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PREFACE
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E. Lorist and B. Nieraeth. Sparse domination implies vector-valued sparse domi-
nation. arXiv:2003.02233.

N.J. Kalton, E. Lorist, and L. Weis. Euclidean structures and operator theory in
Banach spaces. To appear in Mem. Amer. Math. Soc., 2021.

E. Lorist. On pointwise ¢”-sparse domination in a space of homogeneous type. J.
Geom. Anal., 2020. Online first.

E. Lorist and M.C. Veraar. Singular stochastic integral operators. To appear in
Anal. PDE, 2020.

T.S. Hanninen and E. Lorist. Sparse domination for the lattice Hardy-Littlewood
maximal operator. Proc. Amer. Math. Soc., 147(1):271-284, 2019.

A. Amenta, E. Lorist, and M.C. Veraar. Fourier multipliers in Banach function
spaces with UMD concavifications. Trans. Amer. Math. Soc., 371(7):4837-4868,
2019.

A. Amenta, E. Lorist, and M.C. Veraar. Rescaled extrapolation for vector-valued
functions. Publ. Mat., 63(1):155-182, 2019.

It is complemented by a few unpublished results. These works form a selection of my
research output during my appointment as a PhD candidate in the Analysis Group of the
Delft Institute of Applied Mathematics at Delft University of Technology from October
2016 to January 2021. A full list of my research output can be found in the list of publica-
tions at the end of this dissertation. These will be referenced by [1-12] throughout this
dissertation.

During my PhD I was advised by prof.dr.ir. M.C. Veraar (daily supervisor and promo-
tor) and prof. dr. ].M.A.M. van Neerven (promotor). This PhD position was part of prof.
dr. ir. M.C. Veraar’s Vidi Project "Harmonic Analysis for Stochastic Partial Differential
Equations" subsidized by the Dutch Organisation for Scientific Research (NWO) under
project number 639.032.427.
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1

INTRODUCTION

In the study of partial differential equations from a functional analytic viewpoint, har-
monic analysis methods, like the theory of singular integral and Fourier multiplier oper-
ators, have been developed hand in hand with well-posedness and regularity theory for
such equations over the past decades. In contrast, harmonic analysis has not yet fully
made its entrance in the study of the stochastic counterparts of these partial differential
equations. In this dissertation we will develop new methods in vector-valued harmonic
analysis to treat stochastic partial differential equations from a functional analytic view-
point.

In this first chapter we will provide a stand-alone introduction to the results that can
be found in this dissertation, comment on works omitted from this dissertation and give
a brief outline of the rest of this dissertation. The subsequent chapters each have their
own, more elaborate introduction and can be read independently.

1.1. STOCHASTIC EVOLUTION EQUATIONS

Many naturally occurring phenomena can be mathematically modelled by partial differ-
ential equations. Think for example of the flow of water, the transfer of heat in a room,
the spread of a virus through a population, a chemical reaction or the formation of a
weather system. In many of these phenomena a source of noise is present, like thermal
fluctuations, turbulence or random interactions. When one wants to incorporate this
noise into the mathematical model, one obtains a stochastic partial differential equa-
tion.

As a motivating example let us zoom in on a polycrystalline material, for example a
metal. As depicted in Figure 1.1, the material is not uniform, but consists of microscopic
grains or crystals. In each of these grains the atoms form a lattice, but the lattices of dif-
ferent grains are not compatible (see Figure 1.2). A prototypical equation that models
the growth of such grains is the Allen-Cahn equation. It is a phase field model with
two phases, which in the case of grain growth corresponds to two lattice orientations.
Starting with a mixture of these two phases, the Allen-Cahn equation models the divi-
sion into two phase regions within a short timescale. Moreover, on a longer timescale, it
models the minimization of the energy in the system, which corresponds to the length
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Crystal 2
Grain
Crystal 1 Boundary
Figure 1.1: Photograph of a polycrystalline metal Figure 1.2: Differently oriented crystals and
taken through a microscope. The grain bound- their grain boundary in a polycrystalline

aries are made visible by acid etching. material.

of the boundary between the two phases. As with any mathematical model, there is not
a one-to-one correspondence between the grain growth in a metal and the Allen-Cahn
equation, but it does capture the characteristic dynamics of grain growth very well.

Turning to the mathematics, let us consider the Allen-Cahn equation on R%. Given
an initial state 1g: R? — R, we look for a function u: R, x R? — R satisfying

du li . d
E—Au:—‘l’ () inR; xR%,

u(o; ) = Uo,

where ¥: R — R is a double well potential as depicted
in Figure 1.3. The evolution of u over time is driven
by a force towards the two stable states at the bot-
tom of the wells at +1 respectively, which correspond
to the two crystal orientations in the material. This
force is in competition with a diffusion process, which
smoothens the transition between the two phases. The
width of the transition layer is determined by the depth - 0 !
of the wells. We refer to [EmmO03, Appendix 4.C] for a  gigure 1.3: An example of a double
physical deduction of the Allen-Cahn equation. well potential

To account for thermal fluctuations in the material,
one can add a noise term in the mathematical model. This gives rise to the stochastic
Allen-Cahn equation. Given an initial state uy: R? — R, we look for a function u: Q x
R, x R? — R satisfying

{ du-Audt=-¥' (W) dr+Bw) dW inR, xR?,

u(oy ) = Uo,

where W is a Brownian motion on a filtered probability space (Q,.%,P) and B describes
the nature of the noise term. In the simplest case of additive noise one takes e.g. B(u) = &
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for some € > 0. This stochastic partial differential equation should be interpreted as the
integral equation

¢ t
u(t, x) = ug(x) +f Au(s, x) =¥ (u(s, x) ds+/ B(u(s, x)) dW(s), (t,x) e Ry x R,
0 0

To study SPDEs like the stochastic Allen—-Cahn equation from a functional analy-
sis viewpoint, one ‘hides’ the space variable in a Banach space X in order to obtain a
stochastic differential equation. One then looks for a function u: Q x Ry — X satisfying

du+Audt=Fw) dt+Gu)dW inR,,
(1.1.1)

u(0) = uy,

where in general we have that A is a closed operator on X, F(u),G(u): Q xR, — X are
adapted nonlinear forcing terms and the initial state i is for example an element of
the domain D(A). Many SPDEs fit into this abstract framework and specifically for the
stochastic Allen-Cahn equation on R? one takes

A=-A, F(u) =-Y'(u), G(u) = B(w).

For the Banach space X there are various choices, each with advantages and disadvan-
tages:

* A space of Holder continuous functions (see [Lun95]).

¢ A Hilbert space, for example a Gelfand triple V — H — V* (see [Lio69, LR15,
Roz90]) or X = LZ(IRd) (see [DZ14]).

¢ ALebesgue space, i.e. X = LY (R?) for g € [1,00] (see [Kry08, NVW15c, PS16]).

In this dissertation we will focus on the Lebesgue space case and look for solutions u in
the space LP (R;; LI(RY)) with p, q € (1,00), or in the stochastic case actually p, g € [2,00).
From a harmonic and stochastic analysis viewpoint these spaces have much better ge-
ometric properties than spaces of smooth functions, but the price we pay is that we
can no longer work with classical solutions to (1.1.1) having classical smoothness, but
rather work with mild or strong solutions living in a Sobolev space. Of course, the Hilbert
space L?(R; x R?) has even better geometric properties, but in applications one often
requires large p and g to obtain better classical smoothness of u from Sobolev embed-
dings. Moreover p # q is often necessary due to criticality or scaling invariance, see e.g.
[AV20a, AV20b, KPW10, PSW18].

One approach to obtain existence and uniqueness of a solution to (1.1.1) is to prove
sharp estimates for the linear problem

du+Audt=fdt+gdW inR,,
{ fdrvg " 1.1.2)

u(0) =0,
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where f,g: Q xR, — X are adapted linear forcing terms. Such sharp estimates imply
that there exists an isomorphism between the data f, g and the solution u in suitable
function spaces, which is called maximal L? -regularity of A. Having established max-
imal L?-regularity, the nonlinear problem can often be treated with quite simple tools,
like the Banach contraction mapping theorem and the implicit function theorem (see
[AV20a, AV20b, PS16]). Moreover initial conditions u(0) = uy # 0 can be established by
trace theory.

By the linear nature of (1.1.2), we can split the maximal LP-regularity problem into a
deterministic and a stochastic part. Indeed, if u;, uy: Q x Ry — X satisfy

duy+ Auy dt = fdt, inR,,
(1.1.3)
u1(0) =0,
and
duy + Aup dt = gdW, inRy,
(1.1.4)
uz(0) =0,

respectively, then u = u; + uy satisfies (1.1.2). The mild solutions u; and u, are given by
the variation of constants formulas

t
u () :f e 794 f(5) ds,
0
t
us (1) :f e‘("”Ag(s) dw(s),
0

where (e7/4) ;s is a semigroup of bounded operators on X. In our motivating example
of the Allen-Cahn equation we have that A= -A on X = L9 (Rd) for g € (1,00) and thus
(e2)) ;=0 is the heat semigroup on LI(R%), which for h e LI[RY) is given by

1
e®h(x) = fRd We"x—yl"”h(y) dy,  (t,x)eR; xR%, (1.1.5)

For the deterministic part we can work pointwise in Q and we can therefore omit Q.
We say that A has deterministic maximal LP -regularity if for each f € L” (R4; X), the mild
solution u; to (1.1.3) satisfies Au € LP (R, ; X). For our motivating example this means
that u; needs to be in the second order Sobolev space W29 (R%). We can reformulate de-
terministic maximal L”-regularity in terms of the boundedness of an integral operator.
Indeed, A has maximal LP-regularity if and only if

Tx f (1) :=f K(t,9)f(s)ds (1.1.6)
0

with
K(t,s)=Ae 94,0,  t,seR, (1.1.7)
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defines a bounded operator on L”(R.; X). We refer to [DHP03, KW04, PS16] for a de-
tailed discussion on the history of deterministic maximal L”-regularity and to [KPW10,
PS16, PSW18] for applications to nonlinear PDE.

The kernel in (1.1.7) is singular in s = ¢. Indeed, we have

IK (9 S 7 [t—s]=<1

[t=s]’

since tAe ‘4 is uniformly bounded on [0, 1]. This means that || K(z, s)|| is not integrable

around ¢ = s and therefore one needs sophisticated arguments that rely on cancellative
properties of K to prove the boundedness of Tx. Operators Tx with such kernels have
been studied thoroughly in harmonic analysis and are called Calderén-Zygmund op-
erators. Using operator-valued Calder6n-Zygmund theory (see [RRT86]), it was shown
by Dore [Dor00] that one can deduce deterministic maximal LP-regularity of Tk for all
p € (1,00) from deterministic maximal LP°-regularity for some pg € [1,00]. Moreover,
in the breakthrough paper by Weis [Wei01b], operator-valued Fourier multiplier theory
was developed to give a sufficient condition for the deterministic maximal LP-regularity
of A on UMD Banach spaces, i.e. on Banach spaces such that the Hilbert transform is a
bounded operator on L? (R; X) (see [HNVW16]).

Turning to the stochastic version of maximal regularity, let L’; (QxR4; X) denote the
space of all g € LP(Q x R;; X) adapted to the filtration .#. Weesay that A has stochas-
tic maximal LP -regularity if for each g € L; (Q x R, ; X), the mild solution uy to (1.1.3)

satisfies A% up € LP(R4; X). For our motivating example this means that u, needs to be
in the first order Sobolev space W9(R?). Note that we only have half the regularity of
up compared to the regularity of u;, which is caused by the roughness of the involved
Brownian motion. We can reformulate stochastic maximal L”-regularity in terms of the
boundedness of a singular stochastic integral operator. Indeed, A has stochastic maxi-
mal LP-regularity if and only if

SKg(t):zf K(t,5)g(s) dW(s), teR, (1.1.8)
0

with
1
K(t,9)=Aze 97, t,seR, (1.1.9)

defines a bounded operator from L’; (QxR;; X) to LP (xR, ; X). Note that the X-valued
stochastic integral in (1.1.8) only makes sense under certain geometric assumptions on
the Banach space X, e.g. if X has the UMD property (see [NVW07, NVW15c]). Moreover
A needs to be e.g. sectorial for A% to be well-defined (see [KWO04]). We refer to [AV20c,
NVWI12b, NVWI15c] for a detailed discussion of stochastic maximal L”-regularity and
to [Agr18, AV20a, AV20b, Brz95, Hor19, KK18, Kry99, NVW12a, PV19] for applications to
nonlinear SPDE.
The kernel in (1.1.9) is again singular in s = ¢ with

K691 S gy 1E-s1=1
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and [ K(¢,s)| is therefore not integrable with respect to W in ¢ = s. However, unlike
the deterministic setting, there is no general theory for the LP-boundedness of singular
stochastic integral operators of the form (1.1.8). For the specific kernel K in (1.1.9) the
LP-boundedness of Sk for p € (2,00) was obtained by van Neerven, Veraar and Weis in
[NVW12b]. They assumed that A has a so-called bounded H* -functional calculus (see
[Haa06]) and X satisfies a certain geometric assumption, which is fulfilled for L9, W*4,
etc. as long as g € [2,00). In the case that A= —A on L9(R%) and p = g = 2 this result was
already obtained by Krylov in [Kry94b, Kry99, Kry00, Kry08] using sharp estimates for
stochastic integrals and sophisticated real analysis arguments. Moreover, by using PDE
arguments, the operator —A can be replaced by a second order elliptic operator with
coefficients depending on (w, ¢, x) € Q x Ry x R%.

The dichotomy between the available methods to analyse the deterministic and the
stochastic part of (1.1.2) leads us to the main goals of this dissertation:

e The first goal of this dissertation is to develop harmonic analysis methods to treat
singular stochastic integral operators. In particular we will develop an extrapo-
lation theory for stochastic singular integral operators resembling Calder6n-Zyg-
mund theory for deterministic singular integral operators.

e Motivated by the use of the tensor extension of various classical operators preva-
lent in harmonic analysis in the study of (S)PDEs, the second goal of this disserta-
tion is to develop general sufficient conditions for a bounded operator on L” (R%)
to have a bounded tensor extension on Lp([R%d;X) when X is a Banach function
space.

1.2. VECTOR-VALUED HARMONIC ANALYSIS FOR SPDE

The behavior of the stochastic singular integral operators (1.1.8) is quite different from
their deterministic counterpart in (1.1.6). Due to the Itd6 isomorphism the stochastic
integrals converge absolutely, whereas in the deterministic case prototypical examples
of singular integral operators, like the Hilbert transform and the Riesz projections, have
kernels that rely on principle value integrals in their definition. As a consequence, in
contrast with the deterministic setting, the scalar-valued setting for stochastic singular
integral operators can easily be characterized using the Schur lemma for positive kernel
operators (see [Gral4b, Appendix A]).

In the operator-valued setting we may have || K(:, s)|| € L%(R,) for s € R,, but still have
cancellation of the form

. 2 1/2
(f 1K 9x1% de) " <Slxlx,  seRy, xe X, (1.2.1)
0

If the kernel indeed has cancellation of this form, one can check that Sk is L2-bounded
using a simple Fubini argument. In particular, this method was used for the kernel in
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(1.1.9) in [DZ14, Section 6.3] for Hilbert spaces X. For X = L9 (R%) the cancellation in
(1.2.1) does often not hold. For example it fails for the important case A = —A. However,
cancellation in this setting takes the form

© 2 1/2
“(fo K@ 9xPdt) |, S W, SERw XEX, (12.2)

which in a general Banach space can be reformulated using y -radonifying operators (see
[HNVW17, Chapter 9].

Despite the rather different behaviour of stochastic singular integral operators com-
pared to their deterministic counterparts, as our first theorem on the boundedness of
singular stochastic integral operators we obtain a stochastic version of the classical ex-
trapolation result for Calder6n-Zygmund operators.

Theorem 1.2.1. Let X be a UMD Banach space with type 2. Let K : Ry x Ry — L(X)
be strongly measurable and assume that for every interval I < R, we have the following
[%-Hormander condition

1/2
(f IK(t,s)—K(£,9)]? ds) <C t,t’e%l
I

+

112 172 I~ 1
([ 1k@9-k@sH2de " <c ssedl
Ry\I

for some constant C > 0 independent of I. Suppose that the mapping Sk as defined in
(1.1.8) is bounded from L;(Q x Ry; X) into LP(Q x Ry; X) for some p € [2,00). Then the
mapping

Sk: L (Q xRy X) — LIQ xRy X)
is bounded for all q € (2,00).

The type 2 assumption on X (see [HNVW17, Chapter 7]) in Theorem 1.2.1 is nat-
ural in the stochastic setting and is actually necessary for the boundedness of Sk for
many nontrivial kernels K (see [NVW15b]). By proving a general extrapolation result
for so-called singular y-integral operators and using the Itd isomorphism for X-valued
stochastic integrals from [NVWO07], a slightly more general version of Theorem 1.2.1 will
be proven in Chapter 4. In the y-integral operator setting we also obtain the endpoint
estimates L? — L>* and L*® — BMO.

1.2.1. SPARSE DOMINATION

For Calder6n-Zygmund operators weighted bounds with weights in the so-called Muck-
enhoupt Ay -class are classical (see e.g. [Gral4a, Chapter 7]). Sharp dependence of the
estimates on the weight characteristic in this setting is known as the A,-theorem, which
was obtained in [Hyt12] by Hytonen. It settles the so-called A,-conjecture for standard
Calderén-Zygmund operators and states that under standard assumptions on the kernel
K one has for all p € (1,00) that

ALﬂl}
P (1.2.3)

max{

l TK”LV(Rd,w)_.Ln(Rd,w) S [W]Ap
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Originally the A,-conjecture was formulated for the Beurling—Ahlfors transform [AISO1],
where it was shown to imply quasiregularity of certain complex functions. Shortly after-
wards it was settled for this operator in [PV02] and subsequently many other operators
were treated, which eventually led to [Hyt12].

A new proof of the A,-theorem was obtained by Lerner in [Ler13], where it was
shown that any standard Calder6n-Zygmund operator can be dominated by a so-called
sparse operator of the form

Y Ufhiole,  feLp R
QeS8
for a sparse collection of cubes S in R4, Here we denote {fD1,0:= ﬁ lef(t)I dr and
we call a family of cubes S in R? sparse if for every Q € S there exists a measurable
set Eg < Q such that |Eg| = n|Q] for some 7 € (0,1) and such that the Eg’s are pairwise
disjoint. Such sparse operators are easily shown to be bounded on L” (R4, w) for all
p € (1,00) and w € A, and for this reason the technique of controlling various operators
by such sparse operators has proven to be a very useful tool to obtain (sharp) weighted
norm inequalities for various operators in the past decade.
To be able to apply this approach to stochastic singular integral operators and obtain
a stochastic analogue of the A,-theorem, we generalize the sparse domination frame-
work to also include these operators. Let (S, d, u) be a space of homogeneous type, i.e. a
quasi-metric measure space satisfying a doubling condition (see [AM15]), and let X and
Y be Banach spaces. For a bounded linear operator T from L”0(S; X) to LP0*°(S;Y) and
a = 1 we define the sharp grand maximal truncation operator
M f(s):=supesssup | T(f 1s1a8)(s) = T(f 1s1a8)(s")]

B3s s',s"eB

sES,

Y)

where the supremum is taken over all balls B < S containing s. In Chapter 3 we will
prove the following generalization of a sparse domination result of Lerner and Ombrosi
[LO20], which builds upon the efforts of various authors over the past decade.

Theorem 1.2.2. Let (S,d, u) be a space of homogeneous type and let X and Y be Banach
spaces. Take pg, 1 € [1,00) and take a = 1 large enough. Assume the following conditions:

* T is a bounded linear operator from LP(S; X) to LP>*®°(S;Y).
. M?)a is a bounded operator from LP°(S; X) to LPO>°(S).
e For any disjointly and boundedly supported fi,..., fn € LP°(S; X) we have

EOWACTR AL

1/r
, seS.

Then for any boundedly supported f € LP°(S; X) there is a sparse collection of cubes S
such that

. 1/
IT7G Iy < (X IfIx) 0le) ses.
QeS
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Moreover, for all p € (po,o0) and w € Ap/p, we have

p=po’T
1Tl Lr(s,w;0—LP(s,w;v) S (W], 0,
pIpo

The key novelty is the introduction of the parameter r € [1,00) in the third bullet of
Theorem 1.2.2, which expresses a form of sublinearity of the operator T when r = 1.
As r increases, this assumption becomes more restrictive and the sparse domination
and weighted bounds in the conclusion become stronger. Applying Theorem 1.2.2 with
po = r = 2 to a stochastic singular integral operator, we obtain the following stochastic
variant of the A,-theorem.

Theorem 1.2.3. Let X be a UMD Banach space with type?2. Let K : R, xR, — L(X,Y) be
strongly measurable and assume that for somee € (0,1]

K0 -k, ol = (B2 L =915 5ls— ],
ls—tl/) |s—¢1/2 2

K0 - Kis el = (L) L == 25—l
ls—tl/ |s—1|V/? 2

Suppose Sk as defined in (1.1.8) is bounded from L{’;E (Q xRy; X) into LP°(Q x Ry; X) for
some py € [2,00). Then Sk is bounded from ng (Qx R4, w; X) to LP(Q x Ry, w; X) for all
p € (2,00) and w € Ap» with

max{}, 55}
ISk L @xRy,w;X)—LP QxR w; X) S Wiy,

In Chapter 4 we will prove a more general version of this theorem using an L?-variant
of the Dini conditions from Calderén-Zygmund theory. We also prove that the above
estimate is sharp in terms of the dependence on the weight characteristic.

Although the main motivation for Theorem 1.2.2 comes from its applications to sin-
gular stochastic integral operators, it also has various interesting, new applications in
harmonic analysis. In particular, in Chapter 3 and Section 6.4 we will use a version of
Theorem 1.2.2 to prove:

e The A,-theorem for vector-valued Calderén-Zygmund operators with operator-
valued kernel in a space of homogeneous type. We use this A;-theorem to prove
an operator-valued, weighted, anisotropic, mixed-norm Mihlin multiplier theo-
rem.

» Sparse domination and quantitative weighted norm inequalities for both the lat-
tice Hardy-Littlewood and the Rademacher maximal operator.

¢ Sharp weighted norm inequalities for Littlewood-Paley operators.
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1.2.2. SUFFICIENT CONDITIONS FOR THE L”-BOUNDEDNESS OF Si

In Theorem 1.2.1 and Theorem 1.2.3 one needs to starts with an LP-bounded singular
stochastic integral operator. Only in the the Hilbert space setting in the convolution case
we obtain a full characterization of the boundedness of Sk in terms of kernel conditions.
Outside the Hilbert space setting or for non-convolution kernels we do not have abstract
theory to ensure LP-boundedness, so this has to be established on a case-by-case basis.
It would be interesting to find general sufficient conditions from which LP-boundedness
can be derived, like a stochastic version of the T'(1) and T (b)-theorems (see e.g. [HWO06,
Hyt06, Hyt20, HH16]) or Fourier multiplier theory (see [HNVW16]).
In the important special case that K is the kernel from (1.1.9) , i.e.

1
K(t,s) =A?e_(t_S)A1t>s, t,seER,,

on X = L9(0) for some domain O < R?, we can push our approach further. Indeed, in
this case the operators K(s, t) € L(L7(0)) for s, t € R, often have a kernel representation
of their own. For example if A = —A on L9(R%), the heat semigroup (‘) s is given by
(1.1.5). Therefore we can write Sk as a stochastic-deterministic singular integral opera-
tor

Sxg(t, x) =/ fo k(t,x,s,y)g(s,y) dy dW(s), (t,x)eRL x O
0

for a kernel k: Ry x O xR, x O — C. To establish L?(Q x R,, w; L9(0))-boundedness
with p, g € (2,00) and w € Ay, for Sk, we have seen in Theorem 1.2.1 and Theorem 1.2.3
that it suffices to have L7(Q x R, x O)-boundedness for Sg and certain assumptions on
the kernel K. In applications it is easier to establish boundedness for Sk on the Hilbert
space L2(Q xRy x O). Tt is therefore desirable to deduce L9(Q x R, x @)-boundedness
for Sk from L2(Q x R, x @)-boundedness for Sgx. In the deterministic case, this can
be done using Calderén—-Zygmund theory in the space R, x O with a parabolic metric.
For a class of elliptic operators of fractional order this theory was developed in [KKL15,
KKL16] under a parabolic Hérmander assumption on k. Using a parabolic stochastic
Hormander condition on k, a stochastic version of these results was obtained in [Kim15,
KK20] and for the moments of Sk a Calderén-Zygmund theory approach was recently
employed in [Kim20].

In Chapter 4 we will extend the results from [KK20] using the abstract sparse domi-
nation result in Theorem 1.2.2. We will use the space of homogeneous type R, x O with a
parabolic metric, which is the main motivation to formulate Theorem 1.2.2 in a space of
homogeneous type. Under a (2,1)-Dini condition on the kernel k, which we will define
in Section 4.3, we obtain the following result:

Theorem 1.2.4. Let O € R? be a smooth domain, equip R, x O with the parabolic metric

d((t,0)(s,y)) =max{lt—s/"" |x-yl}, (2,5 €RLxO
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forsomem>0andletk: Ry x O xRy x O — C bea (2,1)-Dini kernel. Suppose that
(e 9)
Sig(t,x):= f fo k(t,x,s,)g(s,y)dy dW(s), (t,x) eRL xO
0

is a well-defined, bounded operator from Lzy Q xRy xO) to >(Q xR, x O). Then S is
bounded from L;(Q xRy, v; L1(O,w))) to LP(Q x Ry, v; L9(O, w))) for all p,q € (2,00),
veEAppRy) and w e Ay(O).

We are also able to reverse the integration order of space and time in the conclusion
of Theorem 1.2.4, i.e. we also show L™ (Q; L9(O, w; L? (R, , w)))-boundedness for Sj. with
p € (2,00) and ¢q,r € (1,00). This reversed integration order allows one to deduce addi-
tional regularity results in applications to SPDE, see [Ant17, NVW15a]. Moreover, we are
able to put the expectation on the inside, i.e. we obtain estimates for the moments of Sy
as in [Kim20].

1.2.3. APPLICATIONS TO SPDE

Since stochastic maximal regularity can be reformulated in terms of the boundedness
of a stochastic singular integral operator, it follows from Theorem 1.2.1 that in many
instances stochastic maximal LP-regularity for some p € [2,00) implies stochastic maxi-
mal L7-regularity for all g € (2,00). Moreover Theorem 1.2.3 gives us weighted estimates
for the mild solution u. We will discuss various applications of this principle in Chapter
5. A typical example of the results that we will obtain reads as follows:

Theorem 1.2.5. Assume — A is the generator of a bounded Cy-semigroup on a UMD Ba-
nach space X with type 2 and suppose A has stochastic maximal LP -regularity for some
p € [2,00). Then A has stochastic maximal L9 -regularity for all g € (2,00) and the mild
solution u to (1.1.4) satisfies the following weighted estimates for all w € Ag»

axt}, g

ulla@xre,wix) S wly IgllLa@xr,,w;x)

The use of temporal Ay ,-weights in stochastic maximal L”-regularity is new. In
most of the results in [NVW12b, NVW15c] such weights can also be added without caus-
ing major difficulties, but it is very natural to deduce this from extrapolation theory.
Moreover with our method we actually obtain sharp dependence on the Ag/2-charac-
teristic. Power weights of the form t® have already been considered before in both the
deterministic (see [KPW10, PSW18]) and stochastic (see [AV20a, AV20b, AV20c, PV19])
evolution equations and can be used to allow for rough initial data. General A,-weights
in deterministic parabolic PDEs have used in [DK18, DK19b, GV17a, GV17b] to derive
mixed L” (L9)-regularity estimates using Rubio de Francia extrapolation (see e.g. [GR85,
CMP11]).

For more concrete SPDEs, for example for the stochastic heat equation on a domain
O R4, Sk can be written as a stochastic-deterministic singular integral operator with
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kernel k as in Theorem 1.2.4. The assumed (2,1)-Dini kernel assumption then trans-
lates to Green’s function estimates or heat kernel estimates, which are available in quite
general settings (see e.g. [EI70, KN14]). As a consequence we obtain time-weighted
stochastic maximal LP-regularity on L9(O, w) for p,q € (2,00) and w € Agq (O) from un-
weighed stochastic maximal L?-regularity on L?(O). Power weights in space can be used
to allow for rough boundary conditions (see e.g. [HL19, Lin18, Lin20, LV20]), treat sin-
gularities due to corners in the domain (see e.g. [Cio20, CKL19, CKLL18, KN14, Naz01,
Sol01, PS04]), and handle the incompatibility of the boundary conditions and the noise
term (see e.g. [Kim04, KK04, KL99a, KL99b, Kry94a]).

1.3. BANACH FUNCTION SPACE-VALUED EXTENSIONS OF OPERATORS

For a bounded linear operator T on LP ([Rd) and a Banach space X we define a linear
operator T on L” (R%) ® X by setting

T(fex):=Tfex, feLPRY), xeX,

and extending by linearity. For p € [1,00) the space L” (R?) ® X is dense in the Bochner
space L” (R%; X) and it thus makes sense to ask whether the tensor extension T extends
to a bounded operator on LP ([R{d; X). Motivated by the use of the boundedness of the
tensor extension of various classical operators prevalent in harmonic analysis in the
study of (S)PDE from a functional analytic viewpoint, we will develop general sufficient
conditions for the boundedness of T on L” (R%; X) in the final part of this dissertation.

Tensor extensions of operators have been actively studied in the past decades. A cen-
terpoint of the theory is the result of Burkholder [Bur83] and Bourgain [Bou83] that the
tensor extension of the Hilbert transform is bounded on L” (R; X) if and only if the Ba-
nach space X has the UMD property. From this connection one can derive the bounded-
ness of the vector-valued extension of many operators in harmonic analysis, like Fourier
multipliers and Littlewood-Paley operators.

When X is a Banach function space, very general extension theorems are known.
These follow from the connection between the boundedness of the lattice Hardy-Little-
wood maximal operator on LP([R?; X), which is given by

Mif:= sup (fDipls,  feljp, REX),
B<R aball

and the UMD property of X, shown by Bourgain [Bou84] and Rubio de Francia [Rub86].
The boundedness of the lattice Hardy-Littlewood maximal operator allows one to use
scalar-valued arguments to show the boundedness of the vector-valued extension of an
operator. Moreover it connects the extension problem to the theory of Muckenhoupt
weights. Combined this enabled Rubio de Francia to show a very general extension
principle in [Rub86], yielding vector-valued extensions of operators on LP(T) satisfy-
ing weighted bounds. This result was subsequently extended by Amenta, Veraar and the
author in [11], replacing T by R? and adding weights in the conclusion.
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As we have previously discussed, weighted bounds for operators in harmonic analy-
sis are nowadays often obtained through sparse domination. So, to deduce the weighted
boundedness of the vector-valued extension T of an operator T using [Rub86] and its
generalization in [11], one typically goes through implications (1) and (3) in the follow-
ing diagram

Sparse domination for T ———= Weighted bounds for T
(1)
M 2) (3 M
Sparse domination for T ——— Weighted bounds for T

In this diagram implications (1) and (4) are well-known and unrelated to the operator T.
Another approach to obtain the weighted boundedness of the vector-valued extension
T of an operator T, through implications (2) and (4) in this diagram, was obtained by
Culiuc, Di Plinio, and Ou in [CDO17] for X = ¢4.

The advantage of the route through implications (2) and (4) over the route through
implications (1) and (3) is that the Fubini-type techniques needed for implication (2) are
a lot less technical than the ones needed for implication (3). Moreover implication (4)
yields quantitative and in many cases sharp weighted estimates for T, while the weight
dependence in the arguments used for implication (3) is certainly not sharp. A down-
side of the approach through implications (2) and (4) is the fact that one needs sparse
domination for T as a starting point, while one only needs weighted bounds in order to

apply (3).

1.3.1. EXTENSION OF OPERATORS USING FACTORIZATION

Implication (3) for X = ¢9 with q € (1,00) follows easily from Rubio de Francia extrapo-
lation and Fubini’s theorem (see e.g. [CMP11]). A generalization of this result to general
UMD Banach function spaces was first proven by Rubio de Francia in [Rub86, Theorem
5]. Extended in [11] by Amenta, Veraar and the author, this theorem reads as follows:

Theorem 1.3.1. Let T be a bounded linear operator on LP (R%, v) for some pg € (1,00)
and all v € Ay, and let X be a UMD Banach function space. Then T extends uniquely to
a bounded linear operator on LP (R%, w; X) for all p € (1,00) and w € Ap.

The proof of Theorem 1.3.1 in [Rub86] is based on the factorization of ¢"-bounded
families of operators on a r-convex Banach function space X through a weighted L’ -
space. The classical approach for this factorization comes from the work of NikiSin
[Nik70], Maurey [Mau73] and Rubio de Francia [Rub82, Rub86, Rub87] (see also [GR85]).

In Chapter 6 we will give a alternative approach to the proof of Theorem 1.3.1, which
will be based on the factorization of an #?-bounded family of operators on a (not nec-
essarily 2-convex!) Banach function space X through a weighted L?-space. This fac-
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torization result is a special case of a representation and factorization theory based on
Euclidean structures, which was developed in [4] by Kalton, Weis and the author.

Our approach yields quantitative bounds, allowing us to estimate the operator norm
of T by a power of the UMD constant 8 p,x of X. Moreover, the original approach relies
upon the boundedness of the lattice Hardy-Littlewood maximal operator on L” (R%; X)
whereas this will not be used in our approach. Since we will also prove a version of
Theorem 1.3.1 for sublinear operators, we will be able to use Theorem 1.3.1 to give a
quantitative proof of the boundedness of the lattice Hardy-Littlewood maximal operator
on UMD Banach function spaces.

Theorem 1.3.2. Let X be Banach function space. If X has the UMD property, then M a
is bounded on L” (R%; X) forall p € (1,00) with

2
”MLat”Lp(Rd;X)—va(Rd;X) S ﬁp,X'
Combined with the sparse domination principle from Chapter 3, we also obtain

sparse domination and sharp weighted estimates for M4 in Chapter 6.

1.3.2. EXTENSION OF OPERATORS USING SPARSE DOMINATION

The proof of the sparse domination-based extension theorem depicted by implication
(2) relies on the following two key ingredients:

* The equivalence between sparse forms and the L'-norm of the bisublinear maxi-
mal function.

¢ A sparse domination result for the bisublinear lattice maximal operator on UMD
Banach function spaces.

Combining these two ingredients in Chapter 6, we will obtain the following theorem.

Theorem 1.3.3. Let T be a linear operator such that for any f,g € L°(R?) there exists a
sparse collection of cubes S such that

f ITfl-181det < Y (1fD1,0¢801,0lQl.
R4 QeS

Let X be aUMD Banach function space. Then for all simple functions f € L‘ZO([RZ”’; X) and
ge L‘;o(Rd) there exists a sparse collection of cubes S such that

LT 1g1des ¥ (1, o8y ol
RY QeS

In particular, T extends uniquely to a bounded linear operator on LP (R?, w; X) for all
p € (l,00) and w € Ay with

~ max{i,l}
p-1
TN L e, w3017 @ i) S TWy, :
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Note that the sparse form domination for T in the assumption of Theorem 1.3.3 is
in particular satisfied if we have pointwise sparse domination for T as in Theorem 1.2.2
with pp = r = 1, which follows by integrating against a g € L@O(Rd). We remark that in
Theorem 1.3.3 it actually suffices to assume that M, is bounded on both L” (Rd;X)
and L” (R?; X*), which is implied by the UMD property of X and Theorem 1.3.2. This
observation allows us to also prove the converse of Theorem 1.3.2 in Chapter 6.

1.3.3. LITTLEWOOD-PALEY-RUBIO DE FRANCIA ESTIMATES IN BANACH FUNCTION SPACES

Theorems 6.1.1 and 6.1.4 and their multilinear, limited range counterparts in [3, 8] have
various interesting applications. They can for example be applied to obtain Banach
function space-valued boundedness of:

¢ The bilinear Hilbert transform.

¢ The variational Carleson operator.

e Multilinear Calder6n-Zygmund operators.
¢ Bochner-Riesz multipliers.

¢ Spherical maximal operators.

For the details of these applications, we refer to [3, Section 6], [8, Section 5] and [11,
Section 5]. In this dissertation we will focus on one specific, quite elaborate application.
We will use Theorem 6.1.1 to deduce a vector-valued version of so-called Littlewood-
Paley-Rubio de Francia estimates and use these estimates to deduce operator-valued
Fourier multipliers on Banach function spaces.

To introduce these Littlewood-Paley-Rubio de Francia estimates, let S; denote the
Fourier projection onto the interval I < R, defined by S;f :=(1 I]?)v for Schwartz func-
tions f € S(R). For a collection Z of pairwise disjoint intervals in R and ¢ € (0,00) we
consider the operator

Sr.q() = (X 18F19)11,
IeT

When A := {i [2", 2k+1), ke Z} is the dyadic decomposition of R, the classical Littlewood—
Paley inequality states that for p € (1,00)

[Sa2fllipg = 1flr@,  feS®.

A surprising extension of this classical Littlewood-Paley square function estimate was
shown by Rubio de Francia in [Rub85]: for all g € [2,00) and p € (¢,00) and any collec-
tion Z of mutually disjoint intervals in R we have

||SI,qf||Lp([R) SIflr@, feSM). (1.3.1)

This result (in particular the g = 2 case) is now known as the Littlewood-Paley-Rubio de
Francia inequality.
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The definition of S; extends directly to the X-valued Schwartz functions f € S(R; X)
for a Banach space X. Vector-valued extensions of Littlewood-Paley-Rubio de Francia
estimates for the case g = 2 case are studied in [BGT03, GT04, HP06, HTY09, PSX12] via
areformulation in terms of random sums, i.e.

el e

IeZ

D& Sflrwx, feS®X),
where (e]) 7 is a Rademacher sequence. If this estimate holds then we say that X has
the LPR,, property. By the Khintchine inequalities and the result of Rubio de Francia it
follows that C has the LPR,, property for all p € [2,00).

When g # 2, no analogue of the boundedness of S7,, for general Banach spaces is
known. However, when X is a Banach function space over a measure space (Q, i), the
operator Sz, , is well-defined for f € S(R; X) by interpreting the £9-sum pointwise in Q.
Therefore one may wonder whether (1.3.1) holds for f € S(R; X). In Chapter 7 we will
show that this is indeed the case if the g’-concavification

x4 = {leq’sgnx:xe X}={x: 1 Xt
has the UMD property.

Theorem 1.3.4. Let g € [2,00), and suppose X is a q' -convex Banach function space such
that X9 has the UMD property. Then there exists a increasing function ¢: Ry — R, such
that for all p € (q',00), and w € Ap; ¢

IST,qfIr@uwix) < @Uwla, N flrr@wx),  feS®X).

We deduce this result directly from the scalar case X = C and the factorization-based
extension theorem in Theorem 1.3.1. The case g = 2 has previously been obtained by
Potapov, Sukochev and Xu in [PSX12, Theorem 3] using an ad hoc argument.

1.3.4. FOURIER MULTIPLIER OPERATORS ON BANACH FUNCTION SPACES

As a consequence of the Littlewood—-Paley-Rubio de Francia estimates, Coifman, Rubio
de Francia and Semmes [CRAFS88] showed that if p € (1,00) and

then every m: R — C of bounded s-variation uniformly on dyadic intervals induces a
bounded Fourier multiplier operator

Tnfi=(m-f)", feS®.

This is analogous to the situation for the Marcinkiewicz multiplier theorem, which is the
s = 1 case of the Coifman-Rubio de Francia-Semmes theorem and which follows from
the classical Littlewood-Paley theorem.
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An operator-valued analogue of the Coifman—-Rubio de Francia-Semmes theorem
was obtained by Hytdnen and Potapov in [HP06], where the Banach space X was as-
sumed to satisfy the LPR, property. The main goal of Chapter 7 is to prove a wider range
of operator-valued Coifman-Rubio de Francia—Semmes type results when X is a Banach
function space. We will use Theorem 1.3.4 to prove such results under a UMD assump-
tion on a g-concavification X9 of X. This naturally leads to an “¢2(¢7)-boundedness’
condition on the range of m, which is a strengthening of uniform boundedness.

The following multiplier theorem is the fundamental result of Chapter 7. Let A again
denote the standard dyadic partition of R. Let X and Y be Banach function spaces,
and for a set of bounded linear operators I' € L(X,Y) let V¥(A;T) denote the space of
functions m: R — span(I') with bounded s-variation uniformly on dyadic intervals J € A,
measured with respect to the Minkowski norm on span(I).

Theorem 1.3.5. Let g € (1,2], p € (q,00), s € [1,q), and let w € Ap;q. Let X and Y
be Banach function spaces such that X9 and Y have the UMD property. Suppose that
m e VS(A;T) for some absolutely convex, 0207 -boundedT < L(X,Y). Then the Fourier
multiplier operator Ty, is bounded from L” (R, w; X) to LP (R, w; Y).

The case g =2 and w =1 of Theorem 1.3.5 was considered in [HP06, Theorem 2.3]
for Banach spaces X = Y with the LPR,, property. Our approach only works for Banach
function spaces, but these are currently the only known examples of Banach spaces with
LPR,. Note that as the parameter g decreases, we assume less of X, but more of I' and
m.

We will also various extensions and modifications of Theorem 1.3.5 in Chapter 7. For
example, we will give sufficient conditions for the bounded s-variation assumption in
terms of Holder regularity of m, give sufficient conditions for the ¢2(¢ 4')-boundedness
in terms of weighted estimates and prove a variant of Theorem 1.3.5 for general Banach
spaces which are complex interpolation space between a Hilbert space and a UMD Ba-
nach space.

1.4. WORK NOT INCLUDED IN THIS DISSERTATION

To keep this dissertation coherent and at a reasonable length, not all results obtained
during the PhD period are presented. We will sketch the content of the omitted results
below.

1.4.1. MULTILINEAR BANACH FUNCTION SPACE-VALUED EXTENSIONS OF OPERATORS

The results in Chapter 6 have been shown in a more general setting by Nieraeth and the
author in [3, 8]. In [8] the factorization-based extension theorem is shown in a multilin-
ear, limited range setting. In this setting we show that a bounded operator

T: L' R?, wy) x --- x LP'(RY, wy) — LPRY, w)



18 1. INTRODUCTION

for py,..., pn € (0,00), weights wy,---, w, in certain Muckenhoupt classes, 1 ZZ:1 #

p
pIpk

r  extends to a bounded operator

and w=TI}_, w
T: L' RY, wy; X)) x - x LP"(RY, wy; X)) — LP RY, w; X)

for quasi-Banach function spaces Xj,..., X, satisfying a rescaled UMD condition and
X =TI}_, Xx- The proof is an extension of the original proof in the linear, full range
setting by Rubio de Francia [Rub86].

In [3] the sparse domination-based extension theorem is also shown in this multi-
linear, limited range setting. In this result we use the multilinear structure to its fullest,
i.e. we use a weight condition on the tuple (wy,---, w,) and a UMD condition on the
tuple (X, ..., X,) rather than a condition on each individual weight and quasi-Banach
function space respectively. It is an interesting open problem whether the factorization-
based extension theorem can also be generalized to this fully multilinear setting.

1.4.2. EUCLIDEAN STRUCTURES AND OPERATOR THEORY IN BANACH SPACES

In [4], which could be a dissertation in itself, Kalton, Weis and the author developed a
general method to extend results on Hilbert space operators to the Banach space set-
ting by representing certain sets of Banach space operators I" on a Hilbert space. The
assumption on I is expressed in terms of @-boundedness for a Euclidean structure «
on the underlying Banach space X. a-Boundedness is originally motivated by R- or
¢?-boundedness of sets of operators and this representation result explains why R- or
¢%-boundedness assumptions make their appearance in many results in vector-valued
harmonic analysis.

By choosing the Euclidean structure a accordingly, a unified and more general ap-
proach to the factorization theory of Kwapieri and Maurey and the factorization theory
of Maurey, NikiSin and Rubio de Francia is obtained. The factorization theorem we use
for our factorization-based extension theorem in Chapter 6 is a special case of this the-
ory. Furthermore Euclidean structures are used to build vector-valued function spaces,
which enjoy the nice property that any bounded operator on L? extends to a bounded
operator on these vector-valued function spaces, which is in stark contrast to the ex-
tension problem for Bochner spaces that we discuss in Chapter 6. Moreover, the rep-
resentation theorem is used to prove a quite general transference principle for sectorial
operators on a Banach space, which extends Hilbert space results for sectorial operators
to the Banach space setting. Moreover some sophisticated counterexamples for secto-
rial operators are constructed.

1.4.3. THE /°-BOUNDEDNESS OF A FAMILY OF INTEGRAL OPERATORS

In [12] Gallarati, Veraar and the author proved the ¢°-boundedness of a family of inte-
gral operators with an operator-valued kernel on L9. The proof is based on Rubio de
Francia extrapolation and the factorization theory of Maurey, Nikishin and Rubio de
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Francia as discussed in Chapter 6. The results have been applied by Gallarati and Veraar
in [GV17b], where a new approach to maximal LP-regularity for parabolic problems with
time-dependent generator is developed. An extension of the °-boundedness result in
[12], in which L9 is replaced by a UMD Banach function space X, has been obtained by
the author in [7] using the boundedness of the lattice Hardy-Littlewood maximal oper-
ator.

1.5. OVERVIEW

After discussing the necessary preliminaries in Chapter 2, this dissertation consists of
two parts. Part consists of Chapters 3-5 and is concerned with harmonic analysis meth-
ods to treat singular stochastic integral operators. Part II, consisting of Chapters 6 and
7, is devoted to the boundedness of Banach function space-valued extensions of opera-
tors.

In Part I we first develop the necessary harmonic analysis. In particular, we prove the
abstract sparse domination result in Theorem 1.2.2 and give some applications of this
result in harmonic analysis in Chapter 3. Afterwards, we develop the extrapolation the-
ory for singular stochastic integral operators with operator-valued kernel in Chapter 4.
In Chapter 5 we apply the results of Chapter 4 to obtain p-independence and weighted
bounds for stochastic maximal LP-regularity.

We develop sufficient conditions for a bounded operator on LP ([Rd) to have abounded
Banach function space-valued extension in Chapter 6. In particular, we will prove The-
orems 1.3.1 and 1.3.3 and their consequences. Using Theorem 1.3.1, we prove Banach
function space-valued Littlewood-Paley—Rubio de Francia-type estimates and the opera-
tor-valued analogues of the Coifman-Rubio de Francia-Semmes Fourier multiplier the-
orem in Chapter 7.
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PRELIMINARIES

In this chapter we will present the background material that will be used throughout
this dissertation. We start by introducing some basic notation.

¢ We denote the Lebesgue measure on R” by d¢ and we denote the Lebesgue mea-
sure of a Borel set E < R" as |E|.

* For p € [1,00] we let p’ be the Hoélder conjugate of p, i.e. p’ € [1,00] such that

1,1 _
p+p,—1.

e For s, t € Rwe define s Vv t = max{s, t} and s A ¢t = min{s, ¢} and for vectors @, b € C"
we write
n n ak
a-b:=) acby, alb:=) —.
k=1 i=1 bk
=1 @k and for 7 € R" we write (% :=
. Moreover we define the partial derivatives 0% := 47" ---93,".

For a multi-index a@ € N" we write |a| =
n tak
k=1"k

e Let X, Y be a Banach spaces and (S, 1) a measure space. We write £(X,Y) for the
bounded linear operators from X to Y and we write £(X) := L(X, X). If we say
that a function f: S — £(X,Y) is strongly measurable, we mean that f is strongly
measurable in the strong operator topology on £(X,Y), i.e. s— f(s)x is strongly
measurable for all x € X. We denote the space of all strongly measurable functions

f:S— X by L°(S; X).

For p € [1,00] we define the Bochner space L (S; X) as the space of all f € 19(S; X)

such that

1/p
s = [ 1715 )" <oo, p<oo,

Il fllzoo(s;x) :=esssup|l f(s) | x < oo, p =oo0.
seS

For p € [1,00) and g € [1,00] we define the X-valued Lorentz space L”7(S; X) as
the space of all L%(S; X) such that

Iflras = [0 t-pts € ST FOlx > 1) o, ) < 0o.

21
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Note that ||| Lr.a(s; x) is only a quasi-norm. For p € (1, 00) these spaces are normable,
i.e. there exists an equivalent normon LP9(S; X). For p € [1,00) we have LPP(S; X) =
LP(S; X) with equivalent norms and if p(S) < co we have the continuous embed-
ding LP*°(S) — L'(S) with

£l Sp OYP I fllpeos),  feLPP(S). 2.0.1)

Let S be a quasi-metric space with a Borel measure . We denote a ball around
s € S with radius r by B(s,r). For a Banach space X and p € [1,00) we denote by
Lf:)c(S; X) the space of all f € L°(S; X) such that f1p € LP(S; X) for all balls B < S.
Moreover let L (S; X) be the space of all f € L*(S; X) such that the support of f,
denoted by supp f, is contained in some ball B< S. For f € LIIOC(S; X) and a Borel
set E < S with finite positive measure we write

1
= d ::—f du.
Frue fEf TIRL

andif f e Lﬁ)C(S) is positive, we write (f)p, g := ((fp)l,E)”p.

For an interpolation couple of Banach spaces (Xp, X1), 0 € (0,1) and g € [1,q],
we denote the real and complex interpolation spaces by (X, X1)o,q and [Xp, X1lg
respectively. For py, p; € [1,00] and 6 € [0, 1], we define the interpolation exponent

[po, p1lg by
1 1-6 0
_ = 4+ —
[po,p1ile pPo P
with the interpretation 1/0 := co. This lets us write interpolation results such as

[LPO(S), LP1(S)]g = LIPPUo(S)

in a pleasing compact form. For details on the real and complex interpolation
method we refer to [BL76, Tri78] and [HNVW16, Appendix C].

yeen

and which may change from line to line. By <, 3, . we mean that there is a constant
such that inequality holds and by =, . we mean that <, and 2., .

........

2.1. SPACES OF HOMOGENEOUS TYPE

A space of homogeneous type (S, d, i), originally introduced by Coifman and Weiss in
[CW71], is a set S equipped with a quasi-metric d and a doubling Borel measure p. That
is, a metric d which instead of the triangle inequality satisfies

dis,t) scq(d(s,w+du,1), s tues
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for some ¢4 = 1, and a Borel measure p that satisfies the doubling property
w(B(s,2r)) < cu pu(B(s, 1)), seS, r>0

for some ¢, = 1. Taking the least admissible c,, we define the doubling dimension by
v:=log, c,. Then there is a C > 0 such that
Ry\v
u(B(s,R))sC(ﬂ w(B(s, 1)), ses, R>r>0, 2.1.1)
a(s, 1)
r

uB(s, M =C1+ )Vu(B(t, "), SIES, r>0. 2.1.2)
Throughout this dissertation we will assume additionally that all balls B < S are Borel
sets and that we have 0 < pu(B) < co. We will write that an estimate depends on § if it
depends on ¢4 and cy,.

It was shown in [Stel5, Example 1.1] that it can indeed happen that balls are not
Borel sets in a quasi-metric space. This can be circumvented by taking topological clo-
sures and adjusting the constants ¢4 and ¢, accordingly. However, to simplify matters
we just assume all balls to be Borel sets and leave the necessary modifications if this
is not the case to the reader. The size condition on the measure of a ball ensures that
taking the average (f)p g of a positive function f € Lﬁ) (8) over a ball B < S is always
well-defined.

As 1 is a Borel measure, i.e. a measure defined on the Borel o-algebra of the quasi-
metric space (S, d), the Lebesgue differentiation theorem holds and as a consequence
the continuous functions with bounded support are dense in L”(S) for all p € [1,00).
The Lebesgue differentiation theorem (and consequently our results) remain valid if p
is a measure defined on a o-algebra X that contains the Borel o-algebra as long as the
measure space (S,Z, i) is Borel semi-regular, see [AM15, Theorem 3.14] for the details.
For a thorough introduction to and a list of examples of spaces of homogeneous type we
refer to the monographs of Christ [Chr90] and Alvarado and Mitrea [AM15].

2.1.1. DYADIC CUBES

LetO<c¢y<Cy<ooand 0<d < 1. Suppose that for k € Z we have an index set Ji, a
pairwise disjoint collection Z; = {Qi} jes, of measurable sets and a collection of points
{z}c} jeJp We call 2 :=Ukez Yk a dyadic system with parameters cy, Cy and ¢ if it satisfies
the following properties:

(i) Forall k€ Zwehave S =Ujej, Q}C.
(i) Fork=1, Q€ %, and Q' € Z; we eitherhave QN Q' = or Q= Q.
(iii) Foreach ke Z and j € Jx we have

B(z}“, 8% Q}“ c B(zj?, Co6%).
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We will call the elements of a dyadic system & cubes. For a cube Q € ¥ we define the
restricted dyadic system 2(Q) :={P € 2 : P < Q}. We will say that an estimate depends
on Z if it depends on the parameters ¢y, Cp and §.

One can view z¥ and 6* as the center and side length of a cube Q¥ € Z;.. These have
to be with respect to a specific k € Z, as this k may not be unique. We therefore think
of a cube Q € Z to also encode the information of its center z and generation k. The
structure of individual dyadic cubes Q € 2 in a space of homogeneous type can be very
messy and consequently the dilations of such cubes do not have a canonical definition.
Therefore for a cube Q € 2 with center z and of generation k we define the dilations aQ
fora=1as

aQ:=B(z,a- C06k),

which are actually dilations of the ball that contains Q by property (iii) of a dyadic sys-
tem.

When S = R” and d is the Euclidean distance, the standard dyadic cubes form a
dyadic system and, combined with its translates over a € {0, 1 35 217 it holds that any ball
in R" is contained in a cube of comparable size from one of these dyadic systems (see e.g.
[HNVW16, Lemma 3.2.26]). We will rely on the following proposition for the existence
of dyadic systems with this property in a general space of homogeneous type. For the
proof and a more detailed discussion we refer to [HK12].

Proposition 2.1.1. Let (S,d, 1) be a space of homogeneous type. There exist constants
0<co<Cy<oo,y=1,0<8 <1 andmeN such that there are dyadic systems 7*,..., 9™
with parameters ¢y, Cy and 8, and with the property that for each s € S and r > 0 there is
ajell,....m}andaQe 2’ such that

B(s,1) <Q, and diam(Q) < yr.

As an example of a space of homogeneous type with a dyadic system, we now intro-
duce the anisotropic Euclidean spaces, which are for example used when one considers
parabolic equations in space-time R” x R, .

Example 2.1.2 (Anisotropic Euclidean spaces). For a € (0,00)" let |-|, be the anisotropic
quasi-norm

n 1/2
I5g:= (Z|sk|2’“k) . seR". 2.1.3)
k=1

and define
=(R",|-—+1q, dD).

Then R% is a space of homogeneous type and e.g.
n
{]‘[ (2779 ([0,1) + my) : mez",jez}

is a dyadic system in R.
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We end this section with a covering lemma, which shows that we can partition a
space of homogeneous type S with a dyadic system & such that a certain set is contained
in a dilation of every element of the partition. This will be useful to turn our abstract
local sparse domination result in Chapter 3 into a global sparse domination result.

Lemma 2.1.3. Let (S, d, p) be a space of homogeneous type and 9 a dyadic system with
parameters cy, Co and 6. Suppose that diam(S) = oo, take a = 362,/6 and let E c S satisfy
0 < diam(E) < oco. Then there exists a partition D < & of S such that E < aQ forallQ € D.

Proof. For se Sand k € Z let Qf € 9 be the unique cube such that s € Qf and denote
its center by zX. Define
Ks:={keZ:E¢ chQf},

where c is the quasi-metric constant. If k € Z is such that
diam(ZCde) < 4CZC06k < diam(E),

then E £ 2c, Qf, i.e. k € K, so K is non-empty. On the other hand if k € Z is such that
Co6% > supgcpd(s,s'), then

supd(s, zf) <cq(supd(s,s)+d(s, zf)) <2¢,Co6%,
s'eE s'eE

so E<S2¢y Qf and thus k ¢ K. Therefore K; is bounded from below.
Define k; := min K and set D := {Q* : s € S}. Then D is a partition of S. Indeed, sup-
pose that for s, s’ € S we have Q;* n Qfﬁ'/ # . Then using property (ii) of a dyadic system

we may assume without loss of generality that Qf“ c fo’. Property (ii) of a dyadic sys-

. . . k o .
tem then implies that ks = ky. In particular s € QS,S/, so by the minimality of ks we must
have k; = ky. Therefore since the elements of 7y are pairwise disjoint we can conclude

X kg
Qe =Qy.
To conclude note that zfs € Qfs c Qfs_l by property (ii) of a dyadic system, which

implies d (zfx_1 , zfs) < Cy6%~1. Therefore, using the minimality of ks, we obtain

3¢?
Ec2cQ8 1 =B85 2c,Co0% N < B(zfx 7‘1 - CoékS] caQ¥,

which finishes the proof. O

2.2. MAXIMAL OPERATORS

Let (S, d, 1) be a space of homogeneous type with a dyadic system 2 and take ¢ € (0, 00).
We define the Hardy-Littlewood maximal operator M for an f € Lﬁ, (S) by

Mg f(s):=sup(fhgp  s€S,
B3s
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where the supremum is taken over all balls B < S containing s. We define the dyadic
Hardy-Littlewood maximal operator M, q“@ by

M7f(s):= sup (fhgq  SES
(0]3710)

When g =1 we write M := M; and M7 .= M? respectively. Obviously we have
M7 f(s) S5,9.0 M, S
g F) <594 Mqf(s), seSs.

Conversely, by Proposition 2.1.1 there are m dyadic systems 2,..., 2™ such that
17
Myf(s)Ssq ) M7 f(s),  seS. 2.2.1)
Jj=1

The Hardy-Littlewood maximal operator satisfies the following bounds:

Proposition 2.2.1. Let (S, d, 1) be a space of homogeneous type and0 < q < p <oo. Then

My fllzes) Ss,p.q 1 flLees), feLl(9),
Mg fliLpeo(s) Ss,p,q | flliLpeecs), feLP>(s),
Mg fllLacecsy Ss,q Il fllLacs)s feLis).

The case g = 1 for the dyadic Hardy-Littlewood maximal operator follow from Doob’s
maximal inequalities (see [HNVW16, Theorem 3.2.3]). The same estimates for the non-
dyadic Hardy-Littlewood maximal operator then follow from (2.2.1). The case g # 1
follows by rescaling.

Remark2.2.2. InR”" one can also consider the Hardy-Littlewood maximal operator over
cubes, defined by

Mcubesf(t) = Sup<|f|>1’Q' tERn,
Q3¢

where the supremum is taken over all cubes Q in R” with sides parallel to the axes con-
taining £. Then M®"P®s £ (1) is pointwise comparable with M f ()

Let X be a Banach space. We define the sharp maximal operator for an f € LIIOC(S; X)
by

M f(s):= sup J[B [f() =1l du®),  ses,

where the supremum is again taken over all balls B < S containing s. Note that it is
immediate from this definition that M#f < 2M(l flx), so by Proposition 2.2.1 we have
in particular that

IM* fllieos) Ss.p I flrsi,  feLP(S;X).

There is a partial converse to this statement, which is known as the Fefferman-Stein
inequality:
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Proposition 2.2.3 (Feffermann-Stein). Let (S, d, 1) be a space of homogeneous type, X be
a Banach space, 1 < p <oo and f € LP(S; X). Then

IM* fllzp(s), H(S) = o0,

IM* fllres) Ss,p 1 fliLresix Ss,p { .
||M#f||LP(S) +,U(S)_1/p ||f||L1(s); 1(S) <oo.

For X = C the proof can be found in [Mar04, Proposition 3.1 and Theorem 4.2] or
[DK18, Theorem 2.3]. The general case follows analogously replacing absolute values by
normes.

Proposition 2.2.3 is not valid for p = co. In this case the space of all f € LIIOC(S; X)
such that M* f € L*°(S; X) is strictly larger than L*°(S; X). It includes all functions f €
L%(S; X) which have bounded mean oscillation. We define BMO(S; X) to be the space of
all fe Ll (S;X) such that

I flsMogs;x) = sup inf ][ 1£(s) = cllx dus) <o
B c€XJB

where the supremum is taken over all balls B < S. Note that |-|lpmo(s;x) is only a semi-
norm, since | ¢ 1sllsmocs;x) = 0 for any c € X. In analogy with Proposition 2.2.3 we have

1
EMM#fnLoo(S] < | fllemos;x) < 1M fll1oo(s).

We refer to [Gral4b, Chapter 3] for an introduction to BMO.

2.3. MUCKENHOUPT WEIGHTS

Let (S, u) be a measure space. A weight is a function w: S — [0,00). For p € [1,00), a
weight w and a Banach space X we let L” (S, w; X) be the subspace of all f € 19(S; X)
such that

1/p
s = ([ 1715 wdn)"” <co.

If (S, d, p) is a space of homogeneous type we will say that a locally integrable weight w
lies in the Muckenhoupt class A, (S) and write w € Ay (S) if it satisfies

(Wla,s = Sl;p (LU)I,B(w_l)ﬁYB < oo,

where the supremum is taken over all balls B < S and the second factor is replaced by
(essinfg w) ™! if p = 1. We will omit the space of homogeneous type S in our notation if
no confusion may arise.

Example 2.3.1 (Power weights). Let a € (—n,00) and define w : R"” — (0,00) by w(x) :=
|x|%. Then w € A,(R") ifand only a € (-7, n(p - 1)).
Let us note some basic properties of Muckenhoupt weights, the proofs of which can

be found in [Gral4a, Chapter 7] in the Euclidean setting and carry over to spaces of
homogeneous type (see also [HPR12]).
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Proposition 2.3.2. Let (S,d, 1) be a space of homogeneous type and let w be a weight.

1 _1
51 — p-1
b ]A ;T [w]Ap .

1
(i) Letp e (1,00). Wehavew € Ay ifand only ifw rle Ay with [w
p

(it) Letp e (1,00) and g € [1,p). For w € Aq we have w € Ap with [w]a, < [w]4,.
(iii) Letp€ (1,00). For all w € A, there exists an € >0 such that we€ A,_,.
(iv) Letp€[1,00). Forall w € Ay, thereis ad >0 such that w'*de Ap.

(v) Forallp € (1,00) and all weights w we have

n
1Ml Lp (8, u)—1rS,w) Ss,p (W1}

p/
» S50 1M Lo (s, )10 (5,u0)

1
Related to property (i) in Proposition 2.3.2 we define the dual weight w’ := w™ »-T for
p € (1,00). We then have LP (S, w)* = L” (S, w")) under the duality pairing

<f,g>=fsfgdu, feLP(S,w), ge LF (S, w).

One of the most important features of the Muckenhoupt weight classes is the cele-
brated Rubio de Francia extrapolation theorem (see e.g. [GR85, Chapter IV]). This allows
one to deduce estimates for all p € (1,00) and all w € A, from the corresponding esti-
mates for a single pg € (1,00) and all w € Ap,. For a nice exposition of the proof in the
Euclidean setting we refer to [CMP12]. The proof carries over directly to spaces of ho-
mogeneous type, see e.g. [DK18, Theorem 2.5].

Theorem 2.3.3 (Rubio de Francia extrapolation). Let (S,d, ) a space of homogeneous
type. Let f, g € L°(S) and suppose that there is a pg € (1,00) and a nondecreasing function
¢: Ry — Ry such that for all w € Ay,

I flzro(s,uw) < (P([w]Apo)“g“Ll’O (S,w) (2.3.1)

Then for all p € (1,00) there exists a nondecreasing v : R, — R, depending on S, ¢, p, po,
such that for all w € Ay

IflLres,w < w([w]A,,)llgllLﬂ(s,w) (2.3.2)

Note that if (2.3.1) in Theorem 2.3.3 holds for a fixed function ¢, all w € A, and all
(f,g) € F for some F < L%(S) x L2(S), then (2.3.2) also holds for a fixed v, all w e Ap,
and all (f, g) € F. For a further introduction to the theory of Muckenhoupt weights and
Rubio de Francia extrapolation we refer to [Gral4a, Chapter 7] and [CMP12].
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2.4. BANACH SPACE GEOMETRY

Arandom variable € on a probability space (2, P) is called a Rademacher if it is uniformly
distributed in {z € C: |z| = 1}. A random variable y on (Q,P) is called a Gaussian if its
distribution has density

1
f@==e  zec
T

with respect to the Lebesgue measure on C. A Rademacher sequence (respectively Gaus-
sian sequence) is a sequence of independent Rademachers (respectively Gaussians). For
all our purposes we could equivalently use real-valued Rademacher and Gaussians, see
e.g. [HNVW17, Section 6.1.c].

Let X be a Banach space and let (¢4);2, be a Rademacher sequence and (y)72, a
Gaussian sequence. For p € (0,00) and x1,...,x, € X the random sums

n

Z YiXk

k=1

n
Z X N and ,
= LP(©Q;X) LP(Q;X)

play a major role in the study of the geometry of X. It is immediate from Holder’s in-
equality that for 0 < g < p we have

n n
I
Hkgl k kHLq(Q;X) kgl ke LP((;X)

and a similar estimate for Gaussian random sums. The converse of these inequalities
are known as the Kahane-Khintchine inequalities. For the proof we refer to [HNVW17,
Theorem 6.2.4 and 6.2.6].

Proposition 2.4.1 (Kahane-Khintchine inequalities). Let X be a Banach space and let
(e k)%o:l be a Rademacher sequence and (yk)zozl a Gaussian sequence. For p,q € (0,00)
and x1,...,x, € X we have

n n
EiX < ” EiX “
||kg'l k k”Ln(Q;X) P4 ,; kK| a0 x0

n n
e P
||l;7k k”LP[Q;X) P4 ,;Yk il Laix

2.4.1. TYPE AND COTYPE

Let X be a Banach space and let (¢4)72, be a Rademacher sequence on a probability
space (Q,[?). We say that X has fype p € [1,2] if there exists a constant C = 0 such that for
X1,..., X5 € X we have

5
Er Xk H =
= LP(@X)

n 1/
<c(Ynxf) " (2.4.1)
k=1
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We say that X has cotype g € [2,00] if there exists a constant C = 0 such that for x1,...,x, €
X we have

1 q 1/q n
(I;”JCk” 7 sC“];ekkamm;X) (2.4.2)

with the usual modification if g = co. The least admissible constants C will be denoted
by 7, x and ¢, x respectively. By Proposition 2.4.1 one may replace the L” (2; X)-norm
in (2.4.1) and the L9(Q; X)-norm in (2.4.2) by the L[2(Q; X)-norm if g < oo.

Any Banach space has type 1 and cotype co. Moreover if X has type pg € [1,2] and
cotype qo € [2,00], it also has type p € [1, po) and cotype g € (gp,o0]. We say that X has
nontrivial type if X has type p € (1,2] and finite cotype if X has cotype g € [2,00). Any
space with nontrivial type has finite cotype (see [HNVW17, Theorem 7.1.14]).

Type and cotype are dual notions. For the proof of the following proposition we refer
to [HNVW17, Proposition 7.1.3, 7.4.10 and 7.4.12].

Proposition 2.4.2. Let X be a Banach space.
(i) If X has type p € [1,2], then X* has cotype p'.
(ii) If X has cotype q € [2,00] and nontrivial type, then X* has type q'.

As examples we note that for p € [1,00) the Lebesgue spaces L”(R"™) and Sobolev
spaces W5P(R") have type p A2 and cotype p V2. Any Hilbert space has type and cotype
2. Conversely, any Banach space with type and cotype 2 is isomorphic to a Hilbert space
(see [HNVW17, Theorem 7.3.1]).

If X has finite cotype, Rademacher and Gaussian random sums are comparable. For
the proof we refer to [HNVW17, Corollary 7.2.10]

Proposition 2.4.3. Let X be a Banach space and let (¢)7., be a Rademacher sequence
and (yi)2, a Gaussian sequence. For p € (0,00) and xy,...,x, € X we have

n n
k] g < | 2 v
H]; k k”LP(Q;X) k;” kllroix’

If X has finite cotype, then

n n
X S ExX ” .
Hklek k”LP(Q;X) xp gl 2R Lo s

As a direct consequence of Proposition 2.4.3 we note that (2.4.1) and (2.4.2) imply
the same estimates with the Rademacher sequence replaced by a Gaussian sequence.
For a further introduction to type and cotype we refer to [HNVW17, Chapter 7].
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2.4.2. THE UMD PROPERTY

We say that a Banach space X has the UMD property, and write X € UMD, if the martin-
gale difference sequence of any finite martingale in L” (S; X) on a o' -finite measure space
(S, ) is unconditional for some (equivalently all) p € (1,00). That is, if there exists a con-
stant C > 0 such that for all finite martingales ( fk)Z:O in LP(S; X) and scalars |ex| = 1, we
have

“éekdfk“ms;m s “édfk HLp(S;X)’ (2.4.3)

where (d fi);_, denotes the difference sequence of (fi)}_,. The least admissible implicit
constant in (2.4.3) will be denoted by 8, x. It is equivalent to assume (2.4.3) only for
Paley-Walsh martingales (see [HNVW16, Theorem 4.2.5]).

Any Banach space with the UMD property is reflexive, has nontrivial type and finite
cotype (see [HNVW16, Theorem 4.3.3] and [HNVW17, Proposition 7.3.15]). Standard
examples of Banach spaces with the UMD property include reflexive Lebesgue, Lorentz,
(Musielak)-Orlicz, Sobolev, Bessel potential and Besov spaces.

We will also use randomized versions of the UMD property. We say that a Banach
space X has the UMD™ (respectively UMD™) property if for some (equivalently all) p €
(1,00) there exists a constant §* > 0 (respectively f~ > 0) such that for all finite martin-
gales (fi)}_, in LP(S; X) we have

ﬁi—"édfk“ms;x) =

n . n
3 ethl g <0 S ]y 29

where (¢x)}!_, is a Rademacher sequence on (Q,P). The least admissible constants in
(2.4.4) will be denoted by ﬁ;' « and ﬁ;' «- 1 (2.4.4) holds for Paley-Walsh martingales on
a probability space S we say that X has the dyadic UMD™ or UMD~ property respectively
and denote the least admissible constants by ﬁj’; and ﬁﬁ:;(. As for the UMD property,
the (dyadic) UMD™" and UMD~ properties are independent of p € (1,00) (see [Gar90]).
However, in contrast to the situation for the UMD property, it is not clear whether the
dyadic versions of the UMD™* and UMD~ properties are equivalent to their non-dyadic
counterparts. We do have that ﬁﬁ:; < ﬂ;, x and ,6;‘7:;( < ,B;y «- Furthermore X has the
UMD property if and only if it has the UMD™* and UMD~ properties with

max{f,, v, B, x} < Bp.x < B xBp x:

see [HNVW16, Proposition 4.1.16]. For a thorough introduction to the theory of UMD
Banach spaces we refer the reader to [HNVW16, Pis16].

2.5. BANACH LATTICES AND FUNCTION SPACES

A partially ordered vector space X is called a vector lattice if any two elements x,y € X
have a least upper bound x v y and a greatest lower bound x A y. A Banach lattice X is a



32 2. PRELIMINARIES

complete normed vector lattice such that order and norm are compatible, i.e.
[xI < lyl=llxllx < llylx, x,yeX,

where | x| = xv—x for x € X. We refer to [Mey91] or [Zaa67] for an introduction to Banach
lattices.

On a Banach lattice we can compare Rademacher sums and Gaussian sums with
square sums of the form

n 2 1/2
(Z'xkl ) ’ x1,...,x”€X,
k=1

which are defined through the Krivine calculus, see e.g. [LT79, Theorem 1.d.1]. For the
proof of the following proposition we refer to [HNVW17, Proposition 7.2.13].

Proposition 2.5.1 (Khintchine-Maurey inequalities). Let X be a Banach lattice and let
(ex)%2, be a Rademacher sequence on a probability space (Q0,P). For p € (0,00) and
X1,..., X € X we have

k=1 k=1 €:X)

If X has finite cotype q € [2,00), then

= k2N Lo sx) pVaCqx = k X

A class of Banach lattices that we will frequently use is the class of Banach function
spaces. Let (Q,u) be a o-finite measure space. A Banach lattice X < L°(Q) with the
partial order given by x = 0 if and only if x(w) = 0 for a.e. w € Q is called a Banach
function space if it satisfies the following two additional properties

e Weak order unit: There is an x € X with x(w) >0 fora.e. w € Q.
e Fatou property: If 0 < xp 1 x for (x,)32, in X and sup,,yllxnllx < oo, then x € X
and || xllx = sup eyl xnllx.

A Banach function space X is called order-continuous if for any sequence satisfying
0 < x, ! x€ X we have || x, — x||x — 0. As an example we note that all reflexive Banach
function spaces are order-continuous (see e.g. [Mey91, Section 2.4]). Order-continuity
of X ensures that its the dual X* is also a Banach function space. In this case the duality
pairing is given by

(x,x%) =f X() - x* (w) du(w), xeX,x"eX".
Q

For a Banach function space X and a Banach space Y we write X(Y) for the Kothe-
Bochner spaceofall f € L9(Q; Y) such that w — || f()lly € X and define its norm by

Ifllxw) = o= I f@ly| x-

For an introduction to Banach function spaces we refer the reader to [LT79, Section
1.b] or [BS88].
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2.5.1. p-CONVEXITY AND ¢-CONCAVITY

On a Banach lattice X, the notions p-convexity and g-concavity are closely related to
type and cotype. We say X is p-convex with p € [1,00] if for x1,...,x, € X

n 1/p n 1/p
[DENL I IE DN EN Y
k=1 k=1

and X is called g-concave with g € [1,00] if for xy,...,x, € X

(£ )" s ()

By renorming we may assume without loss of generality that the implicit constants are
equal to 1 (see [LT79, Theorem 1.d.8].

Any Banach lattice is 1-convex and co-concave and if X is p-concave and g-concave
forl < p < g < oo, then itis py-convex and ggy-concave for pg € [1, p) and gy € (g,00]. The
duality of p-convexity and g-concavity is simpler than the duality of type and cotype, for
the proof we refer to [LT79, Theorem 1.d.4].

n

k=1

Proposition 2.5.2. Let X be a Banach lattice and p, q € [1,00]. If X is p-convex and q-
concave, then X* is q'-convex and p' -concave.

The connection between type, cotype, p-convexity and g-concavity is captured in
the following proposition. For the proof we refer to [LT79, Proposition 1.f.3 and Corollary
1.£9].

Proposition 2.5.3. Let X be a Banach latticeand1 < p <r < q < oco.
(i) If X has typer, then it is p-convex.
(ii) IfX is p-convex and q-concave, then it has type p A 2.
(iii) If X has cotyper, then it is q-concave.
(iv) IfX is q-concave, then it has cotype q Vv 2.

If X is p-convex Banach function space for some p € [1,00], we can define its p-
concavification X” by

Xp:{|x|Psgnx:xeX}:{x:|x|1/p€X}

with norm
lxlixe = [[1xP |2

This definition can be extended to Banach lattices, see [LT79, Section 1.d]. In Chapter
7 we will often use p-convex Banach function spaces such that X? has the UMD prop-
erty, which we will abbreviate as X? € UMD. We refer to [LT79, Chapter 1] for a further
introduction to p-convexity and g-concavity.
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2.6. R- AND /" -BOUNDEDNESS

For a family of bounded operators I' from a Banach space X to a Banach space Y, we
will use the notions R- and ¢ -boundedness, which are both a strengthening of uniform
boundedness for I'.

Definition 2.6.1. Let X and Y be Banach spacesandI' € L(X,Y).

* Let (e4)72, be a Rademacher sequence on a probability space (Q2,P). We say that
T'is R-boundedifforall Ty,---, T, €T and x1,---,x, € X,

n n
HZE/CTkxk ) S“Zekxk -
= @y "z 12(Q;X)
The least admissible implicit constant is called the R-bound of I' and is denoted

by ITllz.

e If X and Y are Banach lattices, we say that I is " -bounded for r € [1,00] if for all
Ty,---,Tp,eT and x1,---,x, € X,

l(Z i), < (2 mer) ]

The least admissible implicit constant is called the ¢"-bound of ', and is denoted
by ITllr.

For R- and ¢?-boundedness it suffices to consider subsets of T in the defining in-
equality (see [CPSW00, KVW16]). For ¢"-boundedness with r # 2 this is not the case:
one must allow repeated elements. A singleton {T} can fail to be ¢"-bounded, as the
defining estimate may fail for arbitrarily long constant sequences (T,..., T) (see [KU14,
Example 2.16]).

IfasetT < L(X,Y)is R- or ¢"-, then so is its closure in the strong operator topol-
ogy, and likewise its absolutely convex hull absco(I'). This was proven in [KW04] for
R-boundedness and [KU14] for ¢"-boundedness. Moreover, if I'1,I'; < L(X) are R or
¢?-bounded respectively, then I'; UT, is R— or £?-bounded respectively. For duality we
have the following result, for the proof of (i) we refer to [HNVW17, Proposition 8.4.1] and
for (ii) follows from the duality X (¢})* = X* (Zz/) (see [LT79, Section 1.d.]).

Proposition 2.6.2. Let X and Y be Banach spaces and letT < L(X,Y). Define the adjoint
familyT* :={T*: TeT} S L(X*,Y7).

(i) If X has nontrivial type andT is R-bounded, thenT* is R -bounded.

(ii) If X and Y are Banach lattices and T is ¢" -bounded for some r € [1,00], thenT* is
0" -bounded.
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If X has cotype 2 and Y has type 2, then it is direct from the definitions that any
uniformly bounded I' € £(X, Y) is R-bounded with

ITIR < cx,2Ty,2supl Tl
Tel

The converse is also true, i.e. if every uniformly bounded I' € £L(X, Y) is R-bounded,
then X has cotype 2 and Y has type 2 (see [HNVW17, Proposition 8.6.1]). In particular,
in the case X = Y, we have that R-boundedness coincides with uniform boundedness
if and only if X is isomorphic with a Hilbert space. Similar statements can be made for
¢"-boundedness and r-convex and r-concave Banach lattices.

If X and Y are Banach lattices and X and Y have finite cotype, then R- and ¢2-
boundedness are equivalent by Proposition 2.5.1.

Proposition 2.6.3. Let X and Y be Banach lattices and letT < L(X,Y).

o If X has finite cotype q € [2,00) and T is R-bounded, thenT is ¢*-bounded with
T2 S vqcqxITIR.
e IfY has finite cotype q € [2,00) andT is ¢?-bounded, thenT is R-bounded with

ITIR < vVdcqy Tl .

For a thorough discussion on the connection between R and ¢2-boundedness we
refer to [KVW16]. For a further introduction to R-boundedness we refer the reader to
[HNVW17, KW04], and for a further introduction to ¢"-boundedness see [KU14, Wei01la].

2.7. FOURIER MULTIPLIERS

In this section we will introduce operator-valued Fourier multiplier theory. For a de-
tailed historical description of vector-valued and operator-valued Fourier multiplier the-
ory we refer to [HNVW16, HNVW17] and for an introduction to scalar-valued Fourier
multiplier theory we refer to [Gral4a, Chapter 6].

Let X be a Banach space. The Fourier transform on Bochner spaces is defined simi-
larly to the scalar-valued case, i.e. for f € LY(R™; X) we define

fO=Ff@:= f fs)e™2rist ds, EeR™,
Rn
f© =f_1f(£):=f fs)e?m st ds, EeR™,
RV!

We denote the space of X-valued Schwartz functions by S(R"; X) and the space of X-
valued tempered distributions by S’ (R”; X) := L(S(R™); X). The space S(R"; X) is dense
in LP(R", w; X) (see [Gral4a, Exercise 7.4.1]) and L”(R", w; X) is continuously embed-
ded in &'(R"; X) for we A, and p € [1,00) .
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Let X and Y be Banach spaces. To a bounded, strongly measurable m: R" — L(X,Y)
we associate the Fourier multiplier operator

Tm: SR X) = S'R:Y),  Tuf=mf.

One may ask under which conditions on m the operator T,, extends to a bounded op-
erator from L”(R", w; X) to LP(R", w;Y) for loc([R”) and p € [1,00). If this is the case we
call m a bounded Fourier multiplier and T}, a Fourier multiplier operator.

The UMD property is intimately connected to the boundedness of Fourier multiplier
operators. Indeed, for prototypical examples of Fourier multiplier operators like the
Hilbert transform

Hf:= (&~ —isgn(@®-f(©)" = —p fR&dt SER, feSMR; X)

and the Riesz projections for 1,---, k

s
R f(9): —(fﬁ—lm f&)Y (S)=Cn'P-V-fR Wf(t)dt seR”, fe SR"; X),

we have the following result, which for the Hilbert transform was first proven by Burk-
holder [Bur83] and Bourgain [Bou83].

Theorem 2.7.1. Let X be a Banach space. The following are equivalent:
(i) X € UMD.
(ii) The Hilbert transform H is bounded on LP (R; X) for some (all) p € (1,00).

(iii) The Riesz projections Ry for k = 1,...,n are bounded on LP (R"; X) for some (all)
pe,00).

Another major breakthrough was given in [McC84], [Bou86] and [Zim89], where the
Marcinkiewicz-Mihlin multiplier theorem and Littlewood-Paley decomposition have
been obtained on L? (R"; X) for UMD Banach spaces X and p € (1,00).

A necessary condition for boundedness of an operator-valued Fourier multiplier
m: R" — L(X,Y) is that the range of m is R-bounded. Following the breakthrough pa-
pers [Wei01b, CPSW00] there has been an extensive study of operator-valued multiplier
theory, in which R-boundedness techniques are central, see e.g. [AB02, HHNO02, SWo7,
WeiO1b]. In Section 3.5 we will discuss a generalization of the operator-valued Mihlin
multiplier theorem and in Chapter 7 we will develop a generalization of the operator-
valued Marcinkiewicz multiplier theorem.

2.8. y-RADONIFYING OPERATORS

We introduce the definition and some basic properties of y-radonifying operators, for
details we refer to [HNVW17, Chapter 9]. Let X be a Banach space and H be a Hilbert
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space. We say that an operator T € L(H, X) is y-summing and write T € y,(H, X) if

1T llyoor,x) :=SUP

»

n
I;YkT(l)k e <
where (y¢)}_, is a Gaussian sequence on a probability space (2,P) and the supremum
is taken over all finite orthonormal systems (@)} _, in H. Any finite rank operator T,
ie. T=Y]_,ex®xg, withey,...,e; € H and xy,..., X, € X, belongs t0 yeo(H, X). We
denote the closure of the finite rank operators in y,(H, X) by y(H, X). We thus have
Y(H, X) — Yoo (H, X) — L(H, X).

When X does not contain a subspace isomorphic to ¢y, so in particular if X has fi-
nite cotype, we have y(H, X) = y(H, X). When H is separable with orthonormal basis
(¢Pr)%z, we have

n
I Ty =sup || D viTok
neN " =1

12(9;X)

and if T € y(H, X), then Zz"zl Y« T converges in I[2(Q; X) and we have

()
The spaces y(H, X) satisfy the following domination property:

Proposition 2.8.1 (Domination). Let X be a Banach space and let H; and H; be Hilbert
spaces. If Ty € y(Hy, X) and T> € L(H,, X) with

T % Ny < WTY X Ny, X" € X7,
then T € y(Ha, X) with | T2 lly(#,,x) < 1 Tt lly (e, -

We also have y-versions of Fatou’s lemma and the dominated convergence theorem,
which we state next. For the y-Fatou lemma we assume finite cotype in order to avoid
ending up in Yoo (H, X).

Proposition 2.8.2 (y-Fatou). Let X be a Banach space with finite cotype and H a Hilbert
space. If (Tp)S, is a bounded sequence iny(H,X) and T € L(H, X) with

r}im(Tn(p,x*)z(T(p,x*), peH x*eX”,
—00
then T € y(H,X) with || T”)/(H,X) <liminf,,_ |l Tn”]/(H,X)-

Proposition 2.8.3 (y-Dominated convergence). Let X be a Banach space and H a Hilbert
space. Let (T,)52., be a sequence in L(H,X) and T € L(H,X) such thatlimy,_.o, T;; x* =
T*x* forall x* € X*. If there exists a U € y(H, X) such that forneN

1T, x* 1z <IU*x" I,  x"€X7,

thenT,, Tey(H,X)and T, — T iny(H, X).
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For a measure space (S,u), we write y(S; H, X) := y(Lz(S;H),X) and in particular
¥(S; X) := y(L2(S), X). Any strongly measurable f: S — X for which (f,x*) € L2(S) for
all x* € X* defines a bounded linear operator T: L%(S) — X by

Tf<p:=fsf<p du,  @el*(S)

where the integral is well-defined in the Pettis sense (see [HNVW16, Theorem 1.2.37]). If
Ty € y(S; X) we say that f represents Ty and write f € y(S; X).

For a Hilbert space K we have y(S;K) = L[%(S;K) isometrically (see [HNVW17, The-
orem 9.2.10]). More generally, if the Banach space X has type 2 we have the following
embedding properties for the y-spaces, which follow directly from [HNVW17, Theorem
9.2.10 and Proposition 7.1.20].

Lemma 2.8.4. Let X be a Banach space with type2, H a Hilbert space and (S, p) a o -finite
measure space. Then we have the following embeddings

LSy (H; X)) = y(S;y (H; X)) — y(S; H, X)
with both embedding constants bounded by 15 x.

We also note that for disjointly supported functions we have the following square
function estimate, which follows from [HNVW17, Proposition 9.4.13].

Lemma 2.8.5. Let X be a Banach space with type?2 and let fi, ..., fn € y(S; X) be disjointly
supported. Then we have

H n n I ”2 1/2
§ )k” ) <T2,X(§ Tk (S;X))
=1 Y(85:X) =1 4

To conclude the introduction of y-radonifying operators we extend the y-Fubini the-
orem for Lebesgue spaces in [HNVW17, Theorem 9.4.8] to Banach function spaces.

Proposition 2.8.6 (y-Fubini). Let X be a Banach space, H a Hilbert space and let E be a
Banach function space over a measure space (S, \t). Then we have the embedding

Y(H, E(X)) — E(y(H, X)).
Ifin addition E is q-concave for some q € [1,00), then we have the embedding
E(y(H, X)) — y(H, E(X)).

Proof. We make two preliminary observations. Since E is a Banach space, the triangle
inequality in E implies that for all simple functions¢: Q — E

I g @) =< 1L oy (2.8.1)
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By density this extends to a contractive embedding L' (Q; E) — E(L'(Q)). The second
observation is that if E is g-concave for some g € [1,00), then we have for all simple
functions ¢ : S — L9(Q),

I Lo Sx,q ISIELIQ)- (2.8.2)
By density this can be extended to a contractive embedding E(L9(Q)) — L9(Q; E).
Let (hj);?zl be an orthonormal system in H and let f = 27:1 hj®¢; with £; € E(X).
Now setting & = || Xiridi || x» where (y j)}-, is a Gaussian sequence, we can write

= ||5||L2(Q;E),

n
Iy pooy = ||jZ=1Yj"tj L2(QE(X))

n
1AV B, xn = ;ijj ”E(LZ(Q;XD = lIsl sz

By the Kahane-Khintchine inequalities (see Proposition 2.4.1) replacing the L?(Q)-norm
on the right-hand sides of the above identities with L"(Q) with r € [1,00) leads to an
equivalent norm. Taking r = 1 we have by (2.8.1) that

Il Eq@Ex) S Iy EX),

which by density proves y(H, E(X)) — E(y(H, X)).
For the second embedding note that by the above with r = g we find by (2.8.2) that

I fllyEEC) Sx,q 1 flEG@HX)-
Again by density this gives E(y(H, X)) — y(H, E(X)). O

Remark 2.8.7. The result of Proposition 2.8.6 can also be extended to quasi-Banach
function spaces which are p-convex and g-concave. For the definition of y(H, X) for
quasi-Banach spaces we refer to [CCV18].

2.9. STOCHASTIC INTEGRATION IN BANACH SPACES

The y-radonifying operators play a pivotal role in the development of stochastic inte-
gration in Banach spaces, which we will introduce now. For details of the introduced
notions we refer to [NVW07, NVW15c].

Let X be a Banach space and H a Hilbert space. Let (Q,.4,P) be a probability space
with filtration (.%;) ;»¢. Functions G: Q x (0, T) — L(H, X) of the form

G=1p®h ¢, (2.9.1)

where 0 < a < b <oo, h€ Hand ¢ € L®(Q; X) is strongly .%,-measurable, are called a
rank-one adapted step processes and functions in the linear span of the rank-one adapted
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step processes are called finite rank adapted step processes. For p € [1,00), T € (0,00] and
aweight w on (0, T') we let

L7 (@;y((0, T); H, X)),
L7.@x (0, T), w;y(H, X))

denote the closure of the finite rank adapted step processes G: Q x (0, T) — L(H, X) in
LP(Q;v((0,T); H, X)) and LP(Q x (0, T), w;y(H, X)) respectively. We omit the weight w if
w =1. One has that f € L’Z,}(Q;y((o, T); H, X)) ifand only if f € L (Q;y((0, T); H, X)) and
f (110, ®h) is strongly .7 [(-measurable andforall t€(0,T) and h e H.

Let (S, 1) be a measure space, take p,q,r € [1,00), T € (0,00], let a v be weight on
(0, T) and w a weight on S. For the specific case that X = L9(S; w) we let

L7 (@; LS, w; L2 (0, T); H))),
L'z (@ LP((0, ), v; LY(S, w; H))),
L7 (O L9(S, w; LP((0, T), v; H))

denote the closure of the finite rank adapted step processes in the respective spaces,
where we omit the weights if v, w = 1. In the case p = r there is some overlap with the
definitions for abstract Banach spaces X by the y-Fubini theorem in Proposition 2.8.6
and the identification

y((0, T); H) = L*((0, T); H).

Let W € L(L*(R,; H), L>(Q)) denote an isonormal mapping (see [Kal02]) such that
WS is %;-measurable if f € L%(R,; H) with f =0on (t,00). Define a cylindrical Brow-
nian motion (Wg (8)) =0 by Wi (£)h := W(1jo 1 h). For a rank-one adapted step process
G: Qx(0,T)— L(H,X) asin (2.9.1) we define

N
f G(t) dWg(#) := (Wg(bAs)—Wh(ans)hel seRy,
0

which is an element of L?(Q; X). We extend the definition of the stochastic integral by
linearity.

The following result provides two-sided estimates for the stochastic integral with re-
spect to a H-cylindrical Brownian motion (Wg(t));>9. This in particular allows us to
define the stochastic integral fOTf(t) dWg (1) for f € L; (Q;y(0,T; H,X)).

Theorem 2.9.1 (Itd6 isomorphism). Let X be a UMD Banach space, H a Hilbert space,
let pe (1,00) and T € (0,00]. For every adapted finite rank step process G : (0, T) x Q —
L(H,X), one has

T
” fo G(1) AWy (1) H ~px Gl Lr@iy(0,7:H,x)-

LP(O;X)

In particular, G — fOT G(t) dWy (1) extends to an isomorphism from LZ; (;y((0,7); H, X))
to LP (; X).
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3

¢"-SPARSE DOMINATION IN A SPACE OF HOMOGENEOUS TYPE

This chapter is based on the paper

[5] E.Lorist. On pointwise ¢”-sparse domination in a space of homogeneous type. J.
Geom. Anal., 2020. Online first.

It is complemented by a few additional applications. In particular, the application to
Littlewood-Paley operators in Section 3.7 and the application to the unconditionality of
the Haar decomposition in Section 3.8 are unpublished.

Abstract. We prove a general sparse domination theorem in a space of homogeneous type,
in which a vector-valued operator is controlled pointwise by a positive, local expression
called a sparse operator. We use the structure of the operator to get sparse domination in
which the usual £ -sum in the sparse operator is replaced by an £" -sum.

This sparse domination theorem is applicable to various operators from both harmonic
analysis and (S)PDE. Using our main theorem, we prove the A; -theorem for vector-valued
Calderén—Zygmund operators in a space of homogeneous type, from which we deduce an
anisotropic, mixed norm Mihlin multiplier theorem. Furthermore we show quantitative
weighted norm inequalities for Littlewood-Paley operators and the Rademacher maxi-
mal operator. In the latter application the geometry of the underlying Banach space plays
a major role. Applications to (S)PDE will be given in Chapters 4 and 5.
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3.1. INTRODUCTION

The technique of controlling various operators by so-called sparse operators has proven
to be a very useful tool to obtain (sharp) weighted norm inequalities in the past decade.
The key feature in this approach is that a typically signed and non-local operator is dom-
inated, either in norm, pointwise or in dual form, by a positive and local expression.

The sparse domination technique comes from Lerner’s work towards an alternative
proof of the A,-theorem, which was first proven by Hytonen in [Hyt12]. In [Ler13] Lerner
applied his local mean oscillation decomposition approach to the A,-theorem, estimat-
ing the norm of a Calderén-Zygmund operator by the norm of a sparse operator. This
was later improved to a pointwise estimate independently by Conde-Alonso and Rey
[CR16] and by Lerner and Nazarov [LN18]. Afterwards, Lacey [Lac17] obtained the same
result for a slightly larger class of Calderén-Zygmund operators by a stopping cube ar-
gument instead of the local mean oscillation decomposition approach. This argument
was further refined by Hytonen, Roncal and Tapiola [HRT17] and afterwards made strik-
ingly clear by Lerner [Ler16], where the following abstract sparse domination principle
was shown:

If T is a bounded sublinear operator from LP! (R") to LP***°(R") and the grand maxi-
mal truncation operator

M f(s):=supesssup|T(f 1gmzq) (s, seR”
Q3s §'eQ
is bounded from L”2 (R") to LP2*°(R") for some 1 < p1, p2 < oo, then there isann € (0,1)
such that for every compactly supported f € LP°(R") with pg := max{p1, p»} there exists
an 7-sparse family of cubes S such that

ITFOIS Y AfDpo,0Lols), seR". (3.1.1)
QeS

We call a family of cubes S n-sparse if for every Q € S there exists a measurable set
Eq < Q such that | Eg| = n|Q| and such that the Eg’s are pairwise disjoint.

This sparse domination principle was further generalized in the recent paper [LO20]
by Lerner and Ombrosi, in which the authors showed that the weak LP2-boundedness
of the more flexible operator

M, f(s):=supesssup|T(f Igna@)(s) — T(f lgna@)(s),  seR”

Q3s ¢',s"eQ

for some a = 3 is already enough to deduce the pointwise sparse domination as in
(3.1.1). Furthermore they relaxed the weak LP!-boundedness condition on T to a con-
dition in the spirit of the T'(1)-theorem.

3.1.1. MAIN RESULT

Our main result is a generalization of the main result in [LO20] in the following four
directions:
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(i) We replace R” by a space of homogeneous type (S, d, 1).

(ii) Welet T be an operator from LP!(S; X) to LP**°(S; Y), where X and Y are Banach
spaces.

(iii) We use structure of the operator T and geometry of the Banach space Y to replace
the ¢!-sum in the sparse operator by an ¢”-sum for r > 1.

(iv) We replace the truncation T'(f 1gr\qq) in the grand maximal truncation operator
by an abstract localization principle.

The extensions (i) and (ii) are relatively straightforward. The main novelty is (iii), which
controls the weight characteristic dependence that can be deduced from the sparse
domination. Generalization (iv) will make its appearance in Theorem 3.2.2 and can be
used to make the associated grand maximal truncation operator easier to estimate in
specific situations.

Let (S,d, p) be a space of homogeneous type and let X and Y be Banach spaces.
For a bounded linear operator T from LP!(S; X) to LP*°(S;Y) and a = 1 we define the
following sharp grand maximal truncation operator

M. f(s):=supesssup | T(f Ls\ap)(s) = T(f Ls\ap) (s

B3s s',s"eB

SES,

Yy’

where the supremum is taken over all balls B < S containing s € S. Our main theorem
reads as follows.

Theorem 3.1.1. Let (S, d, 1) be a space of homogeneous type and let X and Y be Banach
spaces. Take p1, p2, 1 € [1,00) and set py := max{p, p»}. Take a = 36121/6, where c; is the
quasi-metric constant and 6 is as in Proposition 2.1.1. Assume the following conditions:

T is a bounded linear operator from LP'(S; X) to LP»**°(S;Y).
o M’;a is a bounded operator from LP2(S; X) to LP>*°(S).

e ThereisaC, > 0 such that for disjointly and boundedly supported fi, ..., f, € LP°(S; X)

[ kzl R, =c (,é” Tfs)})

1/r
R SES.

Then there is ann € (0,1) such that for any boundedly supported f € LP°(S; X) there is an
1n-sparse collection of cubes S such that

1/r
ITf@ly Ssa CrCr( X (Iflx)p 0le®) |, se$,
QeS
where Cr = | Tlipp1 oo + M7, 2 Lr2co.
As the assumption in the third bullet of Theorem 3.1.1 expresses a form of sublinear-
ity of the operator T when r = 1, we will call this assumption r-sublinearity. Note that

it is crucial that the constant C, is independent of n € N. If C, = 1 it suffices to consider
n=2.
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3.1.2. SHARP WEIGHTED NORM INEQUALITIES

One of the main reasons to study sparse domination of an operator is the fact that
sparse bounds yield weighted norm inequalities and these weighted norm inequalities
are sharp for many operators. Here sharpness is meant in the sense that for p € (pg, c0)
we have a § = 0 such that

I TN Lo (s, w;x)—LP (S, w;Y) S [w]ﬁp%, we Ap/p, (3.1.2)

and (3.1.2) is false for any ' < 8.

The first result of this type was obtained by Buckley [Buc93], who showed that § =
ﬁ for the Hardy-Littlewood maximal operator. A decade later, the quest to find sharp
weighted bounds attracted renewed attention because of the work of Astala, Iwaniec
and Saksman [AISO1]. They proved sharp regularity results for the solution to the Bel-
trami equation under the assumption that § = 1 for the Beurling—-Ahlfors transform for
p = 2. This linear dependence on the A, characteristic for the Beurling-Ahlfors trans-
form was shown by Petermichl and Volberg in [PV02]. Another decade later, after many
partial results, sharp weighted norm inequalities were obtained for general Calderén—
Zygmund operators by Hytdnen in [Hyt12] as discussed before.

In Proposition 3.2.4 we prove weighted LP-boundedness for the sparse operators
appearing in Theorem 3.1.1. As a direct corollary from Theorem 3.1.1 we then have:

Corollary 3.1.2. Under the assumptions of Theorem 3.1.1 we have for all p € (py,00) and
we Ap/p,

max| 0.1}

IT Nz s, w;x)~LP(S,w;v) S Cr Cr Wy, '
where the implicit constant depends on S, po, p, 1 and .

Asnoted before the main novelty in Theorem 3.1.1 is the introduction of the parame-
ter r € [1,00). The r-sublinearity assumption in Theorem 3.1.1 becomes more restrictive
as r increases and the conclusions of Theorem 3.1.1 and Corollary 3.1.2 consequently
become stronger. In order to check whether the dependence on the weight characteris-
tic is sharp one can employ e.g. [LPR15, Theorem 1.2], which provides a lower bound for
the best possible weight characteristic dependence in terms of the operator norm of T
from LP(S; X) to LP(S; Y). For some operators, like Littlewood-Paley or maximal opera-
tors, sharpness in the estimate in Corollary 3.1.2 is attained for r > 1 and thus Theorem
3.1.1 can be used to show sharp weighted bounds for more operators than precursors
like [LO20, Theorem 1.1].

3.1.3. HOW TO APPLY OUR MAIN RESULT

Let us outline the typical way how one applies Theorem 3.1.1 (or the local and more
general version in Theorem 3.2.2) to obtain (sharp) weighted LP-boundedness for an
operator T:
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(i) If T is not linear it is often linearizable, which means that we can linearize it by
putting part of the operator in the norm of the Banach space Y. For example if T is
a Littlewood-Paley square function we take Y = L? and if T is a maximal operator
we take Y = ¢°°. Alternatively one can apply Theorem 3.2.2, which is a local and
more abstract version of Theorem 3.1.1 that does not assume T to be linear.

(ii) The weak LP'-boundedness of T needs to be studied separately and is often al-
ready available in the literature.

(iii) The operator M#T, « reflects the non-localities of the operator T. The weak LP2-
boundedness of M’; . requires an intricate study of the structure of the operator.
In many examples ./\/t*;’ . €an be pointwise dominated by the Hardy-Littlewood
maximal operator M,,, which is weak LP2-bounded by Proposition 2.2.1. This
is exemplified for Calderén-Zygmund operators in the proof of Theorem 3.4.1.
Sometimes one can choose a suitable localization in Theorem 3.2.2 such that the
sharp maximal truncation operator is either zero (see e.g. Section 3.6 on the Rade-
macher maximal operator) or pointwise dominated by T (see e.g. Section 3.7 on
Littlewood-Paley operators).

(iv) The r-sublinearity assumption on T is trivial for r = 1, which suffices if one is not
interested in quantitative weighted bounds. To check the r-sublinearity for some
r > 1 one needs to use the structure of the operator and often also the geometric
properties of the Banach space Y like type r. See, for example, the proofs of The-
orems 3.6.1 and Theorem 4.4.11 how to check r-sublinearity in concrete cases.

3.1.4. APPLICATIONS

The main motivation to generalize the results in [LO20] comes from the applications to
stochastic singular integral operators in Chapter 4. Indeed, we will use Theorem 3.1.1
with p; = pp = r = 2 to prove a stochastic version of the vector-valued A;-theorem for
Calder6n-Zygmund operators. Moreover using S = R, x R” equipped with the parabolic
metric and the Lebesgue measure we will develop Calderén-Zygmund theory for singu-
lar mixed stochastic-deterministic integral operators. The fact that r = 2 and spaces of
homogeneous type like R, xR" are needed in these applications are the key motivations
to incorporate these generalizations in this chapter.

In this chapter we will focus on applications in harmonic analysis. We will provide
a few examples that illustrate the sparse domination principle nicely, and comment on
further potential applications in Section 3.8.

* As a first application of Theorem 3.1.1 we prove an A-theorem for vector-valued
Calder6n-Zygmund operators with operator-valued kernel in a space of homoge-
neous type. The A,-theorem for vector-valued Calder6n-Zygmund operators with
operator-valued kernel in Euclidean space has previously been proven in [HH14]
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and the A,-theorem for scalar-valued Calderén-Zygmund operators in spaces of
homogeneous type in [NRV13, AV14]. Our theorem unifies these two results.

¢ Usingthe A,-theorem, we prove a weighted, anisotropic, mixed norm Mihlin mul-
tiplier theorem, which is a natural supplement to the recent results in [FHL20] and
is particularly useful in the study of spaces of smooth, vector-valued functions.

¢ In our second application of Theorem 3.1.1 we prove sparse domination and quan-
titative weighted norm inequalities for the Rademacher maximal operator, ex-
tending the qualitative bounds in Euclidean space in [Kem13]. The proof demon-
strates how one can use the geometry of the Banach space to deduce r-sublinearity
for an operator.

¢ Thirdly we give a short proof of the sharp weighted norm inequalities of Littlewood—
Paley operators, recovering the result in [Ler11]. The proof illustrates nicely how
the structure of these operators yields 2-sublinearity.

Moreover, in Section 6.4 we will apply Theorem 3.1.1 to the lattice Hardy-Littlewood
maximal operator, which again demonstrates how one can use the geometry of the Ba-
nach space to deduce r-sublinearity for an operator.

3.2. POINTWISE ¢" -SPARSE DOMINATION

In this section we will prove a local version of the sparse domination result in Theorem
3.1.1, from which we will deduce Theorem 3.1.1 by a covering argument using Lemma
2.1.3. This local version will use an abstract localization of the operator T, since it de-
pends upon the operator at hand as to the most effective localization. For example in the
study of a Calder6n-Zygmund operator it is convenient to localize the function inserted
into T, for a maximal operator it is convenient to localize the supremum in the defini-
tion of the maximal operator and for a Littlewood-Paley operator it is most suitable to
localize the defining integral.

Definition 3.2.1. Let (S, d, u) be a space of homogeneous type with a dyadic system Z,
let X and Y be Banach spaces, p € [1,00) and a = 1. For a bounded operator

T: LP(S;X) — LP™°(S;Y)

we say that a family of operators { T} ge  from LP (S; X) to LP*°(Q; Y) is an a-localization
family of T iffor all Q € & and f € L”(S; X) we have

To(f1aQ)(8) =Tof(s), seqQ, (Localization)
[ To(f1a)®) |y < | T(f 1a@) ]|y SEQ, (Domination)

For Q, Q' € 9 with Q' = Q we define the difference operator

Tow f(8):=Tof(9)-To f(s), seqQ.
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and for Q € Z the localized sharp grand maximal truncation operator

/\/l#Tny(s) == sup esssup ||(To\) f(s) — (Tovo) f(s"|| - SES.
Q'€e2(Q): ¢,s"eqQ’
seQ’

In order to obtain interesting results, one needs to be able to recover the bounded-
ness of T from the boundedness of T uniformly in Q € 2. The canonical example of an
a-localization family is

Tof(s):=T(f140)(s), seq.

for all Q € &, which allows one to recover weighted boundedness of T by the den-
sity of boundedly supported functions. Furthermore it is exactly this choice of an a-
localization family that will lead to our global sparse domination result in the introduc-
tion.

Theorem 3.2.2. Let (S,d, 1) be a space of homogeneous type with dyadic system 9 and
let X and'Y be Banach spaces. Take py, p2, 1 € [1,00), set po := max{pi, p2} and takea = 1.
Suppose that

e T is a bounded operator from LP1(S; X) to LPV*°(S;Y) with a-localization family
{To}ge -

o M’;Q is bounded from LP2(S; X) to LP>*°(S) uniformlyin Qe 2.

e ForallQy,...,Qne 2 withQu<---<Qy and any f € LP(S; X)

n-1 1/r
7o 19l =G (170, £l + 5 oo S615) s

Then for any f € LP°(S; X) and Q € 9 there exists a %-sparse collection of dyadic cubes
S € 2(Q) such that

1/
|T0f Oy S5.2.0 CrCr (X IFIx) by ap1p®) s€Q,
PeS

with Cr:=| T”Lp] —LP1° +SUPpcgy ||M#;WYP||Lpg_,Lp2,oo.

The assumption in the third bullet in Theorem 3.2.2 replaces the r-sublinearity as-
sumption in Theorem 3.1.1. We will call this assumption a localized ¢" -estimate.

Proof. Fix f € LP(S,X) and Q € 2. We will prove the theorem in two steps: we will
first construct the %-sparse family of cubes S and then show that the sparse expression
associated to S dominates Tg f pointwise.

Step 1: We will construct the %-sparse family of cubes S iteratively. Given a collec-
tion of pairwise disjoint cubes S for some k € N we will first describe how to construct
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S*+1. Afterwards we can inductively define S¥ for all k € N starting from S! = {Q} and
set S := Ugen S¥.
Fixa P € S* and for A = 1 to be chosen later define

Qp:i={se P:ITo &)y > ACT(IFIX) o ap}

QF = {seP:M*;P(f)(s) >ACT<||f||x)p0,ap}

and Qp := Qll, U Qf,. Let ¢c; = 1, depending on S, Z and a, be such that u(aP) < c¢; u(P).
By the domination property of the a-localization family we have

ITpf) Ny = I1T(f Lap)(Slly, SEP
and by the localization property
M p(F)(8) = MY 5 (f Lap)(s), seP

Thus by the weak boundedness assumptions on T and ./\/l’; p and Holder’s inequality we
havefori=1,2

P
"flaP”Lpi(S;X))Pi 3 <”f”X>p;,aP

c1
= — y(aP) < — u(P). (3.2.1)
ACIFIX) o ap APIFIX D A

u@p) <
Therefore it follows that )
c
w(Qp) < Tl (P). (3.2.2)

To construct the cubes in S¥*! we will use a local Calderén-Zygmund decomposition
(see e.g. [FN19, Lemma 4.5]) on

Qppi={se P:M7P1g,)> 1}, p>0

which will be a proper subset of P for our choice of A and p. Here M7 is the dyadic
Hardy-Littlewood maximal operator with respect to the restricted dyadic system Z(P).
The local Calder6n-Zygmund decomposition yields a pairwise disjoint collection of cubes
Sp € Z(P) and a constant ¢, = 2, depending on S and &, such that Qp¢, =Upres, P’ and

SuPY<suP' nQp) <zuP),  P'eSp. (3.2.3)

Then by (3.2.2), (3.2.3) and the disjointness of the cubes in Sp we have

2C10o

Y uPhsc Y, wP' nQp)<cop@p) <

1 u(P).
P’GSP P’GSP

Therefore, by choosing A = 4c; ¢cp, we have 2 peSp uPh < %u(P). This choice of A also
ensures that Qp,, is a proper subset of P as claimed before. We define S*1 := Up, gt Sp.
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Now take S! = {Q}, iteratively define S for all k € N as described above and set
S :=UkenSk. Then S is %-sparse family of cubes, since for any P € S we can set

Ep:=P\ |J P,
P'eSp
which are pairwise disjoint by the fact that Upicgr+1 P’ S Upegk P for all k € N and we
have
!
p(Ep) = u(P) = ) w(P') = ~u(P).
P’ESP 2
Step 2: We will now check that the sparse expression corresponding to S constructed
in Step 1 dominates T f pointwise. Since

1
lim P) < lim — =0,
kmu(Pgsk )= Jim % Q)
we know that there is a set Ny of measure zero such that for all s € Q\ Ny there are only
finitely many k € N with s € Up. gx P. Moreover by the Lebesgue differentiation theorem
we have for any P € S that 1q, (s) < M7P) (1¢,)(s) for a.e. s € P. Thus

Qp\Np<Qp1 SQp,= |J P (3.2.4)
P’ESP

for some set Np of measure zero. We define N := NyUUpes Np, which is a set of measure
Zero.

Fix s € Q\ N and take the largest n € N such that s € Upegn P, which exists since
s¢ Nyg. Fork=1,...,nlet P, € Sk be the unique cube such that s € Py and note that
by construction we have P, <... < P; = Q. Using the localized ¢” -estimate of T we split
1 To f(s) ||§, into two parts

n-1
| Tof @)y =i (I7p, £ + kZ | Toupea FOIY )
=1
=:cy([a]+[B]).

For note that s ¢ Np, and s ¢ Up/cgn+1 P' and therefore by (3.2.4) we know that
s€ P, \Qp,. So by the definition of Qlan

[A]=A" L1 ap,
For 1 < k < n—1we have by (3.2.2) and (3.2.3) that
H(P+1\ @py,, UQP)) 2 p(Prs1) = 1 Qpy,,) = H(Prs1 N Qpy)
1 1 (3.2.5)
2 p(Pr+1) = 5~ H(Pg+1) — 5 p(P+1) >0,
2¢ 2

S0 Pi1\ (Qp,,, UQp,) is non-empty. Take s’ € Priq \ (Qp,,, UQp,), then we have
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I Topen FO) |y < | TP Py () = Topapy FD) |y + | Trpe, FD|y
< Mp FV+ | To Dy + | Tpe, D]y

<2ACr (<||]‘~||X>l,,0,0¢p,C +<||f”X>po,ocPk+1)’

where we used the definition of M*; p, and Tp,, \p, in the second inequality and s'¢
Qp,,, UQp, in the third inequality. Using (a+b)" <2 '(a” + b") for any a,b > 0 this
implies that

n-1
[Bl= X 272" A L (1A py apy + (I b
k=1
n
< Y A2 CHIfIX) o ap,
k=1
Combining the estimates for and we obtain

n 1/r
ITof )|y <5ACrC, (;;1<” FIX) e ape)

1/r
=51CrCr (X (Iflx)py ap 19 -
PeS
Since s € Q\ N was arbitrary and N has measure zero, this inequality holds for a.e. s € Q.
Noting that A = 4c; ¢, and ¢; and ¢, only depend on S, @ and Z finishes the proof of the
theorem. O

As announced Theorem 3.1.1 now follows directly from Theorem 3.2.2 and a cover-
ing argument with Lemma 2.1.3.

Proof of Theorem 3.1.1. We will prove Theorem 3.1.1 in three steps: we will first show
that the assumptions of Theorem 3.1.1 imply the assumptions of Theorem 3.2.2, then
we will improve the local conclusion of Theorem 3.2.2 to a global one and finally we
will replace the averages over the dilation a P in the conclusion of Theorem 3.2.2 by the
average over larger cubes P’.

To start let Z',..., 2™ be as in Proposition 2.1.1 with parameters ¢y, Cy, § and v,
which only depend on S.

Step 1: For any Q € 2! define To by Tof(s):= T(f1aq)(s) for s€ Q. Then:

o {TQ}Q€ o1 is an a-localization family of T
e Forany Q€ 2! and f € LP1(S; X) we have
M of(9 = MY (fla)(s),  seQ.

So by the weak LP2-boundedness of M? o it follows that M*}Q f is weak LP2-
bounded uniformly in Q € Z'.
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e For any f € LP(S;X) and Qy,...,Q, € 2! with Q,, ... € Q, the functions f :=
flagnaqy,, fork=1,...,n—1and f, := f1qq, are disjointly supported. Thus by
the r-sublinearity of T

- n-l LT
||Tolf(s)||y5Cr(||Tan(S)||y+I;HTQk\Qkﬂf(S)Hy) , S€Qn

So the assumptions of Theorem 3.2.2 follow from the assumptions of Theorem 3.1.1.

Step 2: Let f € LP(S; X) be boundedly supported. First suppose that diam(S) = co
and let E be a ball containing the support of f. By Lemma 2.1.3 there is a partition
D c 2! such that E € aQ for all Q € D. Thus by Theorem 3.2.2 we can find a %-sparse
collection of cubes S < 2! (Q) for every Q € D with

1/
ITfOly SsaCree( X (Flx)y aple®) ,  s€Q,
PESQ

where we used that To f = T(f140) = Tf as supp f < aQ. Since D is a partition, S :=
Ugep Sq is also a %-sparse collection of cubes with

1/
ITfOly Ssa CrCe (X Iy aplp®) o s€S, (3.2.6)
PeS

If diam(S) < oo, then (3.2.6) follows directly from Theorem 3.2.2 since S € & in that case.
Step 3: For any P € S with center z and side length §* we can find a P’ € 2/ for some
1< j < msuch that

aP=B(z,aCy-65) P/,  diam(P)) <yaCy-6F.
Therefore there is a ¢; > 0 depending on S and «a such that
u(P") < u(B(z,yaCy-6%) < c1 u(B(z, co - 65)) < c1 w(P).

So by defining Ep: := Ep we can conclude that the collection of cubes S’ := {P': P € S}
is %-Sparse. Moreover since aP < P’ and p(P’) < ¢y u(P) < ¢y u(aP) for any P € S, we
have

CF1x) gy ap =< 1{IFIX) py pre

Combined with (3.2.6) this proves the sparse domination in the conclusion of Theorem
3.1.1. O

Remark3.2.3. The assumption a = 3(:3 /6 in Theorem 3.1.1 arises from the use of Lemma
2.1.3, which transfers the local sparse domination estimate of Theorem 3.2.2 to the global
statement of Theorem 3.1.1. To deduce weighted estimates the local sparse domination
estimate of Theorem 3.2.2 suffices by testing against boundedly supported functions.
However the operator norm of M’; o usually becomes easier to estimate for larger a, so
the lower bound on « is not restrictive.
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To conclude this section we will prove weighted bounds for the sparse operators in
Theorems 3.1.1 and 3.2.2, from which Corollary 3.1.2 follows directly. In the Euclidean
case such bounds are thoroughly studied and most of the arguments extend directly
to spaces of homogeneous type. For the convenience of the reader we will give a self-
contained proof of the strong weighted L”-boundedness of these sparse operators in
spaces of homogeneous type, following the proof of [Ler16, Lemma 4.5]. For further
results for various special cases of the sparse operators in Theorems 3.1.1 and 3.2.2 we
refer to:

¢ Weak weighted LP-boundedness (including the endpoint p = pg) can be found
[HL18, FN19].

* More precise bounds in terms of two-weight A,- Ax-characteristics can be found
ine.g. [FH18, HL18, HP13, LL16].

Proposition 3.2.4. Let (S, d, 1) be a space of homogeneous type, let S be an n-sparse col-
lection of cubes and take po,r € [1,00). For p € (pg,00), W € Ap/p, and [ € LP (S, w) we
have

1r max{%,%}
“( Zg<|f|>;’°'QlQ) ”LP(S 0> [w]An/pop P s w
Qe :

where the implicit constant depends on S, py, p, r and 1.

Proof. We first note that by Proposition 2.1.1 we may assume without loss of generality
that S ¢ 2, where 9 is an arbitrary dyadic system in (S,d,p). If p— po = r we have
max{—1 o A= ﬁ Since ¢P~P0 — {7, the case p—pg < r follows from the case p—py =
r, so without loss of generality we may also assume p = pg +r.

For a weight u and a measurable set E we define u(E) := [, udy and we denote

dyadic Hardy-Littlewood maximal operator with respect to the measure z du by

M@Mf(s) —Zug(—@flflud,u 1o(s), seSs,
€

which is bounded on L”(S, u) for all p € (1,00) by Doob’s maximal inequality (see e.g.
[HNVW16, Theorem 3.2.2]). Take f € LP(S, w), set q := (p/r) = L2 and take

ge LIS, w9 = (LP'" (S, w))".

Then we have by the disjointness of the Eg’s associated to each Q€ S

N(Q) f 9w -1\q
E < M= d
Qgsw( Q)( (Q)) O Q%‘,S o (gw Hlwdu

< ”Mj,w(gw—l (3.2.7)

) “ Z‘i (S,w)

< q
Spr 180 s na)
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and similarly, setting o := w!'~?/PY’ | we have

L g
Y o(E Q)(“(Q))” (f1yPEe < | M7 f1a Y | PIre

& ) Lrin(s0) (3.2.8)
Sp.po ”f”fp(s,w)
using o -0~ PP = w. Define the constant
w(Q)“f a@Yr 1
Cw *= SUp 1/ Upo’
Qe w(EQ)r pG(EQ) p:u(Q) po
Then by Holders inequality, (3.2.7) and (3.2.8) we have
f (Z<|f|>pleQ) gdu= ZSM(Q) (IF1P0) 20 18D
Qe
(Q)\"/po ri
SCr )r/p H |f|p0 Po
WQ;S( ( (Q)) v (3.2.9)
1/ Q)
(w1 dghro)

SP:POJ Clru ”f” ZP(S,w) ”g”Lq(S,wl—q).

1 ;}
max{ p=po’r

Apipg

So by duality it remains to show c¢;, < [w] . Fix a Q € Z and note that by

Holders’s inequality we have

M(Q)P/Po SnP/Po(f wPo!P yy—polp d’u)p/po SnP/Po w(EQ)U(EQ)p/pO_l.
Eq
and thus
w(Q) ( o(Q) \p/po- 1 plp w(Q) (o(Q)\r/po-1 pip
o) @ i) ST,

w(EQ) \a(Eq)

Therefore we can estimate

1

Cy = sUp @(@)%*1]#[( w(Q) )%7( o(Q) );]
w(Q) [ 0(Q) & -1 max{i-1 120
slw ]Ap/Po ZEB[W(EQ)(U(EQ)) ]
1 111 po L
Ssqp lw ]Ap/:)a" T PP PP :[w]r:;’ip,,,o 2

which finishes the proof. O
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3.3. GENERALIZATIONS OF /" -SPARSE DOMINATION

Our main sparse domination theorems, Theorem 3.1.1 and Theorem 3.2.2, allow for var-
ious further generalizations. One can for instance change the boundedness assump-
tions on T and M’; o treatmultilinear operators, or deduce domination by sparse forms
for operators that do not admit a pointwise sparse estimate. We end this section by
sketching some of these possible generalizations.

In [LO20, Section 3] various variations and extensions of the main result in [LO20]

are outlined. In particular, they show:

e The sparse domination for an individual function follows from assumptions on
the same function. This can be exploited to prove a sparse T'(1)-type theorem, see
[LO20, Section 4].

* One can use certain Orlicz estimates to deduce sparse domination with Orlicz av-
erages.

¢ The method of proof extends to the multilinear setting (see also [Li18]).

Our sparse domination results can also be extended in these directions, which we leave
to the interested reader. In the remainder of this section, we will explore some further
directions in which our results can be extended.

Sparse domination techniques have been successfully applied to fractional integral
operators, see e.g. [CM13a, CM13b, Crul7, IRV18]. In these works sparse domination
and sharp weighted estimates are deduced for e.g. the Riesz potentials, which for 0 <
a < n and a Schwartz function f: R"” — C are given by

(1)
Iaf(s):szls_fmdt, seR”,
A key feature of such operators is that they are not (weakly) LP-bounded, but bounded
from LP (R™) to L9(R™), where p, g € (1,00) are such that % = % + %. The sparse domina-
tion that one obtains in this case involves fractional sparse operators, in which the usual
averages (| 1), are replaced by fractional averages.

These operators fit in our framework with minimal effort. Indeed, upon inspection
of the proof of Theorem 3.2.2 it becomes clear that the only place where we use the
boundedness of T and M*}y o 18 in (3.2.1). Replacing the bounds with the off-diagonal
bounds arising from fractional integral operators, we obtain the following variant of
Theorem 3.1.1. Weighted bounds for the fractional sparse operators in Theorem 3.3.1
can be found in [FH18]

Theorem 3.3.1. Let (S,d, u) be a space of homogeneous type and let X and Y be Banach
spaces. Take po, qo, 1 € [1,00). Take a = 362/6, where cq is the quasi-metric constant and
6 is as in Proposition 2.1.1. Assume the following conditions:
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e T is a bounded linear operator from LP°(S; X) to L7°(S; Y).
J M*}a is a bounded operator from LP°(S; X) to L99°°(S).
e T isr-sublinear.

Then there is ann € (0,1) such that for any boundedly supported f € LP°(S; X) there is an
n-sparse collection of cubes S such that

I _r 1/r
ITf$ly Ss.a CrCr( Y u@P)m @ (Iflx), olo®) ses,
QeS

where Ct = || Tl zro — Lroce + IIM? o Nro—proce and C; is the r-sublinearity constant.

Proof. The proof is the same as the proof of Theorem 3.1.1, using an adapted version of
Theorem 3.2.2 with the canonical a-localization family

Tof(8)=Taq N(s),  s€Q.

The only thing that changes in the proof of Theorem 3.2.2 is the definition of Q}, and Qf,
and the computation in (3.2.2). Indeed, we define

1 _ 1
Op:i={se P:ITpf(S)ly > ACrp(@P)?~ ® (I flIx) 0 op}

1 _1
0% :={se P: MY (N9 > ACT p(@P) %55 (Ifl1x) 00}

and then by the assumptions on T and ./\/l*; pwehavefori=1,2

qo
I Lapllzro s )610 XD o ap

u@h) < - S waP) < %u(p).
Ap@PY W (1 lx) o

S A(IfIx)D

which proves (3.2.2). In Step 2 of the proof of Theorem 3.2.2 one needs to keep track of
1 1

the factor u(aP) P~ % in the estimates. O

In the celebrated paper [BFP16] by Bernic6t, Frey and Petermichl, domination by
sparse forms was introduced to treat operators falling outside the scope of Calder6n-
Zygmund theory. This method was later adopted by Lerner in [Ler19] into his framework
to prove sparse domination for rough homogeneous singular integral operators. As our
methods are based on Lerner’s sparse domination framework, our main result can also
be generalized to the sparse form domination setting.

Let (S, d, 1) be a space of homogeneous type with a dyadic system &, let X and Y be
Banach spaces, g € (1,00), p€[1,q) and a = 1. For a bounded operator

T: LP(S;X) — LP>°(S;Y)
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with an a-localization family {T}gc» we define the localized sharp grand q-maximal
truncation operator for Q € 2 by

1/q
Mo f9):= sup [ f f T £ = (T F(81F dpats)) dus) .
Qe2(Q): YQ'JQ
seQ’
Note that for g = co one formally recovers the operator ./\/l’; o
We will prove a version of Theorem 3.2.2 for operators for which the truncation op-

erators M’; Q,q € bounded uniformly in Q € & using sparse forms. Of course taking

Tof(9):=T(fla@)(s), s€Q.

for Q € 2 as the a-localization family one can easily deduce a statement like Theorem
3.1.1 in this setting, which we leave to the interested reader. Weighted bounds for the
sparse forms in the following theorem can be found in [BFP16, FN19, Niel9]

Theorem 3.3.2. Let (S,d, 1) be a space of homogeneous type with dyadic system 9 and
let X and Y be Banach spaces. Take qy € (1,00), 1 € (0,40), p1, P2 € [1,q0), set py :=
max{p, p2} and take a = 1. Suppose that

e T isabounded operator from LP1(S; X) to LPV*°(S; Y) with an a-localization family
{TQ}Qe@ .

. M?Q,qo is bounded from LP2(S; X) to LP>*°(S) uniformlyinQe 9.

e T satisfies a localized (" -estimate.

)

1_15-1
Then for any f € LP°(S;X), g € L% (S) and Q € 2 there exists a %-sparse collection

of dyadic cubes S < 9(Q) such that

1/r 1/r
( fQ I Toflly 181" du) " Ss9.ar CrCr X PXNFIx Yy ap(lE) 1)

PeS W

~I—

with Ct := || Tl p1 —p1. +SUPpe ¢ ||./\/l*;qu | Lp2 —p20 and C, the constant from the lo-
calized 0" -estimate.

Proof. We construct the sparse collection of cubes S exactly as in Step 1 of the proof of
Theorem 3.2.2, using M’; pg, InStead of /\/l*; p in the definition of Q% We will check that
sparse form corresponding to S satisfies the claimed domination property, which will
roughly follow the same lines as Step 2 of the proof of Theorem 3.2.2.

Fix f € LP°(S;X) and g € L(%_%)fl (S). Note that for a.e. s € Q there are only finitely

many k € N with s € Up.gr P. So we can use the localized ¢ -estimate of T to split

[irestisr=ciy ¥ ([

keN pe Sk

7o £y 181"
presk+1 P!
+ ) | Towe £ 1217) (3.3.1)

preSk+picpdP!

=Cry 3 (+)

keN peSk
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Fix k € N and P € S¥. As in the estimate for in Step 2 of the proof of Theorem 3.2.2,
we have

< A" Ch(If X)), apf 181" < A" CL P fx) ), op (8D

fT

w_‘

using Holder’s inequality in the second inequality. For P’ € S¥*1 such that P’ < P we
have as in (3.2.5) that

! 1 !
w(P'\ (QpuQp)) = ZHEY.
Therefore we can estimate each of the terms in the sum in as follows
f [ TP\P’f“;/ 1gl" = er ][ | Tpvpr £(8) = Tprpr f(s) ||; 1g()I" du(s') duls)
P! P! P’\(QPUQPI)

+2rf][ | Tovp F(sH]y - 117 du(s) dus)
P Jpn@pup)

2r+2y(P ) 1nf Mquof(SN)r . <|g|>r

P
r 40
+2% (P! T T fll d ,
YL o T T+ 1T 1y die gy
<4227 CL P (IS ) o ap + 11 ) ap) 18D 1
T a0

where we used Holder’s inequality and the definitions of M’; Pao and Tp\p in the second
inequality and the definitions of Qp and Qps in the third inequality. Furthermore we
note that by Holders inequality we have

- /

3 M ED s e e T ag) ™ x wen)
Pe Sk+1 % Ple $k+1 P’ P'ESk“:
P'cp P'cp P'cp

g
s(flgﬁ‘% du) - p(P)% = p(P) (g,
P 1P

740

Thus for we obtain
[Be |< 4727 CL P x)  0p 8D 1,
T d0
X PN op 8D )

\\_‘

P'eSk+l:picp *r%

Plugging this estimate and the estimate for into (3.3.1) yields
f I Tof 11y 11" du=a™3A7CLCl Y uPXIflx)py apIgh 4 e
Pes ol

Since A = 4c; ¢, and ¢; and ¢, only depend on S, a and 2, this finishes the proof of the
theorem. O
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3.4. THE A>-THEOREM FOR OPERATOR-VALUED CALDERON-ZYGMUND OP-
ERATORS

The A,-theorem, first proved by Hytdnen in [Hyt12] as discussed in the introduction,
states that a Calderén-Zygmund operator is bounded on L?(R", w) with a bound that
depends linearly on the A,-characteristic of w. This bound is sharp, and by sharp Rubio
de Francia extrapolation (see [DGPP05]) one can obtain sharp weighted bounds for all
p € (1,00). Originally the A>-conjecture was formulated for the Beurling—Ahlfors trans-
form in [AISO1] where it is shown to imply quasiregularity of certain complex functions.
Shortly afterwards it was settled for this operator in [PV02] and subsequently many other
operators were treated, which eventually led to [Hyt12].

Since its first proof by Hyt6nen, the A,-theorem has been extended in various direc-
tions. We mention two of these extensions relevant for the current discussion:

e The A;-theorem for Calderén-Zygmund operators on a geometric doubling met-
ric space was first proven by Nazarov, Reznikov and Volberg [NRV13], afterwards
it was proven on a space of homogeneous type by Anderson and Vagharshakyan
[AV14] (see also [And15]) using Lerner’s mean oscillation decomposition method.
It was further extended to the setting of ball bases by Karagulyan [Kar19].

e The A,-theorem for vector-valued Calder6n-Zygmund operators with operator-
valued kernel was proven by Hianninen and Hyténen [HH14], using a suitable
adapted version of Lerner’s median oscillation decomposition.

In this section we will prove sparse domination for vector-valued Calder6n-Zygmund
operators with operator-valued kernel on a space of homogeneous type. This yields the
Az-theorem for these Caldefon-Zygmund operators, unifying the results from [AV14]
and [HH14].

As an application of this theorem, we will prove a weighted, anisotropic, mixed norm
Mihlin multiplier theorem in the next section. Moreover, we will use it to study maximal
regularity for parabolic partial differential equations in Chapters 4 and 5. In these appli-
cations S is (a subset of) the anisotropic Euclidean space R} as introduced in Example
2.1.2.

In a different direction our A,-theorem can be applied in the study of fundamental
harmonic analysis operators associated with various discrete and continuous orthogo-
nal expansions, started by Muckenhoupt and Stein [MS65]. In the past decade there has
been a surge of results in which such operators are proven to be vector-valued Calder6n—
Zygmund operators on concrete spaces of homogeneous type. Weighted bounds are
then often concluded using [RRT86, Theorem III.1.3] or [RT88]. With our A,-theorem
these results can be made quantitative in terms of the A,-characteristic. We refer to
[BCN12, BMT07, CGR*17, NS12, NS07] and the references therein for an overview of the
recent developments in this field.
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Let (S,d, 1) be a space of homogeneous type, X and Y be Banach spaces and let
K: (Sx8\{(s,8):5€8 — L(X,Y)

be strongly measurable in the strong operator topology. We say that K is a Dini kernel if
there is a cx = 2 such that

da(e,t) 1 1
K(s,0)-K(s,t)| = , 0<d(t,t)=—d(s,0),
IK(s, 1)~ K(s )”<w(d(s,t))y(B(s,d(s,t))) <df) < —d(s
d(s,s" 1

IK(s, 1) - K(s', 0]l < w(

1
) 0 d » d = _d )t »
d(s,t))y(B(s,d(s,t))) ) (ss)<c1< 50

where o : [0, 1] — [0,00) is increasing, subadditive, w(0) = 0 and

1 dt
||K||D1n11=f0 w(t)T < 00.

We will introduce variants of this condition and discuss their properties in Section 4.3.
Take pg € [1,00) and let

T: LPO(S; X) — LPO®(S;Y)

be a bounded linear operator. We say that T has Dini kernel K if for every boundedly
supported f € LP°(S; X) and a.e. s € S\ supp f we have

Tf(s) = f K(s, 0 f (1) dt.
S

Theorem 3.4.1. Let (S, d, ) be a space of homogeneous type and let X and Y be Banach
spaces. Let py € [1,00) and suppose T is a bounded linear operator from LP°(S; X) to
LP0™®(S;Y) with Dini kernel K. Then for every boundedly supported f € L'(S; X) there
exists ann-sparse collection of cubes S such that

ITFONy Sspo Cr 2 (IfIx) olols),  sE€S.
QeS8
Moreover, forall p € (1,00) and w € A, we have

I TN e (s, w;%)—LP (S, w;Y) SS,p,po CT [W]A,,
with Cr := | Tl Lro (5;5)— P02 (s;) + 1K | Dini.-

Proof. We will check the assumptions of Theorem 3.1.1 with p; = po = r = 1. The weak
L'-boundedness of T with

I T 1 (5;5)— L1005y Ss,p CT-
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follows from the classical Calderén-Zygmund argument, see e.g. [RRT86, Theorem I1I.1.2].
The 1-sublinearity assumption on T follows from the triangle inequality, so the only
thing left to check is the weak L!-boundedness of M’; o Let

-1

a:=3c5max{0"", cx}

with ¢4 the quasi-metric constant, § as in Proposition 2.1.1 and ck the constant from
the definition of a Dini kernel. Fix s € S and a ball B = B(z, p) such that s € B. Then for
any s’,s” € Band t € S\ aB we have

1
dis', = —dz,t)-d(z,s) = il —p=2cKCap =€
Ca Cd
dis',sy<2cqp= clzle
Therefore we have for any boundedly supported f € L'(S; X)
ITAs\aB () = Tk (AsvaB Oy

fs\ B|| K@, 0-K(",0)f @)y du?)
a

IA

d(S,,S”) 1
0llx du(t
fd“’ ”>6w( ds’n )u(B(s',d(s',m) 17 Blx (s

<

3 12 ] f —_— t du(r
;) 2j£<d(s’,t)52f+lg [J(B(S’,d(s’,[))) ”f( )”X /J'( )

(o]

(2771 ][ Hllx du(e
S5 L ORI 10 duo

< ”K”DiniM("f”X)(S)y

where the last step follows from s € B(s’, 2/+1¢) for all je€Nand

[’} » [’} dt
Y wlz)= Lol f S w0 K. G
j=0 i=0 2-j-1 L j=0J2" j-1 t
So, taking the supremum over all s’,s” € B and all balls B containing s, we find that
M, f(9) Ss IKllpini M(Il flix)(s). Thus by the weak L'-boundedness of the Hardy-
Littlewood maximal operator and the density of boundedly supported functions in L' (S; X)
we get
||M T,a ||L1(S X)HLIOO(S Y) ~S ”K”Dlnl

The pointwise sparse domination now follows from Theorem 3.1.1 and the weighted
bounds from Proposition 3.2.4. O

Remark 3.4.2. In the proof of Theorem 3.4.1 it actually suffices to use the so-called L’ -
Hoérmander condition for some r > 1, which is implied by the Dini condition. See [Li18,
Section 3] for the definition of the L"-Hormander condition and a comparison between
the L"-Hormander and the Dini condition.
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Note that Theorem 3.4.1 does not assume anything about the Banach spaces X and
Y and is therefore applicable in situations where for example Y = ¢°°. However, in var-
ious applications X and Y will need to have the UMD property in order to check the
assumed weak LP?-boundedness of T for some pg € [1,00). For instance, for a large class
of operators the weak L”°-boundedness of T can be checked using theorems like the
T(1)-theorem or T'(b)-theorem. See [Fig90] and [Hyt14] for these theorems in the vector-
valued setting, which assume the UMD property for the underlying Banach space.

3.5. THE WEIGHTED ANISOTROPIC MIXED-NORM MIHLIN MULTIPLIER THE
OREM

One of the main Fourier multiplier theorems is the Mihlin multiplier theorem, which
was first proven in the operator-valued setting by Weis in [Wei01b]. The operator-valued
Mihlin multiplier theorem of Weis has since been extended in many directions. Recently
Fackler, Hytonen and Lindemulder extended the operator-valued Mihlin multiplier the-
orem to a weighted, anisotropic, mixed norm setting in [FHL20]. This is for example
useful in the study of spaces of smooth, vector-valued functions and has applications to
parabolic PDEs with inhomogeneous boundary conditions, see [Lin20]. In [FHL20] the
Mihlin multiplier theorem is shown using the following two approaches:

* Using a weighted Littlewood-Paley decomposition, they show a weighted, aniso-
tropic, mixed-norm Mihlin multiplier theorem for rectangular A,-weights, i.e.
Ap-weights for which the defining supremum is taken over rectangles with sides
parallel to the coordinate axes instead of balls.

¢ Using Calder6n-Zygmund theory, they show a weighted, isotropic, non-mixed-
norm Mihlin multiplier theorem for cubicular Aj,-weights, i.e. Ap,-weights for
which the defining supremum is taken over cubes with sides parallel to the co-
ordinate axes instead of balls, which is equivalent to the definition using balls in
Section 2.3

Both approaches have their pros and cons. The result using a Littlewood-Paley de-
composition only requires estimates of 3° m for 6 € {0,1}, whereas the approach using
Calder6n-Zygmund theory also requires estimates of higher-order derivatives. On the
other hand, the class of rectangular Aj,-weights is a proper subclass of the class of cu-
bicular Aj,-weights.

In applications it is be desirable to have the Mihlin multiplier theorem for cubic-
ular Ap-weights in the anisotropic, mixed-norm setting as well. This would remove
the need to distinguish between the isotropic and anisotropic setting in e.g. [Lin20,
(6) on p.64]. In order to obtain the Mihlin multiplier theorem for cubicular A,-weights
in the anisotropic, mixed-norm setting, one needs Calder6n-Zygmund theory in the
anisotropic Euclidean spaces of Example 2.1.2. Since these are a special cases of spaces
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of homogeneous type, we can use Theorem 3.4.1 to supplement the results of [FHL20],
which will be the main result of this section.

Let us introduce the anisotropic, mixed-norm setting. For a € (0,oo)d we let [R{Z be
the anisotropic Euclidean space as introduced in Example 2.1.2. We write |a|; := Z;l:l aj
decomposition of R%:

Rf} =RA x ... xR™,
Forate [Rg we write ¢ = (f1,..., ;) with £ € R% for j =1,...,n and similarly we write
. d;
a=(a,...,a,). For p € [1,00)", a vector of weights w € H;?ZIA,,(IR{“’].) and a Banach
space X we define the weighted mixed-norm Bochner space LP ([Rj, w; X) as the space

of all strongly measurable f : [Rf} — X such that

Pn-1 1

A (fm“(fw LAY wadty) 7wy diy )
n

is finite.

Theorem 3.5.1. Let X and Y be UMD Banach spaces, set N = |a|; + |als + 1 and let m €
LR L(X, ). Suppose that for all 0 € N? with a-6 < N the distributional derivative
0% m coincides with a continuous function on R\ {0} and we have the R-bound

{16149 -0 m(&) : ¢ e RI\ (03} | & < Cim.

for some C,, > 0. Then for every compactly supported f € L'(R?; X) there exists an n-
sparse collection of anisotropic cubes S such that

I T fSlly Sx,v.a Cn X (Iflx)olols),  seRE
QeS

Moreover, for all p € (1,00)" there is a function ¢ : R — R,, depending on X,Y,d,a,p
L . 4
and nondecreasing in every variable, such that for all w € H;‘:l Ap; ([Ra’j) we have

” Tm”LP(R?,W;X)HU’(R?,W;Y) = Cm'(P([wl]Am (Rill)’---»[wn]Apn(Rdn )

an

Proof. We will check the conditions of Theorem 3.4.1. By [Hyt07, Theorem 3], which
trivially extends to the case X # Y, we know that T}, is bounded from L2R% X) to
L2(R%;Y) with

” Tm||L2(Rd;X)—>L2(Rd;Y) SX,Y,;[,a Cm-
By [Linl4a, Lemma 4.4.6 and 4.4.7] we know that 7 coincides with a continuous func-
tion on RY\ {0}, which is bounded away from 0 and moreover,

K(t,s):=m(t—ys), t#£s
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is a Dini kernel on the space of homogeneous type R4 with
w(T)=Cq-Cp 15, relo,1]

with € = min; <<, ax. Nowlet f € L (R%; X) with compact support. Fixa c € R? \ supp f
and take r > 0 such that B(c,2r) nsupp f = &. Take a sequence (fi)}2, in S®R%; X) such
that supp fx N B(c,r) = @ and fi — f in L>(R%; X). Then T fi — T f in L*(R%; X) and, by
passing to a subsequence if necessary, we have fi.(t) — f(¢) and T fi.(¢) — T f(¢) for a.e.
t e R4, Fix k € N, then we have for all ¢ € C°(R% \ supp f)

(T frr @) = fR ) m(s) fi(s)P(s) ds
=f rﬁ(s)f fr(t—s)p(r) dt ds
R4 R4

=/ f K(t,9) fr(s) dse(r) dt
R4 Jrd

from which we obtain for a.e. t € B(c, )
Tmf(t)= kh_{& T fr () = ,Pl&fw K(t,3) fr(s) ds = fmd K(t,s)f(s)ds.

Covering R \ supp f by countably many such balls, we conclude that T}, has kernel K.
Therefore the sparse domination, as well as the weighted estimate in case n = 1, follows
from Theorem 3.4.1.

To conclude the proof we will show the case n = 2, the general case follows by iterat-
ing the argument. Take p € (1,00)%2 and w € Ap, (Ri‘l) x Ap, ([R{izz). For vy € Ap, ([R%ill) note
that

v(t) :=v1(f) - wa(tr), reRA x R%

belongs to Ap, ([RZ), so by the case n =1 we have
l Tmf"[}?z (R4, 1;Y) SX,Y,d,a,pg,v Cm- ”f"Lpz (R4, 1;X)

for all f € LP2(R?, v; X). Since RfZ is a space of homogeneous type, we can use Rubio de
Francia extrapolation (Theorem 2.3.3) on the pairs of functions

(8 €{ (1T s @t sy 1 oz et i) £ € S®E X0}

to deduce the existence of a function ¢ : R2 — R,, depending on X, Y, d, a, p and non-
decreasing in both variables, such that

T, d oy <Cm+ (w 4q ., w ;{) d -
TSl @t iy = Cm - | I]A,,I(Rall) [ 2]A,;Z(nae,,g) 1702 @ i

for all f € S(R?; X), which implies the result by density. O

Remark 3.5.2.
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(i) The nondecreasing function in Theorem 3.5.1 in the case n =1 s

1
PO =Cxygap 7T, rell00),
which is sharp. For n = 2 the weight dependence our proof yields is more compli-
cated and not sharp for all choices of p € (1,00)".

(i) In the proof of Theorem 3.5.1 we only use the R-boundedness of the set
{16167 -0°m© : ¢ e R\ 03}

for 0 € {0,1}4. For all other 6 € N with a-0 < N it suffices to know uniform bound-
edness of this set.

(iii) One could reduce the number of derivatives necessary in Theorem 3.5.1 by argu-
ing asin [Hyt04] instead of using [Lin14a, Lemma4.4.6 and 4.4.7]. See also [FHL20,
Section 6].

(iv) Using the sparse domination in Theorem 3.5.1, one can also deduce two-weight
estimates for T}, as in [FHL20, Section 6].

3.6. THE RADEMACHER MAXIMAL FUNCTION

In this section we will apply Theorem 3.2.2 to the Rademacher maximal function. The
proofs will illustrate nicely how the geometry of the Banach space plays a role in de-
ducing the localized ¢"-estimate for this operator. In particular, we will use the type
of a Banach space X to deduce the localized ¢ -estimate for the Rademacher maximal
function.

The Rademacher maximal function was introduced by Hytonen, McIntosh and Por-
tal in [HMPO08] as a vector-valued generalization of Doob’s maximal function that takes
into account the different “directions” in a Banach space. They used the Rademacher
maximal function to prove a Carleson’s embedding theorem for vector-valued functions
in connection to Kato’s square root problem in Banach spaces. The Carleson’s embed-
ding theorem for vector-valued functions has since found many other applications, like
the local vector-valued T'(b) theorem (see [HV15]) and vector-valued multilinear multi-
plier theorems (see [DO18]).

Let (S, d, ) be a space of homogeneous type with a dyadic system Z and let X be a
Banach space. For f € Llloc(S; X) we define the Rademacher maximal function by

[
M2 f(s):=

sup{”Q OJZ QSQM)(f)l,Q

: (A/Q)Qe_@ finitely non-zero with Z |)LQ|2 < 1},

2(0):-
LX) 0o
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where (€q) e is a Rademacher sequence on Q. One can interpret this maximal func-
tion as Doob’s maximal function

= sup KMol ses,
QeZ:s€Q

with the uniform bound over the (f)1 o’s replaced by the R-bound. Here the R-bound
of aset U < X is the R-bound of the family of operators T : C — X given by A — Ax for
xeU.

We say that the Banach space X has the RMF property if M}i 4 is abounded operator
on L”([0,1); X) for some p € (1,00), where Z is the standard dyadic system in [0,1). It
was shown by Hytonen, McIntosh and Portal [HMP08, Proposition 7.1] that this implies
boundedness for all p € (1,00) and by Kemppainen [Kem11, Theorem 5.1] that this im-
plies boundedness of Mg 4 0n LP(S; X) for any space of homogeneous type (S, d, 1) with
a dyadic system 2.

The relation of RMF property to other Banach space properties is not yet fully un-
derstood. However, we do have some necessary and sufficient conditions:

e If X has type 2, the R-bound of a set U < X is equivalent to the uniform bound
of U. Therefore if X has type 2 we have for any f € Llloc([O, 1); X) that Ml?;df <
MQ(IIfIIX), so X has the RMF property.

e Any UMD Banach function space has the RMF property, which follows from the
boundedness of the lattice Hardy-Littlewood maximal operator on UMD Banach
function spaces. We will introduce the lattice Hardy-Littlewood maximal operator
and discuss this connection in Section 6.4

¢ Non-commutative LP-spaces for p € (1,00) have the RMF property, see [HMPO08,
Corollary 7.6].

e The RMF property implies nontrivial type, see [Kem11, Proposition 4.2]. Therefore
e.g. /! does not have the RMF property.

It is an open problem whether nontrivial type or even the UMD property implies the
RMF property in a general Banach space. We refer to [HNVW16, Section 3.6.b] for a
further introduction to the RMF property.

Weighted bounds for the Rademacher maximal function in the Euclidean setting
were studied by Kemppainen [Kem13, Theorem 1]. The proof was based on a good-A
inequality, which does not give sharp quantitative estimates in terms of the weight char-
acteristic. Using Theorem 3.2.2 we can prove sharp quantitative weighted estimates for
the Rademacher maximal function through sparse domination. We will not consider the
situation in which X has type 2, as this case follows directly from Mf?ad fsM A flx)
and the well-known sparse domination for the Hardy-Littlewood maximal operator.

We will need a version of the Rademacher maximal function for finite collections of

cubes. For a subcollection of cubes D & we define MRDa 4 analogous to Ml-?a d
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Theorem 3.6.1. Let (S, d, 1) be a space of homogeneous type with a dyadic system & and
let X be a Banach space with the RMF property. Assume that X has typer forr € [1,2). For
any finite collection of cubes D € 2 and f € L'(S; X) there exists an %-sparse collection of
cubes S € 2 such that

DI

D (d-b =
Mo f8) Sx sz (X (IFIx)g? 1o®)" *,  ses
QeS

Moreover, forall p € (1,00) and w € A, we have

11
ax{p—1'7_

DI

mq
}
I MR@ad”LF’(S,w;X)HLP(S,w;X) Sx,89.pr W, :

Proof. Fix a finite collection of cubes D € Z. By [Kem11, Proposition 6.1] Mlg 4 1s weak
L'-bounded. We will view Mfg 4 s a bounded operator

Mg : L' (8; X) — LV(8; L(£*(D), L* (©; X))

given by
Moy fs)=(AQ)oep— ¥ foho(Prg)  seS,
QeD:seqQ
where () gep is @ Rademacher sequence on Q.
For Q € Z set
DQ):={PeD:PcQ}

and define Tp := M2'Q . Then {To}oeq is a 1-localization family for M2 .. Furthermore
Q Rad QIQey y Rad

we have for f € L!(S; X) and s € Q € Z that

#
Mo Qf(S) = sup esssup|| To\o f(s) = Tovg' F ") o2 (91200
Rad? QeD(Q): §',5"eQ!

seQ’

=0

MD(Q)\D(Q/)

rad f is constant on Q’.

where the last step follows from the fact that T\ g f =

So M? 1, o 1s trivially bounded from LY(S; X) to LY°(S).
Rad’

Set q := (% - %)’1. To check the localized ¢7-estimate for Mde take Q,...,Q, € ¥

with Q, €... € Q1. Let (AQ)gep € £2(D) be of norm one and let (eQ)gep and (e}c)zzl be

Rademacher sequences on Q and Q' respectively. Define for k=1,...,n—1

1/2 1/2
M= Y MeP) T A= X 1AgP)
QeDQi+1\D(Qx) QeD(Qn)

Then for f € LY(S; X), setting fo := £9Aq{f)1,0, we have

| > eoratdme

2 .
QeD(Q) Fex
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n-1
en Y, fo+ ) € )y

QeD(Qn) k=1 QeD(Qr+1\D(Qx)

Y Anfa

QeD(Qy)

< (” Y. oM AN
QeDQw

Q L2(QxQ';X)
R

+ Y A
2@ Z_: k
k=1 QED(Qk+1)\D(Qk)

q n-1 _
RS R ST
L2(9;X) —

k=1"QeD(Qr+1\D(Qy)

AT r 1/r
S )
~X,r n LZ(Q;X)

Ad fa

q 1/q
L2 (Q;X))

)

using randomization (see [HNVW17, Proposition 6.1.11]) in the first step, type r of X in
the second step, and Holder’s inequality and }_}_, /I?C = 1 in the last step. Noting that for
k=1,...,n-1

N Aol =1, Y el =1,
QeD(Qr+1)\D(Qy) QeD(Qx)
this implies the localized ¢7-estimate for Mlg a
Having checked all assumptions of Theorem 3.2.2 for MLDat it follows that for any
QeDthereisa %-sparse collection of cubes Sg € Z(Q) such that

1/
1ol x5 (X 01010, 0p170) L oseQ
Pe

Let D’ be the maximal cubes (with respect to set inclusion) of D, which are pairwise
disjoint. Then & :=Ugepr Sg is a %—sparse collection of cubes that satisfies the claimed
sparse domination as Tg(s) = Mfg 4f(s) for any s € Q € D" and Mlg qf s zero outside
Ugep Q. The weighted bounds follow from Proposition 3.2.4 and the monotone con-
vergence theorem. O

We finish this section by showing that the weighted estimate in Theorem 3.6.1, and
consequently also the sparse domination in Theorem 3.6.1, is sharp. We take X = ¢ for
r € (1,2], a prototypical Banach space with type r.

Proposition 3.6.2. Let p € (1,00) and r € (1,2]. Suppose that for some 3 = 0 we have

I MR@ad“LP([O,I);!’)—»LP([0,1);”) Spr [w]ip'

forallwe Ay,. Then
1 1 1
p= max{—, - - —},
p-1r 2
Proof. Since R-bounds are stronger than uniform bounds, we note that for any strongly
measurable f: [0,1) — ¢" we have

e <MZ,f(s),  selo).

Thus by the corresponding result for Doob’s maximal operator (see [HNVW16, Proposi-
tion 3.2.4]), we have for p € (1,00)

7 p
” Mfgd”LP([0,1);!’)—~L7’([0,1);lr) = ﬁ’ 3.6.1)
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which implies

| Miaall oo, 10 g0,
ay = sup{azO:V£>O,limsup Rad 1LP(0,1; ")~ LP(10, ;") =oo} =1
p—1 (p—l)_“"'g

Now let (e;)$>, be the canonical basis of £ and define

F):=) 1p-nyny(s)e,,  s€[0,1).
n=1

For p € (1,00) we have
I fllzrqo,1y;emy = 1.
To compute || M, adflle([o 1;er) set Ij := [0,27/*1], take s € and let m € N be such that

27M < §<27M*1 Then we have, using Ay = m~12 for j =1,..., m and Proposition 2.5.1,
that

1/2
LZ(Q;W) m1/2 “(Z<f“1)

[7

/ 1 m
Mf?zadf(S) z2—0 ” > e
ml2 1l

m

1
> .
S P
j=1

> mlT12 > Jog(1/5)1/T12,

~

[r

Therefore we obtain

! _ 1/p
| M5 Lo o.ers 2 (j(; log(1/5)P/"=P2 ds)
(fooxp/r—p/ze_x dx)l/p

1

) 1/p
Z np/rfp/Zefn)
n=2

%

Ur-112.
p

1\

where we drop all terms except n = [p] in the last step. Thus, we find

| Miaal ; ; 11
_ . . Rad Il P ((0,1);¢")—LP((0,1);¢7) _ } _
YM= sup{y =20:Ve> O’hELSogp Pt =oo; =

The proposition now follows from [LPR15, Theorem 1.2]. O

3.7. LITTLEWOOD—-PALEY OPERATORS

As a third application of our main sparse domination result we prove sparse domi-
nation and consequently sharp weighted norm estimates for Littlewood-Paley opera-
tors. Sharp weighted norm inequalities for Littlewood-Paley operators were obtained



3.7. LITTLEWOOD-PALEY OPERATORS 71

by Lerner [Ler11], who used his local mean oscillation decomposition to deduce sparse
domination for various Littlewood-Paley operators S. This implies
max %,1
IS1Lr @, w)—1r @) S (W, bkl
forall p € (1,00) and w € A, and the dependence on the weight characteristic is sharp
(see [Ler08]). The goal of this section is to show that these sharp weighted norm inequal-

ities are an almost direct corollary from Theorem 3.2.2 with r = 2 and the well-known
weak L!-boundedness of Littlewood—Paley operators.

In [Wil07] (see also [Wil08, Chapter 6]) Wilson introduced the so-called intrinsic
square function, which pointwise dominates the Lusin area integral, the Littlewood-
Paley g-function and their more modern, real-variable variants. Therefore it suffices to
show sparse domination for this intrinsic square function, which we will now introduce.
For a € (0,1] let Cy be the family of functions ¢ : R” — R supported in {x € R" : |x| < 1},
satisfying fp. ¢(x) dx =0 and

lpx) - <lx-x"1%  xx eR"
Let R?™! := R" x R, and define the cone of aperture 8 > 0 by
Tp(0):={y,NeRM™ |x—yl<pt}, xeR"
For f e L (R") set

Aa(N O =suplfxp,MI,  (yDeRI,
¢eCq

where @ (x) := t "¢@(x/t). We define the intrinsic square function of order a € (0, 1] and
aperture > 0 by

xeR".

dy dt)1/2

tn+l

Gap(N )= fr AN

px

We will prove sparse domination for a local variant of the intrinsic square function,
from which weighted bounds for G, g will follow by an approximation argument.

Theorem 3.7.1. Leta € (0,1] and > 0. Forall p € (1,00) and w € Ay, we have

max{ 5Ly,
|Ga,pllLr @7, w)—LP ®R?,w) Sa,p,pn [W]A,,

Proof. We will first check the assumptions of Theorem 3.2.2 for G4,5. The weak L'-
bound follows from [Wil07, Section 1]. We will interpret G, pasa linear bounded op-
erator

dy dt))

Gap: L' ®") — LM(R L2 (R,
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given by
Ga,p()(X):= (6, ) = 1ry0 (1, D Aa(H) (3, 1), xeR".

Fix a cube Q < R”" and let & be a dyadic system in R” containing Q. For P € & we define
the restricted cone of aperture 8 > 0 by

Fg(x) ={yne R x—yl<ft, t< diam(P)}, xeR"

and let Gf; 5 be defined analogously to G, g with I'g replaced by Fg . Then {Tp} pc» with

Tp := Gi 8 is a (3 + 2)-localization family for G, g. Indeed the localization property
follows from

Ad(HNI O =Ao(f1R), 1), (3,0 R

for any E < R” containing B(y, t) and
By n:(0e rf;(x) for some x€ P} < (1+2(1+ B)P.

The domination property follows from Fg(x) € T'g(x) for any x € R”. The localized 02
estimate in Theorem 3.2.2 for this localization family follows from the pairwise disjoint-
ness of

Fg'() and Tr@\TH () k=1..,n-1

for Py,...,P, € I with P, <--- < Py.
Now let x € R" and P, P’ € & such that x € P’ < P. Then we have for any x’ € P’ that

THEN\T] () €Ty p(x)
and thus
Tp\p f(x) < G pr1 () (X)

So /\/l*éaﬁ,Pf <2Gg,1+f and since Gq 1.4 is weak L!-bounded (see [Wil07, Section 1),
it follows that M’éa 5P is weak L!'-bounded uniformly in P € .

We can conclude by Theorem 3.2.2 that for any cube Q <R and f € LY(S; X) there is
a %-sparse family of cubes S such that

1/2
G 5N Sapn [ XU p1e0) ,  xeQ.
PeS

Combined with Proposition 3.2.4 this yields the claimed weighted bounds for GS' 8 for
any cube Q < R". Taking an increasing sequence of cubes (Qy)xen With Ugen Qx = R”
and using the monotone convergence theorem yields the same weighted bounds for
Gg,p, finishing the proof. O

Remark 3.7.2.
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¢ Using similar arguments as in the proof of Theorem 3.7.1 one can also treat the
dyadic square function with Theorem 3.2.2. This yields sharp weighted norm in-
equalities for the dyadic square function as obtained by Cruz-Uribe, Martell and
Perez [CMP12].

¢ Recently Bui and Duong [BD20] extended the result of Lerner [Lerll] to square
functions of a general operator L which has a Gaussian heat kernel bound and a
bounded holomorphic functional calculus on L?(S), where (S,d, ) is a space of
homogeneous type. The arguments they present can also be used to estimate our
sharp grand maximal truncation operator.

3.8. FURTHER APPLICATIONS

In this final section provide some further applications of our main theorems. We start
with a sparse domination result for the Haar decomposition of L? (R; X) for a UMD Ba-
nach space X. We will use this result in Chapter 6 to connect the UMD constant to a
sparsely dominated operator.

Let X be a Banach space, let & be the standard dyadic system in R and for I €
define the Haar function h; by

1
hp:=11121_-1g,),
where I and I_ are the left and right half of I. For f € Llloc([R; X) define the Haar projec-
tion Dy by
D;f(t):= hl(t)ff(s)hl(s) ds, teR. (3.8.1)
R
Theorem 3.8.1. Let X be a UMD Banach space, p € (1,00) and let 9 be the standard

dyadic system in R. Takeej € {—1,1} for all I € 9. Then for any compactly supported
f € LY(R; X) there exists a ﬁ -sparse collection of intervals S such that

”129 erDi (0] < Bpx (Qgg<||f||x>1,Q 1), ek

Moreover, for any w € A, and f € LP (R, w; X) we have

{7

max
“ > €1D1f“Lp(R,w;X) <p Bpx (wl,, 1 fllzr @ w;x)

1537

Proof. Define for f € L!(R; X) the operator

Tf(t):=) eDif(t), teR.
Ie9

Then T can be interpreted as a martingale transform and is therefore a bounded opera-
tor from LY (R; X) to LY (R; X) with

ITN 1 @y x)— 1o @sx) S Bp,x



74 3. ¢"-SPARSE DOMINATION IN A SPACE OF HOMOGENEOUS TYPE

by [HNVW16, Proposition 3.5.16 and Theorem 4.2.25]. For Q € & define To f = T(f 160).
Then {Tq} ge » is a 6-localization family of T and moreover for Q' €  we have that

Towf= Y eiDi(flegee) = Y. erDi(flegisq)
1e9 1€2:Q'CI

is constant on Q’, so M?Q =0.

Now fix a compactly supported f € L' (R; X), set E = supp f and let D € 2 be a par-
tition of R as in Lemma 2.1.3. Then by Theorem 3.2.2 with p; = p» = r = 1 we obtain a
%—sparse collection of dyadic intervals S < Z(Q) for every Q € D such that

”IGZ@“D’f(” | <Bpx (}%(nqu)mP L), reQ.

The claimed sparse domination now follows by taking

S:= [J 6P:Pe Sy}
QeD

The second claim follows from Proposition 3.2.4 O

To conclude this chapter we comment on some further potential applications of our
main theorems. We leave the details to the interested reader.

¢ Sparse domination and weighted bounds for variational truncations of Calderén—
Zygmund operators were studied in [HLP13, MTX15, MTX17, Zor20]. The argu-
ments presented in these references also imply the boundedness of our sharp
grand maximal truncation operator and thus by Theorem 3.1.1 yield sparse dom-
ination of the variational truncations of Calder6n-Zygmund operators.

e In [LOR17] Lerner, Ombrosi and Rivera-Rios show sparse domination for com-
mutators of a BMO function b with a Calderén-Zygmund operator, using sparse
operators adapted to the function b. By a slight adaptation of the arguments pre-
sented in the proof of Theorem 3.2.2, one can prove the main result of [LOR17] in
our framework and extend it to the vector-valued setting and to spaces of homo-
geneous type.

¢ Hormander-Mihlin type conditions as in [GR85, Theorem IV.3.9] imply the weak
LP1-boundedness of our maximal truncation operator for p; > n/a and thus sparse
domination for the associated Fourier multiplier operator by Theorem 3.1.1. Vector-
valued extensions under Fourier type assumptions can be found in [GW03, Hyt04]
and Theorem 3.1.1 may also be used to prove weighted results in that setting.

e Fackler, Hytonen and Lindemulder [FHL20] proved weighted vector-valued Little-
wood-Paley theory on a UMD Banach space in order to prove their weighted,
anisotropic, mixed-norm Mihlin multiplier theorems. Using Theorem 3.1.1 and
Proposition 3.2.4 on the Littlewood-Paley square function with smooth cut-offs,



3.8. FURTHER APPLICATIONS 75

one can prove sparse domination and weighted estimates in the smooth cut-off
case. This can then be transferred to sharp cut-offs by standard arguments, recov-
ering [FHL20, Theorem 3.4].

e Theorem 3.3.1 can be used to show sparse domination and sharp weighted esti-
mates for fractional integral operators as in [CM13a, CM13b, Crul?7, IRV18]. The
boundedness of the sharp grand maximal truncation operator associated to these
operators can be shown using a similar argument as we used in the proof of The-
orem 3.4.1.

¢ In [BFP16] Bernicot, Frey and Petermichl showed that the sparse domination prin-
ciple is also applicable to non-integral singular operators falling outside the scope
of Calderén—-Zygmund operators. Sparse domination for square functions related
to these operators was studied in [BBR20]. The methods developed in these pa-
pers actually show the boundedness of the localized sharp grand g-maximal trun-
cation operator used in Theorem 3.3.2, so these results also fit in our framework.






4

SINGULAR STOCHASTIC INTEGRAL OPERATORS

This chapter is based on the first half of the paper

[6] E. Lorist and M.C. Veraar. Singular stochastic integral operators. To appear in
Anal. PDE, 2020.

It is complemented by a discussion on y-Fourier multiplier operators from an unpub-
lished manuscript in Section 4.5 and extrapolation theory for stochastic-deterministic
singular integral operators from

[1] E.Lorist. Space-time weighted maximal regularity for parabolic (S)PDE. In prepa-
ration.

in Section 4.6.

Abstract. In this chapter we develop extrapolation theory for singular stochastic inte-
grals with operator-valued kernel. In particular, we prove LP -extrapolation results under
a Hormander condition on the kernel. Sparse domination and sharp weighted bounds
are obtained under a Dini condition on the kernel, leading to a stochastic version of the
solution to the A, -conjecture. We also discuss the closely related y-Fourier multiplier op-
erators and develop an extrapolation theory for singular stochastic-deterministic integral
operators.

7
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4.1. INTRODUCTION

In the study of stochastic partial differential equations (SPDEs), one often needs sharp
regularity results for the linear equations. Together with fixed point arguments, this
can be used to obtain existence, uniqueness and regularity for the solution to nonlin-
ear SPDEs. In the last decades so-called maximal regularity results for SPDEs have been
obtained in many papers. We refer to [DZ14, Section 6.3] for an overview on the sub-
ject in the Hilbert space setting. In the L9-setting sharp regularity results have been
obtained in [Kry99] by real analysis and PDE methods, and in [NVW12b] by functional
calculus techniques.

In the above approaches one needs to prove sharp regularity estimates for singular
stochastic integral operators of the form

T
Sk G(s) :zf K(s, )G(t) dWg(1), se0,1), (4.1.1)
0

where X and Y are Banach spaces, G is an adapted process taking values in X, Wy is a
cylindrical Brownian motion and K is a given operator-valued kernel K: (0, T) x (0, T) —
L(X,Y) for some T € (0,00]. An important example of a kernel K is

K(s,t)=e S D41,,  s51te(0,1) (4.1.2)

where — A is the generator of an analytic semigroup on X and Y is either the real inter-
polation space (X, D(A))1/2,2, the complex interpolation space [X, D(A)]1/2 or the frac-
tional domain space D((A + A'/?)), where A € p(—A). This kernel has a singularity of the
form | K (s, 0)|| < C(s—1)~Y2 for |s—t| < 1. The LP-boundedness of singular stochastic in-
tegrals with this kernel leads to stochastic maximal LP -regularity, which we will discuss
in the next chapter..

For deterministic PDEs one analogously obtains deterministic maximal LP -regularity
from the L”-boundedness of

T
TKf(s):zf K(s,t) f(2) dt, se(0,7),
0
where K is as in (4.1.2) with Y = D(A). This kernel satisfies
IKGs,Dll<C(s—07Y, |t—s|<1.

Operators Tx with such kernels have been studied thoroughly in the field of harmonic
analysis. For example, using operator-valued Calderén-Zygmund theory as in Section
3.4, it was shown in [Dor00] that one can deduce that the L”-boundedness of Tk for all
p € (1,00) from maximal LP?-regularity for some py € [1,00]. Moreover, with the Mihlin
multiplier theorem as in Section 3.5, one can obtain the LP-boundedness of Tk for p €
(1,00) from the R-boundedness of the family of bounded operators

{AGit+ A teR} C L(X).
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The necessity of this R-boundedness condition was shown in [CPO1].

Unlike in the deterministic setting, there is no general theory for the LP-boundedness
of singular stochastic integral operators. The aim of this chapter is to provide a version
of this theory, which we will use to obtain new regularity results for abstract classes of
SPDEs and more concrete examples, such as the heat equation, in the next chapter.

4.1.1. SINGULAR STOCHASTIC INTEGRALS

The behavior of the stochastic singular integral operators in (4.1.1) is quite different
from the deterministic setting. Due to the Itd L?-isometry the integrals convergence
absolutely and thus no principal values are needed. As a consequence, in contrast with
the deterministic setting, the scalar-valued setting can easily be characterized, see Sub-
section 4.2.3. In the operator-valued setting cancellation can for example occur in the
following form:

T 1/2
(f ||K(s,t)x||§,dt) <Clxllx, s€©,T), xeX. (4.1.3)
0

If the kernel is of this form, then using a simple Fubini argument one can check that Sx
is I2-bounded (see Propositions 4.2.3 and 4.2.10(i)). In particular, this method was used
for the kernel in (4.1.2) in the classical monograph [DZ14, Section 6.3]. A sophisticated
extension of this type of argument was used in [Brz95], [BH09] and [DL98] to cover LP-
boundedness in the scale of real interpolation spaces (X, D(A))g,p-

The complex interpolation scale is more complicated. In particular, for X = LP (R%)
(4.1.3) is often not true. For example it fails for A = —A. To obtain L”-estimates in this
case, [Kry94b, Kry99, Kry08] use sharp estimates for stochastic integrals and sophisti-
cated real analysis arguments. Moreover, using PDE arguments, the operator A can be
replaced by a second order elliptic operator with coefficients depending on (¢, w, x) €
(0, T) x Q x R, where some regularity in x is assumed, but only progressive measura-
bility is assumed in (¢,w). By an elaborate trick in [Kry00] the estimates were extended
to an LP(L9)-setting with p = g = 2. There are many variations of the above methods in
the literature, in which different operators than A are considered and equations on dif-
ferent domains D < R are treated (see e.g. [CKLL18, CKL19, Du20, Kim05, KK18, Kry09,
Lin14b] and references therein).

On the scale of tent spaces stochastic maximal regularity for elliptic operators in
divergence form is shown in [ANP14]. This is done through extrapolation using off-
diagonal estimates, which are substitutes for the classical pointwise kernel estimates of
Calder6n--Zygmund theory. See also [AKMP12] for the more general harmonic analysis
framework developed to analyse this scale.

In [NVW12b, NVW15c] the LP-boundedness of stochastic singular integrals with ker-
nel (4.1.2) was obtained using the boundedness of the H*°-functional calculus together
with the sharp two-sided estimates for stochastic integrals in UMD Banach spaces de-
veloped in [NVWO07]. One of the advantages of this approach is that it can be used for an
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abstract operator A as long as it has an H*-calculus. Secondly, the stochastic integral
operator is automatically L”-bounded for any p € (2,00). Some geometric restrictions
on X are required, but these are fulfilled for L9, W*49, etc. as long as g € [2,00) (see
Section 5.5). In particular, mixed L”(L%)-regularity can be obtained for all g € [2,00)
and p € (2,00), where p = g = 2 is allowed as well. The results of [NVW12b, NVW15c]
have been applied to semilinear equations in [NVW12a], to quasilinear equations in
[Hor19, AV20a, AV20b] and to fully nonlinear equations in [Agr18].

Recently, in [PV19] the framework of [NVW12b, NVW15c] has been extended to cover
the case where A depends on time and Q, as long as D(A(t,w)) is constant. The method
isbased on areduction to the time and Q-independent setting and gives a new approach
to [Kry99], which additionally includes new optimal space-time regularity estimates and
is applicable to a large class of SPDEs.

4.1.2. EXTRAPOLATION FOR SINGULAR STOCHASTIC INTEGRAL OPERATORS

A large part of the theory of maximal L”-regularity for deterministic PDEs was devel-
oped after the Calder6n-Zygmund theory for operator-valued kernels was founded. In
the stochastic case such a Calderén-Zygmund theory is not available yet, and our goal
motivation is to build such a theory and discover its potential for stochastic maximal LP-
regularity (see Chapter 5). Despite the rather different behaviour of stochastic singular
integral operators compared to their deterministic counterparts, our first main theorem
on the boundedness of singular stochastic integral operators is a stochastic version of
the classical extrapolation result for Calderén-Zygmund operators, see [Hor60] for the
scalar case and e.g. [BCP62, GR85, HNVW2x, RRT86] for the operator-valued case.

Theorem 4.1.1 (L”-boundedness of stochastic Calderén-Zygmund operators). Let X
and Y be Banach spaces with type?2 and assume Y has the UMD property. Take T € (0,00],
letK:(0,T)x(0,T) — L(X,Y) be strongly measurable and assume that for every interval
1< (0, T) we have the following Hormander condition

! 2 172 /-1
(f IK(s,0-K(s, 02 de) “=<C sselr 4.1.4)
0,1\1
ANV 172 -1
([ ik n-KsORds) <c ti el (4.1.5)
0,7\

for some constant C > 0 independent of 1. Fix p € [2,00) and suppose that the mapping Sk
as defined in (4.1.1) is bounded from L’;; (Qx(0,T7);y(H, X)) into LP(Q x (0, T);Y). Then
the mapping {

Sk: L;(Q x (0, T);y(H, X)) — L1(Qx (0, T);Y)

is bounded for all q € (2,00).

In Theorems 4.4.2 and 4.4.4 we prove a general extrapolation result for so-called
singular y-integral operators. In this setting we also obtain the end point estimates
L? — [2* and L® — BMO. Singular y-integral operators are connected to singular
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stochastic integral operators by the It6 isomorphism, see Proposition 4.2.3 and Proposi-
tion 4.2.5. Theorem 4.1.1 follows by combining the aforementioned results.

The conditions (4.1.4) and (4.1.5) are L2-variants of what is usually called the Hor-
mander condition. The L"-variant for r € [1,00] also appears in [Hor60, Definition 2.1]
in the scalar case and in [RV17, Section 5.1] in the vector-valued case, where it was used

to extrapolate (deterministic) boundedness of operators from L? into L7 with % -1_1

;
to other pairs (u, v) satisfying 1 < u < v < oo and i - % = % !

For Calder6n-Zygmund operators weighted bounds are classical (see e.g. [Gral4a,
Chapter 7]) and the sharp dependence of the estimates on the weight characteristic in
this setting is known as the A-theorem of Hytonen [Hyt12], which we discussed in Sec-
tion 3.4. By design, the abstract sparse domination principle in Theorem 3.1.1 is also
applicable to singular stochastic integral operators, which yields a stochastic version of

the A,-theorem.

Theorem 4.1.2 (Sharp weighted bounds). Let X and Y be Banach spaces with type 2
and assume Y has the UMD property. Take T € (0,00], let K: (0, T) x (0, T) — L(X,Y) be
strongly measurable and assume that

1K (s, 0~ Kl =0 B2 L s-s1= 2151l
|s— ¢ |S—t|1/2 2

1K (s, ) — K(s, )] sw(”_ ﬂ')% =)< s,
|s—tl/|s—t]1/2 2

wherew : [0,1] — [0,00) is increasing and subadditive, w(0) = 0 and

1
w2 )" <o
(j(; o ir) 12

Suppose Sk as defined in (4.1.1) is bounded from L; (Q % (0, T);y(H, X)) into LP(Q x
(0,7);Y) for some p € [2,00). Then the mapping

Skt L;(Q x (0, T), w;y(H, X)) — L1(Q % (0, T), w; Y)
is bounded for all q € (2,00) and w € Ag» with

Ly

max{s, 72

Nl—

ISk ll La@x (0,7, wiy(H,X)—L1(Qx (0, 1), w;Y) < [w]Aq/2

The above result follows from Proposition 4.2.3, Proposition 4.2.5 and Theorem 4.4.11.
We also prove that the above estimate is sharp in terms of the dependence on the weight
characteristic. Note that the difference with the A;-theorem for Calder6n-Zygmund op-
erators (Theorem 3.4.1) occurs because the LP-norm of (4.1.1) is equivalent to a certain
generalized square function. The conditions on the kernel are L?-versions of the Dini
condition. The integrability condition on w holds in particular if w(#) = Ct¢ for some
C>0ande € (0,1]. We will discuss these kernel conditions thoroughly in Section 4.3.
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4.1.3. SUFFICIENT CONDITIONS FOR L”-BOUNDEDNESS

In Theorem 4.1.1 and Theorem 4.1.2 one always needs to starts with an LP-bounded
stochastic integral operator. Only in the the Hilbert space setting in the convolution case
we obtain a full characterization of the boundedness of Sk in terms of kernel conditions,
see Corollary 4.4.9 and Corollary 4.4.13. Outside the Hilbert space setting or for non-
convolution kernels we do not have abstract theory to ensure L”-boundedness, so this
has to be established on a case-by-case basis. It would be interesting to find general
sufficient conditions from which LP-boundedness can be derived.

In the deterministic case L”-boundedness can e.g. be derived using 7'(1) and T (b)-
theorems (see e.g. [HWO06, Hyt06, Hyt20, HH16] for the operator-valued case). A stochas-
tic version of these theorems could have significant implications for the regularity the-
ory of SPDEs.

In the deterministic convolution case, i.e. if Tx is a Calder6n-Zygmund operator
with kernel K (s, 1) = k(s — t) for some k: R?\ {0} — £(X,Y), one can equivalently study
the Fourier multiplier operator T, with with m = k. To deduce LP-boundedness for T
one can then use the operator-valued Mihlin multiplier theorem, see Section 3.5. This
theorem relies on the boundedness of the Hilbert transform on L (R; X), which is equiv-
alent to X having the UMD by Theorem 2.7.1. The stochastic analog of the Hilbert trans-

form, i.e. the stochastic integral operator with kernel K (s, f) = —1__ does not define

|s,t|1/2 ’
a bounded stochastic singular integral operator (see Example 4.2.13(ii)), so a stochas-
tic version of the Mihlin multiplier theorem would require a proper replacement of the

Hilbert transform.

Although we do not have a stochastic Mihlin multiplier theorem, we can use the
smoothness and decay of Fourier transform of k to check the L?-versions of the Hor-
mander and Dini conditions in Theorem 4.1.1 and Theorem 4.1.2. For the L!-variant of
Hoérmander’s condition this is classical and for the L” -variant of Hérmander’s condition
for r € [1,00] this has been done in [RV17, Section 5.2]. In Section 4.5 we will check the
L2-variant of Dini’s condition in terms of smoothness and decay of m, following the ar-
guments for the L!-variant of Hérmander’s condition in [HNVW2x]. Moreover, we will
prove a y-Fourier multiplier extrapolation theorem, which is a consequence of the con-
nection with singular y-integral operators and Theorem 4.4.11.

4.1.4. STOCHASTIC-DETERMINISTIC INTEGRAL OPERATORS

As noted before, an important kernel K for applications is given by
K(t,9)=AZe 941, 15€(0,T)
where — A is the generator of an analytic semigroup on X = Y. If X = L9(O) for some

domain O <R, the operators K(s, t) € L(LY(O)) for s, t € (0, T) often have a kernel rep-
resentation of their own. For example if A= —A on L7(R%), the heat semigroup €™ =0
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is for h € L9(R%) and t € R, given by
1 —lx—
W = [ e ) dy, e,

If the operators K(s,t) € L(L9(0)) for s, t € (0, T) indeed have a kernel representa-
tion, we can write S as

T
Sk G(t, x) :/ f@ k(t,x,s,)G(s,y) dy dWg(s), (t,x) e (0, T)xO (4.1.6)
0

for a kernel
k:0,T)xOx(0,T)xO—C

and adapted processes G: Qx (0, T)xO — H. To establish L” (Q xR, w; L7(0))-bounded-
ness with p, g € (2,00) and w € Ap2((0, T)) for Sk, we have seen in Theorem 4.1.1 and
Theorem 4.1.2 that it suffices to prove LY(Q x R, x O)-boundedness for Sk and certain
assumptions on the kernel K. In applications it is easier to establish boundedness for Sg
on the Hilbert space L?(Q x R, x O). It is therefore desirable to deduce L9(Q x R, x O0)-
boundedness for Sk from L?(Q x R, x O)-boundedness for Sk. In the deterministic
case, this can be done using Calder6n-Zygmund theory (see Section 3.4) in the space
(0, T) x O with a parabolic metric, which is a space of homogeneous type. For a class
of elliptic operators of fractional order this theory was developed in [KKL15, KKL16] un-
der a parabolic Hérmander assumption on k and this can be extended to the weighted
and p # g setting under a Dini condition on k using Theorem 3.4.1 and Rubio de Fran-
cia extrapolation. Using a parabolic stochastic Hormander condition on k, a stochastic
version of these results was obtained in [Kim15, KK20] and for the moments of Sx a
Calderén-Zygmund theory approach was recently employed in [Kim20].

In Section 4.6 we will extend the abstract result in [KK20] to the weighted and p # g
setting, using a parabolic stochastic Dini condition. For this we will once again use
the sparse domination framework developed in Chapter 3 and Rubio de Francia ex-
trapolation. This will allow us to deduce time- and space-weighted L (R, v; L9(O, w))-
boundedness for Sx from L?(R, x @)-boundedness for Sx. Moreover, we are obtain
time- and space-weighted L7(O, w; LP (R,), v)-boundedness for Sk, in which case the
space integrability parameters g € (1,00) are allowed. In applications to SPDEs this
reversed integration order allows one to deduce additional regularity results, see also
[Ant17, NVW15a].

To formulate our result fix T € (0,00], m > 0 and a space of homogeneous type
(O,d, p). We define

Or:=0,T)x0O
dr((t,x),(s,)) == max{|t - s|"'™, d(x, )}
pr:=dte du,
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which is also a space of homogeneous type. In applications m will often be an even
integer and O a domain in R?, equipped with the Euclidean distance and the Lebesgue
measure. We refer to Section 4.3 for the definition of a (2, 1)-Dini kernel.

Theorem 4.1.3. LetK: O x O — C be a (2,1)-Dini kernel. Suppose that

T
SKG(t,x):=f0 fOK((t,x),(s,y))G(s,y) du(y) dWg(s),  (t,0)€eOr

is a well-defined, bounded operator from L2, (Q x O; H) to L*(Q x Or). For p € (2,00)
and q,r € (1,00) the following hold:

(i) The operator
Sk L}(Q;L”(OT, w; H)) — L' (Q; LP (Or, w)
is bounded for all w € A2 (O71) with

max{;15,1}

ISkllzr@irrOr,wim—~1r@r©Orwy S W, 0,

(i) If q > 2, the operator
Sk: L'z (@ LP((0, T), v; LY(O, w; H)) — L™ (& LP((0, ), v; L7(O, w)))
is bounded for allv € Ap;>((0,T)) and w € Ay(O).
(iii) The operator
Sk L'z (@ LY(O, w; LP((0, T), v; H))) — L (; LY(O, w; LP((0, T), v)))
is bounded for allv € Ap;>((0,T)) and w € Ay(O).

Theorem 4.1.3 will be proven in Section 4.6 using deterministic Calderén-Zygmund
theory, the abstract sparse domination result from Chapter 3 and Rubio de Francia ex-
trapolation.

Remark4.1.4. By Fubini’s theorem and Rubio de Francia extrapolation, Theorem 4.1.3(i)
implies that the operator

Sk: LP((0,7), v; LT(O, w; L' (s H))) — LP (0, T), v; L7(O, w; L' ()

is bounded for p, q,r € (2,00), v € Ap/2((0,T)) and w € Aq/g(O) under suitable measura-
bility conditions. The case p = g and v = w = 1 of this result for second-order elliptic op-
erators has been treated in [Kim20]. In [Kim20] the solvability of the resulting parabolic
SPDEs, including a deterministic term, has also been obtained for p = g = r. In [1] we
will extend Theorem 4.1.3 to also include such a deterministic term and obtain e.g. the
solvability of the parabolic SPDEs from [Kim20] for p,q,r € (2,00), v € Ap/2((0, T)) and
we Ag2(0).
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4.2, STOCHASTIC INTEGRAL OPERATORS

We start by introducing stochastic integral operators Sk associated to a kernel K. The
reason we consider p € [2,00) will become clear in Subsection 4.2.3. Although we will not
assume Y to have type 2 for the moment, it follows from [NVW15b, Proposition 6.2] that,
already for very easy kernels K, in order to have boundedness of Sk, a type 2 condition
on Y is necessary.

Definition 4.2.1 (Stochastic integral operator). Let X be a Banach space and Y a UMD
Banach space. Let p € [2,00), T € (0,00], let w be a weight on (0, T) and let

K:(0,7)x(0,T)— L(X,Y)

be strongly measurable. We write K € IC?V(LP((O, T), w)) iffor f e Lﬂ; (Qx(0,T), w;y(H, X))
and a.e. s€ (0, T) the mapping t — K(s, t) f(#) is in L;\ (©;y(0,T; H,Y)) and the operator
Sk given by

T
SxG(s) ::/ K(s,0)G(r) dWg (1), s€(0,7)
0

is bounded from Lﬂ] (Qx(0,T), w;y(H, X)) into LP(Q x (0, T), w; Y). We norm the space
K& @0, ), w)) by

1K (0,19, = ISK N LP (@0, 1),wiy (H,X0) 1P (©x (0,1, w;¥) -
We omit the weight if w = 1 and we omit the Hilbert space if H =R.

We want to study the boundedness properties of Sg. In the next results we will re-
formulate this problem in a the deterministic setting using square functions (y-norms
in time) and reduce considerations to the case H = R.

Definition 4.2.2 (y-integral operator). Let X and Y be a Banach spaces. Let (S, u) be a
measure space, p € [2,00), w be a weight on S and let

K:SxS— L(X,Y)

be strongly measurable. We say that K € IC{,LI(LF’(S, w)) (resp. K € IC;I(LP"”(S, w))) if for
feLP(S, w;y(H, X)) and a.e s € S the mapping ¢ — K(s, ) f(£) is in y(S; H,Y) and the
operator Tk given by

Tk f(s):=K(s,) f(), seS

is bounded from LP (S, w;y(H, X)) into L” (S, w;y(S; H,Y)) (resp. from L into LP*°). We
norm these spaces by

”K”]C]I;I(Lp(s’w)) = 1T Lp (S, w;y(H,X0)—LP (S,w;y(S;H,Y))»
1K e poos, wyy = I Tk L (S wiy (H, X0)— 1P (S, wiy (:H,))-

We omit the weight if w = 1 and we omit the Hilbert space if H =R.
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We start by connecting the definitions of stochastic and y-integral operators.

Proposition 4.2.3 (Deterministic characterization). Let X be a Banach space and Y a
UMD Banach space. Let p € [2,00), T € (0,00] and let w be a weight on (0, T). Then

Ky (LP (0, T), w)) = KJ/(LP (0, T), w))

isomorphically.
Proof. The proof follows directly from Theorem 2.9.1. Indeed, if K € IC;I (LP((0, T), w)),
then for G € L' (Q x (0, T), w; y(H, X)) one has

ISk GllLr ;e 0, 1),w;v) =p,y 1 Tk Gll P (;y((0, ); H,LP (0, T), w; V))) -

Therefore, by Fubini’s theorem and the y-Fubini theorem (Proposition 2.8.6), we have

ISk GllLr@x©,1),w;v) =p,y 1 Tk GllLP @y (0, ) H,LP (0, 1), w; Y)))
=p 1 Tk GllLr ;17 (0, 1), w;y (0, T; H,Y)))
< ”K”]C{/‘I(Lp((o’]‘)’w)) Gl ;L (0, ) wiy (H, X))
= 1Kl et wp 0,1, 00 | Gl @0, 1), wiy ()

Conversely, taking f € LP(Q x (0, T), w;y(H, X)) independent of Q, a similar argument
yields that K € KCij, (LP (0, T), w)) implies K € K}/ (LP((0, T), w)). O

Remark 4.2.4. For simplicity we took the Q-integrability parameter equal to the time-
integrability parameter in the definition of IC{;IV(L” ((0, T), w)). As can be seen from the
proof of Proposition 4.2.3, for K € IC{/L*’V(L"J ((0, T), w)) one actually has that Sk is bounded
from L;Z (Q; LP((0, T), w;y(H, X))) into L™ (Q; LP((0, T), w; Y)) for any r € (1,00).

In the next result we show that one can take H = R. The result extends [AV20c, The-
orem 5.4], where a particular kernel was considered.

Proposition 4.2.5 (Independence of H). Let X and Y be a Banach spaces and (S, 1) a
measure space. Assume Y has type?2, let p € [2,00) and let w be a weight on S. Then

KJILP (S, w)) = Ky (LP (S, w))
KPS, w)) = Ky (LP(S, w))
isomorphically.

Proof. By considering a 1-dimensional subspace of H, we immediately see that < holds.
For the converse let T Ilg and T}'g be the y-integral operators on LP (S, w;y(H, X)) and
LP(S, w; X) respectively. By Lemma 2.8.4 one has

ITE £SOy Sy I TRFO lysiye, vy = I TR LS yyes, vy
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Taking L” (S, w)-norms and using Proposition 2.8.6 with E = L” (S, w) we obtain

H R
1T fllLes,wys;H YY) Sy 1 Tk fllLe(s,wiyH,ys;v))
R
=p | T fllyH, L0 (S, wiy(s; 7))
< IKllxc, wp(s,wn | fllyr,Lp (s,w:x0)

=p IKlixc, wr(s,wn 1 fllzr (s,wiy(H,x0)-

The LP*°-case follows analogously. O

4.2.1. TRUNCATIONS

We will now illustrate a major difference between stochastic and deterministic integral
operators. Indeed, we will show that even when the kernel K has a singularity, the “y-
integrals” converge absolutely. In particular, we will show that if we truncate the sin-
gularity of K, then the operators associated to these truncations converge back to the
operator associated to K without any regularity assumptions on K. This in contrast to
the deterministic setting (cf. [Gral4a, Section 5.3]). Let (S,d, ) be a space of homo-
geneous type, let X and Y be Banach spaces and suppose that K: Sx § — L(X,Y) is
strongly measurable. We define for € >0

KE(S) t):= K(Sr t) lAg(S; t)r S)IES)

where A, :={(s,) € Sx S:e<d(s, ) <e 1} Let p € [2,00) and let w be a weight on S.
If K¢ € Ky (LP(S, w)) for all £ > 0 we define for f € LP(S, w; X) the maximal truncation
operator

TEf($):=sup Tk, f(S)lys;y)  SES.
>0

Proposition 4.2.6 (Truncations). Let X andY be Banach spaces, assume thatY has finite
cotype andlet (S, d, 1) be a space of homogeneous type. Let p € [2,00) and let w be a weight
onS. Let

K:S8xS—L(X,Y)

be strongly measurable such that K € ICY(L”’OO(S, w)) foralle > 0. Then for f € LP (S, w; X)
we have

T f&) = 1Tk () ly(s;v) seS,

and in particular

1K Wi, e es,wy = sup IKellicy wrs,w»
£>

1K, (Lpoe(s,wy = su%)) IKellxc, (Lroo(s, w)-
£>

Furthermore ifK € ICY(L’” (S, w)), then Tx, — Tk in the strong operator topology.
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Proof. Fix f € LP(S; X) and s € S. Assume that || Tx f(s) ly(s;y) < oo and take € > 0. Then
by Proposition 2.8.1
I Tk, f () lys;vy = N Tk f (O llys;v) (4.2.1)

which yields T f(s) < | Tk f ()l y(s;v)-
Conversely assume that Tl’gf(s) < oco. Note that since y(S,Y) — L(L2(S),Y), we have

fs|<K(s, t)f(t),y*>lzdtssug S|<Ks(s, Of0,y*)*de

<supllt — Ke(s, 0 f (D113 5,0, 1V I” < 00.
>0

Therefore, t — K(s, t) f(#) is weakly in L? and thus Tk f(s) is a bounded operator from
L2(S) into Y. Moreover, for all ¢ € L?(S) and y* € Y*, the dominated convergence theo-
rem yields that

(T f (9, y™) = I Tk, f (), y -

Now the y-Fatou lemma (Proposition 2.8.2) yields
I Tk f () lys;v) < l{% I Tk, f () ys;v) = i}ig I Tk, f () Ny s,y
where the equality follows again by domination. This concludes the proof of the equality
TR f(9) = 1Tk f()llyis1)-
By taking LP-norms we directly obtain
1Kl cres,wy = 1 TgllLres,w < ilig I Kellic e s, w))»

and the converse inequality follows from (4.2.1). The estimate for LP**° follows analo-
gously. Finally, the strong convergence follows from (4.2.1), the dominated convergence
theorem and the y-dominated convergence theorem (Proposition 2.8.3). O

Next we prove a version of the above result for stochastic integral operators. For this
let X and Y be Banach spaces, p € [2,00) and w a weight on R,.. If K, € ICVHV(LP (R4, w))
for all € > 0, we define for f € L; (Q xR4;y(H,Y)) the operator

Sef()=suplSk, f(Olly,  seR,.
>0

Theorem 4.2.7. Let X and Y Banach spaces and assume that Y has the UMD property.
Let p € [2,00) and let w be a weight onR,.. Let

K:Ry xRy - L(X,Y)

be strongly measurable such that K € ICEV(L’” (R4, w)) foralle > 0. Then
* ~ ~
ISKI L2 @uwe wiy vy~ 1P @R ) =P Sub 1Kellicr o, ,wy =v.p 1Kl cH 10 @, w))

Furthermore ifK € IC{,’V(LP (Ryw)), then Sk, — Sk in the strong operator topology.
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Proof. 1t is clear from Propositions 4.2.3, 4.2.5 and 4.2.6 that the second and third ex-
pression are norm equivalent. Moreover, it is clear that

ISk Kl @xre,wiy )~ 1P @Ry w) SUP IKell et 2p @, ,wy-
Thus it remains to prove the converse estimate. In order to show this let f € L o (Q x

R:, w;y(H,Y)) and € € (0,1). Since K € K (U’([RJ,, w)), by Doob’s maximal 1nequa11ty
we can write

max{s—¢,0} py\1/p
%S ipien = (Esup | f K(s,0 £ dwy o))

£>0 ax{s—1/¢,0}
s+l/e p\1/p
#(Esup] [ Ko awnco]])
>0 S+e Y

4
< p—f’l ISk F$)lr@iv.

Taking L” (R, w)-norms the desired estimate follows.
For the strong convergence note that by the proof of Proposition 4.2.3 we have

ISk f =Sk, fllLr@@xr,,w;v) =p,y 1 Tk [ = Tk, fllLp@@xR,,wiy(S;H, V)

Here the right-hand side for fixed w € Q is independent of H by Proposition 4.2.5, so
the strong convergence follows by Proposition 4.2.6 and the dominated convergence
theorem. O

4.2.2, NECESSARY AND SUFFICIENT CONDITIONS

Before we turn to more involved results in the subsequent sections, we first analyse the
boundedness of y-integral operators in a few special cases. We start with a necessary
condition for Tk to be bounded if S is R? or R+ and K is of convolution type.

Proposition 4.2.8 (Necessary condition for convolution type). Let X and Y be Banach
spaces, assume that Y has type 2 and let p € [2,00). Let k:R% — L(X,Y) be strongly
measurable and set K (s, t) := k(s—1t). IfK € ICY(L’”'OO([R{”I)), then forall xe X

lz— k(t)x"y(ngd;y) =Cy ”K”ICY(LV'“’([Rd)) lxll x.

The same holds for R, instead ofRd, where we set K(s,t) =0 ifs<t.

Proof. We start with the R%-case. Let r > 0, x € X and set f = 1p(,2r) ®x. Then for all
seB(0,r),

L=t — k(®xlly®o,rn;v) = 11— k(s = DxllyBsn;v)
=T f () yBes,m:v) < I Tk f () g yy-
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Therefore, for any 0 < A < L, we find that

A< ABO, NP is€ BO M ITF ()l gary, > AP
-1/
=<|B(0,r)| p”K”lCY(LV@O(Rd)) ”f”LP([Rd;X)

=Cyq4 ”K”ICY(U’@O(Rd)) lxllx.

Taking A = %Lr, we find that L, < Cy; ”K”K}/(Lp,oo(Rd)) [lx|l. Now the proposition follows by
letting r — oo and applying the y-Fatou lemma (see Proposition 2.8.2). The proof for R+
is analogous, taking s € (r,2r) instead. O

Remark 4.2.9. 1f we replace R? by (0, T) with T € (0,00) in Proposition 4.2.8, we can
deduce that

1t = k(@) xlly 0,117,y = Ca 1Kl e, wpeoo,my 1%l x-

For specific kernels one can stretch this estimate to the whole interval (0, T) with a con-
stant dependent on T, see [AV20c, Lemma 4.2].

Next we provide some simple sufficient conditions on K for Tk to be bounded using
Fubini’s theorem and Young’s inequality:

Proposition 4.2.10 (Simple sufficient conditions). Let X and Y be Banach spaces, as-
sume that Y has type 2 and suppose that K: R? x R — L(X,Y) is strongly measurable.
Then the following hold:

(i) Ifthereisan Aoy > 0 such that
Is—K(s, %l 2gacyy < Aollxllx,  teRY, xeX,
then K € Ky (L*RY) with Kl (12 @) < T2,y Ao

(i) IfIK(s, 0l < k(s — 1) for some k € L>[R?), then K € ICy,(LP(RY)) for all p € [2,00)
with | Kl e, qp @y =< T2,y 1kl 2 ga)-

The same holds for (0, T) with T € (0,00] instead ofIRd, where K(s,t) =0 ifs<t.
Proof. For (i) we have by Lemma 2.8.4 that
5 V2 d
1T Oy = 7o [ 1K 0f 01 4, see.
; d
Taking L?-norms on both sides and applying Fubini’s theorem we obtain

1/2
2
1Tk fll 2 @y ey < Tz,y( fR s =K, 0 f (DI, ga.y, dt)

= TZ,Y”f”LZ([Rd;X)-
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For (ii) we have by Lemma 2.8.4

) 5 U2 d
1T F Ol gy < T2x K= 0PI I i), semrd
Taking L”-norms on both sides and applying Young’s inequality we obtain

Il TKf”Lp(Rd;y(Rd;y)) =T2y Il k”LZ([Rd) ”f”Lp(Rd;X)'

The (0, T) case follows similarly, where we extend K and f by 0 outside (0, T') to apply
Young’s inequality for (ii). O

If Y is a Hilbert space and K is of convolution type, we can actually characterize
the boundedness of Tk, since in this case y([Rd :Y) = L2(R%; V). In Corollaries 4.4.9 and
4.4.13 the following result will be improved under regularity conditions on K.

Corollary 4.2.11. Let X be a Banach space and Y be a Hilbert space. Letk:R? — L(X,Y)
be strongly measurable and set K (s, t) := k(s — t). Then the following hold:

(i) K€Ky (L>®RY) ifand only if | t — k(D) x| ;2 gd.y, < I %] x.
(i) IfK € Ky(LP®(RY)) for some p € [2,00), then K € Ky (LI([RY) forall g € [2, p).
The same hold for (0, T) with T € (0,00] instead ofRd, where we set K(s,t) =0 ifs<t.

Proof. One has for all ¢ € R? that
[Is— K(s, t)-x”LZ(Rd;y) =|s— k(s)x”LZ(Rd;y) =|s— k(s)x”ry(Rd;Y)r

from which (i) follows using Proposition 4.2.8 and 4.2.10(i). Part (ii) follows by combin-
ing Proposition 4.2.8, part (i) and Marcinkiewicz interpolation theorem (see [HNVW16,
Theorem 2.23]). O

4.2.3. SCALAR KERNELS

If we allow X to be any Banach space with type 2, but restrict K to be scalar-valued, we
can easily characterize the boundedness of Tk if K is of convolution type. This explains
why we study the more interesting operator-valued case.

Proposition 4.2.12. Let X be a Banach space with type 2, let p € [2,00), let k : RY — K be
measurable and setK (s, t) := k(s—t). Then Tx is bounded from LP (R%; X) to L (R%; y (R%; X))
ifand only if k € L*>(R%). Moreover; in this case ”K”]C]/(Lp(Rd)) = T2, x 1kl 12 gay-

Proof. Since k is scalar-valued, we have for x € X
s — k($)xll, ga;x) = 12l x 1kl 12 ga)-

Therefore the result follows from Proposition 4.2.8 and Proposition 4.2.10(ii). O
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In the scalar case, i.e. X = Y =K, the LP-boundedness of Tx can also be well-
understood from existing theory for non-convolution kernels. Indeed, in this case K €
Ky (LP ®RY)) is equivalent to

(] 1K, 0P P2 PIgll?

fRd fRd s0lg de)  ds<CPlgl?,, 4.2.2)
where we have set g(¢) = | f(#)|?. The validity of the above estimate is completely char-
acterized by the optimality of Schur’s lemma (see [Gral4b, Appendix A.2]) applied to the
positive kernel |K (s, 1) |2. Moreover, in this case Tk is also bounded in the vector-valued
setting when X = Y has type 2, since by Lemma 2.8.4

9 pl2 1/p
l TKf”Lp(Rd;y(Rd;X)) =T2X (\[Rd (fRd |K (s, 1)|°g (1) dt) ds) )

where g(f) = || f(?) |I§(. Conversely, by considering a one-dimensional subspace of X, one
obtains that (4.2.2) is also necessary.

Example 4.2.13.

(i) Letd=1and K(s,1) = —— 15 0. Then by [Gar07, Theorem 5.10.1] we know

(s+0)1/2

that K € K, (LP(R)) if and only if p € (2,00). More generally for 1 < j < d set

PR V)
(sj+15)

d
—IS'I'>0) S,tER .
1)/2 “Sivt
|S+t|(d+ )/

Kj(s,1):=

Then we know by [Os¢17, Theorem 1] that K € IC, (L? ®%)) ifand onlyif p € (2,00).

(i) IfK(s, 1) = W, then forall p € [2,00), K ¢ ICY(L” (R)), which is immediate from

Proposition 4.2.8.

Example 4.2.13(ii) can be seen as the analog of the Hilbert transform. Itisnot bounded

for any p € [2,00) due to the lack of cancellation in the stochastic, scalar-valued setting.
This further exemplifies the difference between the deterministic and the stochastic the-
ory.
Remark 4.2.14. The scalar case also shows why we only consider p € [2,00). Bounded-
ness for p < 2 holds if and only if K = 0 (see [Kal78]). This also holds for the operator-
valued case since LP-boundedness with p < 2 would imply that (K(¢,s)x,y*) =0 a.e.
for all x € X and y* € Y*. By strong measurability of (¢,s) — K(¢,s)x this implies that
for all x € X, K(t,s)x = 0. Thus by density of LR ® X in LP(R%; X), we find that
K(s, ) f(r)=0.

4.3. SINGULAR KERNELS

Motivated by the connection between stochastic integral operators and y-integral oper-
ators proven in Proposition 4.2.3 and Proposition 4.2.5, we want to systematically study
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of the Ky -classes for more involved kernels than treated in Subsection 4.2.2. In partic-
ular, we want to study kernels that have a singularity in s = ¢. Let us first introduce the
abstract kernel classes that we will use.

We say that (S, d, p) is an n-product space of homogeneous type if it is the product
of n spaces of homogeneous type, i.e.

S = Sl X oeee X Sn
ds,t) = max Ay (g, te), S,teS (4.3.1)
=K<n
M:H1®...®Nn.

for spaces of homogeneous type (Si,dk, i) for k = 1,...,n. For s € § we write s =
(s1,...,8p) with s € S for k= 1,..., n. Note that by the choice of the metric d we have
forseSandr >0

B(s,r) =B(s1,1) x - x B(sy,1).

Important examples of n-product spaces of homogeneous type are (subsets of) the anis-
otropic Euclidean spaces introduced in Example 2.1.2.
For p € [1,00)" we define the p-volume

n
Vp(s,0):= [ | ue(BGs.d(s, )7, stes
k=1

and set V(s, 1) := V1,..1)(s, £). By (2.1.2) we have

Vp(s,0) = Vp(t,s), st€S 4.3.2)

with implicit constant depending on S and p.

Definition 4.3.1. Let X, Y be a Banach spaces, (S, d, u) a n-product space of homoge-
neous type, p € [1,00)" and let

K: (8x8)\{(s,8):5€8 — L(X,Y)
be strongly measurable.

(i) We say that K is an p-Hérmander kernel if there is a cx = 2 such that for every ball
BcS

||IS\B(K('r 1 -K(, t,))”LP(s;L(X,Y)) = C) t, tle éB; (4.3.3)
1s\8(K(s,) =K', 9) | oisicix.ry < C s,s'€ B (4.3.4)

for some constant C > 0 independent of s, ¢ and B. The least admissible C will be
denoted by || K|l p-Hsrm-



94 4. SINGULAR STOCHASTIC INTEGRAL OPERATORS

(ii) We say that K is a p-Dini kernel if there is a cx = 2 such that

I1K(s, ) — K(s, )| <w(M) 1 0<d(tt) < id(t s) (4.3.5)
’ TG 0 ) V(s ) e o
d(s,s'
IK(s,0) - K(s', )]l < w(%)m 0<d(ss) < %d(s, 1, (4.3.6)

where w : [0, 1] — [0, 00) is increasing, subadditive, submultiplicative, w(0) = 0 and

1 dr\1l/pk
1K1 p-pinii= max ([ w7 <) <oo
1<k=n\Jo t

If n =1 the submultiplicativity of w can be omitted.

(iii) We say that K is an p-standard kernel if K is a p-Dini kernel with w(t) = C ¢ for
some C,e > 0 and set

1Kl p-std := I Kll p-Dini-
We do not track dependence on ck in our estimates.
Various special cases of Definition 4.3.1 are already present in the literature:

e For n =1 and p = 1, Definition 4.3.1 contains the standard kernel assumption
from Calderén-Zygmund theory. In particular, Definition 4.3.1(ii) was already
used in Section 3.4 to prove the (deterministic) A2-theorem for operator-valued
Calderén-Zygmund operators in a space of homogeneous type. When (S,d, pu)
is R? with Euclidean distance and the Lebesgue measure, (4.3.5) takes the more
familiar form | e

!/

IK(s, )= K(s, )| < TS

e Ifn=11(S4d,pis R? with Euclidean distance and the Lebesgue measure and K
is of convolution type, i.e. K(s, 1) = k(s — t) for some k: R% — £(X,Y), Definition
4.3.1 can be reformulated using a change of variables. Indeed, (4.3.3) and (4.3.4)
both simplify to

1/p d
(flu JGs= 0= k1 as)"sc rem?, 43.7)
282

which goes back to the work of Hérmander himself (see [H61r60]), where it was
used to extrapolate off-diagonal boundedness for integral operators. The operator-
valued version has been used in [RV17, Section 5.1].

e For n =2 and p = (2,1), Definition 4.3.1(i) was introduced in [KK20, Kim20] to
study parabolic SPDE.

For our purposes the two main examples will be:
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e Inour analysis of the IC,,—classes, wewilluse n = 1, p = 2. Moreover in applications
of these results to SPDE, we will take S = (0, T') for T € (0,00]. In this setting we of
course have V), (s, 1) = W

¢ For our mixed-norm extrapolation results in Section 4.6, we will use n =2, p =
(2,1) and let (S,d, pn) be (0, T) x O for T € (0,00] and a domain O < R equipped
with an anisotropic metric and the Lebesgue measure.

By definition a p-standard kernel is also an p-Dini kernel. Asinthecasen=1,p=1,
a p-Dini kernel is also a p-Hormander kernel. The proof is an adaptation of the proof in
thecasen=1,p=1.

Lemma 4.3.2. Let X,Y be a Banach spaces, (S,d, ) a n-product space of homogeneous
type, p € [1,00)" and suppose that

K: (§x8)\{(s,8):5€8 - L(X,Y)
is a p-Dini kernel. Then K is a p-Hormander kernel with
1Kl p-t6rm <s,p I Kl p-Dini-

Proof. We will show that K satisfies (4.3.3), the proof of (4.3.4) is analogous. Let B =
B(t,r) < S be a ball and take u!, u? € %B. Set

Bj:=B(t,2"'n\B(t,2/r),  jeN,

Pmin = MiN<k=p Pk and g = (P1/ Pmin, ---» Pn/ Pmin)- Since d(z, u*) < i r= i d(s, t) for
any s € S\ B and cg = 2, we have by the p-Dini condition

1518 K, uh) = K(, u?) liresicox, vy

2
= 1;1” Ls\p(K(, )= K(, ”k)) ||LI’(S;£(X,Y))

=2fs— 190505 ) 7 |
B $\8 d(s, 1)) Vp(s, 1) P (s)
sy r/2 Pmin 1 1/ pmin
<2 ”s»—» 15.(8) w H )
(jgo 59 (d(s, t)) Vy(s, ) lzacs)
X i . 1 1/ Pmin
Y et N S R
j=0 k=1 Mi(B(Sk, 2/ 1))k I LP(B))
Ss,p ”K”p»Dini
using (2.1.2) and a similar computation as in (3.4.1) in the final step. O

If (S,d, ) is an anisotropic Euclidean space (see Example 2.1.2), we can check the
p-standard kernel conditions in terms of the derivatives of the kernel.
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Lemma 4.3.3. Let X, Y be a Banach spaces, let a, p € (0,00)? and suppose that
KeCH®RI xRN\ {(s,9): se R L(X, V)
is a kernel satisfying for some Ay >0

|05, K (s, )| < Agls— £, P* ) sz, k=1,....d
|0, K(s, 1) < Aols— e, @P* ™ s#t,k=1,...,d
Then K is a p-standard kernel on [RZ with 1Kl p-std Sa Ao

Proof. We will only prove (4.3.5), as the proof of (4.3.6) is analogous. For (4.3.5) we need
to show

alp

— €
IK(s, 1) = K(s, )]l S (lt uia) 1
[t—slg

[t—5la

forall 0 < |t —ulg < ilt— Sla- Set cx := 2cq, Where ¢, is the constant in the triangle
inequality for |-|,. Fix s,f,u e R? with 0 < [t —ulg < %lt— S|la. Then we have for all
A€0,1]

1
[t—s—At—Wla= —|t=5sla— 1At —U)lqa
Ca

1
= —|t-sla—It—ula
Ca

> Loy
= — |l — S|q4.
2Cq “

Therefore, using the fundamental theorem of calculus, we obtain

1o
K (s, 0 - K(s,w] = ”fo 7Kl 1= A= w) dA

d 1
< Zfo @K (s, t—At—w)- (1 — wi)|| dA
k=1

d 1 ag
t—u
< Ap Z[ | la

alp+ay

k=190 |s—t+A(t—u)l,
t—ulg\¢ 1
Squ(l |u) _
[t~ $la |t—s|up
with € = min << a, proving the lemma. O

Remark 4.3.4. Lemma 4.3.3 remains valid if we replace R? by a convex subset of R?
with the Euclidean distance and the Lebesgue measure. Moreover it is also valid on a
smooth domain in RY, as one can then locally reduce to the R? case. Combining these
observations, we note that Lemma 4.3.3 remains valid on [0, T'] x D, with T € (0,00) and
D ¢ R% a smooth domain.
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4.4. EXTRAPOLATION FOR y-INTEGRAL OPERATORS

Having introduced the assumptions on our kernels, we will now extrapolate the LP-
boundedness of an y-integral operator Tk to the (weighted) L9-boundedness of Tk for
all g € (2,00). We will first consider the unweighted setting under a 2-Ho6rmander as-
sumption on K, from which we will also obtain a weak L?- and a BMO-endpoint result.
This will follow by an adaptation of the arguments for singular integral operators as in
[HNVW2x], which we need to combine with ideas from [DM99] when 2 < g < p. After-
wards we will study sparse domination and weighted boundedness of Tx under a 2-Dini
assumption on K, which will follow from the sparse domination framework developed
in Chapter 3.

4.4.1. EXTRAPOLATION FOR2< g < p

Let us start our analysis with an extrapolation result downwards. We will show that if
K € K\ (LP**°(S)) satisfies the 2-Hormander condition, then also K € Ky (L7(S)) for all
ge (2,p) and K € ICY(L2’°°(S)). For this we will adapt the Calderén-Zygmund decom-
position technique for singular integral operators to the y-case. Our main tool will be
the following L7-Calderén-Zygmund decomposition. A similar statement in the case
X = C can for example be found in [BK03, Theorem 3.1], which caries over verbatim to
the vector-valued setting, replacing absolute values by norms.

Proposition 4.4.1 (I?-Calderén—Zygmund decomposition). Let X be a Banach space
and (S, d, 1) a space of homogeneous type and q € [1,00). For every f € L1(S; X) and

s {0 11(S) = oo,
U fllxd2,s 1(S) < oco.

there exists a decomposition f = g+ b with

lgllreos;x) <A, lglraes;x) < fllzaes;x

andb:Z]- b; with

1/q 1
suppb; < Q; (Z ,Lt(Qj)) SAT S Lacsx
J

1/q

1/

1Bjllzaes;x) S Au@Q)Y, (Z”bj ”Zq(s;x)) SIfllzacs;x
j

Jfor disjoint dyadic cubes {Q;}. All implicit constants depend on S and q.

Proof. Let Z be a dyadic system in S, which exists by Proposition 2.1.1. Let {Q;} = Z be
the maximal dyadic cubes such that

A> A flx)2,0
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which exist by our choice of A. By their maximality these cubes are pairwise disjoint and
their dyadic parents {Q i} satisfy
U flix)gg=A (44.1)

By Proposition 2.2.1 we have
;#(Qﬂ = ”; Lo, “Zq(s) = ||1{Mq@(|\f\|x)>/1} ”Z‘MS) Ss,a A fllzacs:x (4.4.2)
Define b; :=1¢; f, for which we have by (4.4.1)
1bjllras;x) < ||1@jf||L‘f(S;X) S,U(Qj)”q/l,
which combined with (4.4.2) yields

q 1/q
(S1iasxy) S IF a0
J

Setg = lS\Uj Q; f>which trivially implies I gll a(s;x) < Il fll La(s;x). For s € S\U;j Qjwe have
that all dyadic cubes Q € Z containing s satisfy (| fllx)2,o = A. Thus by the Lebesgue
differentiation theorem and Jensen’s inequality we have

lg@®lx=lf©$)lx= QE%I}SIEQUlfHXh,QS im (Ifl1x) g0 =2

:s€eQ
diam(Q)—0 diam(Q)—0
fora.e. s€ S\U; Q;. Thus || gl ze(s;x) < A, which completes the proof. O

In the deterministic setting the functions b; in a Calderén-Zygmund decomposition
are usually also taken such that ka bj = 0, but we will not be able to use this property for
y-integral operators. Instead we use the L2-Calder6n-Zygmund decomposition in a way
that is inspired by [DM99], which builds upon ideas developed in [DR96, Fef70, Heb90].

Theorem 4.4.2 (Extrapolation downwards). Let X and Y be Banach spaces with type 2
and (S, d, u) a space of homogeneous type. Let p € [2,00) and suppose that K € IC,,(LP"*°(S))
satisfies the 2-Hormander condition. Then

(i) KeKy(L1(S)) forall q € (2, p) with

1Kk, wacs) Ss,p.a (TZ,XTZ,Y||K||ICY(LPv°°(S)) + Tz,Y||K||2-H6rm)-
(ii) K €Ky (L>*(S)) with

1Kl e, (z2e0(s)) Ss.p (TZ,XTZ,Y”K”ICY(U’@O(S)) +TZ,Y||K||2—H6rm)-

Proof. It suffices to show (ii), as (i) then follows directly from the Marcinkiewicz inter-
polation theorem, see e.g. [HNVW16, Theorem 2.2.3].
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Letfe L2(S; X)NLP(S; X) be boundedly supported, A > 0 and set Ag := ||K"}Cy(Lp,00(S)).
Let f = g+bbe the L?-Calderén—Zygmund decomposition of f atlevel kA for some x >0
to be chosen later. Then we have

2
”g”Lp(S X) —= ”g"Loo(S X) ||g”L2(S X) (K/Il)p ||f||L2(S X)’ (443)

so in particular g € L”(S; X). It follows that b = f — g € LP(S; X), and thus
TKf = TKg + TKb
is well-defined.

To estimate the L>°(S; y(S; Y))-norm of Tx f we need to analyse the size of the upper
level set {|| Tx f lly(s;v) > A}. We split as follows:

p({I Tk fllys;vy > AY) < p({1 Tk glly(s;v) > %}) +u({I Tk bllys;v) > %}) (4.4.4)

For the term with the “good” part g we have by our assumption on Tk and (4.4.3) that

AP
u({I T gllys;v) > A/2}) < (A/2)P ”g”Lp(s X

I1£13
L2(8;X
xP2 LS X)

D AP
<2l AfP? —22

For the term with the “bad” part b, let Q; be the dyadic cube corresponding to b;.
Let B; be the ball with the same center as Q; and radius cx -diam(Q;). Then Q; € B; and
K(Bj) Ss u(Q)). Set O:=; B;.

As a preparation for our estimates we will define some auxiliary operators. Let

Sj: L2(S;X) — L(S;7(S; X))
be the y-integral operator given by

1g;(s)
,U(Qj)llz

which is bounded by Lemma 2.8.4. We claim that Zj S;jb; converges in LP(S;v(S; X)).
To prove this we first estimate for fixed j and a.e. s€ S

Sjh(s):= h, seS, hel*S;X)

||sjbj(s)||i(s;x)_rix Q) f||bmnxdum<512X(K7L)21Q](s)
J

using Lemma 2.8.4 and the norm estimate of b; in terms of u(Q;). So summing over j
we get, using the disjointness of the Q;’s, that

1/p
HZ,llSj billys;x | ps Ss T2xKA (Z IJ(Qj))
j j
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Since }_; n(Q;) < (K?L)‘leflliz(s_x) it follows that Y ; S;b; converges in L”(S;y(S; X)) as

claimed and in particular we have

1-2/ 2/p
128011 o siyisin S5 T2x DTS g5, (4.4.5)
J
Next set .
y(t', 0= Z Q) 1g;(1g,(0, tt'eS
J

and define for a.e. s€ S
Tyb(9):= ((2,) — K(s, 0y (', 0b(0)).
Since [y (-, 1)l 2(s) = 1 for t € supp b we have
KTy b(s), y*) ”L2(5xs) = |<Tb(s), y") ”LZ(S)
for every y* € Y*. Thus by Proposition 2.8.1 it follows that Ty, b(s) € y(S x S; Y) with

1 7ib]y15,) = 1T b | y55:)-

Finally let
Tx: Y(S;LP(S; X)) — y(S; LP™°(S; ¥(S; Y)))

be the canonical extension of Tk, which is trivially bounded with norm Ay. By Lemma
2.8.4 and the y-Fubini embedding in Proposition 2.8.6, T is also bounded as an opera-
tor

Ti: LP(S;7(S; X)) — LP™®°(S;7(S x S; Y))

with norm Cj, 72,y Ag. Combined with (4.4.5) this implies that }° j TxS jbj is well-defined.

Using these auxiliary operators we now decompose as follows:

(I Tebllys;y) > A123) = p({ll Ty bllysxs;y) > A12})
= N({” Tyb- Z TkS;b; ”y(SxS;Y) > Al4f\ O)
J

+ ({12 TeSib1] sy > 114} + 1(0)
J
=[a]+[B]+[C]

To estimate we first note that by Chebyshev’s inequality and Lemma 2.8.4 we have

16 &
< riyﬁ fS\o” Tyb- ; Tk Sjbj ”iz(SxS;Y) dp
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Using the fact that the b;’s are disjointly supported on the cubes Q; < B}, Fubini’s theo-
rem and the 2-H6rmander condition we deduce

L\O” Tyb- Z TS;b; “iz(SxS;Y) du
j

< K(s,t)—K(s,£))10. (£)b; (0 ||>. dut) du( d
;M(Qﬂ S\ijsfs“( (5,0) = K(s, ) Lo; (1) b; (0| du(t") dp(r) dp(s)

f f f 1K (s, 1)~ K(s, 121 (012 dya(s) dp(t) dpe)
Qj Qj S\Bj

<

_;N(Qﬂ

2 2
< KI5 tgrm 2_10j 172530
j

Therefore by the norm estimate of the b;’s in terms of f we have

ILf1
2 2 12(S; X)
[A]<s T3y IKIE o5

For we use the boundedness of Tx and (4.4.5) to obtain
(T2,y Ao)P
Ssp T ” ; Sjbj ”fﬂ(s;y(s;X)))

p- 2 ”f”LZ(S 5 X)
K AZ

and for we have by the estimate of u(Q;) in terms of f that

Ss.p (TZ,XTZ,YAO)p

IIfIILz(SX)

szu(Bj) S5 L HQ) S5k i3
J J

Plugging the estimate for g and the estimates for b into (4.4.4) and choosing x :=
(T2,xT2,v Ao) !, we now have

w({I Tk Fllysin > ADY2 <

= (2T2,XT2,YIIKIIJCY(Ln,oo(s)) + 72,y | Kll2-Horm) 1 F1l2(s:5)-

(TZ,XTgvyA() K)p +1
S,p (

" +T2y ”K||2—H6rm) I fllr2es:x)

for all A > 0 and boundedly supported f € I2(S; X)NLP(S; X), except when p(S) < coand
kA < (|l fllx)2,s. However, this case is trivial, since

1
N Tk gy > M) < (9 < = iz,

By density this estimate extends to all f € L2(S; X), which finishes the proof of the weak
L2-endpoint. O

Remark 4.4.3. In general one can not expect T € Ky (L?(S)) in Theorem 4.4.2 , which is
already clear from the scalar case and S = R. For instance the kernel K (s, t) = W 150
of Example 4.2.13 is a 2-H6rmander kernel. However, L”-boundedness holds only for
pE(2,00).
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4.4.2. EXTRAPOLATION FOR p < ¢ < 00

We now turn our attention to extrapolation upwards for y-integral operator. We will
show thatif K € K, (LP*°(S)) satisfies the 2-H6rmander condition, then also K € IC), (L9(S))
for all g € (p,00) and we will prove a BMO-endpoint result. For this we will adapt the ar-
guments in [HNVW2x] for singular integral operators to the case of singular y-integral
operators.

Theorem 4.4.4 (Extrapolation upwards). Let X and Y be Banach spaces, assume that Y
has type 2 and let (S,d, 1) be a space of homogeneous type. Let p € [2,00) and suppose
K € Ky (LP°(S)) satisfies the 2-Hérmander condition. Then

(i) KeKy(L1(S)) forall q € (p,o0) with
1K, wa(s) Ss.p.q (||K||ICY(Ln.oo(5)) +TZ,Y"K"2—H6rm)-

(ii) There exists a Tx € L(L®(S; X),BMO(S;y(S; Y))) such that
I Ticllio—mvo Ss,p (1Kl wpes(sy + 72,¥ 1K la-torm).

and Tx f — Tx f is constant for all f € LP (S; X) N L®(S; X).

Remark 4.4.5. The extension of T to all f € L*°(S; X) in Theorem 4.4.4(ii) is not in the
traditional sense, as even for f € LP(S; X)nL>®(S; X) the extension T f may not coincide
with Tk f. However, as Tx f and Tx f only differ by a constant in this case, they represent
the same function in the Banach space

BMO(S;Y(S; Y)/y(S; V).

Furthermore, we can not claim uniqueness, as L” (S; X)NL*°(S; X) is not dense in L*°(S; X)

In order to prove Theorem 4.4.4, we need to introduce local versions of the operator
Tx. For any cube Q in S we define the local operator

T : L¥(8; X) — LP(Q;Y(S; Y))
for s€ Q and ¢ € L2(S) by

TS f(s)p = Tx (g (g + fQ fs \B(K(s, 0 =K(s',0) f(De(t) du(r) du(s"),

where B is the ball with the same center as Q and radius ck - diam(Q). Note that TI? is
well-defined since 1 f € LP(S; X) and for a.e. s, s’ € Q we have

I(K(s,) = K(s,9) 1svs fl 5.y = T2, v 1K l2-Hoem I f 125050 - (4.4.6)

by Lemma 2.8.4. Heuristically one may think about TI? as

Tf(s)= T f(s) + ][Q(K(s’,-))fm 1s\50) du(s),
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which is, of course, not well-defined in general. These operators satisfy the following
properties:

Lemma 4.4.6. Let X and Y and be Banach spaces, assume that Y has type 2 and let
(S,d, 1) be a space of homogeneous type with dyadic systems 2 and 9'. Let p € [2,00) and
suppose K € ICY(L”"’O(S)) satisfies the 2-Hormander condition. For dyadic cubes Q € 9
and Q' € 9’ the following hold

(i) Forall f € L*°(S; X) we have
|27 <s.a,p (IKI + 72,y 1K l2-t5rm) Q)P Il fll oo s;
K LP(Q;y(S;Y)) =S,9,p ICY(LPvOO(S)) 2,Y 2-Hoérm )M L®(S;X)-
(ii) Forall f € LP(S; X) N L*°(S; X) thereexists ac € y(S; Y) such that
Tef()-Tef(s)=¢c, se€Q.
(iii) Forall f € L*(S; X) there exists ac € y(S;Y) such that
Tf(5)-TS f9=¢c, seQnqQ.

Proof. Let B < S be the ball with the same center as Q and radius cg - diam(Q). De-
fine B’ c S similarly. Take f € L*°(S; X), then by the assumption on Tx we have, using
11l peo(s) = (QYP, that

I Tk A Hllreosys;yn < 1K, ooy 118 fllzrs;x)

1
Ss,2,p 1K, wreo(s) Q) PILfllzoo(s;x) -

The estimate in (i) now readily follows using the definition of TI? f and (4.4.6).
Next take f € LP(S; X) N L(S; X) and let s,s' € Q. Define ¢ := fQ Tx(1s\g f)(s) ds'.
Then we have for a.e. s € Q that

T f(s) =Tk f)(S)+ Tx(Ls\p f)(s) _][Q Tx(1s\g f)(s) du(s) +¢
=TI f(s)+c

proving (ii).
For (iii) by considering a larger cube Q" € 2 containing both Q and Q' we may as-
sume without loss of generality that Q' € Q and B’ € B. Fix ¢ € L*(S) and define

g(s, s, 1) :=(K(s, ) = K(s',0) f(D(0).
Then we have for a.e. s € Q' = QN Q' by Fubini’s theorem

197 5)p-TY f(5)p
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=TK(IB\Brf)(s)<p+(][f —][ f —][ f )g(s,s’,t) du(® du(s)
QJS\B ' JB\B' ' JS\B
=][ Tx(p\p (e d,U(S/)+f (][ —][ )g(s,s’, £) du(s") du(o)

Q se\o Jor

= tctmp o dusr- [ (f - f Jres nge duts duco.
Q S\BMQ JQ

As the final right-hand side does not depend on s, this proves (iii). O

Using the properties of these local operators TI? we can prove an L*°-estimate of Tx
involving the sharp maximal operator, introduced in Section 2.2.

Proposition 4.4.7. Let X and Y be Banach spaces, assume that Y has type 2 and let
(S,d, ) be a space of homogeneous type. Let p € [2,00) and suppose K € K, (LP*°(S))
satisfies the 2-Hérmander condition. Then we have for all f € LP(S; X) 0 L*(S; X)

| M*(Tx f) ”Loo(s) Ss,p (||K||]CY(LV.00(5)) + 72,y 1K ll2-t8rm) Il fll oo (5 ) -

Proof. Let B < S be a ball and let & be a dyadic system in (S, d, i) such that there is
a Q € 2 with B < Q and diam(Q) <g diam(B), which exists by Proposition 2.1.1. Let
feLP(S;X)nL*®(S; X) and, using Lemma 4.4.6(ii), choose c € y(S; Y) such that

TKf(S)—TI?f(S):C, s€Q.

Then, using (2.0.1) and Lemma 4.4.6(i), we have

J e el aus ss 17115

<p ,U(Q)_Hl/p’ ” Tjgf”LP'm(Q;y(S;Y))

Ss,p (IIKllicy(Lp,oo(S)) + 72,y 1K ll2-Hrm ) Il f 1 oo (5, -

It follows that

| M* (T« f) | 1o cs) Ssip (KN, wpoosy + T2,y 1K 2-Horm) | fll 2o (s %)
which proves the proposition. O

Using Proposition 4.4.7, the proof of Theorem 4.4.4(i) is now a straightforward ap-
plication of Stampacchia interpolation (see e.g. [GR85, Theorem I1.3.7]).

Proof of Theorem 4.4.4(i). Let f € LP(S; X) N L*(S; X). Since M#f =2M fllysy), we
know by Proposition 2.2.1 that M?* is bounded from LP°(S; Y(S; Y)) to LP°°(S) and thus

”M#(TKf) ”Ll’v"O(S) Ssp “ TKf“LPm(s;y(s;Y))

Ss,p 1K, wreosyll fllzrs;x)-
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Moreover, by Proposition 4.4.7, we know that

IM*(Ti £) || goois) Ss.p (1K i, @pooisy + T2,y 1K 2 16mm) I 1l Loo(5:),

We can therefore apply the Marcinkiewicz interpolation theorem (see e.g. [HNVW16,
Theorem 2.2.3]), to conclude that for all f € LP(S; X) n L*°(S; X) we have

| M* (T ) I Lacs) Ss.pa (1K, wreoisy + T2,y 1K 2-15rm) Il fll Las;x0-
We consider two cases:
() If u(S) = oo, we deduce by Proposition 2.2.3
I Tk flzasiysivn Ssa MY Tk Ol pags)
<s,pq (1Kl e, @wreoqsy + T2,y 1K ll2 -toem) I £l a(s;x0-
forall f e LP(S; X) N L*®(S; X).

(ii) If u(S) < oo, we deduce by Proposition 2.2.3, (2.0.1), K € K, (LP*°(S)) and Holder’s
inequality
I Tx fllLas;ys; vy Ss,q “M#(TKf) ||Lq(s) + (S VT fll )
Ss,pq (||K||IC},(LP@O(S)) + 72,y IKll2-t6rm ) 1 fl La (5,30
+u(S)1/p ~1aq "K”ICY(L”W(S;X)) I fllzrs;x)

s (”K”ICY(LP@O(S)) + T2,y | Kll2-mrm) | fll 2a(s;x0
forall f e LP(S; X) N L*®(S; X).

As LP(S; X) n L*°(S; X) is a dense subspace of L9(S; X), assertion (i) of Theorem 4.4.4
follows. O

Assertion (ii) of Theorem 4.4.4 does not follow directly from Proposition 4.4.7, since
LP(S; X)NL*(S; X) is not dense in L°°(S; X) and therefore the extension of Tk to all func-
tions in L*°(S; X) is a nontrivial matter.

Proof of Theorem 4.4.4(ii). Let 2,..., 2™ be a dyadic systems in (S, d, ) as in Propo-
sition 2.1.1 and let (Qx)72, < U;."Zl 9 be an increasing sequence of dyadic cubes such
that UZ"ZI Qg = S. For f € L*(S; X) define

T f(s):= T f(s) - ][Q TO%rdy  ifse Q.
1

Then TKf € Llloc(S;y(S; Y)) is well-defined. Indeed, by Lemma 4.4.6(ii) we have Tlgkf €
Ll(Qk;y(S; Y)), so in particular the average over Q; is well-defined. Moreover if j > k,
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then by Lemma 4.4.6(iii) there is a ¢ € y(S;Y) such that Tlgjf(s) - TI?"f(s) = ¢ for a.e.
s € Q. Therefore

T]?kf(s)_][o TI?"fdpz(TI?jf(s)—c)—J[Q (Tlgjf—c) du
1 1

=19 f(s) —][ T f dp,
Q1
thus the definition of Tx f(s) is independent of the choice of Q. > s.
If feLP(S;X)nL>®(S; X), then for any k € N there exist ¢, ¢, € y(S; Y) such that for
a.e. se Qg

T f(s)~ Tk f(s) = c1,
T f(5) - Tx f(s) = 2

by Lemma 4.4.6(ii) and the definition of TKf. As (Q)}2, is increasing and U, Qr =S,
we see that ¢; and ¢, are independent of k, so Tx f — Tk f is indeed constant.

It remains to show that Ty f € BMO(S; X) with the claimed norm estimate. Let BS S
be any ball and fix k € N such that B < Q. Take Q € U;."Zl 27 such that B € Q and
diam(Q) <s diam(B). By Lemma 4.4.6(iii) there exists a c3 € y(S;Y) such that for a.e.
seqQ

T f(5) - T2 f(s) = 3.

Therefore
T worsesrn S5 [ I1Tif = @s=enlysy an = f 178y o

Now f | Tf| 1(sy) can be estimated exactly as in the proof of Proposition 4.4.7, which
yields the claimed norm estimate in Theorem 4.4.4(ii). O

Remark 4.4.8. By inspection of the proof it can easily be seen that for the extrapolation
down in Theorem 4.4.2 one only needs

! 2 1/2 /-1

(], NK0 =K O0xly duo) "< Clixlx, 55’38, xeX
B

which is implied by (4.3.4) of the 2-Hérmander condition. For the extrapolation up in

Theorem 4.4.4 one only needs the left hand side of (4.4.6) to be bounded, which is im-

plied by (4.3.3) of the 2-Hérmander condition.

Corollary 4.4.9 (y-convolution operator with values in a Hilbert space). Let X be a Ba-
nach space and let Y be a Hilbert space. Suppose k : R — L(X,Y) is strongly measurable
and satisfies the 2-Hormander condition in (4.3.7). Let K (s, t) = k(s —t). Then the follow-
ing are equivalent:
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@) NIt — k(O)xll ;2 ga.y) < Ao l x|l for some Ag > 0.
(i) K € Ky (LPRY) forall p € 2,00).
(i) K € Ky (LPR®) for some p € [2,00).

In particular we have for all p € [2,00) and Ay as in (i):

||K||]Cy(Lp([Rd)) = Cp,a (Ao + IKll2-H5rm)-

Proof. The implication (i) = (ii) for p = 2 follows from Proposition 4.2.10(i) and for p €
(2,00) we can apply Theorem 4.4.4. The implication (ii) = (iii) is trivial and (iii) = (i)
follows from Proposition 4.2.8. O

4.4.3. SPARSE DOMINATION FOR y-INTEGRAL OPERATORS

In this section we will obtain weighted bounds for a y-integral operator Tx under an
2-Dini condition on K. We will deduce these weighted bounds from the abstract sparse
domination principle obtained in Chapter 3, which will lead to a stochastic analogue of
the A,-theorem.

In order to apply this abstract sparse domination principle on a K € K, (L”(S)) we
need to check weak I2-boundedness of Tx and M*}K' o and we need to check the 2-
sublinearity of Tx. The weak L?>-boundedness of Tx was already obtained in Theorem
4.4.2. For a 2-Dini kernel the boundedness of M’;K' o 18 quite easy to check:

Lemma 4.4.10 (Boundedness of grand maximal truncation operator). Let X andY be a
Banach spaces, assume thatY has type 2 and let (S, d, 1) be a space of homogeneous type.
Let p € [2,00) and suppose K € K, (LP"*°(S)) satisfies the 2-Dini condition. Then for any
feLP($;X) and a =3¢ cx we have

M of Ss T,y IKll2-Dini Ma (Il f11 ).

In particular, M*}K o I8 bounded from L2(S; X) to L>*°(S) with

#
M allz2(s:x0—12005) S5 T2,v 1 Kll2-Dini-

Proof. Let f € LP(S;X) N L*(S; X), s € S and fix a ball B 3 s with radius r. Take s’,s” € B
andlete =2cgcyr. Then

1 ar
dis',0=z—d(z,t)-d(z,s)=z—-p=2cxcyr=¢
Cd Cd
dis', sy <2cir=cile

Therefore, applying Lemma 2.8.4 and using the 2-Dini condition, we obtain

1Tk U510 ()~ Tk Ms\as O lyisv)
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1/2
<70y L s =K o) fo |5 )

el2 2 1 2 1/2
= ”’Y(L(sr,mw(d(s', 7 uB(s,dts, oy Olx o

I e — 1F@IE ar)"
<tov(Y o —_— 01% de)
= (B(s',21€)) Joiears nze2i®t X

SsTay Zw(Z i= 1)21[

<Tyy ||K||2-DiniM2(llfllx)(s)-

1/2
IO di]

J+le

where the last step follows from s € B(s’,2/*1
asin (3.4.1). Now, taking the essential supremum over s’,s” € B and the supremum over

all balls B > s, we see that

€) for all j € N and a similar computation

M#}K,af(s) <s T2y IKl2-piniMa2 (I fllx)(s),  s€S.

The weak L?-boundedness follows from the corresponding bound for M, in Proposition
2.2.1 and the density of L”(S; X) N L?(S; X) in L?(S; X). O

With only the 2-sublinearity of Tk left to check, we will now prove sparse domina-

tion, and thus also weighted boundedness, for the y-integral operators

Theorem 4.4.11 (Sparse domination for y-integral operators). Let X and Y be Banach
spaces with type 2 and let (S, d, 1) be a space of homogeneous type. Let p € [2,00) and
suppose K € ICY(L”"’O(S)) satisfies the 2-Dini condition. Then there is ann € (0,1) such
that for every compactly supported f € L (S; X) there exists ann-sparse collection of cubes
S such that

1/2
ITFS) sy Sxv.s.p Co (X (IFIx)30l0®) ses
QeS

with Cg := ||K||]C7(Lp.00(s)) + IKll2-pini- In particular, K € ICY(L"(S, w)) for all g € (2,00)
and w € Ag2 with

1 1
maX{ 2°q-2 }

1K licy wacs,wy Sx.v.spq Cxlwly

Proof. Since K is an 2-Dini kernel, it is also a 2-H6rmander kernel by Lemma 4.3.2 with

IKll2-H5rm <s I Kll2-Dini-

Therefore by Theorem 4.4.2 we know that T is bounded from L?(S; X) to L>®(S;y(S; Y))
with norm
1Tl 2— 1200 Ss,p (Tz,XTz,YIIKIIICY(LP,OO(S)) + TZ,Y”K”Z—Dini)-

By Lemma 4.4.10 we also know that /\/l#T o Isbounded from L2(S; X) to L>*(S) with norm

#
1M 2 r200 S5, 72,7 | Kl -Dini2
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for & > 0 large enough. Moreover for fi,..., f, € L(S; X) with disjoint support we have
for a.e. s € S that Txfi(s),..., Tk fn(s) have disjoint support as well and thus the 2-
sublinearity with constant 7 y follows from Lemma 2.8.5. The sparse domination there-
fore follows by applying Theorem 3.1.1 to Tx. The weighted bounds follow directly from
Proposition 3.2.4 and the density of boundedly supported L?-functions in L7(S, w; X)
forall g € [2,00). O

Remark 4.4.12.

(i) If we omit the type 2 assumption for X in Theorem 4.4.11 we can still conclude
that Tk is sparsely dominated by larger sparse operator

Fe Zmote)

In the proof one then has to skip the step where Theorem 4.4.2 is applied. This is
in particular useful when p = 2.

(ii) Apy2 is the largest class of weights one can expect in Theorem 4.4.11, since in the
case that X = Y =K, S =R and K(s, t) = k(s — t), Theorem 4.4.11 can be reduced
to a statement about deterministic convolution operators with positive kernel (see
Subsection 4.2.3). It is standard to check that the weighted boundedness of for
example

Tf(s):= f Ade= M=t £(p) dt, s€S,
S

for all A € R, implies the Ap-condition, see e.g. [Gral4a, Section 7.1.1]. Also the
dependence on the weight characteristic is sharp, see Proposition 4.4.14 below

Under a Dini type condition we obtain the following further characterization if Y isa
Hilbert space. The proof is immediate from Corollary 4.4.9, Theorem 4.4.11 and Remark
4.4.12(1).

Corollary 4.4.13. Let X be a Banach space and Y be a Hilbert space. Suppose k : R? —
L(X,Y) is strongly measurable and satisfies the 2-Dini condition. Let K(s,t) := k(s—t).
Then statements (i)—-(iii) in Corollary 4.4.9 are equivalent to

(iv) K€ Ky(LP(RY, w)) forall p € (2,00) and all w € Ay».

In particular we have for all p € (2,00), w € Ap/2 and Ay as in (i) of Corollary 4.4.9:

b7}

[T

max
”KHICY(LP([Rd)) = Cp,d (Ap + ”I(”w—DiniZ)[W]Aq/2

We will show next that the dependence on the weight characteristic [w],,, in the
bounds for Tx in Theorem 4.4.11 is actually optimal. Therefore Theorem 4.4.11 can be
thought of as a y-analog of the A,-theorem in the deterministic setting.
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Proposition 4.4.14. Let X and Y be Banach spaces, p € (2,00) and 3 = 0. There exists a
kernel
. md 5 d . d
K:R* xR\ {(s,5) :seR} - L(X,Y)

satisfying the assumptions of Theorem 4.4.11 such that if for all w € Ap;> we have

p
”K”ICY(LV([Rd,w)) S [w]Aplz’

then = max{3, 753 }.

Proof. By considering one dimensional subspaces, we may assume without loss of gen-
erality that X = Y =K. Define

(s1l+16D'
|(Us1l, ) + (1], 1)) 47072

Then by Lemma 4.3.3 we know that K is a 2-standard kernel.
Set RY := {(s1,3) e Rx R4 : 51 = 0}, R := R? \R¢ and define for g € (1,00) and f €
LI®RY)

K((s1,9), (61, 1)):= (s1,9),(n, ) eRxRI7L,

I'(d+1)/2) s1+h
n(d+1)/2 M |S+ t|d+1

T f(s):= f(ndr, seRr4.

Then Tj is a bounded operator on Lq(Rf) for all g € (1,00) with

1

1 T11l ;4 ga D= sintla)
Wra@d)—L9®?) sin(n/ q)

by [Osel7, Theorem 1]. For g € L” (R%) we have

I T8Ny gay = 1Tk (8 Lt +& L)}, ) + 1 T (€ Mgt +8 1),
~ pl2
=g | Tlh”Lp/Z(Ri)
where h(s) :=|g(s) + g(—s)l2 forse [R{f. Therefore
1
- 1/2 _
”K”]CY(LP([Rd)) =d " Tl ”LI’/Z(Rf)—’L”/z(R‘f) - Sin(2n/p)1/2 ’
so K satisfies the assumptions of Theorem 4.4.11. Moreover
) 1K i, 2p ey 1
ag = sup{a =0:Ve>0,limsup —— = oo} ==
p—2 (p_z)—a-hs 2
_ 0:Ves ol 1Kl wr@ey 1
YK = sup{y =0:Ve>0, ul}Lsolip T = oo} =5

Thus by [FN19, Theorem 5.2] it follows that if

B
”K”/CY(U’([Rd,w)) S [w]Aplz’

then

ﬁzmax{aKﬁ,)/K}zmax{ﬁ,%}. O
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4.5. y-FOURIER MULTIPLIER OPERATORS

If S = R% and K is of convolution type, i.e. K(s, ) = k(s—t) for some k: R\ {0} — L(X, ),
a sufficient condition for the 2-Hormander, 2-Dini and 2-standard kernel assumptions
can also be formulated in terms of smoothness and decay of the Fourier transform of k.
For the 1-Hormander, 1-Dini and 1-standard kernels assumptions this is classical, see
e.g. [HNVW2x, Gral4a, Ste93] and Section 3.5. The r-Hérmander kernel assumptions
for r € [1,00] have been treated by similar methods in e.g. [RV17, Section 5.1]. In this
section we will check the 2-Dini kernel assumption for k in terms of smoothness and
decay of the Fourier transform of k, for which we will adapt the approach for 1-Dini
kernels and singular integral operators in [HNVW2x] to the 2-Dini kernel and y-integral
operator setting. Using Theorem 4.4.11 this leads to an extrapolation theorem for y-
Fourier multiplier operators, which we will now introduce:

Definition 4.5.1. Let X,Y be a Banach spaces. For m € L2°RY; £(X,Y)) we define the
y-Fourier multiplier operator T}, for f € S(R%; X) and ¢ € S(RY) by

TnfS)o=F Y(m-(F+@)s), seRr’.
Let p € [1,00) and let w be a weight. We let /\/ly(Lp([R{d, w)) (respectively MY(L”'OO([Rd, w)))
be the space of all m € L2°(R%; £(X,Y)) such that T, extends to a bounded operator
from LP(R%, w; X) to LP (RY, w;y(R%; Y)) (respectively LP*°(R?, w;y(R%; Y))). We norm
these spaces by
Il Ay wr @ wy) = 1 Tl Lo @, w330~ L @2, wiy @ )y
||m||My(L”'°°(Rd,WJ) =W Tmll Lo e, ;30— Lo @, wiy @5 1))

If w =1 we omit it.
Remark 4.5.2.

¢ Note that the inverse Fourier transform of m - (]?* @) in Definition 4.5.1 is a well-

defined function, as we can estimate
lm- F % @l 1 ayyy < 1l 2oo g 206, vy | # @l 2 as ) <00 (4.5.1)

where we used Holder’s inequality for Lorentz spaces in the first step and the in-
clusion [ * ¢ € S®R?; X) — L2 (R%; X) in the second step.

e Anme MY(L”'OO([R‘Z , w)) will typically not be a bounded function, but rather sat-
isfy an estimate of the form

Im@ll < Aplel"%2,  &eR\ {0}

for some Ap > 0. This implies in particular that m € L2°(R4; £(X,Y)), which we
included in our definition of MY(L”'“’([Rd, w)) to ensure that Ty, is well-defined
on Schwartz functions.
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For compactly supported m we can easily connect y-integral operators and y-Fourier
multiplier operators, as we will show in the following proposition.

Proposition 4.5.3. Let X and Y be Banach spaces and let m € L2°@RY; £(X,Y)) be com-
pactly supported. Then for all f € SRY; X) and ¢ € SRY) we have

T f(s)p = fw ks—nf(De(n, seR?,

where k = m.

Proof. Since m is compactly supported, we have m € LY(R?; £(X,Y)), so i is well-defined.
Fix f € S(R?; X). Using Fubini’s theorem, we can directly compute that for any ¢ € S(R%)
and a.e. s € R?

Tinf(s)p = fR  mE)(f @)@ dg
_ =2mit-é 2mis-&
—fw m(é)(fwf(r)cp(t)e d) €€ dg
— 2mi(s—1)-&¢
_fw(fwm@e d¢) f((n) dt
=f m(s—1) f(H)e(t) dt. 0
Rd

Using smooth Littlewood-Paley functions we will reduce considerations to the com-
pactly supported case. For this fix a Schwartz function ¢ € S(R) such that 1 BO,1) < o<
1B(0,2) and set

P& =) -pRo), R4,

Theny €S (R%) is nonnegative and evidently
~ 1
() suppp{feRr?: - <i¢l <2},

(i) Y @@ 7o =1foralléeR?\{0}.
jez

Forany m € L2°RY; £(X,Y)), j€Zand N € Nwe define

m;j) =77 Hm©), FeRY, (4.5.2)
mN@©:= Y mi©=(deN)-¢NO)m©, fer?, (4.5.3)
-N<jsN

Then both the m;’s and the my’s are compactly supported away from the origin, which
in particular implies that m;, mN e L'RY; L(X, V).

We will now show that the LP-boundedness of a Fourier y-multiplier operator Ty, is
equivalent to the uniform boundedness of the truncations T ,,~.

Proposition 4.5.4. Let X and Y be Banach spaces, assume that Y has finite cotype, let
p € [2,00) and let w € Ap. Then the following hold:
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@) Ifme M, (LP(R?), then mM € M, (LP (RY) for all N € N with
I g, o @ty < NP1 1y 1720 g, 10 oy
(i) IfmN e MY(L”([REd, w)) uniformly for N €N, then m € M, (L? R4, w)) with
Il g, e @t wny =< 1N U 0 @2 w0))-

Moreover these statements are valid with LP replaced by LP**°.

Proof. We will only prove the lemma for L?, the proof for LP'*° is similar. For (i) we note
that for f € S(R%; X) and all Qe S(R%) we have

T f()p = F (2N =N m(f = 9))(s)
= [ @rts=0-gunts- 1) Tufi0rp
= (¢g-n * Tonf = pon * T f) (),
where ¢ (s) := A~4¢p(171s). By Young’s inequality we have
62 % T f || o syt vy < 101ty | T f | o ety

so by density we deduce that m” € M,y (LP (R%)) with the claimed estimate.

For (ii) we know by the properties of our smooth Littlewood-Paley functions that
mN (&) — m(&) forall & e R\ {0}. Using (4.5.1) we can apply the Dominated convergence
theorem to obtain for f € S®RY; X), Qe S[®RY) and a.e. s € R? that

. T N (Fur 2mis-&
Jim T, f(9p = lim fR mV©-(Fr 9O e dg
- fR @+ P T dE = T (9.

Let(pp)3e, €S (R%) be an orthonormal basis of L?(R%) and (YK)32, @ Gaussian sequence.
Then, using that y.,(R%; ¥) = y(R%; Y) as Y has finite cotype, we have by Fatou’s lemma
fora.e. se R4

” Tmf(s) ”Y(Rd?y) = 2Q:Y)

<sup hmme Z YT f( @i

neN (@)

< 11m1nf|| N f(S) HY(W oy
Using Fatou’s lemma once more, we see that
[ Tmf”Lp(Rd w: Y(Rd )= llmll’lf” T Nf”Lp([Rd,w;y(le;Y))'

As S(R%; X) is a dense subspace of L (R%, w; X), the proposition follows. O
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In view of Proposition 4.5.4 we can focus on the truncations m; and m" as defined
in (4.5.2) and (4.5.3). We start with a lemma that transfers the decay of m to decay of the
Fourier inverse of the truncated multipliers m;.

Lemma 4.5.5. Let X and Y be Banach spaces and let m: R4\ {0} — L(X,Y) be strongly
measurable such that

10%m (&)l < AglE[~4"2714, EeRIN(0}, lal<|d/2]+1

for some Ay > 0. Then for any k; := mj, where mj is defined as in (4.5.2), we have for
0O<sn<|d/2]+1

IsI”" Il ()]l Sq Ao D)2, seR?, (4.5.4)

i _ . i 1
IsI"llkj (s = ) = k; ()| Sa Ao @) > " min{2/|2], 13, 1= sl 4.5.5)

Proof. Fix jeNand |a| < |d/2] + 1, then we have forall { € R4\ {0} that

*m;@) =% (R TOm@) =Y (Z)Z‘jﬁ6ﬁ1l7(2‘j6)6“‘ﬁm(€).
B=<a

Therefore it follows for all & € R% \ {0}

fotms@l < T [l 11t 250

B=a

< Ap Z (a)zjlﬁ(zjl)—d/2—|a|+ﬁ| (4.5.6)
f=a
Sa Ao 1)1,

Now take 0 < n < |d/2] + 1 and define a := ne; for some 1 < [ < d. Then, using (4.5.6)
and the fact that m; is supported in the ball B(0, 2J+1) we have

suplls®k; ()l Sa 10“m;ll 11 ga,cx,vy)
seRd

4.5.7
Sa 107 Ml oo 20,y 1 50,20 I e (4.5.7)

<4 Ao (2j)—d/2—n (2j+1)d‘

So Isi™1lk; ()]l Sa Ao (2/)@27" for all s € R? and 1 < I < d, from which (4.5.4) follows
readily.

Now fix ¢ € R and note that kj(-— 1) = kj(-) is the Fourier transform of the function
& (€214 —1)m;(§). Suppose that || <27/, then since

0#f=<a
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we have that

sup |07((€?™*" = )m; (@) Sa Ao[2/ 11221+ Y (“)|t|ﬁ(zf)‘d’2"“‘ﬁ')
teRd 0#B<a

<a Ao2l|t]- (27)~ 4/ 1al,
So reasoning analogously as in (4.5.7), we obtain that
IsI™ 1k (s = 1) = kj ()| Sq Ag2/[2] - (214>~

Nowif|f]| > 27/ we simply use the triangle inequality and (4.5.4) to deduce for all | s| = 2|¢]
that
lkj(s— 1) = ki ()l < Ikj(s = Dl + 1k ()
Sa Ao @D (js— "+ |57

Sa Ao @157,
Combining the estimates for || <27/ and |¢| > 27/ yields (4.5.5). O

Using Lemma 4.5.5 we can use estimates on the derivatives of m to check the 2-
standard kernel estimates for the kernels associated to m~ independent of N € N, as we
announced at the start of this section.

Proposition 4.5.6. Let X andY be Banach spaces and let m: RA\{0} — L(X,Y) be strongly
measurable such that

10%m(&)|l < AglE|~4"2714, EeRIN(0}, lal<|d/2]+1

for some Ay > 0. Then for any N € N the kernel KN (s, t) := m"N (s— t), where m" is defined
as in (4.5.3), is a 2-standard kernel with

N
1K™ Ml2-std Sa Ao-

Proof. Fixee€ (0, %) and define ¢ = [d/2] + 1. For je Nset k; := nvij, where m; is defined
as in (4.5.2). Since the k;’s satisfy (4.5.5) by Lemma 4.5.5 and using £ —d/2 € {%, 1}, we
have for all |s| = 2|¢| that

1N (s =1 — kN ()

Sado( X @)+ Y

2J<|s|1 Is|-1<2/<|#|~!

7l 1 (Itl)f—dlz 1 (Isl) (|t|)l—d/2 1 )

=d 0(——+— a2 08| Tl T
Is| [s4/2 " \|s] |42 2 e ) s |s|d/2

(2j)d/2—[+l

EFTLAPY

(zj)d/Z—[ )
20zt

s

canf2)
~e,d A0\ T T
¢ s|) |s|d2

from which (4.3.5) and (4.3.6) for K follow by a change of variables. O
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Remark 4.5.7. 1f in Proposition 4.5.6 either one of the following assumptions hold:
e diseven
¢ d is odd and we have smoothness of m up to order [d/2] + 2

a slightly simpler argument than the one presented could be employed. On the other
hand, if d is even one can deduce a strong operator topology version of the 2-H6rmander
condition for KV using only |d/2| derivatives of m and nontrivial Fourier type of Y. We
refer to e.g. [FHL20, Hyt04, HNVW2x] for such results for classical Fourier multiplier
operators and [RV17, Section 5.2] for the r-Hormander condition of K for r € [1,00].

With the kernel estimates of Proposition 4.5.6, the approximation result of Proposi-
tion 4.5.4 and the connection between y-Fourier multiplier operators and y-integral op-
erators of Proposition 4.5.3 we can now use the sparse domination result in the previous
section to deduce a weighted extrapolation theorem for Fourier y-multiplier operators.

Theorem 4.5.8. Let X and Y be Banach spaces with type 2 and let p € [2,00). Let m €
My (LP(R?)) be such that

10%m (&)l < AglE|~4"2719, EeRIN(0}, lal<|d/2]+1

for some Ay >0. Then m e MY(Lq([Rd, w)) forall g € (2,00) and w € Ago with

Nl—

1
rq-2
1 (” m”MY(L.”"’O(Rd)) + AO)

max

Imllagy o @e,wy SXv.pga (Wl ,

Proof. Let m" be defined as in (4.5.3). Then by Proposition 4.5.4 we know that m" €
My (LP=(RD) for all N € N with

N
”m ||My(Lp'°°(Rd)) S ”m”/\/ly(Lp,OO(Rd))-

Moreover by Proposition 4.5.3 we know that T,,~ is a y-integral operator with kernel
KN (s, 1) := m™ (s - 1), which is a 2-standard kernel by Proposition 4.5.6. Therefore, by
Theorem 4.4.11, it follows that m® € MY(Lq (R?, w)) for all q € (2,00) and w € Ag/> uni-
formly for N € N. So we also have that m € M, (L9 (R%, w)) forall g € (2,00) and w € Agr2
by Proposition 4.5.4. The norm estimate follows from the norm estimate in Theorem
4.4.11 combined with the estimate || KV ||5_¢q < Ao from Proposition 4.5.6. O

Remark 4.5.9. In Theorem 4.5.8 we assume a priori that Ty, is weak LP-bounded. For
(classical) Fourier multiplier operators one can deduce a priori LP-boundedness us-
ing the operator-valued Mihlin multiplier theorem (see also Section 3.5). For y-Fourier
multiplier operators such a theorem is not (yet) available. It would be very interesting
to be able to give sufficient conditions on a multiplier m: R%\ {0} — L(X,Y) such that
me MY(L”"’O([Rd)) for some p € [2,00).
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4.6. EXTRAPOLATION FOR STOCHASTIC-DETERMINISTIC INTEGRAL OPER-
ATORS

In this final section we will study singular stochastic integral operators in the important
special case X = Y = L9(O) for g € (1,00) and a space of homogeneous type (O, d, ).
In this setting a stochastic singular integral operator Sk with kernel K: (0,T) x (0, T) —
L(L9(0)) can often be represented by a kernel k: (0, T) x O x (0, T) x @ — C in the form

T
SKG(t)(x):SkG(t,x):f fok(t,x,s,y)G(s,y)dydWH(s), (t,x) eER. x O
0

for adapted processes G: Q x (0, T) x O — C. To study the boundedness of these op-
erators, as in Proposition 4.2.5, we can reduce to the case H = R. Furthermore, as in
Proposition 4.2.3, we may equivalently study the boundedness of y-integral operators,
or in this setting rather L?-integral operators, of the form

Tif(t,x):= (SHfO k(t,x,s,)f(s,¥) du(y)), (t,x)€(0,T)xO.

from LP((0,T) x ©) to LP((0, T) x O; L*(©?)). The main result of this section will be the
weighted L”((0, T), v; L9(O, w))- and L9(O, w; L ((0, T, v)))-boundedness of T, assum-
ing unweighted L2((0, T) x ©)-boundedness and a (2, 1)-Dini condition on k. From this
result we will deduce Theorem 4.1.3 in the introduction.

In the remainder of this section we will fix a 2-product space of homogeneous type

(S» d»”) = (Slrdlrul) X (SZde)IJZ)

in the sense of (4.3.1). For the applications we have in mind it suffices to take S; = (0, T)
with metric |-— "™ for some m € N and (Sy, do, 1) = (O, d, p) as e.g. a Lipschitz domain
in R?. Our main result is a follows:

Theorem 4.6.1. LetK: S xS — C be a (2,1)-Dini kernel. Suppose that
Tif(s):=(n Hfs K(s,0f(0) dpia(t2)),  s€S.
2
is a well-defined, bounded operator from L*(S) to L>*(8;L?(Sy)). Then for p € (2,00),
q € (1,00) and CT = ” TK”LZ(S)A'LZ'OO(S;LZ (Sl)) + ”K”(Z,l) -Dini ﬂ’lefollowil’lg hold.'
(i) Forw € Ap2(S) we have

1
max{ﬂvl}

1Tk Lr(s,w)—Lr(s,win2(s) Ssp C W, )
(ii) Forve Ap;2(S1) and w € Ay4(S2) we have

I Tk W 2p Sy, 0509 (S0, 0) =17 (51,019 (S, w;12(5)) < CT UV A, 0050 [Wags2)),  q>2,
Tk La sy, w512 (1,00 — L3Sy, w3LP Sy, 0512 (51)) = CT PUVI A, 2081, [W]ag(52),

where ¢: R2 — R, depends on S, p, q and is nondecreasing in both variables.
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We start by proving Theorem 4.6.1(i), which is a consequence of the abstract domi-
nation principle in Corollary 3.1.2.

Proof of Theorem 4.6.1(i). In order to apply Corollary 3.1.2 with p; = p,=2and r =1
it suffices to show that the sharp grand maximal truncation operator M?K' o L2(S) —
L>°°(8) is bounded for sufficiently large a > 0. Fix a boundedly supported f € L?(S),
takese Sand a = 303 cx with ¢4 the quasi-metric constant and ck the constant from the
definition of a (2,1)-standard kernel. Take a ball B = B(z, r) containing s. For s',s"” € B
and t € S\ aB we have

1
dis', = —d(z,t)-d(z,5) = & 2cqckT = p,
Cd Cca

d(s',s")y<2cqr = £

CK

So defining
Bj=B(s',2/" p)\ B(s',2/ p),

we have by the (2,1)-Dini kernel assumption on K, a similar computation as in (3.4.1)
and Holder’s inequality

T (f 11a8)(8) = T (f 1s1aB) (8| 125,

, " 2 172
S(_[ (f |K(s',0) = K(s", 0) f ()| 1s\aB (D) d,uz(tz)) d,lll(fl))
s \Us,
x d(s',s")\ 1 f (D11, (1) 2 172
];)(/S(/Sw( d(s’,t)) PN dpa(t)) dpn (1)

) : If (D 1g(g i+ (8) 2 172
=) w(Z_J_l)(f (f . Bl(jz’zj P . d,uz(tz)) d,Ul(tl))
j=0 $1:82 uy (B(s],27p)) " “ 2 (B(sh, 21 p))

1/2
F®I? dp()

IA

<s IKll2,1)-Dini f _
2,1) lnl( B(S',2j+lp) p(B(S’,ij))

<s 1Kl 2,1)-Dini M2 f (5)

So taking the supremum over all s, s” € B and all balls B containing s we find that
Mo £(9) Ss 1Kl 2,1)-pini M2 (11 11 x) (5).

Thus, by the weak L?(S)-boundedness of M, (see Proposition 2.2.1) and the density of
boundedly supported functions in L?(S), we deduce that M#T’ o 18 weak L?-bounded,
which proves (i) of Theorem 4.6.1 O

If we would now employ Rubio de Francia extrapolation to deduce (ii) of Theorem
4.6.1, we would be constrained to the case g > 2 and w € Ag/2(S2). In order to obtain the
full statement of Theorem 4.6.1, we will employ Calder6n-Zygmund theory once more,
this time only in the S;-variable. For this we will need the following lemma.



4.6. EXTRAPOLATION FOR STOCHASTIC-DETERMINISTIC INTEGRAL OPERATORS 119

Lemma4.6.2. LetK: S xS — C bea (2,1)-Dini kernel. Suppose that
T f(8) = (&H[s Kis, Df () dua(1), €.
2

is a well-defined bounded operator from L2(S) to L>°°(S; L2(S1)). Then for p € (2,00) and
w € Ap2(Sy) the kernel

Ka: S x Sp\{(s2,52) : 52 € Sa} — L(LP (S1, w), LP (S1, w; L*(S1)))
given by
Kz (s2, 82) f(s1) := K((s1, 82), (-, 2)) f (), $1€87.

is a 1-Dini kernel with

1
. = .
1Kz 111-Dini Ss,,p (WY |, (s)) 1Kl @ 1)-Dini-

Proof. We will first show the 1-Dini condition for K>, which we will afterwards use to
check that we have

Ko(s2, 1) € L(LP(S1, w), LP (S1, w; L*(S1)),  $2 # . (4.6.1)

Fix s, 17, té € S, such that 0 < dy (1, té) < %d(sz, ), set r := dy (s, t2) and define for
feLP(S,w)

g(s1, 1) := K((s1,82), (11, 22)) f (1) — K (51, 82), (11, 1)) f (£1), 1,01 € S1.

Then we have for any s; € S;, using the (2, 1)-Dini kernel assumption on K, the submul-
tiplicativity of w and a similar computation as in (3.4.1),

g1, )72,
da (12, 17) 2 |f(r)I?
Sfdl(sl,tl)srw( ) 11 (BGs1, 1) -2 (Blsy, )2 ()

f w(dz(fz»l‘é))z |f (1) [?
S0d2ir<dis =2 2ir w1 (B(51,271)) - o (B(s2,271))?
dz(l‘zyl‘é))Z' M, f(s1)?

r 1 (B(sz,1))?

o0

+ dui(n)

<s, (w(1)2+]§)w(2j)2) o

dz(tz,tg))z 1

. 2
do($2, 1)) V(s2, 12)? M;f(s1)

< 1Kl -pini- oo

Thus, taking LP(S1, w)-norms for p € (2,00) and using Proposition 2.3.2(v) we obtain
(4.3.5). The proof of (4.3.6) is similar and an inspection of the involved constants yields

1
o p=2 -
1Kzl -pini Ss1,p (W1, (s, 1Kl 2,1)-Dini-
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We conclude the proof by checking (4.6.1). Take s, # t» € S, f € LP(S;, w), and r > 0.
By Theorem 4.6.1(i) we have for

gw) := f(u1) - 1Bz, (U2), ues
that

I Tk & - 1o, || Lr(s.wiI2(sy) <8 Te.pow 1811Lr(s,w)

= o (B2, 1) P U fll o sp,0)-

Therefore, if r is such that r < idz(&‘;, t) for all s} € B(s, 1), we have

1Kz (52, 2) fll 1o sy, wi 25,

< Ko(sh, ) f dpa() dpa (5|
”]e?(SZ,r)][B(tg,r) 2 Zf Hallz) CH215 LP(S1,w;L%(S1))

+ |][ (Ka(s2, 12) = K285, 1)) f dpta(s5)
B(sz,1)

LP(S1,w;L2(S1))

+H][ ][ Ko(sh, ) — Ka(sh, t)) f dua(8) d (s’)‘
B(sz,1) B(tz,r)( 2052 12) = K53, 2))  dpz t) dpia (s LP(S1,w;L2(S)

- “ Tx 8 1B(s,1) “LP(S,w;LZ(Sl))
T pa(B(s2, YP - up(B(t2,1))

r 1
+||K2||1-Dir1i'”f”LV(Sl,w)‘w(dz(Sz tg))V(Sg )
r 1
w
(dz(Sé, tz)) V (s}, t2)

+ 1Ko 111 -pini - 1 f 2P (S1,w) ][ dua(sh)

B(s2,r)

SS,TK,p,w,r,Sg,tz ”f"LP(S],w)-

It follows that K» (s, #2) is indeed a bounded operator from L” (S, w) to LP(Sy, w; L2(S)).
O

Now using the A-theorem proven in Section 3.4 and Rubio de Francia extrapolation,
we can prove the second part of Theorem 4.6.1.

Proof of Theorem 4.6.1(ii). We will first prove the second inequality. Take v € Ap/2(S1)
and f € LP(S, v) with bounded support and set

Yo:=L"(S1,v),
Yy = LP(S1, v; L2 (S1)).

We view f as a function in LP(S,; Yp) and note that T is bounded from LP(S,; Yp) to
LP(Sz; Y1) by part (i) and the fact that v- 1, € A,/2(S). For s; € S, we have

Tk f(s2) = ((Slr f) H[s K((s1,82), (t1, £2)) f (£2) dtz)
2
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= f Ky (s2, &) f(82) dt.
S2
By Lemma 4.6.2 we know that

Ky 82 x 82\ {(82,82) : 52 € So} — L(Yp, Y1)
1
is a 1-Dini kernel with [ Kz [|1.pini <s,,p [V] Z;fz(sl) 1K1l 2,1)-sta- Thus by Theorem 3.4.1 we

deduce for w € A4(S>)

max{ﬁ,l}[ ]max{ﬁ,l}

||TK”L‘?(SZ,w;Yo)—»L‘?(Sg,w;Yl)SS,p,qCT[V]An/Z(Sl) Wla sy (4.6.2)

which proves the second inequality of (ii).
For the first inequality of (ii) we note that by (4.6.2) and Fubini’s theorem we have for
q>2,ve Ag;2(S1) and w € Ay(S,) that

max{zl3,1)  max(zly,1)

| Tkl zacsy,v;20)—1a(S1,v52) = Cr [V]AW(SI) Wla, s,
with Zy = L9(S,, w) and Z; = L9(Sy, w; L%(S1)). Therefore the claim follows from the
Rubio de Francia extrapolation in Theorem 2.3.3. O

Remark 4.6.3.

¢ Note that, even if we are only interested in estimates with the time variable S; on
the outside, in the proof of Theorem 4.6.1(ii) we need to first put the time variable
S1 on the inside to deduce the optimal result with S; on the outside. This is due
to the fact that we would otherwise only be able to obtain weighted estimates for
we Agi2(S2).

e We need to start with a weak L2-estimate in Theorem 4.6.1, whereas results like
Theorem 4.4.11 require a weak LP-estimate for some p € [2,00). The reason for
this dichotomy is that we do not see a way to extrapolate weak L”- to weak L2-
boundedness for the operators in Theorem 4.6.1. Fortunately, in applications the
L?-estimate is the easiest to establish.

Remark 4.6.4. The weight dependence in 4.6.1(i) is sharp, which for 2 < p < 3 follows
from Proposition 4.4.14 by taking S, = @ and for p = 3 by taking S; = @ and the sharp-
ness of the A,-theorem. However, the weight dependence one obtains in the proof of
the first inequality in Theorem 4.6.1(ii) is not sharp, due to the use of Rubio de Francia
extrapolation. One could also do the extrapolation with Calderén-Zygmund theory; i.e.
using similar arguments as in Lemma 4.6.2 and the first part of the proof of Theorem
4.6.1(ii). This would yield the first inequality in Theorem 4.6.1(ii) with

1 1 1
p(s, 1) = Cg p,q- s"X722 MHTTH g peR,,
which is sharp in terms of the weight dependence. The weight dependence one obtains
in the proof of the second inequality in Theorem 4.6.1(ii) (see (4.6.2)) issharpfor2 < p <
3, but it is not sharp for p > 3 as can be seen from Theorem 4.4.11 by taking S» = @.
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Theorem 4.1.3 for mixed stochastic-deterministic integral operators now follows from
Theorem 4.6.1 using a similar argument as in Propositions 4.2.3 and 4.2.5.

Proof of Theorem 4.1.3. We will only prove Theorem 4.1.3(i) using Theorem 4.6.1(i), the
deduction of Theorem 4.1.3(ii) and (iii) from Theorem 4.6.1(ii) is similar. For f € 207
define

Tif(t,2):= (s~ fo K((t,2), (5 9)f (0 du), (60,

Then by applying the It6 isomorphism (Theorem 2.9.1) twice and the L?-boundedness
of Sk in between, we have for any h € H with ||k g =1

l TKf"LZ(OT;LZ(o'T)) =Sk (f® h)"LZ(QxOT)

= I8kl 2, @x0rm-12@x0p If®hll2oxomm = I1flzon-

Thus, Tk is a bounded operator from [2(O7) to L2(O7; L%(0, T)), which implies by The-
orem 4.6.1(i) that
Tx: LP(Or, w) — LP (O, w; L*(0, T))

is bounded for p € (2,00) and w € Ap/2(O7) with norm Ag as in Theorem 4.6.1(i). Now
take g € Lfg (Q; LP(Or, w;y(H, X))), then by applying the Ité6 isomorphism (Theorem
2.9.1), the y-Fubini theorems (Proposition 2.8.6 and [HNVW17, Proposition 9.4.9]) and
Lemma 2.8.4, we obtain

ISk gl r ;L ©r,w) =p.r (SHfOK('»(&y))g(S’Y) dN(J’))

LT (Q;y((0,T); H,LP (Or,w)))

Spr

(s — fo K(+(s1)8(sy) du(y)] ”ﬂH,Um;LP( O 20

< Ao lIglly(m,Lr @11, w))

=pr Ao lgllzr 1P O, w;m)»
proving the theorem. O

Remark 4.6.5. We could also allow the kernel in Theorem 4.1.3 to be operator-valued,
ie. K: Or x Or — L(X,Y) for Banach spaces X and Y, which would e.g. allow one to
study a system of SPDEs with constants independent of the size of the system by using
X=Y=C"



D

STOCHASTIC MAXIMAL REGULARITY

This chapter is based on the second half of the paper

[6] E. Lorist and M.C. Veraar. Singular stochastic integral operators. To appear in
Anal. PDE, 2020.

It has been edited to make full use of the stochastic-deterministic extrapolation theory
developed in Section 4.6.

Abstract. In this chapter we apply the results of Chapter 4 to obtain p-independence and
weighted bounds for stochastic maximal LP -regularity both in the complex and real inter-
polation scale. As a consequence, we obtain several new regularity results for the stochas-
tic heat equation and its time-dependent variants on R% and on smooth and angular
domains. We also treat applications to Volterra equations and show the p-independence
of the R-boundedness of stochastic convolution operators

123



124 5. STOCHASTIC MAXIMAL REGULARITY

5.1. INTRODUCTION

In this chapter we will apply the Calderén-Zygmund theory for stochastic singular in-
tegral operators we developed in Chapter 4 in the study of stochastic partial differential
equations (SPDEs). In particular we will study maximal regularity estimates for stochas-
tic evolution equations. Many SPDEs can be analysed as stochastic evolution equations
by using functional analytic tools. We refer to the monograph [DZ14] and the papers
[Brz97, NVWO08].

Let T € (0,00] and consider the following linear stochastic evolution equation on a
Banach space X:

du+ Audt=GdWxg on (0,7),
(5.1.1)

u(0) =0.

Here (A(f))te(o,1) is a family of closed operators on X, H is a Hilbert space, Wy is H-
cylindrical Brownian motion and G: (0, T) x Q — y(H, X) is adapted to the filtration .#
associated to Wy. In this chapter we will focus on these linear equations. Nonlinear
stochastic evolution equations can be studied by using suitable estimates for the linear
case (see [Brz97, DZ14]). In particular, stochastic maximal regularity estimates have
been applied to nonlinear SPDEs in [Agrl8, AV20a, AV20b, Brz95, Hor19, KK18, Kry99,
NVW12a, PV19].
The mild solution to (5.1.1) is given by

t
u(t)=f S(t,9)G(s) dWg(s), t€(0,7),
0

where we have assumed that —A generates the strongly continuous evolution family
(S(t,8))o<s<¢. In the case A does not depend on time, one has that S(z,s) = e~ =94 g
a strongly continuous semigroup. For details and unexplained terminology on semi-
groups and evolution families we refer to [EN00, Lun95, Paz83, Tan79, Yag10].

Definition 5.1.1 (Stochastic maximal regularity). Let X and Y be UMD Banach spaces
with type 2, H a Hilbert space, p € [2,00) and let w be a weight on (0, T). We say that A
has stochastic maximal LP ((0, T), w; Y)-regularity and write A€ SMR(LP ((0, T), w; Y)) if
forall Ge L; (Qx(0,T7), w;y(H, X)) the mild solution u to (5.1.1) satisfies

lullr@x©,1),w;v) S IGlliLr@x 0, 1), wiy(H,X)- (5.1.2)
We omit the weight if w = 1.

Abstract properties of stochastic maximal regularity have been studied in [AV20c]
and extensions to the case of time-dependent A have been obtained in [PV19]. An im-
portant choice for Y is the homogenous fractional domain space D(A'/?) with norm

Ixll g2y = 1A 2 x1 x.
( )
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In [NVWI12b] it has been shown that under certain geometric restrictions on X (see
also Section 5.5), the boundedness of the H**-calculus of angle < 7/2 of A (see [Haa06,
HNVW17]) implies

Ae SMR(L”([RJr;D(A%))).

Stochastic maximal regularity can be reformulated using the stochastic integral op-
erators of Definition 4.2.1. Indeed, written out explicitly, the estimate (5.1.2) becomes

t
Ht'_)fo S(I,S)G(S)dWH(S)” SNGllr@x 1), wiyH,X)

LP(Qx(0,T),w;Y)
so Ae SMR(LP (w; Y)) ifand only if K € ICVHV(L”((O, T), w)) for
K(t) S) = S(t, S) IOSS<L‘ € 'C(Xr Y))

where we implicitly assume that S(¢, s) maps X into Y. From Theorem 4.1.1 we find that
in many instances stochastic maximal LP-regularity for some p € [2,00) implies stochas-
tic maximal L9-regularity for all g € (2,00). In the time-independent setting we obtain
the following result:

Theorem 5.1.2. Assume — A is the generator of a bounded Cy-semigroup on a UMD Ba-
nach space X with type 2. Suppose A € SMR(LP (R, D(A'/?))) for some p € [2,00). Then
forall g € (2,00) and w € Ag(R.) one has A € SMR(LY (R, w; D(AY2))). In particular,
the mild solution u to (5.1.1) satisfies

1Ay < (w27 g
UL QxRy,w;X) S LW Agia®y) LIQx Ry, w;y(H,X))-

A more general result is contained in Theorem 5.2.1 below. For this we should note
that the above L”-boundedness assumption implies sectoriality of A of angle < /2 (see
[AV20c, Theorem 4.1]). Theorem 5.1.2 with w = 1 can be seen as the stochastic analogue
of a similar statement for deterministic maximal regularity in [Dor00, Theorem 7.1]. The
weighted estimates are a stochastic version of [CF14, Corollary 4] and [CK18, Theorem
5.1].

For many differential operators A one can directly apply the results in [NVW12b,
NVW15c] to obtain stochastic maximal L”-regularity. However, there are numerous sit-
uations where this is not the case, for example if:

(i) A does not have a bounded H*-calculus.
(i) There is no explicit characterization of D(AY2) known.
(iii) A(#) and its domain D(A(t)) are time-dependent.

(iv) X does not satisfy the R-boundedness condition of [NVW12b, NVW15c].
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In Corollary 5.2.3 and Remark 5.2.4 we give a situation where (i) occurs, i.e. we give an
example of an operator A without a bounded H*-calculus which has stochastic maxi-
mal L”-regularity. In Example 5.2.15 both (i) and (ii) are open problems. In Section 5.3
we present applications to certain non-autonomous problems where (iii) occurs and in
Theorem 5.2.5 we have avoided the geometric restriction mentioned in (iv).

The use of temporal A,/ ,-weights in stochastic maximal L”-regularity is new. In
most of the results in [NVW12b, NVW15c] such weights can also be added without caus-
ing major difficulties, but it is very natural to deduce this from extrapolation theory.
Moreover with our method we actually obtain sharp dependence on the Ag/>-charac-
teristic. Power weights of the form t® have already been considered before in both the
deterministic (see [KPW10, PSW18]) and stochastic (see [AV20a, AV20b, AV20c, PV19])
evolution equations and can be used to allow for rough initial data. General Aj,-weights
in deterministic parabolic PDEs have used in [DK18, DK19b, GV17a, GV17b] to derive
mixed L” (L9)-regularity estimates by Rubio de Francia extrapolation (see [GR85, CMP11]).

5.1.1. SPACE-TIME EXTRAPOLATION USING GREEN FUNCTION ESTIMATES

In the important special case that X = L9(0) for a domain O < R%, we can also employ
the Calder6n-Zygmund theory for stochastic-deterministic integral operators in Theo-
rem 4.1.3, see Examples 5.2.8 and 5.3.5. The assumed kernel estimates in Theorem 4.1.3
then correspond to so-called Green’s function estimates or heat kernel estimates for the
studied (parabolic) SPDE. Such estimates are available in quite general settings, see e.g.
[EI70, KN14]. The advantage of this approach is that one reduces the study of stochas-
tic maximal LP-regularity problem on L9(0) to the study of stochastic maximal -
regularity problem on L?(0), for which one can employ Hilbert space techniques. More-
over, one obtains space-time weights in the conclusion. Power weights in space can e.g.
be used to allow for rough boundary conditions (see e.g. [HL19, Lin20, Lin18, ILV20]),
treat singularities due to corners in the domain (see e.g. [Cio20, CKL19, CKLL18, KN14,
Naz01, Sol01, PS04]), and handle the incompatibility of the boundary conditions and
the noise term Wy (see e.g. [Kim04, KK04, KL99a, KL99b, Kry94a]). One can also use the
obtained space-time weighted estimates to derive mixed L” (L9)- and L9(LP)-regularity
estimates by Rubio de Francia’s weighted extrapolation theorem [GR85, CMP11], which
is already included in the conclusion of Theorem 4.1.3. The reversed integration order
in stochastic maximal L9 (LP)-regularity estimates allows one to deduce additional reg-
ularity results for the mild solution of (5.1.1), see also [Ant17, NVW15a]. Moreover one
can obtain estimates for the moments of the mild solution of (5.1.1) as in [Kim20], see
also Remark 4.1.4.

5.2. AUTONOMOUS CASE

We first turn to the time-independent case, in which we assume A to be the generator
of a strongly continuous semigroup (e~‘4) ;cg, . In fact, the maximal regularity estimates
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that we will assume imply that A is a sectorial operator of angle < 7/2, so without loss
of generality we may include this in our assumptions. Let us recall the definition of a
sectorial operator, for their properties we refer to [KW04, Haa06, HNVW17, Yag10].

Let X be a Banach space and define forO<o <n

2o ={z€C\{0}:|arg(2)| < o}.

A closed operator A with domain D(A) on X will be called sectorial if there is a o € (0, )
such that C \fg < p(A) and there is a constant C > 0 such that

IMA-A) Y <C,  AeC\Z,.

The infimum over all such o is called the angle of sectoriality of Aand is denoted by w(A).
A sectorial operator with w(A) < /2 generates an analytic semigroup (e~?%) 2€52/2-g 1OT
w(A)<o<m/2.

Theorem 5.2.1 (Extrapolation in the semigroups case). Suppose X is a UMD Banach
space with type 2. Let A be a sectorial operator on X with w(A) < /2. Taker € [2,00) and
assume that Y is one of the following spaces

DA, DY), [X,D(A)ly, or (X,D(A); (5.2.1)

r

Suppose A€ SMR(LP (R4; Y)) for some p € [2,00). Then forall q € (2,00) and w € Agr2(Ry)
one has A€ SMR(LY (R, w; Y)). In particular, the mild solution u to (5.1.1) satisfies

11
max{y, 75}
lullLa@xr,,w;y) < Wla,, e, Gl L9 @xR,,wiy (H,X))

where the implicit constant only depends on X, A, p, q.

Proof. The space Y has type 2 with 7, y < 7 x, which is trivial for D(A'/?) and D(A'?),
follows from [HNVW17, Proposition 7.1.3] for [ X, D(A)] 1 and follows from [Cob83, Corol-

2
lary 1] for (X, D(A)) 1 In all cases except for D(AY2) it follows from the proof of [AV20c,
Proposition 4.8] that A is invertible. We claim that in all cases
1 1

Ixlly < ClixI}IlAxl%,  x€D(A).

Indeed, this standard interpolation estimate follows from [Lun95, Corollary 1.2.7 and
Proposition 2.2.15], [Tri78, Theorem 1.10.3] and [Haa06, Proposition 6.6.4]. Since

thAe ey <M,  t20

for some M > 0 (see [EN00O, Theorem II.4.6]), the above interpolation estimate implies
that
lAe " pxyy <CM3217312 >0,

Define K: Ry xRy — L(X,Y) by K(¢,8) = e =941, .. Then by assumption we have
Ke ICfV(L” (R,)). Applying Propositions 4.2.3 and 4.2.5 we obtain that K € ICy (L” (R,)).
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Next we will check the conditions of Theorem 4.4.11 for the space of homogeneous type
R, . By the analyticity of the semigroup and the above estimate, we find that for # # s R,

10:K(t, 9l £ox, vy = 105K (£, ) £x,v) = 1 Ae™ 9 £x yy < CM32 £ — 5732,

Therefore, by Lemma 4.3.3 and Remark 4.3.4, we know that K is a 2-standard kernel, so
Theorem 4.4.11 gives that K € ICY(Lq(RJr, w)). Propositions 4.2.3 and 4.2.5 then imply
that K € ICfV(Lq (R,, w)) with the claimed estimate. O

Remark 5.2.2.

(i) Combining Theorem 5.2.1 with [AV20c, Section 5], similar results as in Theorem
5.2.1 hold on finite time intervals (0, T). Alternatively, this can be deduced by ap-
plying Theorem 4.4.11 on (0, 7).

(i) In general the result of Theorem 5.2.1 does not hold in the endpoint g = 2. A
counterexample can be found in [NVW12b, Section 6].

(iii) Arguing as in the proof of Theorem 5.2.1 but with
K(t,5)= (t-5) 0 AT 0e 0941,

and Y = X it follows that for any 6 € (0, %) the property A € SMRy(p, c0) introduced
in [AV20c] is p-independent.

(iv) From the proof it is clear that Theorem 5.2.1 holds for any Banach space Y with
type 2 such that e=*4: X — Y with

_tA _1
le™lsxyy<Ct72,  t>0.

We have the following corollary in the case that X is a Hilbert space.

Corollary 5.2.3. Let X be a Hilbert space and let Y be any of the spaces in (5.2.1) with
r = 2. Suppose that A is a sectorial operator on X withw(A) < /2. Then the following are
equivalent:

(i) There exists a constant C > 0 such that

—tA
||t*—>€ x”LZ(R_Hy)SC”x”X, xEX.

(ii) Forallp € (2,00) andw € Ap;2(Ry) (and p =2, w = 1) we have A€ SMR(LP (R, w; Y)).
(iii) Ae SMR(LP(R,,Y)) for some p € [2,00).
Proof. Note that Y is a Hilbert space. For (i)= (ii) define K(¢,s) € L(X,Y) by

K(t,s)=e U947,
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From Proposition 4.2.10(i) we obtain K € Ky(L*([R,)). Therefore K € Kl (L*(R,)) by
Propositions 4.2.3 and 4.2.5, so the result follows from Theorem 5.2.1. (ii)=(iii) is triv-
ial and (iii)=(i) follows from Proposition 4.2.8 combined with Propositions 4.2.3 and
4.2.5. O

Remark 5.2.4.

(i) Corollary 5.2.3(i) is equivalent to the admissability of A'? and is connected to the
Weiss conjecture, which was solved negatively (See [JZ04], [LM03, Theorem 5.5]
and references therein).

(ii) It is well-known that there exist operators A on a Hilbert space X such that —A
generates an analytic semigroup which is exponentially stable and

1 -tA
It — Aze “xl 2w, x) < Clxlx,
but
1 —tA
clxllx £lt— A2e™xll 2 g, ;x)-

Such A can be constructed as in [LMO03, Theorem 5.5] (see [AV20c, Section 5.2] for
details), and does not have a bounded H*-calculus. On the other hand, Corollary
5.2.3 implies A € SMR(LP (R, w; D(A'/?))) for all p € [2,00) and w € Ay, (with
w = 1if p = 2), which shows that having a bounded H*-calculus is not necessary
for stochastic maximal regularity.

For 08 > 0 and p € [1,00] we define the real interpolation spaces D4 (0, p) by
DB, p) = (X,D(A))g/n,p,

where n € N is the least integer larger than 6. From Theorem 5.2.1 we obtain the follow-
ing result for stochastic maximal regularity with Y = D4 (@, p).

Theorem 5.2.5 (Real interpolation scale). Let E be a UMD Banach space with type 2.
Let A be a sectorial operator on E with w(A) < n/2 and assume 0 € p(A). Let 6 € (0,1)
and q € [2,00). Define X = D(0,q) andY = D0 + %,q). Then for all p € (2,00) and
weApp[Ry), onehas Ae SMR(LP (R, w, Y)) (the case p = q =2 and w =1 is allowed as
well). In particular, the solution u to (5.1.1) satisfies

1 max{3, ;51
IA2 ull Lr xRy, w;D 0,90 S [w]Ap/z(R+) IGliLr @xR,,w;y(H,DA©0,9)) (5.2.2)

where the implicit constant only depends on E, A, 0, p, q.

First proof. Note that X is a UMD Banach space with type 2 by [HNVW16, Proposition
4.2.17] and — A is the generator of an exponentially stable analytic semigroup on X with
domain D4 (6 + 1, g) by [Lun95, Proposition 2.2.7]. Moreover, we have

Y=(X,Da0+ Lady 4
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It follows from [DL98] (see also [BH09, Theorem 5.1]) and [AV20c, Theorem 5.2] that
A € SMR(LY(R4;Y)). Therefore, the required result follows from Theorem 5.2.1. The
claimed norm estimate follows since A2 maps D (0 + %, q) isomorphically to D4 (0, g)
(see [Tri78, Theorem 1.15.2]). O

Next we give a proof that only uses elementary properties of the real interpolation
spaces D4 (6, p).

Second proof. First consider the case p = g = 2. By Propositions 4.2.10(i), 4.2.3 and 4.2.5
and [Tri78, Theorem 1.15.2] it suffices to show

Al A2 ’
::(fo IAZ e xIIDA(G,Z)dt) < Cllxlip, 0.2 (5.2.3)

Since D4(6,2) = D 42(0/2,2) (see [Tri78, Theorem 1.15.2]), by [Tri78, Theorem 1.14.5] we
can write

I I Y S
= 1AZe"xIp 9122 At
A :
(e 9) (e 9) 0 5 _ dr
:f f rf1=2) Az e U042 — d¢
0 0 r
oo OO 0 _ dr
sf f (t+1) 3072 A A% — dt
0 0 r
o dr
2(1- —rA_. 2 2
:2[ r20=0) Ae™" xlg— =113, 0.
o :

which gives the required estimate (5.2.3).

From the previous case and Theorem 5.2.1 we obtain stochastic maximal L”-regularity
for p € [2,00) in the case g = 2. Thus, using Propositions 4.2.3 and 4.2.5 to take H = R,
the mapping

t
scm::f A2e IAG) dW(s),  LeR,
0

is bounded from L”(R; D4(0,2)) to LP (R4 x Q; D 4(0,2)) for all 8 € (0,1) and p € [2,00).
By [Tri78, 1.10 and 1.18.4] one has

(LYR+; D A0 ~€,2), LT (Ry; DAO 6201, = LY R+; D0, 9))

for € € (0,min{f, 1 — 0}) and the same holds with R, replaced by R; x Q. It follows from
[Tri78, Theorem 1.3.3] that S is bounded from L9 (R.; D4 (6, q)) into LY (R x Q; D4 (6, g)).
Applying Propositions 4.2.3 and 4.2.5 once more to recover a general cylindrical Brow-
nian motion Wy, we obtain the stochastic maximal regularity for p = g € [2,00). Now
another application of Theorem 5.2.1 gives the result for all required p, g and weights
w € Ap2. The claimed norm estimate again follows since Al/2 maps D (0 + 1 q) iso-
morphically to D4 (6, q) (see [Tri78, Theorem 1.15.2]). O

Remark 5.2.6.
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(i) By carefully checking the proofs of Theorems 5.2.1 and 5.2.5 (and in particular
Proposition 4.2.3) one sees that Theorem 5.2.5 actually holds for all martingale
type 2 spaces E. As mentioned in Remark 5.2.2(i), Theorem 5.2.5 holds on finite
time intervals as well and in this case we only need that A+ A is a sectorial operator
with w(A+ A1) < /2 for some A € R.

(ii) Theorem 5.2.5 extends [BH09, Theorem 5.1] and [DL98] to the case where p # g
and to the weighted setting. Note that even for w = 1 one cannot obtain Theorem
5.2.5 from the case p = g and a real interpolation argument. Indeed, in general for
an interpolation couple (Xp, X1) one has (see [Cwi74])

(LP0(Q x Ry; Xo), LP1 (Q x Ry X1))g,q # LPVP10(Q x R 5 (Xo, X1), )
The equality does hold if g = [po, p1le.

(iii) The assumption 0 € p(A) in Theorem 5.2.5 is needed in general. Indeed, there
exists a bounded sectorial operator A on a Hilbert space E such that (5.2.3) does
not hold (see [HNVW16, Corollary 10.2.29 and Theorem 10.4.21]). Since in this
case D4(0,p) = Eforall 6 € (0,2) and p € [1,00], Propositions 4.2.3, 4.2.5 and 4.2.8
imply that (5.2.2) cannot hold.

We conclude with another result for real interpolation spaces. It extends [Brz95,
(4.10)] to the case p € (2,00) and to the setting of infinite time intervals.

Theorem 5.2.7. Let E be a UMD Banach space with type 2 and let A be a sectorial oper-
ator on E with w(A) <m/2. Let X = DA(%,Z) and Y = D(A). Then for all p € (2,00) and
w € App(Ry), one has A € SMR(LP Ry, w, Y)) (the case p = 2 and w = 1 is allowed as
well). In particular, the solution u to (5.1.1) satisfies
max(3, 55}
AUl @ wipy < Clwly @)y NGl o, wiy DAL 20

where C only depends on E, A, p.

Proof. Note that, as in the first proof of Theorem 5.2.5, A is a sectorial operator on X
with w(A) < /2. For p = 2, as in the second proof of Theorem 5.2.5, it suffices to prove
the following variant of (5.2.3)

[eS] 1
— 2
(fo | Ae™ A xI3 de)* < Cllxll 1

The latter estimate is immediate from the definition of D A(%,Z). It remains to apply
Theorem 5.2.1. For this (see Remark 5.2.2(iv)) it suffices to check ||e~ !4 lcx,v) < Ct‘%,
which follows from

1
sup|lz2 Ae™A

t>0

where we used [Tri78, Theorems 1.3.3(d) and 1.14.5]. O

x”E = ”x”DA(%,oo) < ”x”DA(%,Z)’
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5.2.1. THE STOCHASTIC HEAT EQUATION ON RY

As a first concrete application, we will now use our abstract extrapolation results to the
stochastic heat equation on R?. We will show that, using only extrapolation results for
stochastic singular integrals, one can deduce the stochastic maximal L? (L9)-regularity
results for —A in [Kry00] and [NVW12b]. Moreover we actually obtain results with space-
time weights. One can check that the proof of [NVW12b], based on the boundedness
H®-calculus of —A, also gives the result with weights in time, and moreover weights
in space could be added. Still we find it illustrative to show in the example below that
the L?(L?)-case can be combined with extrapolation arguments to deduce the weighted
LP(L9)-case for all p € (2,00) and g € [2,00).

We start with a result in Bessel potential spaces, for which we use the stochastic-
deterministic extrapolation developed in Section 4.6. For details on (weighted) Bessel
potential spaces we refer to [MV12, Tri78].

Example 5.2.8 (Stochastic heat equation in Bessel-potential spaces). Let m e N, s € R,
pE2,00), q,r€(1,00), V€ Ap/2(Ry) and w € Aq([Rd). On R? consider

du+(=N"udr=GdWy, onR,,
{ ut (A u o OfR+ (5.2.4)

u(0) =0,

where G: Q xR, xR? — H is an adapted process. Then the mild solution u to (5.2.4)
satisfies

m

=82 ull @, vmsa@a,wy = CIGI @@, vHsa@d )y 4>2
m

=092 ull 1 0 prsa e, wizr @,y S CNGl L@ e e, wine @, o510y

where C is an increasing function of [U]AP/Z(R” and [w]Aq([Rd) and dependson p,q,r,m,d.

Proof. By lifting we may assume s = 0 (see [MV12, Proposition 3.9]). First suppose p =
g =2and v = w = 1. It suffices to check Corollary 5.2.3(i). Note for any f € L?([R%) by
Plancherel’s theorem

f f (A E e D" F)? drdr = f / (@lEN2m e 2TV Ry 2 de di
R, JRY R, JRA

= [, || e tem o ar ag

_ 1 7 2 _ 1 2
=5 [ FOF 6= S0P,

Therefore, by Corollary 5.2.3, we find
1202 ull 2, ity = CIG 2, st - (5.2.5)
Now fix |a| = m and define

SkG(t,x) ::dgu(t,x)zf de((t,x),(s,y))G(s,y) dy dWg(s), (t,x)eR; x R4
R. JR
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with
K((£,%),(5,9)) := FHE— @mMme%e @9 _ 3y (1,%),(5,) € Ry x RY,

From (5.2.5) it follows that Sk is bounded from L?Q (Q xR, xR H) to L2(Q x R, x RY),
so by Theorem 4.1.3 it suffices to show that K is a (2,1)-standard kernel on the space of
homogeneous type R, x R with the anisotropic metric |- - |, as in Example 2.1.2 with

=(2m,1,...,1). Since K is of convolution type, by a change of variables and Lemma
4.3.3 (see also Remark 4.3.4) it suffices to show

1

|0 k(t,x)| < Ag ————
! % |2, x))4+3m

(t,x) € (Ry x R) \ {0}. (5.2.6)

1
|a§k(t, x)| = Ay W (t,x) € Ry xR\ {0}, |l =1, (5.2.7)
yXla

with
k(t,x):= F (= @m)E%e @D ) (), (%) € Ry x RY,

Fix (t,x) € (R+ x RY)\ {0}, let |y| < d +3m and set I := {k e N:: m —Sm e < lyl}. Then we
have

|x70,k(t,x)| < (27'[)3”1_'}/‘ [;@d iaz(§“|£|2m . e_(2ﬂ|f|)2mt)| dé

- - - — 2m
Sm,d Zfd|£|3m (vl k)_(|¢~|2m lt)k'e 2m|é)) tdf

kEI
_ 2m
=y Z 3m+2mk lyl+d-1 t e 2nrr) tdr
kel

d+3m d+3m—ly| R _ _ _(97\2m
Z S3m+2mk lyl+d l_e (2m) Sds
kel

d+3m—|y|

Smt .

Thus combining the cases |y| = 0 and |y| = d + 3m with the equivalence

d+3 d
[x[“FPM =0 > Ix", xeRY,
lyl=d+3m

we obtain (5.2.6). (5.2.7) follows from a similar computation, so K is a (2,1)-standard
kernel. Therefore the claimed estimates for (—A) % u follow from Theorem 4.1.3 and the
norm equivalence

> 0% fl e vix) =xpimd =D 2 fllpga yixyy  fES' RYGX)

lal=m

for any UMD Banach space X, which is a consequence of the Mihlin multiplier theorem
(see Section 3.5). O
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Remark 5.2.9. As seen from the proof, the case p =g=r =2 and v = w =1 is also
allowed in Example 5.2.8. From this one can also obtain the case p € (2,00), g =2, 1 €
(1,00), v € Ap/2(Ry) and w = 1 using Theorem 5.2.1 and Remark 4.2.4. Moreover, using
Fubini’s theorem and Rubio de Francia extrapolation, we can also obtain results with
the integral over Q on the inside, which will be done in [1] (see also Remark 4.1.4).

Next we prove a similar result on Besov spaces using the extrapolation result in The-
orem 5.2.5. For details on Besov spaces we refer to [Tri78].

Example 5.2.10 (Stochastic heat equation in Besov spaces). Let me N, se R, p € (2,00),
q,7€[2,00), vE Ap;2(Ry) and w e Ay (R%). On R? consider

du+1-AN"udt=GdWy, onR.,

{ -8 " * (5.2.8)

u(0) =0,

where G € L; QxR,, v;B;,,(Rd, w; H)). Then the mild solution u to (5.2.8) satisfies

el Lp e, viBgm @,y < CIGH Lp @ B3, @2,
where C is an increasing function of [U]Ap/Z(R+) and [w]Aq(Rd) anddependson p, q,1,s, m, d.

Proof. Again by lifting (see [MV12, Proposition 3.9]) we may assume s = 2m#f € (0,2m).
Let E = L9(®R%, w) and define

(A, D(A) := (1 - A)", W24 (R, w)).

Then A is sectorial with w(A) =0 and 0 € p(A) on E. Since D4 (0,1) = Bfm([Rd, w) (see
[MV12, Proposition 6.1]), the result follows from Theorem 5.2.5 and another application
of [MV12, Proposition 3.9]. O

Remark 5.2.11.

(i) There is an inconsistency between the equations (5.2.4) and (5.2.8) (-Avs. 1 - A).
The reason to consider 1 — A is that one has the restriction 0 € p(A) in Theorem
5.2.5. With a different proof one can also consider Example 5.2.10 with 1 — A re-
placed by —A. For example one can obtain this by a real interpolation argument
in Example 5.2.8. To avoid adaptedness problems in the interpolation argument,
one can first consider deterministic G and afterwards apply Proposition 4.2.3.

(ii) The results of Examples 5.2.8 and 5.2.10 are incomparable exceptif g = r =2 (see
[Tri83, Theorem 2.3.9]). A similar example could be proved for Triebel-Lizorkin
spaces, by using [NVW12b] and the boundedness of the H*-calculus of (1 - A)™
on F;',(Rd , w), which can be proved as in [HNVW17] with the Mihlin multiplier
theorem (Theorem 3.5.1). Alternatively one could use the ¢"-interpolation method
developed in [Kun15] on Example 5.2.8, again avoiding adaptedness problems us-
ing Proposition 4.2.3.
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5.2.2. STOCHASTIC HEAT EQUATION ON A WEDGE

Our next application is an L”(L9)-version of the stochastic maximal regularity result
in [CKLL18] for the stochastic heat equation on an angular domain. The deterministic
setting was considered in [Sol01, Theorem 1.1] and later improved in [Naz01, Theorem
1.1] and [PS07, Corollary 5.2]. At the moment it is unclear whether the Dirichlet Lapla-
cian —A on an angular domain has a bounded H*-calculus, and how to characterize
D((—A)Y2) in terms of weighted Sobolev spaces. Therefore, we can not apply [NVW12b]
and instead we will use [CKLL18] and Theorem 5.2.1 to derive LP (L9)-regularity results.

We will first need some properties of the heat semigroup on a wedge. Let x € (0,27)
and define the wedge

O:={xe R%:x= (rcos(g), rsin(p)), r >0, ¢ € (0,x)}.
Consider heat equation:

ur—Au=0, onR, xO,
(5.2.9)

u0,x)=f(x), xeO.
Let T" denote the Green kernel of the heat semigroup associated to (5.2.9). The solution

to (5.2.9) is given by (see [KN14, Lemma 3.7])
u(t,x) = e f(x) = fo Fx,y,0f(ndy, (&x)eR,xO.

In the next proposition we collect some properties of the heat semigroup (e/*);>o on
the wedge 0. We let W'7(0,|-1%~2) denote the usual homogenous Sobolev space of
distributions u such that d;u € L9(O, |-1°72).

Proposition 5.2.12. Assumex € (0,27), q € (1,00) and 6 € R. The following hold:

@) If-%< % <2+Z%, then—A is a sectorial operator on L(O, [-1972) withw(-A) < /2.

In particular, (™) ;¢ is a bounded analytic semigroup on L9(O, |-°72).

(ii) Ifl—;—’<%<2+§, then

1

ERTPRZAY
sup £2[le""l g ©,.0-2)~1a(0,110-2) <
>0

L A
sup 72 ™" Lao,10-2)— 19O, -1o-2-a) < OO
>

Remark 5.2.13. Although —A is sectorial with w(—A) < 7/2 for a large range of values of
6, we do not know its domain on the full range of 6. If 2 - ¥ < % <2+ %, then by [PS07,
Corollary 5.2]

D) = {u:u,ull-?,0%ue LI(O,|-1°72) for |a] = 2}.

The domain for other values of 8 seems more difficult to characterize.
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Proof of Proposition 5.2.12(i). First suppose that2—% < % <2+ %. Then it follows from
[PSO7, Corollary 5.2] that —A has deterministic maximal regularity. Thus in this case (i)
follows from [Dor00, Section 4]. The case —% < % < Z follows by a duality argument,
since B

(L7O,11°7%)" = LT (O, 11"
with 0 = (2q-0)/(qg—1). The remaining case £ < % < 2 - Z follows by complex interpo-
lation (see [Tri78, Theorem 1.18.5]). O

For Proposition 5.2.12(ii) we will need the following technical lemma.

Lemma 5.2.14. Assumex € (0,27), g € (1,00), 0 >0 and 0 € R. For% <p< % and t>0
let k; :R? — [0, 00) be defined by

ke(x,y) =N )¢ ) exp(—alx— Y1210, x,yER,

_ _lxl _ 0
where((t,x) = |ler\/?.Forl B<jg <2+ p one has

; 6 5 6 dx
2
sup k! (x, y)1x171yl™” 7 — < oo,
>0, yeR? R? X

; e 45 06d
sup 2k{(x,y)lxlﬂyl2 fly—y<oo.

t>0,xeR2 JR

Proof. By asubstitution replacing x and y by xv/f and yv/Z, one can check that it suffices

to consider ¢t = 1, and we set k(x, y) = k;(x, y). It suffices to consider o € (0, 1]. Moreover,

since {(1,x) <= {(1,x/0) < %((l,x), by a substitution one can reduce to o = 1. Let a =

u+2- %. Then a > 0 by the assumptions in the lemma, and a simple rewriting shows
that

0 ) |x|2p+2—l—a I |u
K, ) 12171y 77 = Y
(Ixl+ D1 (Jyl+ D

—lx=yl?

Step 1: First consider the integral with respect to x. One has

o o 0 dx f |x|2# 1Y@ ey
k , q q —— = - e =yl d
fRZ Conltlyl™ e = f. (|x|+1w-f(|y|+1w(|x|) ¢ *
:Sl+82+83,

where S is the integraBI over |x| < 1|yl, S, is the integral over 1|y| < |x| < 3|y] and S3 is
the integral over |x| = syl ) o
For Sj note that [x— y| = |y| - |x| = %Iyl. Therefore, e 1" <e~11Y1" and we find

_1,.2 —1— _
Sy <|yl%e” 1l f X1 9(x + DH dx
lxl= 11yl
Loz 2V
SZn(|y|+1)|l_“|+“e7|y|f r2h-a qr
0
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~ (lyl + 1)|1*‘Ll|+ll|y|2/.t*a+le7%‘y|2 < C,

whereweusedz,u—a+1=/.1—1+%>0. For S if |yl =1, then

[x] \u-1g |x| \m
S N (~vey i oy I
Lyl<txi<$iyl Xl + Iyl +

=fl LI dxe= 1yl < C,
lyl<ixl<3 |yl

where we used 2u > 0. If [y| > 1, then §; = [ e 7" dx = C. For S3, note that |[x— y| =
|x| =1yl = §|x|. Thus e™* ¥ < o3, Now if |y| > 1, then

- —a —LixP?
Ss <yl ﬂf |x|#~ %5 dx
1xI>3 1yl

_ a-u o p—a+1 _—1r?
=2mly| LT e 9" dr
51

0 11,22
:271[ sHa+ |y 12e a7 (g

3

2
12 _ 12
<2m|yl?e 3V ﬁ starlem 518" s <

2

where we used |y|s = 3(|y| +s) for s,y > 1. If |y| < 1, then
S = f PRI e d
[xI>3 1yl

OO 2u-a lu=1] ;512
<2n r d+r e 9" dx<oo,
0

because2,u—a+1:p—1+%>0.
Step 2: Next consider the integral with respect to y. One has

0 5 0dy |x|2H1 lylya=2 _ . 2

k(x, y)xl 9]yl "—=[ - e ¥V g

fRz PR e T Je (|x|+1)“‘1(|y|+1)“(|xl) Y
=T1+T,+Ts,

where T; is the integral over |y| < %le, T, is the integral over %le <|yl< glxl and T3 is

the integral over |y| = %le.
2 1 2
For T; note that |x— y| = x| —|y| = %le. Therefore, e~ ¥" < ¢~ 71*I" and we find

2u+1- —1] —1x? -2
T15|)C| n+ a(|x|+l)|’u |e 7lxl / 1 |y|u dy
[yl=31x]

2pu+1- lu—1] ,—}1x? i -1
=27|x|*T (x| + H T e a f ré = dr
0

—1] —Lix?
=[x (xl+ D et <
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where we used a >0 and 2u+1 > 0. For 75 if |x| < 1 we can write

| x|
x| +1

2u—1
1> < ( ) g f e P dy < |x**<c.
Lxl<lyl<3 x|

where we used 21— 1> 0. If [x| = 1, then
T sf eV dy =
RZ

1 2 .
For T3, note that [x— y| = |y| - |x| = %Iyl. Thus e ¥~ < e75V°_ If |x| > 1 we can write

T3 5[ (M)H_He_é'y'z dy
Iy1>31x VXl

® rrya2-p 1.2
=27‘[f (—) e s rdr
31 x|

5lxl

® l1- 2 —Lix2s
=21 , s H I x|fe” 9IS ds

2

2 —Lx? ° a-1-p - s?
<2m|x|“e” 3 , S e 3° ds<C.

2

If x| =1, then since2u—a+1=0,
1.2 o0 1,2
TsSf ly|2e 91V dysan r%le7s" dr < oo.
1y1>31x| 0

This finishes the proof. O

Proof of Proposition 5.2.12(ii). Let % <p< % besuchthat 1 -p< % < 2+ u. We use the
following estimates for I' (see [KN14, Theorem 3.10]):

+la —y?
02T (x, y, )| = CCF1 (2, ) (M (2, y) e eXp(— M) lal <1
where {(t,x) = X and o > 0. Therefore it suffices to prove for f e L9(O, |-|9_2)

lxl+vt

sup [ x— fo kDO QY] o oay = CIF o 02

teRy

where k;(x, y) is either
L2
M) (5.2.10)

ki(x, ) =(”_1(t,x)(“(t,y)t_1exp(— .

or

~ le—ylz)'

; (5.2.11)

ke(x,y) = CH(t, ) CH (8 y) x| el 2 eXp(
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where (5.2.10) and (5.2.11) correspond to the bound in W"9(0O, |x|?~2) and L9(O, |x|0~2-9)
respectively. Since (5.2.11)=<(5.2.10) it suffices to prove the boundedness for the case
(5.2.10). A simple rewriting shows that it is enough to prove for g € L9(O, || ~2)

fo ko) lxl 2 g 2L P 2 vope, = ClENL0)2-
To prove the latter by Schur’s lemma it suffices to show
sup [ ki plal 11y12 72 <
0,
pogesedo VY e
¢ dy
sup ki (x, y)IquIyI 1 =5 <00,
t>0,xeR2 |y|
which follows from Lemma 5.2.14. O

We are now ready to study the stochastic heat equation on the wedge O.

Example5.2.15. On the wedge O consider the stochastic heat equation:

(5.2.12)

du—Audt=GdWy, onR,,
u0)=0

Let g € [2,00) and assume 0 is such that
b4 b4
1-—-)g<0<(1+-)gq.
K K

Then for all p € (2,00) and w € Ap/> (the case p = g =2 and w = 1 is allowed as well) the
mild solution u to (5.2.12) satisfies

1wl Lp @xr, wivra,10-2)) < CUGH Lo, wiL9(0,10-2; 1)) 5.2.13)

Nl ., wirao,110-2-0) = ClGllp@ur, wiLa 0,102y
where C is an increasing function of [w] Az and depends on p, g, 6, x.
Proof. In [CKLL18] (5.2.13) was proved for p = g and w = 1, where it was stated for
bounded intervals (0, T). Since it holds with T-independent constants one can let T —

oo to find the result on R... In order to prove the result for p # g and w € A, (R,.) we will
use Theorem 5.2.1 with

X:=L90,]-7%))
Y= WO, n L0, 07279,
By Proposition 5.2.12 —A is sectorial on X with w(—A) < 7/2 and || emllaxyy) <Ct Y2 for

t >0, so that Y is allowed in Theorem 5.2.1 (see Remark 5.2.2(iv)), and hence the result
follows. O
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5.3. NON-AUTONOMOUS CASE WITH TIME-DEPENDENT DOMAINS

We now turn to the time-dependent case. We will prove extrapolation results under
the conditions introduced by Acquistapace and Terreni [AT87] (see also [Acq88, AT92,
Ama95, Sch04, Tan97] and references therein). In the deterministic case extrapolation
of maximal LP-regularity was proved in [CF14, CK18] under the Acquistapace-Terreni
conditions and the Kato-Tanabe conditions. Here the authors consider maximal LP-
regularity on R and R, respectively. Below we will consider maximal regularity results on
finite intervals (0, T') for T € (0,00) in order to avoid exponential stability assumptions.

Next we introduce the (AT)-conditions due to Acquistapace and Terreni on a family
of closed operators (A(%))ejo,7) on a Banach space X. Let us write A, () = A(f) + p for
p = 0. We start with a uniform sectoriality condition:

(AT1) There exists a o € (0,7/2), p = 0 and M > 0 such that for every ¢ € [0, T], one
has (A, (1)) € Zs and

IR, Ap (D)l < AeC\Z,.

Al+1°

The next condition is a Hélder continuity assumption, which depends on the change of
the domains D(A(%)).

(AT2) There exist 0 < u,v <1 with g++v > 1 and M = 0 such that for all s, ¢ € [0,00)
and1eC\Z,,

A1 Ap (DR, Ap(0)(Ap ()" = Ap(9)™D)|| ) < M2 = sH.

When (A(f))e(0,1) satisfies both (AT1) and (AT2) we say that it satisfies (AT).
If the domains D(A(t)) all equal a fixed Banach space X; and

LA = Al £y, x) < Cli— sl

for some p > 0, then (A(?))e(o0,1) satisfies (AT2) with v = 1. Indeed, this follows directly
from the equation A, ()™ — A, ()™ = Ay ()71 (Ap(s) — Ap (D) Ap(s) 7L

The following generation result is due to Acquistapace and Terreni (see [Acq88, AT92,
Scho04] for details).

Proposition 5.3.1 (Evolution family). Assume (AT) for (A(1)) e, 1. There exists a unique
strongly continuous map

S:{(t,s)€[0,T1*: t=s}— L(X)
such that

S(t,t):I, tE[OyT]y
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S(t,8)S8(s,r) = S(¢,1), t=zs=rz=0,
LS(t,5) = A(DS(t, 9), t>s520.

Moreover for all0 < a < 1 there exists a constant C > 0 such that
”Ap(t)as(t,S)"ﬁ(X)SC(I—S)ia, t=s=0.

Given S as in Proposition 5.3.1, we call (5(t, 5)) ;=5 the evolution family generated by
(A())tejo,7)- In order to state our extrapolation result we will need some notation. For
0<a=1and t€Rdefine

Xt :=D(A,(0)Y).

endowed with the graph norm. Moreover set X} = D(Ap(t))”'"X. Note that since —p €
p(A(1)) we have

Ixllx: < CllAp(D%xllx,  x€D(Ap(D). (5.3.1)

Lemma 5.3.2. LetO<a <1. Let ()?ﬁ) gelo,a1 be an interpolation scale and assume for

B €10, a] one has Xlg — )?ﬁ uniformlyint e R. Then

1S(2,8) = Il £y 5, < C (£ - )P, r=s=o0.

Proof. The result for § = «a is clear from the assumption and [Sch04, (2.19)]. For =0,
the result follows from [Sch04, (2.16)]. The result for 0 < a < f follows by interpolation.
O

We can now prove our extrapolation theorem for (A(f)):co,17 in the setting of Ac-
quistapace and Terreni:

Theorem 5.3.3 (Extrapolation in the evolution family case). Leta € (%, 1] and let ()?ﬁ) Bel0,al
be an interpolation scale. Assume the following conditions:

e Both (A(t))te[()yT] and (A(t)*)tg[O,T] satisfy (AT).

e For € [0,a] one has Xﬁt — )?ﬁ uniformlyinte|0,T].

e X1 isa UMD Banach space with type2

1
2
Suppose A€ SMR(LP (0, T; X%)) for some p € [2,00). Then for all q € (2,00) and w € Ag)2
one has A€ SMR(LI((0, T), w; X%)).

Proof. SetY := )?% andlet K: [0, T]> — £(X, Y) be the kernel given by
K(tr S) = S(t) S)]-[ES'

Then by our assumptions, Proposition 5.3.1 and Propositions 4.2.3 and 4.2.5 we know
that K € ICY(L’7 (0, T)). Therefore by Theorem 4.4.11 it suffices to check the 2-standard
kernel conditions for K.
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To do so take ¢ > s and note that by Proposition 5.3.1 and (5.3.1) for0<s<¢< T,
IK(%, 9l 20y < ClAR (D2 S )l £ < Cli— )72,
We first check (4.3.5) on [0, T]. By [AT92, Theorem 6.4] we have for 0 < s < t < T that
I1S(t, ) AS) £y < CE—5) 7L (5.3.2)
Therefore, using Proposition 5.3.1, we have

4K (59| £y = 1S D AS I £ix,v)
<CIAWDY2S8(t,9)A)l £ x)
< CIAE)?S(s, 5 o 1SC5E, DA £x)

<C(s—1)73.

As in the proof of Lemma 4.3.3 we obtain that (4.3.5) holds with w(r) =

To check (4.3.6) on [0, T] let @ € (1 1] be such that the conclus10n of Lemma 5.3.2
holds and take |t —t'| < ;It —s|. If t < s, then also ¢’ < s and there is nothing to prove.
Thus it suffices to consider the case ¢,t’ > s. If t’ > t, then

IK(Z',8) = K(t, 9l ccx,v) = IKE, 0 = Tl 2o vy 1K (8 91 £x, x2
<C(-D*2(t—5)"" (5.3.3)

t—t'ja-1 _
C) ’ 2|t—S| 1/2,

where we used Lemma 5.3.2 and Proposition 5.3.1. In the case ¢ > ¢’ the same estimate
holds with ¢ and ¢’ interchanged. Since t' — s = %(t —5), (4.3.6) also follows in this case.
We can therefore conclude that K is an 2-standard kernel with e = a — %, which finishes
the proof. O

Remark5.3.4. If X and X 1 are Hilbert spaces, the assumption that A € SMR(L%(0, T; X 1 )
in Theorem 5.3.3 can be checked by showing

”t'_'S(tys)x1t>5”L2(0yT;)~(l)S”x”X: xeX, se€[0,T],
2

using Proposition 4.2.10(i). By the proof of [Ver10, Theorem 4.3] it is therefore sufficient
to check
1
It — Ap(9)2e" " x|l 2 0mix) SIxl,  s€[0,T], xeX.

5.3.1. STOCHASTIC HEAT EQUATION ON A DOMAIN WITH TIME-DEPENDENT NEUMANN
BOUNDARY CONDITION

As an application of the abstract extrapolation theory under Acquistapace-Terreni con-
ditions, we deduce stochastic maximal LP-regularity for an operator family which was
previously considered in [Acq88, Sch04, Yag91] in the deterministic setting and in [SV03]
and [Ver10, Example 8.2] in the stochastic setting. In particular, stochastic maximal
L2(L?)-regularity was derived in the latter. Below we extend this to an L? (L9)-setting.
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Example 5.3.5. Let € € (0, %) and T € (0,00). On a smooth bounded domain D < RY
consider
du+Audt=GdWyg, onl0,T]x D,

Cu=0 on[0,T] x 0D, (5.3.4)
u(0) =0.

Here the differential operator A and boundary operator are given by

d
Alt,x)u=- Y 0;a;j(t,x)0;u,
ij=1

d
Clt,x)u=)_ a;j(t,x)n;(x)0;u,
ij=1

where for x € D, n(x) € R? denotes the outer normal of D. Assume that the coefficients
(a;;) are real-valued, symmetric and suppose that there exists a x > 0 such that

n
Y a0l =xlEP,  xeD, rel0,T], ¢ €Y.
ij=1

(i) If Dis abounded C?-domain and

ajj € C**([0, T};C(D)),
aij(t,") e C'(D), te[0,T]
dxaij € C(0,T] x D) ref0,T]

forall i, j,k€{l,...,d}, then for all p € (2,00) and v € Ap;»(0,T) (where p =2 and
v =1 is allowed as well) the mild solution u to (5.3.4) satisfies

Il e @x 0, 1),vwr2 D)) = CUGH Lrx 0, 1,012 (D;11))»
where C does not depend on G.
(i) If Dis a bounded C3*¢-domain and
aij € CY*22+¢((0, T) x D),

forall ,j € {1,...,d}, then for all p € (2,00), q,r € (1,00), v € Ap/2(0,T) and w €
Aq4(D) the mild solution u to (5.3.4) satisfies

Il r;zr 0, 1), m;wra (,wy) < CIGH Lr ;e (0,1, v:L9 (D, w; ) q>2

el 2r @:wra o, w;r 0,1y, = CINGI L @;L9(D,w;LP (0,10, v;1D))»

where C does not depend on G.
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Example 5.3.5(@) for p = g = 2 and w = 1 has been shown in [Ver10, Example 8.2]. Us-
ing Theorem 5.3.3 we will extrapolate this to the case p > 2 and w € Ap». In order to also
treat the case g # 2 in Example 5.3.5(ii), we will to check the assumptions of Theorem
4.1.3. To check these assumptions we will use the kernel estimates in [EI70, Theorem
1.1], which requires more smoothness on the domain and the coefficients. This explains
the difference in assumptions between (i) and (ii) in Example 5.3.5.

Proof of Example 5.3.5. For (i) note that in [Acq88, Sch04, Yag91] it is shown that the
realization of (A(?)) 0,7 ON [2(D) with domain

D(A(1) := {ue W**(D) : tryp(C(t, ) u) = 0}

satisfies (AT). Let X5 = W*/2(D) for f € (0,1] and Xo = L*(D). Then X/ — X forall f €
[0,1] (see [Sch04, Example 2.8]) and we have A € SMR(L?(0, T; X 1 )) by [Ver10, Example
8.2]. Therefore the result follows from Theorem 5.3.3.

For (ii) we will use Theorem 4.1.3. For this let I denote the Green kernel of the evo-
lution family associated to the realization of A on L?(D), which exists by [EI70, Theorem
1.1]. Then the mild solution u to (5.3.4) is given by

u(t, x) =[(:[Dr(t,s,x,y)G(s,y) dy dWg(s), (t,x)€(0,T) x D,
For |a| < 1 define
Ko ((£,%), (5, 1)) =050 (2,5, %, ¥) 11>, t,s€(0,T), x,yeD.
By [Ver10, Example 8.2] we have that the operators
Ta: L7 (Qx Ry x D; H)) = L*(Q x Ry x D)

given by

t
TaG(t,x):zf0 fDKa((t,x),(s,y))G(s,y)dydWH(S), (t,x) eRy x D,

are bounded for all |a| < 1.
By [EI70, Theorem 1.1] we have forall £ > sand x,ye D

Xyl ) 1Bl=1, (5.3.5)

B 1
|0xKa((t,x), (s,y))| < W eXp(—Cm

10:Ka (), (5, 1))] S ———ex (~c Xyl )

tRallh, X148, Y1 = (t—s)d+3)/2 P (t—s)12)

for some ¢ > 0. Define a = (2,1,...,1) and let |-|, be the anisotropic distance on R x R? as
in Example 2.1.2. Using the uniform boundedness of re™" for r > 0 and the boundedness
of D in case |a| =0, we have for t > sand x,ye D

1
(£, x) — (5, )| 4+2

|08 Ko ((1,3), (s, y))| < C 1Bl=1,
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a K ( ty )y ) SC—
|0:Kq (2, ), (5, )| 60— (5 )IE7

Take |(t— ', x — x')|a < 31(t = 5,x — )| and first suppose that 7,7’ > s. Then, arguing as
in the proof of Lemma 4.3.3 (see also Remark 4.3.4), we deduce that K,, satisfies
I(t—1t',x=x")|a

|Ka((2,2), (5, ) = Ka (¢, '), (5, 1))| £ st

Next let us consider the case t > s> t'. Then t—t' > t — s and thus also %Ix— yP=t-t.
Therefore using (5.3.5) with 8 = 0 we have the estimate

Kot Keo((£, %' PGl I x|
|Ka((6,20, 5, 9) = Ka (£, (5. 0| - (_C(t—s)llz)
-t x—-xNla
T t—s,x—y|4r?
The case t' > s > t follows analogously and the case s > ¢, is trivial, so K, satisfies
(4.3.6) with w(?) = Ct. The smoothness assumption (4.3.5) follows similarly by consid-
ering the adjoint problem. Therefore K, is a (2, 1)-standard kernel on the product space

of homogeneous type (0, T) x D with the metric |- — |, and the Lebesgue measure. We
have thus checked the assumptions of Theorem 4.1.3 for T}, for all |a| < 1, which imme-
diately implies the conclusion of (ii). O

5.4. VOLTERRA EQUATIONS

In [DL13] the results of [NVW12b] have been extended to the setting of integral equa-
tions:

! a-1 _ p! p-1
U(t)+A[0 F(a)(t s) U(s)ds-f0 F(ﬁ)(t )P U(s) dWg(s),

where a € (0,2) and, S € (%,2). The solution U is given by

t
U(t)=f Sap(t—$)G(s) dWg(s), teRy,
0

where Syp is the so-called resolvent associated with A, @ and . The maximal regu-
larity result in [DL13, Theorem 3.1] gives LP-estimates for AHB?U in terms of G, where
B—al—-n= % with 0 € [0,1) and 7 € (—1,1). In this case one has to estimate a stochas-
tic convolution with kernel k(?) = Aga?Saﬁ(t). We will not go into details on Volterra
equations further now, but restrict ourselves to checking that K(z,s) := k(f —s) 1;<sis a
2-standard kernel. Consequently our extrapolation theory can be applied to this setting
as well.

Ifne (—%, 1) we take € € (0, %) such thatn+e¢ € (0,1). Then there is an M > 0 such that
(see [DL13, Remark 2.4])

10k <Mt2,  teR,.



146 5. STOCHASTIC MAXIMAL REGULARITY

Ifne (—1,—%), we let € = —1. Then k(t) = 0;€A98aﬁ(t) and there is an M > 0 such that
(see [DL13, Remark 2.4])

€ _ 0 —e—1
10°k(D)]l = [|A” Sap(D)l < Mt™°" 2, reR;.

Thus, writing K(t, s) = 0;°0¢k(t—s) 1,55, in both cases it follows from Lemma 5.4.1 below
that K is a 2-standard kernel.

Lemma 5.4.1. Let ®: R, — L(X,Y) be strongly measurable and suppose there exists a
constant M >0 and an e € (0, %) such that

IO <Ms 27, s>0.
Letk: R— L(X,Y) be defined by
1 N
k(s):= —f (s—=n'or) dr  seR,
I'(e) Jo
Then K(t,s) := k(t— s)1;~5 is an (€, 2) -standard kernel.

Proof. Let s >0 and assume f € [s, %s]. By a change of variables it suffices to show

(t—9)° 1
k()= k(DI SMCQTSW'

To show this note that
() I1k(s) - k(D)
t N
sf (t=n o dr+f (=t =-nHlIem) dr
s 0

t S
= Mf (t=ntre Tt dr +Mf ((s=nt=(r- r)eil)r’e’% dr.
S 0

-

For note that

t t—s)° 1
s s_e_%f (t—rtdr =e_lum.
s N

s(—.‘

For we write = + where we have split the integral into parts over (0, s/2)

and (s/2,s). For we can write

1 s/2 pt-r ) 1
: e f xXdxr~¢zdr
1-€elJo s—r

1 s/2 2 —e 1
< — (t=8)(s=nr)°"“r " zdr
1-€Jo
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_ €-2 12
U [y
l1-¢€ 0

(t—9)(s/2°7% 1, 2v2  t-s 1
S/ s —————
(1-e)(;-e) 1-e)(z-€ s s

where we used € < % Finally, using ¢ = s, we obtain

N
[B2]< (8/2)_6_%f (s=nt=(t-n1)dr
s/2

= e (512773 (1= 9)° + (s12)° — (1 - 512)°)

celperi ” 9 L ,
s€ 31/2
which implies the required estimate. O

5.5. p-INDEPENDENCE OF THE R-BOUNDEDNESS OF STOCHASTIC CON-
VOLUTIONS

In this final section we prove the p-independence of a Banach space property which was
introduced in [NVW15b]. Let X be a Banach space with type 2. For A € C with Re(A) >0
let k; : Ry — C be given by
kp(s) = AV2e s, seER,,
and define Ty : LP (R;; X) — LP(R4; Y (Ry; X)) by
TrAf()=ka(s=)f(), SER,.
Then by Proposition 4.2.12

|A| )1/2
2Re(1))
The following p-dependent condition was introduced in [NVW15b, NVW15c]:

Ikl e,y < Tz,x( (5.5.1)

(Cp) For each 6 € [0,7/2) the family T = {Ty : |arg(A)| < 0} is R-bounded from
LP(R,; X) into LP (R4; y([R4; X)).

Note that (5.5.1) implies that 7 is uniformly bounded. In [NVW15c] the condition
(Cp) was combined with the boundedness of the H*°-calculus in order to derive stochas-
tic maximal LP-regularity.

From [NVW15b, Theorems 4.7 and 7.1] it can be seen that in the following case the
condition (C}) holds for all p € (2,00):

X is a 2-convex Banach function space and the dual of its concavification X? has
the Hardy-Littlewood property, i.e. the lattice Hardy-Littlewood maximal oper-
ator is bounded on LP(R%; (X?)*) for some (all) p € (1,00). See Section 6.4 for an
introduction to the Hardy-Littlewood property and lattice Hardy-Littlewood max-
imal operator.
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In particular, UMD Banach function spaces have the Hardy-Littlewood property, but
also e.g. L*°. In particular, the space L7 satisfies (C,,) for any g € [2,00) and p € (2,00).
In the case g = 2 one can additionally allow p = 2. On the other hand, LY for g > 2 fails
(C») (see [NVW12b, Theorem 6.1] and the proof of [NVW15c, Theorem 7.1]). A Banach
function space with UMD and type 2 for which we do not know whether (C},) holds for
p € (2,00) is for instance £?(¢*). Some evidence against this can be found in [NVW15b,
Theorem 8.2].

It was an open problem whether (C,) is p-independent. Below we settle this issue.
In the special case of Banach function spaces one could also derive this by rewriting
(Cp) as a square function result (cf. [NVW15b, Theorem 7.1]) and using operator-valued
Calder6n-Zygmund theory (see Section 3.4).

Theorem 5.5.1. Let X be Banach space with type 2 and let p € (2,00). If (Cy,) holds, then
forallB € [0,7/2), q € (2,00) and w € Ag/2(Ry) the family

T ={Ty:larg(L)| <6}
is R-bounded from L9 (R, w; X) into LY (R, w;yR,; X)). In particular (Cy) holds for all
g€ (2,00).
Proof. FixneN. Let Ay,...,A, € Zg, fi1,..., fn € LRy, w;y(R;; X)). Let Rad, (X) be the

space X" endowed with the norm

n

D EjX;

j=1

1Cx) 71 IRad, 0 == 2@’
where (e j);.l:l is a Rademacher sequence. Replacing the I[2(Q; X)-norm by L"(Q; X)
with r € [1,00) leads to an equivalent norm by the Kahane-Khintchine inequalities (see
[HNVW17, Theorem 6.2.4]). Define a diagonal operator k : Ry — L(Rad, (X)) by

(k(s)x)j = klj(s)xj, jefl,...,n}, xeRad,(X),

andset K(s, t) := k(s—1t) 14>;. To prove the required R-boundedness of 7', by the Kahane-
Khintchine inequalities, Fubini’s theorem and Proposition 2.8.6 it suffices to prove that
IIKII;CY Li®,,w) = C, where C is independent of n. Now by (C,) we know the latter is true
for w =1and g = p. Therefore, by Theorem 4.4.11, it suffices to check that K satisfies the
2-standard kernel condition with constants only depending on 6. For this we check the
condition of Lemma 4.3.3. Moreover, since K is of convolution type it suffices to check
that [|[K'(s)]| = Cs~%/2. Since k'(s) is a diagonal operator we have for x € Rad,,(X):

n n
—-3/2
||K’(s)x||Radn(X)=“Zejk;,(s)xj . =csY ”Zijj
PR 2(Q;X) a

2;x)’
where we used the Kahane contraction principle and

~2Re(A) _ 27 =2

310 (2 3
k < A <
|7k, ()71 iggl e 8e3cos3()

This implies the required estimates for K and therefore finishes the proof. O
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BANACH FUNCTION SPACE-VALUED EXTENSIONS OF
OPERATORS

This chapter is based on a selection of the results from

[3] E. Lorist and B. Nieraeth. Sparse domination implies vector-valued sparse domi-
nation. arXiv:2003.02233.

[4] N.J. Kalton, E. Lorist, and L. Weis. Euclidean structures and operator theory in
Banach spaces. To appear in Mem. Amer. Math. Soc., 2021.

[9] T.S. Hanninen and E. Lorist. Sparse domination for the lattice Hardy-Littlewood
maximal operator. Proc. Amer. Math. Soc., 147(1):271-284, 2019.

It is complemented by some results from

[11] A. Amenta, E. Lorist, and M.C. Veraar. Rescaled extrapolation for vector-valued
functions. Publ. Mat., 63(1):155-182, 2019.

The presentation of these results in this chapter is original. Multilinear versions of the
main results in this chapter are contained in

[3] E. Lorist and B. Nieraeth. Sparse domination implies vector-valued sparse domi-
nation. arXiv:2003.02233, 2020.

[8] E.Lorist and B. Nieraeth. Vector-valued extensions of operators through multilin-
ear limited range extrapolation. J. Fourier Anal. Appl., 25(5):2608-2634, 2019.

Abstract. In this chapter we develop two methods to extend a bounded operator on LP (R%)
to a bounded operator on the Bochner space LP[RY; X), where X is a Banach function
space. The first method is based on a factorization principle, which is a more flexible
version of the factorization theory of Nikisin, Maurey and Rubio de Francia. The second
method is based on sparse domination, which we extensively studied in Chapter 3. Us-
ing these extension theorems, we prove quantitative connections between Banach space
properties like the (randomized) UMD property and the Hardy-Littlewood property.
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6.1. INTRODUCTION

For a bounded linear operator T on L” (R%) and a Banach space X we can define a linear
operator T on L” (R%) ® X by setting

T(fex):=Tfex, feLPRY), xeX,

and extending by linearity. For p € [1,00) the space L” (R?) ® X is dense in the Bochner
space LP (R%; X) and it thus makes sense to ask whether T extends to a bounded operator
on L (RY; X).

Such vector-valued extensions of operators prevalent in the theory of harmonic anal-
ysis have been actively studied in the past decades. A centerpoint of the theory is the
result of Burkholder [Bur83] and Bourgain [Bou83] that the Hilbert transform on LP(R)
extends to a bounded operator on LP (R; X) if and only if the Banach space X has the
UMD property (see Theorem 2.7.1). From this connection one can derive the bounded-
ness of the vector-valued extension of many operators in harmonic analysis, like Fourier
multipliers and Littlewood-Paley operators, as we have already seen in Chapter 3.

In case X is a Banach function space, very general extension theorems are known.
These follow from a deep result of Bourgain [Bou84] and Rubio de Francia [Rub86] on
the connection between the boundedness of the lattice Hardy-Littlewood maximal op-
erator on L” (R%; X) and the UMD property of X. The boundedness of the lattice Hardy-
Littlewood maximal operator allows one to use scalar-valued arguments to show the
boundedness of the vector-valued extension of an operator. Moreover it connects the
extension problem to the theory of Muckenhoupt weights. Combined this enabled Ru-
bio de Francia to show an extension principle in [Rub86], yielding vector-valued exten-
sions of operators on LP(T) satisfying weighted bounds. This result was subsequently
extended by Amenta, Veraar and the author in [11], replacing T by R? and adding weights
in the conclusion.

As we saw in Chapter 3, weighted bounds for operators in harmonic analysis are
nowadays often obtained through sparse domination. So to deduce the weighted bound-
edness of the vector-valued extension T of an operator T using [Rub86] and its gen-
eralization in [11], one typically goes through implications (1) and (3) in the following
diagram

Sparse domination for T ———= Weighted bounds for T
e8]
M 2) 3) M
N 4) N
Sparse domination for T ——— Weighted bounds for T

In this diagram implications (1) and (4) are well-known and unrelated to the operator T,
as we saw in Proposition 3.2.4. Another approach to obtain the weighted boundedness
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of the vector-valued extension T of an operator T, through implications (2) and (4) in
this diagram, was obtained by Culiuc, Di Plinio, and Ou in [CDO17] for X = ¢4.

The advantage of the route through implications (2) and (4) over the route through
implications (1) and (3) is that the Fubini-type techniques needed for implication (2) are
a lot less technical than the ones needed for implication (3). Moreover implication (4)
yields quantitative and in many cases sharp weighted estimates for T, while the weight
dependence in the arguments used for implication (3) is certainly not sharp. A down-
side of the approach through implications (2) and (4) is the fact that one needs sparse
domination for T as a starting point, while one only needs weighted bounds in order to
apply (3).

In this chapter we will provide an alternative, more flexible approach to implication
(3) and extend implication (2) from ¢9 to more general Banach function spaces X. Both
implications have also been extended to the multilinear limited range setting by Nier-
aeth and the author in [3, 8]. To keep this dissertation at a reasonable length and to
avoid the more involved notation of the multilinear limited range setting, we will stay in
the linear setting in this chapter and refer to the dissertation of Nieraeth [Nie20, Part i]
for a detailed treatment of this generalization to the multilinear limited range setting.

6.1.1. EXTENSION OF OPERATORS USING FACTORIZATION

Implication (3) for X = ¢9 with g € (1,00) follows easily from Rubio de Francia extrapo-
lation and Fubini’s theorem. Indeed if T is a bounded linear operator on L” (IRd, w) for
all w € Ay, we know by an application of Theorem 2.3.3 that T is a bounded linear op-
erator on L9(RY, w) for all w e Ag. Thus T is bounded on L7 (R4, w; ¢9) for all w € Ag by
Fubini’s theorem. Another application of Theorem 2.3.3 then yields boundedness of T
on LP(RY, w; ¢9) forall w € A,

A generalization of this result, replacing ¢9 by a UMD Banach function space, was
first proven by Rubio de Francia in [Rub86, Theorem 5]. Extended in [11] by Amenta,
Veraar and the author, this theorem reads as follows:

Theorem 6.1.1. Let X be a UMD Banach function space over a measure space (Q, 1), let
pe(l,o0)andwe Ap. Let f,g € LP(R?, w; X) and suppose that for some py € (1,00) there
is an increasing function ¢: Ry — R, such that for all v € Ay, we have

() “L”O([Rd,v) = ¢([V]Ap0) ||g('rw)||[‘po(qudyv)y weQ.

Then there exists an increasing v : Ry — R, depending on X, ¢, p, po, d, such that

“f”LP([Rd,w;X) = W([W]A,,)”g”Lp(Rdyw;X).

One obtains implication (3) as a direct corollary of Theorem 6.1.1 by taking g €
LPRY, w)® X and f=Tge LP(R?, w) ® X. Indeed, forg= Z;.":l gj®xjwithgy,---,gm €
LP(R?, w) and x1,- -, X, € X we have

m
Tgt,0)= Y TgnDxn) =Tgl o)1), (t,w)eRIxQ. 6.1.1)
j=1
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Therefore we obtain by density:

Theorem 6.1.2. Let X be a UMD Banach function space and let T be a bounded linear
operator on LP*(R%, v) for some pg € (1,00) and all v € Ap,. Suppose that there is an
increasing function ¢: Ry — R, such that

1T Lo @, ) — Lro e, vy < PV 4,), VE Ap,.

Then T extends uniquely to a bounded linear operator on Lp(Rd, w; X) forall p € (1,00)
and w € Ap.

The right hand-side of (6.1.1) makes sense for any, not necessarily linear, operator
T. However, to obtain an analog of Theorem 6.1.2 one needs to take care when consid-
ering f(-,w) and T f(-,w) for w € Q, as these are not necessarily functions in L0 (R%, w)
for all w € Ap,. This technicality can in applications be circumvented by using e.g. sim-
ple functions or smooth compactly supported functions and appealing to density. This
density argument requires a little bit of structure of the operator. A sufficient condition
is for example

ITf-Tgl<IT(f-gl
forall f,g: R% — C in the chosen dense subset of LP (R, w).

Remark 6.1.3. In applications it is usually easily checked that a weighted estimate is de-
pendent on the Muckenhoupt characteristic [w] Ap» and not on any other information
coming from w. However, checking that this dependence is nondecreasing can some-
times be tricky (see e.g. [12, Theorem 3.10]). Moreover, this monotonicity is not always
explicitly stated in the literature. In Appendix 6.A we will show that the monotonicity
condition in Theorem 6.1.2 redundant: an estimate depending on [w] Ap with no mono-
tonicity assumption implies the same estimate with monotonicity.

The original proof of Theorem 6.1.1 is based on the factorization of ¢"-bounded
families of operators on a r-convex Banach function space X through a weighted L'-
space. The classical approach for this factorization comes from the work of NikiSin
[Nik70], Maurey [Mau73] and Rubio de Francia [Rub82, Rub86, Rub87] (see also [GR85]).
This factorization is used to show that, on Banach function spaces, the UMD prop-
erty is self-improving, i.e. there exists an € > 0 such that X" has the UMD property for
all 0 < r < 1+e¢. Using a Rubio de Francia iteration argument with the lattice Hardy—
Littlewood maximal operator (see Section 6.4 for an introduction) Theorem 6.1.1 then
follows (see [Rub86, Theorem 5])

We will give a alternative approach to the proof of Theorem 6.1.1, which has various
advantages over the original approach:

e Our approach yields quantitative bounds, allowing us to estimate the operator
norm of T by a power of the UMD constant of X.
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¢ The original approach relies upon the boundedness of the lattice Hardy-Littlewood
maximal operator on L”(R%; X) whereas this will not be used in our approach.
Therefore we will be able to use Theorem 6.1.1 to give a quantitative proof of the
boundedness of the lattice Hardy-Littlewood maximal operator on UMD Banach
function spaces (see Theorem 6.4.6).

e Instead of assuming X to have the UMD property, we will formulate a more ab-
stract assumption in Theorem 6.3.1. This allows us to the deduce the UMD prop-
erty of X from e.g. the ¢?-sectoriality of differentiation operators (see Theorem
6.3.5).

Our approach will be based on the factorization of an #2-bounded family of operators
on a (not necessarily 2-convex!) Banach function space X through a weighted L2-space.
This factorization is a consequence of the abstract representation and factorization the-
ory of Euclidean structures, which has been developed in [4] by Kalton, Weis and the
author. We will not go into the details of this theory, as this could be a dissertation in
itself. Instead, we will formulate the necessary results from [4] in the setting of the Eu-
clidean structure ¢2, which gives rise to #>-boundedness. We will adapt the proofs of
these results to this specific choice of an Euclidean structure in Section 6.2 and refer to
[4, Chapter 1 and 2] for the general theory.

6.1.2. EXTENSION OF OPERATORS USING SPARSE DOMINATION

The proof of the sparse domination-based extension theorem depicted by implication
(2) relies on the following two key ingredients:

 The equivalence between sparse forms and the L!-norm of the bisublinear max-
imal function. This equivalence seems to have been used for the first time in
[CDO17] by Culiuc, Di Plinio, and Ou.

¢ A sparse domination result for the bisublinear lattice maximal operator on UMD
Banach function spaces.

For this second ingredient we will first study the lattice Hardy-Littlewood maximal op-
erator in Section 6.4, which on an order-continuous Banach function space X is given
by

Mg f:=sup{fhisls  feLy R%:X)
B

where the supremum is taken in the lattice sense over all balls B < R¢. Using our abstract
sparse domination theory from Chapter 3 and the previously discussed factorization-
based extension principle, we will show sparse domination and sharp weighted esti-
mates for this operator if X has the UMD property. In particular, this yields a quanti-
tative version of the result of Bourgain [Bou84] and Rubio de Francia [Rub86] that My 4
is bounded on LP(R%; X) if X has the UMD property. Moreover, the sharpness of our



156 6. BANACH FUNCTION SPACE-VALUED EXTENSIONS OF OPERATORS

sparse domination result allows us to compare the lattice Hardy-Littlewood maximal
operator to the Rademacher maximal operator, which was introduced in Section 3.6.

We will introduce the bisublinear version of the lattice Hardy-Littlewood maximal
operator, which we actually need to prove implication (2), in Section 6.5. This operator
is part of a much more general, multilinear theory, for which we refer to [3] or the disser-
tation of Nieraeth [Nie20, Part i]. In Section 6.5 we will only treat the sparse domination
result needed for the extension theorem.

Combining these two ingredients, we obtain the following theorem:

Theorem 6.1.4. Let X be a UMD Banach function space over a measure space (Q, 1) and
let T be a linear operator such that for any f, g € L (R?) there exists a sparse collection of
cubes S such that

f ITfl-1gldt<Cr Y IfD1,0(8M1,0lQl
R4 QeS

Then for all simple functions f € L‘C’O([Rd ,X)andge LY (R%) there exists a sparse collection
of cubes S such that

[T rx-lgrdr s Cr X (151)0{1gh ol

In particular, T extends uniquely to a bounded linear operator on LP (R?, w; X) for all
p e (l,00) and w € Ay with

1
~ maxy -1
TN 1 et s x)—1p i x) SX,p.a C1 W] fth

Asin Theorem 6.1.2, we can allow for more general (not necessarily linear) operators
T in Theorem 6.1.4 (see Theorem 6.6.1 and Corollary 6.6.2). Also note that the sparse
form domination for T in the assumption of Theorem 6.1.4 is in particular satisfied if
we have pointwise sparse domination for T as in Chapter 3 with r = 1, which follows by
integrating againsta g € L‘go([Rd ).

As was the case for our factorization-based extension theorem, the techniques used
to prove Theorem 6.1.4 can also be used to deduce the UMD property of certain Banach
spaces. In particular, in Theorem 6.6.3, we will obtain the following results:

¢ We will deduce that a Banach function space X has the UMD property if My is
bounded on both L? (R%; X) and Lp’([Rd;X*) for some p € (1,00). Moreover we
obtain a quantitative estimate of the UMD constant 8, x in terms of the operator
norm of M4 on LP([R%; X) and L” (R%; X*). Thus, combined with the previously
discussed converse implication, we have an alternative proof of this equivalence
by Bourgain [Bou84] and Rubio de Francia [Rub86].

e If X is a UMD Banach function space and Y is a UMD Banach space, we show
that the Kéthe-Bochner space X(Y) has the UMD property with a quantitative es-
timate between the respective UMD constants. The qualitative part of this state-
ment was first proven by Rubio de Francia [Rub86].
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6.1.3. APPLICATIONS

Theorems 6.1.1 and 6.1.4 and their multilinear, limited range counterparts in [3, 8] have
various interesting applications. They can for example be applied to obtain Banach
function space-valued boundedness of:

¢ The bilinear Hilbert transform

¢ The variational Carleson operator

e Multilinear Calder6n-Zygmund operators
¢ Bochner-Riesz multipliers

¢ Spherical maximal operators

For the details of these applications, we refer to [3, Section 6], [8, Section 5] and [11,
Section 5]. In this dissertation we will focus on one specific, quite elaborate applica-
tion. In Chapter 7 we will use Theorem 6.1.1 to deduce Banach function space-valued
Littlewood-Paley-Rubio de Francia estimates, which we will enable us to prove Fourier
multiplier theorems in Banach function spaces with UMD concavifications.

6.2. FACTORIZATION OF /" -BOUNDED FAMILIES OF OPERATORS

In this section we will prove that £” -bounded families of operators on a Banach function
space X can be factored through a weighted L"-space and specifically focus on the case
r = 2. We will start with the factorization theory from the work of Nikisin [Nik70], Maurey
[Mau73] and Rubio de Francia [Rub82, Rub86, Rub87]. We will not use this theorem in
subsequent sections, but we find it instructive to first show how this classical, simpler
factorization theorem works, before turning to our factorization theorem based on the
abstract representation and factorization theory of Euclidean structures.

The following theorem was shown by Rubio de Francia in the following special cases:

e X =LP(Q)in [Rub82],
e I'={T}for T € L(X) in [Rub86, III Lemma 1],

see also [GR85]. An extensive description of the literature preceding the theorems of
Rubio de Francia is given in the monograph of Gilbert [Gil79].

Theorem 6.2.1. Taker € [1,00) and let X be an r-convex, order-continuous Banach func-
tion space over a measure space (Q, ) and let T = L(X) be a family of operators. The
following are equivalent:

(i) T is¢"-bounded.
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(ii) There exists a C > 0 such that for every nonnegative v € (X")*, thereisa w = v with
lwlxry < 2lvlixn+ and

ITxlLr@uw) = CllxlLr @ w) xeX, TeTl. 6.2.1)

Moreover C >0 can be chosen such that 271" C < || ,» <27 C.

Proof. We first prove (ii)=(i). Let x;,---,x, € Xand Ty,---, T, €. As ZZ:1|Tkxk|r eX’,
we can find a nonnegative v € (X")* with [|v|l(xr)« = 1 such that

3 ) =[5 e

n
= | Tiexil" v dp.
xr fﬂkgi kXk H

Then by assumption there exists a w = v with ||w||xr)« <2 and

” 1/r n 1/r 1 n 1/r
Yol vdp)  =c(| Yiadwdy) <2rc|(Xiwl)
U ) =c(], X et wan) (Zrr)
so Tl <2Y7C.

Now for (i)=(ii) take a nonnegative v € (X")*. Without loss of generality we may
assume that ||v|lxr)* < 1. Let Y := L"(Q, v). Then |Ix|ly < |lx|lx forall x€ X,ie. X =Y
contractively. We can therefore consider I' as a family of operators from X to Y with

n 1/r n 1/r n 1/r
ITexel’) < ” | Toxpl” ” < 1T (S el H . 6.2.2)
(X veaty) ™ = (X miceer) ] = a0 (L)

forall x;,---x,€ Xand Ty,---, T, € I. Define the sets

n n
A= {( X 1el”s YN Tl ) s v e X, Tee T e X7 xR,
k=1 k=1

Bi= {be (X")* : |bllxry» <1and b= 0}.

Then A and B are convex, and by the Banach-Alaoglu theorem B is weak*-compact.
Define ®: Ax B — R by

n n n n
O(a,b):= Y I Texelly - ||r||;,f Yl bdu,  a=(Y bl Y 1 Tl ).
k=1 Q=1 k=1 k=1

Then @ is linear in its first coordinate and affine in its second. Furthermore, by defini-
tion, ®(a,-) is weak™-continuous for all a € A, and by (6.2.2) forany a € A

(Xn: kalr)u

k=1

rr
<0.
X

n
min®(a,b) = Y_ | Texely = 1T
beB k=1

Thus, by the Minimax lemma (see [Gral4a, Appendix H]), we have

min sup®(a, b) = supmin ®(a, b) <0,
beB acA ac€A beB
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so there exists w; € B such that ®(a, w;) < 0for all a € A. In particular, for any x € X and
T € I" we find that

LITxI’vdu—lll"Il}fQlerwl du=o((xI", I TxI}), wr) <0.

Set wy := v. Iterating the argument with w;, in place of v yields a sequence (wy)5,
satisfying

r 1/r r 1/r
(f|Tx| wh d,u) s||r||[r(f %" Wit d,u) . xeX, Tel
Q Q

for all 7 € N. Then the weight w := Y57 27" w,, satisfies w = v, |w|l(xr)» <2 and (6.2.1)
with C =2V7||T||,r. O

In applications Theorem 6.2.1 is often applied as follows: for a fixed y; € X we take a
positive v € (X")* of norm one such that

fQIhlrvdu: [yl || r = Iyl

Taking w = v asin Theorem 6.2.1, we then have that I is uniformly bounded on L" (Q, w)
and

Xl r o uw <2lxlx, xeX, (6.2.3)
Iyiller@uw) = ly1lix. (6.2.4)

Using (6.2.3) and (6.2.4), we can transfer the analysis of I back and forth between X and
L"(Q, w). There is a notable difference between (6.2.3) and (6.2.4): we obtain (6.2.3) for
all x € X, whereas (6.2.4) only holds for one a prior fixed y; € X. One can not expect both
inequalities to hold for all x € X unless X is isomorphic to a weighted LP-space.

Using the abstract representation and factorization theory of Euclidean structures,
which was developed in [4] by Kalton, Weis and the author, we will now prove a version
of Theorem 6.2.1 with r = 2 for Banach function spaces which are not necessarily 2-
convex. A key observation for our theory to work is that one does only need (6.2.3) for
one fixed yp € X in applications. This will allow us to build a 2-convex Banach function
space Y based on yp and y;, which is contractively embedded in X. The factorization
theory from [4] applied to Y will then yield us a theorem in the spirit of Theorem 6.2.1
with (6.2.3) only for x = yg, but for Banach function spaces X which are not necessarily
2-convex.

We will start with the technical heart of the proof, which is not yet specific to Banach
function spaces and ¢?-boundedness, i.e. the following lemma holds more generally for
any Euclidean structure & on a Banach space X, see [4, Lemma 2.5]. The proof of the
lemmain the case I' = & is a variation of the proof of [AK16, Theorem 7.3.4], which is the
key ingredient to prove the Maurey-Kwapieri theorem on factorization of an operator
T : X — Y through a Hilbert space (see [Kwa72a, Mau74]).
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Lemma 6.2.2. Let X be a Banach function space and let Y < X be a subspace. Suppose
that F: X — [0,00) and G: Y — [0,00) are positive homogeneous functions such that

(¥ Few?) < (2 )2 Moo Xn€X,  (6.2.5)
k=1 k=1

”(i |yk|2)“2”X < (f G(yk)z]“z, Vi yn€ Y. 6.2.6)
k=1 k=1

LetT € L(X) be an ¢?-bounded family of operators. Then there exists a T -invariant sub-
space Y < Xy < X and a Hilbertian seminorm ||-|lo on Xy such that

1 Txllo=<2[Tlpzllxllo x€Xo, TET, 6.2.7)
Ixllo = F(x) x € Xp, (6.2.8)
lxllo =4G(x) xeY. (6.2.9)

Proof. Let X, be the smallest I'-invariant subspace of X containing Y, i.e. set Y :=Y,
definefor N=1
Yi:={Tx:Tel xe Yy}

and take X := Upn=o Yn. We will prove the lemma in three steps.

Step 1: We will first show that G can be extended to a function Gy on Xy, such
that 2Gy satisfies (6.2.6) for all yy,...y, € Xo. For this pick a sequence of real numbers
(an)%y-; such that ay > 1 and [[}_, an = 2 and define by, := H%:l ay for M = 1. For

y €Y we set Go(y) = G(y) and we will proceed by induction. Suppose that Gy is defined
on UIA\/,IZO Yy for some M € N with

” (kélyklz)mﬂx < bM(é1 Go (yk)z)”2 (6.2.10)

forany yi,..., yx EUAI\/][=0 Yn.

M
For ye Yy \ U Yy picka T €T and an x € Yy, such that Tx = y and define
N=0

For y1,...,yn€ U%:(} YyweletZ ={k:yx €U%=O Yn}. For k ¢ 7 we let T} and x; be as in

the definition of Gy, i.e. Tixy = y. Then, by our definition of Gy, we have
“ (é|yk|2)1/2”X < ” (k§z|yk|2)1/2 HX N H (IC;ID,HZ)UZ”X

1/2
<bu( X Goyw?)  + bullTl e ¥ Gotxir?)
kel k¢

1/2
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n n

1/2 1/2
= bM( GO(J/k)Z) +by(ams1 — 1)( GO(J’k)Z)
k=1 k=1

n 1/2
= bM+1(Z GO(J’k)Z) .
k=1

So Gy satisfies (6.2.10) for M + 1. Therefore, by induction, we can define Gy on Xjp, such
that 2Gj satisfies (6.2.6) for all y,..., y, € Xp.

Step 2: For x € X define the function ¢, : X* — Ry by ¢, (x*) := [x* (x)]2. We will
construct a sublinear functional on the space

V:=span{¢y : x € Xo}.

For this note that every v € V has a representation of the form

V=) bu— ) b+ X (PTix — P20ri o) (6.2.11)
k=1 k=1 k=1

with uy € Xo, v, X € X and Ty €. Define p: V — [—o00,00) by
ny ny
p) = inf{ 16 Y Go(up)®— Y F(vk)z},
k=1 k=1

where the infimum is taken over all representations of y in the form of (6.2.11). This
functional clearly has the following properties

play) =apy), veV,a>0, (6.2.12)
pyr1+y2) < py)+ply2), Y1, W€V, (6.2.13)

P $rx—P2ir) .x) <0, x€ Xy, TeT, (6.2.14)
p(=py) < —F(x)?, x € Xo, (6.2.15)

plpy) <16Go(x)?, x€ Xo. (6.2.16)

We will check that p(0) = 0. It is clear that p(0) < 0. Let

0= du= ) u+ ). ((kaxk —¢2||r||[zxk)

k=1 k=1 k=1

be a representation of the form of (6.2.11). So for any x* € X* we have
ny ny ny Ny
Yot )P+ Y Xt (Tex) P = Y 1x w2+ Y 1x* @IT 2 xp) 12 (6.2.17)
k=1 k=1 k=1 k=1

Let

wi= (up) ), vi= (U,
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x:= ()15 yi= (Trexo) )

be column vectors and define

B o)

Note that (6.2.17) implies, by the Hahn-Banach theorem, that
UL, Unyr X1, Xy € Span{ulr' cy Uny TlJCl, T Tnxxnx}-

Thus there exists a scalar matrix A with [|A|| = 1 such that v = Aui. Therefore, applying the
boundedness of A pointwise and using the #?>-boundedness of I', we have

1y 2 x 2)1/2 My PR 2172
|(Xrwe2rie Y e | < (3 1w+ X1men?) |
k=1 k=1 k=1 k=1

ny 1/2 1 Ny 1/2
2 1 2
= ”(glmkl ) HX+ 2”2|lr”"2(]§1|xk| ) HX
In particular, by assumption (6.2.5) on F and (6.2.6) on 2Gy, this implies

2

(8 po?) < | ) ] =2 () 43 cucu?]
We conclude p(0) = 0 and thus p(0) = 0. Now with property (6.2.13) of p we have

p)+p(=y) = p(0) =0,

so p(y) > —oo for all ¥ € V. Combined with properties (6.2.12) and (6.2.13) this means
that p is a sublinear functional.

Step 3. To complete the prove of the lemma, we construct a semi-inner product
from our sublinear functional p using the Hahn-Banach theorem. Indeed, by applying
the Hahn-Banach theorem (see [Rud91, Theorem 3.2]), we obtain a linear function f on
V such that f () < p(y) for all ¢ € V. By property (6.2.15) we know that p(—¢,) <0 and
thus f(¢,) =0 for all x € Xp.

We take the complexification of V

\/CZ{V1+iU23U1,U2€\/}

with addition and scalar multiplication defined as usual. We extend f to a complex
linear functional on this space by f (v +iv2) = f(v1) +i f(v2) and define a pseudo-inner
product on Xp by (x, y) = f(px,y) with py, ), : X* — C defined as py,, (x*) = x* (x)x* () for
all x* € X*. This is well-defined since

1 . .
Px,y= Z(‘Pxﬂ/ —Px—y+ihxriy— l(/’x—iy) e Ve,



6.2. FACTORIZATION OF ¢"-BOUNDED FAMILIES OF OPERATORS 163

On X, we define |-|lp by the seminorm induced by this semi-inner product, i.e.

lxllo := v/ {x, %) =1/ [ ().

Then for x € Xy and T € T" we have by property (6.2.14) of p
ITxIE < prx = Pairi o) + [ (2iry 20 < 4TI, 1115
By property (6.2.15) of p we have
Ixl§ = Fpx) = ~p(~¢px) 2F0)%,  x€ X,
and by property (6.2.16) of p we have
Y15 = £(¢y) < pby) <16Go(y)* =16G(y)?,  yeY.
So [|]lg satisfies (6.2.7)-(6.2.9). O

We want use the lattice structure of X to make Lemma 6.2.2 more concrete. Let us
first note the following property of a Hilbertian seminorm on a function space.

Lemma 6.2.3. Let X < L.°(Q) be a vector space with a Hilbertian seminorm ||-||o. Suppose
that there is a C > 0 such that for x; € L°(S) and x, € X

[x1] = |32l = x1 € X and | x11lo = Cllx2llo.
Then there exists a seminorm ||-||; on X such that

1
clixllo = llxllh = Cllixllo xeX,

2 2 2 .
21 + X207 = X1 I + 12217, X1, X2 € X:x1Nx2=0.

Proof. Let Il be the collection of all finite measurable partitions of Q, partially ordered
by refinement. We define

) N
Il = inf sup( ¥ Ix1g13) ", xeX,
el 1>y Een'

which is clearly a seminorm. For a x € I1, write # = {Ey,---,E,} and let (fsk)Z:1 be a
Rademacher sequence. Then we have for all x € X that

n

n n
Ix1g 5 =E) ) ejexixlg;, x1g) =E
=1 j=1k=1

4 2 _ 22
Y ep-xlg, HO < C?||x|)?
k k=1

and, since Uzzl E; = Q, we deduce in the same fashion

n

n 2 n
2 2 2 2
Y oeexlg| = C? Y Ix1g 3 =C* Y Ix1g 3.
k=1 k=1 k=1

Ixl < C*E
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Therefore we have %lello < |lxll; = Cllxllp for all x € X and n € II. Furthermore if x, y € X
with x A y =0, then for = = {supp x, Q \ supp x} we have

Y+ 1ply =Y lx1gl3+ Y Iy1l3.

Een Een Een

So we also get || x + yll% = IIxII% + ||y||2, which proves the lemma. O

With this lemma at our disposal, we are now ready to reformulate Lemma 6.2.2 in a
way that resembles Theorem 6.2.1. Note that if X is 2-convex and order-continuous, we
can take Y = X and F(x) = %1l 12 (2, ) for v € (X?)* of norm 1 in the following lemma.
This yields the difficult implication of Theorem 6.2.1 for r = 2, since in this case X <
L?(Q, w) and (6.2.19) implies w = v.

Lemma 6.2.4. Let X and Y be Banach function spaces over a measure space (Q, y1). Sup-
pose that Y is 2-convex, order-continuous and Y — X contractively. Let F: X — [0,00) be
a positive homogeneous function such that

n 2 1/2 n 2\ 1/2
(X rea?) "< (X 1®?] o e x.
k=1 k=1

LetT € L(X) be an ¢?-bounded family of operators. Then there exists a w € (Y?)* with
lwly2+ <1 such that

1Tl 20,0y S TN 2110 12 (2,0 xeXnL*(Qw), Terl. (6.2.18)
”x”LZ(Q’w) Z F(x), X € Y (6219)

Moreover, the implicit constants are absolute.

Proof. Define G:Y — [0,00) by G(x) = [ x|y, for which (6.2.6) follows from the contrac-
tive embedding Y — X and the 2-convexity of Y. For m € L*°(Q) let T}, be the pointwise
multiplication operator given by T;,x = m- x for x € X and set

M ={Ty:me L®Q), Iml =@ < 1} € L(X). (6.2.20)
Note that M is £2-bounded with | M| 2 = 1, so if we define
To:= (—2”1}”[2 T)u(3-M),

then I'y is ¢2-bounded with IToll 2 < 1. Applying Lemma 6.2.2 to Iy, we obtain a I'- and
M-invariant subspace Y < X, < X and a Hilbertian seminorm ||| on X, satisfying

I Txllo<4lTllpzllxllo, x€Xp, TET, (6.2.21)
ITxllo=<4lxllo, x€ Xy, TeM, (6.2.22)
lxllo = F(x) x € Xo, (6.2.23)

lxllo =4lxly, xeY. (6.2.24)
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Then (6.2.22) implies that if x; € L°(Q), x» € Xp and |x1| < |x2|, we have x; € X, with
llx11l < 4llx21l. Thus we may, at the the loss of an absolute constant in (6.2.21)-(6.2.24),
furthermore assume

2 2 2 .
lxy + X205 = llx1llg + 1 x2 G, X, X2 € X1 X1 AXx2=0 (6.2.25)

by Lemma 6.2.3.
Let u € Y such that u > 0 a.e. and define a measure

AE) = lulgl3, Ee€X.

Using (6.2.25), the o-additivity of this measure follows from
o0 (e8] n o0
AU e =] 2wt = Jim | 3w = 2 aceo

for Ey, E», - - - € Z pairwise disjoint, where the second step is justified by the order-continuity
of Y and (6.2.24). Moreover, again using (6.2.24), we have for any E € X with y(E) =0

ME) = lulglg Sllulglly =gy =0

so A is absolutely continuous with respect to p. Thus, by the Radon-Nikodym theorem,
we can find a f € L' (Q) such that

||u15||3=A(E)=fEfdu

for all E € X. Define w = u~2 f, which is a weight since u, f >0 a.e.
Take x € Y and let (v;)52, be a sequence of functions of the form

mp
vn:uj;a;’lE]r;, aieC, Ejez,

such that |v,| 1 |x]. Then lim;,_ ||V, — Xllo = 0 by the order- continuity of Y and (6.2.24).
Therefore we have, by (6.2.25) and the monotone convergence theorem, that

my np
2 _ 9 n2 2 _ n2, 2 _ 2
IIxIIO—,}ggoZIajI IIulE;LIIO—r}EgOELnIajI u wd,u—fQIxI wdp.
j=1 j=1 j
In particular, (6.2.19) now follows from (6.2.23) and by (6.2.24) we have

lwlly2« < sup lezw du<l.
lxly=1JQ
For T €T and x € Y define m,, = min(1, nu-|Tx|™!) for n e N. Then m,,- Tx € Y and
|my-Tx| 1 1Tx|. So, by the monotone convergence theorem, (6.2.21) and (6.2.22), we
have

1
1 Txll 2,y = lim (fﬂlmn . Txlzwdp)2

n—oo

lim |[[m;, - Txllo
n—oo

ST g2 120 20 0)-
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To conclude, note that Y is dense in X n L2(Q, w) by order-continuity. Therefore, since
T is bounded on X as well, this estimate extends to all x € X N L2(Q, w), i.e. (6.2.18)
holds O

Lemma 6.2.4 does not only cover Theorem 6.2.1 in the case r = 2, but it also allows
for Y # X. This enables us to deduce a factorization theorem for Banach function spaces
X that are not 2-convex. For the special case X = LP(S) the following result can be found
in the work of Le Merdy and Simard [LS02, Theorem 2.1]. See also Johnson and Jones
[JJ78] and Simard [Sim99].

Theorem 6.2.5. Let X be an order-continuous Banach function space over a measure
space (Q, ) and letT < L(X). ThenT is £?-bounded if and only if there exists a constant
C > 0 such that for all yy, y1 € X there is a weight w such that

”Tx”LZ(Q’w) = C”x”LZ(Q'w)r XEXHLZ(Q, W), TEF (6226)
I¥ollz20,u) = 1¥ollx, (6.2.27)
Iyllzw 2 I lix- (6.2.28)

Moreover C > 0 can be chosen such that |T'| - = C and the implicit constants are absolute.

Proof. We will first prove the ‘if’ statement, which is very similar to the 'if’ statement of
Theorem 6.2.1. Let x1,...,x, € X and Ty,..., T, €. Define

Yo = (§1|Xk|2) , = (IgllTkaZ) .

Then we have, by applying (6.2.26)-(6.2.28), that

Nl—=
NI

n n
Iy % < Zf|Tkxk|ZWdNSCZZf lxel?w du < CPllyoll%,
k=17Q k=1JQ
so [IT'll,2 < C.

Now for the converse take yg, 1, € X with | yollx = ly1llx = lédllx =1and @& >0 a.e.
Define

1 _
u:=§(|yo|VIy1|vu),
then lullx <1and [lyju~"llz~(q < 3for j =0,1. Let
Y={xeX:x*u'leX}

with norm || x|y := |x®u~!|
and for x;,---, x;, € Y we have

n 1/2 n 1/2 n 1/2 n 1/2
5, =D 27 (1) = (S
k=1 k=1 k=1 k=1

}(/2. Then Y is an order-continuous Banach function space
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i.e. Y is 2-convex. Moreover by Hélders inequality for Banach function spaces ([LT79,
Proposition 1.d.2(i)]), we have

Ixlx < |22u 3 ul? < lxly,  xev,

so Y is contractively embedded in X. Conversely we have for j =0, 1

Iyilly <0yilx]yju™ | oo <3llyjlix. (6.2.29)

Now define
x|lx, ifx€span ,
P pan{y1}
0, otherwise

and for xp,...,x, € X let ay,...,a, € C be such that x; = ayy; if xx € span{y;} and a; =0
otherwise. Then we have

(5 rer) = (S10?) | S0,

Therefore, applying Lemma 6.2.4, there is a weight w € (Y2)* with || Wl (y2)» < 1such that
(6.2.18) and (6.2.19) hold. In particular, using (6.2.29), this implies

1/2 1/2
1ol 2, = 170 [ y2 1wl 3, S lyollv <3lyollx,

[Iy1 ||L2(Q,w) Zlyillx,

proving the theorem. O

6.3. EXTENSIONS OF OPERATORS I: FACTORIZATION

In this section we will apply Theorem 6.2.5 to obtain a more general version of Theorem
6.1.1. We will apply this factorization-based extension theorem to deduce the following
results:

» We will show that the dyadic UMD™ property is equivalent to the UMD property
on Banach function spaces.

 We will show that the UMD property is necessary for the £-sectoriality of certain
differentiation operators on LP ([R%d; X), where X is a Banach function space.

Moreover, in the next section we will use it to prove the boundedness of the lattice

Hardy-Littlewood maximal operator on UMD Banach function spaces.

Let p € [1,00) and let w be a weight on R?. For a bounded linear operator T on
LP(RY, w), we define the linear operator Ton PR, w)e X by setting

T(fex):=Tfex, feL’R%w), xeX,

and extending by linearity. If T extends to a bounded operator on L” (R?, w; X) we de-
note this operator again by T. Fora family of bounded operators I = L(LP (R?, w)) we
denoteT:={T: T eT}.
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Theorem 6.3.1. Let X be an order-continuous Banach function space over a measure
space (Q,Z, 1), let p € (1,00) and w € Ap. Assume that there is a family of operators I' <
L(LP (R, w)) and an increasing function ¢: R, — Ry such that

o For all weights v: R% — (0,00) we have

[V]AZ < ¢(Sup ” T”LZ(Rd,l/)ﬂLZ(Rd,U))'
Tel

o T is ¢2-bounded on L” R, w; X).

Let f,g € LP(R%, w; X) and suppose that there is an increasing functiony: R, — R, such
that for all v e A, we have

”f(.’w)”Lz(Rd,y) =y(vla)lgl,w) "LZ(Rd,U)' w €.
Then there is an absolute constant ¢ > 0 such that
”f"LP([Rd,w;X) = C'1//°¢)(C ||1"||ez)||g||Lp(Rd,w;X)-

Proof. LetueL” (R?, w) be such that there is a cx > 0 with u = cx 1k for every compact
K <R%. Let x € X be such that x > 0 a.e. and

lu® Xl pmd,w:x) < 181 p@d, wix)-

Since X is order-continuous, L” (R?, w; X) is an order-continuous Banach function space
over the measure space
R x Q, wdr dp).

So, by Theorem 6.2.5, we can find a weight v on R% x Q and a numerical constant ¢ > 0
such that

IThI 2 @dx vowy) < €I 2 1Rl 2Rd vy v (6.3.1)
forall TeTand he LPRY, w; X) N L2(R4 x Q, v- w),
ligl+ue x”LZ(Rde,u-w) <cligl+ue x”LF’([R%d,w;X)’ (6.3.2)
12t 2 1t (6.33)
Note that (6.3.2) and the definition of x imply
I8l 2®dx,vw) =2€ 18l Lp@d wix)- (6.3.4)

Moreover (6.3.2) implies that u € LZ(Rd, v(-,w) - w) for py-a.e. w € Q. Therefore by the
definition of u we know that v(-,w) - w is locally integrable on R%. Let A be the @Q-linear
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span of indicator functions of rectangles with rational corners, which is a a countable,
dense subset of both L” (R%, w) and L?(R?, w(-,w)) for y-a.e. w € Q. Define

B={yexlp):ye A EecZtc PR, w; X)nL2RI xQ,v-w),

where the inclusion follows from u® x € L*([R? x Q, v- w). Testing (6.3.1) on all 1 € B we
find thatforall TeT and y € A

I Tw”LZ(Rd,U(~,w)-w) =c ”f"[Z ”WHLZ(Rd,V(gw)'w)’ weQ.

Since A is countable and dense in L2(R?, w(-, 5)), we have by assumption that v(-,w)w €
Ay with [v(-,w) - wla, < ¢(c IT|l2) for p-a.e. w € Q. Therefore, using Fubini’s theorem,
our assumption, (6.3.3) and (6.3.4), we obtain

) 1/2
o <[ [ 1170 wde )
QJrd
~ 1/2
sc-u/oqb(cllfllgz)(ff Iglzv-wdtdu)
Q JR4
<2c®-yo(c Tl 2) I8l o gt i
proving the statement. O

Let us point out some choices of ' € L(LP ([Rd, w)) that satisfy the assumptions The-
orem 6.3.1 when X has UMD property:

o ' ={H}, where H is the Hilbert transform.
e I'={Ry:k=1,...,d} where Ry is the k-th Riesz projection.

e I':={Tg:Baballin R}, where Tg: LP(R?, w) — LP(R?, w) is the averaging opera-
tor
Tf(t):={1,s1B(1), teRrR?,

In each of these cases one obtains Theorem 6.1.1 as a corollary:

Proof of Theorem 6.1.1. For j =1,---,d denote the k-th Riesz projection on L” (R, w) by
RiandsetI = {Ry:k=1,...,d}. Then we have for any weight v on R4

4
(014, S (SUDN T2 g 1) 120,11 -
Tel

by [Gral4a, Theorem 7.4.7]. Moreover by the triangle inequality, the fact that we can test
¢%-boundedness on distinct operators, Theorem 2.7.1 and Theorem 3.4.1 we have

d max{ 1}

T2 < Z IRk 1o e 10; )~ 17 @, 103%) SX,pd [W]Ap
k=1

1
p-1’
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Thus T satisfies the assumptions of Theorem 6.3.1. Now let f,g € L” (R, w; X) and sup-
pose that for some py € (1,00) there is an increasing function ¢: R, — R, such that for
all v € Ap, we have

If(w) ”LpO(RdYV) = (,b([V]APO) ”g('rw)”Lpo([Rd,U); weQ.

Then by Rubio de Francia extrapolation (Theorem 2.3.3) there is an increasing function
v: Ry — Ry, depending on ¢, p, po, d, such that for all v € A, we have

If Gl 2@y S UAIIEE O pga,), — ©EQ
Therefore by Theorem 6.3.1 we obtain

4
ax{ ;=7 4}

m:
11 L @, w;x) < € W(Cx,p,a- (W], Mg b e, )

p

which implies the conclusion of Theorem 6.1.1. O

6.3.1. RANDOMIZED UMD PROPERTIES

As afirst application of Theorem 6.3.1, we will prove the equivalence of the UMD prop-
erty and the dyadic UMD™* property, introduced in Subsection 2.4.2. Two natural ques-
tions regarding these randomized UMD properties are the following:

* Does either the UMD~ property or the UMD™ property imply the UMD property?
For the UMD~ property it turns out that this is not the case, as any L' -space has it,
see [Gar90]. For the UMD™ property this is an open problem. For general Banach
spaces it is known that one cannot expect a better than quadratic bound relating
Bp,x and ﬁ;X (see [Gei99, Corollary 5]).

e The dyadic UMD property implies its non-dyadic counterpart. Does the same
hold for the dyadic UMD™" and UMD~ properties? For the UMD~ property it is
known that the constants ,6; x and ,62';( are not the same in general, as explained
in [CV11]. The relation between the norm of the Hilbert transform on LP(T; X)
and ﬁf?,’; and ﬁf?,’; has recently been investigated in [0Y19].

Using Theorem 6.3.1, we will show that on Banach function spaces the dyadic UMD™
property implies the UMD property (and thus also the UMD™* property), with a quadratic
estimate of the respective constants. The equivalence of the UMD™ property and the
UMD property on Banach function spaces has previously been shown in unpublished
work of T.P. Hyt6énen, using Stein’s inequality to deduce the £2-boundedness of the Pois-
son semigroup on L” (R%; X), from which the boundedness of the Hilbert transform on
LP(R%; X) was concluded using Theorem 6.2.5.

Theorem 6.3.2. Let X be a Banach function space over a measure space (Q, 1t). Assume
that X has the dyadic UMD™ property and cotype q € (1,00). Then X has the UMD prop-
erty with for p € (1,00)
A+)2
ﬁp,X <pq (Cq,X ,Bp;() .
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Proof. Denote the standard dyadic system on [0,1) by Z, i.e.

2= %% =020+ j:j=0,..,25-1}
keN
Viewing [0, 1) as the torus T, set 7} := Zy +a and 7% := J +a for a € 0,1 3 3} Then
(9]‘:)2:1 is a Paley-Walsh filtration on [0,1) for all ne Nand a € {0,1 T 3}. Let p € (1,00)
and define
ri={ECI1Z8): keN, ae{0,1,2}} < LU ((0,1)).

By a dyadic version of Stein’s inequality, which can be proven analogously to [HNVW16,
Theorem 4.2.23], we have for fi,---, f;, € LP([0,1); X)

n
(| S P ’
H Z Z k (fk| K LP([0,1)xQ;X) p,X kgl kfk LP([0,1)xQ; X)

{01 2}k 1

where (er)}_, is a Rademacher sequence on a probability space (Q',P). So, by Propo-
sition 2.4.1, Proposition 2.6.3 and the fact that we can test £?-boundedness on distinct
operators, we know that I" is #2-bounded with

ITlle Sp Vacqx Byx- (6.3.5)

Let w . [O, 1) - (0,00) and set C = SupTer ”T"LZ([O,I),w)—>L2([0,1),w)' Let I c [0, 1) be
an interval. Then there exists an I’ € U ac0,1,2) 2% such that I < I' and |I’| < 3|I|. Fix
acfo, 3 3} and k e Nsuch that I' e 7. Applymg E(12}{) to the function f = (w+¢)™ L1,
for some £ > 0 we obtain

_ 2 w(t)
fp 7 /(w(t)+6) dt) w(s)ds<C fp—(w(t)+s)2 dt

which implies
(w)1,1<(w+£)_1>1,1 < 9(w>1,p((w+£)_1>1yl, <9C?

So by letting € — 0 with the monotone convergence theorem we obtain w € A, with
[w]a, S C2.

For I € & let Dy be the Haar projection as defined in (3.8.1). Let A be the set of all
f€LP([0,1); X) such that Dy f # 0 for only finitely many I € 2. Thenforall fe A, we A,
and ey € {—1,1} we have

” Y eDif(,w)

Ie9

2(0.0,0) < [wla, ||f(‘;w)||L2([0,1),w); weQ

by Theorem 3.8.1. Now note that Theorem 6.3.1 also holds with [0, 1) in place of R4 with
the exact same proof. Thus, applying this adapted version of Theorem 6.3.1, we obtain

|5 o]

A+)2
<p alcaxB,x) 1f o0 (6.3.6)
Ie9

LpP([0,1);X)
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forall f e Aande; € {-1,1}. Thisextends toall f € L”([0,1); X) by density (see [HNVW186,
Lemma 4.2.12]), so

Bp.x <p d(cqx ﬁﬁ;f

as (6.3.6) characterizes the UMD property of X by [HNVW16, Theorem 4.2.13]. O

Remark 6.3.3. The assumption that X has finite cotype may be omitted in Theorem
6.3.2, since the dyadic UMD™ property implies that there exists a constant C;, > 0 such
that X has cotype Cpﬁ;')A( with constant less than C,, (see [HLN16, Lemma 32]). This

would yield the bound B, x <) (ﬁﬁ:;{)g’ for all p € (1,00) in the conclusion of Theorem
6.3.2.

6.3.2. (2-SECTORIALITY AND THE UMD PROPERTY

Recall the definition of a sectorial operator A from Section 5.2. We say that a sectorial
operator A on a Banach function space X is #?-sectorial (respectively R-sectorial) if the
resolvent set

{AR(A, A): 1 #£0,|argA| > o}

is #2-bounded (respectively R-bounded) for some o € (0, 7).

It is well-known that both the differentiation operator D f := f’ with domain WLP(R; X)
and the Laplacian —A with domain W2PR%; X) are R-sectorial if X has the UMD prop-
erty (see [KW04, Example 10.2] and [HNVW17, Theorem 10.3.4]). Since any UMD Ba-
nach space has finite cotype, it follows from Proposition 2.6.3 that these differentiation
operators are also #2-sectorial. Using Theorem 6.3.1 we can turn this into an ‘if and only
if” statement for order-continuous Banach function spaces. We start with a lemma to
check the weight assumption in Theorem 6.3.1.

Lemma 6.3.4. Let 0 # ¢ € L'(RY) n L2(R?) be real-valued and let w: R% — (0,00) be a
weight. Suppose that there is a C > 0 such that for all f € L>(R%, w) and ) € R we have

llpa * f”LZ([Rd,w) =C ”f"LZ(Rd,w)

where g, (1) := I/IId(p(/lt) forte R, Thenwe Az and (W] a, S¢.a ct.

2

i) 0. More-

Proof. Lety = @_; * ¢. Then w(—1t) = y(¢) for all £ € R and v(0) = ¢l
over

2
"IVHLOO(IRd) = ”(’olle(IRd)’

so 1 is continuous by the density of C.(R%) in L?(R%). Therefore we can find a § > 0
such that w(t) > § for all |¢| < §. Define v (1) := 24 w (A1) for A > 0. Then we have for all
f e L'RY N L2(RY, w) that

2
llwy * f”LZ(Rd,w) =llp-_p* @y * f”LZ(Rdyw) =C "f”LZ([Rd,w)
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Now let B be a ball in R? of radius r > 0 and let f € L' ®%) n L?>(R%, w) be nonnegative
and supported on Q. Take A = %, then for r€ B

d+1
Wy f(1) :)Ldeu/[/l(t—s))f(s) ds=, IB] ff(s) ds. (6.3.7)

Nowlet w: R? — (0,00) be a weight. Applying (6.3.7) and the assumption to the function
f=w+ £)~115 for some & > 0 we obtain

_ < 4 w(t)
f IBl[(w(t)+£) dt) w(s) ds~¢dC j;;—(w(t)+€)2 dr

which implies
(w)1,3<(w+£)_1>113 dt<ga ct

So, by letting ¢ — 0 with the monotone convergence theorem, we obtain w € A, with
(W]a, S¢,d ct. O

Using Lemma 6.3.4 to check the weight condition of Theorem 6.3.1, the announced
theorem follows readily.

Theorem 6.3.5. Let X be an order-continuous Banach function space and let p € (1,00).
The following are equivalent:

(i) X has the UMD property.
(ii) The differentiation operator D on L” (R; X) is 02 -sectorial.
(iii) The Laplacian —A on LP (IRd; X) is % -sectorial.

Proof. We have already discussed the implications (i) = (ii) and (i) = (iii). We will prove
(iii) = (i), the proof of (ii) = (i) is similar. Take A € R and define the operators

Ty = —A2A(1-A%A) 2 = —AR(—%,—A) : %R(—%,—A).

Since —A is ¢%-sectorial on LP ([Rd ; X), we know that the family of operators
I= {TA :de R}
is #2-bounded on L (R%; X). Furthermore we have for fe I2(RY) that T f =@ = f with

¢ € L' (RY) N L2(RY) such that

2
@(f) _ 2nlé) €[Rd.

(1+@nlen?)®’

Moreover Ty f = ¢, * f for ¢, (x) = |A|%p(Ax) and A € R. Using Lemma 6.3.4 this implies
that the assumptions of Theorem 6.3.1 are satisfied.
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Since the Riesz projections Ry for k =1,...,d are bounded on L2RY, w) forall we Ay
by Theorem 3.4.1, applying Theorem 6.3.1 we find that for all f € C®°(R%; X)

IR Fl sy Sa 11 1 Flpgasyyy k=1, d

So, by the density of C° (R%; X) in L? (R%; X), the Riesz projections Ry are bounded on
LP(R%; X), which means that X has the UMD property by Theorem 2.7.1. O

The proof scheme of Theorem 6.3.5 can be adapted to various other operators. We
mention two examples:

* In [7] it was shown that the UMD property is sufficient for the #2>-boundedness of
a quite large family of convolution operators on L” (R%; X). Using a similar proof
as the one presented in Theorem 6.3.5, one can show that the UMD property of
the Banach function space X is necessary for the #2-boundedness of this family of
operators.

e On a general Banach space X we know by a result of Coulhon and Lamberton
[CL86] (recently quantified by Hytonen [Hyt15]), that the maximal LP-regularity
of (—~A)'/? implies that X has the UMD property. Maximal L”-regularity implies
the R-sectoriality of (-A) 12 on Lp([Rd; X) by a result of Clément and Priiss [CP01]
and the converse holds if X has the UMD property by [Wei0O1b]. It is therefore
a natural question to ask whether the R-sectoriality of (=A)Y2 on LP([RY; X) also
implies that X has the UMD property. By the equivalence of R-sectoriality and ¢2-
sectoriality on Banach lattices with finite cotype, we can show that this is indeed
the case for Banach function spaces with finite cotype, using a similar proof as
in the proof of Theorem 6.3.5. The question for general Banach spaces remains
open. This is also the case for the question whether the R-sectoriality of —A on
LP(R?; X) implies that X has the UMD property, see [HNVW17, Problem 7].

6.4. THE LATTICE HARDY-LITTLEWOOD MAXIMAL OPERATOR

We now turn our attention to the lattice Hardy-Littlewood maximal operator, which
will play an important role in our sparse domination-based extension theorem. We will
study this operator on a space of homogeneous type, although we will restrict ourselves
to R? for the extension theorem. We will start by introducing the Hardy-Littlewood
property of a Banach function space X and study some of its properties. Afterwards we
will be in a position to define the lattice Hardy-Littlewood maximal operator and deduce
sharp weighted bounds using sparse domination. We will end this section with a com-
parison between the lattice Hardy-Littlewood maximal operator and the Rademacher
maximal operator introduced in Section 3.6.
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6.4.1. THE HARDY-LITTLEWOOD PROPERTY

Let X be a Banach function space, let (S,d, u) be a space of homogeneous type with
dyadic system 2 and let D < Z be a finite collection of dyadic cubes. For f € LIIOC(S; X)
we define

ME, f:=sup (Ifho 10,
QeD

where the supremum is taken in the lattice sense. We say that X has the Hardy-Littlewood
property and write X € HL if, for some p € (1,00), we have

. D
Hp,x = S%p 1Ml 2e (10, 1; %)~ 22 (10,13;%) < 00,

where the supremum is taken over all finite collections of dyadic cubes D in [0,1). We
took the unit interval [0, 1) in this definition, since it was shown by Deleaval, Kriegler
and Kemppainen in [DKK18, Lemma 3.4] that for any finite collection of dyadic cubes
D < & one has
M p (53010530 < fip,x- (6.4.1)
The Hardy-Littlewood property is independent of p € (1,00), which was shown by
Garcia—Cuerva, Macias and Torrea in [GMT93]. Our first goal will be to prove sparse
domination for Mgt, which also implies this p-independence. We start with a weak
L!-estimate.

Lemma 6.4.1. Let X be a Banach function space and let (S,d, 1) be a space of homoge-
neous type with a dyadic system 2. If X € HL, then we have for any finite collection of
dyadic cubesD < 9 and p € (1,00)

D
IMpaell 1 (50— 1100 (5:%) S5,2,p Hp, X+
Proof. Fix D c Z finite and take f € LY(S; X) with norm 1. For A > 0 define
§:={Q € Z: Q maximal (w.r.t inclusion) such that <”f“X>1,Q > A}

and set

0:= UJ Q={M7flx) > A}
QeS

For a fixed P € D note that if P\ O # @, then

Afhrplp= <|f| 15\0+Q§§:|f| 1Q>1,P tp
Q<P

= <|f| Iso+ ) <|f|>1,QlQ>1P1P

QeS

using the disjointness of the cubes in S and

((Hrole)p={f1op QcPp
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in the second equality. Taking the supremum over P € D we can estimate

MP.f<sup(ifitsio+ Y Afhole), , 1p+fMplo
PeD QeS LpP

SME)tg+b,

a

where b= (|f|)1,p 10 and

gi=q1+8&:=Iflls.0+ ) (fDolo-
QeS

By the disjointness of the cubesin S, we have || gl ;1 s:x) = I fllLr(s;x) = 1. Moreover, since
suppb< 0= {M7 (I flx) > A}

and MZ is weak L'-bounded by Proposition 2.2.1, we have

{Ibllx > A} < {MZ(Ifllx) > A}| < %

Next we estimate the L°°-norm of g. We have, by the Lebesgue differentiation theorem,
that

lgilx =flx1si0<M7(Iflx)1si0=< A

and, using the maximality of the cubes in S, we have

Ig2lx=| ¥ (fbrele], Sso X Aflxgle<h
QeS QeS

where Q is the dyadic parent of Q € S. Thus we have || g 1(s:x) Ss,9 A-
Combining the estimates for g and b with (6.4.1), we obtain for p € (1,00)

{IMB sl > 22| = [{IMB gl > A} |+ [{1b1x > A3

p
”g"Lp(S;X) 1
X—+

AP A

- Igllpisx) - AP~ N 1_
25,92,p Hp,x I 1° Mp,x

= Hp,

2
R
Taking the supremum over f € L!(S; X) with norm 1 yields the conclusion. O

Using Lemma 6.4.1 we can prove sparse domination for MLDat, which was shown for
an arbitrary locally finite (not necessarily doubling) Borel measure on R¢ by Hinninen
and the author in [9]. The argument presented in [9] was tailor-made for Mﬁt, whereas
here we prefer to employ the abstract sparse domination principle in Theorem 3.2.2
once more. We will revisit the argument from [9] in Section 6.5 in the context of the

bisublinear lattice Hardy-Littlewood maximal operator.
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Proposition 6.4.2. Let X be a Banach function space, let 7 be a dyadic system in S and
p € (1,00). Suppose that X is r-convex for r € [1,00) and X € HL. Then for any finite
collection of cubes D € 2 and f € L' (S; X) there existsa % -sparse collection of cubesS < 9
such that

1/r
IMES O S5z o[ T A1) 0100) " ses
Qe

Proof. We will check the assumptions of Theorem 3.2.2 for M]gt. By Lemma 6.4.1 we
know that we can view Mﬁt as a bounded operator

MP : LV(S; X) — LY™°(S; X (0% (D))
given by
Mlztf = (<|f|>1,Q IQ)QeD'
For any collection of cubes D’ < D we interpret Mg; similarly. For Q € Z set
D(Q):={PeD:P<cQ}
- yP@

and define T : Lt - Then {Tolgeg isa 1-localization family for M]Zt. Furthermore
we have for f € L'(S; X) and s € Q € Z that

MLD Qf(s) = sup esssup|To\q f(s)—Too f(s") ||X([OO(D)) =0,

Lat’ Q/E@(Q)Z s’,s”eQ’
seqQ’
where the last step follows from the fact that T\ o f = MLDa iQ)\D(Q ) f is constant on Q’.

So M? 1, o Is trivially bounded from LY(S; X) to LY*°(S).

Lat’

To check the localized ¢"-estimate for Mgt take Q1,---,Q, € D with Q, < --- < Q.
Then for se Q, and f € LY(S; X) we have

170, £ )| ooy = H Sup{|Tan(S)|,\TQn_l\an(S)L--w\Tol\ozf(s)l}HX([m(D))

= HUTan(S)V + :23 TQk\Qk+1f(S)|r)m“X(éoo(D))

n-1 1/r
= (“ To, )| x ey + ]CX_:I|| TQi\Qer f(9) ”;(([00(1)))) .

using the r-convexity of X in the last step. Having checked all assumptions of Theorem
3.2.2 for Mgt, it follows that for any Q € D there is a %-sparse collection of cubes S <
2(Q) such that

1/r
ITo@ly Ss2pr tpx( TSI 100) 7 seQ.
Pe

Let D' be the maximal cubes (with respect to set inclusion) of D, which are pairwise
disjoint. Then S := Ugep Sg is a %-sparse collection of cubes that satisfies the claimed
sparse domination as T (s) = Mgtf(s) forany Q € D’ and s € Q and Mgtf is zero out-
side Ugepr Q. O
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As a direct corollary of Proposition 6.4.2 and Proposition 3.2.4, we now see that
the Hardy-Littlewood property is independent of p € (1,00). Moreover Mgt satisfies
weighted bounds, which we will discuss more generally in Subsection 6.4.2.

Corollary 6.4.3. Let X be a Banach function space with X € HL. For p, q € (1,00) we have

Hp,X =p,q Hg,X-

The sparse domination result in Proposition 6.4.2 is sharp. In fact, we can show that
the exponent
r* :=supir € (1,00) : X is r-convex}

is critical: The sparse domination in Proposition 6.4.2 holds for all r < r* and fails for all
r > r*. Moreover it holds for r = r* if X is r*-convex, but we do not settle the case r = r*
if X is not r-convex, which happens for example if X = LP" (R) with p € (1, r).

Proposition 6.4.4. Let X be a Banach function space and let 9 be the standard dyadic
system in [0,1). Taker € (1,00) and assume that for each finite collection D < 9 of dyadic
intervals and f € LY([0,1); X) there exists a %—sparse collection of intervals S < 9 such
that

1/
IMB S WIx Sxr (X (IfIx)glo®) " telo.
QeS

Then X is q-convex forall g€ [1,r).
Proof. Fix n € N and define Qg = [0,2-" ) for k = 0,---,n. Let x1,--+, X, € X be pair-

wise disjointly supported and assume without loss of generality that || x; | x < - < | x5 x-
Define D =U}_,Qr and f =Y7_, 10,10, Xk- Let S € 2 be 3-sparse such that

1/
IMBFOlx Sxr (X (IfIx) T glod) ,  teloD. (6.4.2)
QeS
Note that 0\ Qp_1) ) )
Bk A k1) — x| = =
(1 De = ===kl = (1= 5 Jlad = S,

Since the x;’s are disjointly supported, we have ‘ZZ=1 xk| = SUpP;<<n!*kl- Therefore we
have

n
”Zx/cHX= I sup Ixel| x s2IMB f0lx, 1€ Qo. (6.4.3)
k=1 1<k<n

Moreover, since || x1 || x < --- < || x, |l x, we have that

1k
Mflx0 = m};u(Qj \Qj-DIlIxjllx < llxkllx.

Since f =0 on Qy, this yields

’ 1/r L AT L ; 1
(X (iiole®) = (X)) =(Xiwlk) e (6.4
Q€S k=1 k=1
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Combining (6.4.2), (6.4.3) and (6.4.4), we deduce that
|32 5] = (S pent)’
Xkl Sx, il |
=1 X o k=1 X

for all pairwise disjoint vectors x1,---,x, € X. This is called an upper r-estimate for X.
By [LT79, Theorem 1.£.7], this implies that X is g-convex for all g € [1, 7). O

Remark 6.4.5. The proof of Proposition 6.4.4 can be extended to any space of homo-
geneous type (S, d, 1) with a dyadic system 2 such that for any n € N there are dyadic
cubes Qg < -+ € Qp with p(Qg_1) < $u(Qg) for k=1,..., n.

It was proven by Bourgain [Bou84] and Rubio de Francia [Rub86] that a sufficient
condition for X to have the Hardy-Littlewood property is that X has the UMD property.
We will recover this result using Theorem 6.3.1 and obtain an explicit estimate of pp, x
in terms of the UMD constant 8, x. Tracking this dependence in the proof of Bourgain
and Rubio de Francia would be hard, as it involves the weight characteristic dependence
of the inequality [Rub86, (a.5)].

Theorem 6.4.6. Let X be Banach function space with cotype q € (1,00). If X e UMD, then
X e HL and for p € (1,00) we have

2
Up,x Sp Q(Cq,Xﬁp,X) .
Proof. Let pe (1,00) and f € LP (R). Define for any interval I < R the averaging operator
Trf @) :={(H1,111(2), teR

and set T := {T;: I an interval in R}. Then we know that I is #2-bounded on L” (R; X) with

ITll g2 <p VaCqxBp,x

by [HNVW17, Proposition 8.1.13] and Proposition 2.6.3.
Let w: R — (0,00) and set C := suprer | Tll 2 1)—12®,w)- Fix an interval I < R. Ap-
plying T7 to the function (w +£)~! 1; for some & > 0 we obtain

1 -1 4.2 zf w(1)
fl(mf](w(t)ﬂ) dt] wieds<C | o d

(%fow(t)dr)(%flg(w(tnerl dt) <c?

So by letting € — 0 with the monotone convergence theorem, we obtain w € A, with
[w]a, = C2. Therefore T satisfies the assumptions of Theorem 6.3.1 with ¢(1) = 2.

Fix a finite collection of dyadic intervals D < 2 in R. For any simple function f €
LP (R; X) we have

which implies

MP ft,0) = M7 (f(,0)(0), teR,weQ.
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So by Theorem 6.3.1, using the weighted boundedness of M 7 from Proposition 2.3.2(v),
we know that for any simple function f € LP (R; X) we have

2
||M]gtf”LP([R€;X) <p (cqxBpx) I fllrmx)-

Thus, by the density of the simple functions in L? (R; X) and restricting to the unit inter-
val [0,1), we obtain

D D 2
I Myl ze qo,1; 50— L7 (0,100 < UMl @ x)—r @) Sp 4(Cq,xBpx)°

Taking the supremum over all finite collections of dyadic intervals, the theorem follows.
O

Remark 6.4.7.

¢ Asin the proof of Theorem 6.1.1, we could alsouseI' = {H} or I'={Ry : k=1,---,d}
in the proof of Theorem 6.4.6, where H is the Hilbert transform and Ry, is the k-th
Riesz projection. This yields a bound on up, x in terms of the norm of the Hilbert
transform or Riesz projections.

¢ Asalready discussed in Remark 6.3.3, the assumption that X has finite cotype may
be omitted in Theorem 6.4.6. This yields the bound pp, x < ,63p x in the conclusion
of Theorem 6.4.6.

¢ The converse of Theorem 6.4.6 holds if we impose the Hardy-Littlewood property
on both X and X* (see [Bou84] and [Rub86]). We will provide a quantitative proof
of this fact in Section 6.6.

6.4.2. THE HARDY-LITTLEWOOD MAXIMAL OPERATOR

Let X be an order-continuous Banach function space and let (S, d, 1) be a space of ho-
mogeneous type with dyadic system 2. Take p € (1,00) and w € A,. If X € HL we define
the (dyadic) lattice Hardy-Littlewood maximal operator for f € LP(S; X) by

M7 f:= sup (fDrolo,
QeZ:seQ

Muatf :=sup(lfi1,81s,
B3s

where the suprema are taken in the lattice sense and the second supremum is taken over
all balls B < S containing s.

Our main result in this section is that both M]Zt and M, are bounded operators on
LP(S, w; X). This is a direct consequence of the sparse domination result in Proposition
6.4.2, the weighted estimates in Proposition 3.2.4 and the existence of adjacent dyadic
systems as in Proposition 2.1.1.
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Theorem 6.4.8. Let X be an order-continuous Banach function space and let (S,d, 1)
be a space of homogeneous type with dyadic system 9. Suppose that X is r-convex for
r € [1,00) and X € HL. Both ML% and M o are bounded operators on LP (R?, w; X) for all
p € (l,00) and w € Ay with
; max{ 3Ly, 1}
I M08 w030 Lr (8,330 S5,2,pur Hp,x (W] a
1

M, max{ l}
p-1’r
l Lat”LP(S,w;X)—»LP(S,w;X) SS,p,r Up,x [W]Ap

Proof. We start with the claim for MZH. Let f € LP(S, w; X) and let Dy, be a finite collec-
tion of cubes for each k € N such that Dy € Dy, and Ugen Dy = Z. By Proposition 6.4.2
and Proposition 3.2.4 we have

1 1
D max{ 5Ly 1}
sup 1My fllLrs,wix) Ss,2,p,r Bpx Wl "0
keN

Thus, using the Fatou property of X, it follows that Mf{1 JS(s) € X for a.e. s€S. More-
over, since X is order-continuous, (Mg;’f(s))keN converges to Mgtf(s) fora.e. s€ S. As
MLz (fisa simEle function for each k € N, we can conclude that ML@at f is strongly mea-
surable, i.e. M]ﬁt f € L°(S; X). Furthermore, using the Fatou property of L” (S, w; X), we
have that Mfﬁt is a bounded operator on LP (S, w; X) for p € (1,00) with

1

1
2 max{ ;L7 1}
I M e s;x0—17(8%) $5,9,p,r 'up’X[w]Ap P17

(6.4.5)

To see that My, f : S — X is well-defined, we note that by Proposition 2.1.1, there
exist dyadic systems 2!, ---, 2™ such that for any ball B< S

m .
(fD1e1pSs Y. M7 f € LP(S, w; X).
j=1

Since X is order-continuous, we know that L”(S, w; X) is an order-complete Banach
function space (see [LT79, Theorem 1.a.8]) and therefore My f € LP (S, w; X). Moreover
we have

max{ 7Ly 7}

m .
9i
||MLatfHLp(5,w:X) <s D IM psix)—1r(six) Ss,pyr Np,X[w]Ap ,
Jj=1

~lI—

which finishes the proof. O
Remark 6.4.9.

* On a UMD Banach function space X, the boundedness of a centered version of
Mg on LP(R?; X) with | Mvatll 1p e x)— 1p ®e:x) = C for a constant C > 0 indepen-
dent of d has been shown by Kriegler and Deleaval in [DK19a].
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* In the particular case X = ¢", the dependence on the Aj-characteristic in The-
orem 6.4.8 is sharp. This can be shown by a similar argument as in Proposition
3.6.2 (see [CMP12]). In the general case that X is a Banach function space that is
r-convex for some r € (1,00), the exponent

r* :=sup{r e (1,00): X is r-convex}

TR . . . max{ 5ty 1}
is again critical: The weighted estimate with the dependence [w] " P holds
for all r < r* and fails for all r > r*. This follows from embedding a copy of ¢7, with
r < r* into X for a large enough n (by applying [LT79, Theorem 1.£.12]) and using
the sharpness in the case ¢7,.

6.4.3. COMPARISON WITH THE RADEMACHER MAXIMAL OPERATOR

To finish our study of the lattice Hardy-Littlewood maximal operator, we will compare
it to the Rademacher maximal operator, introduced in Section 3.6. Let X be a Banach
function space with finite cotype and let & be the standard dyadic system on [0,1). If
X € HL, then by the Khintchine-Maurey inequalities (see Proposition 2.5.1) we have

MZ,f(s) Sx M2 f(s),  selo,),

so in particular X has the RMF property. Thus we know by Theorem 6.4.6 that any UMD
Banach function space has the RMF property.

Comparing the sparse domination result for MIZ 4 in Theorem 3.6.1 with the sparse
domination result for Mgt in Proposition 6.4.2, we see that the sparse operator for Mg d
is smaller than the sparse operator for Mgt. Since the sparse domination for M]Zt on
[0,1) is sharp by Proposition 6.4.4, it follows that the operators M}% d and Mgt are incom-
parable on any RMF Banach function space that is not co-convesx, , i.e. the dyadic lattice
Hardy-Littlewood maximal operator is strictly larger than the Rademacher maximal op-
erator. As the only co-convex RMF Banach function spaces are the finite dimensional

ones, we have the following corollary.

Corollary 6.4.10. Let X be an infinite dimensional Banach function space with RMF and
HL . Then there does not exist a C > 0 such that for all f € LP([0,1); X)

MIth(S) = CMR@adf(s), se(0,1).

6.5. THE BISUBLINEAR (LATTICE) HARDY-LITTLEWOOD MAXIMAL OPER-
ATOR

As mentioned in the introduction, our second approach to extend a bounded operator
T on LP(R?) to a bounded operator on LP(R%; X) is based on sparse domination for
a bisublinear version of the lattice Hardy-Littlewood maximal operator, which we will
introduce in this section. The results presented here are part of a much more general,
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multilinear theory. However, to keep our results accessible and in the spirit of the rest
of this dissertation, we will only discuss a special case of the bilinear results and refer
to [3] or the dissertation of Nieraeth [Nie20, Part %] for further results. For notational
simplicity we will also restrict to R? in this section.

Let us start by introducing the scalar version of the bisublinear Hardy-Littlewood
maximal operator. For f,g € Llloc(Rd) we define

M(f,g) :=sup{|fi1,8{Igh1,81B,
B

where the supremum is taken over all balls B in R?. Note that we trivially have
M(f,8)(t) < Mf(1)-Mg(r), teRe

Thus, by Proposition 2.2.1 and Holder’s inequality, we immediately obtain that for py, p» €

(1,00) and % =L 4+ L e have that

pP1 p2
M: LP'(R%) x LP2(RY) — LP (RY)

is a bounded operator. Moreover, Proposition 2.3.2 yields (non-sharp) weighted esti-
mates for the bisublinear Hardy-Littlewood maximal operator.

Our main reason for introducing the bisublinear Hardy-Littlewood maximal opera-
tor is its intimate connection with the sparse forms appearing in Theorem 6.1.4.

Proposition 6.5.1. Let f,g € Llloc([R{d). There exists ann-sparse collection of cubes S inR%
such that

IM(f, @)@ Sa X (FD1,00gh101Ql.
QeS

Conversely, for anyn-sparse collection of cubes S in R we have

Z (1fD1,04801,01QI SanlIM(f, &)l 11 ga)- (6.5.1)
QeS
Proof. The first claim follows from [Niel9, Lemma 2.9] and Proposition 2.1.1. For the
second claim we have

IM(f, @@y <n ) | AfDielghiedtsan Y (fh1odghelQl O
QeSYEq QeS
Proposition 6.5.1 will allow us to rewrite the sparse forms in Theorem 6.1.4 in terms
of the bisublinear maximal operator, which is an essential step in its proof. It also al-
lows us to deduce sharp weighted estimates for the bisublinear Hardy-Littlewood max-
imal operator. For our purposes the case p, = p} with dual weights suffices, for further
weighted estimates we refer to [Niel9, Proposition 2.7].

L
Proposition 6.5.2. Let p € (1,00), w € Ap and set w' := w »-1. Then we have for f €
L’ R, w) and g € LP' R4, w')

max{

1
IM(f Nty Spa W]y 7

1}
”f”Lﬂ([Rdyw) ”g”Lp’ ([Rd,w’)'
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Proof. This follows from Proposition 6.5.1 and the proof of Proposition 3.2.4, in partic-
ular from (3.2.9) with pg =r =1. O

6.5.1. THE BISUBLINEAR LATTICE HARDY-LITTLEWOOD MAXIMAL OPERATOR

We can also define a lattice version of the bisublinear Hardy-Littlewood maximal oper-
ator. Let X be an order-continuous Banach function space over a measure space (Q, 1)
and py, p2 € (1,00). Since X is order-continuous, X* is a Banach function space as well
and

xeX, x*eX*=>x-x* e LNQ).

Suppose that X, X* € HL, which by Theorem 6.4.6 is the case if X € UMD. We define the
bisublinear analog of M4 for f € LP! (R%; X) and gelLr (RY; X*) as

My (f,8) = sgp {fD1,8-<1gh1,813,

where the supremum is taken in the lattice sense in L1(Q) over all balls B in R?. Note
that we have

Mia(f,8)(1) < Mia f (1) - Miag(1),  teRY,

which means that, by the order-completeness of LP (Rd; LY(Q)), Theorem 6.4.8 and Hoélder’s

inequality, we have for p1, p2 € (1,00) and % = ﬁ + é that

My LPY(RY; X) x LP2(RY; X*) — LP (RY; L1 (Q))

is a well-defined, bounded operator. We can also deduce (non-sharp) weighted esti-
mates for the bisublinear lattice Hardy-Littlewood maximal operator from Theorem
6.4.8. To obtain sharp weighted estimates we will deduce a sparse domination result
for a dyadic version of the bisublinear lattice Hardy-Littlewood maximal operator. This
time, rather than extending the sparse domination principle from Chapter 3 to the bisub-
linear case, we will extend the argument from H&nninen and the author in [9] to the
bisublinear setting.

Let D € Z be a finite collection of dyadic cubes in R?. Define the bisublinear analog
of ME for fe Ll (R%;X)and ge Ll (R%X*)as

MP (f, &) = sup (D10 (g0l
QeD

where the supremum is taken in the lattice sense in L' (Q).

Proposition 6.5.3. Let X be an order-continuous Banach function space over a measure
space (Q,p) and p € (1,00). Suppose that X, X* € HL. Then for any finite collection of
dyadic cubesD< 2, f e L' (R%; X) and g e L\ (RY%; X*) there exists a %-sparse collection

loc loc

of cubes S < D such that

MG (f 9D 1) S7.p.a Hpxip x- ZS<||f||X>1,Q<||g||X* holo®, — reR™
Qe
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Proof. Let f € LI (R%;X), g € L (R?;X*) and fix a finite collection of dyadic cubes
D < 2. Note that we have

MP (f, &))< ME f(t)-ME g(t),  teR?,

so by Holder’s inequality for weak LP-spaces and Lemma 6.4.1 we have

. D
Aoi= sup | Mpgil| 1 ;s it ;o) - 117200 ;1 ) S 2 Hp X
Dc Y finite

For a cube Q € D, we define its stopping children chp (Q) to be the collection of maximal
cubes Q' € D such that Q' C Q and

| sup arvipdsbie] g, > 440 €171 od1gx )1 652)
Q'cPcQ
Let S! be the maximal cubes in D, define recursively S¥*! := Ugest chp(Q) and set

S::Ulesk.

Fix Q€ S andlet Eg := Q\Uqechp (@) Q- Define the set
Q"= {te R?: “MIZt(fIQ’gIQ)(t)”Ll(Q) >4A0<”f”X>1,Q<”g”X*>1,Q}'
Then by the definition of Ay we have

102 < 11/ 1ol e xlIgLollp @ex:
4 <”f”X>1,Q<||g”X*>LQ

Moreover, for Q' € chg(Q) and ¢ € Q', we have by (6.5.2)

) _ L o
= 4IQI . (6.5.3)

”Mgt(le'ng)(t) “Ll(Q) 2 || Sug {AfD1,p<gh1,p
PeD:
Q'cPcQ

iy > M0 1x) {8+ )y g

so t € Q* and thus Q' € Q*. Using the disjointness of the cubes in chp(Q) and (6.5.3),
we get
" 1
Y 1Q1=IQ"I= 51Ql-
Q'echs(Q)
So |Eg| = %IQI, which means that S is a %-sparse collection of dyadic cubes.
Next, we check that ML (f,g) is pointwise dominated by the sparse operator asso-

Lat
ciated to S. For each P € D we define

75(P):={Q €S : Q minimal such that P € Q},
which allows us to partition D as

D= J{PeD:ns(P)=Q}.
QeS
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Fix Q€ S, t € Q and let Q' € D be the minimal cube such that r € Q' and 7g(Q") = Q. If
Q' € Q we have by the definition of Q’ that

“ sup (AfD1,pdgh,p =” sup H<fl>’1 H
nS(P) -Q QPCEPDCQ =

54A0<||f||X>1,Q<||g||X*>1,Q lQ(t)

If Q' = Q the same estimate follows directly from the triangle inequality in X and X*. We
can conclude for any ¢ € R?

MBS O30y =[sup sup <AfD1pUghp 1600
QeS PeD:

LY Q)
n15(P)=Q
<X | sup armuprdghietsol,
QeS" PeD
75(P)=Q

<440 ) (Iflx)yo(lglxe); o Lo(®),
QeS

which proves the claim. O

We obtain the following, important corollary from Proposition 6.5.1 and Proposition
6.5.3. It is exactly this statement that will be the key to prove sparse domination for T
from sparse domination for 7.

Corollary 6.5.4. Let X be an order-continuous Banach function space over a measure
space (Q, 1) and p € (1,00). Suppose that X, X* € HL. For f € LP(R%; X) and g € L (R%; X*)
we have

| MU fllx, Igllx)

"MLat(f; g) ”Ll(Rde) Sp,d “p,X 'Hp’,X* : Ll(Rd)'

Proof. Using Proposition 2.1.1, the monotone convergence theorem, Proposition 6.5.3
and Proposition 6.5.1, we can find 21,...,92™ such that for a.e. t € R¢

[ Miac(f, )| 11y Sa Z sup ”Mlgt(f’g)(t)”Ll(Q)
j=1DcP finite

Sp.d MpxBp x+ - MU flx, 1gllx<)(@),

Taking L' (R%)-norms yields the desired conclusion. O

Corollary 6.5.4 combined with Proposition 6.5.2 yields the announced sharp weighted
estimates for the bisublinear lattice Hardy-Littlewood maximal operator. Again we only
state the case p, = p with dual weights and refer to [3, Corollary 3.6] for further weighted
estimates.
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Theorem 6.5.5. Let X be an order-continuous Banach function space over (Q, 1), let p €

1
(1,00), w € Ay and set w':=w" P-1. Suppose that X, X* € HL. Then we have

max{—-1-,1}
p-1
”MLat(f: g)”Lp(RdYW;X)pr’(Rd,w!;X*)ﬂLl(RdXQ) Sp,d MP,X 'l-lp’,X* : [w]Ap

Remark 6.5.6. If we would redo the proof of Lemma 6.4.1 in the bisublinear case (see [3,
Lemma 3.3], we could replace i, x -ty x+ by
" MLat " LP (Rd;X) XL;/I’ (Rd;X*)—J,I (Rd xQ)
in the estimates in Proposition 6.5.3, Corollary 6.5.4 and Theorem 6.5.5. By [3, Proposi-
tion 4.3] we know that
max{llp,X, ,u'p’,X* } S ”MLat ||Lp(Rd;X)><LV,(Rd;X*)~>L1 (R9 xQY) = lJp,X ° :u'p/,X* )

so this would yield slightly sharper estimates.

6.6. EXTENSIONS OF OPERATORS II: SPARSE DOMINATION

The sparse domination-based extension theorem in the introduction relies on the fol-
lowing two ingredients:

* The equivalence between sparse forms and the L'-norm of the bisublinear maxi-
mal function in Proposition 6.5.1.

¢ The sparse domination result for the bisublinear lattice maximal operator in Corol-
lary 6.5.4.

Having discussed both in the previous section, we are therefore ready to prove this ex-
tension theorem. Since X, X* € HL if X has the UMD property by Theorem 6.4.6, the
sparse domination claim in Theorem 6.1.4 is a direct consequence of the following re-
sult in the case Y = C and Proposition 6.5.1. Recall that X (Y) is a K6the-Bochner space
as introduced in Section 2.5.

Theorem 6.6.1. Let Y be a Banach space and let T be an operator such that for any f €
LP([RY;Y) and g € L (RY)
n ” Tf”Y : g“LI(Rd) = CT”M(”f”Yr g) “Ll(Rd)'

Let X be a Banach function space over a measure space (Q, 1) and assume X, X* € HL.
Furthermore suppose that for all simple f € L®(R%; X (Y)) the function T f: R% — X(Y)
given by

Tft,w) :=T(fCoN®, (o) eRIxQ
is well-defined and strongly measurable. Then for all simple functions f € L§°([R2d; X(Y))
andge Lgo(le) we have

T flx) - &l ey Spad Bpx - tpx+ - Cr | MU f I xv), )| 1 ay-
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Proof. We first note that X is g-concave for some g € (1,00), and thus order-continuous,
by [GMT93, Theorem 2.8]. Let f € L®([R%; X(Y)) and gy € L (R%; X*) be simple func-
tions. Then we have that f(-,w) € L®°(®R%; Y) and go(-,w) € L (R?) for a.e. w € Q. Using
Fubini’s Theorem, the assumption on T and Corollary 6.5.4, we have

” ” Tf" Y - 80 ||L1 (IRde) = ”(1} — ” " Tf() w) ” Y gO('y (1)) “Ll(Rd) LN
SCrlo—= IMUfC oy, ot ga | 1)
= Cr | Mrac(l flly, 80| 11 ga v

Spd Bp,x -ty x+ - Cr || MU fllx vy, 1 8oll x+)

LY(RY)"

Now by duality (see e.g. [HNVW16, Proposition 1.3.1]) we have for any g € L2 (R?)

NTfixw) glpgn=_ sup  [ITFly-g hlpgacg
| LORA; X *)=1
Spabpx-fpx-Cr  sup  [[MUfIxry Ighlx)]| 1 gay
N7l oo g x) 21
= IJ’[J,X : up’,X* : CT “M(”f”X(Y)rg) ||L1 (Rd)y
proving the theorem. O

If T is linear in Theorem 6.6.1, we have for simple functions fi,..., fi; € LPRY, w;Y)
and xi,...,x; € X that

m m
T(Y gjox)to =) Tgmox@), (to)eRx0,
=i =

Thus, in this case T coincides with the tensor extension of T.

Our sparse domination-based extension theorem, the second part of Theorem 6.1.4,
is now an easy consequence of Theorem 6.6.1 and the weighted estimates in Proposition
6.5.2. We once again formulate a more general version using Kéthe-Bochner spaces,
bisublinear maximal operators and HL-assumptions, from which the second part of
Theorem 6.1.4 follows by taking ¥ = C and using Proposition 6.5.1 and Theorem 6.4.6

Corollary 6.6.2. Assume the conditions of Theorem 6.6.1 and additionally suppose that
for all simple functions f, g € L®°(R%;Y) we have

ITf-Tglly<IT(f-ly.
Then for all p € (1,00) and all w € Ay, we have

7 max #,1
IT W Lp e, s x (7))~ 1P ®E,wix (7)) Spod Bp,x * Hp,x+ - Cr - [W) =

Proof. By Theorem 6.6.1 we have for all simple functions f € L‘c’o([Rd;X (Y)) and g €
LP(RY) ~
T flxr) 8l 1 @ay Spaa tpx - tpr xe - Cr | MU Fllxry, & 11 gay-
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Thus by Proposition 6.5.2 we obtain

. max{L;,1}
|| ” Tf”X(Y] 'g”Ll(Rd) Sp,d Np,X 'lJp’,X* : C'T . [w]Ap P ”f”LV([R{d,w;X(Y)) "g”Lp’(Rd,wr))

which by duality implies

1
{ﬁ,l

_ }
1T fllp @, wixvy Spd Bpx - Hpxs - Cre[wly 1A p @, wixcvy-

So, by the additional assumption on T, we have for simple functions fi, f> € L (R%; X (Y))

” Tfl - TfZ "LP([RQd,w;X(y)) = || T(fl _f2)||LP([Rgd,w;X(y)) < ||f1 - f2 || LP®RA, w; X (V)"

It follows that T is Lipschitz continuous. Therefore, by density, T extends uniquely to a
bounded operator on L? (R, w; X(Y)) with the claimed bound. O

As a consequence of Corollary 6.6.2 and the sparse domination result for the Haar
projections in Theorem 3.8.1, we can simultaneously give a proof of the following two
results of Bourgain [Bou84] and Rubio de Francia [Rub86]:

e If X is a Banach function space with X, X* € HL, then X € UMD.

e If X is a UMD Banach function space and Y is a UMD Banach space, then the
Kdthe-Bochner space X(Y) also has the UMD property

The first statement follows from the following theorem taking Y = C, whereas the second
follows by using Theorem 6.4.6 to obtain X, X* € HL and then using the following the-
orem to deduce X(Y) € UMD. Note that the quantitative information we obtain in the
second statement is also sharper than the bound obtained by the arguments of Rubio
de Francia [Rub86].

Theorem 6.6.3. Let X be a Banach function space and let Y be a Banach space. Suppose
that X, X* e HL and Y € UMD, then X(Y) € UMD with for any p € (1,00)

Bp,x(v) Sp Bpx - Hp,x - Bp,y

Proof. Let 2 be the standard dyadic system in R and for I € 2 let D; be the Haar projec-
tion on LP(R;Y) as in (3.8.1). Fixeye {—1,1} for all I € & and for f € LP(R; Y) define the
operator

Tf():=) eDif(r), teR.
137

Then, by Theorem 3.8.1 and Proposition 6.5.1, we know that T satisfies for f € L°(R; Y)
and g€ L R)
“ ” Tf”Y 'g”Ll(R) S ﬁp,Y ”M(”f”ng) ||L1([R)'

Therefore, by Corollary 6.6.2, we know that T is bounded on LP (R; X (Y)) with

I TN r @ x (v —LP @ X (YY) Sp Hp,X *Hp',x* * Bp,v-
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Thus, denoting the Haar projection associated to I € & on L”(R; X) once again by Dy,
we have for all f € LP(R; X) and any choice of ¢ € {-1, 1} that

erD “ < oy x By - XY
”1% 1Dif Lsx(yy <P HpXHpx Bp,y I fllrwx vy

As this inequality characterizes the UMD constant of X (Y) by [HNVW16, Theorem 4.2.13],
this proves the theorem. O

Combining Theorem 6.4.6 and Theorem 6.6.3 we have shown that for any Banach
function space X we have

X, X" eHL<© X e UMD.

Moreover, by Remark 6.5.6 these two conditions are equivalent to the boundedness of
the bisublinear lattice Hardy-Littlewood maximal operator. Combined with Theorem
2.7.1 we therefore have:

Theorem 6.6.4. Let X be a Banach function space over a measure space (Q0, ). The fol-
lowing are equivalent:

(i) X e UMD.
(i) X,X* e HL.
(iii) The Hilbert transform H is bounded on LP (R; X) for some (all) p € (1,00).

(iv) The Riesz projections Ry for k = 1,...,d are bounded on LP (R%; X) for some (all)
p € (1,00).

(v) The bisublinear Hardy-Littlewood maximal operator is bounded from LP (R%; X) x
LP' ®%; X*) to LY (R x Q) for some (all) p € (1,00).

Remark 6.6.5. Using the sparse domination for the scalar-valued variants of the oper-
ators in (i)-(iv) and applying Remark 6.5.6, we can deduce from Corollary 6.6.2 that the
involved constants in (i)-(iv) can all be estimated linearly by

"MLat "L”(Rd;X)XLV’(Rd;X*)—>L1 (Rd xQ)*

Conversely, by Theorem 6.4.6 we have

4
”MLaI“Lp(Rd;X)pr'(Rd;X*)_,Ll ([RdXQ) S /Jp,X * “p’,X* S ﬁp,X'

It would be interesting to see whether this estimate can be improved. This would require
a different proof of (a bisublinear version of) Theorem 6.4.6, perhaps in the spirit of the
proof of Theorem 6.6.3.
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6.A. MONOTONE DEPENDENCE ON THE MUCKENHOUPT CHARACTERISTIC

For Rubio de Francia extrapolation as in Theorem 2.3.3 and our factorization-based ex-
tension theorem in Theorem 6.3.1 one needs an estimate of the form

”f”LP([Rd,W) qu([w]A,,)llglle(Rd,w) (6.A.1)

for all w € Ap, where ¢: [1,00) — [1,00) is a nondecreasing function independent of w;
this is often overlooked in the literature. In applications it is often easily checked that
a weighted estimate is dependent on the Muckenhoupt characteristic [w]4,, and not
on any other information coming from w. However, checking that this dependence is
nondecreasing in [w] A, Can be tricky (see for example [12, Theorem 3.10]). Moreover,
this monotonicity is usually not explicitly stated in the literature.

In this appendix we show that the monotonicity condition in (6.A.1) is redundant
when working with pairs of nonnegative functions: an estimate depending on [w]4,
with no monotonicity assumption implies the estimate (6.A.1).

Theorem 6.A.1. Fix p € (1,00), let f, g € L°(R?) and suppose that there exists a function
C: [1,00) — [1,00) such that for all w € A, we have

”f"]‘p([Rd,W) = C([W]Ap) ”g”LP([Rdyw)-

Then

”f”Lp(Rd w)
(t):=supy—————:weA,[wla =t
(p p{ ”g”Lp([Rd'w) P Ap }

is nondecreasing, ¢(t) = C(r) forall t € [1,00) and for all w € A, we have

1l ey < DUWLAD I o e 10)- (6.A.2)

Proof. Without loss of generality we may assume f,g € LP(R%, w) for all w € Ap. Itis
clear that ¢(¢) < C(t) for all £ € [1,00), and (6.A.2) holds. We will show that ¢ is nonde-
creasing. Let 1 < < s <ooand € >0. Fix w € A, with [w]4, = ¢ such that

1F 1 1y e,y = (@Uwla,) =€) I8N 1o g

and fix a ball By < R? such that
&
I f 15, l2p e wy < ENEN Lpwe, ) and |[lg1g, lrp e wy < —T 18 p @, - (6.A.3)
2sP

Divide By into two sets B and B such that |Bj| =|B; | = |Bo|/2 and w(x) > w(y) for all
x€Bj and y € B; . For any o € [1,00) we define a weight

. if Bt
um(x)::{o wlx) ifxe B,

w(x) if xe By,
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and for B < R? define a function fB: [1,00) — [1,00) by
f3(0):= (Wodrp- (W™ 1

Then f3 is of the form

__1yp-1
felo)=(ap+as 'U)(,Bo+,5+ o ”‘1)
with a_, a4, B_, B+ constants depending on B which satisfy
a-<ay, Po>Py,  (a_+a)Po+PIP <(wly,.

So if we restrict to [1,2”s] we know that fg € C!([1,2”s]) with norm independent of B.
For each n € N define a function
Jn:=sup fp
BeBB,

on [1,2P ], where each B, is a finite collection of balls in R, such that B, < B,,+1 and
U5, By contains all balls in R? with rational center and radius. Then the sequence
(fn)5~, is nondecreasing and bounded, so it converges pointwise to some function f.
Restricting to [1,2”s], we also have that the sequence ( fn)%o=1 is equicontinuous, so by
the Arzela-Ascoli theorem we know that f is continuous on [1,2Ps]. By a density argu-
ment we get that

flo)= sup fp(o)=sup fp(o) =[wsla,.
BcR4 BcR4
B rational

Since f(1) = [w]a, = rand

i )p—l - f8,(1)
2=

1 1 _
fPs) = IB_olfBg 2P sw(x) dx(@fzag w(x) P71 dx 2Ps =5,

there exists o € [1,2s] such that s = f(0) = (Wola,-
Now by construction and (6.A.3) we have

1/
g1, ”LP([Rd,w,,) =0 P"ngO ”LP([Rd,w) = 5||g||Lp(Rdyw)-
Combining this with (6.A.3) and the triangle inequality yields
I lzr o) 2 1 f Vgl 1o e,y + 1L 1Bo Il o,y = 1LF 18 | 1o et )

= ||f||Lp(Rd_w) - ”leg ”LP(Rd,w)
= (p(1) - 288l 1w, )

> (1) = 26) (I8N o g0~ 18 180 1oty |
> (1)~ 26) 1~ OIgll 1o e -

Thus ¢(s) = (p(£) —2€)(1 — €), and since € > 0 was arbitrary this implies ¢(s) = ¢(1), so ¢
is nondecreasing. O
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FOURIER MULTIPLIERS IN BANACH FUNCTION SPACES

This chapter is based on the paper

[10] A. Amenta, E. Lorist, and M.C. Veraar. Fourier multipliers in Banach function
spaces with UMD concavifications. Trans. Amer. Math. Soc., 371(7):4837-4868,
2019.

It is complemented by a section on Littlewood-Paley—Rubio de Francia estimates from

[11] A. Amenta, E. Lorist, and M.C. Veraar. Rescaled extrapolation for vector-valued
functions. Publ. Mat., 63(1):155-182, 2019.

Abstract. Using the factorization-based extension theorem of Chapter 6, we prove Banach
function space-valued Littlewood-Paley—Rubio de Francia-type estimates . These Little-
wood-Paley—Rubio de Francia-type estimates enable us to prove various operator-valued
Fourier multipliers on Banach function spaces, which are extensions of the Coifman—
Rubio de Francia-Semmes multiplier theorem. Our results involve a new boundedness
condition on sets of operators, which we call £ (¢)-boundedness and which implies (> -
and R -boundedness in many cases.
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7.1. INTRODUCTION

For an interval I < R, let S; denote the Fourier projection onto I, defined by S;f :=
Fla If) for Schwartz functions f € S(R). For every collection Z of pairwise disjoint
intervals and every g € (0,00] we consider the operator

Sz.q(= (L1501,
IeZ
interpreted as a supremum when g = co. If 7 is a dyadic decomposition of R, then the
classical Littlewood-Paley inequality states that for p € (1,00)

ISz2f @ =p Iflrw,  fES®.

A surprising extension of this classical Littlewood-Paley square function estimate was
shown by Rubio de Francia in [Rub85]: for all g € [2,00) and p € (g’,00) and any collec-
tion Z of mutually disjoint intervals in R we have

ISz.af | o Spg 1flrw,  feS®). (7.1.1)

This result (particularly the g = 2 case) is now known as the Littlewood-Paley-Rubio de
Francia theorem. As a consequence, Coifman, Rubio de Francia and Semmes [CRAFS88]
showed that if p € (1,00) and % > |’—17 - %|, then every m: R — C of bounded s-variation
uniformly on dyadic intervals induces a bounded Fourier multiplier Ty, on L”(R). This
is analogous to the situation for the Marcinkiewicz multiplier theorem (the s = 1 case
of the Coifman-Rubio de Francia-Semmes theorem), which follows from the classical
Littlewood-Paley theorem. We refer to [Lac07] for a survey of these results.

In this chapter we are interested in analogues of the results above in the vector-
valued setting, i.e. estimates like (7.1.1) for functions in S(R; X) and multiplier theorems
for operator-valued Fourier multipliers m: R — £(X), where X is a Banach (function)
space.

7.1.1. LITTLEWOOD-PALEY-RUBIO DE FRANCIA ESTIMATES

Let X be a Banach space. The definition of S; extends directly to the X-valued Schwartz
functions f € S(R; X). Vector-valued extensions of the Littlewood-Paley-Rubio de Fran-
cia theorem for the case g = 2 case are studied in [BGT03, GT04, HP06, HTY09, PSX12]
via a reformulation in terms of random sums,

[E”IGX%EISUCHLP(R;X) SIflrwx),  feSE®X),

where (e7) 7 is a Rademacher sequence. If this estimate holds then we say that X has
the LPR,, property. When X is a Banach function space with finite cotype, this is equiva-
lent to the boundedness of S, on L” (R; X) by the Khintchine-Maurey inequalities (see
Proposition 2.5.1). When ¢q # 2, no analogue of the boundedness of Sz, for general
Banach spaces is known.
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The LPR,, property is quite mysterious. In [HTY09, Theorem 1.2] it was shown that
if a Banach space X has LPR, property for some p = 2, then X has the UMD property
and type 2. However, the converse is only known to hold when the collection Z consists
of intervals of equal length. The most general sufficient condition currently known is in
[PSX12, Theorem 3]: if X is a 2-convex Banach function space and the 2-concavification
X? has the UMD property, then X has the LPR;, property for all p > 2. This result is
proved by an extension of Rubio de Francia’s argument for the scalar-valued case. Every
Banach space X that is known to have the LPR, property is either of this form, or is
isomorphic to a Hilbert space (and hence has the LPR,, property for all p € [2,00) by
Rubio de Francia’s original proof).

We prove the following theorem, a more precise version of which appears as Theo-
rem7.2.3.

Theorem 7.1.1. Let g € [2,00), and suppose X is a q' -convex Banach function space such
that X9 has the UMD property. Then there exists a increasing function ¢: R, — R,
depending on X, p, q, such that for p € (q',00), and w € A,y

I1SZ,q [y ®uwx) < Uwla, I fILr@wx), feS®X).

We deduce this result, which includes [PSX12, Theorem 3] as a special case, directly
from the scalar case X = C and the factorization-based extension theorem in Chapter 6,
see Section 7.2 for further details. We do not obtain sharp dependence on Muckenhoupt
characteristics in Theorem 7.1.1 and consequently we also do not obtain sharp depen-
dence on Muckenhoupt characteristics in the Fourier multiplier theorems that we will
deduce from Theorem 7.1.1. If we would apply our sparse domination-based extension
theorem instead, we could obtain sharp weighted estimates in the case g = 2, see also
Remark 7.2.4.

7.1.2. FOURIER MULTIPLIER THEOREMS

An operator-valued analogue of the Coifman-Rubio de Francia—Semmes theorem was
obtained in [HP06], where the Banach space X was assumed to satisfy the LPR,, prop-
erty. Naturally, R-boundedness assumptions play an important role in the results of
[HPO6]. The main goal of this chapter is to prove a wider range of Coifman—Rubio de
Francia—Semmes type results in case X is a Banach function space. We will use Theorem
7.1.1 to prove such results under a UMD assumption on a g-concavification of X. This
naturally leads to an 210 q/)-boundedness' condition, where one would usually expect
an R-boundedness condition. This new condition turns out to imply R-boundedness.
We investigate the more general notion of ¢” (¢%)-boundedness in Section 7.3.
The following multiplier theorem is the fundamental result of this chapter. Let

A= {x[2k, 2k ke 7}

denote the standard dyadic partition of R. Let X and Y be Banach function spaces and,
for a set of bounded linear operators I' € L(X, Y), let V¥(A;T) denote the space of func-
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tions m: R — span(I') with bounded s-variation uniformly on dyadic intervals J € A,
measured with respect to the Minkowski norm on span(I).

Theorem 7.1.2. Let g € (1,2], p € (q,00), s€ [1,q), and let w € Ap;q. Let X and Y be
Banach function spaces such that X7 and Y have the UMD property. LetT < L(X,Y) be
absolutely convex and ¢ (¢ 4'y-bounded, and suppose that m € VS(A;T). Then the Fourier
multiplier Ty, is bounded from LP (R, w; X) to LP (R, w; Y).

The case g =2 and w =1 of Theorem 7.1.2 was considered in [HP06, Theorem 2.3]
for Banach spaces X = Y with the LPR, property. Our approach only works for Ba-
nach function spaces (and closed subspaces thereof), but as discussed before these are
currently the only known examples of Banach spaces with LPR,. As the parameter ¢
decreases we assume less of X, but more of I and m. In Section 7.5 we prove Theorem
7.1.2, along with various other extensions and modifications of this result. In particular
we obtain the following reformulation of Theorem 7.1.2 for Lebesgue spaces.

Theorem 7.1.3. Lets € [2,00). Suppose thatm: R — L(L" (R, w)) for somer € (1,00) and
all w e A,(R%). Furthermore suppose that there is a increasing function ¢: R, — R, such
that for w e A, (R%)

1
sup ”m(t)”ﬁ(Lr([Rd'w)) +suplJ|s [m]C”S(];,C(Lr(IRd,w))) = (P([W]Ar)
teR JeA

Then the Fourier multiplier Ty, is bounded on L (R; L" (R%)) in each of the following cases:

(i) re(2,00)andl>max{} -1 1_11_1

iy 1 1 11 11 1
(ii) r€(1,2]and;>max{z——;————Z}.

The result follows from the combination of Proposition 7.5.9 and Example 7.5.14.
The condition on s becomes less restrictive as the numbers p, r, and 2 get closer. Taking
p =r or r = 2 is particularly illustrative: the condition on s is then 1 > |% - 1|, asin
the Coifman-Rubio de Francia-Semmes theorem. However, even if p = r, the operator-
valued nature of the symbol m prevents us from deducing the boundedness of T}, from
the scalar-valued case by a Fubini argument. Using the same techniques, one could
also deduce versions of Theorem 7.1.3 with Muckenhoupt weights in the R- and R?-
variables.

In Section 7.5.4 we will present some new Coifman-Rubio de Francia-Semmes-type
theorems on UMD Banach spaces (not just Banach function spaces) which are complex
interpolation spaces between a Hilbert space and a UMD space. Typical examples which
are not Banach function spaces include the space of Schatten class operators, and more
generally non-commutative L”-spaces. Our results in this context are weaker than those
that we obtain for Banach function spaces, but nonetheless they seem to be new even

for scalar multipliers.
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7.1.3. NOTATION

Throughout this chapter we write ¢, 5, . to denote an increasing function on R, which
depends only on the parameters a, b, ..., and which may change from line to line. In-
creasing dependence on the Muckenhoupt characteristic of weights is used in applica-
tions of extrapolation theorems. As we saw in Appendix 6.A, monotone dependence on
the Muckenhoupt characteristic can be deduced from a more general estimate in terms
of the Muckenhoupt characteristic.

7.2. LITTLEWOOD-PALEY-RUBIO DE FRANCIA ESTIMATES

In this section we apply Theorem 6.1.1 to the operators Sz, 4, which will result in Banach
function space-valued Littlewood-Paley—Rubio de Francia estimates. As a warm-up we
consider the operator Sy 2, where A := {+[2F,25*1) k € 7} is the standard dyadic parti-
tion of R. Theorem 6.1.1 yields a direct proof of the classical Littlewood—Paley estimate
in UMD Banach function spaces.

Proposition 7.2.1. Let X be a UMD Banach function space, p € (1,00), and w € Ap. Then
forall f € LP (R, w; X),

Px,p(wla) I flr@uwix) < 1Sa2 (A r@uwix) < Ox,p (Wl a) e @ wix)-

Proof. In the scalar case the result was obtained in [Kur80, Theorem 1], using Theorem
6.A.1 for the increasing dependence on [w] Ap- Therefore the estimate

18,2 (N L@ w;x) < Gx,p (WA FllLr@,w;x0

follows by applying Theorem 6.1.1 on simple functions g € LP (R, w; X) and f = Sa2(g).
The converse estimate may be proved using a duality argument or another application
of Theorem 6.1.1 with a simple function f € LP (R, w; X) and g = Sa2(f). O

Remark 7.2.2. Theorem 7.2.1 actually holds for all UMD Banach spaces, where the £?-
sumin [|Sa 2 (f) | Lr ®,w;x) must be replaced by a suitable Rademacher sum. It was proved
in [Bou86, Zim89] in the unweighted case and in [FHL20] in the weighted case. As noted
in Section 3.8, this result can also be obtained using Theorem 3.1.1.

Next we establish weighted Littlewood-Paley—Rubio de Francia estimates for Banach
function spaces with UMD concavifications (Theorem 7.1.1 in the introduction). The
unweighted case with g = 2 was first proved in [PSX12], but we do not use this result in
our proof.

Theorem 7.2.3. Let g € [2,00) and let X be a Banach function space with X 4 ¢ UMD.
Then for all collections T of mutually disjoint intervals in R, all p € (q',00), w € Ay,
and f € LP (R, w; X),

157, (NN Lr@wix) < Px,p.g (W, I FllLr @ wx)-
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Proof. Let (Q, u) be the measure space over which X is defined and let f € LP (R, w; X)
be simple. The scalar case of the result is proved in [Rub85, Theorem 6.1] for g = 2, and
[Kr614, Theorem B] for g > 2. Monotonicity in [w] Ayt is contained in [Kr614] for g > 2,
and can be deduced from Theorem 6.A.1 when g = 2. Thus for all v € Aj;, and a.e.
w € Q we have

152.4(NCO | 1ot g,y = 1524 NC O | fog i)
< Ppg (W14, I FC

=Ppa (W4, MIFCONT || g g pixars

Therefore, since X9 € UMD, applying Theorem 6.1.1 with pg = p/q’, f = SI,q(f)ql and
g=r7 yields

IS0 | @iy < x.pa (A NAY | g ixry

forall r € (1,00). Taking r = p/q’, rescaling and appealing to density yields the result. O

Remark 7.2.4.

¢ In the scalar case of Theorem 7.2.3 there is also a weak-type estimate for p = ¢’
and w € A;. The strong-type estimate seems to remain an open problem (see
[Rub8s, (6.4)]).

* In the scalar case sparse domination and (sharp) weighted estimates for Sz, were
shown by Garg, Roncal and Shrivastava [GRS21] using time-frequency analysis.
Alternatively one can check the weak L?-boundedness of our sharp grand maxi-
mal truncation operator ./\/%I “ using [PSX12, Lemma 4.5], where 51,2 isasmooth

version of S7,. Combined with the trivial L?(R) estimate this also yields sparse
domination and (non-sharp!) weighted estimates by Theorem 3.1.1 and Proposi-
tion 3.2.4. This method can be extended to Szyq for g € (2,00).

¢ In the case g = 2 we could also use the sparse domination-based extension the-
orem, rather than the factorization-based extension theorem, to prove Theorem
7.2.3. This would yield sharp weighted estimates in Theorem 7.2.3. Moreover, as
noted in the previous bullet, with some additional work this could be extended to
q € (2,00).

When g = 2, the estimate in Theorem 7.2.3 can be used to obtain extensions of the
Marcinkiewicz multiplier theorem. This is done in [HP06, Theorem 2.3]. For g > 2 a
slight variation will be needed to make this work. The following estimate, which com-
bines Proposition 7.2.1 and Theorem 7.2.3, is a key ingredient in the Fourier multiplier
theory that we will develop in Section 7.5. Recall that we set A = {+ 2k 2k+1) ke z}.
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Theorem 7.2.5. Let g € [2,00) and let X be a Banach function space such that X 4 e UMD.
LetT be a collection of mutually disjoint intervals inR, and for all ] € A let

T/ ={eI:Ic]}.

Then for all p € (q',00), w € Apq and f € LP (R, w; X),
5\ 172
[(E 1527, 008) ] 0 = P00, 1 Vi

Proof. If g = 2 this follows from Theorem 7.2.3, so we need only consider g > 2. By
Theorem 2.3.3 it suffices to take p = 2. Using Theorem 7.2.3 and Proposition 7.2.1 we
estimate

a2 1/2
(X 1818, 1191 )

IeT]

H(IEZAl‘S‘I]’q(f”Z)“2 PRwX) (Z

2 .
JeA L= (R, w; X)

1/2
< ¢>x,,,([wuz,q,)(]EZAns]fuiz(R,w;X))

5(,bX,q([W]AZ/q/)||SA,2f||L2([R,w;X)

= ¢x,q(Wla, I 2@ wx),
proving the theorem. O

If X is a Hilbert space, then one cannot apply Theorem 7.2.3 with g = 2. Instead, the
following modification of Theorem 7.2.3 holds.

Proposition 7.2.6. Let X be a Hilbert space, and let L be a collection of mutually disjoint
intervals inR. Then forall p € (2,00), w € Ap2, and f € LP(R, w; X),

[ 130"

= Gp([wla, I FIlLr @,w;x)-
IeT )

LPRw
Proof. To prove this it suffices to consider X = ¢? (by restriction to a separable Hilbert
space, see [HNVW16, Theorem 1.1.20]). Now the result will follow from Fubini’s theo-
rem, the result in the scalar-valued case, and a randomisation argument.

Let (¢7) je7 and (r,) n=1 be a Rademacher sequences on probability spaces Q. and Q,
respectively. Then writing

F=)Y rafane PR w;LP(Q}),

n=1

where f = (f)n=1 € LP (R, w; £2), it follows from Fubini’s theorem and Khintchine’s in-
equality (see Proposition 2.5.1 with X = C) that

Z 1/2 Z F
o2 p . .
= LP (R,w) = LP (5 LP (R w;LP (Q))
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Now we can argue pointwise in Q,. By Khintchine’s inequality and the scalar case of the
Littlewood-Paley—Rubio de Francia theorem [Rub85, Theorem 6.1], we obtain

12
S F” ~ ” S;F2)! “ < F .
HZEI | p@wsrr@ =P (é| Fl%) ) dUW 4, I NF N r ®,w)

The result now follows by taking LP(Q,)-norms and applying Khintchine’s inequality
once more. O

Remark 7.2.7. 1If X is a Hilbert space, Z a collection of mutually disjoint intervals in R
and qg € (2,00), then for all p € (¢',00), w € Aprg' and f € LP (R, w; X), we have

|2 1St ) L, ) = Pra 014, D T @i
IeT ’

“(Z( > ||Slf||37()2/q)1/2

JeA 1eT)

< .
I Gp.qgUwla, Nl wx).
These estimates are weaker than Theorem 7.2.3 and Theorem 7.2.5. To prove the first
estimate it is enough to consider X = ¢2. In this case

SifIf ””” < :

H(IEZIM VA R] I Py P

by Minkowski’s inequality, so the result follows from Theorem 7.2.3. The second esti-
mate is proved similarly.

7.3.07(¢%)-BOUNDEDNESS

Our operator-valued multiplier theorems involve a new condition on sets of bounded
operators I' € L£(X,Y), which we call ¢"(¢°)-boundedness. This generalises the more
familiar notions of R-boundedness and ¢” -boundedness introduced in Section 2.6. In
this section we introduce and explore the concept.

7.3.1. DEFINITION AND BASIC PROPERTIES

We start with the definition of ¢7 (¢°)-boundedness. As ¢"-boundedness, it can only be
defined for families of operators on Banach function spaces.

Definition 7.3.1. Let X and Y be Banach function spaces, I' € £(X,Y) and r,s € [1,00].
We say that T is " (¢°)-bounded if for all finite doubly-indexed sequences (Tj,k);?']:": ,in
I'and (x;, k)] o1 in X,

(5 (2 e )"

<8 )

The least admissible implicit constant is called the ¢”(¢%)-bound of T', and denoted

X

TN or ces).
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As discussed in Section 2.6, for R- and #2-boundedness it suffices to consider subsets
of T in the defining inequality. Just as for ¢”-boundedness, this is not the case for £ (¢°)-
boundedness with r, s # 2: one must consider sequences, allowing for repeated elements.
We say that an operator T € L(X,Y) is ¢7 (¢%)-bounded if the singleton {T} is.

Ifaset € L(X,Y) is ¢"(¢%)-bounded, then so is its closure in the strong operator
topology, and likewise its absolutely convex hull absco(I'). This can be proven analo-
gously to the proof of the statement for ¢"-boundedness in [KU14]. Moreover we once
again have that if '}, T, < £(X) are ¢"(¢%)-bounded, then I'y UT; is ¢7 (¢%)-bounded as
well.

It is immediate from the definition that ¢"-boundedness and ¢ (¢")-boundedness
are equivalent. The following proposition encapsulates a few other connections be-
tween ¢ -, and ¢" (¢°)-boundedness. The following proposition shows in particular that
if T is £2(£%)- or ¢°(¢?)-bounded for some s € [1,00], then T is #2-bounded, and hence
R-bounded if Y has finite cotype.

Proposition 7.3.2. Let X and Y be Banach function spaces andT < L(X,Y).

(i) Letr,s€[1,00]. IfT is €7 (¢°)-bounded, thenT is ¢" - and ¢°-bounded with ||T| ¢r <
TNl ¢resy and IT1lgs < TNl or ().

(ii) Let p,s € [1,00]. If X is p-concave, Y is p-convex, and T is ¢°-bounded, thenT is
0P (0°%)-bounded with T || gp sy < T |l ps.

Proof. (i) follows by taking one index tobe a singleton For (ii), consider doubly-indexed

finite sequences (7 0" ik 11n1“and (xj, k) , in X. Then we have
m. n pls\lip m n 1/sypy\1/p
”(Z(Z Tjkjid ) ) HYS(ZH(Z'Tj’kxj'kls) X)
J=1 k=1 j=1""k=1
m n /s p\1l/p
<ITles( Y| (X b))
1= Y
m n p llp
<t (2 (X beel?) ) L
=1 k=1 X
O [T llgpesy = T Ml gs. O

Duality and interpolation may be used to establish ¢7 (¢¥)-boundedness, as shown
in the following two propositions.

Proposition 7.3.3. Let X,Y be Banach function spaces, and letT < L(X,Y). Letr,s €
[1,00]. IfT is €7 (¢%)-bounded, then the adjoint family

I ={T*":Tel}cL(Y", X)

is¢" (£*)-bounded with | T ;v 45y = ITllr es).
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Proof. This follows from the duality relation X (7, (¢5))* = X* (1) (¢5)) (see [LT79, Sec-
tion 1.d]). O

To exploit interpolation we must assume order-continuity, which holds automati-
cally for reflexive spaces and thus in particular for UMD spaces.

Proposition 7.3.4. Let X and Y be order continuous Banach function spaces and I’
L(X,Y). Let rg, s € [1,00] for k =0,1. IfT is "% (£°)-bounded for k = 0,1, then T is
270 (¢%)-bounded for all 0 € (0,1), where ry := [ry, 119 and sg := [so, S11g. Moreover we
have the estimate

0 1-0
IT 1l g7 (es0y < 1T W prgy (gsoy IT gy (g1, < MAX{IT 7o 50y, IT Nl oy -

Proof. This follows from Calderén’s theory of complex interpolation for order continu-
ous vector-valued function spaces [Cal64]. O

Combining Proposition 7.3.2(i) with Proposition 7.3.4 we deduce the following.

Corollary7.3.5. Let X andY be order continuous Banach function spaces andl < L,,(X,Y).
Fix r,s € [1,00] and suppose thatT is {7 (¢*)-bounded. If

r<u<v<s or s<v<ucsr,
thenT is £"(¢")-bounded with ||T|l puigvy < IT |l ¢r g5)-

If we use Theorem 6.1.2 to extend a family of bounded operators on L (R, w) to a
family of bounded operators on LP(RY, w), then this family of extensions is automati-
cally ¢7 (¢%)-bounded. This observation is a convenient source of ¢’ (¢¥)-bounded fami-
lies.

Proposition 7.3.6. Fix pg € (1,00), and suppose that T < L(LP (w)) for some p € (py,00)
and w € Apyp,. In addition suppose that there is an increasing function ¢: Ry — R, such
that

”T”LP(Rd,w)—-LP(Rd,w) 5¢([W]Ap/p0)y Terl.

Let X be a Banach function space with XP° € UMD, and letT be the set of tensor extensions
of operators inT'. Then for all p,1,s € (pg,00) and all w € App,, T is 07 (¢%)-bounded on
LPRY, w; X) with

||F||!’(€S) = (I)X,po,p,r,s,d([w]Ap/po)'

Proof. Consider doubly-indexed finite sequences (Tj,k)zll’c'i , in T and let (g; k) ;’:’,'C'il be

a boundedly indexed sequence of simple functions in L” (R?, w; X). Let (Q,u) be the
underlying measure space of X, and define

EG:R4xQx{l,...,mx{l,...,n} — R,
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by
F(,0,],k) =T gjx( )" and G(,w,j, k) =1g;i(w)".

Then, from the assumption onI', we see that for some p € (pg,00) and all w € Ay p,,
IFC,@, 7, ) poieo @d, ) < PUWI A, )P NGC @, K potvo e 1) -

Letting Y := X (¢7,(£3)), it follows from Theorem 6.6.3 that Y = XP0(¢/27° (¢3/7)) e UMD,
with UMD constants independent of m, n € N. Hence Theorem 6.1.1 implies that for all
p € (po,00) and w € Ap/p,,

”F”Lp/po (R4, w;YP0) = (PX,po,p,r,s,d([w]Ap/po)”G”Lp/po @®4,1;YP0)*
Rescaling and a density argument now proves the claim. O

Taking X to be the scalar field C, so that X”° = X for any pg, we obtain the following
special case. Note that in this case a more direct proof may be given as in [12, Theorem
2.3].

Proposition 7.3.7. Fix py € (1,00), and suppose that T < L(L” (R4, w)) for some p €
(po,00) and w € Ap,p,. In addition suppose that there is an increasing function ¢: R, —
R, such that

”T”L”(Rd,w)—vU’(Rd,w) S(,b([w]Ap/pO); TeT.

Then for all p,1,s € (pg,00) and all w € Ap;p,, T is " (£°)-bounded on LP (R, w) with

||r||€’(€5) = ¢p0,p,r,s,d([w]Ap/po)-

To end this section we present a technical lemma on the ¢ (¢%)-boundedness of the
closure of a family of operators on spaces other than that in which the closure was taken.
Itis used in our multiplier result for intermediate spaces, where several Lebesgue spaces
are used simultaneously. A similar result can be proved with general order-continuous
Banach function spaces in place of Lebesgue spaces.

Lemma 7.3.8. Let (Q,d, 1) be a metric measure space and assume (4 is locally finite. Let
p € (1,00) and letT be a family of operators such thatT < L(LP(Q)) is uniformly bounded
and absolutely convex. LetT denote the closure of T in L(L”(Q)). Suppose q € (1,00), let
w be a locally integrable weight on Q and assume thatT < L(L9(Q, w)) is €7 (€%)-bounded
for somer,s € [1,00]. ThenT is ¢ (¢%)-bounded on L9 (Q, w) with IIFIIW([S) =Tl gr ().

Proof. Fix (Tyn,n)m ,op in T and (fimm)hy ,_; in L9(Q, w). By a density argument we
may assume each for each m, n that f;, , is bounded and supported on a bounded sub-
set of Q, which implies f,, , € LP(Q). For each m,n choose (T,(,’lf)n) k=1 in T such that
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T,Sff,, — Tp,n in L(LP(Q)). Then also T,(,f,)n Sfm,n = Tm,nfm,n in LP(Q). By passing to sub-
sequences we may suppose that for all m, n we have T,(,f,)n Smn = Tmnfmn, p-a.e. There-
fore, by Fatou’s lemma,

M , N

ris\1/r M N ris\1/r
T, S) ) sliminf“( ( T(k) 5) )
”(n;ﬁ(ngl' mon fol LI@Quw)  k—oo mz=1 ng'l| e L9(©,w)
M N ris\1/r
< Tl gr s (Z(Z fmnl) ) ,
m=1"n=1 LIQw)

with the appropriate adjustment if 7 = co or s = co. So T is indeed ¢” (¢%)-bounded on
L9 (w). O

7.3.2. 0" (¢%)-BOUNDEDNESS OF SINGLE OPERATORS

Asnoted before, a single operator T € £L(X, Y) can fail to be ¢” (¢%)-bounded. For positive
operators we have the following result, which is an adaptation of [MS96, Lemma 4].

Proposition 7.3.9. Let X and Y be Banach function spaces and let P € L(X,Y) be a pos-
itive operator. Then P is ¢" (¢*)-bounded for all 1, s € [1,00], and we have |[{P}| ¢r¢s) <

1Pl cix.y)-

Proof. Let (x;, k) , be a doubly-indexed sequence in X, and note that by positivity of
P we may take the elements of the sequence to be positive. By positivity of P we can
estimate

m . n R ris\1/r &
(X (X 2w )] =] sop Xty sup .l Pl
j=1'k=1 1B, =<1 j=1 ([CATp ’<1k !
m
B
1Pl =HI=1 papi g <1k=1

m , n ris\1/r

S”P”ﬁ(X,Y)H(Z(Z x]kl) ) x’
j=1"k=1

For an ¢!'-bounded operator on a Lebesgue space one has ¢’ (£¥)-boundedness for
all r,s € [1,00] (see [HNVW16, Theorem 2.7.2]). The result below actually holds with
LP(Q) replaced by any Banach lattice X with a Levi norm (see [Buh75] and [Lin16, Fact
2.5]). A duality argument implies a similar result for £*°-boundedness.

Proposition 7.3.10. Let p € [1,00) and T € L(LP(Q). If T is 01 -bounded, then {T} is
07 (¢%)-bounded for allr, s € [1,00].

Remark 7.3.11. Even on L” it can be quite hard to establish the ¢ (¢*)-boundedness of
a single operator. By using i.i.d. s-stable random variables ¢,...,¢,: Q — R (see [LT91,
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Section 5]), for p € (0, s) one can linearise the estimate by writing

(il|ij|s)1/s = Cps
j=

n
T.Z $i%j HLP(Q)'
j=1

By using Fubini’s theorem and Minkowski’s inequality, one can deduce that any T €
L(LP) is €7 (¢%)-bounded if p<r<s<2or2<s<r<p. Most of the remaining cases
seem to be open (see [Kwa72b, Problem 2] and [DLOT17, Corollary 1.44]).

7.3.3. NON-EXAMPLES

We end this section with two examples to demonstrate that ¢7 (¢¥)-boundedness is not
just the conjunction of ¢7- and ¢°-boundedness. Consider the class of kernels

K=1tke L'®):|k* fl< Mf a.e. for all simple f: R — R},

where M is the Hardy-Littlewood maximal operator. For k € K and f € LP(R) with p €
(1,00) define the operator Ty by

ka(t):fk(t—s)f(s) ds, teR
R

andsetI ={T}: ke K}.

Example 7.3.12. Let p € (1,00). The family of operators I' € L(LP (R)) defined above is
¢ -bounded for all 7 € [1,00], but not £1(£%)- or £°°(¢%)- bounded for any s € (1,00).

Proof. The ¢"-boundedness of T for r € [1,00] is proved in [NVW15b, Theorem 4.7].
Since I' = T'*, Proposition 7.3.3 says that £!(¢%)-boundedness of I' on L”(R) implies
¢ (¢%)-boundedness on L”' (R), so it suffices to show that T is not £°°(¢)-bounded on
LP(R) for any s € (1,00). We follow the proof of [NVW15b, Proposition 8.1].

Fix n € Nand for i, j € N define f; ; € L”(R) by

fii( =101 p-jp-juny(t=(i-1)27"), teR,

so that

sup (Zn:|fi,j(t)|s)l/s” (7.3.1)

l<i<2?'j=1

sup 1,1 H

< =1.
r® iz e

Next, for i, j € N define
1
ki'j(t):m l(_2—j+1’2—j+1)(t), reR,

and Tj,j = Ty, ;. Then T; j €T, as for any simple function f andr € R we have

1
|T;,j f(O)] = kij* f(D] = —=

fR 1_g-j+1 ey (T = 7)f(T)dr

2—j+2
1 t+277+1
= 7 ft L T@dT|=Mf@.
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Furthermore, forany 1< j<mn, t€(0,1] and 1 <i <2" with r € ((i —1)27",i27"],

t+27 I (j-1)27"

1
\Tij fi (O] = —— f L -y (1) d
z,]ft,] 2-j+2 t—2-i+1_(i_1)2-n (274,2=i+1]

- 1 2-Jj+1 o 9= _1
T 22 fom 1(2*1’,2*]’+1](T) T—Z_W—Z.

Therefore

1/s

\%

()" 10n],, =
4s) TOUlw T g

sup (é'T"JﬁJ(tns)m”

1<i<2m'j= LPR)

which tends to oo as n — co. Combining this with (7.3.1) it follows that T is not £°°(¢%)-
bounded on L (R). O

The previous example can be modified to construct examples of operator families
which are not 2 (¢%)-bounded, by using stochastic integral operators introduced in Chap-
ter 4. For k€ K and f € LP(R;) with p € (2,00), define

t
skf(t):=fo k(£ = $)|2 £(5) dW(s),

where W is a standard Brownian motion on a probability space (2, ). Then S is bounded
from LP(R;) to LP (R, x Q) by Proposition 4.2.12 and Proposition 4.2.3. Define

S:={S;:kek}.

Example 7.3.13. Let p € (2,00). The family of operators S from L”(R,) to LP (R; x Q) is
¢ -bounded for all 7 € [2,00), but not £2(¢7)-bounded for any r € (2,00).

Proof. Letr € [2,00) and X = ¢". Take f € LP(Ry;X) and k € LY(R,; X) such that kieK
for all j e N. By Theorem 2.9.1 we know that

([E|U0t|k(t_s)|%|f(s)| dW(s)“f{)”” ~ |)(f0t|k<t—s)||f(s)|2 ds)%

' teR,.
This implies that S is ¢"-bounded from LP (R) to L” (R; x Q) if and only if T restricted to
R, is ¢"'2-bounded on LP'2(R,), so S is ¢"-bounded for all r € [2,00) by Example 7.3.12.
Repeating the argument with X = ¢2(¢"), we also get from Example 7.3.12 that S is not
¢2(¢")-bounded for any r € (2,00). O

7.4. THE FUNCTION SPACES V*(7;Y) AND R’(J;Y)

The multipliers that we will consider are members of the space of functions of bounded
s-variation, which we denote by V*(7,Y) for s = 1. This space contains the class of 1/s-
Holder continuous functions. In our arguments we will also use the atomic function
space R*(J,Y), which was introduced in the scalar case in [CRAFS88].
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Definition 7.4.1.

(i) Let Y be a Banach space, J = [J-,J+] € R a bounded interval and s € [1,00). A
function f: R — Y is said to be of bounded s-variation on J, or f € V5(J; Y), if

1 fllvsg,yy =1 fllzeo; vy + [flv,;v) < o0,

where

N s 1/s
fvum=  sup  (LIfE-D-f@ly)

J-=tp<--<tN=J+ i=1

Furthermore we define V°(J;Y) = L*®(J; Y).

(i) When J is a collection of mutually disjoint bounded intervals in R, the space
V3(J;Y) < L®(R; Y) consists of all f € L*°(R; Y) such that

I fllvs(g;vy :=supll flyllvsg;y) <oo.
JeJ

If 7 = (Ji) ken is ordered, we define Vos(j; Y) < VS(J;Y) to be the closed subspace
consisting of f € V*(7;Y) with limy_.oll f15, lvs¢s;v) = 0.

Clearly VS(7;Y) — VI(J;Y) contractivelywhen 1 < s < r < oo, and V*(J; Y) is com-
plete when Y is complete.

In our applications the space Y is usually the span of a bounded and absolutely con-
vex subset B of a normed space Z (i.e. a discin Z), equipped with the Minkowski norm

Ilxllg:=infiA>0: % € B},

and we write V*(7; B) := V*(J;spanB). Clearly | x|l z <p |lx||g for x € Y. If the Minkowski
norm on span B is complete, then B is called a Banach disc. If Z is a Banach space and
B is closed, then B is a Banach disc [PB87, Proposition 5.1.6], but this is not a necessary
condition [PB87, Proposition 3.2.21].

Definition 7.4.2.

(i) Let Y be a normed space, J < R a bounded interval, and s € [1,00). Say that a
function a: J — Y is an R°(J; Y) -atom, written a € R}, (J; Y), if there exists a set Z
of mutually disjoint subintervals of J and a set of vectors (cj) ez € Y such that

1/s
a=Y el and (Ylely) =1
IeT IeT
Define R*(J; Y) € L®(J; Y) by

RUY)i={f e LU V)i f= Y Avar, (W) € £, (@) € R U V),
k=1
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where the series f = Zi":l Aray converges in L*°(J; Y). Define a norm on R*(J;Y)
by

(o ¢]
I fllrsy) = inf{ll/lkllﬂ i f= Z Aray as above}.
k=1

Furthermore we define R*°(J;Y) := L*°(J; Y).

(i) When J is a collection of mutually disjoint bounded intervals in R, the space
R¥(J;Y) < L®(R; Y) consists of all f € L*°(R; Y) such that

I flrs(7;v) :=supll fllrss;y) < o0.
JeJ

If 7 = (Ji) ken is ordered, we define R(s)(j; Y) S R%(J;Y) to be the closed subspace
consisting of f € RS(7;Y) with limy_.coll f17, | s ;v) = 0.

Clearly RS(J;Y) — R"(J;Y) contractively when 1 < s < t < 0o, and R*(J; Y) is com-
plete when Y is complete. As with the classes V*, when B is a disc in a normed space Z,
we put the Minkowski norm on the linear span of B and write R°(J; B) := R*(J;span B).

For a € (0,1] and an interval J € R we let C*(J;Y) denote the space of a-Holder
continuous functions with || fllce(s.v) = Inax{llflloo, [f]Ca(];Y)}, where

0= FWly
(fleegivy: jlylg]—lx—yl"‘ :

Lemma 7.4.3. Letse [1,00), let Y be a Banach space and fix a bounded interval ] < R.

(i) Ifg € (s,00), then R°(J;Y) < VS(J;Y) S RY(J;Y) and for all f € L°(J;Y) we have
| fllra;vy Sq.s 1 flvsayy S U FIlrs gy -

(ii) We have CY'*(J;Y) < V3(J;Y), and forall f € V3(J;Y),
If sy < 1 flloo + 1S LT cuis gy -

Proof. For (i) we note that both R*(J; Y) € V*(J; Y) and the second norm estimate follow
directly from the fact that for any atom a € R}, (J; Y) with

a= Z crly
IeZ

we have by Minkowski’s inequality that

1/s 1/s
lallvsgin <suplierlly +( ¥ ler=e/lf) <1+2( L lerl®) <3,
IeZ 1,JeT I1eT
T#]
The embedding V*(J;Y) € R9(J; Y) with the first norm estimate is shown in [CRAFS88,
Lemme 2] for scalar functions, and the argument extends to the general case. Part (ii) is
straightforward to check. O
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We end this section with complex interpolation containments for the V°- and R*-
classes. It is an open problem whether complex interpolation of the V*-classes as below
can be proved with € = 0 (see [Pis16, Chapter 12]). It is also not clear whether converse
inclusions hold, but since we don’t need them we leave the question open.

Theorem 7.4.4. Supposel < gy < q) <00, 0 € (0,1), € >0 and let Y be a Banach space.
Then for all bounded intervals ] < R we have continuous inclusions
vidodlo=e(yyy — (VO (J;Y), VI (J; V)]p, (7.4.1)
RYMo(J;¥) — [R®(; Y),RT (J;V)lg, 1 #o0. (7.4.2)
Furthermore, if 7 = (J¥)ken s an ordered collection of mutually disjoint bounded inter-
vals in R, then we have continuous inclusions
V0 MOmE (T v) — (VP (T3 ), Vi (T V)l (7.4.3)
RN 7, ¥) = [R(T; V), RINT; Ve, 1 # 00 (7.4.4)
Proof. For qg =1 and q; = oo we have (7.4.1) by applying subsequently [Pis16, Lemma
12.11], [BL76, Theorem 3.4.1], and [BL76, Theorem 4.7.1],
VIR y) = (VIO ), L¥U5 ), 0

— (V'Y LU )y,
— [VIU; 1), LU V)],

with
1

1
-9 ¢

0:.=1- <6.

The intermediate cases follow from the reiteration theorem for complex interpolation
[BL76, Theorem 4.6.1].

In the remainder of the proof we will need the following notation: when Zj is a col-
lection of intervals for each k € N and I € 7, let n; ; denote the canonical projection
0°(Iy; Y) — Y. We abbreviate Banach couples (Xp, X1) by X., and use this shorthand
for expressions like

[P+ (N; X)g = [£P°(N; X), P (N; X)]g.

Define the openstrip S:={ze€ C:Rez € (0,1)}. Welet F(X.) denote the space of bounded
continuous functions from the closed strip S to the sum Xp + X; whose restrictions to S
is analytic and whose restrictions to the sets {z € C:Rez =0} and {z€ C:Rez = 1} map
continuously into Xy and Xj respectively, equipped with the norm

IFll Fex,) = max (supl F(i 1), supll F(L+ 1 8)]1x, )
teR teR
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For (7.4.2) let 1 < gp < q1 < oo and write gy := [qo, q1]g for brevity. Suppose f €
RY9(J;Y), with atomic decomposition

(o]

o0
f=2 Aear =3 Ax ) Limpi(cp),
k=1 IeZ}
where ¢y € 99 (Z;; Y) for each k € N.
Let € > 0. For each k € N we have €90 (Z;; V) = [£9- (Zy; Y)]g with equal norms [Tri78,
Theorem 1.18.1], hence there exists a function Cy € F(¢9 (Zy;Y)) with Cr(0) = ¢, and
ICrll Feoa- vy = A+l el pag (Z;v) = 1+ €. For all ze S and t € J, define

Ae@) (1) = ) 11Ok (Cr(2)),
1€y,
noting that for each ¢ there is at most one non-zero term in the sum. It follows from
ICkllF (o z;vy) < 1+ € that | Agll Fge- ;) < 1 + € forall z€ .
We will show that each Ax: S — R™(J;Y) + R (J;Y) is analytic on S, using that
RO, Y)+RN(J;Y)=RN(J;Y)and 09 (Zi; Y)+ €N (Zy; V) = 09 (T; Y). Fix 29 € S. Since
Cy. is analytic with values in £9! (Zy; Y), there exists a Taylor expansion

Cr(2) =) (z2—20)" Pr,n
n=0

for z in a neighbourhood of zy, where (B, )52, < ¢ (Zy; Y). Thus for such z we have

(o] o0

Ap(2)= ) 1mp(Cr@) = ) (z—20)" Y Limpi(Brn) = ) (2= 20)" Yin

IeZ;. n=0 IeZ;. n=0

using the mutual disjointness of Z to interchange the sums. The functions yy , are in
R7(J;Y) as we can write

Iyenlrn i = | X LmreBen
IEIk

xn gy = WPrnllen @y <oo.
Similarly we can show that each Aj: S — R (J;Y) is continuous.

Now for z € S define -

F(2):= ) ArAi(2).
k=1

Since the functions Ag: S — R%(J;Y) + R7 (J;Y) are bounded uniformly in k, contin-
uous on S, and analytic on S, and since A € ¢!, and each A; maps into R%(J;Y) +
R%(J;Y), we find that F € F(R9 (J; Y)). Furthermore we have

(e8]

FO)=) MA@ =) Ar Y 1mpi(Cr®) = f
k=1 k=1 IeZ;

and

I Fll 7 (rae (7;vy) < WAkl 1 supll Agll Ferae vy < A+ Akl 1.
keN
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Since € > 0 was arbitrary, taking the infimum over all atomic decompositions of f and
all Fe F(R9(J;Y)) with F(0) = f completes the proof.

Now consider a collection J of mutually disjoint bounded intervals in R. We will
only prove (7.4.3), as the proof of (7.4.4) is similar. We introduce the following notation:
if /= [J_,J;) € Ris a bounded interval and f € L°(J; Y), we let f; € L°([0,1);Y) be the
function

&) =fU+=J)x+]4)  x€[0,1).

Then for each s € [1,00] the map 7;: V5(J;Y) — V3([0,1); Y) defined by 7;(f) := f; is an
isometry. Consequently we can write

I fllvs7,v) =supll flsllvsy;vy =supllT;(FI)vso,0;v)»
JeJ JeJ
and therefore the map @: VOs(j; Y) — ¢o(J; V5([0,1); Y)) defined by

O(f) =T (f1))jes

is an isometry. Since the intervals in 7 are mutually disjoint, ® is an isometric isomor-
phism. Thus ®~! induces an isometric isomorphism

D' (T IV (10,1);V)lg) = [co(T; V(10,1; Y] — [V (T3 Vo,
using [Tri78, Remark 3, §1.18.1]. By (7.4.1) we have
vidoalo=¢([0,1); ) — [V ([0, 1); Y)]g,
so that ®~! yields an embedding
co(J; V1902 ([0, 1); V) — (V" (T; V)l
Precomposing with ® gives the bounded inclusion
Vo™ O3 Y) = [V (T3 )l

and completes the proof. O

7.5. FOURIER MULTIPLIER THEOREMS

Let X, Y be Banach function spaces and let m: R — £(X,Y). In this section we will de-
velop sufficient conditions on X and Y which imply that the Fourier multiplier operator

Tm: SRGX) = S'REGY),  Tof =(mf)Y.

extends to a bounded operator from L” (R, w; X) to LP (R, w;Y). In particular we will
prove operator-valued variants of the multiplier theory of Coifmann-Rubio de Francia—
Semmes, i.e. we will show the boundedness of T, for m € VS(A; £(X,Y)) and w in
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a suitable Muckenhoupt class. We will only consider multipliers m defined on R; ex-
tensions to multipliers defined on R? can be obtained by an induction argument as in
[Kr614, Section 4], [Lac07] and [Xu96], and extensions to multipliers on the torus T can
be obtained by transference, see [11, Proposition 4.1]. In this case one must consider
multipliers defined on T = 7, where bounded s-variation for a function on Z is defined
analogously to Definition 7.4.1.

We start with a result that is well-known in the unweighted setting (see [HHNO02,
SW07]). It will be used in the proof of Theorem 7.5.16. Recall that A = {+[2F,2k*1) ke 7}
is the standard dyadic partition of R.

Theorem 7.5.1 (Vector-valued Marcinkiewicz multiplier theorem). Let X and Y be UMD
Banach spaces, and suppose T’ = L(X,Y) is absolutely convex and R -bounded. Suppose
me VI(A;T). Then forall p € (1,00) and w € Ap,

I Tl 2 @ ;50— PR3 ) < Px, v, p (WA ) TR I M2l ATy

Proof. To prove the result one can repeat the argument in [HHN02, Theorem 4.3] us-
ing weighted Littlewood-Paley inequalities with sharp cut-off functions, which can be
found for instance in [FHL20]. O

Our starting point for multiplier theorems for m € V* with s > 1 will be the Littlewood-
Paley-Rubio de Francia estimates developed in Section 7.2

7.5.1. MULTIPLIERS IN HILBERT SPACES

The first part of the following theorem is an analogue of [Kr614, Theorem A(i)], and the
second part is an unweighted analogue of [Kr614, Theorem A(ii)]. The second part is
also proved in [HP06, Proposition 3.3]. The exponents (p, s) for which each part of the
theorem applies are pictured in Figure 7.1.

Theorem 7.5.2. Let X and Y be Hilbert spaces, p, s € (1,00), and consider a multiplier
me V(A L(X,Y)).

(i) Ifs<2andp = s, then forallw € Ap,s we have
I Tl R w330 — 17 ®, w3 v) < Pp,s (WA, Imllysacox,vy)-

(i) If > |%—%| we have

| T, ||LF’(R;X)~LV([R¢;Y) Sp,s [zl VS(AL(X,Y))-

To prove Theorem 7.5.2 we use the following proposition, which is a version of The-
orem 7.5.2(i) for R-class multipliers. The techniques used to prove this proposition are
strongly related to those used in the proof of our main result for UMD Banach function
spaces, Theorem 7.5.6.
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Figure 7.1: Allowable exponents for Theorem 7.5.2: the weighted case (i) dark shaded, the unweighted case (ii)
light shaded.

1/s

=

1/p

D=

Proposition 7.5.3. Let X and Y be Hilbert spaces, s € (1,2], and consider a multiplier
me R*(A; L(X,Y)). Then forall p > s and w € Ay s we have

I Tonll 2p @,w; %)~ 17 R w;v) < Pp,s (W] 4, Ml gsa;£0x,v))-

Proof. We only consider the case s < 2. The case s = 2 is similar, but simpler. Fix & > 0
and let f € LP(R, w; X). By approximation we may assume that the dyadic Littlewood-
Paley decomposition of f has finitely many nonzero terms and set Ay = {J€ A: §; f # 0}.
Foreach J € Ay let

N

mly=Y Aal, al=Y 1

k=1 IeJk/
be an R*(J; L(X, Y))-atomic decomposition of the restriction m|; with A independent
of J and

N
YAkl = A+ almll gsazcix, vy
k=1
as in [HP06, Theorem 2.3].
Note that S; T, = T, Sy, where we abuse notation by letting S; denote either the X-

or Y-valued Fourier projection. By the Littlewood-Paley estimate (see [FHL20, Theorem
3.4]), Holder’s inequality, Remark 7.2.7, and w € Ap/s € Ap, we have

I T fll P @,w;v) SQDP([W]AF)” (]EZA: ” TmS,f||§,)1/2“Lp(R,w)
!

<yttt X (E 0 X 1esiin)) ]

Jedp k=1 reg]
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2
s

(X 1si15)%)

s¢p([w]AP)§ |7Lk|”( (X i)

Jedy 1eg] 1eg! R
N $\2/8\1/2
<gptwla,) Y (X (X usirig) ) ],
k=1 Jers e g] L)
N
< ¢ps(wla,,) Y Ak f e @, w50 -
k=1
Since € > 0 was arbitrary this implies
I T fllLr @, w;v) < Gp,s((wla,, JImllgsazc o, vy 1 e @ w;x)
forall we Ap/sand f € LP (R, w; X). O

Proof of Theorem 7.5.2. Part (i): We first consider the case p < sand s <2. Let w € A/
and take o € (s,2] such that w € Ap,s, which is possible by Proposition 2.3.2(iii). By
Lemma 7.4.3 we know that m € R% (A; £(X, Y)) with

70l go (a;2x,v)) Sso 1Mllvsascix, vy,

so by Proposition 7.5.3 we obtain

I Tl 2L @, w; ), LP R, w3 v)) < Pp,s (WA, INMmllvsa;cix, vy

Next we consider the case p > s = 2. Observe that by [HNVW16, Proposition 5.3.16]
it suffices to prove the result for the truncated multipliers

mpy = lUﬁ,Vzlfn m,

where A = ( ]n)‘y’:’:1 is an arbitrary ordering of A. Since my € VOS(A;ﬁ(X , Y)) uniformly,
without loss of generality we may work with an arbitrary multiplier m € V (A; £(X, Y)).
Fix w € Ap/2. Then by Proposition 2.3.2(iv) there exists a § > 0 such that wltd e Apra.
Take

2 1
9:;(1_m), po=1+81-60)p, and o=2-0.

Then 6 € (0,1),0 € (1,2) and pg = p+ (p—2)0 > p, so by the first case we have

1T llLPo @, w; )~ LPo @, w;Y) < Ppo,o (WA, IMmllve (a;cx,v)-

Moreover by Plancherel’s theorem (which is valid since X and Y are Hilbert spaces) we
know that

I Tl 222 @), 12®;v)) < 1Ml Lo @s20x,v))- (7.5.1)
Si
mee 11 111

(p0,21y p(l+6) p pa+s p’
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we know by [Tri78, Theorem 1.18.5] that LP (R, w; X) = [LP°(w'*?, X), L>(R; X)]g, and
likewise with X replaced by Y. Moreover since [0,00]g = % > 2 we have the contin-
uous inclusions

VA L(X, Y)) — [V (A L(X, V), V(A L(X, V)]
— Vg (8 L(X, V), L@ L(X, Y))]g

by Theorem 7.4.4. By bilinear complex interpolation [BL76, §4.4] applied to the bilin-
ear map (m, f) — Ty, f we have boundedness of T,: LP (R, w; X) — LP (R, w; Y) with the
required norm estimate.

Finally we consider the case p = s = 2; we will use another interpolation argument.
Fix w € A;. Then by Proposition 2.3.2((iv)) there exists a § > 0 such that wltd e A;. Fix
p1 € (s, 5+ (s—1)9). By the argument of the previous cases we have

I Tm||Lp1 (W8 X)— LP1 (wl+0;y) = (l)pl,g([w]Al)||m||VS(A;£(X,Y))-

Let 6 € (0,1) be such that 8(1 + §)s = p;. Such a 6 exists since p; < s+ (s—1)d. Choose
po € (1,s) such that [pg, p1]lg = s. Such a pg exists since p; > s and [1, p1]p < s. Indeed,
the latter follows from

0
=s1-0)+s—=s5— P1 >1.

[1,p1le p1 1+5+1+5

Since py < s = 2 we have by duality with the previous cases (taking w = 1) that

Il T ll LPo ;30— LPo ®;Y) Spo,s 1M llvsa;x,vy)-

As before our choice of 0 yields L°(R, w; X) = [LP°(R, X), LP! (w1+5;X)]g, and likewise
with X replaced by Y. Therefore by complex interpolation we have boundedness of
T L*(R, w; X) — L°(R, w; Y) with the required norm estimate.

Part (ii): The case p =2 is clear from (7.5.1) and the embedding of the V*-classes in
L*. For p > 2 we may assume without loss of generality that m € VOS (A L£(X,Y)) as in
Part (i). Moreover, by embedding of the V°-classes, we may assume that s > 2.

Leto € (s, (% - %)_1) and fix t € (2,00) such that [2, ] g =p. Such a ¢ exists since p > 2
and

which implies that

Using the boundedness properties

V(A L(X, V) x LP®; X) — L*(®;Y) and
Ve L(X,Y)) x L'(R; X) — L' (R; V)
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of the bilinear map (m, f) — Ty, f, which follow from (7.5.1) and Part (i) respectively, we
have boundedness of Tj,: L” (R, w; X) — LP (R, w;Y) with the required norm estimate
by bilinear complex interpolation [BL76, §4.4]. Here we use [Tri78, Theorem 1.18.4] and
Theorem 7.4.4 to identify the interpolation spaces as before. The case p < 2 follows by a
duality argument. O

Remark 7.5.4.

1. If the multiplier is scalar-valued and X = Y, then Theorem 7.5.2 follows simply
from the scalar case and a standard Hilbert space tensor extension argument (see
[HNVW16, Theorem 2.1.9]).

2. Asin [Kr614, Theorem A], a weighted version of Theorem 7.5.2(ii) can be proved,
but we omit it to avoid limited range Muckenhoupt weight classes.

7.5.2. MULTIPLIERS IN UMD BANACH FUNCTION SPACES

We now turn to our main result (Theorem 7.5.6). Its proof is inspired by that of [HP06,
Theorem 2.3], which is a generalisation of the Hilbert space result in Theorem 7.5.2.
Besides the regularity assumption on the multiplier as in the Hilbert space case, we will
need an ¢?(¢7)-boundedness assumption. We first prove a result for R-class multipliers,
analogous to Proposition 7.5.3.

Proposition 7.5.5. Letq € (1,2], p€ (q,00), and w € Ap;4. Let X and Y be Banach func-
tion spaces with X7 € UMD and Y € UMD. LetT < L(X,Y) be absolutely convex and
0207 -bounded, and suppose m € R1(A;T). Then

(™ ”L(LP(RYW;X),LP(R,W;Y)) = (PX,Y,p,q([W]Ap/q) ||r||gz(gq’) lmll raa;T)-

Proof. Fixe>0andlet f € LP(R, w; X). We begin as in the proof of Proposition 7.5.3: we
assume that the dyadic Littlewood-Paley decomposition of f has finitely many nonzero
terms and setAp={JeA: S;f #0}. Foreach J € Af let

N
k
my=Y Aal, a.=Y cf1;
k=1 IeJk/

be a RY(J;T)-atomic decomposition of the restriction m|; with A} independent of J, with
each J, k] finite, and with

N

Y 1Akl = @+ )llmllgaa;cix,vy-
k=1

Asbefore, S; Ty, = Ty, S;. By the Littlewood-Paley theorem for UMD Banach function
spaces (Proposition 7.2.1), using that Y e UMD and w € Ay, S Ap, we have

I T fllLp @,w;v) SQDYJJ([W]AP)“ (,g leS]flz)”Z”LP(R,w;Y)
!
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= pvp(twa)| (2 |Zﬂk Y c*sul)”

Jebr k=1 jeg) LP®w1)

< ¢y,p(wla,) Z Mk'”( 2 ‘ )y C{kslf) )UZHLV(R,W;Y)'

Jehr 1eg]

We estimate the right hand-side by

IMI”( 2 ‘ X e If)z)”ZHLP([R,w;Y)

JeAs e ]

sgmm”( (X ner e Z |CI Sy ”q) )UZHLP(R,W;Y)

Jebs 1e7) (EAT
N 2/q'\1/2
S5 (5 sl )
=1 IIr LP([R,w;Y)

Jeds 1eg! ey
By the definition of the Minkowski norm, the operators c{’k / ||C{'k||r all lie in T, so by
Zz(l"’)-boundedness of I we have

IA

’ n1/2
||Tmf||mwy)<¢ypuw1A,,)||r||ﬁ(M)kalu( (X 1sp17) )|

]EAf IEJI LP R, w;X)

By Theorem 7.2.5, we obtain

”( Z ( Z |sIf|q’)2/q')1/2”

< Ox,pq((Wla, N Fllr®wx)-
JeAy IeJk]

LP(R,w;X)

Since Zszl Akl = (1 +€)llml raa;r) and € > 0 was arbitrary, this finishes the proof. O

Our main multiplier theorem now follows directly from Proposition 7.5.5 and Lemma
7.4.3.

Theorem 7.5.6. Let X and Y be Banach function spaces, and letT < L(X,Y) be absolutely
convex. Let g€ (1,2], s€ [1,q) and me V(A;T).

(i) Suppose that X9 € UMD, Y € UMD, and T is ¢? (¢9)-bounded. Then forallp e
(q,00) and w € Ap;4 we have

I Tonll e @,w; 30— 1P ®w;Y) < DX, Y,p,q (WA, TN g2 pqy Il Vs AT

(ii) Suppose that X € UMD, (Y*)9 € UMD, T is 0209 -bounded, and m € V:(A;T).
Then forall p € (1, q") we have

I Tl Lr @)~ Lr ®;v) Sx,Y,p,g IT I g20qy Imllvsa;n).-
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Proof. The first part follows directly from Proposition 7.5.5 and Lemma 7.4.3. For the
second part a standard duality argument shows that

” Tm ”Lp (R; X)—LP(R;Y) = ” Tm* ”E(Lp' (R;Y*),LPI (R; X*))’

with m*: R — span(I'*) defined by m* (¢) = m(¢)* for all ¢ € R. Applying the first part to
m*, using Proposition 7.3.3 to show that 7* is £2(¢)-bounded and noting that m* €
V4(A;T*), completes the proof. O

If g =2 and w =1 in Theorem 7.5.6, we recover [HP06, Corollary 2.5] for Banach
function spaces, except for the endpoint p = 2, which is missing since we work in the
weighted setting. Of course Theorem 7.5.6(ii) could also be stated with weights. How-
ever, to formulate for which weights it holds we would have to introduce limited range
Muckenhoupt weight classes.

Remark 7.5.7. The ¢%(¢9)-boundedness assumption in Theorem 7.5.6 arises naturally
from the proof. It is known that boundedness of T}, implies R-boundedness—and thus
¢%-boundedness if X has finite cotype—of the image of the Lebesgue points of m (see
[CPO1] or [HNVW16, Theorem 5.3.15]). However, lz(l"’)-boundedness is not necessary,
as may be seen by considering m = nS where n € R9(A) is a scalar multiplier and S: X —
Y is a bounded linear operator. In this case Ty, will be bounded, but {S} need not be
£2(¢7)-bounded for q # 2 (see Example 7.3.13 and [KU14, Example 2.16]).

Using complex interpolation, the reverse Holder inequality, and the openness of the

UMD property, we can obtain a result for the endpoint p = g = s in Theorem 7.5.6.

Proposition 7.5.8. Let X and Y be Banach function spaces. Let q,r € (1,2) and suppose
that X7 € UMD and (Y*)" e UMD. LetT < L(X,Y) be absolutely convex and both 2207 -
and ¢%(¢")-bounded. Let s = min{q, r} and suppose that m € VS(A;T). Then for all w €
Ay,

| Trall Lo ®, ;) — LI R w; ) < ¢X,Y,q,r([w]A1)max{”r”[zwq’)r IIFIIgz(gr)} lmllvsarn.

Proof. Fix w € A;. By Proposition 2.3.2(iv) there exists an § > 0 such that w'*® € A;. By
the openness of the UMD property of Banach function spaces (see [Rub86, Theorem 4])
we know that there exist

qo € (g maxi2, g+ (g-1)8}), ro€(r,2)

such that X%,(Y*) € UMD. By Corollary 7.3.5 we know that T is ¢2(¢/%)- and T is
£2(¢7)-bounded with

IIFII < ||F||[2([q!) and ||F||[2([r0) =< ||F||[2([r). (7.5.2)

£2(0%)

Fix p1 € (9o, g + (g —1)6). By Theorem 7.5.6 and (7.5.2) we know that

1 T, ||£(Ln1 (W+0:X),LP1 (w1+0;y)) = (,bX,Y,pl,qo ([W]Al) ”r”(Z([q’) lm2llvsa;m).
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Let 0 € (0,1) be such that (1 +8)g = p1, and fix pg € (1, q) such that [pg, p1]lg = g. These
parameters exist by the same argument as in Theorem 7.5.2(i). Since py < r(, we know
by Theorem 7.5.6((ii)) and (7.5.2) that

I T\l £ezro ®;3), 2P0 ®; YY) SX, Y, po,ro 1T Ne2oryImllvsany.-

Therefore by complex interpolation as in Theorem 7.5.2(i) we have boundedness of
T LY9(R, w; X) — L9(R, w; Y) with the required norm estimate. O

When dealing with operator-valued multipliers m, to check the hypotheses of our
results, one needs an ¢2 (Zq/)-bounded subset I' € L£(X,Y) whose span contains m(R),
such that m has the appropriate regularity when measured with respect to the Minkowski
norm induced by T. An obvious naive choice is to assume that m(R) is £2(¢ 4')-bounded
and to take I' = m(R), but m may not be sufficiently regular with respect to the I'-Min-
kowski norm. By making I" larger m becomes more regular in the I'-Minkowski norm,
but enlarging I' may violate £2 (¢ 4')-boundedness. Constructing such aset I given a gen-
eral multiplier m is quite subtle (except of course in the scalar case, where the Minkowski
norm on the one-dimensional span of m is equivalent to the absolute value on C). Be-
low we give an example where these problems may be surmounted using extrapolation
techniques.

Proposition 7.5.9. Let a € (0,1]. Suppose that for some pg € (1,00) and all w € Ap, (Rd)
we have that m: R — L(LP°(R?, w)) satisfies the following Holder-type condition:

sup MmOl zzpo e, ) +SUP 1% 1M ca g, 2100 ®e, wy) < PUW] 4,,)- (7.5.3)
teR JeA
Then there exists a family of operatorsT such thatm € VY% (A;T) andT is ¢“(¢")-bounded
on L”([Rd, w) forallp,u,v € (1,00) and w € Ay ([Rd), with

TN ouery = pu,v (W] ay,).

Proof. For each J € A define

mx)—m(y) ..
Ty VA yed)

and set I' := Ujea I'(J). Note that m(R) < I'. We will show that I' has the desired proper-
ties.

Since m(x) € T and m(lj?_;ﬂ(”ljla eI forall J€ A and all x # y € J, by the definition
of the Minkowski and Ho6lder norms, we have |m(x)|r <1 and |J|*[mlcen) < 1, from
which it follows directly that m € V¥ (A;T).

By (7.5.3) we have

ro):=mu{

Il Tf”Lp(Rd,w)ﬁLp(Rd,w) = (,bp([w]Ap)

for some p € (1,00), all w € Ay (R%) and all T € T. Thus the £%(¢?)-boundedness result
follows directly from Proposition 7.3.7. O
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In the next example we specialise to the case X = Y = L" and s € (1,2). Results for
s € [2,00) will be presented in Example 7.5.14. Note that the £2-boundedness or £ (¢%)-
boundedness assumptions can be deduced for instance from weight-uniform Hélder
estimates as in Proposition 7.5.9.

Example 7.5.10. Let (Q,u) be a o-finite measure space. Let p,r € (1,00) and let I
L(L"(Q)) be absolutely convex. Let s € (1,2) and m € V¥(A;T). Then Ty, is bounded on
LP(R, w; L™ (Q)) in each of the following cases:

@ Ifr=2,

(@) pels,00)and we Ays.

() pel,sland w=1.
(1) Ifre(2,00),

(@ pe(2,00), we Ap» and T is £?-bounded.

(b) pe(,r),se(,r), w=1andT is £?(¢*)-bounded.
(i) Ifre(1,2),

(@) pe(1,2), w=1andT is £2-bounded.

(b) pe(r,00),s€(1,r), we Apsand T is £2(£*)-bounded.

Proof. The case (i)(a) follows from Theorem 7.5.2 and the case (i)(b) from a duality ar-
gument. The cases (ii) (a) and (iii) (a) follow from Theorem 7.5.6(i) and (ii) with g = 2. For
(iii) (b) choose q € (s, ) such that w € Ay 4. By Corollary 7.3.5, I is £2(¢7)-bounded, and
therefore Theorem 7.5.6(i) applies. Similarly, (ii) (b) follows from Theorem 7.5.6((ii)). O

There is some overlap between the cases in Example 7.5.10. For X = L' (Q), we can
exploit that we always have either X2 € UMD or (X*)? € UMD. This is not possible for
general UMD Banach function spaces, which restricts the class of multipliers that can
be handled by our results, as shown in the following example.

Example7.5.11. Let (Q, u) be a o-finite measure space. Let p € (1,00), r € (1,2), and let
rcfl" Qe L (Q)) be absolutely convex. Let s € (1,r) and m € V*(A;T). Then Ty, is
bounded on LP (R, w; L" (Q) & L (Q)) in each of the following cases:

(@) pe(r,00), we AysandT is 22(¢%)-bounded.
(ii) pe,r"), w=1andT is £2(¢*)-bounded.

The result follows from Theorem 7.5.6 in the same way as in Example 7.5.10.
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7.5.3. MULTIPLIERS IN INTERMEDIATE UMD BANACH FUNCTION SPACES

We can prove stronger results, allowing for multipliers of lower regularity, if we consider
‘intermediate’ spaces X = [Y, H]g where Y7 € UMD for some ¢ € (1,2] and H is a Hilbert
space. For example, when r € (2,00), we have L" = [LrO,LZ]Q for some rg € (r,00) and
0 € (0,1). In order to use interpolation methods we will need that span(7) with the
Minkowski norm is a Banach space, i.e. that 7 is a Banach disc (see below Definition
7.4.1).

Theorem 7.5.12. Letp e (1,00), g€ (1,2] and @ € (0,1). Let Y and H be Banach function
spaces over the same measure space, with Y9 € UMD, H a Hilbert space, and Y N H dense
in both' Y and H. Let X = [Y,H]g. Suppose ' < L(Y N H) is a Banach disc which is
0207 -bounded on Y and uniformly bounded on H. Let s € (1,00) and suppose that
me VS (A;T).

(i) Ifs<mini{p,[q,2lg} and s =[q,1lg, then
I Tll e @, w3 )~ L0 R ;) < Py, p,q,50 (WA, JImlvsan 1T gz g
forallwe Aps.

(i) If

1 1 1
- >max{ -—,
S [q9,2lg p

|

’

1-6
q

< =
N D

and p > [q,1lg, then
I Tl r @ x)— L @) Sv,p,g,5.0 IMIvsan 1T 1l 2007

The allowable exponents (p, s) in Theorem 7.5.12 are shown in Figure 7.2. The sym-
metry in Figure 7.2 is due to the equalities

0 1 1 1 1 1

= 0= - = _
2 [oo,2]g (9,1l (9,2l [g,2]lp [g,00lp

and
1-6 1 1 1

= —0: - .
q [g, 00l [g,2lp [00,2]g

Proof. As in the proof of Theorem 7.5.2, it suffices to consider decaying multipliers m €
V; (A;T). Moreover, by Lemma 7.4.3, Proposition 2.3.2((iii)) and the openness of the
assumptions on s, it suffices to consider m € Ré (A;T). Throughout the proof we let
I's,6,q € [1,00) be the unique number such that

lg, rs,B,q]@ =S,

which exists if [g, 1]g < s < [g,00]g.
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Figure 7.2: Allowable exponents for Theorem 7.5.12: the weighted case (i) dark shaded, the unweighted case
(ii) light shaded.

1/s

1

_1
[g,1]g

_1_
[9,2]p

[q,00lg

1 1 1 Up

(00,2l 1g,2]p [g,11p

Part (i): First assume s # [g, 1]g, so that rgg 4 > 1. Fix a weight w € A;. Take ¢ > g and
define o = [t, I's,0,4l6 > s. By Proposition 7.5.5 we have boundedness of the bilinear map

RIGT) xL'Rw;Y) = L'R,w;Y),  (m, )= T f

using that T is éz(ﬂ/)—bounded on Y. Moreover, since s < [g, 2]y, we know that Ts6,q =2,
so we have by Theorem 7.5.2((i)) and Lemma 7.4.3 that the bilinear map

R;S'H'q(A;T) x L"04 (R, w; H) — L's%9(R, w; H), (m, f)— T f
is bounded, using
™l rsa;ccmy < ImllRsa;m) (7.5.4)
by the uniform boundedness of ' on H.

We define a bilinear map

(RS(A;T) N Ry (A T)) x (LR, w; Y) N L7504 (R, w; H))
— L' R w;Y)NL™1R,w; H),  (m,f)— Tif.

This is well-defined as it is the extension of the map (m, f) — T, f defined for m €
R;MS'B"’(A;F) and f € S(R; Y n H). Here we use that Y n H is dense in both Y and H.
By bilinear complex interpolation [BL76, §4.4] we have boundedness of

(R (A7), Ry (A5 D) ]g x [LE R, w; ¥), L4 (R, w; H)]g
— [L'R, w; V), L% R, w; H)lg,  (m, ) — Tonf-
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Here we use that the Minkowski norm on the linear span of I is complete, i.e. that T <
L(Y N H) is a Banach disc.
By Theorem 7.4.4 we have

Ry (A;T) — [RI(A;T), Ry (4 D)l

Using this embedding and complex interpolation of weighted Bochner spaces (see [Tri78,
Theorem 1.18.5]; note that the proof simply extends to the case Xj # X;), we get bound-
edness of

RS(A;I‘)XLU(IR, w; X) — L° (R, w; X), (m, f)— T f

with norm estimate
1T f |l 1o @i = Dvags.to6 (Wl a) i mllrsam 1T gz | o @i

for all w € A; and all simple functions f: R — X. By Theorem 2.3.3 and density of the
simple functions we deduce

1T fllr @ w;x) < Py p,q,s,60,0 (W ay Ml rs a0 1T g2 gy | F Il Lr w3 x0)

for all p € [0,00) and all w € Ap,,. Taking t arbitrarily close to g and using Proposition
2.3.2(iii) proves the case [gq, 1]g # s.

Next if [g,1]g = s and w € Ap/s, then by Proposition 2.3.2(iii) we can choose 7 €
(s,[g,2]p) such that w € Ap/;. By the previous case T, is bounded on L” (R, w; X) for
all m € RY(A;T) and hence also for m € R*(A;T), which completes the proof.

Part (ii): By embedding of the R*-spaces and the fact that

1 1 11-61 6
> max{ , , }
(9,219 92lg p q p 2

for p > [g, 11y, we may assume that s > [g, 2]g without loss of generality. Note that this
implies that ry g 4 > 2. We will consider three cases:
Case 1: p = [00,2]g. Since

2 q s

116 1-0 1y 1 1
575l [

we can find a p; > p6 = 2 such that p; < pand p; < (% - ﬁ)—l. Therefore we know by
Theorem 7.5.2((ii)), using (7.5.4), that the bilinear map ”

R[;s,e,q (A;T) x LPY(R; H) — LP'(R; H), (m, f)— T f

is bounded. Since p < [0o, p1]lg We can find a pg € (p,00) such that p = [pg, p1lg. By
Proposition 7.5.5 we have boundedness of the bilinear map

RI(AT) x LPO(R; Y) — LP°®; V), (m, f)— T f,
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using that T is £2(¢ 4')-bounded on Y. We can now finish the proof using bilinear com-
plex interpolation, Theorem 7.4.4 and complex interpolation of Bochner spaces as in
the first part.

Case 2: [¢,2]g < p < [00,2]. Note that Rgs‘e'q (A;T) — L°°(R;T). Therefore by Plancherel’s
theorem and (7.5.4) the bilinear map

RPN x 2R H) — 2R H),  (m, f)— T f

is bounded. Since [q,2]g < p < [00,2]g we can find a py € (g,00) such that p = [py, 2]y. By
Proposition 7.5.5 we have boundedness of the bilinear map

R{AT) x LR Y) = LP®Y),  (m, f)— Tpuf,

using that I is £2(¢ 4')-bounded on Y. The proof can now be finished as before.
Case 3: [q,1]p <p =<Iq,2]. Let p € (1,2] be such that p = [g, plg. Then since

1 16 1 1-6 1 1
1 10,1 1-0) ,
p 0\2 s q 2 Ise,q

1
Ts0,q

we can find a 1 < p; < p such that p; > (% + )~!. Therefore we know by Theorem

7.5.2(ii), using (7.5.4), that the bilinear map
R(:S'g'q(A;F) x LPY(R; H) — LP' (R; H), (m, f)— Ty f

is bounded. Since p; < p, we can find a py € (g,00) such that p = [pg, p119. By Proposi-
tion 7.5.5 we have boundedness of the bilinear map

RIAT) x LR Y) = LP®Y),  (m, f)— Tpuf,

again using that I is £?(¢ 4')-bounded on Y. The proof can again be finished as before.
O

The conditions on m in Theorem 7.5.12((ii)) with g = 2 are less restrictive than the
conditions of [HP06, Theorem 3.6], which allows for Banach spaces with the LPR, prop-
erty. The proof of Theorem 7.5.12(ii) can also be used to improve the conditions of
[HPO06, Theorem 3.6]

Remark7.5.13. Aweighted variant of part (ii) of Theorem 7.5.12 holds for an appropriate
class of weights, by using a weighted variant of Theorem 7.5.2(ii) (see [Kr614, Theorem
A(ii)]) and limited range extrapolation (see [CMP11, Theorem 3.31]). However, as this
involves limited range Muckenhoupt weight classes, the technical details are left to the
interested reader.

We continue with an application to X = L" for s € [2,00). Results for s € (1,2) have
been previously covered by Example 7.5.10.
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Example 7.5.14. Let (Q, ) be a o-finite measure space and let p,r € (1,00). Let I' be an
absolutely convex and ¢?-bounded family of operators on L!(Q) for all £ € (1,00). Let
S € [2,00) and assume m € VS(A;T). Then T,, is bounded on LP (R; L™ (Q2)) in each of the
following cases:

(1) r€[2,00) and%>max{§—ﬁ,§—;,z—%}.

-- 1 1_11_11_1
(i) re(l,2]and ¢ >max{; -3, ;-3 7 -3}

Proof. Ttsuffices to prove (i), as (ii) follows from a duality argument. Let T be the closure
of I in £(L2(Q)). Then T is a Banach disc. Moreover, by Lemma 7.3.8 we know that
T < L(L'(Q)) is #2-bounded for all ¢ € (1,00). We will check the conditions of Theorem
7.5.12(i)) with T, g = 2, Y = L*(Q) for an appropriate t > r and H = L?>(Q). Choose 6 €
(0, %) such that

Since s = 2 it follows that p > [2, 1]g. Now the result follows by choosing ¢ > r such that
r=1[t2]p. O

In a similar way we obtain the following from Theorem 7.5.12(i) and duality. This
partly improves Example 7.5.10.

Example 7.5.15. Let (Q, ) be a o-finite measure space and let p,r € (1,00). Let I be an
absolutely convex and ¢2-bounded family of operators on L!(Q) for all ¢ € [2,00). Let s €
(1,2) and assume m € VS(A;T). Then Ty, is bounded on LP (R, w; L' (Q) if 5, < { < 7 +3
and w e Apys.

7.5.4. MULTIPLIERS IN INTERMEDIATE UMD BANACH SPACES

In this final subsection we consider general UMD Banach spaces (not just Banach func-
tion spaces) and use interpolation to improve the conditions of Theorem 7.5.1 consid-
erably, assuming X is an interpolation space between a UMD space and a Hilbert space,
and using the same interpolation scheme as in Theorem 7.5.12. This result is new even
for scalar-valued multipliers, and it implies sufficient conditions for Fourier multipliers
on the space of Schatten class operators.

Theorem 7.5.16. Let p € (1,00) and 0 € (0,1). Let Y and H be an interpolation couple,
with Y € UMD, H a Hilbert space, and Y N H dense in both Y and H. Let X = [Y, Hly.
Supposel’ = L(Y N H) is a Banach disc which is R -bounded on 'Y and uniformly bounded
on H. Let s € (1,00) and suppose that m € V(A;T).

(i) If1/s>min{l/p,1—(0/2)}, then
I T ll e @, w; 30— 1 @,w; %) < Py, p,s,0 (W], I mlvsan TR

forallwe Ays.
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i) If

then

I Tl Lr ;) —LP ®;X) SY,p,50 IMllvsan ITI=.
The allowable exponents (p, s) above are shown in Figure 7.3.

Proof. To prove the result one can argue as in Theorem 7.5.12 with g = 1 and using The-
orem 7.5.1 instead of Proposition 7.5.5. O

Figure 7.3: Allowable exponents for Theorem 7.5.16: the weighted case (i) dark shaded, the unweighted case
(ii) light shaded.

1/s

1
0
1-3
1-0
0

1/

0 2] 1-2 1 p

2 2

In the next example we apply Theorem 7.5.16 to operator-valued multipliers on the
Schatten class operators .’ < L(¢?) for r € [1,00]. This is potentially useful for Schur
multipliers (see [HNVW16, Theorem 5.4.3] and [PS11, Theorem 4]). For r € (1,00) these
spaces have the UMD property, and for p, g € [1,00] one has .7!P9l6 = 7P, #4], (see
[HNVW16, Propositions 5.4.2 and D.3.1]).

Example 7.5.17. Let X = .7 with p,r € (1,00) and I € L(.¥") be absolutely convex
and R-bounded for all ¢ € (1,00). Let s € (1,00) and assume m € V(A;T). Then Ty, is
bounded on LP (R;.#") in each of the following cases:

. 1 11
(i) rel2,00) and >max{?— o

(i) re(1,2] and%>max{%—%,|%—i,|,%—%}.
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In particular, if p € [r A7/,r v r] then T, is bounded on LP(R;.") if r € (1,00) and

1 1 1
s>lr-7l

Proof. The result follows from Theorem 7.5.16(ii) by arguing as in Example 7.5.14. A
similar result can be derived on LP (R, w;.%”") by Theorem 7.5.16(i). O
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SUMMARY

In the study of partial differential equations from a functional analytic viewpoint, har-
monic analysis methods have been developed hand in hand with regularity theory for
such equations in the past decades. In contrast, harmonic analysis has not yet fully
made its entrance in the study of the stochastic counterparts of these partial differential
equations. In this dissertation we will develop new methods in vector-valued harmonic
analysis to treat stochastic partial differential equations from a functional analytic view-
point.

In Part I of this dissertation we will develop harmonic analysis methods to treat sin-
gular stochastic integral operators of the form

SKG(t)::f K(t,s)G(s) dWg(s), teR,,
0

where X and Y are Banach spaces, G is an adapted stochastic process taking values in
X, Wy is a cylindrical Brownian motion and K is a given operator-valued kernel K: R, x
R; — L£(X,Y) with a singularity in £ = s. The LP-boundedness of such operators plays
in important role in the analysis of SPDEs from a functional analytic viewpoint.

As a preparation, we prove a general sparse domination theorem in Chapter 3, in
which a vector-valued operator is controlled pointwise by a positive, local expression.
This local expression is called a sparse operator and is of the form

1 r/ 1/r
(Zlia Jurconal 1) pertimtx
€

for a sparse collection of cubes S in R? and py € [1,00). We use the structure of the
operator to allow for r € [1,00), rather than the more thoroughly studied case r = 1.
This sparse domination theorem is applicable to various operators from both harmonic
analysis and (S)PDE. Indeed, starting with applications in harmonic analysis, we prove
the A;-theorem for vector-valued Calder6n-Zygmund operators in a space of homoge-
neous type, from which we deduce an anisotropic, mixed-norm Mihlin multiplier the-
orem. Furthermore, we show quantitative weighted norm inequalities for Littlewood—
Paley operators and the Rademacher maximal operator.

In Chapter 4 we develop extrapolation theory for singular stochastic integral opera-
tors. In particular, we prove L”-extrapolation results under a Hérmander condition on
the kernel. Sparse domination and sharp weighted bounds using the sparse domina-
tion result from Chapter 3 are obtained under a Dini condition on the kernel, leading
to a stochastic version of the solution to the As-conjecture. We also discuss the closely
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related y-Fourier multiplier operators and develop an extrapolation theory for singular
stochastic-deterministic integral operators.

In Chapter 5 we apply the results of Chapter 4 to obtain p-independence and weighted
bounds for stochastic maximal LP-regularity both in the complex and real interpola-
tion scale. As a consequence, we obtain several new regularity results for the stochastic
heat equation and its time-dependent variants on R? and on smooth and angular do-
mains. We also treat stochastic Volterra equations and show the p-independence of the
R-boundedness of stochastic convolution operators.

In Part II of this dissertation, motivated by the use of the tensor extension of various
classical operators prevalent in harmonic analysis in the study of (S)PDEs, we will de-
velop two general sufficient conditions for a bounded operator T on L”(R%) to have a
bounded tensor extension T on L” (R%; X) when X is a Banach function space.

In Chapter 6 we prove implications (2) and (3) in the following diagram

Sparse domination for T ———= Weighted bounds for T
€y
M ) 3) M
Sparse domination for T = Weighted bounds for T

whereas implications (1) and (4) are well-known and unrelated to the operator T. Both
implication (3) and the combination of implications (2) and (4) represent a Banach func-
tion space-valued extension theorem. Implication (3) is based on a factorization princi-
ple, which resembles the factorization theory of Niki§in, Maurey and Rubio de Francia,
but is more flexible. Implication (2) is based on sparse domination for the lattice Hardy-
Littlewood maximal operator. Using these extension theorems, we provide quantita-
tive connections between Banach space properties like the (randomized) UMD property
and the Hardy-Littlewood property.

Using implication (3), we prove Banach function space-valued Littlewood-Paley—
Rubio de Francia-type estimates in Chapter 7. These Littlewood-Paley-Rubio de Francia-
type estimates enable us to prove various operator-valued Fourier multiplier theorems
on Banach function spaces, which are extensions of the Coifman-Rubio de Francia—
Semmes multiplier theorem. Our results involve a new boundedness condition on sets
of operators, which we call ¢” (£%)-boundedness and which implies R-boundedness in
many cases.



SAMENVATTING

Harmonische analyse methodes voor het bestuderen van partiéle differentiaalvergelij-
kingen vanuit een functionaalanalyse oogpunt zijn afgelopen decennia hand in hand
ontwikkeld met regulariteitstheorie voor zulke vergelijkingen. Harmonische analyse
heeft echter nog niet volledig haar intrede gemaakt in de analyse van de stochastische
varianten van deze partiéle differentiaalvergelijkingen. In deze dissertatie zullen we
nieuwe vectorwaardige harmonische analyse methodes ontwikkelen om stochastische
partiéle differentiaalvergelijkingen te bestuderen.

In Deel I van deze dissertatie zullen we harmonische analyse methodes ontwikkelen
om singuliere stochastische integraaloperatoren van de vorm

SKG(t):=f K(t,s)G(s) dWg(s), teR,,
0

te bestuderen. Hier zijn X en Y Banach ruimtes, G is een aangepast stochastisch pro-
ces met waardes in X, Wy is een cylindrische Brownse beweging en K is een gegeven
operatorwaardige kern K: Ry x Ry — L£(X,Y) met een singulariteit in t = s. De LP-
begrensdheid van zulke operatoren speelt een belangrijke rol in de analyse van SPDV’s
vanuit een functionaalanalyse oogpunt.

Als voorbereiding bewijzen we een algemene schaarse dominantie stelling in Hoofd-
stuk 3, waarin een vectorwaardige operator puntsgewijs wordt gedomineerd door een
positieve, lokale uitdrukking. Deze lokale uitdrukking heet een schaarse operator en is
van de vorm

Po Po 1/r d.
. > (g Lo a)) ™ 10)", renes

voor een schaarse verzameling kubussen S in R% en Po € [1,00). We gebruiken de struc-
tuur van de operator om r € [1,00) toe te staan, in plaats van het grondiger bestudeerde
geval r = 1. Deze schaarse dominantie stelling is van toepassing op verschillende ope-
ratoren uit zowel de harmonische analyse als uit (S)PDV. Om te beginnen met toepassin-
gen in de harmonische analyse bewijzen we de A;-stelling voor vectorwaardige Calder6n—
Zygmund-operatoren in een ruimte van homogeen type, waaruit we een anisotrope, ge-
mengde norm Mihlin mutliplicatorstelling afleiden. Verder laten we kwantitatieve ge-
wogen normongelijkheden zien voor Littlewood-Paley operatoren en de Rademacher
maximaaloperator.

In Hoofdstuk 4 ontwikkelen we extrapolatietheorie voor singuliere stochastische in-
tegraaloperatoren. We bewijzen LP-extrapolatieresultaten onder een Hérmander voor-
waarde op de kern. We verkrijgen schaarse dominantie en scherpe gewogen grenzen
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met behulp van het schaarse dominantie resultaat uit Hoofdstuk 3 onder een Dini voor-
waarde op de kern, wat leidt tot een stochastische versie van de oplossing van het A;-
vermoeden. We bespreken ook de verwante y-Fourier multiplicatoroperatoren en ont-
wikkelen een extrapolatietheorie voor singuliere stochastisch-deterministische integraal-
operatoren.

In Hoofdstuk 5 passen we de resultaten van Hoofdstuk 4 toe om p-onafthankelijkheid
en gewogen grenzen te verkrijgen voor stochastische maximale L”-regulariteit, zowel in
de complexe als in de reéle interpolatieschaal. Als gevolg hiervan verkrijgen we ver-
schillende nieuwe regulariteitsresultaten voor de stochastische warmtevergelijking en
tijdsafhankelijke varianten in R en in gladde en hoekige domeinen. We behandelen
ook stochastische Volterra vergelijkingen en tonen de p-onafhankelijkheid van de R-
begrensdheid van stochastische convolutieoperatoren aan.

In Deel 1I van deze dissertatie, gemotiveerd door het gebruik van de begrensdheid
van de tensor-extensie van verscheidene klassieke harmonische analyse operatoren in
de studie van (S)PDV’s, zullen we twee algemene voldoende voorwaarden ontwikke-
len voor een begrensde operator T op L”(R%) om een begrensde tensorextensie T op
L (R%; X) te hebben als X een Banachfunctieruimte is.

In Hoofdstuk 6 bewijzen we implicaties (2) en (3) in het volgende diagram

Schaarse dominantie voor T =——= Gewogen afschattingen voor T

»
2 3

4)
Schaarse dominantie voor T === Gewogen afschattingen voor T

In dit diagram zijn implicaties (1) en (4) alom bekend en hebben geen verband met de
operator T. Zowel implicatie (3) als de combinatie van de implicaties (2) en (4) vertegen-
woordigen een Banachfunctieruimte-waardige extensiestelling. Implicatie (3) is geba-
seerd op een factorisatieprincipe, dat lijkt op de factorisatietheorie van NikiSin, Maurey
en Rubio de Francia, maar dat flexibeler is. Implicatie (2) is gebaseerd op schaarse do-
minantie voor de rooster Hardy-Littlewood maximaaaloperator. Met behulp van deze
extensiestellingen bewijzen we kwantitatieve connecties tussen Banach ruimte eigen-
schappen zoals de (gerandomiseerde) UMD-eigenschap en de Hardy-Littlewood eigen-
schap.

Met behulp van implicatie (3) bewijzen we Banachfunctieruimte-waardige afschat-
tingen van Littlewood-Paley—Rubio de Francia-type in Hoofdstuk 7. Deze afschattin-
gen stellen ons in staat om verscheidene operatorwaardige Fourier multiplicatorstellin-
gen op Banach functieruimtes te bewijzen. Deze stellingen zijn uitbreidingen van de
Coifman-Rubio de Francia—-Semmes multiplicatorstelling. Onze resultaten gebruiken
een nieuwe voorwaarde voor de begrensdheid van verzamelingen operatoren, die we
27 (¢%)-begrensdheid noemen en die in veel gevallen R-begrensdheid impliceert.
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