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Abstract

An increasing volume of data is being collected for
research purposes, often containing sensitive infor-
mation. Leaving out unique identifiers is insuffi-
cient to ensure anonymity. One approach to mit-
igating this risk is to modify the graph structure
by adding or deleting edges. Existing heuristic ap-
proaches offer speed but limited optimality, while
exact methods can achieve better anonymization
quality but are computationally expensive. This
creates a need for strategies that balance solu-
tion quality and efficiency. We propose a method
based on simulated annealing that removes edges
from the original network structure to achieve
anonymization under two formal privacy models:
(n, m)-flavoured k-anonymity, which considers a
node’s degree and number of incident triangles, and
d-k-anonymity, which is based on the structure up
to depth d of a node. Our method aims to bal-
ance running time and solution quality while ad-
hering to an edge deletion budget. Experimental re-
sults on several real-world social network datasets
show that Simulated Annealing can outperform tra-
ditional methods in terms of anonymity quality,
particularly when higher modification budgets are
allowed. The running time is comparable to that of
the baseline methods for smaller and medium-sized
graphs, but higher for larger graphs.

1 Introduction

Maintaining user privacy has become more difficult as digital
social networks keep growing in size. A particularly pressing
concern is structural privacy [Romanini er al., 20211, where
individuals may be re-identified based on structural features
such as the number of connections of a node in a graph [Zhou
and Pei, 2008], or the local structure of a node [Cheng et
al., 2010]. An attacker with partial knowledge of the net-
work graph could re-identify individuals by matching struc-
tural patterns, even after removing unique identifiers.

In order to solve this, network anonymization techniques
alter the graph, usually by adding or removing edges, making
individuals indistinguishable from one another according to
formal anonymity models. A central principle in these tech-
niques is k-anonymity [Wu et al., 2010], which requires that
each node is indistinguishable from at least k—1 others under
some structural measure. Depending on the assumed attacker
scenario, different types of measures are used: (n,m) — k-
anonymity assumes an attacker knows the degree and num-
ber of incident triangles of a node, while d-k-anonymity as-
sumes access to the full structure of a node’s d-hop neighbor-
hood [Xie, 2023]. These models capture different levels of
attackers’ knowledge.

There are mainly two kinds of anonymization techniques
currently in use. Although heuristic-based techniques, like
those developed by Xie [Xie, 20231, offer quick and scalable
anonymization, they cannot guarantee optimality or consis-
tency in maintaining graph properties [Campan et al., 2015].

On the other hand, exact techniques that use Mixed Integer
Programming (MIP) may give optimal results, but they are
often too slow for networks in the real world. De Jong et
al. [de Jong et al., 2023] take a different approach, by provid-
ing evaluation tools instead of anonymization techniques by
creating algorithms to compute anonymity efficiently without
changing the network. This creates a gap: a method that finds
a balance between high anonymization quality, computational
efficiency, and minimal graph distortion.

In this work, we demonstrate how Simulated Annealing
(SA) [Kirkpatrick et al., 1983], a probabilistic metaheuris-
tic inspired by thermodynamics, can fill that gap. SA has
been successfully applied to other NP-hard graph problems,
including k-anonymity [Winkler, 2002], and is known for its
ability to escape local optima and find high-quality solutions.
This makes it a promising candidate for network anonymiza-
tion, under constraints on graph alteration. Moreover, Simu-
lated Annealing provides flexibility, and could accommodate
variations of the anonymization techniques by adjusting the
features or weights of the features included in the cost func-
tion.

Specifically, we apply SA to remove edges from the graph,
aiming to improve anonymity while minimizing information
loss. These edge deletions are constrained by a fixed budget
and guided by changes in the anonymity score at each step.

The rest of this paper is organized as follows. Section 2 de-
fines the most important terms and notations used in this pa-
per. Section 3 presents the approach: the implementation of
the Simulated Annealing method and the baseline anonymity
methods. The experimental setup, research questions, evalua-
tion metrics, and results are described in Section 4. The paper
is concluded in Section 5, which also provides guidance for
future research.

2 Preliminaries

This section introduces the main concepts and notation used
in the paper, which form the basis for understanding the
anonymization process. It then presents a toy example to il-
lustrate the ideas in context.

2.1 Definitions and Notation

This subsection introduces the terminology and notation used
throughout the paper.

Let G = (V,E) be an undirected, unweighted graph,
where V' denotes the set of nodes (individuals) and £ C
V' x V denotes the set of edges (relationships). For a node
v € V, we let deg(v) denote its degree. The distance be-
tween two nodes u,v € V, denoted dist(u, v), is the length
of the shortest path between them in G. We define T'(v) as
the number of incident triangles of node v , i.e., the number
of distinct 3-cycles that include v.

Definition 2.1 (d—neighborhood). Let N,(v) denote the set
of nodes within distance d from v, including v itself. This is
called the d—neighborhood of node v.

Definition 2.2 (Transitivity and Average Clustering Coeffi-
cient (ACC) [Xie, 2023]). Transitivity and ACC measure the
tendency of nodes to form triangles in a graph.



The transitivity of a graph G is defined as:

rans — 3- |{{u7vaw} | {uav}a{vvw}v{uvw} € E}|
Trans(G) = W} €V [ {u, o) (v, w) € B)] N

It measures the fraction of potential triangles that actually
exist.
The average clustering coefficient is defined as:

ACC(G) = ﬁ > CC(v) 2)

veV

where CC(v) is the local clustering coefficient of node v,
given by:

=2 |[{u,w} € E | {u,v}, {v,w} € E}|
o) = deg(v) - (deg(v) — 1)

for deg(v) > 1, and CC(v) = 0 otherwise.

Definition 2.3 (Structural Signature). To assess anonymity,
we assign each node a signature o ;(v) describing its local
structural features under model M. Two nodes u,v € V are
considered equivalent if o (u) = oar(v); we denote this
u ~p; v. The equivalence class [de Jong et al., 2024] of a
node v is denoted

ECy(v)={ueV |opu(u) =op(v)} 3)

Each structural signature o (v) corresponds to a particu-
lar attack model, where M € {(n,m),d-k}. The choice of
model reflects assumptions about the adversary’s background
knowledge.

We consider two types of signatures:

Definition 2.4 ((n, m)-Signature).
(n,m)(v) = (deg(v), T(v)), ©)

where T'(v) is the triangle count of node v. Two nodes u,v
are equivalent under this model if 0(;, 1) (1) = O(p,m)(V),
denoted u ~(y, ) .

Definition 2.5 (d-k Signature).
oqk(v) = [G[Na(v)]], ®)

where [G[Ny4(v)]] denotes the isomorphism class of the d-
neighborhood subgraph. Two nodes u,v are equivalent,
denoted u ~q v, if there exists an isomorphism ¢
G[N4(u)] = G[Ng(v)] with ¢(u) = v.

Definition 2.6 (Uniqueness and k-Anonymity [de Jong et al.,
2024]). A node v € V is unique if |[ECy(v)] = 1. Con-

versely, it is k-anonymous if |ECps(v)| > k. The graph
uniqueness score is defined as:
V| |EC k
Uy L EVIECuwI<Bl o

Vi

We denote the original edge set by Ey, and use G; =
(V, E) to represent the graph at iteration ¢ of the anonymiza-
tion process. The best graph encountered so far is G* =
(V, E*), and the final anonymized graph is denoted G’.

2.2 Anonymity Method and Structural Measures

We adopt the k-anonymity framework for structural
anonymization in networks. A node v € V is considered
k-anonymous if it belongs to an equivalence class EC s (v)
of size at least k, i.e., it is structurally indistinguishable from
at least & — 1 other nodes under model M.

Definition 2.7 ((n,m)-flavoured k-anonymity [Latour,
2024]). A graph satisfies (n, m)-flavoured k-anonymity if all
nodes have at least k — 1 others with the same degree and
number of incident triangles. That is, for each v € V, there
exist at least k — 1 nodes uw € V' \ {v} such that u ~;, ) v.

In this paper, we use k& = 2 as default, and for ease, we
refer to (n, m)-k-anonymity as (n, m)-anonymity.
Definition 2.8 (d-k-anonymity [de Jong er al., 2023]). A
graph satisfies d-k-anonymity if every node has at least k — 1
others with structurally isomorphic d-neighborhoods. For
all v € V, there exist uy,...,ux—1 € V \ {v} such that
u; ~q.x v. Here, d represents the adversary’s knowledge. In
this paper, we assume d = 1.

Definition 2.9 (Edge Deletion Budget). To achieve k-
anonymity, we modify the graph by deleting edges. The num-
ber of deletions is constrained by a predefined edge dele-
tion budget, expressed as a percentage of total edges in
G = (V, Eo)

Definition 2.10 (Anonymization Problem Setting). An

anonymization problem instance is defined by a tuple T =
(Go,m, B), where:

* Go = (V,Ey) is the original graph extracted from a
dataset.

* M is a structural measure, where M € {(n,m), d-k}.

e Let B € N be the edge deletion budget, with B €
[0, 100].
The goal is to construct an anonymized graph G' = (V, E'),
such that:
By \ E'| < B |Eg|/100
and the number of non-k-anonymous nodes is minimized:

min U]\/[(G/) |EQ \ El| S B- |E0|/100

subject to
E'CE,

2.3 Toy Example

Consider a small social network with 4 nodes (Figure 1).
Node A has degree 1 and participates in O triangles. Even
after pseudonymization, such a signature makes A easily re-
identifiable. An anonymization process might reduce deg(D)
or triangle count by deleting edges, making A less unique.
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Figure 1: A toy graph before and after anonymization under (n, m)-
k-anonymity. Node A becomes less unique after deleting one edge,
reducing the degree and number of incident triangles of node D.



3 Approach

In this section, we describe our approach of anonymizing
the graph in detail, which includes the simulated annealing
method. Moreover, we will briefly explain the 3 baseline
methods that are used to compare the SA algorithm against.

3.1 Baseline methods

In this subsection, we describe three of the five methods pre-
sented in the work of Xie [Xie, 2023], which we use as base-
lines for comparison with our Simulated Annealing approach.
We focus on the three methods that demonstrated the best per-
formance in terms of solution quality in the original study.
The remaining two methods—Degree Deletion and Random
Edge Deletion—did not yield comparably strong results in
prior work, so we omit them from our evaluation.

3.1.1 UA-Based Deletion

The UA-based method assigns weights to edges based on the
number of affected nodes that would become anonymous af-
ter their removal. It intuitively prioritizes edges whose dele-
tion would affect as few already anonymous nodes as possible
while also reducing the number of unique nodes (i.e., nodes
with |[ECp;(v)| = 1) while avoiding affecting already anony-
mous nodes (|ECys(v)| > k). For an edge {u, v}, the set of
affected nodes includes the endpoints u, v, and any nodes that
share triangles with the edge.

3.1.2 Logistic Regression-Based Deletion

Edge prioritization for network anonymization can be formu-
lated as a binary classification problem to decide whether re-
moving an edge will decrease node uniqueness. Features like
node degrees, the quantity of incident triangles, and unique-
ness labels are used to train a logistic regression model on
preprocessed graph data. After training, each edge is given
a probability, indicating how advantageous it would be to re-
move it in order to anonymize the network. Edges with the
highest predicted scores are deleted as long as there is avail-
able budget left, with the aim of obtaining the smallest final
uniqueness.

3.1.3 (n,m)-Greedy Deletion
Deleting an edge {u, w} affects the signatures of:

* nodes u and w (as their degree changes),

* and nodes forming triangles with {u, w} (as their local
triangle count changes).

The algorithm evaluates each edge by computing how many
unique nodes it would make anonymous (or vice versa), with-
out actually deleting it. The edge with the greatest positive
effect is then deleted, and the process repeats until the budget
is exhausted.

3.2 Simulated Annealing for Graph
Anonymization

Simulated Annealing (SA) is a probabilistic optimization
method inspired by the physical process of annealing in
metallurgy, where controlled cooling reduces structural de-
fects [Kirkpatrick et al., 1983]. The SA algorithm explores
the solution space by allowing probabilistic transitions to

worse states at high “temperatures”, enabling escape from lo-
cal optima. As the temperature decreases, the algorithm grad-
ually favors moves that improve the objective, balancing ex-
ploration and exploitation. We apply SA to the problem of
minimizing network uniqueness under an edge-deletion bud-
get and a chosen anonymity measure. We are using an iter-
ative improvement method inspired by the Metropolis algo-
rithm.

3.3 Applicability to Uniqueness Reduction

In the (n, m)-anonymity measure, each node is assigned a
signature based on its neighborhood size (n) and number of
incident triangles (mm). Removing an edge (u, v) may change
the equivalence class of nodes u, v, and any node involved in
a triangle containing that edge, and make them unique.

We conducted preliminary experiments to study the impact
of deleting one edge on uniqueness. Our aim was to check
whether removing a single edge can anonymize a large num-
ber of nodes. The results showed that removing a single edge
rarely produces a large reduction in uniqueness. This moti-
vates the use of Simulated Annealing, which is required only
to be applied to problems with small jumps in the cost func-
tion between iterations [Davidson and Harel, 1996].

3.4 Algorithm Description

This subsection outlines the Simulated Annealing procedure
we use to reduce network uniqueness. Algorithm 1 provides
the corresponding pseudocode. We describe the algorithm’s
structure and the function of its main parameters.

Initialization and Temperature Setting. Algorithm 1
starts from an initial graph G (Line 1) and proceeds with
a predefined initial temperature 7j (Line 2), which serves to
control the acceptance of uphill moves during the early phase
of the optimization.

Candidate Generation. At each iteration (Lines 4-13), a
candidate graph G’ is created by flipping a randomly chosen
edge (u,v) € Ey (Lines 5-6), either deleting or adding it
back to the set of edges, depending on its current state. Bud-
get constraints are checked during implementation.

Evaluation of the Objective Function. The cost func-
tion Uy, (G) measures the fraction of nodes that fail the k-
anonymity condition under the signature model M. This is
evaluated after generating the candidate graph G’ to compute
the change in cost Au = Uy (G’) — Up(G) (Line 7). Re-
computing the equivalence classes and the uniqueness is com-
putationally expensive. Thus, we use an incremental evalua-
tion strategy for the (n, m)-anonymity measure. Specifically,
we keep track of each node’s equivalence class and at every
deletion, recompute classes only for affected nodes.

The affected nodes include:

 the endpoints u and v, whose degrees decrease and
whose triangle counts are updated;

* and any common neighbors w such that {u, w} € F and
{v,w} € E, since the number of their incident triangles
decreases by one.

For each affected node x, we incrementally update its (n, m)-
signature by adjusting the degree and triangle count accord-
ingly. The pseudocode for the incremental update can be



found in Appendix A.1. This update mechanism avoids full

recomputation of all signatures and equivalence classes.
Acceptance Criterion. Candidates that reduce the cost are

always accepted (Line 12). Otherwise, acceptance is proba-

A}‘f;") , where 1) is zero-mean Gaus-

sian noise (Lines 10-13). This strategy follows Franzke and
Kosko [Franzke and Kosko, 2019] to escape local optima.

State Update and Temperature Cooling. When a can-
didate is accepted, the graph and best-seen uniqueness are
updated (Lines 12 and 14). The temperature decreases ac-
cording to a geometric schedule (Line 16) with a cooling rate
« and an iteration counter .

Termination Condition. Algorithm 1 terminates after a
fixed number of iterations or when no improvement has been
observed within a predefined patience threshold (Lines 3 and
17). This avoids unnecessary computation once the unique-
ness has finished its convergence, reducing the running time.

bilistic, based on exp (—

Algorithm 1 Simulated Annealing for Network Anonymiza-
tion
1: Initialize G < Gg, u* < Uy, (Go)
2: Initialize Ty
3: Set iteration limit I, cooling rate «, and patience
threshold
fort =1to I do
Sample edge (u,v) uniformly at random
Generate candidate graph G’ by flipping (u, v)
Compute Au = Uy (G') — Uy (G)
> For Uy, ,,,)G’: use incremental update as described in
Subsection 3.4.
9: > For U(4.4,)G": recompute uniqueness on full graph
10:  Sample n ~ N(0,02?)
11: if Au < 0 then

A A

12: Accept: G + G, u* + min(u*, Uy (G))
13:  else if random() < exp (—%) then

14: Accept: G + G’

15: end if

16: Update temperature: T' < Tj - ot

17: if no improvement in last pat ience steps then
18: break

19: end if

20: end for

21: return G* with minimal «* found

4 Experiments

This section describes the experiments and finding of this pa-
per. Subsection 4.1 describes the empirical datasets used,
including structural statistics and uniqueness scores. Sub-
section 4.2 provides details of the experimental setup of the
Simulated Annealing method. Subsection 4.3 present the
main research question and three subquestions that concern
anonymization quality, running time and problem setting per-
formance conditions. Finally, in Subsection 4.4 we present
our experimental results with comparisons of the methods,
figures, and key insights.

4.1 Datasets

In this study, we use datasets that represent empirical social
networks. We gather networks of various sizes, sparsities, and
initial uniqueness. For example, the CollegeMsg dataset
contains fewer nodes than the ca—GrQc dataset but contains
approximately the same number of edges, which makes it
denser. Likewise, the ego Facebook network has fewer
nodes than ca-GrQc but contains over 5 times more edges,
which makes it much denser. Table 1 shows an overview of
each dataset. Short descriptions of each dataset are provided

Dataset V] |[E|  ACC T Upm Uak
Copnet SMS 568 697 0.139 0.154 0.026 0.044
fb-pages-food 620 2102 0.330 0.222 0.191 0.404
Copnet FB 800 6.429 0.315 0.244 0472 0.817
CollegeMsg 1.899 13.838 0.109 0.057 0.239 0.401
ca-GrQc 5.242 14496 0.530 0.630 0.055 0.135
hamsterster 2.426 16.630 0.537 0.231 0.248 0.399
ego Facebook 4.039 88.234 0.606 0.519 0.587 0.812

Table 1: Statistics of datasets used in the experiments. T is short for
transitivity. Transitivity and ACC measure the tendency of nodes to
form triangles in a graph.

below:

Copnet SMS [Sapiezynski et al., 2019]: Consists of SMS
interaction metadata between university students for a period
of several weeks. Students are represented as nodes, and
edges indicate the exchange of text messages.

Copnet FB [Sapiezynski et al., 2019]: Derived from data
representing Facebook friendship among the same group of
students as Copnet SMS. Nodes represent users and edges
represent Facebook friendships.

CollegeMsg [Leskovec and Krevl, 2014]: Based on mes-
sage exchanges from an online campus social platform.
Nodes are users, and an edge exists if at least one message
was sent between two users, forming a sparse communica-
tion network.

ca-GrQc [Leskovec and Krevl, 2014]: A co-authorship
network from the General Relativity and Quantum Cosmol-
ogy category on arXiv. Nodes are authors, and an edge be-
tween two users represent a relation of co-authorship.

ego Facebook [Leskovec and Krevl, 2014]: An aggre-
gated network of ego-centric Facebook data. Nodes are users,
and edges correspond to Facebook friendships, resulting in a
dense social graph.

fb-pages-food [Rossi and Ahmed, 2015a]: A network of
Facebook pages related to food. Nodes are pages, and edges
represent mutual likes, illustrating thematic connections be-
tween interest-based communities.

hamsterster [Rossi and Ahmed, 2015b]: Extracted from
the Hamsterster online community. Nodes represent users,
and edges represent reciprocal friendships, providing an ex-
ample of user interactions on a niche platform.

4.2 Experimental Setup

Solving Methods: We evaluate our Simulated Annealing
(SA) anonymization method against three baseline meth-
ods from Xie [Xie, 2023]—UA-Based Deletion, Logis-



tic Regression-Based Deletion, and (n, m)-Greedy Deletion
(Section 3.1). All four methods are tested on seven real-world
datasets and evaluated using final uniqueness scores under
both (n, m)-anonymity and d-k-anonymity.

We conduct experiments at four budget levels: 1%, 3%,
5%, and 10% (see Definition 2.9). For Copnet SMS,
fb-pages—-food, and Copnet FB, results for UA and
SA are averaged over 10 runs to account for randomness; the
remaining datasets are evaluated once due to computational
constraints.

Uniqueness values are reported with three decimal digits
to reflect fine-grained differences (e.g., 0.001), and running
times with two digits, as greater precision adds little value.
Due to the high cost of computing d-k-anonymity, it is evalu-
ated only on the three smaller datasets. These results should
be interpreted as exploratory.

Experimental parameters: We tune the parameters for
Simulated Annealing empirically. We test the effect of three
parameters of SA on the uniqueness reduction for different
graphs: initial temperature 7, number of iterations, and cool-
ing rate . Based on a comparison of the effect of dif-
ferent temperatures for different types of networks, we se-
lect 70 = 0.1. For the cooling rate, we choose the value
a = 0.6 for small networks, « = 0.75 for medium net-
works and o = 0.995 for large networks, in line with prior
work [Davidson and Harel, 1996]. The number of itera-
tions is set to B - |E| - 3, where B is the edge deletion bud-
get, and the algorithm terminates early if no improvement is
seen over patienceRatio - iterations steps. We use
patienceRatio = min(8000,0.3 - iterations) unless
stated otherwise. More parameter comparisons and figures
are included in Appendix A.2, Figures 5-9.

Software: We implement all methods in Python 3.12.3.
For graph processing, we use NetworkX to load and initial-
ize graphs, and then convert them to igraph for efficient graph
operations. We use the baseline methods from Xie [Xie,
2023] without modification, running them from the original
repository and Jupyter Notebook provided by the author. We
integrate our Simulated Annealing (SA) implementation into
the same notebook environment to allow direct comparison
under identical setup and evaluation conditions. For d-k-
anonymity, we incorporate the implementation by Rachel de
Jong [de Jong, 2025]. The source code for our Simulated An-
nealing implementation is publicly available.'

We also use NumPy, pandas, and scikit-learn (for the
logistic regression baseline) and rely on the subprocess
library to interface with a C# tool for d-k-anonymity.

Hardware: We conducted all experiments using the (n.m)
measure on the DelftBlue supercomputer cluster. For each
experiment, we allocate one CPU core and 2 GB of RAM
per task, and run seven tasks in parallel. For the d-k measure,
we run all experiments locally on a machine with an Intel
Core i7-1165G7 processor (4 cores, 8 threads, 2.80 GHz)
and 16 GB of RAM, running a 64-bit Linux system under
Microsoft Hyper-V virtualization.

'GitHub repository:
Network-Anonymization

arsenedenisa/Simulated-Annealing-for-

4.3 Research Questions
The main research question of this thesis is as follows:

RQ. How does a Simulated Annealing-based
anonymization approach compare to the existing
heuristic methods (as described in Section 3) in
terms of running time and anonymization qual-
ity when achieving d-k-anonymity and (n,m)-
anonymity in social network graphs?

These are the main subquestions we explore in this research
paper, along with their evaluation criteria:

1. Anonymization Quality: How does the anonymization
quality of Simulated Annealing compare to established
heuristic methods (e.g., (n,m)-Greedy, UA, Logistic
Regression) on standard network anonymization bench-
marks [Xie, 2023]?

Evaluation criterion: Lower or comparable final unique-
ness (Uas(G*)) under both d-k-anonymity and (n,m)-
anonymity, given the same edge deletion budget.

2. Running Time Efficiency: How does the running time

of Simulated Annealing compare to the aforementioned
heuristic methods across graphs of varying sizes and
densities?
Evaluation criterion: Comparable running time (e.g.,
within 2x-3x), particularly in cases where Simulated
Annealing yields a better anonymization quality than the
other three methods.

3. Problem Setting Performance Conditions: For which
problem setting (e.g., type of anonymity measure used,
number of edges in the graph, number of nodes in the
graph, initial uniqueness, graph density) does Simulated
Annealing obtain a better solution quality or running
time than the baseline methods from Subsection 3.1.

Evaluation criterion:  Identification of conditions
where the Simulated Annealing method yields a better
anonymization quality, running time, or both (compared
to the other three methods).

4.4 Experimental Results

In this subsection, we present our results and answer our re-
search questions. The results are obtained by running the
methods described in Subsection 3.4 on the datasets from
Subsection 4.1.

Q1: Anonymization Quality. Figure 2 illustrates that
in a setting of a small dataset (sms) with a small budget,
the Greedy method performs better due to its efficient local
choices. However, for larger budgets (e.g., 10%), SA lever-
ages its global cost optimization to achieve better anonymity.
SA also maintains better performance on bigger networks
such as ca-GrQc and hamsterster, where its thorough
search compensates for high structural complexity.

As shown in Figure 3, the performance gap between SA
and Greedy narrows as the budget increases in large networks.
This indicates that SA might prematurely converge after a
number of iterations, despite having remaining budget avail-
able for edge deletions, likely due to the acceptance probabil-
ity’s rapid decay. Although this is not explored in this paper,
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a Simulated Annealing with a Restart Strategy (SARS) could
potentially address this issue [Yu et al., 2021].

Figure 4 demonstrates that results of the anonymiza-
tion quality under the d-k-anonymity measure are mostly
consistent with those for (n,m)-anonymity.  For the
fb-pages—-food network, SA yields the best solution with
a medium budget but ranks second under a small budget. No-
tably, under d-k-anonymity, the best-performing competitor
to SA varies—being either Logistic Regression, Greedy, or
UA—depending on the scenario, as reflected in Table 2.

Finally, Tables 2 and 3 confirm that SA consistently
achieves better final uniqueness compared to Logistic Regres-
sion (LR) and UA. When compared to the Greedy method,
SA tends to perform worse at small budgets (e.g., 1%) but
surpasses it as the budget increases. For instance, in the
CollegeMsg dataset, SA achieves the lowest uniqueness
among all four methods at the 10% budget level.

Q2: Running Time Efficiency. Running time compar-
isons (Tables 2, 3, 4) show that SA has a significantly higher
running time than the Greedy and UA methods.

Moreover, experiments that use the d-k-anonymity mea-
sure are ~ 10 to 30 times slower than those that use (n, m)-
anonymity. The high running time of d — k is caused by re-
peated computations of uniqueness, which is slow for large
graphs.

The UA method is the fastest method for all problem set-
tings. However, UA also consistently gives the worst (high-
est) uniqueness of all four methods (except for one problem
setting). Tables 2 and 3 show that for medium-sized net-
works (CollegeMsg) and when using the n, m-anonymity



Dataset Method 1% 3%
Tn,m | U,m) Tar | Uas—k [ Tnom | Um,m) Tar | Ua—k
LR 0.34 0.012 0.48 0.028 0.197 0.008 0.37 0.008
Copnet SMS Greedy 0.14 0.008 0.16 0.024 0.085 0.007 0.12 0.021
UA 0.007 0.014 0.07 0.030 0.023 0.007 0.20 0.005
SA 0.04 0.020 2.12 0.035 0.223 0.006 20.56 0.010
LR 1.38 0.162 1.79 0.370 4.01 0.141 4.26 0.324
fb-pages-food Greedy 0.51 0.140 0.73 0.406 1.49 0.106 2.32 0.400
; UA 0.039 0.175 0.28 0.401 0.11 0.159 1.41 0.387
SA 0.75 0.153 32.30 0.372 2.69 0.099 163.29 0.293
LR 16.94 0.443 24.35 0.775 51.96 0.365 69.70 0.706
Copnet FB Greedy 5.61 0.273 5.54 0.818 17.55 0.201 26.70 0.806
UA 0.38 0.417 1.23 0.817 1.22 0.342 3.81 0.808
SA 7.03 0.353 71.38 0.777 32.06 0.202 696.03 0.695

Table 2: Uniqueness scores and running times (in seconds) of anonymization methods for budgets of 1% and , for small datasets, across
both (n, m) and d-k anonymity, for small datasets. Gray cells represent the settings for which SA gives the best final uniqueness.

Dataset Method 5% 10%
Tn,m, U(n,m) Tk Ua—k Tn,7n U(n,m) Ta-r Ud—k
LR 0.54 0.005 1.61 0.003 1.06 0.0 2.56 0.0
Copnet SMS Greedy 0.23 0.0 0.81 0.017 0.44 0.0 1.54 0.017
UA 0.03 0.003 0.95 0.005 0.47 0.003 0.69 0.001
SA 0.53 0.002 67.30 | 0.001 1.79 0.0 281.72 0.0
LR 6.42 0.119 12.89 0.296 13.02 0.095 20.77 0.211
fb-pages-food Greedy 2.45 0.083 4.68 0.396 5.03 0.071 8.40 0.353
UA 0.19 0.143 1.77 0.364 0.40 0.130 3.15 0.356
SA 6.50 0.067 445.04 | 0.262 17.65 0.040 1276.03 | 0.179
LR 85.60 0.325 175.45 0.675 165.21 0.272 218.95 0.566
Copnet FB Greedy 28.89 0.170 39.677 0.768 56.80 0.145 79.860 0.733
UA 2.04 0.299 8.131 0.788 3.96 0.261 13.177 0.753
SA 73.26 0.142 1502.84 | 0.648 | 661.06 0.095 5534.08 | 0.555

Table 3: Uniqueness scores and running times (in seconds) of anonymization methods for larger budgets of 5% and 10%, across both (n, m)
and d-k anonymity, for small datasets. Gray cells represent the settings for which SA gives the best final uniqueness.

Dataset Method 1% 3% 5% 10%
Tom | Um.m) Tnm | Um,m) Tn,om | Umm Tonm | Um,m)
LR 43.02 0.208 134.94 0.168 226.10 0.151 439.27 0.142
CollegeMsg Greedy 21.50 0.147 68.73 0.102 114.74 0.091 230.98 0.077
: UA 0.90 0.205 2.78 0.169 28.37 0.125 9.31 0.118
SA 30.51 0.171 99.35 0.096 166.49 0.075 306.13 0.052
LR 45.61 0.040 153.77 0.028 249.12 0.024 490.44 0.018
CA-GrQc Greedy 80.05 0.035 266.67 0.028 433.07 0.023 853.22 0.021
UA 0.85 0.042 2.76 0.044 4.67 0.041 8.98 0.033
SA 31.24 0.036 55.46 0.025 69.17 0.023 139.39 0.017
LR 67.53 0.221 210.70 0.183 365.67 0.163 690.29 0.135
hamsterster Greedy 40.15 0.180 129.14 0.139 223.23 0.111 431.46 0.100
o UA 1.267 0.231 3.89 0.198 6.75 0.182 12.86 0.152
SA 48.55 0.184 113.88 0.126 169.52 0.110 926.83 0.073
LR 1329.68 0.548 4026.02 0.512 6 758.49 0.486 12 320.98 0.420
ego Facebook Greedy 383.21 0.518 1277.18 0.447 2141.84 0.423 4031.05 0.358
UA 15.74 0.571 56.50 0.539 85.79 0.531 154.98 0.506
SA 1110.49 0.45 20655.17 0.332 14 536.00 0.331 17042 0.320

Table 4: Final uniqueness scores and running times for four anonymization methods across four larger datasets, evaluated under the (n, m)-
anonymity model. Results are reported for different edge deletion budgets (1%, 3%, 5%, and 10%).

measure, SA is usually faster than LR but 2-3 times slower
than the Greedy method. For bigger networks and when us-
ing (n, m)-anonymity (see Table 4), there are cases where SA
is faster than both Greedy and LR. For example, for budgets
of 1%, 3%, and 5% on the CA-GrQc dataset, which repre-
sents a sparser network, SA has the best running time (except
for UA) while still obtaining the best anonymization qual-
ity. Notably, the SA running time increases substantially with
dataset size and budget, as seen in facebook_combined
and fb_friends.

However, the quality-to-time tradeoff can still be justi-
fied in cases where the search space is larger (e.g., ego
Facebook). For a 1% budget, the running time of SA

is approximately 3 times higher than that of Greedy, which
achieves the second-best uniqueness. Despite this, SA re-
duces uniqueness by roughly a factor of 2 more than Greedy.

Although the running time of SA is not the best for datasets
like ego Facebook, its flexibility allows for adjusting the
number of iterations, potentially aligning the running time
with the other methods while still achieving the best solution
of all methods.

Q3: Performance Conditions. From the tables’ results
and the figures, we identify specific conditions where SA per-
forms the best either in terms of running time or quality of
solution:



* SA achieves the best running time for the (n,m) mea-
sure, as it uses an incremental evaluation strategy. In
contrast, the d-k£ measure uses a version of SA that recal-
culates the uniqueness at every iteration, which is more
costly in terms of running time. This is illustrated in
Table 2.

* SA performs particularly well (using (n, m)-anonymity)
in terms of balance between running time and solu-
tions of quality on sparser or mid-sized graphs (e.g.,
CA-GrQc, hamstersyer)

* For d-k anonymity, SA achieves the lowest uniqueness
on Copnet SMS for larger budgets (Table 3). On
denser networks like fb-pages—-food and Copnet
FB, it outperforms all other methods across all budgets
except for 1%.

e It outperforms other methods in terms of anonymiza-
tion quality when the initial uniqueness is high (e.g.,
Copnet FB, CA-GrQc) and when the edge deletion
budget is sufficient to enable global exploration.

* For (n,m)-anonymity, the performance gap in terms
of anonymization quality, between SA and Greedy in-
creases with the budget (5% and 10% for smaller net-
works and > 3% for larger networks), which shows that
after SA passes the exploration phase, it converges to a
better solution than the other methods.

In large, sparse networks (e.g., ego Facebook), SA may
not finish within a reasonable time for large budgets. How-
ever, even under these constraints, SA manages to outperform
others at smaller budgets.

5 Conclusion and Future Work

In this paper, we explored how Simulated Annealing (SA),
a probabilistic optimization technique, could be used to im-
prove the anonymization of social networks. The main goal
was to reduce the risk of re-identification in graphs by mak-
ing users less unique under formal anonymity measures like
(n, m)-anonymity and d-k-anonymity.

We compared our approach with three existing solving
methods and tested them on seven real-world networks. The
results showed that while SA takes longer to run, it often pro-
duces better anonymization, especially when there’s a higher
available edge deletion budget. In particular, SA achieves
the best anonymity in situations where the network is dense
or when there’s a high initial uniqueness. These conditions
all have in common that they would result in a larger search
space.

Overall, Simulated Annealing turned out to be a strong al-
ternative to traditional methods, especially when the focus is
on anonymization quality over running time. The incremental
evaluation strategy tailored for the (n, m) model also proved
to be a significant advantage in reducing the computational
burden.

For the future, it would be interesting to explore methods
that use a restart strategy,such as Simulated Annealing with
Restarts (SARS), to escape local optima. Another direction
would be adapting SA with other existing anonymity mea-
sures, beyond (n,m)-flavoured and d-k-anonymity. Lastly,

to investigate the trade-off between anonymity and structural
metrics such as transitivity and average clustering coefficient
(ACC), which measure the tendency of nodes to form trian-
gles, it would be interesting to try modeling the cost function
of Simulated Annealing to also include changes in ACC and
Transitivity.
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A Appendix
A.1 Incremental Uniqueness Update Pseudocode

Algorithm 2 Incremental Uniqueness Computation for
(n, m)-anonymity

Require: Graph G, previous equivalence class mapping
prev_classes (optional), affected nodes A (optional),
anonymity threshold &

Ensure: Updated uniqueness score u, set of unique nodes,

updated node-to-class and class-to-node mappings

if prev_classes is provided then
node_to_class ¢ copy of prev_classes

else
node_to_class < empty map

end if

if A = () then
A + all nodes in G

end if

9: for each node v € A do

10 Compute the (n, m) equivalence class of v

11: Update node_to_class[v]

12: end for

13: Initialize class_to_nodes as empty map

14: for each node v and its class c in node_to_class do

15: Add v to class_to_nodes|c]

16: end for

17: unique_nodes < {v | class_to_nodes[¢ <
k for ¢ = node_to_classv]}

i _nodes]|
18: u |unique._no
V(G)] i
return u, unigque_nodes,

class_to_nodes

PRI R

node_to_class,

A.2 Parameter tuning

A.2.1 Initial temperature 7T

We tested values in the set {0.01,0.1,1.0,10.0,100.0}. We
concluded that the value 0.1 yields the best results for all
types of networks. Figure 5 shows an example of running
SA on a small network with multiple initial temperature val-
ues. Appendix A.2 contains comparison of temperatures on
more networks.
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Figure 5: Results of SA run on Copnet SMS datasets with differ-
ent initial temperature 7p. The only value for 7p that obtains a 0
uniquness is 7p = 0.1.
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Figure 6: Uniqueness variation for different temperature values -
Copnet FB network. For a medium network and smaller bud-
get, the smallest temperature (0.01 value achieves the smallest final
uniqueness.

A.2.2 Cooling rate o

We tested values in the set {0.5,0.6,0.75,0.85,0.9,0.95}.
Our experiments showed that o = 0.75 offers a good trade-
off between exploration and convergence speed for a medium
number of deletions available, in line with prior work [David-
son and Harel, 1996]. For networks with a smaller number of
edges, a smaller alpha value (0.5 or 0.6) yields the best results
(Figure 7). However, for larger graphs where the solution
space is more complex, a slower cooling rate of a = 0.995
consistently achieved lower uniqueness, consistent with ob-
servations in [Kirkpatrick et al., 1983].
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Figure 7: Uniqueness variation for different alpha values - Copnet

SMS network. For this small network, a = 0.5 achieves the best
uniqueness.
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Figure 8: Uniqueness variation for different alpha values - ego
Facebook network. For a large network and smaller budget, a
medium to higher a value achieves the smallest final uniqueness.

A.2.3 TIterations and patience
The number of iterations was set to B - |E| - 3, where B
is the edge deletion budget, and the algorithm terminated



early if no improvement was seen over patienceRatio -
iterations steps. We used patienceRatio =
min(8000, 0.3 - iterations) unless stated otherwise. In Fig-
ure 9, we observe that after iteration 250, the uniqueness is
constant. In this case, it is not worth exploring new solutions.
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Figure 9: Progress of Simulated Annealing’s uniqueness with a 1%
budget over time. After about 250 iterations, improvement stops.
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