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Summary 
 
Gas extraction has caused pressure differences along the field, triggering earthquakes, which are causing a lot of 

damage and social unrest in the Groningen area. Predicting the degree of these stress changes, and as a result, the 

potential onset and exact location of failure and seismicity, is very challenging. 

Therefore, developing good techniques that can monitor these changes is crucial for a better prediction and thus 

mitigation of failure and seismicity in the subsurface. Laboratory active acoustic-monitoring techniques are used 

to determine parameters that can forecast upcoming failure and seismicity. 

We show the use of coda wave decorrelation as a monitoring tool using sandstones analogues for the Groningen 

reservoir. Failure of the rock sample is preceded by the formation of micro-fractures. These fractures change the 
scattering properties of acoustic waves. The decorrelation coefficient K, as the indicator of the amount of 

scattering and thus be used as precursor to failure. We show that by monitoring K we can forecast the upcoming 

failure of the rock samples in the laboratory. 
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Introduction 

The first seismicity associated with the gas extraction in Groningen (the Netherlands) was recorded in 

1991 (TNO, 2020; Thienen-Visser and Breunise, 2015). Since this first event, the number of seismic 

events has increased over time with frequency and magnitude (Thienen-Visser and Breunise, 2015). 

Gas extraction has caused pressure differences along the field, causing reservoir compaction thereby 

triggering the seismicity. These induced seismic events are causing a lot of damage and social unrest in 

the Groningen area. Predicting the degree of these stress changes, and as a result, the potential onset 

and exact location of failure and seismicity, is very challenging. 

 

Therefore, developing good techniques that can monitor these changes is crucial for a better prediction 

and thus mitigation of failure and seismicity in the subsurface. We use laboratory active acoustic-

monitoring techniques to determine parameters that can forecast upcoming failure and seismicity. 

 

To analyse physical properties of a medium, remotely and non- destructively, non-destructive testing 

(NDT) methods can be used (Hall, 2009). Geophysical methods can be used for monitoring seismic 

velocities, which provide insight in mechanical (rigidity, density, etc.) evolution (Schubnel et al., 2006). 
However, the sensitivity of seismic wave velocity to stress changes in rocks is low (Grêt et al., 2006; 

Nur, 1971; Grêt and Snieder, 2006; Barnhoorn et al., 2018) and detection of temporal variations is 

therefore difficult (Niu et al., 2003; Grêt et al., 2006). By analysing the direct arrivals, dispersion 

envelope, attenuation or the coda wave, stress changes in subsurface can also be monitored (Hall, 2009; 

Schubnel et al., 2006; Xie et al., 2018; Snieder, 2006; Grêt et al., 2006; Snieder, 2002; Grêt and Snieder, 

2006; Barnhoorn et al., 2018). 

 

The coda wave scatters throughout the rock multiple times and therefor samples a disturbed region more 

than a direct wave (Snieder, 2006;  Grêt et al., 2006). Small rock structure changes may be undetectable 

in the signals of direct waves but are amplified by the repeated sampling and detected by the coda of 

the wave (Grêt et al., 2006; Snieder, 2006; Grêt and Snieder, 2006).  Coda waves are used in many 

applications, such as monitoring of fault zones (Poupinet et al., 1984), volcano's (Snieder et al., 2006; 

Grêt et al., 2005), the integrity of concrete (Deroo et al., 2010; Niederleithinger et al., 2018), monitoring 

of temporal changes in the subsurface  and in-situ stress (Grêt et al., 2006; Poupinet et al., 1984), but 

also monitor velocity changes in laboratory settings (Hadziioannou et al., 2009; Zotz-Wilson et al., 

2019) and for localization of these changes (Snieder and Vrijlandt, 2005;  Rossetto et al., 2011; Planès 

et al. 2014; Planès et al., 2015).   

 

Zotz-Wilson et al (2019) has shown that coda wave decorrelation, using a rolling reference, can be used 

to monitor changes in the rock matrix for unconfined compression tested samples. In this study we 

extend this theory for confined experiments under pressure where we use 𝜎1 > 𝜎2 = 𝜎3. We will show 

the use of coda wave decorrelation as a monitoring tool using sandstones analogues for the Groningen 

reservoir. 

 

Theory 

The method of coda wave decorrelation introduced by Larose et al. (2010) is based on the theory of 

Snieder (2006). The decorrelation coefficient, also described in Zotz-Wilson et al. (2019),  is formulated 

as 

𝐾(𝑡𝑠) = 1 − 𝐶𝐶(𝑡𝑠) = 1 −
∫ 𝑢𝑝𝑗−𝑁(𝑡)𝑢𝑝𝑗(𝑡 + 𝑡𝑠)𝑑𝑡
𝑡𝑘+𝑡𝑤
𝑡𝑘−𝑡𝑤

√∫ 𝑢𝑝𝑗−𝑁
2 (𝑡)

𝑡𝑘+𝑡𝑤
𝑡𝑘−𝑡𝑤

𝑑𝑡 ∫ 𝑢𝑝𝑗
2 (𝑡)

𝑡𝑘+𝑡𝑤
𝑡𝑘−𝑡𝑤

𝑑𝑡

, 

 

where N is the number of measurements the reference wavefield 𝑢𝑝𝑗−𝑁(𝑡) is lagging behind the to be 

correlated wavefield 𝑢𝑝𝑗(𝑡).  

The decorrelation coefficient K is related to the changes in material scattering due to the addition of 

scatter(ers) (Planès et al. 2014; Planès et al., 2015). 
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The coda waves seem random due to the complex paths they take through the medium, but the changes 

they are subjected to are strongly related to the position and strength of the changes in the medium 

(Planès et al. 2014).  

The scattering in a medium along the transport mean free path 𝑙  can be described using the cross-

sectional area of a single scatterers 𝜎 and the density of scatterers 𝜌 (Planès et al. 2014). The total 

scattering coefficient as described by Aki and Chouet (1975) is given by 

 

𝑔0 = 𝜌𝜎 = 𝑙−1. 
Following the theory in Aki and Chouet (1975), we can rewrite the coda decorrelation in terms of the 

scattering coefficient (𝑔0) between a perturbed (𝑝) and unperturbed (𝑢) medium (Zotz-Wilson et 

al., 2020). 

𝐾(𝑡) =
𝑣0
2
𝑡 |𝛥𝑔0𝑝−𝑢|, 

 

where 𝐾(𝑡) is the theoretical decorrelation coefficient, 𝑡 the time in the coda and 𝑣0 the velocity in 

the medium. Using a rolling reference, the changes in the absolute value of |𝑔0| are monitored as a 

rate of change (Zotz-Wilson et al., 2020).  

 

Method 

A total of 8 uni-axially deformation experiments are performed at 

different confined pressures from 25 to 400 bar. Simultaneously to 

the loading of the rock, acoustic transmission measurements are 

done. This combined setup enables us to measure the wave 

properties under changing stress conditions. The tests are 

performed on Red Felser cores from Germany, which is an 

analogue to Groningen reservoir rock. The eight rock samples have 

a porosity between 22% and 25% and a fairly homogeneous 

composition. The core samples are cylindrical with a diameter of 

30 ± 0.5 mm and 60 ± 2 mm length, such that the length/diameter 

ratio is 1:2.  

 

The experiments are performed with samples saturated with tap-

water at room temperature. First, the samples are brought up to the 

confining pressure in steps of 10 bar/0.1 MPa, such that the axial 

stress always higher. The confining pressure is then set constant for 

the entire experiment. The samples are deformed at a constant strain 

rate of 0.005 s-1 and the shortening of the sample is recorded with 

two linear variable displacement transducers (LVDT's). 

 

The acoustic measurements are performed using two S-wave 

transducers, simultaneously to the deformation. The two axial 

transducers are integrated in the pistons in the loading system with 

a source at the top and receiver at the bottom. The transducers have 

a peak operating frequency of 1 MHz. The polarization of the shear source and receiver transducers was 

always aligned. The acoustic monitoring started immediately after starting the deformation. The 

acoustic signals are recorded every 10 seconds for 100 𝜇s and are a stack of 256 (S-) waves increase 

the signal-to-noise ratio. 

 

Example 

Following Zotz-Wilson et al. (2019), a rolling reference is used to monitor the changing decorrelation 

coefficient K. Changes in K correspond to the changes in the absolute value of scattering coefficient 

Figure 1: Scheme illustrating the 

experimental setup. Note: Not to 
scale. 
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|𝒈𝟎|  as a rate of change. An increase in scattering density or scattering area by micro-fracture 

formation and/or fracture growth results in an increase in K. Opposite, a reduction in pore space, and/or 

compaction results in reduction of the scattering density or scattering area.  

 

The first reference trace for the decorrelation is taken at 19% of the maximum stress, such that the 

experiments at different confining pressures have a similar starting point. The K decreases at the start 

of the experiment, indicating a reduction in scatterers. This reduction can be caused by elastic 

compaction of the rock and further closing of existing pore space. The majority of the pre-existing 

weaknesses is expected to be closed in the first 19MPa. The decrease is followed by an increase of K. 

This increase correspond to the start of micro-fracture formation. Micro-fractures increase the total 

scattering surface within the rock sample. Close to the failure point (the maximum stress), K reaches a 

top and decreases a bit, to spike at the moment the rock sample collapses. Thus for monitoring and 

forecasting purposes we can say failure is coming when the decorrelation coefficient increases. The 

moment at which this first increase in decorrelation coefficient is noticed varies for every confining 

pressure (~70% and 80% of peak stress), but is early enough as a potential tool for failure monitoring 

and forecasting.  

 

Conclusions 

In this study, we show that coda wave decorrelation, with a rolling reference, can be used to monitor 
the changing rock properties. Failure of the rock sample is preceded by the formation of micro-fractures. 

Detecting these fractures is therefore crucial to forecast failure. The coda is sensitive to small changes 

in the rock and is thus the ideal method for monitoring micro-fracture formation. During deformation 

of the rocks, the scattering properties of the wave change. The decorrelation coefficient K, as the 

indicator of the amount of scattering, is a good forecasting parameter. By monitoring the development 

of the K, predictions can be made about the current and future stress state of the sample. An increase of 

K is a clear indication of (micro-)fracture formation and that failure is imminent.  

 

The experiments in this study are performed with the focus on the induced earthquakes in Groningen. 

These results show that monitoring in the laboratory are feasible and it is expected the use of coda wave 

decorrelation can be used for field-scale monitoring of the changing condition in Groningen. The 

conclusions of the laboratory experiments can be used in the remainder of the production in Groningen, 

but also other areas experiencing induced seismicity, such as areas with geothermal plants or (shale-) 

gas fracking. The advantage of the coda for monitoring is it ability of detecting small changes before 

Figure 2: Figure showing the stress strain curve of the experiments at 100, 200 and 400 bar confining 

pressure. Accompanied are the decorrelation coefficients during the experiments.  
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any passive system record seismicity. It can be deployed at any time in the development of a field, due 

to the nature of measuring the rate change in scattering with a rolling reference.  
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