
SPIN’s Promela to Java Compiler,
with help from Stratego

Master’s Thesis

Edwin Vielvoije

SPIN’s Promela to Java Compiler,
with help from Stratego

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Edwin Vielvoije
born in Rotterdam, the Netherlands

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

c© 2008 Edwin Vielvoije BSc.

SPIN’s Promela to Java Compiler,
with help from Stratego

Author: Edwin Vielvoije
Student id: 1150731
Email: edwinus@gmail.com

Abstract

In model checking a formal model of a software system is constructed. That model
is verified against a set of properties expressed in some logic. Once a model has been
created and verified, it is still necessary to write the application itself completely by
hand. No tools have yet been developed that can automatically create a system or
application using a model written in Promela. until now!

The Promela2Java Compiler to be described in this paper is a unique tool trans-
forming a Promela model into an executable Java application. The Promela2Java Com-
piler has been constructed using the Stratego/XT tool set. Developers can use SPIN
to check their designs for certain properties and use the Promela2Java compiler to
successfully create executable Java code from their designs.

Thesis Committee:

Chair: prof. dr. A. van Deursen, Faculty EEMCS, TU Delft
University supervisor: ir. C. Pronk, Faculty EEMCS, TU Delft
Committee Member: D. M. Groenewegen MSc, Faculty EEMCS, TU Delft
Committee Member: dr. ir. T.C. Ruys, Dep. Computer Science, University of Twente

Preface

This document is the result of a project in which I learned that I will never stop learning.
A lot of people were able to teach some the things that I needed to learn for this project. I
would like to thank everybody that helped me. Thank you all!!!

As the person that helped me the most I would like to thank my supervisor Ir. C. Pronk.
I want to thank him for the patience he had with me and pushing me to keep on working.

Another big help was Danny Groenewegen MSc, I would like to thank him for all the
times he advised me on the problems I had dealing with Stratego, I would have been in big
trouble if he did not help me. I also would like to thank Eelco Visser, Lennart Kats and Zef
Hemel who all also answered some of my questions about Stratego.

I would like to thank Drs. D. E. Butterman-Dorey who pushed me into writing a lot and
early on in the project. Of course I would like to thank my family for being there for me
and making sure I also took time to relax during the course of this project.

Edwin Vielvoije
Rotterdam, the Netherlands

August 21, 2008

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1
1.1 Research . 1
1.2 Promela . 7
1.3 Stratego/XT . 8
1.4 Problem statement . 9
1.5 Structure . 10

2 Parser 11
2.1 Example SDF Grammar . 12
2.2 Promela SDF Grammar . 13
2.3 Difficulties . 17

3 Transformation Rules 19
3.1 Java Files . 19
3.2 Strategies and Rules . 22
3.3 Promela to Java Strategies and rules . 25
3.4 Difficulties . 31

4 Testing 33
4.1 Promela from the World Wide Web . 33
4.2 Test Cases . 34
4.3 Promela Test Cases . 34
4.4 Transformed Promela to Java Test Cases 38
4.5 Conclusion . 41

v

CONTENTS

5 Compiler 43
5.1 Intentionally Left Out Parts . 43
5.2 Installation Instructions . 45

6 Example 49
6.1 The Leader Protocol . 49
6.2 The Protocol in Promela . 50
6.3 The Protocol in Java . 51
6.4 Promela Model Versus Java Code . 52
6.5 Conclusions . 53

7 Related Work 55
7.1 Promela to Java . 55
7.2 Promela to Byte-code . 56
7.3 Promela to C . 56

8 Evaluation and Conclusions 57
8.1 Technical Evaluation . 57
8.2 Project Evaluation . 60
8.3 Future Work . 62
8.4 Conclusions . 62

Bibliography 63

A Compiler Files 67
A.1 Parser Files . 68
A.2 Transformation Rule Files . 68
A.3 Java Files . 70

vi

List of Figures

1.1 The MDA models and their relation . 2
1.2 Project overview sketch . 4
1.3 Overview of the different parts of a compiler written with the help of Stratego. . 8

2.1 The graphical structure of the abstract syntax tree of a simple expression [31] . 11
2.2 The grammar for a simple expression . 12
2.3 The original grammar rules for a Proctype in Promela 13
2.4 The SDF grammar rules for a Proctype in Promela 14
2.5 The order of priorities of expressions from [19] 16
2.6 The order of priorities of expressions in the SDF grammar 16

3.1 Overview of all classes . 20
3.2 An example of the ordering of mtype values 21
3.3 A simple example of a transformation rule . 23
3.4 Another simple example of a transformation rule 23
3.5 A simple example of a transformation rule into a Java class 24
3.6 Another simple example of a transformation rule into a Java class 24
3.7 A simplified version of Inline dynamic rules 26
3.8 A simple transformation for a variable reference 27
3.9 An example of a class Main. 28
3.10 An example of a class GlobalVars. 29
3.11 Generated Java code for: proctype(int n){int a = 0; int b = 1;} . . . 30
3.12 An example of a class generated from a user defined type. 31

4.1 The order of priorities of expressions from [19] 36
4.2 Finding the error in sending and receiving statements. 40

5.1 Overview of all files during installation and compilation. 48

6.1 (a) Six processes in a network (b) Progress of the filters. 50
6.2 Promela code for a process in the leader election with filter protocol. 51

vii

List of Figures List of Figures

6.3 A Promela if statement (a) and its corresponding transformed Java code (b) . . 52

A.1 http://members.tele2.nl/edwin.v/ Website of the Promela2Java Compiler 67

viii

Chapter 1

Introduction

Model Checking is a technology to be used in the design phase of a system. In model
checking a formal model of a software system is constructed. That model is then used to
verify the design. SPIN is such an model verifier. The models that SPIN verifies are written
in the language Promela [3, 19].

Although Model checking can be very useful, once a model has been created it is still
necessary to write the application itself completely by hand. No tools to automatically create
a system or application from a model written in Promela are known. The Promela language
contains many semantic features that can be represented by parts of the Java language [27].
Java [24] is therefore a good target language for a tool to create an executable system or
application from a model written Promela.

Such a tool will be used by developers who have created a design for a software system
or application and who would like to know if the system or application conforms to the
design requirements. These developers would then create a Promela model of their design
and use SPIN to check if their design adheres to their formal specifications.

Developers can use the Promela2Java compiler that will be described in this paper to
generate Java code from their Promela model. The Java code generated can then immedi-
ately be used as their newly created software system or application. The code generated
can also be adapted and used in a larger system containing code that Promela is not able to
represent, such as a Graphical User Interface.

The Promela2Java compiler will not do any error checking on the Promela source, be-
cause a developer would use SPIN before transforming their model with the compiler. The
user is assumed to input a Promela model for the Promela2Java compiler that has been
properly checked by the SPIN system.

1.1 Research

I have done some research for this project and can be found in my previous paper [30]. In
this paper I showed whether Model Driven Architecture [20, 23] (MDA) could be used to
make a transformation from Promela to Java possible. In order to find out if MDA could
be used I needed to know what languages and tools could be used for the different parts

1

1.1 Research Introduction

that are created in MDA. If those languages and tools could help me in creating such a
transformation, then MDA could be used for this project. I also wanted to know what
already has been done in other research about transforming the Promela language into some
other language and how this would translate to certain Java properties. I needed to find a
certain solution for the parts of which there was no known transformation as well.

Model Driven Architecture

An MDA design consists of a Platform Independent Model or PIM, that describes a sys-
tem or application without dependencies on any platform. A platform can be anything
from a programming language to hardware to an operating system. A PIM would then be
transformed into a Platform Specific Model or PSM, which still describes the system or
application but now the design is specific to a certain platform on which the system or ap-
plication will eventually be realized. A PSM would then be transformed into actual source
code to create the actual system or application. The PIM and PSM can be written in dif-
ferent or the same languages and all transformations between the different models are done
automatically via (MDA) tools. An overview can be found in Figure 1.1.

Figure 1.1: The MDA models and their relation

If MDA would be used for this project then a Platform Independent Model (PIM) should
be created that describes the Promela language independent from any platform, such as any
programming language, operating system or hardware. This PIM should then be trans-
formed automatically via (MDA) tools into a Platform Specific Model (PSM), which in this
case would be specific to the Java language. The derived PSM should then be transformed
into source code, which in this case would be Java code [24]. This Java code should then be
used as a framework of which each Promela model would depend on after its transformation
to Java.

UML

My research [30] indicated that UML [6, 7, 12] probably is the most widely known and
most commonly used modeling language. UML consists of a number of different diagrams.

2

Introduction 1.1 Research

The most import models are the class, sequence, state-machine and use case diagrams.
The SPIN program creates a state-machine from a Promela model to verify the require-

ments of the system that is modeled [17, 19]. A state-machine diagram can be created
easily of a Promela model. The state-machine will cover every possible way of executing
the model, just as SPIN does. However, this will end up in a state-machine diagram with a
lot of states. The bigger the Promela model is, the larger the amount of states will be in the
diagram. This diagram shows how the model behaves, but does not show the components
the model consists of.

One could try creating a class diagram corresponding to a Promela model by listing
the processes and channels as classes in the diagram and the variables as attributes in the
classes. There should then always be an extra class to contain all the global variables and
the previously described channels. The processes can access that class to gain information
about the global variables or change them and send or receive from the declared channels.
This diagram can be used to show what parts the model consists of, but does not show
anything at all about the behavior.

A sequence diagram of a Promela model is a bit like a simulated run in SPIN. The
verification will take all paths whilst the simulation only takes one path [17, 19]. In this
way a sequence diagram cannot show all the possible behavior of a model or sometimes
not even all the components of the model. A sequence diagrams can be created for every
possible path in the model. All of those sequence diagrams together show all the behavior
and all the components that are used in the model. However, as with the state-machine
diagram, the number of paths is large and will be even larger when a model grows bigger.

A use case diagram can be created for a Promela model. The processes will then be
the actors and the use cases will then describe an action the process will undertake. The
use cases follow each other in the same way the actions follow each other in the Promela
model. The use case diagram shows the behavior of the separate processes but not how
those processes interact. These diagrams do not show when which process executes which
actions.

Action Semantics

UML is not a good choice to use as a language for the PIM because UML is not able
to show the non-deterministic and interleaving nature of the Promela language. Action
Semantics [25] did show promise to be used instead.

Action semantics can be used to describe a programming language. In [25] a complete
description can be found on Action Semantics. There is no graphical representation for any
part of the Action Semantics, it only consists of formulas. When Action Semantics are used
to describe a language, then three parts need to be created. Those three parts are an abstract
syntax, semantic functions and semantic entities. These three parts together can be used
to describe a programming language. These descriptions could be used as a PIM in this
project.

The abstract syntax provides as described in [25] “an appropriate interface between the
concrete syntax and the semantics”. An abstract syntax can most of the time be obtained by
looking at parse tree structures and leave out those details which have no semantic signifi-

3

1.1 Research Introduction

cance. Semantic functions are used to link the abstract syntax to the semantic entities that
represent the particular behavior. The semantic entities are used to represent that behavior
in a implementation-independent manner. A semantic entity can be one of three kinds: an
action, data or a yielder. Actions are computational entities that represent the information
that is being processed. Data entities are mathematical entities that represent pieces of in-
formation and whilst the actions are dynamic, the data is static. A yielder represents data,
whose value dependents on the information that exist at the time of execution.

Non-deterministic choices can be dealt with in Action Semantics. There are actions like
or which chooses to do either one or the other action. By contrast there are also actions

such as and then which is used to show sequential execution. The interleaving of a
Promela model can be accomplished with agents in Action Semantics. An agent represents
a process and communicates with other agents by sending messages .

There are however, no (MDA) tools available that make a transformation from a PIM
written in Action Semantics into any kind of PSM. This is because Action Semantics is not
widely used. Which indicated that if Action Semantics would be used then the transfor-
mation between PIM and PSM should be done completely by hand. Besides this problem,
there is also the problem that when Action Semantics will be used then the creation of the
PIM or the PSM does no help at all in the creation of the Promela2Java compiler. This
is because the PIM and PSM will describe the Promela language but will not describe the
transformations.

Figure 1.2: Project overview sketch

4

Introduction 1.1 Research

Promela2Java Compiler

When you read a book or article about compiler construction, such as [15], then you know
that a compiler mainly consist out of three parts. The front-end, the semantic representation
and the back-end. The front-end of the compiler analyzes the program in the language that
needs to be compiled, in this case Promela models. The back-end creates a program in the
target language, which is in this case Java. The semantic representation glues both parts
together. The output of the front-end is an abstract syntax tree of the input program. The
semantic representation part of the compiler takes that abstract syntax tree and constructs
intermediate code. Finally, the back-end takes the intermediate code and generates the code
in the target language.

I showed in [30] as well that the transformation from a Promela model to Java code
could be done by creating a compiler with the Stratego/XT toolset [9, 31]. With this toolset
a parser, a transformation and code generator (or pretty-printer) can be created from a gram-
mar and transformation rules written by a user. These three parts are practically equal to
the parts of the compiler. The created parser represents the front-end of the compiler, whilst
the transformation rules represent the semantic representation part of a compiler and the
back-end is represented by the code generator. A separate package for the toolset is even
able to understand parts of the Java language, which could be very helpful because the tar-
get language of the compiler that needs to be created is the Java language. More on how
Stratego works can be found further on in this chapter.

Promela to Java Transformations

Information that showed up during my research [30] were some Promela to Java transfor-
mations that could be used to create a compiler. All these transformations can be found
in the Table 1.1, the left column shows the Promela part and the right column shows what
those parts should transform to in Java or what kind of construction could help facilitate the
Promela part in Java.

Promela Java
Processes Threads
Variables Variables
Data types built-in data types and Classes
d step and atomic Lock interface and the Metalocking algorithm
Channels and Concurrency BlockingQueue and java.util.concurrent
Non-determinism Scheduler chooses a path and speculative execution
Channel operations Methods in subclasses of BlockingQueue
Labels and goto Loop and switch statement
unless statement Executable checks and if statements
Embedded C code No translation

Table 1.1: Promela to Java translations

5

1.1 Research Introduction

For the Processes, data types and variables should it be easy to see how those could
translate to the Java languages [27]. Two ways to deal with the atomic and d step are the
new Lock interface of Java 1.5 and the Metalocking algorithm [1, 4]. The Java Threads
already deals with interleaving, this means that to make sure that no other process can
interfere with the statements inside an atomic or a d step, only those variables that are
used within those statement need to be locked. This also means that before every statement
is evaluated the variables that are going to be used need to be checked whether or not those
are locked by using the synchronized statements of Java. A better possibility is to let a
scheduler lock the other processes. This means when an atomic or d step wants to execute,
then the scheduler must be notified, which in turn will lock the other processes. This means
that before every statement is evaluated the scheduler will be contacted to check whether or
not the statement is allowed to execute.

In Java 1.5 there is the new java.util.concurrency package [27] that contains the
BlockingQueue to deal with concurrency and the channels of Promela. To deal with non-
determinism a scheduler can be created [22] to choose one of the possible paths that can be
taken. To know which paths can be taken some sort of speculative execution [32, 33] needs
to be enabled as well.

The goto statement does need a Java counterpart. The solution looks complicated be-
cause the labels can be anywhere in a model. The thing is to split the statements of the
process into different parts separated by the labels. When a goto statement occurs, then the
flow of control will jump to the correct part of the processes statements. The goto statement
can be translated to Java, by using a loop and a switch statement. The switch will be inside
the loop and the switch will break whenever a goto occurs. The loop makes sure the switch
is called again and the label of the previous goto will make sure that a jump is made to the
correct switch case.

The embedded C code will not be incorporated into the Promela2Java compiler because
this project does have some time constraints. The entire C language cannot have any trans-
lation to Java within the given time limit along with everything else.

Conclusions

One of the conclusions of my research [30] was that MDA is not going to help with the
creation of the Promela2Java compiler. Figure 1.2 shows an overview of how this project
would have been set up. However, the PIM and the PSM do not help in the creation of
the grammar and the transformation rules when Action Semantics are chosen as a language
for the PIM. This means that a different language needed to be found for the PIM, but
so far there has not been found any language that could show the properties of the Promela
language and help with the creation of the grammar and transformation rules that are needed
for a compiler. After the research I have been trying to transform a few small parts of the
Promela language into Java using the Stratego/XT toolset to find some commonalities that
could be exploited to find another language for the PIM. But nothing had turned up and work
continued without using MDA but using only the documentation of Promela, SPIN [17, 19]
and Stratego [9, 31].

6

Introduction 1.2 Promela

Another conclusion from my research [30] results in Table 1.1. This table shows all
the Promela properties that can be transformed into certain Java properties. Most of these
transformations were derived from other papers [1, 4, 22, 27, 32, 33] and a little bit from my
self (the goto statement). These transformations will be used in the Promela2Java com-
piler to ensure the generated Java application has the same properties as the corresponding
Promela model.

1.2 Promela

SPIN is a model checker that uses the language Promela (Process Meta Language) as the
language to write models in [18]. These models can be used in the designing or testing phase
of a software system. A model created during the design phase will be a model of what a
system is going to be, while a model created during the test process will be a model of the
implemented system. SPIN will check whether the model will adhere to the requirements
of that system. A model written in the Promela language consists of three types of objects:
processes (proctypes), channels and variables [3].

Like with a lot of other programming languages variables can be declared. Values can
be assigned to variables after those have been declared. Variables van be declared either
globally or local to a certain process. Constants can be defined using the C-style macro
#define. It is even possible to create symbolic constants, which can be defined as an
mtype. The creation of structures is available in Promela and can be used in the same way
as typedef in the programming language C. Embedded C code is also allowed inside a
Promela model, which is usually marked by a prefix such as c code. The use of C code is
discouraged by SPIN because, SPIN is unable to verify those parts of the Promela model.

The processes in Promela describe the behavior of the modeled system. A process in
Promela is known as a proctype. Statements reside within the processes, these define the
behavior of that particular process. There can be multiple instances of the same process
at runtime or in the case of SPIN at simulation or verification time, depending on how
the process is modeled in the language. The initial process is a special process, generally
used to create a true initial state of the system and usually starts other processes, however
a normal process can also be started without the initial process, but there can only be one
initial process.

A Promela statement can be either blocking or executable. When a statement is block-
ing, the process containing that statement will not continue executing until that statement
is no longer blocking. Some statements, such as assignments and declarations are always
executable, executability of the other statements depends on their run-time evaluation.

Channels together with variables describe the environment that processes work in. Chan-
nels are used to facilitate communication between the different processes and can be de-
clared either globally or locally. A channel can contain different messages, a messages can
consist of multiple parts of different or the same kind of type. A channel can only contain
one type of message and that type needs to be defined when the channel is declared [3].

Generally, a send to a channel will be blocking when the channel buffer is full and will
be executable again when there is room for the message at the end of the buffer. The receive

7

1.3 Stratego/XT Introduction

statement will be blocking when the channel is empty but also when there are constraints
on parts of the message. A constraint will always enforce that the message or part of the
message that is about to be received matches a certain value. Some of the other channel
operations are random receive and sorted send.

A grammar definition of the complete Promela language and a more complete descrip-
tion of Promela and SPIN for which Promela has been developed can be found in [17, 19].
For a short introduction into Promela and for a little bit more information on the different
possible operations in the Promela language, please refer to my previous paper [30].

1.3 Stratego/XT

The toolset Stratego/XT [31] has been designed for program transformations using rewrite
rules. The toolset is called XT and the language used is known as Stratego; the toolset will
from now on be described as Stratego. Using this tool set a compiler developer can create
transformations from a textual document in one language to a document in another or the
same language.

Figure 1.3: Overview of the different parts of a compiler written with the help of Stratego.

To create such transformations, first a grammar of the language to be transformed needs
to be created. This grammar is written by the developer in the Syntax Definition Formalism
(SDF) [16].

A parser tool from the Stratego toolset uses this grammar to generate the Abstract Syn-
tax Tree corresponding to the source program in that language. The Abstract Syntax Tree is
represented in Stratego as Annotated Terms or ATerms. Transformation rules can be applied
to those terms by using another Stratego tool. These transformation rules are written by the
developer of the compiler in the Stratego language.

What remains is a pretty-printer to generate code from the transformed terms. Code
can be generated in the original language, by using the same grammar as before to create
the pretty printer, with another tool from Stratego. Code can be generated into another
language by using a different grammar to create a pretty-printer or another already existing
pretty-printer.

8

Introduction 1.4 Problem statement

The Stratego toolset also contains a Java-front package [31] delivering a few new tools.
One tool parses Java code into ATerms and another Java pretty printer tool reads these
ATerms and generates Java code [24] from them. The ATerms used by these tools are
specific to the Java language. The Java pretty-printer can be used in the back-end of the
Promela2Java compiler by using these terms in the transformation rules of the compiler.
Figure 1.3 shows how the parts work together. This package allows embedded Java code
within the transformation rules. The package even does syntax checks on the embedded
Java code in those transformation rules. This makes it easier to create transformation rules,
but also should make them easier to understand for anyone less familiar with Stratego.

More about how a grammar or transformation rules are created can be found in Chap-
ters 2 and 3 or for a more complete description of the toolset please refer to [9, 31].

1.4 Problem statement

At the time of writing there is nothing yet that translates a Promela model to a Java ap-
plication. Stratego could be used in order to create such a compiler. A grammar should
be created to generate a parser. The ATerms that are generated from such a parser should
be transformed using transformation rules that need to be created as well. These transfor-
mation rules will need to change the ATerms generated by the parser into ATerms that are
used to represent Java code. Then the pretty-printer that is incorporated by the Java-front
package of Stratego can generate Java code from the transformed ATerms.

All of this should be packed together to become a Promela2Java compiler. This compiler
should be extensively tested as well and any encountered problems should be fixed. The
original planning mentioned that everything should be finished at the beginning of June,
however, due to to some delays the deadline had been shifted to the end of August. In order
to keep that schedule, I have created the planning that can be found in Table 1.2.

Date Event
20 January 2008 Start of Master Thesis
04 March 2008 Parser finished
17 June 2008 Transformation rules finished
11 August 2008 Testing of the compiler finished
12 August 2008 Promela2Java compiler finished
21 August 2008 Master Thesis finished
23 September 2008 Presentation of Master Thesis held at colloquium

Table 1.2: Planning

Creating the grammar in Stratego for the Promela language to create a parser will not
be to difficult, because the original grammar can be found in [17, 19]. The difficult part will
be to find all the parts that are not described in that original grammar such as an inline
and a few other things. Another difficulty will be to make sure the grammar will make
sure that a Promela model can only be parsed in one way and that there are no ambiguities.

9

1.5 Structure Introduction

The creation of the transformation rules will be difficult because I have never worked with
Stratego before. However, embedded Java code can be used, which should make it easier
for me to use and easier for anyone else to read.

I have had a course, named compiler construction, in which I had to change some big
parts of a compiler, so I do have some experience with compiler constructing. That course
has thought me that I will not have a completely error free compiler after the creation of the
Promela2Java compiler and that I should thoroughly test the compiler and then there might
still be some errors. The testing is done by creating all kinds of Promela models, which
will include models that are suppose to work correctly. This testing phase will not be too
difficult, but will be time consuming if done thoroughly.

1.5 Structure

This document will describe my findings on creating a compiler from Promela to Java. I
have used Stratego to create this compiler. A parser was needed to create the compiler.
How this parser was created and how an SDF grammar is created in Stratego can be found
in Chapter 2. The abstract syntax tree that is a result from such a parser will need to be
transformed to an abstract syntax tree that represents Java code. How these transformation
rules were created can be found in Chapter 3.

The testing phase of the Promela2Java compiler will be described in Chapter 4, as well
as any problems that were discovered during testing. Some extra information on the com-
piler can be found in Chapter 5. This will describe any parts of the Promela language that
are not translated by the Promela2Java compiler and why those parts are not included as
well as the instructions to get the compiler to work correctly will be described. An example
of a Promela protocol transformed into Java code is described in Chapter 6.

Any work from other authors that is related to this project will be mentioned in Chap-
ter 7. This document will finish with an evaluation of the Promela2Java compiler and of
this project and the conclusions in Chapter 8.

10

Chapter 2

Parser

A parser that is created with Stratego, will take in a file written in the input language in this
case Promela. The parser will then analyze the input file and recognizes the various tokens
and transforms the file into an abstract syntax tree [9]. This chapter shows how a parser is
created with Stratego and shows a small example. This chapter describes how the parser for
this project was created as well.

The abstract syntax tree is formatted in Stratego as Annotated Terms or better known as
ATerms. An ATerm consist of a constructor that is applied to zero or more terms. Strings
and Integers are terms as well and usually represent a leaf in the abstract syntax tree.

As an example we could show how a simple expression such as x - (3 * y) will
be transformed to abstract syntax tree as Annotated Term. When you look at the expres-
sion, you could easily imagine the abstract syntax tree in a graphical structure such as in
Figure 2.1 [31]. The ATerm version of this abstract syntax tree will look something like:

Minus(Var("x"), Times(Int("3"), Var("y")))

Figure 2.1: The graphical structure of the abstract syntax tree of a simple expression [31]

11

2.1 Example SDF Grammar Parser

The parser needs to have some information in order to create these terms. This informa-
tion is necessary to recognize the tokens from the input file. The information that is needed
is a grammar written in the Syntax Definition Formalism [16, 9], which is also known as
SDF. The grammar that is needed to recognize the terms for Promela will look a lot like
the grammar of Promela itself [17, 19]. This is because you describe the Promela language
for Stratego in the SDF grammar and the grammar of Promela itself exist for the purpose
of describing the Promela language to whomever reads that documentation. The parser can
be automatically derived from such an SDF grammar by using tools from the Stratego/XT
toolset.

2.1 Example SDF Grammar

The SDF grammar will consist of certain rules. These rules have on the left hand side, one
or a combination of more then one terms and on the right hand side, the term that the parser
should recognize the combination as.

The example x - (3 * y) that was used above can be used here as well to show how
such a simple expression can be parsed into the ATerm

Minus(Var("x"), Times(Int("3"), Var("y")))

This could be done by creating a simple grammar 1 such as Figure 2.2.

Figure 2.2: The grammar for a simple expression

This grammar recognizes an Exp or Expression. An Expression can be either a Name,
an Integer or an Expression followed by an operator and another Expression. A Name
term is recognized as one or more (as indicated by the + in the grammar) characters in the
range of a-z or A-Z, which means any word of at least one letter. The Integer works in

1A modified example from [31]

12

Parser 2.2 Promela SDF Grammar

a similar fashion, except with one or more characters from the range 0-9. When a Name
is recognized then an Expression will be recognized and given the constructor Var, which
indicates that is a variable. The same is true for the Integer but that kind of Expression is
given the constructor Int.

When one of the operators is found between two Expressions then the appropriate Ex-
pression is recognized and given the correct constructor. The extra left that is found just
before the constructor indicates that the operator groups from left to right, which means that
Exp1 + Exp2 + Exp3 will always group as Plus(Plus(Exp1, Exp2), Exp3) and not as
Plus(Exp1, Plus(Exp2, Exp3)). The priorities of these operators are dealt with at the
end of the grammar by grouping the rules for Multiplication, Division and Modulo and us-
ing the greater then symbol (>) to show that those expressions have a higher priority then
the Addition and Subtraction.

The grammar can be separated into modules if the number of terms that need to be
recognized is large. When a term that is declared in a different module is needed then a
simple import statement could be used at the top of the module to import all the declared
terms from that module. The grammar that was described in this section can recognize the
following code and categorizes that piece of code as as shown below:

x - (3 * y)→ Minus(Var("x"), Times(Int("3"), Var("y")))

2.2 Promela SDF Grammar

The SDF grammar that was created to parse Promela models, has been created using the
grammar of Promela as a starting point. The grammar of Promela can be found in [17, 19].
The SDF grammar has been split up into several files. Every file can link to another file by
using import statements. The files of the SDF grammar can be found in Appendix A.1. The
top most term that can be recognized by the parser is the Program term, because a Promela
model must consist of at least one or more modules.

There are a few different modules declared in the Promela grammar, so these must all be
recognized as well by the parser. Each module will be recognized by one or more rules. As
an example we could look at the Proctype module. The Promela grammar for a proctype2

looks like the rules that are shown in Figure 2.3.

Figure 2.3: The original grammar rules for a Proctype in Promela

A proctype consists of the optional word “active” followed by square brackets and
a constant, which are optional as well, however those square brackets and constant must

2 Without the rules for decl lst, sequence, expr and const to keep everything more understandable

13

2.2 Promela SDF Grammar Parser

always follow the word “active”. This is followed by the word “proctype” which is
followed by the name of the proctype. The name of the proctype is described as a letter
followed by zero or more letters, numbers or underscores. The name is followed by a
pair of brackets, with in between an optional DeclarationList. This all is followed by
an optional word “priority” and a constant, which in turn is followed by an optional
word “provided” and an Expression followed between some brackets. At the end of
the proctype declaration in the Promela grammar there are a pair of curly braces with in
between them a Sequence.

The Promela grammar was used as a starting point for the SDF grammar. So the SDF
rules for the proctype are a little bit different from the Promela grammar and will look like
Figure 2.4.

Figure 2.4: The SDF grammar rules for a Proctype in Promela

For every optional part in the Promela grammar (such as the word “active” for proc-
type) , there are two versions of a rule in the SDF rules, one where the optional part is
included and one where that part is not included. At the end there are a few lexical restric-
tions mentioned which represent that keywords are not recognized as Id. There can thus be
no variables or proctypes with the same name as those keywords. For every keyword in the
Promela language there exists such a lexical restriction in the SDF grammar.

The entire Promela grammar is transformed into an SDF grammar in a similar way.
There are a few parts different though, such as whenever a term should be followed by a
separating token (‘,’ or ‘;’) then the first term is held separately from the rest of the following
terms. For example the rule for a Sequence: sequence : step [’;’ step]*
In the SDF grammar this will be represented as:

Step -> Sequence {cons("Sequence")}
Step SepStep+ -> Sequence {cons("Sequence")}
";" Step -> SepStep {cons("SepStep")}

14

Parser 2.2 Promela SDF Grammar

This will be the same for all terms that are followed by a list of the same terms, such as the
declaration list and a few others. An exception to this part is the Varref term. In the original
grammar this term is represented as:

varref : name [’[’ any expr ’]’] [’.’ varref]*

The rules for the Varref in the SDF grammar is separated into two distinct Terms to avoid
ambiguity. The first part of the Varref (before the first ‘.’) is the part that can either be global
or local. The second part of the Varref belongs to the variable and is not declared globally or
locally. That is why there should be a distinct separation in the different parts of the Varref.
In the SDF grammar this will look like:

The original grammar of Promela that can be found in [17, 19] is actually not complete.
There are few parts missing from that grammar that are described in the manual pages of the
Promela language, which can also be found in [17, 19]. Those parts however are represented
in the SDF grammar. The predefined variables (‘ ’, ‘ last’, ‘ nr pr’ and ‘ pid’) are not
mentioned in the original grammar. These are defined as special Varref terms in the SDF
grammar. Another missing part is the unsigned data type. An “inline” can be defined in a
Promela language, however, this is also not mentioned in the original grammar.

The original grammar shows that a Declaration can be preceded by a Visibility term
which can be either “hidden” or “show”, however the manual pages show that “local” is
another possibility for it. The manual pages show that besides a “proctype” declaration
it is also possible to have a “D proctype” declaration that will execute a non-deterministic
sequence. The remote reference to a label in a process (which can only exist in a never
trace) is available in the original grammar, however the remote reference to a local variable
of a process is not available. All these parts have been added to the SDF grammar and the
manual pages have been used to make sure those parts were added correctly.

The Promela language allows the use of macros in its models, but SPIN does not deal
with them itself. SPIN calls the C-preprocessor to deal with the macros. In order to get the
same result as SPIN, I propose to use the C-preprocessor before parsing a model as well.
This way, the result will be the same as what SPIN uses.

There are few parts in SPIN that are only used for verification purposes, such as the trace
and the never claim. Because the parser is to be used in a compiler and not in a verifier then
that means that such parts are actually unwanted. This has been represented by recognizing
those parts in the SDF grammar as unwanted terms. In the SDF grammar the trace and
never claim will look like this:

15

2.2 Promela SDF Grammar Parser

UnwantedModule -> Module {cons("Module")}
Never -> UnwantedModule {cons("UnwantedModule")}
Trace -> UnwantedModule {cons("UnwantedModule")}

Other unwanted parts are the parts that have embedded C code. The embedded C code
will not be part of the Promela2Java compiler for now because of the time constraints on
this project. Those parts will look similar to the unwanted verification parts. When there
is a time to add C code to Java transformation on this, then the unwanted recognition can
easily be undone by changing UnwantedModule (in this case) to Module at the rule that is
no longer unwanted. This way the parts that are no longer unwanted will be recognized as
that but those parts that still are unwanted will still be recognized as unwanted.

Figure 2.5: The order of priorities of expressions from [19]

An order of priority of the operators in expressions is described in [19] as can be seen
in figure 2.5. A context-free priorities part is added to the SDF grammar to make sure that
the order of the expressions is the same for the SDF grammar as in the original grammar.
This part groups the rules with the operators that have the same priority and puts a “greater
then” symbol (>) between two groups of which the left side has the higher priority. A small
part of this can be found in Figure 2.6.

Figure 2.6: The order of priorities of expressions in the SDF grammar

16

Parser 2.3 Difficulties

2.3 Difficulties

The Stratego toolset makes it easy to create a parser for the Promela language. The hardest
part was to deal with ambiguity. There are a few parts in the original grammar that caused a
bit of confusion when the counterpart was implemented as SDF grammar and then parsed.
For instance, brackets are allowed around an Expression, which itself can be recognized
as an Any expression. However, an Any expression can have brackets around itself as
well, which leads to an ambiguity when a Any expression with brackets around itself
is parsed. The parser cannot understand if the brackets belong to the Expression or to
the Any expression. This was solved by removing the brackets around Expression as a
possibility and adding optional brackets around the parts that can only be an Expression
and not as an Any expression.

The manuals that are available for Stratego [9, 31] were very helpful. These contained
many examples to learn from, such as the priority handling and the way deal with comments.
Any embedded C code in a Promela model is marked by keywords in Promela and should be
marked as unwanted in the SDF grammar. The way to deal with comments in the examples
looked like an ideal way to deal with the embedded C code.

17

Chapter 3

Transformation Rules

The previous chapter described how the parser can transform a Promela model into ATerms.
These Aterms need to be transformed into Java code. The transformation rules do just that
and will be described in this chapter. I have created a number of Java files that will be
the same for every Promela model that will be transformed. This is done in order to get
a full working Java application from a Promela model. These Java files can be found in
Appendix A.3 and will be described in this chapter as well.

3.1 Java Files

In my research [30] I showed which Java classes could be generated from a Promela model
in order to get a working Java application. As shown in Figure 3.1 the Java code produced
by the Promela2Java compiler consists of three parts:

• Standard Java library packages,

• A fixed part containing the scheduler and related classes (created once), and,

• A variable part depending upon the Promela model that is to be translated
(generated every time).

3.1.1 Classes Created Once

The papers [22, 32, 33] showed that a good idea is to use a scheduler in order to deal with
atomicity and non-determinism. Such a scheduler would only need to be created once,
because a scheduler will always need to deal with these properties in the same way. For that
reason I have created the class Scheduler. The Scheduler and all classes that have been
created can be found in Appendix A.3.

The Scheduler will extend from the Java class Thread. This class will contain all
instances of the various Proctype classes during run-time. The Scheduler will give all
Proctypes a unique number, which is equivalent to the PID variable in the proctype of a
Promela model. The class Scheduler has a special function that can halt the execution of

19

3.1 Java Files Transformation Rules

Figure 3.1: Overview of all classes

all other Proctypes in order to let one of the Proctypes be the only one that is executing at
that time (atomicity). The Scheduler will also have a function that gets an array of boolean
variables and will choose randomly between one of the values that is true. The number of
the place of the chosen value in the array will then be returned to the Proctype that called
the function. This Proctype uses the returned value to execute the correct path.

The proctypes of a Promela model will transform into a Java class that inherits from the
class Proctype. This class contains methods to pause and resume execution enabling the
Scheduler to handle atomicity. The Proctype itself inherits from the Java class Thread,
just like the Scheduler, in order to execute separately.

The class Channel will represent the channels in Promela and will contain all the meth-
ods available in Promela as channel operations. This will mean that the methods will also
block the execution of a Proctype in the same way as in a Promela model. The Channel
will use the Java class ArrayBlockingQueue, because this class will make sure that a send
or receive will be blocking if the buffer is full or empty. The SynchronousQueue is used to
represent a rendez-vous channel, because this class will block a send until another receive
is available and the reverse is true as well, just like a rendez-vous channel in Promela. C.
Pronk shows in [27] that the blocking will be done with the Meta-locking algorithm de-
scribed in [1]. The Channel class will be constructed with a number that tells how big its
buffer will be and another number that indicates the size of the messages that can be send.
A buffer of size zero will be a special rendez-vous channel.

The class Channel will use the class Message to fill its buffer with properly typed
messages. This class Message will hold a Vector with all the parts of the actual message.
This class also has an equality function to see whether the parts of the two messages are
equal. In Promela it is possible to not let all parts match, but only a few parts of the message,

20

Transformation Rules 3.1 Java Files

this is considered in the equality function.

3.1.2 Classes Generated Every Time

The class Main will be the class containing the main method. This method will start the
Scheduler and the proctypes that are supposed to be active from the start (including the
initial one). The global variables will reside in the class GlobalVars. The class Main and
the class GlobalVars will be different for every new Promela model that is transformed into
Java code. The Main class will make sure that all active Proctypes use the same instance
of the GlobalVars and Scheduler class.

The data types of the Promela language will be represented by their equivalent Java
data types, except for those not having an equivalent type. This is the case for the mtype,
pid, bit, unsigned and every user defined type using the typedef construction. The mtype,
pid, bit and unsigned data types will be represented as integers. A separate class will be
generated for each user defined type in the Promela model that is being transformed.

The mtype definition in Promela will be transformed into separate integers inside the
class GlobalVars. Each integer must have an unique value and when an mtype is printed
then the symbolic name should be given in order to get the same kind of properties as an
mtype in Promela. When an instance of the class GlobalVars is created then the constructor
of the class will start filling the mtype integers with their unique values. A function is added
that returns the symbolic name that is used for printing. The integers inside the class will
have the prefix “MTYPE ”, which has been done to ensure that there are no name clashes
with Java keywords.

In Promela the values of the mtype are given to them in the reverse order as those were
defined. However a second set of definitions for the mtype will result in a similar reverse
order but none will have values below the first set of definitions. An example can be found
in Figure 3.2. The values of the mtype ordering will start counting from one and thus will
the class GlobalVars start by counting from one when the integers representing the mtype
values are filled.

Figure 3.2: An example of the ordering of mtype values

When looking at the properties of a Promela mtype in SPIN [17, 19], then it is easy to
see that these properties are very similar to the properties of the Java class enum. However,
there are a few problems when this solution is chosen. For instance there is the possibility in
SPIN to have a variable that is of type mtype but does not have the same value as any of the
mtype values. For example, when all the mtypes are defined as mtype = {apple, pear,

21

3.2 Strategies and Rules Transformation Rules

orange}, then a variable definition mtype var = 99; is allowed. An enum variable is not
allowed to have a value that is larger then the number of possibilities. This larger value can
in SPIN even be used in expressions and when the mtype is printed then not the symbolic
name is printed, (because there is no corresponding name to that value) but just the value
of the mtype variable is printed. The function I have described above also has this feature.
These problems are the reason why I have chosen to use integers instead of an enum class.

A user defined type is created by using the typedef statement in Promela, which will
be transformed into a separate Java class. The member of such a user defined type will be
represented as local variable of its class. The name of that class will always begin with
“UTYPE ” and followed by the name of the user defined type. This prefix is used in order
to prevent any name clashes with Java keywords. For instance, Promela allows to call your
user defined type by the name “class”, but it is impossible to use the name “class” as a name
for a Java class.

All the proctypes and the initial process in a Promela model will be transformed into
separate classes. A proctype in a Promela model will result in a Java class that inherits from
the Java class Proctype that was described before. The name of these classes will have as a
prefix “PROC ”, again to prevent name clashes. If a Proctype can be called with arguments
then there will be two constructors generated. One that will only set the Scheduler and
the global variables and one that will do the same plus setting local variables that will be
generated as well. These classes will overwrite the run method and specialize that method
with the body of the proctype of the Promela model.

3.2 Strategies and Rules

More information on how to create transformations is necessary in order to generate the Java
classes that were described above. The transformation rules are used by the Stratego toolset
to create the part of the Promela2Java compiler that makes the actual transformations [9, 31].
The transformation rules can consist of one or multiple modules. Each module exists in a
file and are all linked together using import statements. These modules can contain either
strategies, rules or both.

Strategies are used to apply certain rules in a certain order, which rules and what order
depends on the chosen strategy. A number of predefined strategies are available in the
Stratego toolset. An example of a strategy is the predefined strategy outermost(s) which
walks down a ATerm tree applying the strategy s, starting with the outermost ATerm and
going inwards. An example for strategy s could be the strategy try(r) in which r is an
existing rule. This rule r will then be applied to every ATerm that the outermost strategy
looks at.

A rule will always be preceded by its name and will consist of at least two parts. The
first part is the ATerm that is recognized, the second part of the rule is the ATerm that the
recognized ATerm will be transformed into. The two parts are separated by an arrow (->).
Variables are allowed to be used in the left side of the rule that can be reused on the right
side of the rule as well. An ATerm starts with an upper case letter and a variable with a
lower case letter. An example of a rule can be found in Figure 3.3.

22

Transformation Rules 3.2 Strategies and Rules

Figure 3.3: A simple example of a transformation rule

This rule transforms an Add ATerm of which the first element of that ATerm is the
zero integer constant and the second element can be any other integer constant. The rule
transforms the entire addition into the second element. As an example the ATerm

Add(IntConst(0), Add(IntConst(0), IntConst(34)))

will be transformed into the ATerm IntConst(34). This is because the part of the ATerm
that matches to the first part of the rule is Add(IntConst(0), IntConst(34)) which
results in the ATerm IntConst(34). That part has now been transformed and has been put
back in the original ATerm and results in Add(IntConst(0), IntConst(34)). But this
part can be matched to the first part of the rule as well and will thus be transformed into
IntConst(34).

A where clause is allowed in a transformation rule to let the rule behave in a more
specific way [9, 31]. Such a where clause will contain one or more strategies that all either
can succeed or fail. A rule with a where clause will only be applied when all the strategies
in the where clause succeed. The outcome of a certain strategy can be bound to a variable.
As an example we can look at Figure 3.4.

Figure 3.4: Another simple example of a transformation rule

The first strategy in that where clause makes sure the entire rule will only be ap-
plied when the predefined strategy equal fails. This means that the rule from Figure 3.4
will only be applied when the ATerm that will be matched to variable x is not the empty
String. The different strategies inside a where clause will be separated by a ‘;’. The second
strategy binds the outcome of the conc-strings strategy to the unbound variable y. The
conc-strings strategy is a predefined strategy that concatenates two strings into one.

The rule will thus change every occurrence of the ATerm String(x), where x can
be anything, and transforms the term into the ATerm Id(y), where y will be the word
“STRING ” concatenated with x, unless x is equal to the empty string, then the term will not
be transformed at all. Strategies and rules can be used to transform the ATerms of a parsed

23

3.2 Strategies and Rules Transformation Rules

Promela model into different ATerms, but a code generator is necessary in order to get Java
code.

3.2.1 Java-front for Stratego

Stratego has a Java-front library [31] to make transformations on Java code [24]. This Java-
front comes among other things with two tools that can help a lot during this project. The
first tool can take in a Java file and creates ATerms from that file, in other words that tool
is a parser for Java files. The other tool takes in ATerms and creates Java files from the
ATerms, which is thus the code generator or as it is called in Stratego a pretty-printer. This
pretty-printer will be used directly as the back-end in the Promela2Java compiler that will
be created for this project. This Java pretty-printer can only take in ATerms that represent
parts of the Java language in order to get correct Java code. The Java parser can be used to
get to know what parts of the Java language corresponds to which ATerms by creating small
Java files and parsing them.

In the previous sections I described how transformation rules are created. The transfor-
mation rules can simply have the right hand side as terms that are used to represent the Java
code. Figure 3.5 shows an example how a Program ATerm would result into a simple Java
class Main with an empty body.

Figure 3.5: A simple example of a transformation rule into a Java class

Actual Java code can be used inside a transformation rule. This should be preceded by
the name of the part of the Java language that is represented. An example of how this is
done for a simple class can be seen in Figure 3.6. A class can be represented by embedded
Java code in a transformation rule and should therefore be preceded by its name which is
just like the previous figure the compilation-unit. This way of using actual Java code
can be used for a number of different parts of the Java language, such as a block statement,
a statement or an expression.

Figure 3.6: Another simple example of a transformation rule into a Java class

Unbound variables can be used to change parts inside the Java code, such as the name of
the class in Figure 3.6. In this case the transformation rule will bind the ATerm, that will be
matched, to variable y and concatenate it with the string “CLASS ” as the name for the Java

24

Transformation Rules 3.3 Promela to Java Strategies and rules

class. The unbound variable name in the example is preceded by an “∼x:” , this is to let
the transformation rule know that the token that follows will be an ATerm (or variable). The
letter x indicates that the following part will be a string, for other parts of the Java language
there are other letters or letter combinations that can be used, such as an e for an expression
or an i for decimal integer.

3.3 Promela to Java Strategies and rules

The transformation rules that are created for this project need to create Java ATerms from
the ATerms that were generated with the parser as was described in the previous chapter.
The generated Java files will be the ones that were described earlier in this chapter as the
ones that need to be generated every time. The files with the transformation rules can be
found in Appendix A.2.

3.3.1 Preparing Strategies

This section will describe those parts that are needed to prepare (the ATerms generated from
parsing) the Promela code for the actual transformation into Java code. These preparing
strategies will transform the ATerms into different ATerms that have nothing to do with any
ATerms that represent Java code.

Inline

To make sure the Promela model will correctly be transformed is to deal with the Promela
construction inline first. Such a construction consists of a inline definition and one or more
inline calls to that inline definition. A Promela model can have multiple of these construc-
tions. Every inline call contains the name of a inline definition and a sequence of variables.
Every inline definition contains its name, zero or more parameters and a sequence of state-
ments in which the parameters are incorporated. For every definition these elements are
different.

SPIN [17, 19] deals with an inline construction by replacing an inline call with the
sequence of statements that reside in the inline definition in which the parameters of the
inline definition have been replaced by the defined variables of the inline call. A rule that
transforms an inline call to a sequence of statements is necessary in order to accomplish
the same in Stratego. However, a rule is always the same and the statements that replace
the inline call are different for every inline definition. This can be solved by using dynamic
rules [8].

Dynamic rules are created inside normal rules by adding a strategy to the where clause
that is called rules. These dynamic rules can then use parts of the rule that has created
them. In the case of an inline construction there should be a normal rule that matches an
inline definition with its name and and sequence of statements and transforms that definition
into a checked inline definition, so that this definition will not be matched to the same rule
again. The where clause of that rule will create a dynamic rule that matches a inline call

25

3.3 Promela to Java Strategies and rules Transformation Rules

with the same name and transforms the call into the sequence of statements that was in the
inline definition.

If there are any parameters defined in the inline definition then the sequence of state-
ments need to transformed as well before inserting the statements at the place where the
inline call was. When all the dynamic rules have been created and thus when the strat-
egy succeeded then the dynamic rules still need to be applied by using another strategy by
calling all the newly created dynamic rules. A simplified version of how this is done can
be found in Figure 3.7. The renaming strategy creates a new sequence in which the old
arguments are transformed into the new ones.

Figure 3.7: A simplified version of Inline dynamic rules

Working with the dynamic rules has given me a better look of Stratego and made me
look at other uses for the dynamic rules. And I did found another use for them, type check-
ing.

Type Checking

Every variable in a Promela model has a certain type. There are nine predefined types in
Promela, namely: int, short, bit, byte, pid, unsigned, bool, mtype and chan
(for channels). Defining your own type structures is allowed in a Promela model, by using
the C style macro typedef. These type structures will from now on be addressed as user
defined types. An array of variables can also be created. In Promela it is possible to assign a
value of certain type to a variable of a different type, this is because the value will automati-
cally be converted to the correct type. This is the case for all types, except for the channels,
the arrays and the user defined types.

The type of a variable is known when it is declared. However, there is no indication
of the type of a variable when one is referenced. This is because the only thing that is
necessary to reference a variable is its name. Type checking is used to make sure that a
variable reference is transformed into Java in the correct way. For instance, a bool variable
can be used in the assignment of an integer. The transformation should make sure that the
Java code does not assign the integer value to that variable but the value of equality of the
integer to zero. This example can be seen in Figure 3.8.

The transformation rule needs to know the type of the variable that is referenced in order
to assign the correct value to the variable. This can be done by using dynamic rules that are

26

Transformation Rules 3.3 Promela to Java Strategies and rules

Figure 3.8: A simple transformation for a variable reference

similar to those rules that deal with the inline constructions. A dynamic rule will be created
in the transformation rule that matches a variable definition and takes from that definition
its name, its type and its scope. The name will be used to match all variable references
for that variable and change them into checked variable references that contain the same
information as the original variable reference, but also two extra pieces of information: the
type and the scope of the original variable declaration.

The scope of the checked variable reference will be string that can have one of three
values: “local”, “global” or “mtype”. The scope is necessary to find out how to reference
the variable in Java. A global variable will reside in an instance of the class GlobalVars
as was previously described. The way to reference to such a variable in Java will look like
global.VAR name. The local variables will reside inside a Proctype and thus do not need
any prefix and can be referenced by its name alone, like VAR name. The “mtype” scope
indicates that not a variable is referenced but actually a specific mtype is referenced. The
mtypes are represented in Java as integers as previously described that reside in the class
GlobalVars as well. The mtype reference will look like global.MTYPE name in Java.

The complete type checking strategy in the files that can be found in Appendix A.2.
Everything that has been described so far has not resulted in any Java code. Preparing the
Promela code for the actual transformation into Java code is all that has been done. These
transformations will be described in the next few sections.

3.3.2 Promela to Java Rules: P2J

This section will describe how the ATerms, that resulted from the original Promela code
and already transformed by the preparing strategies (which from now on will be referred to
as the original ATerms), will be transformed into Java code. A Promela model needs to be
transformed into a Java class called Main and a class called GlobalVars and for every user
defined type and process (proctype or init) that is inside the Promela model there should be
a separate class. This means that the original ATerms should be separated into four parts
and will later on be joined together.

The Main Class

One of the parts that the original ATerms will be transformed into, will result in a Java class
Main. The rules that are associated with the class Main will change the original ATerms into
a CompilationUnit, which is the ATerm representing a Java class in Stratego. This class
will initialize an instance of the Class Scheduler and an instance of the class GlobalVars
and there is also a part that will make an instance of all active Proctype classes, if any are
inside the model.

27

3.3 Promela to Java Strategies and rules Transformation Rules

The generated code will look similar to the code in Figure 3.9. The loop that can
be found inside the figure is there to facilitate the option when multiple instance of the
Proctype need to be active from the start. In Promela this is done by adding a number
between square brackets after the word active. In Java this will be done by using a for loop
around the instance creation of the Proctype.

Figure 3.9: An example of a class Main.

The Proctype is an extension of a Thread and can execute on its own and is started
inside the Scheduler. The order of execution will be chosen by Java, because that is how
Threads work in Java. The instance of a Proctype will always have the earlier created
instance of a Scheduler and the earlier created instance of the GlobalVars class. This is
to ensure every process will use the same global variables and scheduler. The description
of the Scheduler can be found earlier in this chapter, but the class GlobalVars will be
described next.

Global Variables Class

The class that will contain all the global variables will be called GlobalVars. This class
will contain all variables that have been globally declared in the Promela model, but will
also contain the mtype variables and a function to get their symbolic names. The class
is constructed by using rules that filter out the proctype ATerms, the user defined type
ATerms and the inline definition ATerms in such a way that only global declarations and
mtype declarations remain. The global declarations and mtypes will then be transformed
into FieldDeclarations, which is an ATerm used by Stratego to describe a variable of a
local class. The mtypes will be transformed into integers as has been described earlier in
this chapter.

A similar filtering rule is applied on the ATerms to get the global declarations and
mtypes, in order to initialize the values that needs initializing, such as arrays. This ini-
tialization will be done inside the constructor of the class to ensure the correct values of the
variables. Then a separate function is created that returns a String of the name of an mtype.
An example of a class GlobalVars that has been generated from a Promela model that has
a few mtype declarations and a few global declarations can be found in Figure 3.10.

28

Transformation Rules 3.3 Promela to Java Strategies and rules

Figure 3.10: An example of a class GlobalVars.

Proctype Classes and a Class Init

A proctype and an init are pretty similar in a Promela model, both are processes and only
differ in the fact that an init will always have one (and only one) instance at the start of
a simulation run of a Promela model. The init can never be instantiated more then once
during a simulation run. This means that the generated class will be the same as the one for
a proctype, but with a different name. From now on when I describe a proctype I will also
mean the init.

The generated class will extend from the earlier described class Proctype. The gen-
erated class will also have a constructor that sets the Scheduler and the global variables.
Another constructor is added if a proctype in the Promela model has parameters, these
parameters will be added as local variables similar to the declarations inside the body of a
proctype and the constructor will fill those variables with the given values to the constructor.

The generated class will also have a run function that will execute the statements that

29

3.3 Promela to Java Strategies and rules Transformation Rules

can be found inside body of the proctype in a Promela model. Those statements will be
surrounded by a while and a switch to ensure the correct control flow when a goto state-
ment occurs. This has been done in the same way as has been described in my research
paper [30]. The switch has several cases, the statements are separated in such a way that
each case will contain all statements before a label statement occurs and the statements that
are located behind a label statement will be in the next cases of the switch.

The declarations that are made in the body of a proctype will result in local variables,
that are similar as the global declarations for the class GlobalVars. However, if there is an
initial value for the variable, then that value is not set in the constructor, but the declaration
itself will be replaced by an assignment to ensure the correct value at the correct time.

Every statement that can occur in a proctype of a Promela model will have a different
Java transformation. A small example of a generated class of a proctype can be found in
Figure 3.11. The original Promela code that belongs to this example is: proctype(int
n){int a = 0; int b = 1;}.

Figure 3.11: Generated Java code for: proctype(int n){int a = 0; int b = 1;}

30

Transformation Rules 3.4 Difficulties

Statements

All the statements inside the body of proctype in a Promela will transform into a Java state-
ment inside the run function of the corresponding Java class that is generated from the
proctype. Declarations in the body of a proctype are transformed into a class variable and
an assignment statement, as can be seen in Figure 3.11. The while and switch that sur-
rounds all other statements of the run function can also be found in that figure. These
constructions are there to ensure the correct workings of the label and goto statements.

User defined types

A user defined type is a type that is constructed in a Promela model by using the typedef
statement. The Java transformation will result in a separate class for each use of a typedef
statement. The typedef statements contains one or more variable declarations. These dec-
larations will be added to a new class in the same way as the global variables are added to
the GlobalVars class. The declarations will be initialized in the constructor of the class in
the same way as the global declarations were initialized in the class GlobalVars. Because
these classes are similar, these are in fact, generated by some of the same rules to get the
same result. An example of a class generated from a user defined type can be found in
Figure 3.12.

Figure 3.12: An example of a class generated from a user defined type.

3.4 Difficulties

The hardest part for me was the fact that Stratego was all new to me, I had never worked
with Stratego before. But I did have some help from the people that worked a lot longer with
Stratego than I had. One of the first big problems I found, in the case of the transformation
rules, was with the type checking. I had no idea how to pass on information from the place
where a variable was declared to the place where the variable was used. After some help, I
discovered the dynamic rules [8], which were very useful. After I had used those dynamic
rules for type checking I found that I could use them for dealing with the inline constructions
as well.

Other difficult part was the size of the amount of work. I underestimated the amount
of time that would take to implement all transformation rules for all the different Promela
statements. For instance the amount of work that came into trying to transform a combi-
nation of a unless statement and an atomic statement, which resulted in a separate file of

31

3.4 Difficulties Transformation Rules

approximately 1370 lines of code. These transformation rules do, however, look very simi-
lar to those rules that were used for the transformation of the unless statement and the atomic
statement separately, but that does show how much is needed when one kind of statement is
combined with another kind of statement.

I know that it is human to make a mistake and I probably made a few in the process of
creating all the transformation rules, the Java code or even in the SDF grammar. Therefore,
there will always be the need for testing, as will be described in the next chapter.

32

Chapter 4

Testing

This chapter will describe what kind of tests I have been doing. I will also describe what
has resulted from those tests.

I should have started testing much earlier then when I did start. What I should have
done was create test cases before I even started creating any code for the parser at all, just
as is described in [5]. These test cases could then have been executed at the end of each day
to see if I was not making (much more) mistakes.

I did however parse Promela models that I have found on the world wide web even
before I created any test cases of my own. But these tests are not enough, I also made
special test cases to make the compiler as close enough to error-free as possible.

4.1 Promela from the World Wide Web

I can simulate the intended use of the compiler, by parsing and transforming all kinds of
complete Promela models. Many people can look at a language and use very different ways
to expose parts of a compiler or simulator in such a way the creator of such a compiler or
simulator never thought was possible. That is why it is very important to write as many tests
as possible by just as many different people. The best way to do that is to not let them write
actual test cases, but let them use the language for their own problems and see what kind of
models will be created.

The tests that I use, to see if my compiler works correctly, came mostly from the world
wide web and [26]. This is to ensure as many different people that write tests as possible.
some of the models that I used were from my supervisor and from a fellow-student who
is working with Promela for his thesis as well. I was amazed that there was still so much
possible that I had not considered when I looked at the Promela language. For instance,
Promela code may contain two ‘;’ characters right after each other or use arrows ‘->’
instead. I did not have that possibility accounted for in my parser at first, but that possibility
is incorporated in the parser right after I came across this problem in some of the tests.

Another problem was with the fact that the channel functions “empty”, “nempty”, “full”
and “nfull” are allowed to be used within an “&&” expression or an “||” expression. These
are the only two binary expressions in which these channel functions are allowed, but I did

33

4.2 Test Cases Testing

not have that implemented in my parser. Now that I have located this problem, I could easily
add this to the parser. However, the impact on the transformation rules was bit larger than
expected and had to be dealt with as well.

4.2 Test Cases

There are three parts of the compiler that need to be tested separately: the parser, the trans-
formation rules and the Java files. The parser can be tested by creating test cases in the form
of Promela models and use them as input for the parser. These test cases will fail if the
parser reports any problems or if any ambiguous parts occur within the parsed results.

The transformations can be tested by taking test cases in the form of Promela models
and compile these models. The same test cases could be used as the ones used for testing
the parser. Compiling the models will mean first parsing them an then transforming them,
the parsing step can be skipped by taking the results of the parser test cases and immediately
transform them. This can, of course, only be done if the results were correct. The transfor-
mation test cases will fail if no Java code is generated or if the transformations report any
problem.

The Java code that is generated from the Promela models will need to be tested as well.
The results from the transformation test cases are the Java code that needs to be tested.
The Java files that remain the same for every Promela model (Scheduler, Proctype,
Channel and Message) need to be tested as well. For these Java classes there can be some
separate test cases to ensure those classes work correctly as well. These test cases are,
however, not included in this document, because these would take up too much space.

The Promela2Java compiler relies on the description of the Promela language in [17,
19]. This description of the Promela language is not complete, there are a few small things
missing, I cannot anticipate on all those missing descriptions. The Promela models that
were found on the world wide web did help a bit in this regard and showed me the first
missing bit in the Promela language description. There are two ways to write comments in
Promela, by /*comment*/ or by //comment end-of-line. The latter of the two was not
described in [17, 19] but is allowed in Promela and has been included in the parser as well.

4.3 Promela Test Cases

The test cases that are used for the parser and the transformations are Promela models.
These Promela models are correct Promela models because the assumption is made that the
Promela models will be used by SPIN (and are therefore error-free) before those models are
used with this compiler. For now I have used [17, 19] and the grammar of Promela to see
what kind of models can be created with the Promela language. These models will then be
used by SPIN before those models are used as test cases.

Here I will describe the test cases I have created that are used for testing the parser and
the transformation rules. The results will be described when all the test cases have been
described. The tests have been devised by taking a look at the grammar and try to use all
possible test cases for a part of that grammar.

34

Testing 4.3 Promela Test Cases

Proctype Test Case

The proctypes are tested by a Promela model having a number of different processes
that all contain one print statement as their body. All proctypes differ in activity and
multiplicity at the start of the simulation of the model. Another difference is that a proctype
can have a list of parameters and a priority or provided part. This results in twenty-four
different proctypes and all are started in an initial with run statements.

User Defined Type Test Case

The user defined types are tested by adding a few to a Promela model and making them
different in their declaration list which is used by the typedef statement. A user defined
type used inside another user defined type is also one of the possible test cases. The mtype
declarations are tested as well, by using both ways of declaring mtypes and by changing
the values of the mtype variables.

Declaration Test Case

Every declaration has an optional visibility, a type, a name, optional square brackets with
a constant and an optional initializing expression. The expression is every time a constant
number in the test case but all possible combinations of optional and required parts are
used in the test cases for the declarations. Whenever a combination is not allowed in the
Promela language, for instance, an array of unsigned variables, then that combination is
not included in the test cases.

Atomic and d step Test Case

The atomic statement and the d step statement are tested by making two proctypes. One
proctype will contain the atomic or d step and tries to print the value of a variable two
times, whilst another proctype will try to change the value of that variable. When the
Promela model is either simulated or executed, then the same value should be printed twice.
An atomic can also be blocked half way, so this is tested as well by another atomic that
again prints the value of the variable twice, only half way there the atomic sequence will
be blocked and restarted after the variable has changed before printing the second time.

If and Do Test Case

The do and the if statement are tested by having all different kinds of those statements.
Test cases with one or more options, some missing ‘;’ characters at the end. Some test
cases will have else statements in the option followed by other statements and some have
an else statement followed by nothing. The break statement will occur in a few of the do
statement test cases as well.

35

4.3 Promela Test Cases Testing

Expression Test Cases

All the expressions that are possible have been tested by assigning an expression to a vari-
able. This variable is then printed together with the expected value. This resulted in a few
test cases for binary and unary expressions, but tests were also created for all other expres-
sions. The most important tests that involve expressions are the ones that test the priority.
The priorities of the expressions in Promela are given in [19] as can be seen in Figure 4.1.
The test cases will see if the generated Java code abides to the same priorities as the original
Promela code.

Figure 4.1: The order of priorities of expressions from [19]

Sending and Receiving Test Cases

Send and receive statements have been tested by sending a few message to a channel and
then receiving those messages one by one. The idea is that what has been sent must be equal
to what has been received and that will be shown via the print statement.

The receive statement will only be executed if all parts of the message that is to be re-
ceived match with those parts that are expected. The parts that are expected are represented
in a receive statement as a parameter list. This list can contain parts of which there is no
expectation, which can be represented by a name of a variable or an underscore. A name of
variable means that the value of that part of the message that is received will be assigned to
the variable with that name, whilst the underscore means that the corresponding part in the
message can be ignored.

The first test will test normal send and receive statements. Three messages are sent
and then received with a receive statement, that has no part that needs to match. Both the
normal send and receive statement on a buffered channel have a first-in first-out property
which means that the order in which the message are received should be equal to the order
in which the messages were sent. The same test is repeated only now there are parts in the
receive statement that contain underscores or parts that should match up with the message
that should be received.

A sorted send statement will make sure that the message that is send will be placed in
the channel immediately before the message that is greater than the message that is sent.
The sorted send statement is tested by sorted sending a few different messages in a specific

36

Testing 4.3 Promela Test Cases

order. The receive statement will be a normal receive statement and the result should be that
messages are received in a different but correct order.

A random receive statement can take any message in the channel that matches with the
message that is expected. The random receive statement is tested by sending a few different
messages in a normal way and then random receiving the messages and printing them. If
these are executed a number of times then the order of the printed messages should become
different over time.

Receiving a message without removing the message from the channel is also possible
in Promela. This is tested by sending a message to a channel and by receiving the message
without removing, more then once. This indicates that the message is indeed not removed.
The same can be done for random receiving a message without removing the message from
the channel. All the test cases that have used a channel have all been executed twice: once
with a normal buffered channel and once with a rendez-vous channel.

Parts that were Left Out Test Case

The parts of the Promela language that are left out of the compiler as is described in Chap-
ter 5 are also used in a couple of test cases. This is to ensure that those parts can occur in
a Promela model but do not give any faulty result and will simply be ignored. These test
cases contain embedded C code, the xr and xs statements, the assert statement, the trace
and notrace modules and the never claim.

4.3.1 Parser Results

Problems that I found during this test phase were mostly ones that are extensions of the
problems that I found when I ran test programs from the world wide web. The double ‘;’
characters right after each other gave some other problems as well. The “&&” expression
and “||” expression were also giving problems, especially if those statements were combined
with different expressions.

4.3.2 Transformation Results

The first thing that stood out when I ran some of the tests, was the fact that the transfor-
mations on larger files take very long. This is because most of the transformation rules are
all ordered in one kind of rule set. This kind of rule set was applied with the use of the
outermost strategy, which is a built in strategy that walks over an abstract syntax tree and
applies a rule from the rule set. This walk over the entire syntax tree is repeated until no
more rules can be applied to any of the terms in the abstract syntax tree.

During a transformation parts occur in the abstract syntax tree that will remain the same
until the end of the transformations, but the strategy does not know that yet and still walks
over those parts in the abstract syntax tree to see if some of the rules can still be applied.
This is somewhat inefficient and the reason for the compiler for being slow.

The problems that were found in the parser also resulted in problems for the transfor-
mation rules. This means that all transformation rules, that uses the problematic parts of the
parser, needed to be fixed as well.

37

4.4 Transformed Promela to Java Test Cases Testing

4.4 Transformed Promela to Java Test Cases

The test cases that will be described in this section will be test cases for the generated Java
code. The generated code is from the Promela model test cases that were described earlier
in this chapter. Each test case will refer to that model and the results of the test case will be
described here.

Proctype Test Case

The Promela model involved all kinds of proctypes that were slightly different in the way
those are created, but all had a print statement within their bodies to see if those proctypes
are running. An init was there to make sure all proctypes were running. The test case for
this model is not too hard, a simple execution of the Main class of the generated code to see
if all print statements were executed correctly, which would mean that all classes generated
from proctypes were executed. This was indeed the case and no problems were found.

User Defined Type Test Case

The Promela code that corresponds to the user defined type test case was a collection of
various user defined types. Some of the types were nested and there were also a few mtype
declarations. The test case should test some instances of the user defined type and change
all the members and check if those were correctly changed in the corresponding generated
classes. The mtypes should be checked to see if those have the correct value. The function
that returns the name of the mtype should be checked as well.

The only problem that was found had to do with the initializing values of some of the
user defined types. In the generated code the values were all set to zero, whilst this was
not always the case. This could easily be solved by changing the rules that set the field
declarations to zero.

Declaration Test Case

The Promela model that corresponds with this test case contains a lot of declarations. Each
declaration differs a little bit from the others, a different type, a different visibility or the
declaration can be an array declaration. The result is a massive file with approximately
two-hundred different declarations, which are all global. The same number of declarations
were also tested within a proctype, making the declarations local.

The best way to test this is to check if the value of a declaration matches the initializing
value in the Promela model and then change that value into a bunch of different values and
see if the value is cast to the correct value. However, testing this should take a long time, so
for now I will simply inspect the generated class by hand to see if there are any problems.
If there is enough time left then a correct test case can be written to test this.

A few problems caught my attention at once. The array declarations that were being
filled were called with a wrong name the prefix “VAR ” was added twice instead of once.
Another problem was similar to the one found with the user defined test case, the variables

38

Testing 4.4 Transformed Promela to Java Test Cases

that were initialized with a value did not have that in the generated code. This last prob-
lem was solved simultaneously with the problem of the user defined types, because both
problems resulted from the same set of rules.

The other problem with the double prefix was found by following the rules to the place
where a global array declaration with an initializing value was transformed. There are
two kinds of declarations possible during a transformation, a checked or a not checked
declaration. A checked declaration has among other thing its name changed with a prefix.
When an array was filled with a value then a checked declaration was changed into a non-
checked declaration, which means the prefix would be added later again. This was simply
solved by not changing the declaration.

If and do Test Case

The Promela model that corresponds to this test case has several do and if statement, with
either one or more then one optional paths. This test case should check if the correct path
was taken. The easiest way to do this is to add assert(true) statements with the paths
that should be taken and the paths that should not be taken should have the assert(false)
statement.

The problem here was that a while loop was wrapped around the call to the Scheduler
to choose a path. That loop waited until the chosen path did not equal zero anymore. The
actual problem was that whenever the Scheduler chooses the first path then the value zero
would be returned, which will not break the loop and thus the first path would have never
been taken. The set of rules that would set this variable to zero were changed to minus one
to solve this problem. Minus one is also the value that the Scheduler returns when there
was no path executable.

Another problem was found, it was possible for processes to interleave between the
evaluation of the guards and the execution of the guard in the Java code for the Promela
do or if statement. This has now been solved by making the process atomic before the
evaluation starts and the process will no longer be atomic until after the guard has been
executed.

Atomic and d step Test Case

The Promela model of the atomic and d step test case consists of two proctypes, one tries
to print the value of a variable two times whilst being atomic and the other proctype tries
to change that value. The two print statements should print the same value, because the
proctype was atomic at that time. An atomic statement can be blocking, so this was tested
as well by adding a blocking statement in between the print statements, which makes sure
that the two print statements do not print the same value anymore.

The test case will be a look at the output to see if everything worked correctly. There
was a small problem, but that was because of the problem with the do and if statements that
were used, other than that there were no problems.

39

4.4 Transformed Promela to Java Test Cases Testing

Sending and Receiving Test Cases

The sending and receiving test cases were combined because these statements were tested
by first sending a few messages and then trying to receive those messages. Every possible
manner in which a message can be send (fifo and sorted) or received (fifo, random and both
without removing) was tested. A few problems were found during the execution of these
tests.

The first most obvious mistake I found was a typing error. A more interesting fault
occurred when a message was about to be received, but a part of the message should have
been matched to the value of a boolean variable. The fault occurred because the boolean
value was not converted into an integer and thus would not match the integer that was
inside the message that was supposed to be received. This was solved by changing the
transformation rules that belong to this statement. The name of the variable was changed
into an expression that has to have the type used for channel sending. An example of what
went wrong and how that has been solved can be found in Figure 4.2.

Figure 4.2: Finding the error in sending and receiving statements.

Another problem occurred with the receiving without removing the message from the
channel. The problem was that the message was received and not removed, but the message
that stayed behind had become empty. This has happened because the function had indeed

40

Testing 4.5 Conclusion

not removed the message from the channel but a reference to the message in the channel was
returned instead of a duplicate of the message. This was simply resolved by changing the
functions in the class Channel that had this problem by returning a clone of the message.

Expression Test Cases

The expression test cases were tests that involved all possible expressions. All went well
except for the problem that was described earlier with the “&&” and “||” expressions and
the channel operators empty(chan), nempty(chan), full(chan) and nfull(chan). The problems
occurred after some changes in the parser for these expressions. The problem was that a
channel operation would have been evaluated twice which resulted in duplicate variable
names and expressions that block an if statement when that should not be blocking at all.

Knowing now what the problem was I could easily spot where the problem occurred
in the transformation rules. I could then change the rules easily to get no more duplicate
evaluations for those kind of expressions. There were no problems found when the priorities
of the expressions were tested.

Parts that were Left Out Test Case

The parts of the Promela language that are not implemented in the compiler can occur in
a Promela model that needs to be compiled. The idea is that those parts will simply be
ignored, so the corresponding Promela model will have a bunch of statements that will
simply not occur in the generated code. The result should be a practically empty file, which
can be checked by inspecting the class. The result was indeed a practically empty class
which means that the missing parts are correctly ignored inside the compiler.

4.5 Conclusion

I do now, more then ever, understand the importance of testing. I did not have enough time
to test the entire compiler thoroughly. Test cases should have been created in an early stage
of the project. Then these tests could run every time something had changed and found out
if the changes would not fail the test cases.

A lot of test cases resulted in a problem when executed for the first time. This empha-
sizes the fact even more that testing is one of the most important processes in the develop-
ment of a system or application. Luckily, I could solve all problems that I found, but that
does not mean that the compiler is completely error-free. There is still the possibility that
there are errors in my test cases or that my test cases do not completely cover the entire
Promela language.

It would have been nice to have automated test programs to help test the Promela models
and the Stratego results with programs that look and act the same as JUnit [29] or Ant [13].
This would help a lot, but these kinds of programs do not exist just yet. I did however use
JUnit to test most of the Java files, which was a great help.

41

Chapter 5

Compiler

This chapter will describe the parts that have intentionally been left out of the compiler and
how the Promela2Java compiler can be used to create Java code from a Promela model.

5.1 Intentionally Left Out Parts

There are some parts of the Promela language that have not been incorporated in the com-
piler that was built. Parts of the Promela language that are only needed for verification were
intentionally left out, other parts were left out due to lack of time.

Inside a Promela model embedded C code can be used, however, from a validation view
point the use of such code is highly discouraged because those code fragments cannot be
verified by SPIN. Inside C code fragments any C statement is allowed. Consequently, the
entire C language would need to be parsed and transformed into Java in order to incorporate
the embedded C code of the Promela language into the compiler. This was considered out
of scope for the current project.

A Promela model can be verified by the SPIN program, this is usually the main goal
when a Promela model is created. The Promela2Java compiler assumes that the Promela
model was verified by SPIN before an executable application from the model will be cre-
ated. The executable application is more of a simulation then a verification. Therefore, all
the parts of the Promela language that only exist for verification purposes are not included
in the compiler. These parts include the never clause and the xr and xs statements for the
exclusive behavior of channels.

The visibility of variable declarations are also not included in the compiler, because
these are not used in a simulation run. A variable declaration visibility can either be
hidden, show or local. A hidden variable means that the variable is excluded from
the global system state in the verification process of SPIN [17, 19]. A variable that is de-
clared using local means that the variable is used as a local variable but declared globally
in order to be used for verification purposes. A declaration that uses show as its visibility
is being tracked in a message sequence chart displays in the Xspin tool [17, 19]. The prop-
erties hidden, show or local are therefore not useful in the Promela2Java compiler. The

43

5.1 Intentionally Left Out Parts Compiler

visibility of a declaration is remembered by the parser, but will simply be ignored by the
transformation rules.

All the parts that are not included in the compiler will be parsed, but those parts will
be categorized by the parser as “unwanted”. For instance, the never clause is normally
a module of a Promela model (same scope as proctypes and typedef), but because the
never claim is “unwanted”, the parser categorizes the module as an “UnwantedModule”.
This is the case for all the “unwanted” parts, whenever there are statements that are left out
of the compiler, then those statements become “UnwantedStatements”, an expression be-
comes an “UnwantedExpression”, etcetera. Except for the visibility of statements, which
are simply categorized as “Visible"”.

A full list of parts that are not included in the compiler can be found in Table 5.1.
The first part is the actual Promela code and the second part is the category the parser
puts these pieces of code in. Whenever in the future the C code will be implemented then
the parser can simply change the rule CCodeStatement -> UnwantedStatement into the
rule CCodeStatement -> Statement. This means however that wherever the Statement
is dealt within the transformation rules there should be some new rules created that would
deal with C code.

Unneeded Promela Parsed Category
never UnwantedModule
trace UnwantedModule
notrace UnwantedModule
c code module UnwantedModule
c decl UnwantedModule
c state UnwantedModule
c track UnwantedModule
xr UnwantedStep
xs UnwantedStep
assert UnwantedStatement
c code statement UnwantedStatement
last UnwantedVarref
nr pr UnwantedVarref
c expr UnwantedAnyExp
proctypename @ labelname (remote reference) UnwantedAnyExp
np UnwantedAnyExp
enabled UnwantedAnyExp
pc value UnwantedAnyExp
hidden, show and local Visible

Table 5.1: Parts not incorporated in the compiler.

For future incorporation of embedded C code one can have a look at paper [11] in which
Erik D. Demaine describes ways to translate pointers in C to references in Java. This could

44

Compiler 5.2 Installation Instructions

help with accessing the variables that can be declared in embedded C code in the generated
Java code

Sheng Liang describes in [21] how, with some help of the Java Native Interface (JNI),
functions which are implemented in another language, such as C can be called. However,
Sheng Liang suggests that the use of JNI is a very difficult.

5.2 Installation Instructions

This section will describe how to use the compiler and how to get the compiler working.
The files of the compiler are split into three parts: the parser files, the transformation files
and the Java files. These files can be found in Appendix A.1, A.2 and A.3

The compiler uses a couple of other parts to work, so these need to be installed first and
any system requirements on those parts are the system requirements for the entire compiler.

SPIN and Java

There are two parts that are essential to get the compiler working. Of course it is not nec-
essary to have SPIN working, but SPIN is needed to validate your Promela model, because
the compiler will not do that for you. The compiler uses a C preprocessor that is also used
by SPIN as well, so by knowing that SPIN works correctly, means that the C preprocessor
will work correctly as well. SPIN can be found on [17] and installation instruction can be
found there or in [19] as well.

The end product of the compiler is Java code, so it is only natural to assume that Java is
installed before using the compiler. The Java SDK that was used during this project is the
Java SDK 1.5, but any Java SDK that is of a later version should work as well. The Java
SDK and the installation instructions for them can be found on [24].

Stratego/XT

Parts of the Stratego/XT toolset are used in the compiler to parse a Promela file and other
parts are used to create the transformations. That is the reason why some parts of Stratego
need to be installed as well before the compiler can be created. The parts that are needed
for the compiler are:

• aterm-2.5.1

• sdf2-bundle-2.4.1

• strategoxt-0.17

• Java-front 0.9

These parts and the instructions on how to install them, can be found on [31].

45

5.2 Installation Instructions Compiler

5.2.1 Compiler: Parser

When all other parts are installed correctly, then there should be a few things that need to
be done to create the parser of the compiler. First, the grammar needs to be combined into
one file by using the command:

Command A pack-sdf -i Main.sdf -o PromelaPars.def

Main.sdf is the main file in which links to all other files of the grammar. The above
command results into the file PromelaPars.def. The parser is created by using the follow-
ing command:

Command B sdf2table -i PromelaPars.def -o PromelaPars.tbl

The result is not actually a parser but a parse table(PromelaPars.tbl), that is used by
Stratego to parse a file.

5.2.2 Compiler: Transformations

The following commands must be done first, in order create the transformations:

Command C sdf2rtg -i PromelaPars.def | rtg2sig
-o transformer/gener.str

This will create a file gener.str inside the directory transformer that contains all sig-
natures of all used ATerms in the parser. All the files that contain transformation rules will
point to this file. The following command will create the actual transformations:

Command D strc -i generation.str -I /usr/share/java-front/
-I /usr/share /java-front-syntax -la stratego-lib

The generation.str is used as the main file and links to all other files that contain the
transformation rules. The -I option should be used to import or include the two java-front
directories. The locations of those directories might be different on any other computer. The
generated file will be an executable called generation. The output on the screen will keep
informing you when which part is completed successfully. The transformations are now
complete and can be used to create Java code.

5.2.3 Using the Compiler

Compiling a Promela model into Java code can be done in three steps after all previous
installation instructions have been followed. The actual parsing will be done by using the
following commands:

Command E cpp -P -C input.pml | sglri -p PromelaPars.tbl | pp-aterm
-o input.trm

46

Compiler 5.2 Installation Instructions

The input file is the Promela model. The C preprocessor deals with all the “#defines”
and then the output of that is parsed. The pp-aterm is there to create a nice layout for the
results. These were actually three commands and can be separated by using the options -o
outputfile and -i inputfile to create separate output and input files, if no -o option
used, then the output will be printed on to the screen.

The transformation rules can be applied by executing the generation executable, by
using the following command:

Command F ./generation -i input.trm | pp-aterm -o input.trm2

The input file is the file that is used here is the output from the parser. The pp-aterm
is used here again to get a nice layout for the generated file that contains the transformed
abstract syntax tree.

The Java code can be generated by using the following command:

Command G pp-java -i input.trm2 -o Main.java

The input here is the transformed abstract syntax tree from the previous step. The tool
pp-java, from the java-front package of Stratego, is used to generate the actual Java code.
Compiling a Promela model can now be done in one big command pipe line, instead of first
parsing and then transforming, by using the following commands:

Command H cpp -P -C input.pml | sglri -p PromelaPars.tbl |
./generation | pp-java -o Main.java

The input file is now the Promela model and the result will be a file called Main.Java
that will contain the generated Java code and can be used together with the other Java files
in the corresponding directory. An overview of how all files relate to each other can be
found in Figure 5.1

47

5.2 Installation Instructions Compiler

Figure
5.1:O

verview
ofallfiles

during
installation

and
com

pilation.

48

Chapter 6

Example

This chapter will show how a protocol written in Promela is transformed into Java. The
protocol chosen for this example is the ’leader-election using filters’-protocol. This protocol
from [26] was derived from [2]. The filters that James H. Anderson et al. [2] use are shown
in [10].

First, the protocol will be described, together with the Promela implementation of this
model. Subsequently, the Java code generated with the Promela2Java compiler will be
described followed by a comparison.

6.1 The Leader Protocol

The leader-protocol using filters selects a leader between a number of processes by using a
filter. James H. Anderson et al. [2] describe that a filter as described in [10] ascertains that
if m processes enter the filter, at most dm/2e processes and at least one process must leave
the filter successfully.

The filter is described in [2] as a set of execution steps that every process will try to
execute at the same moment in time. The execution steps will involve manipulating two
global variables. Figure 6.1(a) shows how these processes could be connected. It does not
matter how the processes are connected as long as all processes are connected to the shared
variables. The two shared variables are an integer called turn and a boolean variable called
b, which is initially false. All processes have a unique number called p as well.

Every process will copy the value of p to the variable turn. The process will then wait
until the value of b is false and then set b to true allowing other processes to block at this
point. The value of the variable turn is then checked to see if the value is equal to the
unique number of the process p. If these values are equal the process has exited the filter
successfully. If these values are not equal, the process will reset the value of b allowing the
other processes to continue and it will block its own execution; the filter has not been exited
successfully.

To elect one leader, only one process shall leave the filter successfully. This is solved
in [2] by executing the filter a number of times until only one process remains. This has

49

6.2 The Protocol in Promela Example

Figure 6.1: (a) Six processes in a network (b) Progress of the filters.

been effectuated by adding an extra global boolean variable called c and turning the global
variables (including c) into arrays.

The execution steps will now operate upon the array values. All processes will start at
the same moment manipulating the variables at the front of the arrays; the processes having
exited the filter successfully will start their execution steps again, but now at the next place
in the arrays.

Every filter will let at most dm/2e processes exit successfully; after dlog2 me filters only
one process has exited successfully. Checking whether that process is the only process
having exited the filter successfully requires an additional boolean variable and one extra
filter. Figure 6.1(b) shows how a filter phase eliminates approximately half of the processes
before entering the the next filter phase until only one process remains.

6.2 The Protocol in Promela

The Promela model of this protocol has been found in [26] and the Promela model has
been automatically derived from a model written in DVE, which is a low-level modeling
language. The Promela model contains three global variables: an integer array turn and
two boolean arrays b and c. There are six processes in the Promela model and they all will
execute the same code.

The Promela model uses bytes instead of the integers and the booleans. The only addi-
tion to the model is a print statement informing the user which process has won the election.

50

Example 6.3 The Protocol in Java

The implementation of a process inside the Promela model of the leader election with filter
protocol can be found in Figure 6.2.

Figure 6.2: Promela code for a process in the leader election with filter protocol.

6.3 The Protocol in Java

The Java code has been generated using the Promela2Java compiler. The code consists of
a class Main, a class GlobalVars and one class for each of the six processes. The class
Main adds an instance of each of the processes to the scheduler, which in turn will start the
execution of all processes.

The Promela code of the leader protocol consists for the most part of if statements. An
example of a transformation from an if statement in Promela to the corresponding Java code
can be found in Figure 6.3. Every if statement in Promela has been translated into a while
loop evaluating all guards, until at least one guard becomes true. This is followed by a
Java if statement that selects the chosen guard and executes the corresponding sequence,
which includes executing the first guard that has been evaluated before. It should be noted
here that the distinction between evaluating a guard and executing a guard is needed because
guards in Promela are not necessarily side-effect free.

51

6.4 Promela Model Versus Java Code Example

Figure 6.3: A Promela if statement (a) and its corresponding transformed Java code (b)

Apart from the proper translation of the Promela code, one can notice the calls to the
scheduler canExecute() and synchronized(scheduler) needed for proper interleaving.
In addition, an increase in code size is noticeable; this is the subject of the next section.

6.4 Promela Model Versus Java Code

The first thing noticed from looking at the code is the size of the code. The size of a leader
process in the Promela model is approximately 30 lines of code, whereas the Java code con-
tains approximately 540 lines for each process. This has a few reasons, one of which is the
layout of the code. The code generator uses a layout putting every opening and closing curly
brace on a separate line and variable declarations are separated by white lines. Another rea-

52

Example 6.5 Conclusions

son for the increase in the statement count is the following: As seen in the previous section, a
Promela if statement with a single guard consisting of only three lines of Promela code
is transformed into approximately thirty lines of Java code. As the transformed protocol
contains eight if statements per process the blow-up is considerable.

The execution of Java code behaves identical to the simulation in SPIN of the Promela
model: both print the number of the process having been elected to the screen. SPIN will
stop the processes after a given amount of time and claim that a timeout has occurred,
because all processes that not having been elected have blocked.

It turns out that successive executions of the Java code constantly elect the same process
as the new leader, whilst various Promela simulations will not always elect the same process
as the new leader. When the process being consistently elected in the Java execution is
halted before the process executes the filter execution steps, sometimes the next process
or the one after that will be elected. But, surprisingly, the result is never one of the last
processes.

The reason this happened is because the first Thread has finished its execution before
any other Thread has been able to start executing. This has been solved by letting all pro-
cesses wait until a variable in the scheduler has become true and by letting that variable
become true at the end of the main method in the Main class that has to add all proctypes to
the scheduler. The solution has been added to the Promela2Java compiler and the generated
Java code also elects a different process each time.

6.5 Conclusions

The Promela2Java compiler has successfully transformed an example Promela model into
executable Java code. The generated Java code is executable but can also be used in a larger
application of which leader election is only a part.

53

Chapter 7

Related Work

This chapter will portray other efforts to translate Promela into executable code.

7.1 Promela to Java

T.C. Ruys has already put some effort into comparing parts of the Promela language to
parts of the Java language in [27]. The result thereof can be used to construct an automatic
translation from Promela to Java. The slides describe the following mappings for the basic
constructs of the Promela language:

• Process or Proctype→ Thread

• Promela Datatypes→ Corresponding Java Datatypes

• Promela Variables→ Java Variables

The fifth version of the Java language (Java 1.5 [24]) contains some features facilitating
the automatic transformation of the more complicated parts of the Promela language (in
particular the atomicity, synchronization and channel constructs). These constructs are:

• Atomicity→ Lock Interface or Condition Variables

• Global Variables→ Atomic Variables

• Channels→ BlockingQueue

• Rendez-vous Channels→ Exchanger

The Lock Interface allows threads to synchronize their actions, for instance when deal-
ing with d step or atomic statements. The java.util.concurrent package in Java 1.5
contains the classes BlockingQueue and Exchanger. Because those classes will block a
Thread object in the same way a channel blocks a process in Promela, they will be used to
implement Promela channels .

The Lock Interface is one of the possibilities to deal with the synchronization of the
processes or threads. Another possibility is the Metalocking algorithm described in [1].

55

7.2 Promela to Byte-code Related Work

This algorithm ensures mutual exclusive access for Threads in a highly optimized way. The
article [4] proves that the algorithm indeed provides mutual exclusion and freedom from
deadlock. Samik Basu and Scott A. Smolka [4] used the model checker XMC [28] and
proved those properties by modeling the entire algorithm.

Information discussed in the papers [1, 4, 27, 28] was used to create some parts of
the compiler. The proctypes of a Promela model will be represented by Threads and the
BlockingQueue deals with the channels of a Promela model.

7.2 Promela to Byte-code

In [32, 33] Michael Weber describes a Virtual Machine for model checkers. This virtual
machine was designed as a target language for several model checker languages, however,
the author used Promela as a starting point. Constructs in Promela are mapped upon the
instructions of the Virtual Machine. Doing so, the result is not a translation but again a
model checker. Some parts of that system and some tests on this system have been reused
in this project.

7.3 Promela to C

Siegfried Löffler has made an early attempt in [22] to generate an executable implementa-
tion from a Promela model. SPIN itself will transform a Promela model into a C-program
called pan.c. This C-program is then used for simulation and verification purposes. Siegfried
Löffler reuses part of this C-program and has created an extension of SPIN. A scheduler
deals with non-determinism and atomic sequences.

Siegfried Löffler admits that there are some features of Promela missing in his imple-
mentation. The sorted send (!!) and random receive (??) operations of Promela have not
been implemented. The program lacks an implementation of global synchronous channels
as well. The d step statement is not implemented in the program either. At the time these
were new features of SPIN for which the compiler was not intended. Using a scheduler
to deal with the non-determinism and concurrency was implemented by Siegfried Löffler
similarly to the idea of Michael Weber in [32, 33].

56

Chapter 8

Evaluation and Conclusions

I will discuss all the tools that were used during this project. I will also evaluate the the
Promela2Java compiler and what I do and do not like about it. This chapter will also de-
scribe the process I went through for this project: the parts that went well and less well,
the parts that I would do differently looking back and parts that still can be extended to the
Promela2Java compiler in the future.

8.1 Technical Evaluation

8.1.1 Tools

SPIN

SPIN [17, 19] is a model checker and is able to check a model for certain properties. A
model is written in the Promela language and can be used by SPIN in a verification or a
simulation. A model can be created of an existing system or of a design of a system. After a
design is modeled and checked by SPIN, the system still needs to be created by hand. That
is were this project comes into view.

SPIN itself is a program that will give any output back in textual form. There is the
possibility to use Xspin [17, 19] to get a more graphical output when a model is being
checked, but both tools look a bit outdated and could probably use an update. SPIN was
very helpful in this project and in fact should be used before the Promela2Java compiler is
used. SPIN will check if the Promela model, that is about to be transformed, is a correct
Promela model.

The problems I encountered with SPIN are more related to the documentation of the
Promela language [17, 19] than to the actual use of SPIN. There are still a few minor parts
missing in the documentation that should have been described. I do understand that over the
years there were a few additions to the language and probably just not documented or were
not documented clearly enough. I do however believe that I have found most of the parts
that were not described clearly in the documentation of SPIN and the Promela language.

I always had to use a simple text editor whenever I had to write a Promela model or
when I was looking at a Promela model that was created by someone else. I would have

57

8.1 Technical Evaluation Evaluation and Conclusions

been pleased if I have had a text editor that could highlight the keywords of the Promela
language or show erroneous constructions in a Promela model when the model is shown
in the editor. An environment for Promela that behaves just like Eclipse, would have been
nice.

Eclipse and JUnit

Eclipse [14] is an Integrated Development Environment, or better known as an IDE. Eclipse
was used to help create Java code. The environment shows if whatever your typing at the
time is erroneous or correct Java code, content assist can be used as well to automatically
complete Java constructions. This all just makes writing Java code so much easier.

Eclipse was also used in combination with JUnit [29] to create test cases for the Java
code that was created for this project. Executing a JUnit test case from Eclipse is possible
and results are immediately received, because JUnit is integrated as a plug-in in Eclipse.
The integration of JUnit in Eclipse makes creating and executing test cases so much easier,
which is essential in any kind of development.

Stratego/XT

The Stratego/XT toolset [9, 31] was used to create the parser and the transformations, the
java-front package was used and the pretty-printer in that package is used as a code gener-
ator. The parser is generated by writing the grammar of Promela in the SDF format. This
was easy to use, because the SDF grammar turned out to be very similar to the Promela
grammar as was described in the documentation [17, 19].

The transformation rules were written in a simple text editor and those rules were then
used by a tool in the Stratego toolset to generate the transformations. The transformations
can be executed by reading as input the output of the parser, the output of the transfor-
mations could then be used by the pretty-printer (code generator) to generate actual Java
code.

The parser was easily created in comparison to the creation of the transformation rules
because only the different parts that are allowed in the Promela language were necessary
to describe. The transformation rules were a bit harder to create because all the possible
combinations of all the different parts of the Promela language needed to be described. For
each combination there should also be a corresponding piece of Java code and for each piece
of Java code there should be a correct ATerm used or embedded Java code should be used.

The transformation rules were getting large fast, almost 14000 lines of code and al-
though the rules can be separated in different files or modules, getting lost in the code is
still easy. The creation of the executable transformations took more and more time when
the number of transformation rules grew.

What would be nice is if an editor or environment existed that could be used to better
highlight the constructions in the languages used in the SDF grammar and the transforma-
tion rules. The ATerms that are used in the transformation rules that should be highlighted
are dependent on the language that is being transformed and all those ATerms have a sig-

58

Evaluation and Conclusions 8.1 Technical Evaluation

nature description, maybe those signatures can be used to create some sort of dynamic
environment that changes whenever a new signature is added.

8.1.2 Promela2Java Compiler

Use of Compiler

The compiler being split up into three different parts (the parser, the transformations and
the code generator) is great in my opinion. This is nice from a developers point of view,
because every part can be separately executed and tested. However, from a users point of
view, executing all three parts could become a bit repetitive if a lot of Promela models need
to be transformed. This can be easily overcome by using the Linux pipe-line or using a
makefile.

The creation of the transformations executable takes a lot more time then expected.
Transforming a Promela model into Java code also takes a lot longer then expected. This is
because most of the transformation rules are all ordered in one kind of rule set. This kind
of rule set was applied with the use of the outermost strategy, which is a built in strategy
that walks over an abstract syntax tree and applies a rule from the rule set. This walk over
the entire syntax tree is repeated until no more rules can be applied to any of the terms in
the abstract syntax tree.

During a transformation, parts occur in the abstract syntax tree that will remain the same
until the end of the transformations, but the strategy does not know that yet and still walks
over those parts in the abstract syntax tree to see if some of the rules can still be applied.
This is somewhat inefficient and probably the main reason for the compiler being slow and
for the creation of the transformations executable being slow.

The problems users of the Promela2Java compiler can have are expectation problems.
When a random Promela model is being compiled then a user might expect a proper appli-
cation. This however will probably not always be the case.

The reason for this is the use of Promela models in verifications. It is for instance pos-
sible to model an existing problem in the Promela language. The SPIN verification process
can then be used to find a solution to the problem, by finding one path through the model
that conforms to the properties of the solution. This one path holds the solution, however
SPIN looks at all paths to find that solution. If such a Promela model is compiled with the
Promela2Java compiler, then the generated Java code will not contain any verification at all.
This means that an execution of the Promela model will not necessarily execute the path
that holds the solution to the problem, but a different path that does not hold the solution
might be executed.

The reason for this is that the Promela language has the feature that proctypes can in-
terleave each other and a selection (do or if) will choose randomly between all true guards.
A verification process can look at all possibilities and finds the one path with the correct
properties. However, because this feature is available there is the possibility that Promela
code is created for a model of system that depends on this feature.

A solution for this problem could be that an execution option for the generated Java
code can be created that would be guided by an execution trail. A trail can be created with

59

8.2 Project Evaluation Evaluation and Conclusions

SPIN in the verification process of the Promela model and can be used in a SPIN simulation
as a guided simulation to where a property did or did not adhere to a certain property. If
this option is enabled then it would help people that want to follow a path to a certain point
in the execution, but because the option can also be disabled would mean that other models
that depend on the availability of multiple paths have nothing to fear.

Example

The Promela2Java compiler can take in any kind of Promela model and will generate an
executable application, this is great. Another great thing is that the compiler could be used
immediately as can be seen the example in Chapter 6. The Promela2Java compiler has
successfully transformed the leader election protocol into executable Java code. The gener-
ated Java code is immediately executable. The generated code can even be used in a larger
application in which a leader needs to be elected.

8.2 Project Evaluation

8.2.1 Well Done and less Well Done

I can split this project into four phases: the parser phase, the transformation rules phase, the
the test phase and the writing phase. For each of theses phases I will describe what went
well and what did not went as well as it should.

Parser Phase

During the creation of the parser I did not have much problems. One of the hardest parts was
finding out what parts were allowed in the Promela language that were not easily derived
from the grammar of Promela in [17, 19]. Another part which was a little more difficult,
was dealing with ambiguity, because there are a few parts in the grammar, that when parsed
would mean that the result became ambiguous.

Later on I found out there were some problems with the way that I had initially imple-
mented the parser. Changing parts in the grammar to create the solutions for those problems
was not very difficult. Most of the problems were solved by simply adding or changing
small parts in the grammar.

Transformation Rules Phase

Creating the transformation rules was a bit more difficult than creating the parser was. This
was mainly because I did not know much about how Stratego was used. I did not know much
about the parser part either, but all the information I needed was for the parser was described
in the manual of Stratego [9, 31]. There is also a lot of information on how to create the
transformation rules in there as well, but I believe that in the case of the transformation
rules, looking at more running examples would have been better, which was not so much
necessary for the parsing part.

60

Evaluation and Conclusions 8.2 Project Evaluation

If I had looked more toward those examples then I would have find out that there were
more standard strategies that I could have used and examples of how to use them. For
instance, the use of dynamic rules, I did not even know that those rules existed until I was
told about them.

I also underestimated the amount of work. Everything took so much longer then I
thought, especially in comparison to the creation of the parser. And during testing I found
some mistakes that I should have spotted on my own before testing.

Test Phase

I knew before hand that the testing phase should take a lot of time to get as much problems
solved. However, I could not spent as much time testing as I wanted, because the transfor-
mation rules phase did run a bit longer then I thought. That is why I found the most difficult
problems during tests of other people and later on found extensions of those problems in
my own tests.

The hardest part was solving the problems that showed up in the parser. The easier it
was to change parts of the parser the harder it was to change the corresponding parts in the
transformation rules. One part changed in the compiler, meant that at least a dozen more
parts had to be changed in the transformation rules. Other problems that were found were
reasonably easy to find and solve.

Writing Phase

The writing phase was not actually a separate phase, but occurred before, during and after
all the other phases and the result is what you are looking at right now. I am not really
a big fan of writing, but I did quite well for this project if I may say so myself. I started
early with the writing process, and because of that I did not have any problems when the
deadlines arrived. I also have had an extra course “Written English for Technologist” during
my research assignment, to help me along.

I did have some moments of writers block during this project, but by changing my focus
to other parts of my project at those times helped me get through them.

8.2.2 Looking Back

When I look back at what I have been doing during this project I can find a few things that
I would do differently if I had the chance to do it all over again. First of all I would have
changed the way I started with the creation of the transformation rules. I would have looked
into more examples before just simply starting to get things to work.

I would also have started much earlier with testing. Especially, if I would take some
time between the parser phase and the transformation rules phase to test and see if the
parser would work correctly. I also would save all the tests that I have created in order to
see if the results were the ones I expected to see during the creations of the parser and the
transformation rules.

61

8.3 Future Work Evaluation and Conclusions

For the rest of the project I would have done exactly the same, except maybe changing
my attitude a little. Just so much that I would work just a bit harder in the beginning of this
project and that I would expect that creating the transformation rules takes a lot of time.

8.3 Future Work

The obvious part that can be added in the future is the embedded C code. This is the only
thing that is still missing from the compiler that could be useful. This is mainly missing
because of two reasons. One reason is the fact that the use of embedded C code is highly
discouraged, because those pieces of code cannot be verified by SPIN [17, 19]. The other
reason is time, it would simply take to long to incorporate the entire C language in the
Promela2Java compiler as well as incorporate the entire Promela language.

Creating an option that can guide the execution of the generated Java code with the use
of a trail file generated by SPIN could be added in the future, but will probably be very
difficult to implement. The main reason for this is because right now the interleaving of
the different proctypes is dealt with by the Thread scheduler of the Java Virtual Machine.
The interleaving would need to be scheduled in a different manner in order to guide an
execution. The trail would also need to be interpreted by the generated Java code in order
to know which execution path would need to be followed. This would probably mean that
the trail file would also need to be compiled to get a better connection with the generated
Java code.

The amount of time needed to compile a large Promela model into Java code, using the
current version of the compiler, is very large. Any optimizations that can be done to speed
things up are wanted and can be done at a future point in time. A large amount of time is
also needed to create the transformations executable, so probably any optimizations on the
time that is needed to compiler a Promela model will probably also shorten the amount of
time needed to create the transformations executable.

8.4 Conclusions

My intention at the beginning of this project was to create a tool that can translate a Promela
model into an executable application in the Java language. This has been done successfully
by creating a parser and transformation rules with the Stratego/XT tool set. The code gen-
erator from the Java-front package of this tool set has been used as well. The result is
the unique Promela2Java compiler that transforms a model written in Promela into an exe-
cutable Java application.

The example from Chapter 6 shows that the compiler can easily generate executable
Java code from a Promela model. This generated Java code can be used immediately or can
be adapted to be used in a larger application.

62

Bibliography

[1] O. Agesen, D. Detlefs, A. Garthwaite, R. Knippel, Y. S. Ramakrishna, and D. White.
An Efficient Metalock for Implementing Ubiquitous Synchronization. SIGPLAN No-
tices, 34(10):207–222, 1999. Also published in OOPSLA ’99: Proceedings of the 14th
ACM SIGPLAN conference on Object-oriented programming, systems, languages, and
applications.

[2] James H. Anderson, Yong-Jik Kim, and Ted Herman. Shared-memory mutual ex-
clusion: major research trends since 1986. Distributed Computing, 16(2-3):75–110,
2003.

[3] Ian Barland. Promela and SPIN reference. The Connexions Project, 2004.
http://cnx.org/content/m12318/latest/.

[4] Samik Basu and Scott A. Smolka. Model checking the Java metalocking algorithm.
ACM Transactions on Software Engineering and Methodology (TOSEM), 16(3):12,
2007.

[5] Robert V. Binder. Testing Object-Oriented Systems - Model, Patterns, and Tools.
Addison-Wesley, 2000. ISBN 0 201 80938 9.

[6] Grady Booch, James Rumbaugh, and Ivar Jacobson. Unified Modeling Language
Specification. OMG.

[7] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language
User Guide. Addison Wesley, 1998. ISBN 0 201 57168 4.

[8] M. Bravenboer, A. van Dam, K. Olmos, and E. Visser. Transformation with Scoped
Dynamic Rewrite Rules. Fundamenta Informaticae, 69(1–2):123–178, 2006.

[9] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. Strat-
ego/XT 0.16. Components for Transformation Systems. ACM SIGPLAN 2006 Work-
shop on Partial Evaluation and Program Manipulation (PEPM’06).

[10] M. Choy and A. Singh. Adaptive solutions to the mutual exclusion problem. Dis-
tributed Computing, 8(1):1–17, 1994.

63

BIBLIOGRAPHY

[11] Erik D. Demaine. C to java: converting pointers into references. Concurrency: Prac-
tice and Experience, 10(11-13):851–861, 1998.

[12] Alan Dennis, Barbara Haley Wixom, and David Tegarden. Systems Analysis & De-
sign: An Object-Oriented Approach with UML. John Wiley & Sons, Inc., 2002. ISBN
0 471 41387 9.

[13] Apache Software Foundation. The Apache Ant Project. The ANT Homepage.
http://ant.apache.org/.

[14] The Eclipse Foundation. Eclipse. The Eclipse Homepage. http://www.eclipse.org/.

[15] Dick Grune, Henri E. Bal, Ceriel J.H. Jacobs, and Koen G. Langendoen. Modern
Compiler Design. John Wiley & Sons, Ltd., 2000. ISBN 0 471 97697 0.

[16] J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekers. The syntax definition formalism
SDF — Reference manual. SIGPLAN Notices, 24:43–75, 1989.

[17] Gerard J. Holzmann. ON-THE-FLY, LTL Model Checking with SPIN. The SPIN
Homepage. http://www.spinroot.com/.

[18] Gerard J. Holzmann. The Model Checker SPIN. IEEE Transactions on Software
Engineering, 23(5):17, 1997.

[19] Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley Professional, 2003. ISBN 0 321 228628.

[20] Anneke Klepper, Jos Warmer, and Wim Bast. MDA Explained, The Model Driven
Architecture: Practise and Promise. Addison-Wesley, 2003. (ISBN 0 321 19442 X).

[21] Sheng Liang. Java Native Interface: Programmer’s Guide and Specification. Prentice
Hall PTR, 1999. ISBN 0 201 32577 2.

[22] Siegfried Löffler. From Specification to Implementation: A Promela to C Compiler.
Universität Stuttgart and Ecole Nationale Supérieure des Télécommunications, page
135, 1996. http://citeseer.ist.psu.edu/288981.html.

[23] Stephen J. Mellor, Kendall Scott, Axel Uhl, and Dirk Weise. MDA Distilled: Prin-
ciples of Model Driven Architecture. Addison-Wesley, 2004. (ISBN 0 201 78891
8).

[24] Sun Microsystems. The Source for Java Developers. The Java Homepage.
http://java.sun.com/.

[25] Peter D. Mosses. Action Semantics. Cambridge University Press, 1992. ISBN 0 521
40347 2.

[26] ParaDiSe. BEEM: Benchmark for Explicit Model Checkers. Parallel and Distributed
Systems Labaratory. http://anna.fi.muni.cz/models/.

64

BIBLIOGRAPHY

[27] C. Pronk. Promela to Java - Automatic translation. Slides of TU Delft course IN4023:
Advanced Software Engineering, 2007. Adapted with permission from slides of
Twente University by T. C. Ruys.

[28] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka, T. W.
Swift, and D. S. Warren. Efficient model checking using tabled resolution. In Pro-
ceedings of the 9th International Conference on Computer-Aided Verification (CAV
97), 1997.

[29] David Saff, Kent Beck, and Erich Gamma. JUnit. The JUnit Homepage.
http://junit.org.

[30] Edwin Vielvoije. Promela to Java Using a MDA approach. Research Assignment,
2008.

[31] Eelco Visser. Stratego/XT. The Stratego/XT Homepage. http://www.stratego-
language.org/.

[32] Michael Weber. Parallel Algorithms for Verification of Large Systems. RWTH Aachen
- Department of Computer Science, pages 97–106, 2006. http://aib.informatik.rwth-
aachen.de/2006/2006-02.pdf.

[33] Michael Weber. An Embeddable Virtual Machine for State Space Generation. Lecture
Notes in Computer Science - Model Checking Software, 4595:168–186, 2007.

65

Appendix A

Compiler Files

The files that are needed to create the compiler will be described here. The actual files can
be found on: http://members.tele2.nl/edwin.v/

The link Promela2Java Compiler will get you to the place where the files can be found
as well as instructions on how to use them. This can be seen at the top of Figure A.1.

Figure A.1: http://members.tele2.nl/edwin.v/ Website of the Promela2Java Compiler

67

A.1 Parser Files Compiler Files

A.1 Parser Files

The parser consists of a number of files. These separate files are linked together by their
import statements. All the files are inside a directory called parser except for the main
file “PromelaPars.sdf”, that is why the names of all the other files start with the prefix
parser/. The files that are included are:

• PromelaPars.sdf

• parser/Lexical.sdf

• parser/Modules.sdf

• parser/Sequences.sdf

• parser/Statements.sdf

• parser/Declarations.sdf

• parser/Variables.sdf

• parser/Expressions.sdf

A.2 Transformation Rule Files

The parser consists of a number of files. These separate files are linked together by their
import statements. All the files are inside a directory called transformer except for the
main file “generation.str”, that is why the names of all the other files start with the prefix
transformer/.

There are also a couple of files that are simply there for the use of type checking, these
files reside within the Typechecking directory within the transformer directory. These
files that are used for type checking have the prefix transformer/Typechecking/.

A number of files also Java code within some rules, a number of files are added that
simply contain the text Meta([Syntax("Stratego-Java-15")]) and will have the same
filename as the file of the rules that uses Java code except the extension of the file will be
“.meta” instead of “.str”. This is done in order to let Stratego know that these files use
Java code. The files that are included are:

• generation.str

• transformer/Program.str

• transformer/MainPart.str

• transformer/Classes.str

68

Compiler Files A.2 Transformation Rule Files

• transformer/Globalclass.str

• transformer/Executing.str

• transformer/Declarations.str

• transformer/Expressions.str

• transformer/DoIf.str

• transformer/SeparatingLabels.str

• transformer/Labels.str

• transformer/Varref.str

• transformer/Print.str

• transformer/Receiving.str

• transformer/Sending.str

• transformer/Atomic.str

• transformer/Unless.str

• transformer/UnlessAtomic.str

• transformer/PropegateStop.str

• transformer/gener.str

• transformer/NewSignatures.str

• transformer/Inline.str

• transformer/Typechecking.str

• transformer/Typechecking/TypedefCheck.str

• transformer/Typechecking/Separating.str

• transformer/Typechecking/Globalvars.str

• transformer/Typechecking/Localvars.str

69

A.3 Java Files Compiler Files

A.3 Java Files

There are some extra files needed to create a Java application from a Promela Model. These
files will not need to be generated every time a new Promela model is to be transformed.
These files will be the same for every generated Java application from a given Promela
model. The Java classes that will be generated have some dependencies on the following
files and some of those files has some dependencies on the classes that will be generated.
The files reside in the directory JavaCode and the files that are included are:

• JavaCode/Scheduler.java

• JavaCode/Prooctype.java

• JavaCode/Channel.java

• JavaCode/Message.java

70

