OY19].

Using Theorem 6.3.1, we will show that on Banach function spaces the dyadic UMD+

property implies the UMD property (and thus also the UMD+ property), with a quadratic

estimate of the respective constants. The equivalence of the UMD+ property and the

UMD property on Banach function spaces has previously been shown in unpublished

work of T.P. Hytönen, using Stein’s inequality to deduce the `2-boundedness of the Pois-

son semigroup on Lp (Rd ; X ), from which the boundedness of the Hilbert transform on

Lp (Rd ; X ) was concluded using Theorem 6.2.5.

Theorem 6.3.2. Let X be a Banach function space over a measure space (Ω,µ). Assume

that X has the dyadic UMD+ property and cotype q ∈ (1,∞). Then X has the UMD prop-

erty with for p ∈ (1,∞)

βp,X <∼p q
(
cq,X β

∆,+
p,X

)2.
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Proof. Denote the standard dyadic system on [0,1) by D , i.e.

D := ⋃
k∈N

Dk , Dk := {2−k ([0,1)+ j ) : j = 0, . . . ,2k −1}.

Viewing [0,1) as the torus T, set Dα
k

:= Dk +α and Dα := D +α for α ∈ {0, 1
3 , 2

3 }. Then

(Dα
k )n

k=1 is a Paley-Walsh filtration on [0,1) for all n ∈ N and α ∈ {0, 1
3 , 2

3 }. Let p ∈ (1,∞)

and define

Γ :=
{
E(·|Dα

k ) : k ∈N, α ∈ {
0, 1

3 , 2
3

}}⊆L(Lp ([0,1))).

By a dyadic version of Stein’s inequality, which can be proven analogously to [HNVW16,

Theorem 4.2.23], we have for f1, · · · , fn ∈ Lp ([0,1); X )∥∥∥ ∑
α∈{0, 1

3 , 2
3 }

n∑
k=1

εkE( fk |Dk )
∥∥∥

Lp ([0,1)×Ω′;X )
≤ 3β∆,+

p,X

∥∥∥ n∑
k=1

εk fk

∥∥∥
Lp ([0,1)×Ω′;X )

,

where (εk )n
k=1 is a Rademacher sequence on a probability space (Ω′,P). So, by Propo-

sition 2.4.1, Proposition 2.6.3 and the fact that we can test `2-boundedness on distinct

operators, we know that Γ̃ is `2-bounded with

‖Γ̃‖`2 <∼p
p

qcq,X β
∆,+
p,X . (6.3.5)

Let w : [0,1) → (0,∞) and set C := supT∈Γ ‖T ‖L2([0,1),w)→L2([0,1),w). Let I ⊆ [0,1) be

an interval. Then there exists an I ′ ∈ ⋃
α∈{0, 1

3 , 2
3 } D

α such that I ⊆ I ′ and |I ′| ≤ 3|I |. Fix

α ∈ {0, 1
3 , 2

3 } and k ∈N such that I ′ ∈Dα
k . Applying E(·|Dα

k ) to the function f = (w+ε)−1 1I ′

for some ε> 0 we obtain∫
I ′

( 1

|I ′|
∫

I ′
(w(t )+ε)−1 dt

)2
w(s) ds ≤C 2

∫
I ′

w(t )

(w(t )+ε)2 dt

which implies

〈w〉1,I
〈

(w +ε)−1〉
1,I ≤ 9〈w〉1,I ′

〈
(w +ε)−1〉

1,I ′ ≤ 9C 2

So by letting ε → 0 with the monotone convergence theorem we obtain w ∈ A2 with

[w]A2
<∼C 2.

For I ∈ D let D I be the Haar projection as defined in (3.8.1). Let A be the set of all

f ∈ Lp ([0,1); X ) such that D I f 6= 0 for only finitely many I ∈D . Then for all f ∈A, w ∈ A2

and εI ∈ {−1,1} we have∥∥∥ ∑
I∈D

εI D I f (·,ω)
∥∥∥

L2([0,1),w)
<∼ [w]A2 ‖ f (·,ω)‖L2([0,1),w), ω ∈Ω

by Theorem 3.8.1. Now note that Theorem 6.3.1 also holds with [0,1) in place of Rd with

the exact same proof. Thus, applying this adapted version of Theorem 6.3.1, we obtain∥∥∥ ∑
I∈D

εI D I f
∥∥∥

Lp ([0,1);X )
<∼p q

(
cq,X β

∆,+
p,X

)2‖ f ‖Lp ([0,1);X ) (6.3.6)
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for all f ∈A and εI ∈ {−1,1}. This extends to all f ∈ Lp ([0,1); X ) by density (see [HNVW16,

Lemma 4.2.12]), so

βp,X <∼p q
(
cq,X β

∆,+
p,X

)2

as (6.3.6) characterizes the UMD property of X by [HNVW16, Theorem 4.2.13].

Remark 6.3.3. The assumption that X has finite cotype may be omitted in Theorem

6.3.2, since the dyadic UMD+ property implies that there exists a constant Cp > 0 such

that X has cotype Cpβ
+,∆
p,X with constant less than Cp (see [HLN16, Lemma 32]). This

would yield the bound βp,X <∼p
(
β∆,+

p,X

)3 for all p ∈ (1,∞) in the conclusion of Theorem

6.3.2.

6.3.2. `2-SECTORIALITY AND THE UMD PROPERTY

Recall the definition of a sectorial operator A from Section 5.2. We say that a sectorial

operator A on a Banach function space X is `2-sectorial (respectively R-sectorial) if the

resolvent set {
λR(λ, A) :λ 6= 0, |argλ| >σ}

is `2-bounded (respectively R-bounded) for some σ ∈ (0,π).

It is well-known that both the differentiation operator D f := f ′ with domain W 1,p (R; X )

and the Laplacian −∆with domain W 2,p (Rd ; X ) are R-sectorial if X has the UMD prop-

erty (see [KW04, Example 10.2] and [HNVW17, Theorem 10.3.4]). Since any UMD Ba-

nach space has finite cotype, it follows from Proposition 2.6.3 that these differentiation

operators are also `2-sectorial. Using Theorem 6.3.1 we can turn this into an ‘if and only

if’ statement for order-continuous Banach function spaces. We start with a lemma to

check the weight assumption in Theorem 6.3.1.

Lemma 6.3.4. Let 0 6= ϕ ∈ L1(Rd )∩L2(Rd ) be real-valued and let w : Rd → (0,∞) be a

weight. Suppose that there is a C > 0 such that for all f ∈ L2(Rd , w) and λ ∈Rwe have

‖ϕλ∗ f ‖L2(Rd ,w) ≤C ‖ f ‖L2(Rd ,w)

where ϕλ(t ) := |λ|dϕ(λt ) for t ∈Rd . Then w ∈ A2 and [w]A2
<∼φ,d C 4.

Proof. Let ψ=ϕ−1 ∗ϕ. Then ψ(−t ) =ψ(t ) for all t ∈Rd and ψ(0) = ‖ϕ‖2
L2(Rd )

> 0. More-

over

‖ψ‖L∞(Rd ) ≤ ‖ϕ‖2
L2(Rd )

,

so ψ is continuous by the density of Cc (Rd ) in L2(Rd ). Therefore we can find a δ > 0

such that ψ(t ) > δ for all |t | < δ. Define ψλ(t ) := λd ψ(λt ) for λ> 0. Then we have for all

f ∈ L1(Rd )∩L2(Rd , w) that

‖ψλ∗ f ‖L2(Rd ,w) = ‖ϕ−λ∗ϕλ∗ f ‖L2(Rd ,w) ≤C 2‖ f ‖L2(Rd ,w)
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Now let B be a ball in Rd of radius r > 0 and let f ∈ L1(Rd )∩L2(Rd , w) be nonnegative

and supported on Q. Take λ= δ
2r , then for t ∈ B

ψλ∗ f (t ) =λd
∫

B
ψ

(
λ(t − s)

)
f (s) ds ≥d

δd+1

|B |
∫

B
f (s) ds. (6.3.7)

Now let w : Rd → (0,∞) be a weight. Applying (6.3.7) and the assumption to the function

f = (w +ε)−1 1B for some ε> 0 we obtain∫
B

( 1

|B |
∫

B
(w(t )+ε)−1 dt

)2
w(s) ds <∼φ,d C 4

∫
B

w(t )

(w(t )+ε)2 dt

which implies

〈w〉1,B
〈

(w +ε)−1〉
1,B dt <∼φ,d C 4

So, by letting ε→ 0 with the monotone convergence theorem, we obtain w ∈ A2 with

[w]A2
<∼φ,d C 4.

Using Lemma 6.3.4 to check the weight condition of Theorem 6.3.1, the announced

theorem follows readily.

Theorem 6.3.5. Let X be an order-continuous Banach function space and let p ∈ (1,∞).

The following are equivalent:

(i) X has the UMD property.

(ii) The differentiation operator D on Lp (R; X ) is `2-sectorial.

(iii) The Laplacian −∆ on Lp (Rd ; X ) is `2-sectorial.

Proof. We have already discussed the implications (i) ⇒ (ii) and (i) ⇒ (iii). We will prove

(iii) ⇒ (i), the proof of (ii) ⇒ (i) is similar. Take λ ∈R and define the operators

Tλ :=−λ2∆(1−λ2∆)−2 =−∆R
(
− 1

λ2 ,−∆
)
· 1

λ2 R
(
− 1

λ2 ,−∆
)
.

Since −∆ is `2-sectorial on Lp (Rd ; X ), we know that the family of operators

Γ̃= {
T̃λ :λ ∈R}

is `2-bounded on Lp (Rd ; X ). Furthermore we have for f ∈ L2(Rd ) that T1 f =ϕ∗ f with

ϕ ∈ L1(Rd )∩L2(Rd ) such that

ϕ̂(ξ) = (2π|ξ|)2(
1+ (2π|ξ|)2

)2 , ξ ∈Rd .

Moreover Tλ f =ϕλ∗ f for ϕλ(x) = |λ|dϕ(λx) and λ ∈R. Using Lemma 6.3.4 this implies

that the assumptions of Theorem 6.3.1 are satisfied.
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Since the Riesz projections Rk for k = 1, . . . ,d are bounded on L2(Rd , w) for all w ∈ A2

by Theorem 3.4.1, applying Theorem 6.3.1 we find that for all f ∈C∞
c (Rd ; X )

‖Rk f ‖Lp (Rd ;X )
<∼d ‖Γ̃‖4

`2‖ f ‖Lp (Rd ;X ), k = 1, · · · ,d .

So, by the density of C∞
c (Rd ; X ) in Lp (Rd ; X ), the Riesz projections Rk are bounded on

Lp (Rd ; X ), which means that X has the UMD property by Theorem 2.7.1.

The proof scheme of Theorem 6.3.5 can be adapted to various other operators. We

mention two examples:

• In [7] it was shown that the UMD property is sufficient for the `2-boundedness of

a quite large family of convolution operators on Lp (Rd ; X ). Using a similar proof

as the one presented in Theorem 6.3.5, one can show that the UMD property of

the Banach function space X is necessary for the `2-boundedness of this family of

operators.

• On a general Banach space X we know by a result of Coulhon and Lamberton

[CL86] (recently quantified by Hytönen [Hyt15]), that the maximal Lp -regularity

of (−∆)1/2 implies that X has the UMD property. Maximal Lp -regularity implies

the R-sectoriality of (−∆)1/2 on Lp (Rd ; X ) by a result of Clément and Prüss [CP01]

and the converse holds if X has the UMD property by [Wei01b]. It is therefore

a natural question to ask whether the R-sectoriality of (−∆)1/2 on Lp (Rd ; X ) also

implies that X has the UMD property. By the equivalence ofR-sectoriality and `2-

sectoriality on Banach lattices with finite cotype, we can show that this is indeed

the case for Banach function spaces with finite cotype, using a similar proof as

in the proof of Theorem 6.3.5. The question for general Banach spaces remains

open. This is also the case for the question whether the R-sectoriality of −∆ on

Lp (Rd ; X ) implies that X has the UMD property, see [HNVW17, Problem 7].

6.4. THE LATTICE HARDY–LITTLEWOOD MAXIMAL OPERATOR

We now turn our attention to the lattice Hardy–Littlewood maximal operator, which

will play an important role in our sparse domination-based extension theorem. We will

study this operator on a space of homogeneous type, although we will restrict ourselves

to Rd for the extension theorem. We will start by introducing the Hardy–Littlewood

property of a Banach function space X and study some of its properties. Afterwards we

will be in a position to define the lattice Hardy–Littlewood maximal operator and deduce

sharp weighted bounds using sparse domination. We will end this section with a com-

parison between the lattice Hardy–Littlewood maximal operator and the Rademacher

maximal operator introduced in Section 3.6.
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6.4.1. THE HARDY–LITTLEWOOD PROPERTY

Let X be a Banach function space, let (S,d ,µ) be a space of homogeneous type with

dyadic system D and let D ⊆D be a finite collection of dyadic cubes. For f ∈ L1
loc(S; X )

we define

MD
Lat f := sup

Q∈D
〈| f |〉1,Q 1Q ,

where the supremum is taken in the lattice sense. We say that X has the Hardy–Littlewood

property and write X ∈ HL if, for some p ∈ (1,∞), we have

µp,X := sup
D

‖MD
Lat‖Lp ([0,1);X )→Lp ([0,1);X ) <∞,

where the supremum is taken over all finite collections of dyadic cubes D in [0,1). We

took the unit interval [0,1) in this definition, since it was shown by Deleaval, Kriegler

and Kemppainen in [DKK18, Lemma 3.4] that for any finite collection of dyadic cubes

D ⊆D one has

‖MD
Lat‖Lp (S;X )→Lp (S;X ) ≤µp,X . (6.4.1)

The Hardy–Littlewood property is independent of p ∈ (1,∞), which was shown by

García–Cuerva, Macias and Torrea in [GMT93]. Our first goal will be to prove sparse

domination for MD
Lat, which also implies this p-independence. We start with a weak

L1-estimate.

Lemma 6.4.1. Let X be a Banach function space and let (S,d ,µ) be a space of homoge-

neous type with a dyadic system D . If X ∈ HL, then we have for any finite collection of

dyadic cubes D ⊆D and p ∈ (1,∞)

‖MD
Lat‖L1(S;X )→L1,∞(S;X ) <∼S,D ,p µp,X .

Proof. Fix D ⊆D finite and take f ∈ L1(S; X ) with norm 1. For λ> 0 define

S := {
Q ∈D : Q maximal (w.r.t inclusion) such that

〈‖ f ‖X
〉

1,Q >λ}
and set

O := ⋃
Q∈S

Q = {
MD (‖ f ‖X ) >λ}

.

For a fixed P ∈D note that if P \O 6=∅, then

〈| f |〉1,P 1P =
〈
| f |1S\O + ∑

Q∈S :
Q⊆P

| f |1Q

〉
1,P

1P

=
〈
| f |1S\O + ∑

Q∈S
〈| f |〉1,Q 1Q

〉
1,P

1P

using the disjointness of the cubes in S and〈〈 f 〉1,Q 1Q
〉

1,P = 〈 f 1Q〉1,P , Q ⊆ P
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in the second equality. Taking the supremum over P ∈D we can estimate

MD
Lat f ≤ sup

P∈D

〈
| f |1S\O + ∑

Q∈S
〈| f |〉1,Q 1Q

〉
1,P

1P +〈| f |〉1,P 1O

≤ MD
Latg +b,

where b = 〈| f |〉1,P 1O and

g := g1 + g2 := | f |1S\O + ∑
Q∈S

〈| f |〉1,Q 1Q .

By the disjointness of the cubes inS , we have ‖g‖L1(S;X ) = ‖ f ‖Lr (S;X ) = 1. Moreover, since

suppb ⊆O = {
MD (‖ f ‖X ) >λ}

and MD is weak L1-bounded by Proposition 2.2.1, we have

∣∣{‖b‖X >λ}∣∣≤ ∣∣{MD (‖ f ‖X
)>λ}∣∣≤ 1

λ
.

Next we estimate the L∞-norm of g . We have, by the Lebesgue differentiation theorem,

that

‖g1‖X = ‖ f ‖X 1S\O ≤ MD (‖ f ‖X
)

1S\O ≤λ
and, using the maximality of the cubes in S , we have

‖g2‖X =
∥∥∥ ∑

Q∈S
〈| f |〉1,Q 1Q

∥∥∥
X
<∼S,D

∑
Q∈S

〈‖ f ‖X 〉1,Q̂ 1Q ≤λ,

where Q̂ is the dyadic parent of Q ∈S . Thus we have ‖g‖L∞(S;X ) <∼S,D λ.

Combining the estimates for g and b with (6.4.1), we obtain for p ∈ (1,∞)∣∣∣{∥∥MD
Lat f

∥∥
X > 2λ

}∣∣∣≤ ∣∣∣{∥∥MD
Latg

∥∥
X >λ

}∣∣∣+ ∣∣{‖b‖X >λ}∣∣
≤µp,X

‖g‖p
Lp (S;X )

λp + 1

λ

<∼S,D ,p µp,X
‖g‖L1(S;X ) ·λp−1

λp + 1

λ
≤µp,X

2

λ
.

Taking the supremum over f ∈ L1(S; X ) with norm 1 yields the conclusion.

Using Lemma 6.4.1 we can prove sparse domination for MD
Lat, which was shown for

an arbitrary locally finite (not necessarily doubling) Borel measure on Rd by Hänninen

and the author in [9]. The argument presented in [9] was tailor-made for MD
Lat, whereas

here we prefer to employ the abstract sparse domination principle in Theorem 3.2.2

once more. We will revisit the argument from [9] in Section 6.5 in the context of the

bisublinear lattice Hardy–Littlewood maximal operator.
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Proposition 6.4.2. Let X be a Banach function space, let D be a dyadic system in S and

p ∈ (1,∞). Suppose that X is r -convex for r ∈ [1,∞) and X ∈ HL. Then for any finite

collection of cubesD ⊆D and f ∈ L1(S; X ) there exists a 1
2 -sparse collection of cubesS ⊆D

such that ∥∥MD
Lat f (s)

∥∥
X
<∼S,D ,p,r µp,X ·

( ∑
Q∈S

〈‖ f ‖X
〉r

1,Q 1Q (s)
)1/r

, s ∈ S.

Proof. We will check the assumptions of Theorem 3.2.2 for MD
Lat. By Lemma 6.4.1 we

know that we can view MD
Lat as a bounded operator

MD
Lat : L1(S; X ) → L1,∞(

S; X (`∞(D))
)

given by

MD
Lat f = (〈| f |〉1,Q 1Q

)
Q∈D .

For any collection of cubes D′ ⊆D we interpret MD′
Lat similarly. For Q ∈D set

D(Q) := {P ∈D : P ⊆Q}

and define TQ := MD(Q)
Lat . Then {TQ }Q∈D is a 1-localization family for MD

Lat. Furthermore

we have for f ∈ L1(S; X ) and s ∈Q ∈D that

M#
MD

Lat,Q
f (s) = sup

Q ′∈D (Q):
s∈Q ′

esssup
s′,s′′∈Q ′

∥∥TQ\Q ′ f (s′)−TQ\Q ′ f (s′′)
∥∥

X (`∞(D)) = 0,

where the last step follows from the fact that TQ\Q ′ f = MD(Q)\D(Q ′)
Lat f is constant on Q ′.

So M#
MD

Lat,Q
is trivially bounded from L1(S; X ) to L1,∞(S).

To check the localized `r -estimate for MD
Lat take Q1, · · · ,Qn ∈D with Qn ⊆ ·· · ⊆ Q1.

Then for s ∈Qn and f ∈ L1(S; X ) we have∥∥TQ1 f (s)
∥∥

X (`∞(D)) =
∥∥∥sup

{∣∣TQn f (s)
∣∣, ∣∣TQn−1\Qn f (s)

∣∣, . . . ,
∣∣TQ1\Q2 f (s)

∣∣}∥∥∥
X (`∞(D))

≤
∥∥∥(∣∣TQn f (s)

∣∣r +
n−1∑
k=1

∣∣TQk \Qk+1 f (s)
∣∣r

)1/r ∥∥∥
X (`∞(D))

≤
(∥∥TQn f (s)

∥∥r
X (`∞(D)) +

n−1∑
k=1

∥∥TQk \Qk+1 f (s)
∥∥r

X (`∞(D))

)1/r
,

using the r -convexity of X in the last step. Having checked all assumptions of Theorem

3.2.2 for MD
Lat, it follows that for any Q ∈D there is a 1

2 -sparse collection of cubes SQ ⊆
D(Q) such that∥∥TQ (s)

∥∥
Y
<∼S,D ,p,r µp,X

( ∑
P∈S

〈‖ f ‖X
〉r

1,P 1P (s)
)1/r

, s ∈Q.

Let D′ be the maximal cubes (with respect to set inclusion) of D, which are pairwise

disjoint. Then S :=⋃
Q∈D′ SQ is a 1

2 -sparse collection of cubes that satisfies the claimed

sparse domination as TQ (s) = MD
Lat f (s) for any Q ∈D′ and s ∈ Q and MD

Lat f is zero out-

side
⋃

Q∈D′ Q.
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As a direct corollary of Proposition 6.4.2 and Proposition 3.2.4, we now see that

the Hardy–Littlewood property is independent of p ∈ (1,∞). Moreover MD
Lat satisfies

weighted bounds, which we will discuss more generally in Subsection 6.4.2.

Corollary 6.4.3. Let X be a Banach function space with X ∈ HL. For p, q ∈ (1,∞) we have

µp,X 'p,q µq,X .

The sparse domination result in Proposition 6.4.2 is sharp. In fact, we can show that

the exponent

r∗ := sup{r ∈ (1,∞) : X is r -convex}

is critical: The sparse domination in Proposition 6.4.2 holds for all r < r∗ and fails for all

r > r∗. Moreover it holds for r = r∗ if X is r∗-convex, but we do not settle the case r = r∗

if X is not r -convex, which happens for example if X = Lp,r (R) with p ∈ (1,r ).

Proposition 6.4.4. Let X be a Banach function space and let D be the standard dyadic

system in [0,1). Take r ∈ (1,∞) and assume that for each finite collection D ⊆D of dyadic

intervals and f ∈ L1([0,1); X ) there exists a 1
2 -sparse collection of intervals S ⊆ D such

that

‖MD
Lat f (t )‖X <∼X ,r

( ∑
Q∈S

〈‖ f ‖X
〉r

1,Q 1Q (t )
)1/r

, t ∈ [0,1).

Then X is q-convex for all q ∈ [1,r ).

Proof. Fix n ∈ N and define Qk = [0,2−(n−k)) for k = 0, · · · ,n. Let x1, · · · , xn ∈ X be pair-

wise disjointly supported and assume without loss of generality that ‖x1‖X ≤ ·· · ≤ ‖xn‖X .

Define D =⋃n
k=0 Qk and f =∑n

k=1 1Qk \Qk−1 xk . Let S ⊆D be 1
2 -sparse such that

‖MD
Lat f (t )‖X <∼X ,r

( ∑
Q∈S

〈‖ f ‖X
〉r

1,Q 1Q (t )
)1/r

, t ∈ [0,1). (6.4.2)

Note that

〈| f |〉1,Qk ≥ µ(Qk \Qk−1)

µ(Qk )
|xk | ≥

(
1− 1

2

)
|xk | =

1

2
|xk |.

Since the xk ’s are disjointly supported, we have
∣∣∑n

k=1 xk
∣∣ = sup1≤k≤n |xk |. Therefore we

have ∥∥∥ n∑
k=1

xk

∥∥∥
X
= ∥∥ sup

1≤k≤n
|xk |

∥∥
X ≤ 2‖MD

Lat f (t )‖X , t ∈Q0. (6.4.3)

Moreover, since ‖x1‖X ≤ ·· · ≤ ‖xn‖X , we have that

〈‖ f ‖X 〉1,Qk = 1

µ(Qk )

k∑
j=1

µ(Q j \Q j−1)‖x j ‖X ≤ ‖xk‖X .

Since f ≡ 0 on Q0, this yields( ∑
Q∈S

〈‖ f ‖X
〉r

1,Q 1Q (t )
)1/r ≤

( n∑
k=1

(〈‖ f ‖〉1,Qk

)r
)1/r ≤

( n∑
k=1

‖xk‖r
X

) 1
r

, t ∈Q0 (6.4.4)
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Combining (6.4.2), (6.4.3) and (6.4.4), we deduce that∥∥∥ n∑
k=1

xk

∥∥∥
X
<∼X ,r

( n∑
k=1

‖xk‖r
X

) 1
r

,

for all pairwise disjoint vectors x1, · · · , xn ∈ X . This is called an upper r -estimate for X .

By [LT79, Theorem 1.f.7], this implies that X is q-convex for all q ∈ [1,r ).

Remark 6.4.5. The proof of Proposition 6.4.4 can be extended to any space of homo-

geneous type (S,d ,µ) with a dyadic system D such that for any n ∈ N there are dyadic

cubes Q0 ⊆ ·· · ⊆Qn with µ(Qk−1) ≤ 1
2µ(Qk ) for k = 1, . . . ,n.

It was proven by Bourgain [Bou84] and Rubio de Francia [Rub86] that a sufficient

condition for X to have the Hardy–Littlewood property is that X has the UMD property.

We will recover this result using Theorem 6.3.1 and obtain an explicit estimate of µp,X

in terms of the UMD constant βp,X . Tracking this dependence in the proof of Bourgain

and Rubio de Francia would be hard, as it involves the weight characteristic dependence

of the inequality [Rub86, (a.5)].

Theorem 6.4.6. Let X be Banach function space with cotype q ∈ (1,∞). If X ∈ UMD, then

X ∈ HL and for p ∈ (1,∞) we have

µp,X <∼p q
(
cq,Xβp,X

)2.

Proof. Let p ∈ (1,∞) and f ∈ Lp (R). Define for any interval I ⊆R the averaging operator

TI f (t ) := 〈 f 〉1,I 1I (t ), t ∈R

and set Γ := {TI : I an interval in R}. Then we know that Γ̃ is `2-bounded on Lp (R; X ) with

‖Γ̃‖`2 <∼p
p

qcq,Xβp,X

by [HNVW17, Proposition 8.1.13] and Proposition 2.6.3.

Let w : R→ (0,∞) and set C := supT∈Γ ‖T ‖L2(R,w)→L2(R,w). Fix an interval I ⊆ R. Ap-

plying TI to the function (w +ε)−1 1I for some ε> 0 we obtain∫
I

( 1

|I |
∫

I
(w(t )+ε)−1 dt

)2
w(s) ds ≤C 2

∫
I

w(t )

(w(t )+ε)2 dt

which implies ( 1

|I |
∫

Q
w(t ) dt

)( 1

|I |
∫

B
(w(t )+ε)−1 dt

)
≤C 2

So by letting ε→ 0 with the monotone convergence theorem, we obtain w ∈ A2 with

[w]A2 ≤C 2. Therefore Γ satisfies the assumptions of Theorem 6.3.1 with φ(t ) = t 2.

Fix a finite collection of dyadic intervals D ⊆ D in R. For any simple function f ∈
Lp (R; X ) we have

MD
Lat f (t ,ω) ≤ MD (

f (·,ω)(t )
)
, t ∈R,ω ∈Ω.
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So by Theorem 6.3.1, using the weighted boundedness of MD from Proposition 2.3.2(v),

we know that for any simple function f ∈ Lp (R; X ) we have

‖MD
Lat f ‖Lp (R;X ) <∼p q

(
cq,Xβp,X

)2‖ f ‖Lp (R;X ).

Thus, by the density of the simple functions in Lp (R; X ) and restricting to the unit inter-

val [0,1), we obtain

‖MD
Lat‖Lp ([0,1);X )→Lp ([0,1);X ) ≤ ‖MD

Lat‖Lp (R;X )→Lp (R;X ) <∼p q
(
cq,Xβp,X

)2.

Taking the supremum over all finite collections of dyadic intervals, the theorem follows.

Remark 6.4.7.

• As in the proof of Theorem 6.1.1, we could also use Γ= {H } or Γ= {Rk : k = 1, · · · ,d}

in the proof of Theorem 6.4.6, where H is the Hilbert transform and Rk is the k-th

Riesz projection. This yields a bound on µp,X in terms of the norm of the Hilbert

transform or Riesz projections.

• As already discussed in Remark 6.3.3, the assumption that X has finite cotype may

be omitted in Theorem 6.4.6. This yields the bound µp,X <∼β3
p,X in the conclusion

of Theorem 6.4.6.

• The converse of Theorem 6.4.6 holds if we impose the Hardy–Littlewood property

on both X and X ∗ (see [Bou84] and [Rub86]). We will provide a quantitative proof

of this fact in Section 6.6.

6.4.2. THE HARDY–LITTLEWOOD MAXIMAL OPERATOR

Let X be an order-continuous Banach function space and let (S,d ,µ) be a space of ho-

mogeneous type with dyadic system D . Take p ∈ (1,∞) and w ∈ Ap . If X ∈ HL we define

the (dyadic) lattice Hardy–Littlewood maximal operator for f ∈ Lp (S; X ) by

MD
Lat f := sup

Q∈D :s∈Q
〈| f |〉1,Q 1Q ,

MLat f := sup
B3s

〈| f |〉1,B 1B ,

where the suprema are taken in the lattice sense and the second supremum is taken over

all balls B ⊆ S containing s.

Our main result in this section is that both MD
Lat and MLat are bounded operators on

Lp (S, w ; X ). This is a direct consequence of the sparse domination result in Proposition

6.4.2, the weighted estimates in Proposition 3.2.4 and the existence of adjacent dyadic

systems as in Proposition 2.1.1.
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Theorem 6.4.8. Let X be an order-continuous Banach function space and let (S,d ,µ)

be a space of homogeneous type with dyadic system D . Suppose that X is r -convex for

r ∈ [1,∞) and X ∈ HL. Both MD
Lat and MLat are bounded operators on Lp (Rd , w ; X ) for all

p ∈ (1,∞) and w ∈ Ap with

‖MD
Lat‖Lp (S,w ;X )→Lp (S,w ;X ) <∼S,D ,p,r µp,X [w]

max
{

1
p−1 , 1

r

}
Ap

‖MLat‖Lp (S,w ;X )→Lp (S,w ;X ) <∼S,p,r µp,X [w]
max

{
1

p−1 , 1
r

}
Ap

Proof. We start with the claim for MD
Lat. Let f ∈ Lp (S, w ; X ) and let Dk be a finite collec-

tion of cubes for each k ∈N such that Dk ⊆Dk+1 and
⋃

k∈NDk =D . By Proposition 6.4.2

and Proposition 3.2.4 we have

sup
k∈N

‖MDk
Lat f ‖Lp (S,w ;X ) <∼S,D ,p,r µp,X [w]

max
{

1
p−1 , 1

r

}
Ap

.

Thus, using the Fatou property of X , it follows that MD
Lat f (s) ∈ X for a.e. s ∈ S. More-

over, since X is order-continuous,
(
MDn

Lat f (s)
)

k∈N converges to MD
Lat f (s) for a.e. s ∈ S. As

MDk
Lat f is a simple function for each k ∈N, we can conclude that MD

Lat f is strongly mea-

surable, i.e. MD
Lat f ∈ L0(S; X ). Furthermore, using the Fatou property of Lp (S, w ; X ), we

have that MD
Lat is a bounded operator on Lp (S, w ; X ) for p ∈ (1,∞) with

‖MD
Lat‖Lp (S;X )→Lp (S;X ) <∼S,D ,p,r µp,X [w]

max
{

1
p−1 , 1

r

}
Ap

. (6.4.5)

To see that MLat f : S → X is well-defined, we note that by Proposition 2.1.1, there

exist dyadic systems D1, · · · ,Dm such that for any ball B ⊆ S

〈| f |〉1,B 1B <∼S

m∑
j=1

MD j

Lat f ∈ Lp (S, w ; X ).

Since X is order-continuous, we know that Lp (S, w ; X ) is an order-complete Banach

function space (see [LT79, Theorem 1.a.8]) and therefore MLat f ∈ Lp (S, w ; X ). Moreover

we have

∥∥MLat f
∥∥

Lp (S,w :X )
<∼S

m∑
j=1

‖MD j

Lat ‖Lp (S;X )→Lp (S;X ) <∼S,p,r µp,X [w]
max

{
1

p−1 , 1
r

}
Ap

,

which finishes the proof.

Remark 6.4.9.

• On a UMD Banach function space X , the boundedness of a centered version of

MLat on Lp (Rd ; X ) with ‖MLat‖Lp (Rd ;X )→Lp (Rd ;X ) ≤C for a constant C > 0 indepen-

dent of d has been shown by Kriegler and Deleaval in [DK19a].
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• In the particular case X = `r , the dependence on the Ap -characteristic in The-

orem 6.4.8 is sharp. This can be shown by a similar argument as in Proposition

3.6.2 (see [CMP12]). In the general case that X is a Banach function space that is

r -convex for some r ∈ (1,∞), the exponent

r∗ := sup
{
r ∈ (1,∞) : X is r -convex

}
is again critical: The weighted estimate with the dependence [w]

max
{

1
p−1 , 1

r

}
Ap

holds

for all r < r∗ and fails for all r > r∗. This follows from embedding a copy of `r
n with

r < r∗ into X for a large enough n (by applying [LT79, Theorem 1.f.12]) and using

the sharpness in the case `r
n .

6.4.3. COMPARISON WITH THE RADEMACHER MAXIMAL OPERATOR

To finish our study of the lattice Hardy–Littlewood maximal operator, we will compare

it to the Rademacher maximal operator, introduced in Section 3.6. Let X be a Banach

function space with finite cotype and let D be the standard dyadic system on [0,1). If

X ∈ HL, then by the Khintchine–Maurey inequalities (see Proposition 2.5.1) we have

MD
Rad f (s) <∼X MD

Lat f (s), s ∈ [0,1),

so in particular X has the RMF property. Thus we know by Theorem 6.4.6 that any UMD

Banach function space has the RMF property.

Comparing the sparse domination result for MD
Rad in Theorem 3.6.1 with the sparse

domination result for MD
Lat in Proposition 6.4.2, we see that the sparse operator for MD

Rad
is smaller than the sparse operator for MD

Lat. Since the sparse domination for MD
Lat on

[0,1) is sharp by Proposition 6.4.4, it follows that the operators MD
Rad and MD

Lat are incom-

parable on any RMF Banach function space that is not ∞-convex, , i.e. the dyadic lattice

Hardy–Littlewood maximal operator is strictly larger than the Rademacher maximal op-

erator. As the only ∞-convex RMF Banach function spaces are the finite dimensional

ones, we have the following corollary.

Corollary 6.4.10. Let X be an infinite dimensional Banach function space with RMF and

HL . Then there does not exist a C > 0 such that for all f ∈ Lp ([0,1); X )

MD
Lat f (s) ≤C MD

Rad f (s), s ∈ [0,1).

6.5. THE BISUBLINEAR (LATTICE) HARDY–LITTLEWOOD MAXIMAL OPER-
ATOR

As mentioned in the introduction, our second approach to extend a bounded operator

T on Lp (Rd ) to a bounded operator on Lp (Rd ; X ) is based on sparse domination for

a bisublinear version of the lattice Hardy–Littlewood maximal operator, which we will

introduce in this section. The results presented here are part of a much more general,
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multilinear theory. However, to keep our results accessible and in the spirit of the rest

of this dissertation, we will only discuss a special case of the bilinear results and refer

to [3] or the dissertation of Nieraeth [Nie20, Part 1
4 ] for further results. For notational

simplicity we will also restrict to Rd in this section.

Let us start by introducing the scalar version of the bisublinear Hardy-Littlewood

maximal operator. For f , g ∈ L1
loc(Rd ) we define

M( f , g ) := sup
B

〈| f |〉1,B 〈|g |〉1,B 1B ,

where the supremum is taken over all balls B in Rd . Note that we trivially have

M( f , g )(t ) ≤ M f (t ) ·M g (t ), t ∈Rd .

Thus, by Proposition 2.2.1 and Hölder’s inequality, we immediately obtain that for p1, p2 ∈
(1,∞) and 1

p = 1
p1

+ 1
p2

we have that

M : Lp1 (Rd )×Lp2 (Rd ) → Lp (Rd )

is a bounded operator. Moreover, Proposition 2.3.2 yields (non-sharp) weighted esti-

mates for the bisublinear Hardy–Littlewood maximal operator.

Our main reason for introducing the bisublinear Hardy-Littlewood maximal opera-

tor is its intimate connection with the sparse forms appearing in Theorem 6.1.4.

Proposition 6.5.1. Let f , g ∈ L1
loc(Rd ). There exists an η-sparse collection of cubes S inRd

such that

‖M( f , g )‖L1(Rd )
<∼d

∑
Q∈S

〈| f |〉1,Q〈|g |〉1,Q |Q|.

Conversely, for any η-sparse collection of cubes S in Rd we have∑
Q∈S

〈| f |〉1,Q〈|g |〉1,Q |Q| <∼d η‖M( f , g )‖L1(Rd ). (6.5.1)

Proof. The first claim follows from [Nie19, Lemma 2.9] and Proposition 2.1.1. For the

second claim we have

‖M( f , g )‖L1(Rd ) ≤ η
∑

Q∈S

∫
EQ

〈| f |〉1,Q〈|g |〉1,Q dt <∼d η
∑

Q∈S
〈| f |〉1,Q〈|g |〉1,Q |Q|.

Proposition 6.5.1 will allow us to rewrite the sparse forms in Theorem 6.1.4 in terms

of the bisublinear maximal operator, which is an essential step in its proof. It also al-

lows us to deduce sharp weighted estimates for the bisublinear Hardy–Littlewood max-

imal operator. For our purposes the case p2 = p ′
1 with dual weights suffices, for further

weighted estimates we refer to [Nie19, Proposition 2.7].

Proposition 6.5.2. Let p ∈ (1,∞), w ∈ Ap and set w ′ := w− 1
p−1 . Then we have for f ∈

Lp (Rd , w) and g ∈ Lp ′
(Rd , w ′)

‖M( f , g )‖L1(Rd )
<∼p,d [w]

max{ 1
p−1 ,1}

Ap
‖ f ‖Lp (Rd ,w)‖g‖Lp′ (Rd ,w ′).
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Proof. This follows from Proposition 6.5.1 and the proof of Proposition 3.2.4, in partic-

ular from (3.2.9) with p0 = r = 1.

6.5.1. THE BISUBLINEAR LATTICE HARDY–LITTLEWOOD MAXIMAL OPERATOR

We can also define a lattice version of the bisublinear Hardy–Littlewood maximal oper-

ator. Let X be an order-continuous Banach function space over a measure space (Ω,µ)

and p1, p2 ∈ (1,∞). Since X is order-continuous, X ∗ is a Banach function space as well

and

x ∈ X , x∗ ∈ X ∗ ⇒ x · x∗ ∈ L1(Ω).

Suppose that X , X ∗ ∈ HL, which by Theorem 6.4.6 is the case if X ∈ UMD. We define the

bisublinear analog of MLat for f ∈ Lp1 (Rd ; X ) and g ∈ Lp2 (Rd ; X ∗) as

MLat( f , g ) := sup
B

〈| f |〉1,B · 〈|g |〉1,B 1B ,

where the supremum is taken in the lattice sense in L1(Ω) over all balls B in Rd . Note

that we have

MLat( f , g )(t ) ≤ MLat f (t ) ·MLatg (t ), t ∈Rd ,

which means that, by the order-completeness of Lp (Rd ;L1(Ω)), Theorem 6.4.8 and Hölder’s

inequality, we have for p1, p2 ∈ (1,∞) and 1
p = 1

p1
+ 1

p2
that

MLat : Lp1 (Rd ; X )×Lp2 (Rd ; X ∗) → Lp (Rd ;L1(Ω))

is a well-defined, bounded operator. We can also deduce (non-sharp) weighted esti-

mates for the bisublinear lattice Hardy–Littlewood maximal operator from Theorem

6.4.8. To obtain sharp weighted estimates we will deduce a sparse domination result

for a dyadic version of the bisublinear lattice Hardy–Littlewood maximal operator. This

time, rather than extending the sparse domination principle from Chapter 3 to the bisub-

linear case, we will extend the argument from Hänninen and the author in [9] to the

bisublinear setting.

Let D ⊆D be a finite collection of dyadic cubes in Rd . Define the bisublinear analog

of MD
Lat for f ∈ L1

loc(Rd ; X ) and g ∈ L1
loc(Rd ; X ∗) as

MD
Lat( f , g ) := sup

Q∈D
〈| f |〉1,Q · 〈|g |〉1,Q 1Q ,

where the supremum is taken in the lattice sense in L1(Ω).

Proposition 6.5.3. Let X be an order-continuous Banach function space over a measure

space (Ω,µ) and p ∈ (1,∞). Suppose that X , X ∗ ∈ HL. Then for any finite collection of

dyadic cubes D ⊆D , f ∈ L1
loc(Rd ; X ) and g ∈ L1

loc(Rd ; X ∗) there exists a 1
2 -sparse collection

of cubes S ⊆D such that∥∥MD
Lat( f , g )(t )

∥∥
L1(Ω)

<∼D ,p,d µp,Xµp ′,X ∗
∑

Q∈S

〈‖ f ‖X
〉

1,Q

〈‖g‖X ∗
〉

1,Q 1Q (t ), t ∈Rd .
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Proof. Let f ∈ L1
loc(Rd ; X ), g ∈ L1

loc(Rd ; X ∗) and fix a finite collection of dyadic cubes

D ⊆D . Note that we have

MD
Lat( f , g )(t ) ≤ MD

Lat f (t ) ·MD
Latg (t ), t ∈Rd ,

so by Hölder’s inequality for weak Lp -spaces and Lemma 6.4.1 we have

A0 := sup
D⊆D finite

∥∥MD
Lat

∥∥
L1(Rd ;X )×L1(Rd ;X ∗)→L1/2,∞(Rd ;L1(Ω))

<∼D ,p,d µp,Xµp ′,X ∗ .

For a cube Q ∈D, we define its stopping children chD(Q) to be the collection of maximal

cubes Q ′ ∈D such that Q ′(Q and∥∥∥ sup
P∈D

Q ′⊆P⊆Q

〈| f |〉1,P 〈|g |〉1,P

∥∥∥
L1(Ω)

> 4A0
〈‖ f ‖X

〉
1,Q

〈‖g‖X ∗
〉

1,Q . (6.5.2)

Let S1 be the maximal cubes in D, define recursively Sk+1 := ⋃
Q∈Sk chD(Q) and set

S :=⋃∞
k=1S

k .

Fix Q ∈S and let EQ :=Q \
⋃

Q ′∈chD(Q) Q ′. Define the set

Q∗ :=
{

t ∈Rd :
∥∥MD

Lat( f 1Q , g 1Q )(t )
∥∥

L1(Ω) > 4A0
〈‖ f ‖X

〉
1,Q

〈‖g‖X ∗
〉

1,Q

}
.

Then by the definition of A0 we have

|Q∗|2 ≤ 1

4

‖ f 1Q‖L1(Rd ;X )‖g 1Q‖L1(Rd ;X ∗)〈‖ f ‖X
〉

1,Q

〈‖g‖X ∗
〉

1,Q

= 1

4
|Q|2. (6.5.3)

Moreover, for Q ′ ∈ chS (Q) and t ∈Q ′, we have by (6.5.2)∥∥MD
Lat( f 1Q , g 1Q )(t )

∥∥
L1(Ω) ≥

∥∥∥ sup
P∈D:

Q ′⊆P⊆Q

〈| f |〉1,P 〈|g |〉1,P

∥∥∥
L1(Ω)

> 4A0
〈‖ f ‖X

〉
1,Q

〈‖g‖X ∗
〉

1,Q ,

so t ∈ Q∗ and thus Q ′ ⊆ Q∗. Using the disjointness of the cubes in chD(Q) and (6.5.3),

we get ∑
Q ′∈chS (Q)

|Q ′| ≤ |Q∗| ≤ 1

2
|Q|.

So |EQ | ≥ 1
2 |Q|, which means that S is a 1

2 -sparse collection of dyadic cubes.

Next, we check that MD
Lat( f , g ) is pointwise dominated by the sparse operator asso-

ciated to S . For each P ∈D we define

πS (P ) := {Q ∈S : Q minimal such that P ⊆Q},

which allows us to partition D as

D = ⋃
Q∈S

{
P ∈D :πS (P ) =Q

}
.
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Fix Q ∈ S , t ∈ Q and let Q ′ ∈D be the minimal cube such that t ∈ Q ′ and πS (Q ′) = Q. If

Q ′(Q we have by the definition of Q ′ that

∥∥∥ sup
P∈D:

πS (P )=Q

〈| f |〉1,P 〈|g |〉1,P 1P (t )
∥∥∥

L1(Ω)
=

∥∥∥ sup
P∈D:

Q ′⊆P⊆Q

m∏
j=1

〈 f j 〉r j ,P

∥∥∥
X

≤ 4A0
〈‖ f ‖X

〉
1,Q

〈‖g‖X ∗
〉

1,Q 1Q (t ).

If Q ′ =Q the same estimate follows directly from the triangle inequality in X and X ∗. We

can conclude for any t ∈Rd

∥∥MD
Lat( f , g )(t )

∥∥
L1(Ω) =

∥∥∥sup
Q∈S

sup
P∈D:

πS (P )=Q

〈| f |〉1,P 〈|g |〉1,P 1P (t )
∥∥∥

L1(Ω)

≤ ∑
Q∈S

∥∥∥ sup
P∈D:

πS (P )=Q

〈| f |〉1,P 〈|g |〉1,P 1P (t )
∥∥∥

L1(Ω)

≤ 4A0
∑

Q∈S

〈‖ f ‖X
〉

1,Q

〈‖g‖X ∗
〉

1,Q 1Q (t ),

which proves the claim.

We obtain the following, important corollary from Proposition 6.5.1 and Proposition

6.5.3. It is exactly this statement that will be the key to prove sparse domination for T̃

from sparse domination for T .

Corollary 6.5.4. Let X be an order-continuous Banach function space over a measure

space (Ω,µ) and p ∈ (1,∞). Suppose that X , X ∗ ∈ HL. For f ∈ Lp (Rd ; X ) and g ∈ Lp ′
(Rd ; X ∗)

we have

‖MLat( f , g )‖L1(Rd×Ω)
<∼p,d µp,X ·µp ′,X ∗ ·∥∥M(‖ f ‖X ,‖g‖X ∗ )

∥∥
L1(Rd ).

Proof. Using Proposition 2.1.1, the monotone convergence theorem, Proposition 6.5.3

and Proposition 6.5.1, we can find D1, . . . ,Dm such that for a.e. t ∈Rd

∥∥MLat( f , g )(t )
∥∥

L1(Ω)
<∼d

m∑
j=1

sup
D⊆D j finite

∥∥MD
Lat( f , g )(t )

∥∥
L1(Ω)

<∼p,d µp,Xµp ′,X ∗ ·M(‖ f ‖X ,‖g‖X ∗ )(t ),

Taking L1(Rd )-norms yields the desired conclusion.

Corollary 6.5.4 combined with Proposition 6.5.2 yields the announced sharp weighted

estimates for the bisublinear lattice Hardy–Littlewood maximal operator. Again we only

state the case p2 = p ′
1 with dual weights and refer to [3, Corollary 3.6] for further weighted

estimates.
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Theorem 6.5.5. Let X be an order-continuous Banach function space over (Ω,µ), let p ∈
(1,∞), w ∈ Ap and set w ′ := w− 1

p−1 . Suppose that X , X ∗ ∈ HL. Then we have

‖MLat( f , g )‖Lp (Rd ,w ;X )×Lp′ (Rd ,w ′;X ∗)→L1(Rd×Ω)
<∼p,d µp,X ·µp ′,X ∗ · [w]

max{ 1
p−1 ,1}

Ap
.

Remark 6.5.6. If we would redo the proof of Lemma 6.4.1 in the bisublinear case (see [3,

Lemma 3.3], we could replace µp,X ·µp ′,X ∗ by

‖MLat‖Lp (Rd ;X )×Lp′ (Rd ;X ∗)→L1(Rd×Ω)

in the estimates in Proposition 6.5.3, Corollary 6.5.4 and Theorem 6.5.5. By [3, Proposi-

tion 4.3] we know that

max
{
µp,X ,µp ′,X ∗

}<∼ ‖MLat‖Lp (Rd ;X )×Lp′ (Rd ;X ∗)→L1(Rd×Ω) ≤µp,X ·µp ′,X ∗ ,

so this would yield slightly sharper estimates.

6.6. EXTENSIONS OF OPERATORS II: SPARSE DOMINATION

The sparse domination-based extension theorem in the introduction relies on the fol-

lowing two ingredients:

• The equivalence between sparse forms and the L1-norm of the bisublinear maxi-

mal function in Proposition 6.5.1.

• The sparse domination result for the bisublinear lattice maximal operator in Corol-

lary 6.5.4.

Having discussed both in the previous section, we are therefore ready to prove this ex-

tension theorem. Since X , X ∗ ∈ HL if X has the UMD property by Theorem 6.4.6, the

sparse domination claim in Theorem 6.1.4 is a direct consequence of the following re-

sult in the case Y =C and Proposition 6.5.1. Recall that X (Y ) is a Köthe–Bochner space

as introduced in Section 2.5.

Theorem 6.6.1. Let Y be a Banach space and let T be an operator such that for any f ∈
L∞

c (Rd ;Y ) and g ∈ L∞
c (Rd )∥∥‖T f ‖Y · g

∥∥
L1(Rd ) ≤CT

∥∥M(‖ f ‖Y , g )
∥∥

L1(Rd ).

Let X be a Banach function space over a measure space (Ω,µ) and assume X , X ∗ ∈ HL.

Furthermore suppose that for all simple f ∈ L∞
c (Rd ; X (Y )) the function T̃ f : Rd → X (Y )

given by

T̃ f (t ,ω) := T ( f (·,ω))(t ), (t ,ω) ∈Rd ×Ω
is well-defined and strongly measurable. Then for all simple functions f ∈ L∞

c (Rd ; X (Y ))

and g ∈ L∞
c (Rd ) we have∥∥‖T̃ f ‖X (Y ) · g

∥∥
L1(Rd )

<∼p,d µp,X ·µp ′,X ∗ ·CT
∥∥M(‖ f ‖X (Y ), g )

∥∥
L1(Rd ).
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Proof. We first note that X is q-concave for some q ∈ (1,∞), and thus order-continuous,

by [GMT93, Theorem 2.8]. Let f ∈ L∞
c (Rd ; X (Y )) and g0 ∈ L∞

c (Rd ; X ∗) be simple func-

tions. Then we have that f (·,ω) ∈ L∞
c (Rd ;Y ) and g0(·,ω) ∈ L∞

c (Rd ) for a.e. ω ∈Ω. Using

Fubini’s Theorem, the assumption on T and Corollary 6.5.4, we have∥∥‖T̃ f ‖Y · g0
∥∥

L1(Rd×Ω) =
∥∥∥ω 7→ ∥∥‖T f (·,ω)‖Y , g0(·,ω)

∥∥
L1(Rd )

∥∥∥
L1(Ω)

<∼CT
∥∥ω 7→ ‖M(‖ f (·,ω)‖Y , g0(·,ω))‖L1(Rd )

∥∥
L1(Ω)

=CT
∥∥MLat(‖ f ‖Y , g0)

∥∥
L1(Rd×Ω)

<∼p,d µp,X ·µp ′,X ∗ ·CT
∥∥M(‖ f ‖X (Y ),‖g0‖X ∗ )

∥∥
L1(Rd ).

Now by duality (see e.g. [HNVW16, Proposition 1.3.1]) we have for any g ∈ L∞
c (Rd )∥∥‖T̃ f ‖X (Y ) · g

∥∥
L1(Rd ) = sup

‖h‖
L∞(Rd ;X∗)=1

∥∥‖T̃ f ‖Y · g ·h
∥∥

L1(Rd×Ω)

<∼p,d µp,X ·µp ′,X ∗ ·CT sup
‖h‖

L∞(Rd ;X∗)=1

∥∥M(‖ f ‖X (Y ),‖g h‖X ∗ )
∥∥

L1(Rd )

=µp,X ·µp ′,X ∗ ·CT
∥∥M(‖ f ‖X (Y ), g )

∥∥
L1(Rd ),

proving the theorem.

If T is linear in Theorem 6.6.1, we have for simple functions f1, . . . , fm ∈ Lp (Rd , w ;Y )

and x1, . . . , xm ∈ X that

T̃
( m∑

j=1
g j ⊗x j

)
(t ,ω) =

m∑
j=1

T g j (t )⊗x j (ω), (t ,ω) ∈Rd ×Ω.

Thus, in this case T̃ coincides with the tensor extension of T .

Our sparse domination-based extension theorem, the second part of Theorem 6.1.4,

is now an easy consequence of Theorem 6.6.1 and the weighted estimates in Proposition

6.5.2. We once again formulate a more general version using Köthe–Bochner spaces,

bisublinear maximal operators and HL-assumptions, from which the second part of

Theorem 6.1.4 follows by taking Y =C and using Proposition 6.5.1 and Theorem 6.4.6

Corollary 6.6.2. Assume the conditions of Theorem 6.6.1 and additionally suppose that

for all simple functions f , g ∈ L∞
c (Rd ;Y ) we have

‖T f −T g‖Y ≤ ‖T ( f − g )‖Y .

Then for all p ∈ (1,∞) and all w ∈ Ap we have

‖T̃ ‖Lp (Rd ,w ;X (Y ))→Lp (Rd ,w ;X (Y ))
<∼p,d µp,X ·µp ′,X ∗ ·CT · [w]max

{
1

p−1 ,1
}

.

Proof. By Theorem 6.6.1 we have for all simple functions f ∈ L∞
c (Rd ; X (Y )) and g ∈

L∞
c (Rd ) ∥∥‖T̃ f ‖X (Y ) · g

∥∥
L1(Rd )

<∼p,d µp,X ·µp ′,X ∗ ·CT
∥∥M(‖ f ‖X (Y ), g )

∥∥
L1(Rd ).
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Thus by Proposition 6.5.2 we obtain

∥∥‖T̃ f ‖X (Y ) · g
∥∥

L1(Rd )
<∼p,d µp,X ·µp ′,X ∗ ·CT · [w]

max{ 1
p−1 ,1}

Ap
‖ f ‖Lp (Rd ,w ;X (Y ))‖g‖Lp′ (Rd ,w ′),

which by duality implies

‖T̃ f ‖Lp (Rd ,w ;X (Y ))
<∼p,d µp,X ·µp ′,X ∗ ·CT · [w]

max{ 1
p−1 ,1}

Ap
‖ f ‖Lp (Rd ,w ;X (Y )).

So, by the additional assumption on T , we have for simple functions f1, f2 ∈ L∞
c (Rd ; X (Y ))

‖T̃ f1 − T̃ f2‖Lp (Rd ,w ;X (Y )) ≤ ‖T̃ ( f1 − f2)‖Lp (Rd ,w ;X (Y ))
<∼

∥∥ f1 − f2
∥∥

Lp (Rd ,w ;X (Y )).

It follows that T̃ is Lipschitz continuous. Therefore, by density, T̃ extends uniquely to a

bounded operator on Lp (Rd , w ; X (Y )) with the claimed bound.

As a consequence of Corollary 6.6.2 and the sparse domination result for the Haar

projections in Theorem 3.8.1, we can simultaneously give a proof of the following two

results of Bourgain [Bou84] and Rubio de Francia [Rub86]:

• If X is a Banach function space with X , X ∗ ∈ HL, then X ∈ UMD.

• If X is a UMD Banach function space and Y is a UMD Banach space, then the

Köthe–Bochner space X (Y ) also has the UMD property

The first statement follows from the following theorem taking Y =C, whereas the second

follows by using Theorem 6.4.6 to obtain X , X ∗ ∈ HL and then using the following the-

orem to deduce X (Y ) ∈ UMD. Note that the quantitative information we obtain in the

second statement is also sharper than the bound obtained by the arguments of Rubio

de Francia [Rub86].

Theorem 6.6.3. Let X be a Banach function space and let Y be a Banach space. Suppose

that X , X ∗ ∈ HL and Y ∈ UMD, then X (Y ) ∈ UMD with for any p ∈ (1,∞)

βp,X (Y ) <∼p µp,X ·µp ′,X ∗ ·βp,Y

Proof. Let D be the standard dyadic system in R and for I ∈D let D I be the Haar projec-

tion on Lp (R;Y ) as in (3.8.1). Fix εI ∈ {−1,1} for all I ∈D and for f ∈ Lp (R;Y ) define the

operator

T f (t ) := ∑
I∈D

εI D I f (t ), t ∈R.

Then, by Theorem 3.8.1 and Proposition 6.5.1, we know that T satisfies for f ∈ L∞
c (R;Y )

and g ∈ L∞
c (R) ∥∥‖T f ‖Y · g

∥∥
L1(R)

<∼βp,Y
∥∥M(‖ f ‖Y , g )

∥∥
L1(R).

Therefore, by Corollary 6.6.2, we know that T̃ is bounded on Lp (R; X (Y )) with

‖T̃ ‖Lp (R;X (Y ))→Lp (R;X (Y )) <∼p µp,X ·µp ′,X ∗ ·βp,Y .
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Thus, denoting the Haar projection associated to I ∈ D on Lp (R; X ) once again by D I ,

we have for all f ∈ Lp (R; X ) and any choice of εI ∈ {−1,1} that∥∥∥ ∑
I∈D

εI D I f
∥∥∥

Lp (R;X (Y ))
<∼p µp,X ·µp ′,X ∗ ·βp,Y · ‖ f ‖Lp (R;X (Y )).

As this inequality characterizes the UMD constant of X (Y ) by [HNVW16, Theorem 4.2.13],

this proves the theorem.

Combining Theorem 6.4.6 and Theorem 6.6.3 we have shown that for any Banach

function space X we have

X , X ∗ ∈ HL ⇔ X ∈ UMD.

Moreover, by Remark 6.5.6 these two conditions are equivalent to the boundedness of

the bisublinear lattice Hardy–Littlewood maximal operator. Combined with Theorem

2.7.1 we therefore have:

Theorem 6.6.4. Let X be a Banach function space over a measure space (Ω,µ). The fol-

lowing are equivalent:

(i) X ∈ UMD.

(ii) X , X ∗ ∈ HL.

(iii) The Hilbert transform H is bounded on Lp (R; X ) for some (all) p ∈ (1,∞).

(iv) The Riesz projections Rk for k = 1, . . . ,d are bounded on Lp (Rd ; X ) for some (all)

p ∈ (1,∞).

(v) The bisublinear Hardy–Littlewood maximal operator is bounded from Lp (Rd ; X )×
Lp ′

(Rd ; X ∗) to L1(Rd ×Ω) for some (all) p ∈ (1,∞).

Remark 6.6.5. Using the sparse domination for the scalar-valued variants of the oper-

ators in (i)-(iv) and applying Remark 6.5.6, we can deduce from Corollary 6.6.2 that the

involved constants in (i)-(iv) can all be estimated linearly by

‖MLat‖Lp (Rd ;X )×Lp′ (Rd ;X ∗)→L1(Rd×Ω).

Conversely, by Theorem 6.4.6 we have

‖MLat‖Lp (Rd ;X )×Lp′ (Rd ;X ∗)→L1(Rd×Ω)
<∼µp,X ·µp ′,X ∗ <∼β4

p,X .

It would be interesting to see whether this estimate can be improved. This would require

a different proof of (a bisublinear version of) Theorem 6.4.6, perhaps in the spirit of the

proof of Theorem 6.6.3.
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6.A. MONOTONE DEPENDENCE ON THE MUCKENHOUPT CHARACTERISTIC

For Rubio de Francia extrapolation as in Theorem 2.3.3 and our factorization-based ex-

tension theorem in Theorem 6.3.1 one needs an estimate of the form

‖ f ‖Lp (Rd ,w) ≤φ([w]Ap )‖g‖Lp (Rd ,w) (6.A.1)

for all w ∈ Ap , where φ : [1,∞) → [1,∞) is a nondecreasing function independent of w ;

this is often overlooked in the literature. In applications it is often easily checked that

a weighted estimate is dependent on the Muckenhoupt characteristic [w]Ap , and not

on any other information coming from w . However, checking that this dependence is

nondecreasing in [w]Ap can be tricky (see for example [12, Theorem 3.10]). Moreover,

this monotonicity is usually not explicitly stated in the literature.

In this appendix we show that the monotonicity condition in (6.A.1) is redundant

when working with pairs of nonnegative functions: an estimate depending on [w]Ap

with no monotonicity assumption implies the estimate (6.A.1).

Theorem 6.A.1. Fix p ∈ (1,∞), let f , g ∈ L0(Rd ) and suppose that there exists a function

C : [1,∞) → [1,∞) such that for all w ∈ Ap we have

‖ f ‖Lp (Rd ,w) ≤C ([w]Ap )‖g‖Lp (Rd ,w).

Then

φ(t ) := sup
{‖ f ‖Lp (Rd ,w)

‖g‖Lp (Rd ,w)

: w ∈ Ap , [w]Ap = t
}

is nondecreasing, φ(t ) ≤C (t ) for all t ∈ [1,∞) and for all w ∈ Ap we have

‖ f ‖Lp (Rd ,w) ≤φ([w]Ap )‖g‖Lp (Rd ,w). (6.A.2)

Proof. Without loss of generality we may assume f , g ∈ Lp (Rd , w) for all w ∈ Ap . It is

clear that φ(t ) ≤ C (t ) for all t ∈ [1,∞), and (6.A.2) holds. We will show that φ is nonde-

creasing. Let 1 ≤ t < s <∞ and ε> 0. Fix w ∈ Ap with [w]Ap = t such that

‖ f ‖Lp (Rd ,w) ≥
(
φ([w]Ap )−ε)‖g‖Lp (Rd ,w),

and fix a ball B0 ⊆Rd such that

‖ f 1B0‖Lp (Rd ,w) ≤ ε‖g‖Lp (Rd ,w) and ‖g 1B0‖Lp (Rd ,w) ≤
ε

2s
1
p

‖g‖Lp (Rd ,w). (6.A.3)

Divide B0 into two sets B+
0 and B−

0 such that |B+
0 | = |B−

0 | = |B0|/2 and w(x) > w(y) for all

x ∈ B+
0 and y ∈ B−

0 . For any σ ∈ [1,∞) we define a weight

wσ(x) :=
{
σ ·w(x) if x ∈ B+

0

w(x) if x ∈ B−
0 ,
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and for B ⊆Rd define a function fB : [1,∞) → [1,∞) by

fB (σ) := 〈wσ〉1,B · 〈w−1〉 1
p−1 ,B

Then fB is of the form

fB (σ) = (α0 +α+ ·σ)
(
β0 +β+ ·σ− 1

p−1

)p−1

with α−,α+,β−,β+ constants depending on B which satisfy

α− <α+, β− >β+, (α−+α+)(β−+β+)p−1 ≤ [w]Ap .

So if we restrict to [1,2p s] we know that fB ∈C 1([1,2p s]) with norm independent of B .

For each n ∈N define a function

fn := sup
B∈Bn

fB

on [1,2p t ], where each Bn is a finite collection of balls in Rd , such that Bn ⊆ Bn+1 and⋃∞
n=1Bn contains all balls in Rd with rational center and radius. Then the sequence

( fn)∞n=1 is nondecreasing and bounded, so it converges pointwise to some function f .

Restricting to [1,2p s], we also have that the sequence ( fn)∞n=1 is equicontinuous, so by

the Arzelà–Ascoli theorem we know that f is continuous on [1,2p s]. By a density argu-

ment we get that

f (σ) = sup
B⊆Rd

B rational

fB (σ) = sup
B⊆Rd

fB (σ) = [wσ]Ap .

Since f (1) = [w]Ap = t and

f (2p s) ≥ 1

|B0|
∫

B+
0

2p sw(x) dx
( 1

|B0|
∫

B−
0

w(x)−
1

p−1 dx
)p−1 ≥ fB0 (1)

2p 2p s ≥ s,

there exists σ ∈ [1,2p s] such that s = f (σ) = [wσ]Ap .

Now by construction and (6.A.3) we have

‖g 1B0‖Lp (Rd ,wσ) ≤σ1/p‖g 1B0‖Lp (Rd ,w) ≤ ε‖g‖Lp (Rd ,w).

Combining this with (6.A.3) and the triangle inequality yields

‖ f ‖Lp (ws ) ≥ ‖ f 1B c
0
‖Lp (Rd ,w) +‖ f 1B0‖Lp (Rd ,w) −‖ f 1B0‖Lp (Rd ,w)

≥ ‖ f ‖Lp (Rd ,w) −‖ f 1B0‖Lp (Rd ,w)

≥ (φ(t )−2ε)‖g‖Lp (Rd ,w)

≥ (φ(t )−2ε)
(
‖g‖Lp (Rd ,ws ) −‖g 1B0‖Lp (Rd ,ws )

)
≥ (φ(t )−2ε)(1−ε)‖g‖Lp (Rd ,ws ).

Thus φ(s) ≥ (φ(t )−2ε)(1−ε), and since ε> 0 was arbitrary this implies φ(s) ≥φ(t ), so φ

is nondecreasing.



7
FOURIER MULTIPLIERS IN BANACH FUNCTION SPACES

This chapter is based on the paper

[10] A. Amenta, E. Lorist, and M.C. Veraar. Fourier multipliers in Banach function

spaces with UMD concavifications. Trans. Amer. Math. Soc., 371(7):4837–4868,

2019.

It is complemented by a section on Littlewood–Paley–Rubio de Francia estimates from

[11] A. Amenta, E. Lorist, and M.C. Veraar. Rescaled extrapolation for vector-valued

functions. Publ. Mat., 63(1):155–182, 2019.

Abstract. Using the factorization-based extension theorem of Chapter 6, we prove Banach

function space-valued Littlewood–Paley–Rubio de Francia-type estimates . These Little-

wood–Paley–Rubio de Francia-type estimates enable us to prove various operator-valued

Fourier multipliers on Banach function spaces, which are extensions of the Coifman–

Rubio de Francia–Semmes multiplier theorem. Our results involve a new boundedness

condition on sets of operators, which we call `r (`s )-boundedness and which implies `2-

and R-boundedness in many cases.
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7.1. INTRODUCTION

For an interval I ⊆ R, let S I denote the Fourier projection onto I , defined by S I f :=
F−1(1I f̂ ) for Schwartz functions f ∈ S(R). For every collection I of pairwise disjoint

intervals and every q ∈ (0,∞] we consider the operator

SI,q ( f ) := ( ∑
I∈I

|S I f |q )1/q ,

interpreted as a supremum when q =∞. If I is a dyadic decomposition of R, then the

classical Littlewood–Paley inequality states that for p ∈ (1,∞)∥∥SI,2 f
∥∥

Lp (R) 'p ‖ f ‖Lp (R), f ∈S(R).

A surprising extension of this classical Littlewood–Paley square function estimate was

shown by Rubio de Francia in [Rub85]: for all q ∈ [2,∞) and p ∈ (q ′,∞) and any collec-

tion I of mutually disjoint intervals in Rwe have∥∥SI,q f
∥∥

Lp (R)
<∼p,q ‖ f ‖Lp (R), f ∈S(R). (7.1.1)

This result (particularly the q = 2 case) is now known as the Littlewood–Paley–Rubio de

Francia theorem. As a consequence, Coifman, Rubio de Francia and Semmes [CRdFS88]

showed that if p ∈ (1,∞) and 1
s > ∣∣ 1

p − 1
2

∣∣, then every m : R→ C of bounded s-variation

uniformly on dyadic intervals induces a bounded Fourier multiplier Tm on Lp (R). This

is analogous to the situation for the Marcinkiewicz multiplier theorem (the s = 1 case

of the Coifman–Rubio de Francia–Semmes theorem), which follows from the classical

Littlewood–Paley theorem. We refer to [Lac07] for a survey of these results.

In this chapter we are interested in analogues of the results above in the vector-

valued setting, i.e. estimates like (7.1.1) for functions in S(R; X ) and multiplier theorems

for operator-valued Fourier multipliers m : R→ L(X ), where X is a Banach (function)

space.

7.1.1. LITTLEWOOD–PALEY–RUBIO DE FRANCIA ESTIMATES

Let X be a Banach space. The definition of S I extends directly to the X -valued Schwartz

functions f ∈S(R; X ). Vector-valued extensions of the Littlewood–Paley–Rubio de Fran-

cia theorem for the case q = 2 case are studied in [BGT03, GT04, HP06, HTY09, PSX12]

via a reformulation in terms of random sums,

E
∥∥∥∑

I∈I
εI S I f

∥∥∥
Lp (R;X )

<∼ ‖ f ‖Lp (R;X ), f ∈S(R; X ),

where (εI )I∈I is a Rademacher sequence. If this estimate holds then we say that X has

the LPRp property. When X is a Banach function space with finite cotype, this is equiva-

lent to the boundedness of SI,2 on Lp (R; X ) by the Khintchine-Maurey inequalities (see

Proposition 2.5.1). When q 6= 2, no analogue of the boundedness of SI,q for general

Banach spaces is known.
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The LPRp property is quite mysterious. In [HTY09, Theorem 1.2] it was shown that

if a Banach space X has LPRp property for some p ≥ 2, then X has the UMD property

and type 2. However, the converse is only known to hold when the collection I consists

of intervals of equal length. The most general sufficient condition currently known is in

[PSX12, Theorem 3]: if X is a 2-convex Banach function space and the 2-concavification

X 2 has the UMD property, then X has the LPRp property for all p > 2. This result is

proved by an extension of Rubio de Francia’s argument for the scalar-valued case. Every

Banach space X that is known to have the LPRp property is either of this form, or is

isomorphic to a Hilbert space (and hence has the LPRp property for all p ∈ [2,∞) by

Rubio de Francia’s original proof).

We prove the following theorem, a more precise version of which appears as Theo-

rem 7.2.3.

Theorem 7.1.1. Let q ∈ [2,∞), and suppose X is a q ′-convex Banach function space such

that X q ′
has the UMD property. Then there exists a increasing function φ : R+ → R+,

depending on X , p, q, such that for p ∈ (q ′,∞), and w ∈ Ap/q ′

‖SI,q f ‖Lp (R,w ;X ) ≤φ([w]Ap/q′ )‖ f ‖Lp (R,w ;X ), f ∈S(R; X ).

We deduce this result, which includes [PSX12, Theorem 3] as a special case, directly

from the scalar case X =C and the factorization-based extension theorem in Chapter 6,

see Section 7.2 for further details. We do not obtain sharp dependence on Muckenhoupt

characteristics in Theorem 7.1.1 and consequently we also do not obtain sharp depen-

dence on Muckenhoupt characteristics in the Fourier multiplier theorems that we will

deduce from Theorem 7.1.1. If we would apply our sparse domination-based extension

theorem instead, we could obtain sharp weighted estimates in the case q = 2, see also

Remark 7.2.4.

7.1.2. FOURIER MULTIPLIER THEOREMS

An operator-valued analogue of the Coifman–Rubio de Francia–Semmes theorem was

obtained in [HP06], where the Banach space X was assumed to satisfy the LPRp prop-

erty. Naturally, R-boundedness assumptions play an important role in the results of

[HP06]. The main goal of this chapter is to prove a wider range of Coifman–Rubio de

Francia–Semmes type results in case X is a Banach function space. We will use Theorem

7.1.1 to prove such results under a UMD assumption on a q-concavification of X . This

naturally leads to an ‘`2(`q ′
)-boundedness’ condition, where one would usually expect

an R-boundedness condition. This new condition turns out to imply R-boundedness.

We investigate the more general notion of `r (`s )-boundedness in Section 7.3.

The following multiplier theorem is the fundamental result of this chapter. Let

∆= {±[2k ,2k+1),k ∈Z}
denote the standard dyadic partition of R. Let X and Y be Banach function spaces and,

for a set of bounded linear operators Γ⊆L(X ,Y ), let V s (∆;Γ) denote the space of func-
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tions m : R → span(Γ) with bounded s-variation uniformly on dyadic intervals J ∈ ∆,

measured with respect to the Minkowski norm on span(Γ).

Theorem 7.1.2. Let q ∈ (1,2], p ∈ (q,∞), s ∈ [1, q), and let w ∈ Ap/q . Let X and Y be

Banach function spaces such that X q and Y have the UMD property. Let Γ⊆L(X ,Y ) be

absolutely convex and `2(`q ′
)-bounded, and suppose that m ∈V s (∆;Γ). Then the Fourier

multiplier Tm is bounded from Lp (R, w ; X ) to Lp (R, w ;Y ).

The case q = 2 and w = 1 of Theorem 7.1.2 was considered in [HP06, Theorem 2.3]

for Banach spaces X = Y with the LPRp property. Our approach only works for Ba-

nach function spaces (and closed subspaces thereof), but as discussed before these are

currently the only known examples of Banach spaces with LPRp . As the parameter q

decreases we assume less of X , but more of Γ and m. In Section 7.5 we prove Theorem

7.1.2, along with various other extensions and modifications of this result. In particular

we obtain the following reformulation of Theorem 7.1.2 for Lebesgue spaces.

Theorem 7.1.3. Let s ∈ [2,∞). Suppose that m : R→L(Lr (Rd , w)) for some r ∈ (1,∞) and

all w ∈ Ar (Rd ). Furthermore suppose that there is a increasing function φ : R+ →R+ such

that for w ∈ Ar (Rd )

sup
t∈R

‖m(t )‖L(Lr (Rd ,w)) + sup
J∈∆

|J | 1
s [m]C 1/s (J ;L(Lr (Rd ,w))) ≤φ([w]Ar ).

Then the Fourier multiplier Tm is bounded on Lp (R;Lr (Rd )) in each of the following cases:

(i) r ∈ [2,∞) and 1
s > max

{ 1
2 − 1

p , 1
2 − 1

r , 1
p − 1

r },

(ii) r ∈ (1,2] and 1
s > max

{ 1
p − 1

2 , 1
r − 1

2 , 1
r − 1

p }.

The result follows from the combination of Proposition 7.5.9 and Example 7.5.14.

The condition on s becomes less restrictive as the numbers p, r , and 2 get closer. Taking

p = r or r = 2 is particularly illustrative: the condition on s is then 1
s > ∣∣ 1

p − 1
2

∣∣, as in

the Coifman–Rubio de Francia–Semmes theorem. However, even if p = r , the operator-

valued nature of the symbol m prevents us from deducing the boundedness of Tm from

the scalar-valued case by a Fubini argument. Using the same techniques, one could

also deduce versions of Theorem 7.1.3 with Muckenhoupt weights in the R- and Rd -

variables.

In Section 7.5.4 we will present some new Coifman–Rubio de Francia–Semmes-type

theorems on UMD Banach spaces (not just Banach function spaces) which are complex

interpolation spaces between a Hilbert space and a UMD space. Typical examples which

are not Banach function spaces include the space of Schatten class operators, and more

generally non-commutative Lp -spaces. Our results in this context are weaker than those

that we obtain for Banach function spaces, but nonetheless they seem to be new even

for scalar multipliers.
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7.1.3. NOTATION

Throughout this chapter we write φa,b,... to denote an increasing function on R+ which

depends only on the parameters a,b, . . ., and which may change from line to line. In-

creasing dependence on the Muckenhoupt characteristic of weights is used in applica-

tions of extrapolation theorems. As we saw in Appendix 6.A, monotone dependence on

the Muckenhoupt characteristic can be deduced from a more general estimate in terms

of the Muckenhoupt characteristic.

7.2. LITTLEWOOD–PALEY–RUBIO DE FRANCIA ESTIMATES

In this section we apply Theorem 6.1.1 to the operators SI,q , which will result in Banach

function space-valued Littlewood–Paley–Rubio de Francia estimates. As a warm-up we

consider the operator S∆,2, where ∆ := {±[2k ,2k+1),k ∈ Z} is the standard dyadic parti-

tion of R. Theorem 6.1.1 yields a direct proof of the classical Littlewood–Paley estimate

in UMD Banach function spaces.

Proposition 7.2.1. Let X be a UMD Banach function space, p ∈ (1,∞), and w ∈ Ap . Then

for all f ∈ Lp (R, w ; X ),

φX ,p ([w]Ap )−1‖ f ‖Lp (R,w ;X ) ≤ ‖S∆,2( f )‖Lp (R,w ;X ) ≤φX ,p ([w]Ap )‖ f ‖Lp (R,w ;X ).

Proof. In the scalar case the result was obtained in [Kur80, Theorem 1], using Theorem

6.A.1 for the increasing dependence on [w]Ap . Therefore the estimate

‖S∆,2( f )‖Lp (R,w ;X ) ≤φX ,p ([w]Ap )‖ f ‖Lp (R,w ;X )

follows by applying Theorem 6.1.1 on simple functions g ∈ Lp (R, w ; X ) and f = S∆,2(g ).

The converse estimate may be proved using a duality argument or another application

of Theorem 6.1.1 with a simple function f ∈ Lp (R, w ; X ) and g =S∆,2( f ).

Remark 7.2.2. Theorem 7.2.1 actually holds for all UMD Banach spaces, where the `2-

sum in ‖S∆,2( f )‖Lp (R,w ;X ) must be replaced by a suitable Rademacher sum. It was proved

in [Bou86, Zim89] in the unweighted case and in [FHL20] in the weighted case. As noted

in Section 3.8, this result can also be obtained using Theorem 3.1.1.

Next we establish weighted Littlewood–Paley–Rubio de Francia estimates for Banach

function spaces with UMD concavifications (Theorem 7.1.1 in the introduction). The

unweighted case with q = 2 was first proved in [PSX12], but we do not use this result in

our proof.

Theorem 7.2.3. Let q ∈ [2,∞) and let X be a Banach function space with X q ′ ∈ UMD.

Then for all collections I of mutually disjoint intervals in R, all p ∈ (q ′,∞), w ∈ Ap/q ′ ,

and f ∈ Lp (R, w ; X ),

‖SI,q ( f )‖Lp (R,w ;X ) ≤φX ,p,q ([w]Ap/q′ )‖ f ‖Lp (R,w ;X ).
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Proof. Let (Ω,µ) be the measure space over which X is defined and let f ∈ Lp (R, w ; X )

be simple. The scalar case of the result is proved in [Rub85, Theorem 6.1] for q = 2, and

[Kró14, Theorem B] for q > 2. Monotonicity in [w]Ap/q′ is contained in [Kró14] for q > 2,

and can be deduced from Theorem 6.A.1 when q = 2. Thus for all v ∈ Ap/q ′ and a.e.

ω ∈Ω we have∥∥SI,q ( f )(·,ω)q ′∥∥
Lp/q′ (R,v ;X q′ ) =

∥∥SI,q ( f )(·,ω)
∥∥q ′

Lp (R,v ;X )

≤φp,q ([v]Ap/q′ )‖ f (·,ω)‖q ′
Lp (R,v ;X )

=φp,q ([v]Ap/q′ )
∥∥| f (·,ω)|q ′∥∥

Lp/q′ (R,v ;X q′ ).

Therefore, since X q ′ ∈ UMD, applying Theorem 6.1.1 with p0 = p/q ′, f = SI,q ( f )q ′
and

g = f q ′
yields ∥∥(SI,q f )q ′∥∥

Lr (R,w ;X q′ ) ≤φX ,p,q ([w]Ar )
∥∥| f |q ′∥∥

Lr (R,w ;X q′ ).

for all r ∈ (1,∞). Taking r = p/q ′, rescaling and appealing to density yields the result.

Remark 7.2.4.

• In the scalar case of Theorem 7.2.3 there is also a weak-type estimate for p = q ′

and w ∈ A1. The strong-type estimate seems to remain an open problem (see

[Rub85, (6.4)]).

• In the scalar case sparse domination and (sharp) weighted estimates for SI,2 were

shown by Garg, Roncal and Shrivastava [GRS21] using time-frequency analysis.

Alternatively one can check the weak L2-boundedness of our sharp grand maxi-

mal truncation operatorM#
S̃I,2,α

using [PSX12, Lemma 4.5], where S̃I,2 is a smooth

version of SI,2. Combined with the trivial L2(R) estimate this also yields sparse

domination and (non-sharp!) weighted estimates by Theorem 3.1.1 and Proposi-

tion 3.2.4. This method can be extended to SI,q for q ∈ (2,∞).

• In the case q = 2 we could also use the sparse domination-based extension the-

orem, rather than the factorization-based extension theorem, to prove Theorem

7.2.3. This would yield sharp weighted estimates in Theorem 7.2.3. Moreover, as

noted in the previous bullet, with some additional work this could be extended to

q ∈ (2,∞).

When q = 2, the estimate in Theorem 7.2.3 can be used to obtain extensions of the

Marcinkiewicz multiplier theorem. This is done in [HP06, Theorem 2.3]. For q > 2 a

slight variation will be needed to make this work. The following estimate, which com-

bines Proposition 7.2.1 and Theorem 7.2.3, is a key ingredient in the Fourier multiplier

theory that we will develop in Section 7.5. Recall that we set ∆= {±[2k ,2k+1),k ∈Z}
.
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Theorem 7.2.5. Let q ∈ [2,∞) and let X be a Banach function space such that X q ′ ∈ UMD.

Let I be a collection of mutually disjoint intervals in R, and for all J ∈∆ let

I J := {I ∈ I : I ⊆ J }.

Then for all p ∈ (q ′,∞), w ∈ Ap/q ′ and f ∈ Lp (R, w ; X ),∥∥∥( ∑
J∈∆

|SIJ ,q ( f )|2
)1/2∥∥∥

Lp (R,w ;X )
≤φX ,p,q ([w]Ap/q′ )‖ f ‖Lp (R,w ;X ).

Proof. If q = 2 this follows from Theorem 7.2.3, so we need only consider q > 2. By

Theorem 2.3.3 it suffices to take p = 2. Using Theorem 7.2.3 and Proposition 7.2.1 we

estimate ∥∥∥( ∑
J∈∆

|SI J ,q ( f )|2
)1/2∥∥∥

L2(R,w ;X )
=

(∑
J∈∆

∥∥∥( ∑
I∈I J

|S I S J f |q )1/q
∥∥∥2

L2(R,w ;X )

)1/2

≤φX ,q ([w]A2/q′ )
(∑

J∈∆
‖S J f ‖2

L2(R,w ;X )

)1/2

≤φX ,q ([w]A2/q′ )‖S∆,2 f ‖L2(R,w ;X )

≤φX ,q ([w]A2/q′ )‖ f ‖L2(R,w ;X ),

proving the theorem.

If X is a Hilbert space, then one cannot apply Theorem 7.2.3 with q = 2. Instead, the

following modification of Theorem 7.2.3 holds.

Proposition 7.2.6. Let X be a Hilbert space, and let I be a collection of mutually disjoint

intervals in R. Then for all p ∈ (2,∞), w ∈ Ap/2, and f ∈ Lp (R, w ; X ),∥∥∥( ∑
I∈I

‖S I f ‖2
X

)1/2
∥∥∥

Lp (R,w)
≤φp ([w]Ap/2 )‖ f ‖Lp (R,w ;X ).

Proof. To prove this it suffices to consider X = `2 (by restriction to a separable Hilbert

space, see [HNVW16, Theorem 1.1.20]). Now the result will follow from Fubini’s theo-

rem, the result in the scalar-valued case, and a randomisation argument.

Let (εI )I∈I and (rn)n≥1 be a Rademacher sequences on probability spacesΩε andΩr

respectively. Then writing

F = ∑
n≥1

rn fn ∈ Lp (R, w ;Lp (Ωr )),

where f = ( fn)n≥1 ∈ Lp (R, w ;`2), it follows from Fubini’s theorem and Khintchine’s in-

equality (see Proposition 2.5.1 with X =C) that∥∥∥( ∑
I∈I

‖S I f ‖2
`2

)1/2
∥∥∥

Lp (R,w)
'p

∥∥∥ ∑
I∈I

εI S I F
∥∥∥

Lp (Ωr ;Lp (R,w ;Lp (Ωε)))
.
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Now we can argue pointwise inΩr . By Khintchine’s inequality and the scalar case of the

Littlewood–Paley–Rubio de Francia theorem [Rub85, Theorem 6.1], we obtain∥∥∥ ∑
I∈I

εI S I F
∥∥∥

Lp (R,w ;Lp (Ωε))
'p

∥∥∥( ∑
I∈I

|S I F |2X
)1/2

∥∥∥
Lp (R,w)

≤φ([w]Ap/2 )‖F‖Lp (R,w).

The result now follows by taking Lp (Ωr )-norms and applying Khintchine’s inequality

once more.

Remark 7.2.7. If X is a Hilbert space, I a collection of mutually disjoint intervals in R

and q ∈ (2,∞), then for all p ∈ (q ′,∞), w ∈ Ap/q ′ and f ∈ Lp (R, w ; X ), we have∥∥∥( ∑
I∈I

‖S I f ‖q
X

)1/q
∥∥∥

Lp (R,w)
≤φp,q ([w]Ap/q′ )‖ f ‖Lp (R,w ;X )∥∥∥(∑

J∈∆

( ∑
I∈I J

‖S I f ‖q
X

)2/q)1/2∥∥∥
Lp (R,w)

≤φp,q ([w]Ap/q′ )‖ f ‖Lp (R,w ;X ).

These estimates are weaker than Theorem 7.2.3 and Theorem 7.2.5. To prove the first

estimate it is enough to consider X = `2. In this case∥∥∥( ∑
I∈I

‖S I f ‖q
`2

)1/q
∥∥∥

Lp (R,w)
≤ ‖SI,q f ‖Lp (R,w ;`2)

by Minkowski’s inequality, so the result follows from Theorem 7.2.3. The second esti-

mate is proved similarly.

7.3. `r (`s)-BOUNDEDNESS

Our operator-valued multiplier theorems involve a new condition on sets of bounded

operators Γ ⊆ L(X ,Y ), which we call `r (`s )-boundedness. This generalises the more

familiar notions of R-boundedness and `r -boundedness introduced in Section 2.6. In

this section we introduce and explore the concept.

7.3.1. DEFINITION AND BASIC PROPERTIES

We start with the definition of `r (`s )-boundedness. As `r -boundedness, it can only be

defined for families of operators on Banach function spaces.

Definition 7.3.1. Let X and Y be Banach function spaces, Γ⊆L(X ,Y ) and r, s ∈ [1,∞].

We say that Γ is `r (`s )-bounded if for all finite doubly-indexed sequences (T j ,k )n,m
j ,k=1 in

Γ and (x j ,k )n,m
j ,k=1 in X ,

∥∥∥( n∑
j=1

( m∑
k=1

|T j ,k x j ,k |s
)r /s)1/r ∥∥∥

Y
<∼

∥∥∥( n∑
j=1

( m∑
k=1

|x j ,k |s
)r /s)1/r ∥∥∥

X
.

The least admissible implicit constant is called the `r (`s )-bound of Γ, and denoted

‖Γ‖`r (`s ).
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As discussed in Section 2.6, forR- and `2-boundedness it suffices to consider subsets

of Γ in the defining inequality. Just as for `r -boundedness, this is not the case for `r (`s )-

boundedness with r, s 6= 2: one must consider sequences, allowing for repeated elements.

We say that an operator T ∈L(X ,Y ) is `r (`s )-bounded if the singleton {T } is.

If a set Γ ⊆ L(X ,Y ) is `r (`s )-bounded, then so is its closure in the strong operator

topology, and likewise its absolutely convex hull absco(Γ). This can be proven analo-

gously to the proof of the statement for `r -boundedness in [KU14]. Moreover we once

again have that if Γ1,Γ2 ⊆ L(X ) are `r (`s )-bounded, then Γ1 ∪Γ2 is `r (`s )-bounded as

well.

It is immediate from the definition that `r -boundedness and `r (`r )-boundedness

are equivalent. The following proposition encapsulates a few other connections be-

tween `r -, and `r (`s )-boundedness. The following proposition shows in particular that

if Γ is `2(`s )- or `s (`2)-bounded for some s ∈ [1,∞], then Γ is `2-bounded, and hence

R-bounded if Y has finite cotype.

Proposition 7.3.2. Let X and Y be Banach function spaces and Γ⊆L(X ,Y ).

(i) Let r, s ∈ [1,∞]. If Γ is `r (`s )-bounded, then Γ is `r - and `s -bounded with ‖Γ‖`r ≤
‖Γ‖`r (`s ) and ‖Γ‖`s ≤ ‖Γ‖`r (`s ).

(ii) Let p, s ∈ [1,∞]. If X is p-concave, Y is p-convex, and Γ is `s -bounded, then Γ is

`p (`s )-bounded with ‖Γ‖`p (`s ) ≤ ‖Γ‖`s .

Proof. (i) follows by taking one index to be a singleton. For (ii), consider doubly-indexed

finite sequences (T j ,k )m,n
j ,k=1 in Γ and (x j ,k )m,n

j ,k=1 in X . Then we have

∥∥∥( m∑
j=1

( n∑
k=1

|T j ,k x j ,k |s
)p/s)1/p∥∥∥

Y
≤

( m∑
j=1

∥∥∥( n∑
k=1

|T j ,k x j ,k |s
)1/s∥∥∥p

X

)1/p

≤ ‖Γ‖`s

( m∑
j=1

∥∥∥( n∑
k=1

|x j ,k |s
)1/s∥∥∥p

Y

)1/p

≤ ‖Γ‖`s

∥∥∥( m∑
j=1

( n∑
k=1

|x j ,k |s
)p/s)1/p∥∥∥

X
,

so ‖Γ‖`p (`s ) ≤ ‖Γ‖`s .

Duality and interpolation may be used to establish `r (`s )-boundedness, as shown

in the following two propositions.

Proposition 7.3.3. Let X ,Y be Banach function spaces, and let Γ ⊆ L(X ,Y ). Let r, s ∈
[1,∞]. If Γ is `r (`s )-bounded, then the adjoint family

Γ∗ = {T ∗ : T ∈ Γ} ⊆L(Y ∗, X ∗)

is `r ′ (`s′ )-bounded with ‖T ∗‖
`r ′ (`s′ ) = ‖Γ‖`r (`s ).
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Proof. This follows from the duality relation X (`r
m(`s

n))∗ = X ∗(`r ′
m(`s′

n )) (see [LT79, Sec-

tion 1.d]).

To exploit interpolation we must assume order-continuity, which holds automati-

cally for reflexive spaces and thus in particular for UMD spaces.

Proposition 7.3.4. Let X and Y be order continuous Banach function spaces and Γ ⊆
L(X ,Y ). Let rk , sk ∈ [1,∞] for k = 0,1. If Γ is `rk (`sk )-bounded for k = 0,1, then Γ is

`rθ (`sθ )-bounded for all θ ∈ (0,1), where rθ := [r0,r1]θ and sθ := [s0, s1]θ. Moreover we

have the estimate

‖Γ‖`rθ (`sθ ) ≤ ‖Γ‖θ`r0 (`s0 )‖Γ‖1−θ
`r1 (`s1 ) ≤ max

{‖Γ‖`r0 (`s0 ),‖Γ‖`r1 (`s1 )
}
.

Proof. This follows from Calderón’s theory of complex interpolation for order continu-

ous vector-valued function spaces [Cal64].

Combining Proposition 7.3.2(i) with Proposition 7.3.4 we deduce the following.

Corollary 7.3.5. Let X and Y be order continuous Banach function spaces andΓ⊂Lb(X ,Y ).

Fix r, s ∈ [1,∞] and suppose that Γ is `r (`s )-bounded. If

r ≤ u ≤ v ≤ s or s ≤ v ≤ u ≤ r,

then Γ is `u(`v )-bounded with ‖Γ‖`u (`v ) ≤ ‖Γ‖`r (`s ).

If we use Theorem 6.1.2 to extend a family of bounded operators on Lp (Rd , w) to a

family of bounded operators on Lp (Rd , w), then this family of extensions is automati-

cally `r (`s )-bounded. This observation is a convenient source of `r (`s )-bounded fami-

lies.

Proposition 7.3.6. Fix p0 ∈ (1,∞), and suppose that Γ ⊆ L(Lp (w)) for some p ∈ (p0,∞)

and w ∈ Ap/p0 . In addition suppose that there is an increasing function φ : R+ →R+ such

that

‖T ‖Lp (Rd ,w)→Lp (Rd ,w) ≤φ([w]Ap/p0
), T ∈ Γ.

Let X be a Banach function space with X p0 ∈ UMD, and let Γ̃ be the set of tensor extensions

of operators in Γ. Then for all p,r, s ∈ (p0,∞) and all w ∈ Ap/p0 , Γ̃ is `r (`s )-bounded on

Lp (Rd , w ; X ) with

‖Γ̃‖`r (`s ) ≤φX ,p0,p,r,s,d ([w]Ap/p0
).

Proof. Consider doubly-indexed finite sequences (T j ,k )m,n
j ,k=1 in Γ and let (g j ,k )m,n

j ,k=1 be

a boundedly indexed sequence of simple functions in Lp (Rd , w ; X ). Let (Ω,µ) be the

underlying measure space of X , and define

F,G : Rd ×Ω× {1, . . . ,m}× {1, . . . ,n} →R+
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by

F (·,ω, j ,k) = |T j ,k g j ,k (·,ω)|p0 and G(·,ω, j ,k) = |g j ,k (·,ω)|p0 .

Then, from the assumption on Γ, we see that for some p ∈ (p0,∞) and all w ∈ Ap/p0 ,

‖F (·,ω, j ,k)‖Lp/p0 (Rd ,w) ≤φ([w]Ap/p0
)p0‖G(·,ω, j ,k)‖Lp/p0 (Rd ,w).

Letting Y := X (`r
m(`s

n)), it follows from Theorem 6.6.3 that Y = X p0 (`r /p0
m (`s/p0

n )) ∈ UMD,

with UMD constants independent of m,n ∈N. Hence Theorem 6.1.1 implies that for all

p ∈ (p0,∞) and w ∈ Ap/p0 ,

‖F‖Lp/p0 (Rd ,w ;Y p0 ) ≤φX ,p0,p,r,s,d ([w]Ap/p0
)‖G‖Lp/p0 (Rd ,w ;Y p0 ).

Rescaling and a density argument now proves the claim.

Taking X to be the scalar field C, so that X p0 = X for any p0, we obtain the following

special case. Note that in this case a more direct proof may be given as in [12, Theorem

2.3].

Proposition 7.3.7. Fix p0 ∈ (1,∞), and suppose that Γ ⊆ L(Lp (Rd , w)) for some p ∈
(p0,∞) and w ∈ Ap/p0 . In addition suppose that there is an increasing function φ : R+ →
R+ such that

‖T ‖Lp (Rd ,w)→Lp (Rd ,w) ≤φ([w]Ap/p0
), T ∈ Γ.

Then for all p,r, s ∈ (p0,∞) and all w ∈ Ap/p0 , Γ is `r (`s )-bounded on Lp (Rd , w) with

‖Γ‖`r (`s ) ≤φp0,p,r,s,d ([w]Ap/p0
).

To end this section we present a technical lemma on the `r (`s )-boundedness of the

closure of a family of operators on spaces other than that in which the closure was taken.

It is used in our multiplier result for intermediate spaces, where several Lebesgue spaces

are used simultaneously. A similar result can be proved with general order-continuous

Banach function spaces in place of Lebesgue spaces.

Lemma 7.3.8. Let (Ω,d ,µ) be a metric measure space and assume µ is locally finite. Let

p ∈ (1,∞) and let Γ be a family of operators such that Γ⊆L(Lp (Ω)) is uniformly bounded

and absolutely convex. Let Γ denote the closure of Γ in L(Lp (Ω)). Suppose q ∈ (1,∞), let

w be a locally integrable weight onΩ and assume that Γ⊆L(Lq (Ω, w)) is `r (`s )-bounded

for some r, s ∈ [1,∞]. Then Γ is `r (`s )-bounded on Lq (Ω, w) with ‖Γ‖`r (`s ) = ‖Γ‖`r (`s ).

Proof. Fix (Tm,n)M ,N
m=1,n=1 in T and ( fm,n)M ,N

m=1,n=1 in Lq (Ω, w). By a density argument we

may assume each for each m,n that fm,n is bounded and supported on a bounded sub-

set of Ω, which implies fm,n ∈ Lp (Ω). For each m,n choose (T (k)
m,n)k≥1 in Γ such that
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T (k)
m,n → Tm,n in L(Lp (Ω)). Then also T (k)

m,n fm,n → Tm,n fm,n in Lp (Ω). By passing to sub-

sequences we may suppose that for all m,n we have T (k)
m,n fm,n → Tm,n fm,n , µ-a.e. There-

fore, by Fatou’s lemma,

∥∥∥( M∑
m=1

( N∑
n=1

|Tm,n fm,n |s
)r /s)1/r ∥∥∥

Lq (Ω,w)
≤ liminf

k→∞

∥∥∥( M∑
m=1

( N∑
n=1

|T (k)
m,n fm,n |s

)r /s)1/r ∥∥∥
Lq (Ω,w)

≤ ‖Γ‖`r (`s )

∥∥∥( M∑
m=1

( N∑
n=1

| fm,n |s
)r /s)1/r ∥∥∥

Lq (Ω,w)
,

with the appropriate adjustment if r =∞ or s =∞. So Γ is indeed `r (`s )-bounded on

Lq (w).

7.3.2. `r (`s )-BOUNDEDNESS OF SINGLE OPERATORS

As noted before, a single operator T ∈L(X ,Y ) can fail to be `r (`s )-bounded. For positive

operators we have the following result, which is an adaptation of [MS96, Lemma 4].

Proposition 7.3.9. Let X and Y be Banach function spaces and let P ∈L(X ,Y ) be a pos-

itive operator. Then P is `r (`s )-bounded for all r, s ∈ [1,∞], and we have ‖{P }‖`r (`s ) ≤
‖P‖L(X .Y ).

Proof. Let (x j ,k )m,n
j ,k=1 be a doubly-indexed sequence in X , and note that by positivity of

P we may take the elements of the sequence to be positive. By positivity of P we can

estimate∥∥∥( m∑
j=1

( n∑
k=1

|P x j ,k |s
)r /s)1/r ∥∥∥

Y
=

∥∥∥ sup
‖(b j )‖

`r ′
m
≤1

m∑
j=1

b j sup
‖(a

j
k )‖

`s′
n
≤1

n∑
k=1

a j
k P x j ,k

∥∥∥
Y

≤
∥∥∥P

(
sup

‖(b j )‖
`r ′

m
≤1

m∑
j=1

b j sup
‖(a

j
k )‖

`s′
n
≤1

n∑
k=1

a j
k x j ,k

)∥∥∥
Y

≤ ‖P‖L(X ,Y )

∥∥∥( m∑
j=1

( n∑
k=1

|x j ,k |s
)r /s)1/r ∥∥∥

X
,

so ‖{P }‖`r (`s ) ≤ ‖P‖L(X ,Y ).

For an `1-bounded operator on a Lebesgue space one has `r (`s )-boundedness for

all r, s ∈ [1,∞] (see [HNVW16, Theorem 2.7.2]). The result below actually holds with

Lp (Ω) replaced by any Banach lattice X with a Levi norm (see [Buh75] and [Lin16, Fact

2.5]). A duality argument implies a similar result for `∞-boundedness.

Proposition 7.3.10. Let p ∈ [1,∞) and T ∈ L(Lp (Ω)). If T is `1-bounded, then {T } is

`r (`s )-bounded for all r, s ∈ [1,∞].

Remark 7.3.11. Even on Lp it can be quite hard to establish the `r (`s )-boundedness of

a single operator. By using i.i.d. s-stable random variables ξ1, . . . ,ξn : Ω→ R (see [LT91,
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Section 5]), for p ∈ (0, s) one can linearise the estimate by writing( n∑
j=1

|T x j |s
)1/s =Cp,s

∥∥∥T
n∑

j=1
ξ j x j

∥∥∥
Lp (Ω)

.

By using Fubini’s theorem and Minkowski’s inequality, one can deduce that any T ∈
L(Lp ) is `r (`s )-bounded if p ≤ r ≤ s ≤ 2 or 2 ≤ s ≤ r ≤ p. Most of the remaining cases

seem to be open (see [Kwa72b, Problem 2] and [DLOT17, Corollary 1.44]).

7.3.3. NON-EXAMPLES

We end this section with two examples to demonstrate that `r (`s )-boundedness is not

just the conjunction of `r - and `s -boundedness. Consider the class of kernels

K= {k ∈ L1(R) : |k ∗ f | ≤ M f a.e. for all simple f : R→R},

where M is the Hardy–Littlewood maximal operator. For k ∈K and f ∈ Lp (R) with p ∈
(1,∞) define the operator Tk by

Tk f (t ) =
∫
R

k(t − s) f (s) ds, t ∈R

and set Γ= {Tk : k ∈K}.

Example 7.3.12. Let p ∈ (1,∞). The family of operators Γ ⊆ L(Lp (R)) defined above is

`r -bounded for all r ∈ [1,∞], but not `1(`s )- or `∞(`s )- bounded for any s ∈ (1,∞).

Proof. The `r -boundedness of Γ for r ∈ [1,∞] is proved in [NVW15b, Theorem 4.7].

Since Γ = Γ∗, Proposition 7.3.3 says that `1(`s )-boundedness of Γ on Lp (R) implies

`∞(`s′ )-boundedness on Lp ′
(R), so it suffices to show that Γ is not `∞(`s )-bounded on

Lp (R) for any s ∈ (1,∞). We follow the proof of [NVW15b, Proposition 8.1].

Fix n ∈N and for i , j ∈N define fi , j ∈ Lp (R) by

fi , j (t ) = 1(0,1](t )1(2− j ,2− j+1](t − (i −1)2−n), t ∈R,

so that ∥∥∥ sup
1≤i≤2n

( n∑
j=1

| fi , j (t )|s
)1/s∥∥∥

Lp (R)
≤

∥∥∥ sup
1≤i≤2n

1(0,1]

∥∥∥
Lp (R)

= 1. (7.3.1)

Next, for i , j ∈N define

ki , j (t ) = 1

2− j+2
1(−2− j+1,2− j+1)(t ), t ∈R,

and Ti , j = Tki , j . Then Ti , j ∈ Γ, as for any simple function f andt ∈Rwe have

|Ti , j f (t )| = |ki , j ∗ f (t )| = 1

2− j+2

∣∣∣∫
R

1(−2− j+1,2− j+1)(t −τ) f (τ)dτ
∣∣∣

= 1

2− j+2

∣∣∣∫ t+2− j+1

t−2− j+1
f (τ)dτ

∣∣∣≤ M f (t ).
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Furthermore, for any 1 ≤ j ≤ n, t ∈ (0,1] and 1 ≤ i ≤ 2n with t ∈ ((i −1)2−n , i 2−n],

|Ti , j fi , j (t )| = 1

2− j+2

∫ t+2− j+1−(i−1)2−n

t−2− j+1−(i−1)2−n
1(2− j ,2− j+1](τ)dτ

≥ 1

2− j+2

∫ 2− j+1

2− j
1(2− j ,2− j+1](τ)dτ= 2− j

2− j+2
= 1

4
.

Therefore ∥∥∥ sup
1≤i≤2n

( n∑
j=1

|Ti , j fi , j (t )|s
)1/s∥∥∥

Lp (R)
≥

∥∥∥( n

4s

)1/s
1(0,1]

∥∥∥
Lp (R)

= n1/s

4

which tends to ∞ as n →∞. Combining this with (7.3.1) it follows that Γ is not `∞(`s )-

bounded on Lp (R).

The previous example can be modified to construct examples of operator families

which are not`2(`s )-bounded, by using stochastic integral operators introduced in Chap-

ter 4. For k ∈K and f ∈ Lp (R+) with p ∈ (2,∞), define

Sk f (t ) :=
∫ t

0
|k(t − s)| 1

2 f (s) dW (s),

where W is a standard Brownian motion on a probability space (Ω,P). Then Sk is bounded

from Lp (R+) to Lp (R+×Ω) by Proposition 4.2.12 and Proposition 4.2.3. Define

S := {Sk : k ∈K}.

Example 7.3.13. Let p ∈ (2,∞). The family of operators S from Lp (R+) to Lp (R+×Ω) is

`r -bounded for all r ∈ [2,∞), but not `2(`r )-bounded for any r ∈ (2,∞).

Proof. Let r ∈ [2,∞) and X = `r . Take f ∈ Lp (R+; X ) and k ∈ L1(R+; X ) such that k j ∈K
for all j ∈N. By Theorem 2.9.1 we know that(

E
∥∥∥∫ t

0
|k(t − s)| 1

2 | f (s)| dW (s)
∥∥∥p

X

)1/p '
∥∥∥(∫ t

0
|k(t − s)|| f (s)|2 ds

) 1
2
∥∥∥

X
, t ∈R+.

This implies that S is `r -bounded from Lp (R+) to Lp (R+×Ω) if and only if Γ restricted to

R+ is `r /2-bounded on Lp/2(R+), so S is `r -bounded for all r ∈ [2,∞) by Example 7.3.12.

Repeating the argument with X = `2(`r ), we also get from Example 7.3.12 that S is not

`2(`r )-bounded for any r ∈ (2,∞).

7.4. THE FUNCTION SPACES V s(J ;Y ) AND R s(J ;Y )

The multipliers that we will consider are members of the space of functions of bounded

s-variation, which we denote by V s (J ,Y ) for s ≥ 1. This space contains the class of 1/s-

Hölder continuous functions. In our arguments we will also use the atomic function

space R s (J ,Y ), which was introduced in the scalar case in [CRdFS88].
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Definition 7.4.1.

(i) Let Y be a Banach space, J = [J−, J+] ⊆ R a bounded interval and s ∈ [1,∞). A

function f : R→ Y is said to be of bounded s-variation on J , or f ∈V s (J ;Y ), if

‖ f ‖V s (J ;Y ) := ‖ f ‖L∞(J ;Y ) + [ f ]Vs (J ;Y ) <∞,

where

[ f ]Vs (J ;Y ) := sup
J−=t0<···<tN=J+

( N∑
i=1

‖ f (ti−1)− f (ti )‖s
Y

)1/s
.

Furthermore we define V ∞(J ;Y ) = L∞(J ;Y ).

(ii) When J is a collection of mutually disjoint bounded intervals in R, the space

V s (J ;Y ) ⊆ L∞(R;Y ) consists of all f ∈ L∞(R;Y ) such that

‖ f ‖V s (J ;Y ) := sup
J∈J

‖ f |J‖V s (J ;Y ) <∞.

IfJ = (Jk )k∈N is ordered, we define V s
0 (J ;Y ) ⊆V s (J ;Y ) to be the closed subspace

consisting of f ∈V s (J ;Y ) with limk→∞‖ f |Jk ‖V s (J ;Y ) = 0.

Clearly V s (J ;Y ) ,→V t (J ;Y ) contractively when 1 ≤ s ≤ t ≤∞, and V s (J ;Y ) is com-

plete when Y is complete.

In our applications the space Y is usually the span of a bounded and absolutely con-

vex subset B of a normed space Z (i.e. a disc in Z ), equipped with the Minkowski norm

‖x‖B := inf{λ> 0 : x
λ ∈ B},

and we write V s (J ;B) :=V s (J ; spanB). Clearly ‖x‖Z <∼B ‖x‖B for x ∈ Y . If the Minkowski

norm on spanB is complete, then B is called a Banach disc. If Z is a Banach space and

B is closed, then B is a Banach disc [PB87, Proposition 5.1.6], but this is not a necessary

condition [PB87, Proposition 3.2.21].

Definition 7.4.2.

(i) Let Y be a normed space, J ⊆ R a bounded interval, and s ∈ [1,∞). Say that a

function a : J → Y is an R s (J ;Y )-atom, written a ∈ R s
at(J ;Y ), if there exists a set I

of mutually disjoint subintervals of J and a set of vectors (cI )I∈I ⊆ Y such that

a = ∑
I∈I

cI 1I and
(∑

I∈I
‖cI‖s

Y

)1/s ≤ 1.

Define R s (J ;Y ) ⊆ L∞(J ;Y ) by

R s (J ;Y ) :=
{

f ∈ L∞(J ;Y ) : f =
∞∑

k=1
λk ak , (λk ) ∈ `1, (ak ) ⊆ R s

at(J ;Y )
}

,
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where the series f =∑∞
k=1λk ak converges in L∞(J ;Y ). Define a norm on R s (J ;Y )

by

‖ f ‖R s (J ;Y ) := inf
{
‖λk‖`1 : f =

∞∑
k=1

λk ak as above
}

.

Furthermore we define R∞(J ;Y ) := L∞(J ;Y ).

(ii) When J is a collection of mutually disjoint bounded intervals in R, the space

R s (J ;Y ) ⊆ L∞(R;Y ) consists of all f ∈ L∞(R;Y ) such that

‖ f ‖R s (J ;Y ) := sup
J∈J

‖ f |J‖R s (J ;Y ) <∞.

If J = (Jk )k∈N is ordered, we define R s
0(J ;Y ) ⊆ R s (J ;Y ) to be the closed subspace

consisting of f ∈ R s (J ;Y ) with limk→∞‖ f |Jk ‖R s (Jk ;Y ) = 0.

Clearly R s (J ;Y ) ,→ R t (J ;Y ) contractively when 1 ≤ s ≤ t ≤∞, and R s (J ;Y ) is com-

plete when Y is complete. As with the classes V s , when B is a disc in a normed space Z ,

we put the Minkowski norm on the linear span of B and write R s (J ;B) := R s (J ; spanB).

For α ∈ (0,1] and an interval J ⊆ R we let Cα(J ;Y ) denote the space of α-Hölder

continuous functions with ‖ f ‖Cα(J ;Y ) = max
{‖ f ‖∞, [ f ]Cα(J ;Y )

}
, where

[ f ]Cα(J ;Y ) := sup
x,y∈J

‖ f (x)− f (y)‖Y

|x − y |α .

Lemma 7.4.3. Let s ∈ [1,∞), let Y be a Banach space and fix a bounded interval J ⊆R.

(i) If q ∈ (s,∞), then R s (J ;Y ) ⊆V s (J ;Y ) ⊆ Rq (J ;Y ) and for all f ∈ L∞(J ;Y ) we have

‖ f ‖Rq (J ;Y ) <∼q,s ‖ f ‖V s (J ;Y ) <∼ ‖ f ‖R s (J ;Y ).

(ii) We have C 1/s (J ;Y ) ⊆V s (J ;Y ), and for all f ∈V s (J ;Y ),

‖ f ‖V s (J ;Y ) ≤ ‖ f ‖∞+|J |1/s [ f ]C 1/s (J ;Y ).

Proof. For (i) we note that both R s (J ;Y ) ⊆V s (J ;Y ) and the second norm estimate follow

directly from the fact that for any atom a ∈ R s
at(J ;Y ) with

a = ∑
I∈I

cI 1I

we have by Minkowski’s inequality that

‖a‖V s (J ;Y ) ≤ sup
I∈I

‖cI‖Y +
( ∑

I ,J∈I
I 6=J

‖cI − c J‖s
)1/s ≤ 1+2

(∑
I∈I

‖cI‖s
)1/s ≤ 3.

The embedding V s (J ;Y ) ⊆ Rq (J ;Y ) with the first norm estimate is shown in [CRdFS88,

Lemme 2] for scalar functions, and the argument extends to the general case. Part (ii) is

straightforward to check.
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We end this section with complex interpolation containments for the V s - and R s -

classes. It is an open problem whether complex interpolation of the V s -classes as below

can be proved with ε= 0 (see [Pis16, Chapter 12]). It is also not clear whether converse

inclusions hold, but since we don’t need them we leave the question open.

Theorem 7.4.4. Suppose 1 ≤ q0 ≤ q1 ≤∞, θ ∈ (0,1), ε > 0 and let Y be a Banach space.

Then for all bounded intervals J ⊆Rwe have continuous inclusions

V [q0,q1]θ−ε(J ;Y ) ,→ [V q0 (J ;Y ),V q1 (J ;Y )]θ, (7.4.1)

R [q0,q1]θ (J ;Y ) ,→ [Rq0 (J ;Y ),Rq1 (J ;Y )]θ, q1 6=∞. (7.4.2)

Furthermore, if J = (Jk )k∈N is an ordered collection of mutually disjoint bounded inter-

vals in R, then we have continuous inclusions

V [q0,q1]θ−ε
0 (J ;Y ) ,→ [V q0

0 (J ;Y ),V q1
0 (J ;Y )]θ (7.4.3)

R [q0,q1]θ
0 (J ;Y ) ,→ [Rq0

0 (J ;Y ),Rq1
0 (J ;Y )]θ, q1 6=∞. (7.4.4)

Proof. For q0 = 1 and q1 =∞ we have (7.4.1) by applying subsequently [Pis16, Lemma

12.11], [BL76, Theorem 3.4.1], and [BL76, Theorem 4.7.1],

V [q0,q1]θ−ε(J ;Y ) ,→ (
V 1(J ;Y ),L∞(J ;Y )

)
θε,∞

,→ (
V 1(J ;Y ),L∞(J ;Y )

)
θ,1

,→ [
V 1(J ;Y ),L∞(J ;Y )

]
θ

with

θε = 1− 1
1

1−θ −ε
< θ.

The intermediate cases follow from the reiteration theorem for complex interpolation

[BL76, Theorem 4.6.1].

In the remainder of the proof we will need the following notation: when Ik is a col-

lection of intervals for each k ∈ N and I ∈ Ik , let πI ,k denote the canonical projection

`∞(Ik ;Y ) → Y . We abbreviate Banach couples (X0, X1) by X•, and use this shorthand

for expressions like

[`p• (N; X )]θ = [`p0 (N; X ),`p1 (N; X )]θ.

Define the open stripS := {z ∈C : Re z ∈ (0,1)}. We letF (X•) denote the space of bounded

continuous functions from the closed stripS to the sum X0+X1 whose restrictions toS

is analytic and whose restrictions to the sets {z ∈ C : Re z = 0} and {z ∈ C : Re z = 1} map

continuously into X0 and X1 respectively, equipped with the norm

‖F‖F (X•) := max
(
sup
t∈R

‖F (i t )‖X0 , sup
t∈R

‖F (1+ i t )‖X1

)
.
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For (7.4.2) let 1 ≤ q0 ≤ q1 ≤ ∞ and write qθ := [q0, q1]θ for brevity. Suppose f ∈
Rqθ (J ;Y ), with atomic decomposition

f =
∞∑

k=1
λk ak =

∞∑
k=1

λk

∑
I∈Ik

1IπI ,k (ck ),

where ck ∈ `qθ (Ik ;Y ) for each k ∈N.

Let ε> 0. For each k ∈N we have `qθ (Ik ;Y ) = [`q• (Ik ;Y )]θ with equal norms [Tri78,

Theorem 1.18.1], hence there exists a function Ck ∈ F (`q• (Ik ;Y )) with Ck (θ) = ck and

‖Ck‖F (`q• (Ik ;Y )) ≤ (1+ε)‖ck‖`qθ (Ik ;Y ) ≤ 1+ε. For all z ∈S and t ∈ J , define

Ak (z)(t ) := ∑
I∈Ik

1I (t )πI ,k (Ck (z)),

noting that for each t there is at most one non-zero term in the sum. It follows from

‖Ck‖F (`q• (I j ;Y )) ≤ 1+ε that ‖Ak‖F (Rq• (J ;Y )) ≤ 1+ε for all z ∈S.

We will show that each Ak : S → Rq0 (J ;Y ) + Rq1 (J ;Y ) is analytic on S, using that

Rq0 (J ;Y )+Rq1 (J ;Y ) = Rq1 (J ;Y ) and `q0 (Ik ;Y )+`q1 (Ik ;Y ) = `q1 (Ik ;Y ). Fix z0 ∈S. Since

Ck is analytic with values in `q1 (Ik ;Y ), there exists a Taylor expansion

Ck (z) =
∞∑

n=0
(z − z0)nβk,n

for z in a neighbourhood of z0, where (βk,n)∞n=0 ⊆ `q1 (Ik ;Y ). Thus for such z we have

Ak (z) = ∑
I∈Ik

1IπI ,k (Ck (z)) =
∞∑

n=0
(z − z0)n

∑
I∈Ik

1IπI ,k (βk,n) =:
∞∑

n=0
(z − z0)nγk,n

using the mutual disjointness of Ik to interchange the sums. The functions γk,n are in

Rq1 (J ;Y ) as we can write

‖γk,n‖Rq1 (J ;Y ) =
∥∥∥ ∑

I∈Ik

1IπI ,k (βk,n)
∥∥∥

Rq1 (J ;Y )
≤ ‖βk,n‖`q1 (Ik ;Y ) <∞.

Similarly we can show that each Ak : S→ Rq1 (J ;Y ) is continuous.

Now for z ∈S define

F (z) :=
∞∑

k=1
λk Ak (z).

Since the functions Ak : S→ Rq0 (J ;Y )+Rq1 (J ;Y ) are bounded uniformly in k, contin-

uous on S, and analytic on S, and since λ ∈ `1, and each Ak maps into Rq0 (J ;Y ) +
Rq1 (J ;Y ), we find that F ∈F (Rq• (J ;Y )). Furthermore we have

F (θ) =
∞∑

k=1
λk Ak (θ) =

∞∑
k=1

λk

∑
I∈Ik

1IπI ,k (Ck (θ)) = f

and

‖F‖F (Rq• (J ;Y )) ≤ ‖λk‖`1 sup
k∈N

‖Ak‖F (Rq• (J ;Y )) ≤ (1+ε)‖λk‖`1 .
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Since ε > 0 was arbitrary, taking the infimum over all atomic decompositions of f and

all F ∈F (Rq• (J ;Y )) with F (θ) = f completes the proof.

Now consider a collection J of mutually disjoint bounded intervals in R. We will

only prove (7.4.3), as the proof of (7.4.4) is similar. We introduce the following notation:

if J = [J−, J+) ⊆ R is a bounded interval and f ∈ L0(J ;Y ), we let f J ∈ L0([0,1);Y ) be the

function

f J (x) := f ((J+− J−)x + J+) x ∈ [0,1).

Then for each s ∈ [1,∞] the map τJ : V s (J ;Y ) → V s ([0,1);Y ) defined by τJ ( f ) := f J is an

isometry. Consequently we can write

‖ f ‖V s (J ;Y ) = sup
J∈J

‖ f |J‖V s (J ;Y ) = sup
J∈J

‖τJ ( f |J )‖V s ([0,1);Y ),

and therefore the map Φ : V s
0 (J ;Y ) → c0(J ;V s ([0,1);Y )) defined by

Φ( f ) := (τJ ( f |J ))J∈J

is an isometry. Since the intervals in J are mutually disjoint, Φ is an isometric isomor-

phism. Thus Φ−1 induces an isometric isomorphism

Φ−1 : c0
(
J ; [V q• ([0,1);Y )]θ

)= [
c0(J ;V q• ([0,1);Y ))

]
θ → [V q•

0 (J ;Y )]θ,

using [Tri78, Remark 3, §1.18.1]. By (7.4.1) we have

V [q0,q1]θ−ε([0,1);Y ) ,→ [V q• ([0,1);Y )]θ,

so that Φ−1 yields an embedding

c0(J ;V [q0,q1]θ−ε([0,1);Y )) ,→ [V q•
0 (J ;Y )]θ.

Precomposing with Φ gives the bounded inclusion

V [q0,q1]θ−ε
0 (J ;Y ) ,→ [V q•

0 (J ;Y )]θ

and completes the proof.

7.5. FOURIER MULTIPLIER THEOREMS

Let X ,Y be Banach function spaces and let m : R→L(X ,Y ). In this section we will de-

velop sufficient conditions on X and Y which imply that the Fourier multiplier operator

Tm : S(Rd ; X ) →S ′(Rd ;Y ), Tm f = (m f̂ )∨.

extends to a bounded operator from Lp (R, w ; X ) to Lp (R, w ;Y ). In particular we will

prove operator-valued variants of the multiplier theory of Coifmann-Rubio de Francia–

Semmes, i.e. we will show the boundedness of Tm for m ∈ V s (∆;L(X ,Y )) and w in
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a suitable Muckenhoupt class. We will only consider multipliers m defined on R; ex-

tensions to multipliers defined on Rd can be obtained by an induction argument as in

[Kró14, Section 4], [Lac07] and [Xu96], and extensions to multipliers on the torus T can

be obtained by transference, see [11, Proposition 4.1]. In this case one must consider

multipliers defined on T̂=Z, where bounded s-variation for a function on Z is defined

analogously to Definition 7.4.1.

We start with a result that is well-known in the unweighted setting (see [HHN02,

ŠW07]). It will be used in the proof of Theorem 7.5.16. Recall that∆= {±[2k ,2k+1),k ∈Z}

is the standard dyadic partition of R.

Theorem 7.5.1 (Vector-valued Marcinkiewicz multiplier theorem). Let X and Y be UMD

Banach spaces, and suppose Γ ⊆ L(X ,Y ) is absolutely convex and R-bounded. Suppose

m ∈V 1(∆;Γ). Then for all p ∈ (1,∞) and w ∈ Ap ,

‖Tm‖Lp (R,w ;X )→Lp (R,w ;Y ) ≤φX ,Y ,p ([w]Ap )‖Γ‖R‖m‖V 1(∆;Γ).

Proof. To prove the result one can repeat the argument in [HHN02, Theorem 4.3] us-

ing weighted Littlewood–Paley inequalities with sharp cut-off functions, which can be

found for instance in [FHL20].

Our starting point for multiplier theorems for m ∈V s with s > 1 will be the Littlewood–

Paley–Rubio de Francia estimates developed in Section 7.2

7.5.1. MULTIPLIERS IN HILBERT SPACES

The first part of the following theorem is an analogue of [Kró14, Theorem A(i)], and the

second part is an unweighted analogue of [Kró14, Theorem A(ii)]. The second part is

also proved in [HP06, Proposition 3.3]. The exponents (p, s) for which each part of the

theorem applies are pictured in Figure 7.1.

Theorem 7.5.2. Let X and Y be Hilbert spaces, p, s ∈ (1,∞), and consider a multiplier

m ∈V s (∆;L(X ,Y )).

(i) If s ≤ 2 and p ≥ s, then for all w ∈ Ap/s we have

‖Tm‖Lp (R,w ;X )→Lp (R,w ;Y ) ≤φp,s ([w]Ap/s )‖m‖V s (∆;L(X ,Y )).

(ii) If 1
s > ∣∣ 1

p − 1
2

∣∣ we have

‖Tm‖Lp (R;X )→Lp (R;Y ) <∼p,s ‖m‖V s (∆;L(X ,Y )).

To prove Theorem 7.5.2 we use the following proposition, which is a version of The-

orem 7.5.2(i) for R-class multipliers. The techniques used to prove this proposition are

strongly related to those used in the proof of our main result for UMD Banach function

spaces, Theorem 7.5.6.
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Figure 7.1: Allowable exponents for Theorem 7.5.2: the weighted case (i) dark shaded, the unweighted case (ii)
light shaded.

1/p
0 11

2
1

1/s

0

1
2

1

Proposition 7.5.3. Let X and Y be Hilbert spaces, s ∈ (1,2], and consider a multiplier

m ∈ R s (∆;L(X ,Y )). Then for all p > s and w ∈ Ap/s we have

‖Tm‖Lp (R,w ;X )→Lp (R,w ;Y ) ≤φp,s ([w]Ap/s )‖m‖R s (∆;L(X ,Y )).

Proof. We only consider the case s < 2. The case s = 2 is similar, but simpler. Fix ε > 0

and let f ∈ Lp (R, w ; X ). By approximation we may assume that the dyadic Littlewood–

Paley decomposition of f has finitely many nonzero terms and set∆ f = {J ∈∆ : S J f 6= 0}.

For each J ∈∆ f let

m|J =
N∑

k=1
λk a J

k , a J
k = ∑

I∈J J
k

c J ,k
I 1I

be an R s (J ;L(X ,Y ))-atomic decomposition of the restriction m|J with λk independent

of J and
N∑

k=1
|λk | ≤ (1+ε)‖m‖R s (∆;L(X ,Y ))

as in [HP06, Theorem 2.3].

Note that S J Tm = TmS J , where we abuse notation by letting S J denote either the X -

or Y -valued Fourier projection. By the Littlewood–Paley estimate (see [FHL20, Theorem

3.4]), Hölder’s inequality, Remark 7.2.7, and w ∈ Ap/s ⊆ Ap , we have

‖Tm f ‖Lp (R,w ;Y ) ≤φp ([w]Ap )
∥∥∥( ∑

J∈∆ f

‖TmS J f ‖2
Y

)1/2∥∥∥
Lp (R,w)

≤φp ([w]Ap )
∥∥∥( ∑

J∈∆ f

( N∑
k=1

|λk |
∑

I∈J J
k

‖c J ,k
I S I f ‖Y

)2)1/2∥∥∥
Lp (R,w)
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≤φp ([w]Ap )
N∑

k=1
|λk |

∥∥∥( ∑
J∈∆ f

( ∑
I∈J J

k

‖c J ,k
I ‖s) 2

s
( ∑

I∈J J
k

‖S I f ‖s′
X

) 2
s′

) 1
2
∥∥∥

Lp (R,w)

≤φp ([w]Ap )
N∑

k=1
|λk |

∥∥∥( ∑
J∈∆ f

( ∑
I∈J J

k

‖S I f ‖s′
X

)2/s′)1/2∥∥∥
Lp (R,w)

≤φp,s ([w]Ap/s )
N∑

k=1
|λk |‖ f ‖Lp (R,w ;X ).

Since ε> 0 was arbitrary this implies

‖Tm f ‖Lp (R,w ;Y ) ≤φp,s ([w]Ap/s )‖m‖R s (∆;L(X ,Y ))‖ f ‖Lp (R,w ;X )

for all w ∈ Ap/s and f ∈ Lp (R, w ; X ).

Proof of Theorem 7.5.2. Part (i): We first consider the case p < s and s < 2. Let w ∈ Ap/s

and take σ ∈ (s,2] such that w ∈ Ap/σ, which is possible by Proposition 2.3.2(iii). By

Lemma 7.4.3 we know that m ∈ Rσ(∆;L(X ,Y )) with

‖m‖Rσ(∆;L(X ,Y )) <∼s,σ ‖m‖V s (∆;L(X ,Y )),

so by Proposition 7.5.3 we obtain

‖Tm‖L(Lp (R,w ;X ),Lp (R,w ;Y )) ≤φp,s ([w]Ap/s )‖m‖V s (∆;L(X ,Y )).

Next we consider the case p > s = 2. Observe that by [HNVW16, Proposition 5.3.16]

it suffices to prove the result for the truncated multipliers

mN := 1⋃N
n=1 Jn

m,

where ∆ = (Jn)∞n=1 is an arbitrary ordering of ∆. Since mN ∈ V s
0 (∆;L(X ,Y )) uniformly,

without loss of generality we may work with an arbitrary multiplier m ∈ V s
0 (∆;L(X ,Y )).

Fix w ∈ Ap/2. Then by Proposition 2.3.2(iv) there exists a δ > 0 such that w1+δ ∈ Ap/2.

Take

θ = 2

p

(
1− 1

1+δ
)
, p0 = (1+δ)(1−θ)p, and σ= 2−θ.

Then θ ∈ (0,1), σ ∈ (1,2) and p0 = p + (p −2)δ> p, so by the first case we have

‖Tm‖Lp0 (R,w ;X )→Lp0 (R,w ;Y ) ≤φp0,σ([w]Ap/2 )‖m‖V σ
0 (∆;L(X ,Y )).

Moreover by Plancherel’s theorem (which is valid since X and Y are Hilbert spaces) we

know that

‖Tm‖L(L2(R;X ),L2(R;Y )) ≤ ‖m‖L∞(R;L(X ,Y )). (7.5.1)

Since
1

[p0,2] θ
= 1

p(1+δ)
+ 1

p
− 1

p(1+δ)
= 1

p
,
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we know by [Tri78, Theorem 1.18.5] that Lp (R, w ; X ) = [Lp0 (w1+δ, X ),L2(R; X )]θ, and

likewise with X replaced by Y . Moreover since [σ,∞]θ = 2−θ
1−θ > 2 we have the contin-

uous inclusions

V 2(∆;L(X ,Y )) ,→ [V σ
0 (∆;L(X ,Y )),V ∞

0 (∆;L(X ,Y ))]θ

,→ [V σ
0 (∆;L(X ,Y )),L∞(R;L(X ,Y ))]θ

by Theorem 7.4.4. By bilinear complex interpolation [BL76, §4.4] applied to the bilin-

ear map (m, f ) 7→ Tm f we have boundedness of Tm : Lp (R, w ; X ) → Lp (R, w ;Y ) with the

required norm estimate.

Finally we consider the case p = s ≥ 2; we will use another interpolation argument.

Fix w ∈ A1. Then by Proposition 2.3.2((iv)) there exists a δ > 0 such that w1+δ ∈ A1. Fix

p1 ∈ (s, s + (s −1)δ). By the argument of the previous cases we have

‖Tm‖Lp1 (w1+δ;X )→Lp1 (w1+δ;Y ) ≤φp1,s ([w]A1 )‖m‖V s (∆;L(X ,Y )).

Let θ ∈ (0,1) be such that θ(1+δ)s = p1. Such a θ exists since p1 < s + (s −1)δ. Choose

p0 ∈ (1, s) such that [p0, p1]θ = s. Such a p0 exists since p1 > s and [1, p1]θ < s. Indeed,

the latter follows from

s

[1, p1]θ
= s(1−θ)+ s

θ

p1
= s − p1

1+δ + 1

1+δ > 1.

Since p0 < s ≤ 2 we have by duality with the previous cases (taking w = 1) that

‖Tm‖Lp0 (R;X )→Lp0 (R;Y ) <∼p0,s ‖m‖V s (∆;L(X ,Y )).

As before our choice of θ yields Ls (R, w ; X ) = [Lp0 (R, X ),Lp1 (w1+δ; X )]θ, and likewise

with X replaced by Y . Therefore by complex interpolation we have boundedness of

Tm : Ls (R, w ; X ) → Ls (R, w ;Y ) with the required norm estimate.

Part (ii): The case p = 2 is clear from (7.5.1) and the embedding of the V s -classes in

L∞. For p > 2 we may assume without loss of generality that m ∈ V s
0 (∆;L(X ,Y )) as in

Part (i). Moreover, by embedding of the V s -classes, we may assume that s > 2.

Letσ ∈ (
s,

( 1
2 − 1

p

)−1) and fix t ∈ (2,∞) such that [2, t ] σ
2
= p. Such a t exists since p > 2

and
1

p
= 1

[2, t ] σ
2

= 1

2
− 1

σ
+ 2

σ

1

t
,

which implies that
1

t
= 2

s

( 1

p
+ 1

σ
− 1

2

)
> 0.

Using the boundedness properties

V ∞
0 (∆;L(X ,Y ))×L2(R; X ) → L2(R;Y ) and

V 2
0 (∆;L(X ,Y ))×Lt (R; X ) → Lt (R;Y )
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of the bilinear map (m, f ) 7→ Tm f , which follow from (7.5.1) and Part (i) respectively, we

have boundedness of Tm : Lp (R, w ; X ) → Lp (R, w ;Y ) with the required norm estimate

by bilinear complex interpolation [BL76, §4.4]. Here we use [Tri78, Theorem 1.18.4] and

Theorem 7.4.4 to identify the interpolation spaces as before. The case p < 2 follows by a

duality argument.

Remark 7.5.4.

1. If the multiplier is scalar-valued and X = Y , then Theorem 7.5.2 follows simply

from the scalar case and a standard Hilbert space tensor extension argument (see

[HNVW16, Theorem 2.1.9]).

2. As in [Kró14, Theorem A], a weighted version of Theorem 7.5.2(ii) can be proved,

but we omit it to avoid limited range Muckenhoupt weight classes.

7.5.2. MULTIPLIERS IN UMD BANACH FUNCTION SPACES

We now turn to our main result (Theorem 7.5.6). Its proof is inspired by that of [HP06,

Theorem 2.3], which is a generalisation of the Hilbert space result in Theorem 7.5.2.

Besides the regularity assumption on the multiplier as in the Hilbert space case, we will

need an `2(`q )-boundedness assumption. We first prove a result for R-class multipliers,

analogous to Proposition 7.5.3.

Proposition 7.5.5. Let q ∈ (1,2], p ∈ (q,∞), and w ∈ Ap/q . Let X and Y be Banach func-

tion spaces with X q ∈ UMD and Y ∈ UMD. Let Γ ⊆ L(X ,Y ) be absolutely convex and

`2(`q ′
)-bounded, and suppose m ∈ Rq (∆;Γ). Then

‖Tm‖L(Lp (R,w ;X ),Lp (R,w ;Y )) ≤φX ,Y ,p,q ([w]Ap/q )‖Γ‖
`2(`q′ )‖m‖Rq (∆;Γ).

Proof. Fix ε> 0 and let f ∈ Lp (R, w ; X ). We begin as in the proof of Proposition 7.5.3: we

assume that the dyadic Littlewood–Paley decomposition of f has finitely many nonzero

terms and set ∆ f = {J ∈∆ : S J f 6= 0}. For each J ∈∆ f let

m|J =
N∑

k=1
λk a J

k , a J
k = ∑

I∈J J
k

c J ,k
I 1I

be a Rq (J ;Γ)-atomic decomposition of the restriction m|J withλk independent of J , with

each J J
k finite, and with

N∑
k=1

|λk | ≤ (1+ε)‖m‖Rq (∆;L(X ,Y )).

As before, S J Tm = TmS J . By the Littlewood–Paley theorem for UMD Banach function

spaces (Proposition 7.2.1), using that Y ∈ UMD and w ∈ Ap/q ⊆ Ap , we have

‖Tm f ‖Lp (R,w ;Y ) ≤φY ,p ([w]Ap )
∥∥∥( ∑

J∈∆ f

|TmS J f |2
)1/2∥∥∥

Lp (R,w ;Y )



7.5. FOURIER MULTIPLIER THEOREMS 217

=φY ,p ([w]Ap )
∥∥∥( ∑

J∈∆ f

∣∣∣ N∑
k=1

λk

∑
I∈J J

k

c J ,k
I S I f

∣∣∣2)1/2∥∥∥
Lp (R,w ;Y )

≤φY ,p ([w]Ap )
N∑

k=1
|λk |

∥∥∥( ∑
J∈∆ f

∣∣∣ ∑
I∈J J

k

c J ,k
I S I f

∣∣∣2)1/2∥∥∥
Lp (R,w ;Y )

.

We estimate the right hand-side by

N∑
k=1

|λk |
∥∥∥( ∑

J∈∆ f

∣∣∣ ∑
I∈J J

k

c J ,k
I S I f

∣∣∣2)1/2∥∥∥
Lp (R,w ;Y )

≤
N∑

k=1
|λk |

∥∥∥( ∑
J∈∆ f

(( ∑
I∈J J

k

‖c J ,k
I ‖q

Γ

)1/q ( ∑
I∈J J

k

∣∣∣c J ,k
I S I f

‖c J ,k
I ‖Γ

∣∣∣q ′)1/q ′)2)1/2∥∥∥
Lp (R,w ;Y )

≤
N∑

k=1
|λk |

∥∥∥( ∑
J∈∆ f

( ∑
I∈J J

k

∣∣∣ c J ,k
I

‖c J ,k
I ‖Γ

S I f
∣∣∣q ′)2/q ′)1/2∥∥∥

Lp (R,w ;Y )
.

By the definition of the Minkowski norm, the operators c J ,k
I /‖c J ,k

I ‖Γ all lie in Γ, so by

`2(`q ′
)-boundedness of Γ we have

‖Tm f ‖Lp (R,w ;Y ) ≤φY ,p ([w]Ap )‖Γ‖
`2(`q′ )

N∑
k=1

|λk |
∥∥∥( ∑

J∈∆ f

( ∑
I∈J J

k

|S I f |q ′)2/q ′)1/2∥∥∥
Lp (R,w ;X )

.

By Theorem 7.2.5, we obtain∥∥∥( ∑
J∈∆ f

( ∑
I∈J J

k

|S I f |q ′)2/q ′)1/2∥∥∥
Lp (R,w ;X )

≤φX ,p,q ([w]Ap/q )‖ f ‖Lp (R,w ;X ).

Since
∑N

k=1 |λk | ≤ (1+ε)‖m‖Rq (∆;Γ) and ε> 0 was arbitrary, this finishes the proof.

Our main multiplier theorem now follows directly from Proposition 7.5.5 and Lemma

7.4.3.

Theorem 7.5.6. Let X and Y be Banach function spaces, and letΓ⊆L(X ,Y ) be absolutely

convex. Let q ∈ (1,2], s ∈ [1, q) and m ∈V s (∆;Γ).

(i) Suppose that X q ∈ UMD, Y ∈ UMD, and Γ is `2(`q ′
)-bounded. Then for all p ∈

(q,∞) and w ∈ Ap/q we have

‖Tm‖Lp (R,w ;X )→Lp (R,w ;Y ) ≤φX ,Y ,p,q ([w]Ap/q )‖Γ‖
`2(`q′ )‖m‖V s (∆;Γ).

(ii) Suppose that X ∈ UMD, (Y ∗)q ∈ UMD, Γ is `2(`q )-bounded, and m ∈ V s (∆;Γ).

Then for all p ∈ (1, q ′) we have

‖Tm‖Lp (R;X )→Lp (R;Y ) <∼X ,Y ,p,q ‖Γ‖`2(`q )‖m‖V s (∆;Γ).
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Proof. The first part follows directly from Proposition 7.5.5 and Lemma 7.4.3. For the

second part a standard duality argument shows that

‖Tm‖Lp (R;X )→Lp (R;Y ) ≤ ‖Tm∗‖L(Lp′ (R;Y ∗),Lp′ (R;X ∗)),

with m∗ : R→ span(Γ∗) defined by m∗(t ) = m(t )∗ for all t ∈ R. Applying the first part to

m∗, using Proposition 7.3.3 to show that T ∗ is `2(`q ′
)-bounded and noting that m∗ ∈

V q (∆;Γ∗), completes the proof.

If q = 2 and w = 1 in Theorem 7.5.6, we recover [HP06, Corollary 2.5] for Banach

function spaces, except for the endpoint p = 2, which is missing since we work in the

weighted setting. Of course Theorem 7.5.6(ii) could also be stated with weights. How-

ever, to formulate for which weights it holds we would have to introduce limited range

Muckenhoupt weight classes.

Remark 7.5.7. The `2(`q ′
)-boundedness assumption in Theorem 7.5.6 arises naturally

from the proof. It is known that boundedness of Tm implies R-boundedness—and thus

`2-boundedness if X has finite cotype—of the image of the Lebesgue points of m (see

[CP01] or [HNVW16, Theorem 5.3.15]). However, `2(`q ′
)-boundedness is not necessary,

as may be seen by considering m = nS where n ∈ Rq (∆) is a scalar multiplier and S : X →
Y is a bounded linear operator. In this case Tm will be bounded, but {S} need not be

`2(`q ′
)-bounded for q 6= 2 (see Example 7.3.13 and [KU14, Example 2.16]).

Using complex interpolation, the reverse Hölder inequality, and the openness of the

UMD property, we can obtain a result for the endpoint p = q = s in Theorem 7.5.6.

Proposition 7.5.8. Let X and Y be Banach function spaces. Let q,r ∈ (1,2) and suppose

that X q ∈ UMD and (Y ∗)r ∈ UMD. LetΓ⊆L(X ,Y ) be absolutely convex and both `2(`q ′
)-

and `2(`r )-bounded. Let s = min{q,r } and suppose that m ∈ V s (∆;Γ). Then for all w ∈
A1,

‖Tm‖Lq (R,w ;X )→Lq (R,w ;Y ) ≤φX ,Y ,q,r ([w]A1 )max
{‖Γ‖

`2(`q′ ),‖Γ‖`2(`r )

}‖m‖V s (∆;Γ).

Proof. Fix w ∈ A1. By Proposition 2.3.2(iv) there exists an δ> 0 such that w1+δ ∈ A1. By

the openness of the UMD property of Banach function spaces (see [Rub86, Theorem 4])

we know that there exist

q0 ∈
(
q,max{2, q + (q −1)δ}

)
, r0 ∈ (r,2)

such that X q0 , (Y ∗)r0 ∈ UMD. By Corollary 7.3.5 we know that Γ is `2(`q ′
0 )- and Γ is

`2(`r0 )-bounded with

‖Γ‖
`2(`q′0 )

≤ ‖Γ‖
`2(`q′ ) and ‖Γ‖`2(`r0 ) ≤ ‖Γ‖`2(`r ). (7.5.2)

Fix p1 ∈ (q0, q + (q −1)δ). By Theorem 7.5.6 and (7.5.2) we know that

‖Tm‖L(Lp1 (w1+δ;X ),Lp1 (w1+δ;Y )) ≤φX ,Y ,p1,q0 ([w]A1 )‖Γ‖
`2(`q′ )‖m‖V s (∆;Γ).
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Let θ ∈ (0,1) be such that θ(1+δ)q = p1, and fix p0 ∈ (1, q) such that [p0, p1]θ = q . These

parameters exist by the same argument as in Theorem 7.5.2(i). Since p0 < r ′
0, we know

by Theorem 7.5.6((ii)) and (7.5.2) that

‖Tm‖L(Lp0 (R;X ),Lp0 (R;Y )) <∼X ,Y ,p0,r0 ‖Γ‖`2(`r )‖m‖V s (∆;Γ).

Therefore by complex interpolation as in Theorem 7.5.2(i) we have boundedness of

Tm : Lq (R, w ; X ) → Lq (R, w ;Y ) with the required norm estimate.

When dealing with operator-valued multipliers m, to check the hypotheses of our

results, one needs an `2(`q ′
)-bounded subset Γ ⊆ L(X ,Y ) whose span contains m(R),

such that m has the appropriate regularity when measured with respect to the Minkowski

norm induced by Γ. An obvious naïve choice is to assume that m(R) is `2(`q ′
)-bounded

and to take Γ = m(R), but m may not be sufficiently regular with respect to the Γ-Min-

kowski norm. By making Γ larger m becomes more regular in the Γ-Minkowski norm,

but enlargingΓmay violate `2(`q ′
)-boundedness. Constructing such a setΓ given a gen-

eral multiplier m is quite subtle (except of course in the scalar case, where the Minkowski

norm on the one-dimensional span of m is equivalent to the absolute value on C). Be-

low we give an example where these problems may be surmounted using extrapolation

techniques.

Proposition 7.5.9. Let α ∈ (0,1]. Suppose that for some p0 ∈ (1,∞) and all w ∈ Ap0 (Rd )

we have that m : R→L(Lp0 (Rd , w)) satisfies the following Hölder-type condition:

sup
t∈R

‖m(t )‖L(Lp0 (Rd ,w)) + sup
J∈∆

|J |α[m]Cα(J ;L(Lp0 (Rd ,w))) ≤φ([w]Ap0
). (7.5.3)

Then there exists a family of operatorsΓ such that m ∈V 1/α(∆;Γ) andΓ is `u(`v )-bounded

on Lp (Rd , w) for all p,u, v ∈ (1,∞) and w ∈ Ap (Rd ), with

‖Γ‖`u (`v ) ≤φp,u,v ([w]Ap ).

Proof. For each J ∈∆ define

Γ(J ) := m(J )∪
{m(x)−m(y)

|x − y |α |J |α : x 6= y ∈ J
}

,

and set Γ := ⋃
J∈∆Γ(J ). Note that m(R) ⊆ Γ. We will show that Γ has the desired proper-

ties.

Since m(x) ∈ Γ and m(x)−m(y)
|x−y |α |J |α ∈ Γ for all J ∈ ∆ and all x 6= y ∈ J , by the definition

of the Minkowski and Hölder norms, we have ‖m(x)‖Γ ≤ 1 and |J |α[m]Cα(J ;Γ) ≤ 1, from

which it follows directly that m ∈V 1/α(∆;Γ).

By (7.5.3) we have

‖T f ‖Lp (Rd ,w)→Lp (Rd ,w) ≤φp ([w]Ap )

for some p ∈ (1,∞), all w ∈ Ap (Rd ) and all T ∈ Γ. Thus the `u(`v )-boundedness result

follows directly from Proposition 7.3.7.
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In the next example we specialise to the case X = Y = Lr and s ∈ (1,2). Results for

s ∈ [2,∞) will be presented in Example 7.5.14. Note that the `2-boundedness or `2(`s )-

boundedness assumptions can be deduced for instance from weight-uniform Hölder

estimates as in Proposition 7.5.9.

Example 7.5.10. Let (Ω,µ) be a σ-finite measure space. Let p,r ∈ (1,∞) and let Γ ⊆
L(Lr (Ω)) be absolutely convex. Let s ∈ (1,2) and m ∈ V s (∆;Γ). Then Tm is bounded on

Lp (R, w ;Lr (Ω)) in each of the following cases:

(i) If r = 2,

(a) p ∈ [s,∞) and w ∈ Ap/s .

(b) p ∈ (1, s′] and w ≡ 1.

(ii) If r ∈ (2,∞),

(a) p ∈ (2,∞), w ∈ Ap/2 and Γ is `2-bounded.

(b) p ∈ (1,r ), s ∈ (1,r ′), w ≡ 1 and Γ is `2(`s )-bounded.

(iii) If r ∈ (1,2),

(a) p ∈ (1,2), w ≡ 1 and Γ is `2-bounded.

(b) p ∈ (r,∞), s ∈ (1,r ), w ∈ Ap/s and Γ is `2(`s′ )-bounded.

Proof. The case (i)(a) follows from Theorem 7.5.2 and the case (i)(b) from a duality ar-

gument. The cases (ii)(a) and (iii)(a) follow from Theorem 7.5.6(i) and (ii) with q = 2. For

(iii)(b) choose q ∈ (s,r ) such that w ∈ Ap/q . By Corollary 7.3.5, Γ is `2(`q ′
)-bounded, and

therefore Theorem 7.5.6(i) applies. Similarly, (ii)(b) follows from Theorem 7.5.6((ii)).

There is some overlap between the cases in Example 7.5.10. For X = Lr (Ω), we can

exploit that we always have either X 2 ∈ UMD or (X ∗)2 ∈ UMD. This is not possible for

general UMD Banach function spaces, which restricts the class of multipliers that can

be handled by our results, as shown in the following example.

Example 7.5.11. Let (Ω,µ) be a σ-finite measure space. Let p ∈ (1,∞), r ∈ (1,2), and let

Γ ⊆ L(Lr (Ω)⊕Lr ′ (Ω)) be absolutely convex. Let s ∈ (1,r ) and m ∈ V s (∆;Γ). Then Tm is

bounded on Lp (R, w ;Lr (Ω)⊕Lr ′ (Ω)) in each of the following cases:

(i) p ∈ (r,∞), w ∈ Ap/s and Γ is `2(`s′ )-bounded.

(ii) p ∈ (1,r ′), w ≡ 1 and Γ is `2(`s )-bounded.

The result follows from Theorem 7.5.6 in the same way as in Example 7.5.10.
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7.5.3. MULTIPLIERS IN INTERMEDIATE UMD BANACH FUNCTION SPACES

We can prove stronger results, allowing for multipliers of lower regularity, if we consider

‘intermediate’ spaces X = [Y , H ]θ where Y q ∈ UMD for some q ∈ (1,2] and H is a Hilbert

space. For example, when r ∈ (2,∞), we have Lr = [Lr0 ,L2]θ for some r0 ∈ (r,∞) and

θ ∈ (0,1). In order to use interpolation methods we will need that span(T ) with the

Minkowski norm is a Banach space, i.e. that T is a Banach disc (see below Definition

7.4.1).

Theorem 7.5.12. Let p ∈ (1,∞), q ∈ (1,2] and θ ∈ (0,1). Let Y and H be Banach function

spaces over the same measure space, with Y q ∈ UMD, H a Hilbert space, and Y ∩H dense

in both Y and H. Let X = [Y , H ]θ. Suppose Γ ⊆ L(Y ∩ H) is a Banach disc which is

`2(`q ′
)-bounded on Y and uniformly bounded on H. Let s ∈ (1,∞) and suppose that

m ∈V s (∆;Γ).

(i) If s < min{p, [q,2]θ} and s ≥ [q,1]θ, then

‖Tm‖Lp (R,w ;X )→Lp (R,w ;X ) ≤φY ,p,q,s,θ([w]Ap/s )‖m‖V s (∆;Γ)‖T ‖
`2(`q′ )

for all w ∈ Ap/s .

(ii) If
1

s
> max

{ 1

[q,2]θ
− 1

p
,

1−θ
q

,
1

p
− θ

2

}
and p > [q,1]θ, then

‖Tm‖Lp (R;X )→Lp (R;X ) <∼Y ,p,q,s,θ ‖m‖V s (∆;Γ)‖T ‖
`2(`q′ ).

The allowable exponents (p, s) in Theorem 7.5.12 are shown in Figure 7.2. The sym-

metry in Figure 7.2 is due to the equalities

θ

2
= 1

[∞,2]θ
−0 = 1

[q,1]θ
− 1

[q,2]θ
= 1

[q,2]θ
− 1

[q,∞]θ

and
1−θ

q
= 1

[q,∞]θ
−0 = 1

[q,2]θ
− 1

[∞,2]θ
.

Proof. As in the proof of Theorem 7.5.2, it suffices to consider decaying multipliers m ∈
V s

0 (∆;Γ). Moreover, by Lemma 7.4.3, Proposition 2.3.2((iii)) and the openness of the

assumptions on s, it suffices to consider m ∈ R s
0(∆;Γ). Throughout the proof we let

rs,θ,q ∈ [1,∞) be the unique number such that

[q,rs,θ,q ]θ = s,

which exists if [q,1]θ ≤ s < [q,∞]θ .
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Figure 7.2: Allowable exponents for Theorem 7.5.12: the weighted case (i) dark shaded, the unweighted case
(ii) light shaded.
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0

1
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1
[q,2]θ

1
[q,1]θ

1

Part (i): First assume s 6= [q,1]θ , so that rs,θ,q > 1. Fix a weight w ∈ A1. Take t > q and

define σ= [t ,rs,θ,q ]θ > s. By Proposition 7.5.5 we have boundedness of the bilinear map

Rq
0 (∆;Γ)×Lt (R, w ;Y ) → Lt (R, w ;Y ), (m, f ) 7→ Tm f

using that Γ is `2(`q ′
)-bounded on Y . Moreover, since s ≤ [q,2]θ , we know that rs,θ,q ≤ 2,

so we have by Theorem 7.5.2((i)) and Lemma 7.4.3 that the bilinear map

R
rs,θ,q

0 (∆;Γ)×Lrs,θ,q (R, w ; H) → Lrs,θ,q (R, w ; H), (m, f ) 7→ Tm f

is bounded, using

‖m‖R s (∆;L(H)) <∼ ‖m‖R s (∆;Γ) (7.5.4)

by the uniform boundedness of Γ on H .

We define a bilinear map(
R s

0(∆;Γ)∩R
rs,θ,q

0 (∆;Γ)
)×(

Lt (R, w ;Y )∩Lrs,θ,q (R, w ; H)
)

→ Lr (R, w ;Y )∩Lrs,θ,q (R, w ; H), (m, f ) 7→ Tm f .

This is well-defined as it is the extension of the map (m, f ) 7→ Tm f defined for m ∈
R

s∧rs,θ,q

0 (∆;Γ) and f ∈ S(R;Y ∩ H). Here we use that Y ∩ H is dense in both Y and H .

By bilinear complex interpolation [BL76, §4.4] we have boundedness of

[Rq
0 (∆;Γ),R

rs,θ,q

0 (∆;Γ)]θ×[Lt (R, w ;Y ),Lrr,θ,q (R, w ; H)]θ

→ [Lt (R, w ;Y ),Lrs,θ,q (R, w ; H)]θ, (m, f ) 7→ Tm f .
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Here we use that the Minkowski norm on the linear span of Γ is complete, i.e. that Γ ⊆
L(Y ∩H) is a Banach disc.

By Theorem 7.4.4 we have

R
[q,rs,θ,q ]θ
0 (∆;Γ) ,→ [Rq

0 (∆;Γ),R
rs,θ,q

0 (∆;Γ)]θ.

Using this embedding and complex interpolation of weighted Bochner spaces (see [Tri78,

Theorem 1.18.5]; note that the proof simply extends to the case X0 6= X1), we get bound-

edness of

R s
0(∆;Γ)×Lσ(R, w ; X ) → Lσ(R, w ; X ), (m, f ) 7→ Tm f

with norm estimate∥∥Tm f
∥∥

Lσ(R,w ;X ) ≤φY ,q,s,t ,σ,θ([w]A1 )‖m‖R s (∆;Γ)‖T ‖
`2(`q′ )

∥∥ f
∥∥

Lσ(R,w ;X )

for all w ∈ A1 and all simple functions f : R→ X . By Theorem 2.3.3 and density of the

simple functions we deduce

‖Tm f ‖Lp (R,w ;X ) ≤φY ,p,q,s,t ,σ,θ([w]Ap/σ )‖m‖R s (∆;Γ)‖T ‖
`2(`q′ )‖ f ‖Lp (R,w ;X )

for all p ∈ [σ,∞) and all w ∈ Ap/σ. Taking t arbitrarily close to q and using Proposition

2.3.2(iii) proves the case [q,1]θ 6= s.

Next if [q,1]θ = s and w ∈ Ap/s , then by Proposition 2.3.2(iii) we can choose t ∈
(s, [q,2]θ) such that w ∈ Ap/t . By the previous case Tm is bounded on Lp (R, w ; X ) for

all m ∈ R t (∆;Γ) and hence also for m ∈ R s (∆;Γ), which completes the proof.

Part (ii): By embedding of the R s -spaces and the fact that

1

[q,2]θ
> max

{ 1

[q,2]θ
− 1

p
,

1−θ
q

,
1

p
− θ

2

}
for p > [q,1]θ , we may assume that s > [q,2]θ without loss of generality. Note that this

implies that rs,θ,q > 2. We will consider three cases:

Case 1: p ≥ [∞,2]θ . Since

1

pθ
> 1

θ

(θ
2
+ 1−θ

q
− 1

s

)
= 1

2
− 1

rs,θ,q

we can find a p1 > pθ ≥ 2 such that p1 < p and p1 < ( 1
2 − 1

rs,θ,q
)−1. Therefore we know by

Theorem 7.5.2((ii)), using (7.5.4), that the bilinear map

R
rs,θ,q

0 (∆;Γ)×Lp1 (R; H) → Lp1 (R; H), (m, f ) 7→ Tm f

is bounded. Since p < [∞, p1]θ we can find a p0 ∈ (p,∞) such that p = [p0, p1]θ. By

Proposition 7.5.5 we have boundedness of the bilinear map

Rq
0 (∆;Γ)×Lp0 (R;Y ) → Lp0 (R;Y ), (m, f ) 7→ Tm f ,
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using that Γ is `2(`q ′
)-bounded on Y . We can now finish the proof using bilinear com-

plex interpolation, Theorem 7.4.4 and complex interpolation of Bochner spaces as in

the first part.

Case 2: [q,2]θ < p < [∞,2]. Note that R
rs,θ,q

0 (∆;Γ) ,→ L∞(R;Γ). Therefore by Plancherel’s

theorem and (7.5.4) the bilinear map

R
rs,θ,q

0 (∆;Γ)×L2(R; H) → L2(R; H), (m, f ) 7→ Tm f

is bounded. Since [q,2]θ < p < [∞,2]θ we can find a p0 ∈ (q,∞) such that p = [p0,2]θ. By

Proposition 7.5.5 we have boundedness of the bilinear map

Rq
0 (∆;Γ)×Lp0 (R;Y ) → Lp0 (R;Y ), (m, f ) 7→ Tm f ,

using that Γ is `2(`q ′
)-bounded on Y . The proof can now be finished as before.

Case 3: [q,1]θ < p ≤ [q,2]. Let p̃ ∈ (1,2] be such that p = [q, p̃]θ . Then since

1

p̃
< 1

θ

(θ
2
+ 1

s
− 1−θ

q

)
= 1

2
+ 1

rs,θ,q
,

we can find a 1 < p1 < p̃ such that p1 > ( 1
2 + 1

rs,θ,q
)−1. Therefore we know by Theorem

7.5.2(ii), using (7.5.4), that the bilinear map

R
rs,θ,q

0 (∆;Γ)×Lp1 (R; H) → Lp1 (R; H), (m, f ) 7→ Tm f

is bounded. Since p1 < p̃, we can find a p0 ∈ (q,∞) such that p = [p0, p1]θ. By Proposi-

tion 7.5.5 we have boundedness of the bilinear map

Rq
0 (∆;Γ)×Lp0 (R;Y ) → Lp0 (R;Y ), (m, f ) 7→ Tm f ,

again using that Γ is `2(`q ′
)-bounded on Y . The proof can again be finished as before.

The conditions on m in Theorem 7.5.12((ii)) with q = 2 are less restrictive than the

conditions of [HP06, Theorem 3.6], which allows for Banach spaces with the LPRp prop-

erty. The proof of Theorem 7.5.12(ii) can also be used to improve the conditions of

[HP06, Theorem 3.6]

Remark 7.5.13. A weighted variant of part (ii) of Theorem 7.5.12 holds for an appropriate

class of weights, by using a weighted variant of Theorem 7.5.2(ii) (see [Kró14, Theorem

A(ii)]) and limited range extrapolation (see [CMP11, Theorem 3.31]). However, as this

involves limited range Muckenhoupt weight classes, the technical details are left to the

interested reader.

We continue with an application to X = Lr for s ∈ [2,∞). Results for s ∈ (1,2) have

been previously covered by Example 7.5.10.
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Example 7.5.14. Let (Ω,µ) be a σ-finite measure space and let p,r ∈ (1,∞). Let Γ be an

absolutely convex and `2-bounded family of operators on Lt (Ω) for all t ∈ (1,∞). Let

s ∈ [2,∞) and assume m ∈ V s (∆;Γ). Then Tm is bounded on Lp (R;Lr (Ω)) in each of the

following cases:

(i) r ∈ [2,∞) and 1
s > max

{ 1
2 − 1

p , 1
2 − 1

r , 1
p − 1

r }.

(ii) r ∈ (1,2] and 1
s > max

{ 1
p − 1

2 , 1
r − 1

2 , 1
r − 1

p }.

Proof. It suffices to prove (i), as (ii) follows from a duality argument. Let Γ be the closure

of Γ in L(L2(Ω)). Then Γ is a Banach disc. Moreover, by Lemma 7.3.8 we know that

Γ ⊆ L(Lt (Ω)) is `2-bounded for all t ∈ (1,∞). We will check the conditions of Theorem

7.5.12(ii) with Γ, q = 2, Y = Lt (Ω) for an appropriate t > r and H = L2(Ω). Choose θ ∈
(0, 2

r ) such that
1

s
> max

{1

2
− 1

p
,

1−θ
2

,
1

p
− θ

2

}
.

Since s ≥ 2 it follows that p > [2,1]θ . Now the result follows by choosing t > r such that

r = [t ,2]θ.

In a similar way we obtain the following from Theorem 7.5.12(i) and duality. This

partly improves Example 7.5.10.

Example 7.5.15. Let (Ω,µ) be a σ-finite measure space and let p,r ∈ (1,∞). Let Γ be an

absolutely convex and `2-bounded family of operators on Lt (Ω) for all t ∈ [2,∞). Let s ∈
(1,2) and assume m ∈ V s (∆;Γ). Then Tm is bounded on Lp (R, w ;Lr (Ω)) if 1

p < 1
s ≤ 1

r + 1
2

and w ∈ Ap/s .

7.5.4. MULTIPLIERS IN INTERMEDIATE UMD BANACH SPACES

In this final subsection we consider general UMD Banach spaces (not just Banach func-

tion spaces) and use interpolation to improve the conditions of Theorem 7.5.1 consid-

erably, assuming X is an interpolation space between a UMD space and a Hilbert space,

and using the same interpolation scheme as in Theorem 7.5.12. This result is new even

for scalar-valued multipliers, and it implies sufficient conditions for Fourier multipliers

on the space of Schatten class operators.

Theorem 7.5.16. Let p ∈ (1,∞) and θ ∈ (0,1). Let Y and H be an interpolation couple,

with Y ∈ UMD, H a Hilbert space, and Y ∩ H dense in both Y and H. Let X = [Y , H ]θ.

Suppose Γ⊆L(Y ∩H) is a Banach disc which isR-bounded on Y and uniformly bounded

on H. Let s ∈ (1,∞) and suppose that m ∈V s (∆;Γ).

(i) If 1/s > min{1/p,1− (θ/2)}, then

‖Tm‖Lp (R,w ;X )→Lp (R,w ;X ) ≤φY ,p,s,θ([w]Ap/s )‖m‖V s (∆;Γ)‖Γ‖R
for all w ∈ Ap/s .
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(ii) If
1

s
> max

{
1− θ

2
− 1

p
,1−θ,

1

p
− θ

2

}
,

then

‖Tm‖Lp (R;X )→Lp (R;X ) <∼Y ,p,s,θ ‖m‖V s (∆;Γ)‖Γ‖R.

The allowable exponents (p, s) above are shown in Figure 7.3.

Proof. To prove the result one can argue as in Theorem 7.5.12 with q = 1 and using The-

orem 7.5.1 instead of Proposition 7.5.5.

Figure 7.3: Allowable exponents for Theorem 7.5.16: the weighted case (i) dark shaded, the unweighted case
(ii) light shaded.
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2 1− θ
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0

1−θ

1− θ
2

1

In the next example we apply Theorem 7.5.16 to operator-valued multipliers on the

Schatten class operators S r ⊆ L(`2) for r ∈ [1,∞]. This is potentially useful for Schur

multipliers (see [HNVW16, Theorem 5.4.3] and [PS11, Theorem 4]). For r ∈ (1,∞) these

spaces have the UMD property, and for p, q ∈ [1,∞] one has S [p,q]θ = [S p ,S q ]θ (see

[HNVW16, Propositions 5.4.2 and D.3.1]).

Example 7.5.17. Let X = S r with p,r ∈ (1,∞) and Γ ⊆ L(S t ) be absolutely convex

and R-bounded for all t ∈ (1,∞). Let s ∈ (1,∞) and assume m ∈ V s (∆;Γ). Then Tm is

bounded on Lp (R;S r ) in each of the following cases:

(i) r ∈ [2,∞) and 1
s > max

{
1
p ′ − 1

r ,
∣∣ 1

r − 1
r ′

∣∣, 1
p − 1

r

}
.

(ii) r ∈ (1,2] and 1
s > max

{
1
r − 1

p ′ ,
∣∣ 1

r − 1
r ′

∣∣, 1
r − 1

p

}
.
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In particular, if p ∈ [r ∧ r ′,r ∨ r ′] then Tm is bounded on Lp (R;S r ) if r ∈ (1,∞) and
1
s > | 1

r − 1
r ′ |.

Proof. The result follows from Theorem 7.5.16(ii) by arguing as in Example 7.5.14. A

similar result can be derived on Lp (R, w ;S r ) by Theorem 7.5.16(i).
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[Kwa72a] S. Kwapień. Isomorphic characterizations of inner product spaces by or-

thogonal series with vector valued coefficients. Studia Math., 44:583–595,

1972.
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SUMMARY

In the study of partial differential equations from a functional analytic viewpoint, har-

monic analysis methods have been developed hand in hand with regularity theory for

such equations in the past decades. In contrast, harmonic analysis has not yet fully

made its entrance in the study of the stochastic counterparts of these partial differential

equations. In this dissertation we will develop new methods in vector-valued harmonic

analysis to treat stochastic partial differential equations from a functional analytic view-

point.

In Part I of this dissertation we will develop harmonic analysis methods to treat sin-

gular stochastic integral operators of the form

SK G(t ) :=
∫ ∞

0
K (t , s)G(s) dWH (s), t ∈R+,

where X and Y are Banach spaces, G is an adapted stochastic process taking values in

X , WH is a cylindrical Brownian motion and K is a given operator-valued kernel K : R+×
R+ → L(X ,Y ) with a singularity in t = s. The Lp -boundedness of such operators plays

in important role in the analysis of SPDEs from a functional analytic viewpoint.

As a preparation, we prove a general sparse domination theorem in Chapter 3, in

which a vector-valued operator is controlled pointwise by a positive, local expression.

This local expression is called a sparse operator and is of the form( ∑
Q∈S

( 1

|Q|
∫

Q
‖ f (t )‖p0

X dt
)r /p0

1Q

)1/r
, f ∈ Lp0

loc(Rd ; X )

for a sparse collection of cubes S in Rd and p0 ∈ [1,∞). We use the structure of the

operator to allow for r ∈ [1,∞), rather than the more thoroughly studied case r = 1.

This sparse domination theorem is applicable to various operators from both harmonic

analysis and (S)PDE. Indeed, starting with applications in harmonic analysis, we prove

the A2-theorem for vector-valued Calderón–Zygmund operators in a space of homoge-

neous type, from which we deduce an anisotropic, mixed-norm Mihlin multiplier the-

orem. Furthermore, we show quantitative weighted norm inequalities for Littlewood–

Paley operators and the Rademacher maximal operator.

In Chapter 4 we develop extrapolation theory for singular stochastic integral opera-

tors. In particular, we prove Lp -extrapolation results under a Hörmander condition on

the kernel. Sparse domination and sharp weighted bounds using the sparse domina-

tion result from Chapter 3 are obtained under a Dini condition on the kernel, leading

to a stochastic version of the solution to the A2-conjecture. We also discuss the closely
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related γ-Fourier multiplier operators and develop an extrapolation theory for singular

stochastic-deterministic integral operators.

In Chapter 5 we apply the results of Chapter 4 to obtain p-independence and weighted

bounds for stochastic maximal Lp -regularity both in the complex and real interpola-

tion scale. As a consequence, we obtain several new regularity results for the stochastic

heat equation and its time-dependent variants on Rd and on smooth and angular do-

mains. We also treat stochastic Volterra equations and show the p-independence of the

R-boundedness of stochastic convolution operators.

In Part II of this dissertation, motivated by the use of the tensor extension of various

classical operators prevalent in harmonic analysis in the study of (S)PDEs, we will de-

velop two general sufficient conditions for a bounded operator T on Lp (Rd ) to have a

bounded tensor extension T̃ on Lp (Rd ; X ) when X is a Banach function space.

In Chapter 6 we prove implications (2) and (3) in the following diagram

Sparse domination for T

Sparse domination for T̃

Weighted bounds for T

Weighted bounds for T̃

(1)

(4)

(2) (3)

whereas implications (1) and (4) are well-known and unrelated to the operator T . Both

implication (3) and the combination of implications (2) and (4) represent a Banach func-

tion space-valued extension theorem. Implication (3) is based on a factorization princi-

ple, which resembles the factorization theory of Nikišin, Maurey and Rubio de Francia,

but is more flexible. Implication (2) is based on sparse domination for the lattice Hardy–

Littlewood maximal operator. Using these extension theorems, we provide quantita-

tive connections between Banach space properties like the (randomized) UMD property

and the Hardy–Littlewood property.

Using implication (3), we prove Banach function space-valued Littlewood–Paley–

Rubio de Francia-type estimates in Chapter 7. These Littlewood–Paley–Rubio de Francia-

type estimates enable us to prove various operator-valued Fourier multiplier theorems

on Banach function spaces, which are extensions of the Coifman–Rubio de Francia–

Semmes multiplier theorem. Our results involve a new boundedness condition on sets

of operators, which we call `r (`s )-boundedness and which implies R-boundedness in

many cases.
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Harmonische analyse methodes voor het bestuderen van partiële differentiaalvergelij-

kingen vanuit een functionaalanalyse oogpunt zijn afgelopen decennia hand in hand

ontwikkeld met regulariteitstheorie voor zulke vergelijkingen. Harmonische analyse

heeft echter nog niet volledig haar intrede gemaakt in de analyse van de stochastische

varianten van deze partiële differentiaalvergelijkingen. In deze dissertatie zullen we

nieuwe vectorwaardige harmonische analyse methodes ontwikkelen om stochastische

partiële differentiaalvergelijkingen te bestuderen.

In Deel I van deze dissertatie zullen we harmonische analyse methodes ontwikkelen

om singuliere stochastische integraaloperatoren van de vorm

SK G(t ) :=
∫ ∞

0
K (t , s)G(s) dWH (s), t ∈R+,

te bestuderen. Hier zijn X en Y Banach ruimtes, G is een aangepast stochastisch pro-

ces met waardes in X , WH is een cylindrische Brownse beweging en K is een gegeven

operatorwaardige kern K : R+ ×R+ → L(X ,Y ) met een singulariteit in t = s. De Lp -

begrensdheid van zulke operatoren speelt een belangrijke rol in de analyse van SPDV’s

vanuit een functionaalanalyse oogpunt.

Als voorbereiding bewijzen we een algemene schaarse dominantie stelling in Hoofd-

stuk 3, waarin een vectorwaardige operator puntsgewijs wordt gedomineerd door een

positieve, lokale uitdrukking. Deze lokale uitdrukking heet een schaarse operator en is

van de vorm ( ∑
Q∈S

( 1

|Q|
∫

Q
‖ f (t )‖p0

X dt
)r /p0

1Q

)1/r
, f ∈ Lp0

loc(Rd ; X )

voor een schaarse verzameling kubussen S in Rd en p0 ∈ [1,∞). We gebruiken de struc-

tuur van de operator om r ∈ [1,∞) toe te staan, in plaats van het grondiger bestudeerde

geval r = 1. Deze schaarse dominantie stelling is van toepassing op verschillende ope-

ratoren uit zowel de harmonische analyse als uit (S)PDV. Om te beginnen met toepassin-

gen in de harmonische analyse bewijzen we de A2-stelling voor vectorwaardige Calderón–

Zygmund-operatoren in een ruimte van homogeen type, waaruit we een anisotrope, ge-

mengde norm Mihlin mutliplicatorstelling afleiden. Verder laten we kwantitatieve ge-

wogen normongelijkheden zien voor Littlewood-Paley operatoren en de Rademacher

maximaaloperator.

In Hoofdstuk 4 ontwikkelen we extrapolatietheorie voor singuliere stochastische in-

tegraaloperatoren. We bewijzen Lp -extrapolatieresultaten onder een Hörmander voor-

waarde op de kern. We verkrijgen schaarse dominantie en scherpe gewogen grenzen

251



252 SAMENVATTING

met behulp van het schaarse dominantie resultaat uit Hoofdstuk 3 onder een Dini voor-

waarde op de kern, wat leidt tot een stochastische versie van de oplossing van het A2-

vermoeden. We bespreken ook de verwante γ-Fourier multiplicatoroperatoren en ont-

wikkelen een extrapolatietheorie voor singuliere stochastisch-deterministische integraal-

operatoren.

In Hoofdstuk 5 passen we de resultaten van Hoofdstuk 4 toe om p-onafhankelijkheid

en gewogen grenzen te verkrijgen voor stochastische maximale Lp -regulariteit, zowel in

de complexe als in de reële interpolatieschaal. Als gevolg hiervan verkrijgen we ver-

schillende nieuwe regulariteitsresultaten voor de stochastische warmtevergelijking en

tijdsafhankelijke varianten in Rd en in gladde en hoekige domeinen. We behandelen

ook stochastische Volterra vergelijkingen en tonen de p-onafhankelijkheid van de R-

begrensdheid van stochastische convolutieoperatoren aan.

In Deel II van deze dissertatie, gemotiveerd door het gebruik van de begrensdheid

van de tensor-extensie van verscheidene klassieke harmonische analyse operatoren in

de studie van (S)PDV’s, zullen we twee algemene voldoende voorwaarden ontwikke-

len voor een begrensde operator T op Lp (Rd ) om een begrensde tensorextensie T̃ op

Lp (Rd ; X ) te hebben als X een Banachfunctieruimte is.

In Hoofdstuk 6 bewijzen we implicaties (2) en (3) in het volgende diagram

Schaarse dominantie voor T

Schaarse dominantie voor T̃

Gewogen afschattingen voor T

Gewogen afschattingen voor T̃

(1)

(4)

(2) (3)

In dit diagram zijn implicaties (1) en (4) alom bekend en hebben geen verband met de

operator T . Zowel implicatie (3) als de combinatie van de implicaties (2) en (4) vertegen-

woordigen een Banachfunctieruimte-waardige extensiestelling. Implicatie (3) is geba-

seerd op een factorisatieprincipe, dat lijkt op de factorisatietheorie van Nikišin, Maurey

en Rubio de Francia, maar dat flexibeler is. Implicatie (2) is gebaseerd op schaarse do-

minantie voor de rooster Hardy–Littlewood maximaaaloperator. Met behulp van deze

extensiestellingen bewijzen we kwantitatieve connecties tussen Banach ruimte eigen-

schappen zoals de (gerandomiseerde) UMD-eigenschap en de Hardy–Littlewood eigen-

schap.

Met behulp van implicatie (3) bewijzen we Banachfunctieruimte-waardige afschat-

tingen van Littlewood–Paley–Rubio de Francia-type in Hoofdstuk 7. Deze afschattin-

gen stellen ons in staat om verscheidene operatorwaardige Fourier multiplicatorstellin-

gen op Banach functieruimtes te bewijzen. Deze stellingen zijn uitbreidingen van de

Coifman–Rubio de Francia–Semmes multiplicatorstelling. Onze resultaten gebruiken

een nieuwe voorwaarde voor de begrensdheid van verzamelingen operatoren, die we

`r (`s )-begrensdheid noemen en die in veel gevallen R-begrensdheid impliceert.
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