<]
TUDelft

Delft University of Technology

Fixing vulnerabilities potentially hinders maintainability

Reis, Sofia; Abreu, Rui; Cruz, Luis

DOI
10.1007/s10664-021-10019-z

Publication date
2021

Document Version
Final published version

Published in
Empirical Software Engineering

Citation (APA)
Reis, S., Abreu, R., & Cruz, L. (2021). Fixing vulnerabilities potentially hinders maintainability. Empirical
Software Engineering, 26(6), Article 127. https://doi.org/10.1007/s10664-021-10019-z

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1007/s10664-021-10019-z
https://doi.org/10.1007/s10664-021-10019-z

Empirical Software Engineering (2021) 26:127
https://doi.org/10.1007/510664-021-10019-z

®

Check for
updates

Fixing vulnerabilities potentially hinders
maintainability

Sofia Reis' © . Rui Abreu? - Luis Cruz3

Accepted: 19 May 2021Published online: 22 September 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

Security is a requirement of utmost importance to produce high-quality software. However,
there is still a considerable amount of vulnerabilities being discovered and fixed almost
weekly. We hypothesize that developers affect the maintainability of their codebases when
patching vulnerabilities. This paper evaluates the impact of patches to improve security on
the maintainability of open-source software. Maintainability is measured based on the Better
Code Hub’s model of 10 guidelines on a dataset, including 1300 security-related commits.
Results show evidence of a trade-off between security and maintainability for 41.90% of the
cases, i.e., developers may hinder software maintainability. Our analysis shows that 38.29%
of patches increased software complexity and 37.87% of patches increased the percentage of
LOC:s per unit. The implications of our study are that changes to codebases while patching
vulnerabilities need to be performed with extra care; tools for patch risk assessment should
be integrate into the CI/CD pipeline; computer science curricula needs to be updated; and,
more secure programming languages are necessary.

Keywords Software security - Software maintenance - Open-source software

1 Introduction

Software quality is important because it is ultimately related to the overall cost of devel-
oping and maintaining software applications, security and safety (Slaughter et al. 1998).

Communicated by: Burak Turhan

P4 Sofia Reis
sofia.o.reis @tecnico.ulisboa.pt

Rui Abreu
rui @computer.org

Luis Cruz

L.Cruz@tudelft.nl

I INESC-ID and IST, University of Lisbon, Lisbon, Portugal
2 INESC-ID and FEUP, University of Porto, Porto, Portugal
3 Delft University of Technology, Delft, The Netherlands

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10019-z&domain=pdf
http://orcid.org/0000-0002-5690-2279
mailto: sofia.o.reis@tecnico.ulisboa.pt
mailto: rui@computer.org
mailto: L.Cruz@tudelft.nl

127 Page2of27 Empir Software Eng (2021) 26:127

Software quality characteristics include, but are not limited to functional correctness,
reliability, usability, maintainability, evolvability and security. Security is an essential
non-functional requirement during the development of software systems. In 2011, the Inter-
national Organization for Standardization (ISO) issued an update for software product
quality ISO/IEC 25010 considering Security as one of the main software product qual-
ity characteristics (International Organization for Standardization 2011). However, there is
still a considerable amount of vulnerabilities being discovered and fixed, almost weekly, as
disclosed by the Zero Day Initiative website!.

Researchers found a correlation between the presence of vulnerabilities on software and
code complexity (Shin et al. 2010; Chowdhury and Zulkernine 2010). Security experts
claim that complexity hides bugs that may result in security vulnerabilities (McGraw 2004;
Schneier 2006). In practice, an attacker only needs to find one way into the system while
a defender needs to find and mitigate all the security issues. Complex code is difficult to
understand, maintain and test (McCabe 1976). Thus, the task of a developer gets more chal-
lenging as the codebase grows in size and complexity. But the risk can be minimized by
writing clean and maintainable code.

ISO describes software maintainability as “the degree of effectiveness and efficiency
with which a software product or system can be modified to improve it, correct it or adapt it
to changes in environment, and in requirements” on software quality ISO/IEC 25010 (Inter-
national Organization for Standardization 2011). Thereby, maintainable security may be
defined, briefly, as the degree of effectiveness and efficiency with which software can
be changed to mitigate a security vulnerability—corrective maintenance. However, many
developers still lack knowledge on the best practices to deliver and maintain secure and
high-quality software (Pothamsetty 2005; Acar et al. 2017). In a world where zero-day
vulnerabilities are constantly emerging, mitigation needs to be fast and efficient. There-
fore, it is important to write maintainable code to support the production of more secure
software—maintainable code is less complex and, consequently, less prone to vulnerabili-
ties (Shin et al. 2010; Chowdhury and Zulkernine 2010)— and, prevent the introduction of
new vulnerabilities.

As ISO does not provide any specific guidelines/formulas to calculate maintainability,
we resort to Software Improvement Group (SIG?)’s web-based source code analysis service
Better Code Hub (BCH)? to compute the software compliance with a set of 10 guidelines/-
metrics to produce quality software based on ISO/IEC 25010 (Visser 2016). SIG has been
helping business and technology leaders drive their organizational objectives by fundamen-
tally improving the health and security of their software applications for more than 20 years.
Their models are scientifically proven and certified (Heitlager et al. 2007; Alves et al. 2010;
Alves et al. 2011; Baggen et al. 2012).

There are other well-known standards and models that have been proposed to increase
software security: Common Criteria (2009) which received negative criticism regarding
the costs associated and poor technical evaluation; the OWASP Application Security Ver-
ification Standard (ASVS) (The OWASP Foundation 2009) which is focused only on
web applications, and a model proposed by Xu et al. (2013) for rating software secu-
rity (arguably, it was one of the first steps taken by SIG to introduce security on their
maintainability model). Nevertheless, our study uses BCH to provide an assessment of

1Zero Day Initiative website available at https:/www.zerodayinitiative.com/advisories/published/ (Accessed
on September 20, 2021)

2SIG’s website: https://www.sig.eu/ (Accessed on September 20, 2021)
3BCH'’s website: https://bettercodehub.com/ (Accessed on September 20, 2021)

@ Springer

https://www.zerodayinitiative.com/advisories/published/
https://www.sig.eu/
https://bettercodehub.com/

Empir Software Eng (2021) 26:127 Page 3 0f27 127

maintainability in software for the following reasons: BCH integrates a total of 10 different
code metrics; and, code metrics were empirically validated in previous work (Bijlsma et al.
2012; Malavolta et al. 2018; Cruz et al. 2019; di Biase et al. 2019).

Static analysis tools (SATs) have been built to detect software vulnerabilities automati-
cally (e.g., FindBugs, Infer, and more). Developers use those tools to locate the issues in the
code. However, while performing the patches to those issues, SATs cannot provide infor-
mation on the quality of the patch. Improving software security is not a trivial task and
requires implementing patches that might affect software maintainability. We hypothesize
that some of these patches may have a negative impact on the software maintainability and,
possibly, even be the cause of the introduction of new vulnerabilities—harming software
reliability and introducing technical debt. Research found that 34% of the security patches
performed introduce new problems and 52% are incomplete and do not fully secure sys-
tems (Li and Paxson 2017). Therefore, in this paper, we present an empirical study on the
impact of patches of vulnerabilities on software maintenance across open-source software.
We argue that tools that assess these type of code metrics may complement SATs with
valuable information to help the developer understand the risk of its patch.

From a methodological perspective, we leveraged a dataset of 1300 security patches col-
lected from open-source software. We calculate software maintainability before and after
the patch to measure its impact. This empirical study presents evidence that changes applied
in the codebases to patch vulnerabilities affect code maintainability. Results also suggest
that developers should pay different levels of attention to different severity levels and classes
of weaknesses when patching vulnerabilities. We also show that patches in programming
languages such as, C/C++, Ruby and PHP, may have a more negative impact on soft-
ware maintainability. Little information is known about the impact of security patches on
software maintainability. Developers need to be aware of the impact of their changes on
software maintainability while patching security vulnerabilities. The harm of maintainabil-
ity can increase the time of response of future mitigations or even of other maintainability
tasks. Thus, it is of utmost importance to find means to assist mitigation and reduce its risks.
With this study, we intend to highlight the need for tools to assess the impact of patches
on software maintainability (Maruyama and Tokoda 2008); the importance of integrating
maintainable security in computer science curricula; and, the demand for better program-
ming languages, designed by leveraging security principles (Kurilova et al. 2014; Nistor
et al. 2013).

This research performs the following main contributions:

— Evidence that supports the trade-off between security and maintainability: developers
may be hindering software maintainability while patching vulnerabilities.

— An empirical study on the impact of security patches on software maintainability (per
guideline, severity, weakness and programming language).

— A replication package with the scripts and data created to perform the empir-
ical evaluation for reproducibility. Available online: https://github.com/TQRG/
maintainable-security.

This paper is structured as follows: Section 2 introduces an example of a security patch
of a known vulnerability found in the protocol implementation of OpenSSL*; Section 3
describes the methodology used to answer the research questions; Section 4 presents the

40penSSL is a toolkit that contains open-source implementations of the SSL and TLS cryptographic
protocols. Repository available at https://github.com/openssl/openssl (Accessed on September 20, 2021)

@ Springer

https://github.com/TQRG/maintainable-security
https://github.com/TQRG/maintainable-security
https://github.com/openssl/openssl

127 Page4of27 Empir Software Eng (2021) 26:127

results and discusses their implications; Section 5 elaborates on the implications developers
should consider in the future; Section 6 enumerates the threats to the validity of this study;
Section 7 describes the different work and existing literature in the field of study; and,
finally, Section 8 concludes the main findings and elaborates on future work.

2 Motivation and Research Questions

As an example, consider the patch of the TLS state machine protocol implementation in
OpenSSL* to address a memory leak flaw found in the way how OpenSSL handled TLS sta-
tus request extension data during session renegotiation, and where a malicious client could
cause a Denial-of-Service (DoS) attack via large Online Certificate Status Protocol (OCSP)
Status Request extensions when OCSP stapling support was enabled. OCSP stapling, for-
mally known as the TLS Certificate Status Request extension, is a standard for checking the
revocation status of certificates.

This vulnerability is listed at the Common Vulnerabilities and Exposures dictionary as
CVE-2016-6304 3. It is amongst the vulnerabilities studied in our research. The snippet, in
Listing 1, presents the changes performed on the ssi/t]_lib.c file® by the OpenSSL develop-
ers to patch the vulnerability. Every SSL/TLS connection begins with a handshake which
is responsible for the negotiation between the two parties. The OSCP Status Request exten-
sion allows the client to verify the server certificate and enables a TLS server to include
its response in the handshake. The problem in CVE-2016-6304 is a flaw in the logic of
OpenSSL that does not handle memory efficiently when large OCSP Status Request exten-
sions are sent each time a client requests renegotiation. This was possible because the
OCSP responses IDs were not released between handshakes. Instead, they would be allo-
cated again and again. Thus, if a malicious client does it several times it may lead to an
unbounded memory growth on the server and, eventually, lead to a DoS attack through
memory exhaustion.

The code changes performed to patch the CVE-2016-6304 vulnerability are presented
in Listing 1. The sk_.OCSP_RESPID pop-free function (@) removes any memory allo-
cated to the OCSP response IDs (OCSP_RESPIDs) from a previous handshake to prevent
unbounded memory growth—which was not being performed before. After releasing the
unbounded memory, the logic condition in ® was shifted to @ which is responsible for han-
dling the application when no OCSP response IDS are allocated. After the patch, in the new
version of the software, the condition is checked before the package processing instead of
after. Thereby, the system avoids the increase of unbounded memory (and a potential DoS
attack).

Patching this vulnerability seems a rudimentary task. Yet, a considerable amount of
changes were performed in the codebase which yielded a negative impact on software main-
tainability. While patching, the developer introduced 6 new lines in a method already with
a large number of lines of code and introduced more complexity to the code with 2 new
branch points, which disrupt two of the guidelines proposed by the Software Improvement
Group (SIG) for building maintainable software (Visser 2016): Write Short Units of Code
and Write Simple Units of Code.

SCVE-2016-6304 details available at http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6304
(Accessed on September 20, 2021)

SCVE-2016-6304 fix available at https:/github.com/openssl/openssl/commit/e408c09bbf7c3057bda4b8d20
bec1b3a7771c15b (Accessed on September 20, 2021)

@ Springer

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6304
https://github.com/openssl/openssl/commit/e408c09bbf7c3057bda4b8d20bec1b3a7771c15b
https://github.com/openssl/openssl/commit/e408c09bbf7c3057bda4b8d20bec1b3a7771c15b

Empir Software Eng (2021) 26:127 Page 50f 27 127

1 |static int ssl_scan_clienthello_tlsext (SSL *s, PACKET =pkt,
int *al) {

2 // [snip]

3 |+ sk_OCSP_RESPID_pop_free(s—>tlsext_ocsp_ids,
OCSP_RESPID_free); @

4 |+ if (PACKET_remaining(&responder_id_list) > 0) {

5 |+ s—>tlsext_ocsp_ids = sk_OCSP_RESPID_new_null();

6 |+ if (s—>tlsext_ocsp_ids == NULL) { @

7 |+ *al = SSL_AD_INTERNAL_ERROR;

8 |+ return 0;

9 |+ }

10 |+ } else {

11 |+ s—>tlsext_ocsp_ids = NULL;

12 |+ 1}

13

14 while (PACKET_remaining(&responder_id_list) > 0) {

15 OCSP_RESPID =*id;

16 PACKET responder_id;

17 const unsigned char xid_data;

18 if (!PACKET_get_length_prefixed_2 (&responder_id_list, &

responder_id) || PACKET_remaining (&responder_id) ==
0) |

19 return O;

20 }

21

22 |- 1if (s—>tlsext_ocsp_ids == NULL

23 | - && (s—>tlsext_ocsp_ids =

24 |- sk_OCSP_RESPID_new_null()) == NULL) { ®

25 |- *al = SSL_AD_INTERNAL_ERROR;

26 |- return 0;

27 |- 1}

28

29 | // [snip]

30 }

Listing 1 Patch provided by OpenSSL developers to the CVE-2016-6304 vulnerability on file ssl/t1_lib.c

Software maintainability is designated as the degree to which an application is under-
stood, repaired, or enhanced. In this paper, our concern is to study whether while improving
software security, developers are also hindering software maintainability. This is important
because software maintainability is approximately 75% of the cost related to a project. To
answer the following three research questions, we use two datasets of security patches (Reis
and Abreu 2017a; Ponta et al. 2019) to measure the impact of security patches on the
maintainability of open-source software.

RQ1: What is the impact of security patches on the maintainability of open-source
software? Often, security flaws require patching code to make software more secure. How-
ever, there is no evidence yet of how security patches impact the maintainability of
open-source software. We hypothesize that developers tend to introduce technical debt in
their software when patching software vulnerabilities because they tend not to pay enough
attention to the quality of those patches. To address it, we follow the same methodology
as previous research (Cruz et al. 2019) and compute the maintainability of 1300 patches
using the Better Code Hub tool. We present the maintainability impact by guideline/metric,
overall score, severity, and programming language.

RQ2: Which weaknesses are more likely to affect open-source software maintainabil-
ity? There are security flaws that are more difficult to patch than others. For instance,

@ Springer

127 Page6of 27 Empir Software Eng (2021) 26:127

1 <p class=’'hint’>

2 <?php

3 |- if (isset ($S_['file’])) echo $_['file’]

4 |+ if (isset (S_[’file’])) echo htmlentities($_[’'file’])
5 2>

6 </p>

Listing 2 Fix provided by nextcloud/server developers to a Cross-Site Scripting vulnerability

implementing secure authentication is not as easy as patching a cross-site scripting vulnera-
bility since the latter can be fixed without adding new lines of code/complexity to the code.
A typical fix for the cross-site scripting vulnerability is presented in Listing 2. The developer
added the function htmlentities to escape the data given by the variable S_[’ file’].
We hypothesize that security patches for different weaknesses can have different impacts on
software maintainability. Understanding which weaknesses are more likely to increase
maintainability issues is one step toward bringing awareness to security engineers of
what weaknesses need more attention. The taxonomy of security patterns used to answer
this question is the one provided by the Common Weakness Enumeration (CWE). Weakness,
according to the Common Weakness Enumeration (CWE) glossary, is a type of code-flaw
that could contribute to the introduction of vulnerabilities within that product. In this study,
maintainability is measured separately for each weakness.

RQ3: What is the impact of security patches versus regular changes on the maintain-
ability of open-source software? Performing a regular change/refactoring, for instance, to
improve the name of a variable or function is different than performing a security patch.
Therefore, we also computed the maintainability of random regular commits using the Bet-
ter Code Hub tool—baseline. We use them to understand how maintainability evolves
when security patches are performed versus when they are not.

3 Methodology

In this section, we discuss the methodology used to measure the impact of security patches
on the maintainability of open-source software. The methodology comprises the following
steps, as illustrated in Fig. 1.

1. Combine the datasets from related work that classify the activities of developers
addressing security-oriented patches (Reis and Abreu 2017b; Ponta et al. 2019). The
duplicated patches were tossed.

2. Extract relevant data (e.g., owner and name of the repository, sha key of the vulnera-
ble version, sha key of the fixed version) from the combined dataset containing 1300
security patches collected from open-source software available on GitHub.

3. Two baselines of regular changes were collected: random-baseline (for each security
commit, a random change was collected from the same project) and size-baseline (for
each security commit, a random change with the same size was collected from the same
project). Our goal is to evaluate the impact of regular changes on the maintainability of
open-source software.

4. Use the Software Improvement Group (SIG)’s web-based source code analysis service
Better Code Hub (BCH) to quantify maintainability for both security and regular com-
mits. BCH evaluates the codebase available in the default branch of a GitHub project.
We created a tool that pulls the codebase of each commit of our dataset to a new branch;

@ Springer

Empir Software Eng (2021) 26:127 Page 7 of 27 127

(1)
SERITY ‘)
SECRENCH @ PATCHES

CONBINED
DATASET ®®

) Recuar ©
ONTA ET AL. CHANGES
(BASELINE)

Fig. 1 Study Methodology

it sets the new branch as the default branch; and, runs the BCH analysis on the code-
base; after the analysis is finished, the tool saves the BCH metrics results to a cache
file.

3.1 Datasets

We use a combined dataset of 1300 security patches which is the outcome of mining and
manually inspecting a total of 312 GitHub projects. The combined dataset integrates two
different works: Secbench Reis and Abreu (2017a, b), and Ponta et al. (2019).

Reis and Abreu (2017a) mined open-source software aiming at the extraction of real—
created by developers—patches of security vulnerabilities to test and assess the performance
of static analysis tools Reis and Abreu (2017a, b) since using hand-seeded test cases or
mutations can lead to misleading assessments of the capabilities of the tools (Just et al.
2014). The study yielded a dataset of 676 patches for 16 different security vulnerability
types, dubbed as Secbench. The vulnerability types are based on the OWASP Top 10 of
2013 (Foundation 2017a) and OWASP Top 10 of 2017 (Foundation 2017b). Each test case
of the dataset is a triplet: the commit before the patching (sha-p), the commit responsible
for the patching (sha), and the snippets of code that differ from one version to another
(typically, called diffs)—where one can easily review the code used to fix the vulnerability.

Ponta et al. (2019) tracked the pivotal.io website for vulnerabilities from 2014 to 2019.
For each new vulnerability, the authors manually searched for references to commits
involved in the patch on the National Vulnerability Database (NVD) website. However,
70% of the vulnerabilities did not have any references to commits. Thus, the authors used
their expertise to locate the commits in the repositories. This technique yielded a dataset of
624 patches (Ponta et al. 2019) and 1282 commits—one patch can have multiple commits
assigned. To fit the dataset in our methodology, we located the first and last commits used
to patch the vulnerability. For these cases, we used the GitHub API to retrieve the dates of
the commits automatically. Then, for each patch, the group of commits was ordered from
the oldest commit to the newest one. We assumed the last commit (newest one) as the fix
(sha) and the parent of the first commit (oldest commit) as the vulnerable version (sha-p).

In this study, we focus on computing the maintainability of the commits before and after
the security patching to evaluate if its impact was positive, negative, or none. The 1300

@ Springer

http://pivotal.io

127 Page8of27 Empir Software Eng (2021) 26:127

patches in the dataset were analyzed using the BCH toolset to calculate their maintain-
ability reports. Due to the limitations of BCH (in particular, lack of language support and
project size) and the presence of floss-refactorings, 331 patches were tossed—explained
in more detail in Section 3.4. The final dataset used in this paper comprises 969 secu-
rity patches from 260 projects. We used the Common Weakness Enumeration (CWE)
taxonomy to classify each vulnerability. For instance, the Fix CVE-2014-1608:
mc_issue_attachment_get SQL injection (00b4cl17’)isa CWE-89: Improper
Neutralization of Special Elements used in an SQL Command (’SQL Injection’)® accord-
ing to the CWE taxonomy. We were able to classify a total of 866 patches using the CWE
taxonomy: the CWE’s for 536 patches were automatically scraped from the National Vulner-
ability Dataset (NVD); while the other 370 patches were manually classified by the authors
following the Research Concepts CWE’s list”. A total of 103 patches were not classified
because we were not able to map the issue to any CWE with confidence due to the lack of
quality information on the vulnerability/patch.

3.2 Security Patches vs. Regular Changes

Previous studies attempted to measure the impact of regular changes on open-source soft-
ware maintainability (Hegedds et al. 2018). However, there is no previous work focused
on comparing the impact of security patches with regular changes on maintainability, only
with bug-fixes (Li and Paxson 2017). We analyze the maintainability of regular changes—
changes not related to security patches—and, use them as a baseline. The baseline dataset
is generated from the security commits dataset, i.e., for each security commit in the dataset,
we collect a random regular change from the same project. We created two different
baselines: random-baseline, considering random changes and all their characteristics; and,
size-baseline, considering also random changes but with an approximate size as security
patches—we argue that comparing changes with considerably different sizes may be unfair.

3.2.1 Random-Baseline

As for the security patches, for each regular change, we need the commit performing the
regular change (sha-reg) and version of the software before the change (sha-reg-p). A ran-
dom commit from the same project is selected for each security patch, sha-reg. The parent
commit of sha-reg is the sha-reg-p.

3.2.2 Size-Baseline

For the size-baseline, we also need to obtain the regular change (sha-reg) and the version
of the software before the change (sha-reg-p). First, our tool calculates the diff between
the security patch and its parent. Second, a random commit/regular change from the same
project is selected, sha-reg. The diff between sha-reg and its parent (sha-reg-p) is calculated.
Then, the regular change diff is compared to the security patch diff. Due to the complexity

7CVE-2014-1608 details available at https:/github.com/mantisbt/mantisbt/commit/00b4c17088fa56594d85
fe46b6c6057bb3421102 (Accessed on September 20, 2021)

8CWE-89 details available at https:/cwe.mitre.org/data/definitions/89.html (Accessed on September 20,
2021)

9Research Concepts list available at https://cwe.mitre.org/data/definitions/1000.html

@ Springer

https://github.com/mantisbt/mantisbt/commit/00b4c17088fa56594d85fe46b6c6057bb3421102
https://github.com/mantisbt/mantisbt/commit/00b4c17088fa56594d85fe46b6c6057bb3421102
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/1000.html

Empir Software Eng (2021) 26:127 Page 9 of 27 127

of some patches, it was not possible to find patches with the exact same number of added

and deleted lines. Thus, we looked for an approximation.) .)
The pair of the reguiar change (sha-reg) and its parent (sha-reg-p) is accepted if the diff

size fits in the range size. This range widens every 10 attempts to search for a change with an
approximate size. We originate the regular changes from the security commits to ensure that
differences in maintainability are not a consequence of characteristics of different projects.

3.3 Bettter Code Hub

SIG—the company behind BCH—has been helping business and technology leaders drive
their organizational objectives by fundamentally improving the health and security of their
software applications for more than 20 years. The inner-workings of their SIG-MM model—
the one behind BCH—are scientifically proven and certified (Heitlager et al. 2007; Alves
et al. 2010; Alves et al. 2011; Baggen et al. 2012).

BCH checks GitHub codebases against 10 maintainability guidelines (Visser 2016) that
were empirically validated in previous work (Bijlsma et al. 2012; Malavolta et al. 2018;
Cruz et al. 2019; di Biase et al. 2019). SIG has devised these guidelines after many years
of experience: analyzing more than 15 million lines of code every week, SIG maintains the
industry’s largest benchmark, containing more than 10 billion lines of code across 200+
technologies; SIG is the only lab in the world certified by TUViT to issue ISO 25010 cer-
tificates'. BCH’s compliance criterion is derived from the requirements for 4-star level
maintainability (cf. ISO 25010) (Alves et al. 2010; Alves et al. 2011; Baggen et al. 2012;
Visser 2016). SIG performs the threshold calibration yearly on a proprietary data set to
satisfy the requirements of TUVIT to be a certified measurement model.

As BCH, other tools also perform code analysis for similar metrics. Two examples are
Kiuwan and SonarCloud. However, Kiuwan does not provide the full description of the
metrics it measures; and, SonarCloud although it provides a way of rating software main-
tainability, the variables description of their formula are not available. Both analyze less
maintainability guidelines than BCH and do not have their inner workings fully and publicly
described.

3.4 Maintainability Analysis

In this research, we follow a very similar methodology to the one presented in previous
work on the maintainability of energy-oriented fixes (Cruz et al. 2019). The inner workings
of BCH were proposed originally in 2007 (Heitlager et al. 2007) and suffered refinements
later (Alves et al. 2010; Alves et al. 2011; Baggen et al. 2012). As said before, the web-based
source code analysis service Better Code Hub (BCH) is used to collect the maintainability
reports of the patches of each project. Table 1 presents the 10 guidelines proposed by BCH’s
authors for delivering software that is not difficult to maintain (Visser 2016) and, maps each
guideline to the metric calculated by BCH. These guidelines are calculated using the metrics
presented in Visser (2020) and are also briefly explained in Table 1. During each guideline
evaluation, the tool determines the compliance towards one guideline by establishing lim-
its for the percentage of code allowed to be in each of the 4 risk severity levels (low risk,
medium risk, high risk, and very high risk). If the project does not violate those thresholds,
then the BCH considers that the code is compliant with a guideline. These thresholds are

0Information available here: https://www.softwareimprovementgroup.com/methodologies/iso-iec-25010-
2011-standard/

@ Springer

https://www.softwareimprovementgroup.com/methodologies/iso-iec-25010-2011-standard/
https://www.softwareimprovementgroup.com/methodologies/iso-iec-25010-2011-standard/

127 Page 10 of 27

Empir Software Eng

(2021) 26:127

Table 1 Guidelines to produce maintainable code

10 Guidelines

Description

Metric

Write Short Units of Code

Write Simple Units of Code

Write Code Once

Keep Unit Interfaces Small

Separate Concerns in
Modules

Couple Architecture Com-
ponents Loosely

Keep Architecture Com-
ponents Balanced

Keep your code

base Small

Automate Tests

Write Clean Code

Limit code units to 15 LOCs
because smaller units are
easier to understand, reuse
and test them

Limit branch points to 4 per
unit because it makes units
easier to test and modify

Do not copy code because
bugs tend to replicate at
multiple places (inefficient
and error-prone)

Limit the number of param-
eters to at most 4 because it
makes units easier to under-
stand and reuse

Avoid large modules
because changes in loosely
coupled databases are easier
to oversee and execute

Minimize the amount of
code within modules that are
exposed to modules in other
components

Balancing the number of
components ease locating
code and allow for isolated
maintenance

Reduce and avoid the sys-
tem size because small prod-
ucts are easier to manage
and maintain

Test your code base because
it makes development pre-
dictable and less risky

Avoid producing software
with code smells because it
is more likely to be main-
tainable in the future

Unit Size: % of LOCs
within each unit (Visser
2020)

McCabe Complexity: # of
decision points (McCabe
1976; Visser 2020)

Duplication: % of redun-
dant LOCs (Visser 2020)

Unit Interfacing: # of
parameters defined in a sig-
nature of a unit (Visser
2020)

Module Coupling: #
of incoming dependencies
(Visser 2020)

Component Indepen-
dence: % of code in
modules classified as
hidden (Visser 2020)

Component Balance: Gini
coefficient to measure the
inequality of

distribution between
components (Visser 2020)

Volume: # of LOCs con-
verted to man-month/man-
year (Visser 2020)

Testability: Ratings aggre-
gation — unit complexity,
component independence
and volume (Visser 2016)
Code Smells: # of Occur-
rences (Visser 2016) (e.g.,
magic constants and long
identifier names)

determined by BCH using their own data/experience—using open-source and closed soft-
ware systems. If a project is compliant with a guideline, it means that it is at least 65% better

than the software used by BCH to calculate the thresholds.'!

Figure 2 shows an example of the report provided by BCH for a project after finishing its
evaluation. The example refers to the OpenSSL CVE-2016-6304 vulnerability patch— as

1 Check the answer to How can I adjust the threshold for passing/not passing a guideline? at https://
bettercodehub.com/docs/faq (Accessed on September 20, 2021)

@ Springer

https://bettercodehub.com/docs/faq
https://bettercodehub.com/docs/faq

Empir Software Eng (2021) 26:127 Page 11 of 27 127

0’211 Write Simple Units of Code X

2] 3 "

S Refactoring candidates Show snoozed

m

c

H4 Lines of Branct

m % v Unit

u] ' Code points

2 [0 ghash-x86_64.pl:$defaultUnit 1285 64

5>

<

; [pefaultNamespace.DefaultClass: :MAIN(int, char) 1268 346

o

x [J aesni-shal-x86_64.pl:sdefaultUnit 1261 63
[aesni-sha256-x86_64.pl:$defaultUnit 1210 63
[] DefaultNamespace.DefaultClass::MAIN(int, char) 1154 329
[DefaultNamespace.DefaultClass: :MAIN(int, charx) 1143 327
[] aesni-mb-x86_64.pl:$defaultUnit 1137 44
[] sha256-mb-x86_64.pl:$defaultUnit 1089 48

LI 2+ A
McCabe of at most 5 McCabe above 10
McCabe above 5 [J McCabe above 25

Threshold Points

Fig. 2 Maintainability report of OpenSSL’s CVE-2016-6304 vulnerability patch for the guideline Write
Simple Units of Code provided by Better Code Hub. This version of OpenSSL does not comply with the
guideline in the example since the bars do not reach the threshold points. This example only complies with
% guidelines (Write Clean Code)

described by Section 2. This version of OpenSSL only complies with 1 out of 10 guidelines:
Write Clean Code.

SIG defines Units as the smallest groups of code that can be maintained and executed
independently (Visser 2016) (e.g., methods and constructors in Java). One of the guide-
lines with which the project does not comply is the one presented in the report (cf. Fig. 2):
Write Simple Units of Code. BCH analyzes this guideline based on the McCabe Complex-
ity (McCabe 1976) to calculate the number of branch points of a method. The bar at the
bottom of the figure represents the top 30 units that violate the guideline, sorted by sever-
ity. The different severities of violating the guideline are indicated using colors, and there
is a legend to help interpret them. The green bar represents the number of compliant branch
points per unit (at most 5), i.e., the number of units are compliant with ISO 25010 (Inter-
national Organization for Standardization 2011). Yellow, orange, and red bars represent
units that do not comply with medium (above 5), high (above 10) and very high (above 25)
severity levels. In the bar, there are marks that pinpoint the compliance thresholds for each
severity level. If the green mark is somewhere in the green bar, it is compliant with a low
severity level.

Aiming to analyze the impact of security patches, we use BCH to compute the
maintainability of two different versions of the project (cf. Fig. 3):

— vg_1, the version containing the security flaw, i.e., before the patch (sha-p);
— vy, the version free of the security flaw, i.e., after the patch (sha);

Security patches can be performed through one commit (single-commit); several consec-
utive commits (multi-commits); or, commit(s) interleaved with more programming activities

@ Springer

127 Page 12 0of 27 Empir Software Eng (2021) 26:127

Refactoring

Security Vulnerability
Flaw Free

AM (vs—1,vs) = M(vs) — M(vs_1)

Fig.3 Maintainability difference for security commits

(floss-refactoring). Only 10.7% of the data points of our dataset involve more than one
commit, the other 89.3% of the cases are single-commit patches. To mitigate the impact of
floss-refactorings, we extracted and manually inspected a random sample with 25% of secu-
rity patches from each dataset. From this sample, we identified 23 floss-refactorings. Most
floss-refactoring patches include many changes making it difficult to understand which parts
involve the security patch. Although we suspect that more floss-refactorings may occur, we
argue that they occur in a small portion of the data.

Due to BCH limitations, in particular, lack of language support and project size by BCH,
308 data points were not analyzed and automatically disregarded from our study. After
performing the BCH analysis and the maintainability calculations, we found the following
limitations regarding two of BCH’s guidelines:

1) For projects with large codebases, the results calculated for the Keep Your Codebase
Small guideline were way above the limit set by BCH (20 person-years). We suspect
this threshold may not be well-calibrated, and hence biasing our results. Thus, we
decided not to consider this guideline in our research.

2) The Automated Tests guideline was also not considered since the tool does not include
two of the most important techniques to security testing: vulnerability scanning and
penetration testing. Instead, it only integrates unit testing.

The BCH tool does not compute the final score that our study needs to compare main-
tainability amongst different project versions. We follow previous work on measuring the
impact of energy-oriented patches (Cruz et al. 2019). Cruz et al. (2019) proposed an equa-
tion to capture the distance between the current state of the project and the standard
thresholds calculated by the BCH based on the insights provided in Olivari (2018). The
equation provided in Cruz et al. (2019) considers that the size of project changes do not
affect the maintainability, and that the distance to lower severity levels is less penalized than
to the thresholds in high severity levels.

Given the violations for the BCH guidelines, the maintainability score is computed M (v)
as follows:

M) =) Mg(v) (1)

geG
where G is the group of maintainability guidelines from BCH (Table 1) and v is the
version of the software under evaluation. M (v) < O indicates that version v is violating
(some of) the guidelines, while M (v) > 0 indicates that version v is following the BCH
guidelines. The maintenance for the guideline g, M, for a given version of a project is

@ Springer

Empir Software Eng (2021) 26:127 Page 13 of 27 127

computed as the summation of the compliance with the maintainability guideline for the
given severity level (medium, high, and very high). The compliance for a severity level
is calculated based on previous work, which calculates the number of lines of code that
comply and not comply with the guideline at a given severity level (Cruz et al. 2019). In our
analysis, we compute the difference of maintainability between the security commit (vy)
and its parent commit (vs_1), as illustrated in Fig. 3. Thus, we can determine which patches
had a positive, negative, or null impact on the project maintainability.

3.5 Statistical Validation

To validate the maintainability differences in different groups of commits (e.g., baseline and
security commits), we use the Paired Wilcoxon signed-rank test with the significance level
o = 0.05 (Wilcoxon 1945). In other words, we test the null hypothesis that the maintainabil-
ity difference between pairs of versions vs_1, v (i.e., before and after a security commit)
come from the same distribution. Nevertheless, this test has a limitation: it does not consider
the groups of commits with zero-difference maintainability. In 1959, Pratt improved the test
to solve this issue, making the test more robust. Thus, we use a version of the Wilcoxon test
that incorporates the cases where maintainability is equal to zero (Pratt 1959). The Wilcoxon
test requires a distribution size of at least 20 instances. To understand the effect-size, as
advocated by the Common-language effect sizes, we compute the mean difference, the
median of the difference, and the percentage of cases that reduce maintainability (McGraw
and Wong 1992).

4 Results & Discussion

This study evaluates a total of 969 security patches and 969 regular changes from 260 dis-
tinct open-source projects. This section reports and discusses the results for each research
question.

RQ1: What is the impact of security patches on the maintainability of open-source
software? In RQI, we report and discuss the impact of patches on open-source soft-
ware maintainability under four groups: guideline, overall score, severity and programming
language.

Guideline/Metric Each patch performs a set of changes on the software’s source code.
These changes may have a different impact on the guidelines/metrics used to measure
software maintainability. Figure 4 shows the impact of security patches on each guideline
individually and the average impact on all guidelines together (M (v)). Under each guide-
line, it is stated the metric used for the calculations. For instance, for the Write Short Units
of Code guideline, the metric used is Unit Size. Table 1 describes in more detail the metrics
behind the guidelines. For each type of guideline, a swarm plot is presented to show the
variability/dispersion of the results alongside the number of absolute and relative cases of
each impact. Next to each type of guideline, it is presented the mean (x) and median (M) of
the maintainability difference and the p-value resulting from the Paired Wilcoxon signed-
rank test. M (v) is not a guideline but rather the average impact of all guidelines. Each point
of the plot represents the impact of a security patch on software maintainability. Red means
the impact was negative, i.e., the patch harmed maintainability. Yellow means the patch did
not have any kind of impact on maintainability. Green means the impact was positive, i.e.,
the patch improved software maintainability.

@ Springer

127 Page 14 of 27 Empir Software Eng (2021) 26:127

® Negative @ None @ Positive

(38.20%) 228 (2353 {30 @S s

Write Short
Units of Code .
Unit Size

[@

Write Simple
Units of Code .
MeCabe Complexity

[

Write Code |
Once «
Duplication
[210 2177 | [231 23 80%)
T e

Keep Unit o
Interfaces Small 1% 9

Unit Interfacing H

205 (2116%)

Separate Concerns
in Modules
Module Conpling

207 (21.36%)

Couple Architecture
onents Loosely
Component Independence

230 (23.74%)

Keep Architecture
Components Balanced
Component Balance

206 (21.26%)

Write Clean
Code
Code Smells

106 (41.90%) [1s8 19.20%)
E:2

—100 108 -1 10 ~10° 0 10° 100 102 10° 10°
AM(vy-1,v8)

Fig.4 Impact of the security patches per guideline and overall mean, M (v). Each point of the plot represents
the impact of a security patch on software maintainability. Red means the impact was negative, i.e., the
patch harmed maintainability. Yellow means the patch did not have any kind of impact on maintainability.
Green means the impact was positive, i.e., the patch improve software maintainability. For instance, in the
Write Short Units of Code guideline, 38.29% of security patches harmed software maintainability; 23.53%
of security patches had no impact on maintainability; and, 38.18% of security patches improved software
maintainability

@ Springer

Empir Software Eng (2021) 26:127 Page 15 0f 27 127

Regarding the impact of security patches per guideline, we observe that 38.7% of the
security patches have positive impact on software maintainability. However, we also see that
patching vulnerabilities have a very significant number of negative cases per guideline—
between 10% and 40%. Write Short Units of Code (38.3%), Write Simple Units of Code
(37.9%), and Separate Concerns in Modules (33.8%) seem to be the most negatively
affected guidelines. This may imply that developers, when patching vulnerabilities, have
a hard time designing/implementing solutions that continue to respect the limit bounds of
branch points and function/module sizes that are recommended by coding practices. Still,
on respecting bound limits, developers also seem not to consider the limit of 4 parameters
per function for the Keep Unit Interfaces Small guideline required by BCH, in 24.8% of the
cases. This guideline is usually violated when the patch requires to input new information
to a function/class, and developers struggle to use the Introduce Parameter Object patch
pattern. Results do not provide statistical significance to the Separate Concerns in Modules
guideline, i.e., results should be read carefully.

Software architecture is also affected while patching vulnerabilities. Both Couple Archi-
tecture Component Loosely and Keep Architecture Components Balanced guidelines suffer
a negative impact of 26.9% and 11.0%, respectively. Component independence and balance
are important to make it easier to find the source code that developers want to patch/improve
and to understand how the high-level components interact with others. However, results may
imply that developers forget to use techniques such as encapsulation to hide implementation
details and make the system more modular.

The Write Code Once guideline results show that duplicated code increased in 17.7%
(171/969) of the patches. Software systems typically have 9%-17% of cloned code (Zibran
et al. 2011). Previous work showed a correlation between code smells and code duplica-
tion (Islam and Zibran 2016) which may also be reflected in the Write Clean Code guideline
results. BCH reported new code smells for 15.0% (145/969) of the patches, which accord-
ing to previous work, may be the source of new software vulnerabilities (Elkhail and Cerny
2019; Li and Paxson 2017) capable of harming the market value and economy of compa-
nies (Telang and Wattal 2007). Developers should never reuse code by copying and pasting
existing code fragments. Instead, they should create a method and call it every time needed.
The Extract Method refactoring technique solves many duplication problems. This makes
spotting and solving the issue faster because you only need to fix the method used instead of
locating and fixing the issue multiple times. Clone detection tools can also help in locating
the issues.

Overall Score (M(v)) Although overall patching vulnerabilities has a less negative impact
on software maintainability guidelines, this is not reflected in the average impact of all
guidelines (M (v)) as we can see in Fig. 4. Remember that each point of the plot repre-
sents the impact of a security patch on software maintainability. Red means the impact
was negative, i.e., the patch harmed maintainability. Yellow means the patch did not have
any kind of impact on maintainability. Green means the impact was positive, i.e., the patch
improved software maintainability. The M (v) plot shows that 406 (41.9%) cases have a neg-
ative impact on software maintainability. While 188 (19.4%) cases have no impact at all,
and 375 (38.7%) have a positive impact on software maintainability. The larger number of
negative cases may be explained by guidelines with higher concentrations of negative cases
with higher amplitudes, such as Write Short Units of Code, Write Simple Units of Code and
Separate Concerns in Modules—more red points on the left, being O the reference point.
The resulting p-value of the Paired Wilcoxon signed-rank test for M (v) is 0.044 (cf. Fig. 4).

@ Springer

127 Page 16 of 27 Empir Software Eng (2021) 26:127

B Positive None I Negative

High
Medium
Low

Unknown 7=-0.22

M=0.00

p=0.036

k T T T T T T
0% 10% 20% 30% 40% 50% 60%

Fig.5 Maintainability difference by vulnerability severity

Since the p-value is below the significance level of 0.05, we argue that security patches may
have a negative impact on the maintainability of open-source software.

Severity Some of the vulnerabilities are identified with Common Vulnerabilities and Expo-
sure (CVE) entries. We leveraged the National Vulnerability Database (NVD) website to
collect their severity levels. In total, we retrieved severity scores for 536 vulnerabilities:
112 High, 395 Medium and 29 Low. Figure 5 presents the impact of security patches per
severity level on the maintainability of open-source software. We observe that patches for
High (50.0%) and Medium (43.8%) severity vulnerabilities hinder more the maintainability
of software than Low (27.6%) severity vulnerabilities. Again, patches have a considerable
negative impact on software maintainability—between 20% and 50%. Statistical signifi-
cance was retrieved only for Low severity vulnerabilities, i.e., Low severity vulnerabilities
may have more cases where software maintainability was improved than the other sever-
ity levels. However, results should not be disregarded because they somehow confirm the
assumption that higher severity vulnerabilities patches may have a more negative impact on
maintainability, i.e., high/medium severity vulnerabilities may need more attention than low
severity while patching.

Programming Language The impact on software maintainability per programming lan-

guage was also analyzed (Fig. 6). We restrict this analysis to programming languages with
at least 20 data points, as this is a requirement for the hypothesis tests. Thus, we compare

@ Springer

Empir Software Eng (2021) 26:127 Page 17 of 27 127

BN Positive None BN Negative

N=159

C/C++ p<0.001

Ruby p=0.042

Objective-C/C++

Python p=0.717

PHP p=0.048

0% 10% 20% 30% 40% 50%

Fig.6 Maintainability difference by programming language

the results for C/C++, Ruby, Java, Objective C/C++, Python and PHP, leaving
Groovy out of the analysis. C/C++, Ruby and PHP are the programming languages with
worse impact on maintainability, i.e., with the highest number of negative cases (46.5%,
46.5% and 38.6%, respectively). Java and Python seem to be less affected by patching,
i.e., integrating a larger amount of cases with positive impact on maintainability (50.9%
and 46.5%, respectively). But overall languages have a considerable amount of cases that
negatively impact maintainability—between 35% to 50%—which confirms the need for bet-
ter/more secure programming languages. Statistical significance was only retrieved for the
C/C++ (p = 2.24x1079), Ruby (p = 0.041) and PHP (p = 0.048) languages. Yet, data
reports very interesting hints on the impact of programming languages on security patches.
We expected the negative impact for programming languages on maintainability to be
more severe, as arguably, poor design of programming languages for security and the lack
of best practices application by developers lead to more buggy/vulnerable code (Ray et al.
2017; Berger et al. 2019). However, Fig. 6 shows that only C/C++ and Ruby have a signif-
icant negative impact approximate to 50% on maintainability. We suspect that these values
are the result of project contributions policies (e.g., coding standards). In our dataset, 9/10
projects with more contributors follow strict contribution policies for code standards.

@ Springer

127 Page 18 of 27

Empir Software Eng (2021) 26:127

. Positive Nome WEE Negative

CWE-691

CWE-693

CWE-281

CWE-261

CWE-664

CWE-707

MISC

0% 10% 20% 30% 40% 50%

(a) Maintainability difference by first-
level weaknesses from the Research Con-
cepts list on Common Weakness Enu-
meration (CWE)

- positive

W Positive None W Negative

CWE-20

CWE-89

CWE-T9

MISC

0% 10% 20% 30% 40%

(b) Maintainability difference by sub-
weaknesses of the Improper Neutraliza-
tion Weakness (CWE-707)

None HEE Negative

CWE-611

CWE-200

CWE-119

CWE-401

CWE-22

MISC

0% 10% 20%

30% 0% 50% 60%

(c) Maintainability difference by sub-
weaknesses of the Improper Control of
a Resource Through its Lifetime Weak-

ness (CWE-664)

Fig.7 Maintainability difference per weakness

@ Springer

Empir Software Eng (2021) 26:127 Page 19 of 27 127

Summary Results show that developers may have a hard time following the guidelines
and, consequently, hinder software maintainability while patching vulnerabilities; and that
different levels of attention should be paid to each guideline. For instance, Write Sim-
ple Units of Code and Write Short Units of Code guidelines are the most affected ones.
No statistical significance was observed for Separate Concerns in Modules. As shown
in Fig. 4, there is statistical significance (p = 0.044 < 0.05) to support our findings:
security patches may have a negative impact on the maintainability of open-source
software. Therefore, tools such as BCH should be integrated into the CI/CD pipelines
to help developers evaluate the risk of patches of hindering software maintainability—
alongside Pull Requests/Code Reviews. Different severity vulnerabilities may need different
levels of attention—high/medium vulnerabilities need more attention (cf. Fig. 5). However,
statistical significance was only observed for low severity vulnerabilities. Better and more
secure programming languages are needed. We observed statistical significance for C/C++,
Ruby and PHP that support that security patches in those languages may hinder software
maintainability (cf. Fig. 6).

RQ2: Which weaknesses are more likely to affect open-source software maintainabil-
ity? In RQ2, we report/discuss the impact of security patches on software maintainability per
weakness (CWE). We use the weakness definition and taxonomy proposed by the Common
Weakness Enumeration (cf. Section 2). Figure 7 shows three different charts. Figure 7-
a, presents the impact of the 969 patches grouped by the first level weaknesses from the
Research Concepts'? list. While the Fig. 7-b and -¢ present the impact on maintainability for
lower levels of weaknesses for the most prevalent weaknesses in Fig. 7-a: Improper Neutral-
ization (CWE-707) and Improper Control of a Resource Through its Lifetime (CWE-664),
respectively.

In Fig. 7-a, there is no clear evidence of the impact on maintainability per weakness.
Yet, it is important to note that overall there is a very considerable number of cases that
hinder maintainability—between 30% and 60%. The CWE-707 and CWE-664 weaknesses
integrate the higher number of cases compared to the remaining ones: 295 (30.4%) data
points and 318 (32.8%) data points, respectively. Thus, we present an analysis of their sub-
weaknesses on Fig. 7-b and -c, respectively.

Results shows that patching vulnerabilities may hinder the maintainability of open-
source software in 4 different sub-weaknesses: Improper Input Validation (CWE-20),
Information Exposure (CWE-200), Missing Release of Memory after Effective Lifetime
(CWE-401) and Path Traversal (CWE-22). Results also show that software maintainabil-
ity is less negatively impacted when patching Improper Restriction of XML External Entity
Reference (CWE-611).

The impact of a patch depends on its complexity, i.e., if the patch adds complexity
to the code base, it is probably affecting the software maintainability. Cross-Site Script-
ing (CWE-79) and Improper Restriction of Operations within the Bounds of a Memory
Buffer (CWE-119) patches endure more cases with no impact on the open-source soft-
ware maintainability. SOL Injection (CWE-89) patches equally hinder and improve software
maintainability. These patches usually follow the same complexity as the CWE-79 patches.
However, the three weaknesses have a considerable amount of cases that hinder the software

12Research Concepts is a tree-view provided by the Common Weakness Enumeration (CWE) website that
intends to facilitate research into weaknesses. It is organized according to abstractions of behaviors instead
of how they can be detected, their usual location in code, and when they are introduced in the development
life cycle. The list is available here: https://cwe.mitre.org/data/definitions/1000.html

@ Springer

https://cwe.mitre.org/data/definitions/1000.html

127 Page 20 of 27 Empir Software Eng (2021) 26:127

maintainability—32.4%, 40.7% and, 41.1%, respectively—which should not be happen-
ing. Typically, CWE-79 vulnerabilities do not need extra lines to be fixed, as shown in
Listing 2—one simple escape function patches the issue. On the same type of fix, CWE-
199 vulnerabilities may also be fixed without adding new source code (e.g., replacing the
strncpy function with a more secure one strlcpy that checks if the buffer is null-
terminated). However, some buffer overflows may be harder to fix and lead to more complex
solutions (e.g., CVE-2016-0799'3). As CWE-199 weaknesses, Missing Release of Memory
after Effective Lifetime (CWE-401) can also be the cause of Denial-of-Service attacks and
difficult to patch since it usually requires adding complexity to the program (cf. Section 2).

Summary Although results did not yield statistical significance, we show preliminary evi-
dence that researchers and developers ought to pay more attention to maintainability when
fixing the following types of weaknesses: Improper Input Validation (CWE-20), Informa-
tion Exposure (CWE-200), Missing Release of Memory after Effective Lifetime (CWE-401)
and Path Traversal (CWE-22).

RQ3: What is the impact of security patches versus regular changes on the maintain-
ability of open-source software? The impact of security and regular changes on software
maintainability is presented in Fig. 8. In this section, we present a comparison of security
patches with two different baselines of regular changes: size-baseline, a dataset of random
regular changes with the same size as security patches—we argue that comparing changes
with considerable different sizes may be unfair; and, random-baseline, a dataset of random
regular changes.

Our hypothesis is that security patches hinder more software maintainability than reg-
ular changes. We have seen, previously, a deterioration in software maintainability when
patching vulnerabilities: 41.9% (406) of patches suffered a negative impact, 38.7% (375)
of patches remained the same, and 19.4% (188) of patches increased software maintain-
ability. For regular changes, when considering the size of the changes (size-basline), we
observe that the maintainability decreases in 27.0% (262) and increases in 30.5% (295) of
the cases. But in contrast to security patches, the maintainability of regular changes remains
the same in 42.5% (412) of the cases, i.e., performing regular changes has a more positive
impact than negative on maintainability. However, no statistical significance was obtained.
Regular changes (random-baseline), with no size restrictions, are less prone to hinder soft-
ware maintainability than security changes. About 34.4% (333) of the regular changes
hinder software maintainability—Iless than in the security patches. For the random-baseline,
statistical significance was retrieved (p = 5.34x107%).

Overall, the results for both baselines show that regular changes are less prone to hinder
the software maintainability of open-source software. However, the size-baseline integrates
a larger number of cases with no impact on software maintainability. We manually inspected
a total of 25 cases from that distribution of regular changes with no impact on maintain-
ability, and found that identifying regular changes with the same size as the security-related
commit is limiting the type of regular commits being randomly chosen: input patches, vari-
ables or functions, type conversion (i.e., changes with no impact on the software metrics
analyzed by BCH). We presume that this phenomenon lead to the significant number of
cases where there is no impact on the software maintainability. On the other hand, identify-
ing regular changes without any restrictions (random-baseline) shows that regular changes

I3CVE-2016-0799 patch details available at https://github.com/openssl/openssl/commit/9cb177301fdab492
edcfef376b28339afe3ef663 (Accessed on September 20, 2021)

@ Springer

https://github.com/openssl/openssl/commit/9cb177301fdab492e4cfef376b28339afe3ef663
https://github.com/openssl/openssl/commit/9cb177301fdab492e4cfef376b28339afe3ef663

Empir Software Eng (2021) 26:127 Page 21 of 27 127

B Positive None I Negative

Security Patches

Regular Changes
(size-baseline)

Regular Changes
(random-baseline)

0% 10% 20% 30% 40%

Fig. 8 Maintainability difference of security patches versus regular changes

have a less negative impact on software maintainability when compared to security patches
and that special attention should be given to security patches.

Summary Security-related commits are observed to harm software maintainability, while
regular changes are less prone to harm software maintainability. Thus, we urge the
importance of adopting maintainability practices while applying security patches.

5 Study Implications

Our results show evidence that developers may have to reduce maintainability for the sake of
security. We argue that developers should be able to patch and produce secure code without
hindering the maintainability of their projects. But there are still concerns that need to be
addressed and that this study brings awareness for:

Follow Best Practices Developers are not paying attention to some quality aspects of their
solutions/patches, as seen in Fig. 4, ending up harming software maintainability. We argue
that developers should design and implement solutions that respect the limit bounds of
branch points and function/module sizes that are recommended by best practices to avoid
increasing the size, complexity, and dependencies of their patches. Developers should also
keep function parameters below the recommended limit. It helps keep unit interfaces small
and easy to use and understand. Patterns such as Introduce Parameter Object are useful
to send information to a new function/class through an object and keep the number of
parameters small and the information well-organized.

Security patches also harm the maintenance of software architecture. Maintaining the
components independence and balance is important to make it easier to find the source
code that developers want to patch/improve and to better understand how the high-level
components interact with others. Applying encapsulation to hide implementation details

@ Springer

127 Page 22 of 27 Empir Software Eng (2021) 26:127

and make the system more modular is a step forward not to hinder software architecture
maintainability.

According to previous research, there is a correlation between code duplication and code
smells (Islam and Zibran 2016)—duplicates are a source of regression bugs. BCH reports
new code smells for 15% of the patches under study which supports previous research—
34% of security patches introduce new problems (Elkhail and Cerny 2019; Li and Paxson
2017). Developers should never reuse code by copying and pasting existing code fragments.
Instead, they should create a method and call it every time needed. The Extract Method
refactoring technique solves many duplication problems. This makes spotting and solving
the issue faster because you only need to fix one method instead of multiple vulnerabilities.
Clone detection tools such as CPD can help on locating duplicates.

Prioritize High and Medium Severity Previous research exhibits proof that developers
prioritize higher impact vulnerabilities (Li and Paxson 2017). Our study shows that vul-
nerabilities of high and medium severity should be prioritized in software maintainability
tasks.

Some Types of Vulnerabilities Need More Attention Our study attempted to shed light
on the impact of different types of vulnerabilities on software maintainability. Overall, all
the CWEs under study present a negative impact over 30% on software maintainability.
Cross-Site Scripting (CWE-79) and Improper Restriction of Operations within the Bounds
of a Memory Buffer (CWE-119) are less prone to have an impact on open-source soft-
ware maintainability. Developers should pay special attention to Improper Input Validation
(CWE-20), Information Exposure (CWE-200), Missing Release of Memory after Effective
Lifetime (CWE-401) and Path Traversal (CWE-22). However, more research should be
performed to better understand the impact of each guideline on each CWE.

Tools for Patch Risk Assessment Wanted Design debt of one guideline can lead to severe
impacts on the software quality (Zazworka et al. 2011). Some software producers consider
security as a first-class citizen while others do not. As mentioned in previous work, secu-
rity is critical and should be considered as a default feature (Nistor et al. 2013; Kurilova
et al. 2014; McGraw 2004). However, the lack of experts and awareness of developers for
security while producing/patching software leads companies to ship low-quality software.
Providing automated tools to developers to assess the risk of their patches is essential to
help companies shipping software of higher quality. Bryan O’Sullivan, VP of Engineering at
Facebook, advocated for new computer science risk models to detect vulnerabilities in scale
and predict the level of security of the software under production in his talk “‘Challenges in
Making Software Work at Scale”” at FaceTAV’20.

Tools like Better Code Hub can complement static analysis (e.g., SonarQube, Codacy,
ESLint, Infer, and more) to provide more information to security engineers on the vulner-
abilities per se and the risk of their patches —alongside pull requests/code reviews. Static
code analysis may be daunting due to the number of rules and different effects on main-
tainability. BCH claims to use the top-10 of the guidelines with the highest effects on
maintainability. Yet, static analysis can be used to complement the BCH analysis by intro-
ducing the capability of vulnerability detection and support the prediction and prevention
of the risk of a patch of hindering maintainability.

Computer Science Curricula Needs to be Updated: Computer Science curricula is not yet
prepared to properly educate students for maintainable security. Students should be exposed

@ Springer

Empir Software Eng (2021) 26:127 Page 23 of 27 127

to this problem to gain experience with it. Curricula should focus on the production of secure
and maintainable code and alert to the 2 trade-off between both. These matters should be
discussed and presented to students in software engineering courses. Universities should
also encourage students to use code quality analysis tools such as BCH or similar ones.
These tools have a great potential to make students aware of maintainability issues and
beginner mistakes (e.g., coding practices violation).

Secure Programming Languages by Design: In general, our study shows that there is
over 35% of patches with negative impact on software maintainability per programming
language. Developers implementing code in C/C++, Ruby and PHP should pay extra
care to their solutions/patches. In addition, programming languages should provide new
design patterns to easily patch security weaknesses without endangering maintainability.
Ultimately, new programming languages, both secure and maintainable by design, such as
Wyvern (Nistor et al. 2013; Kurilova et al. 2014), should be designed to help developers
be less vulnerability prone when writing and maintaining secure applications. One exam-
ple is the need for designing new authorization mechanisms since these are one of the most
complex security features to implement.

6 Threats to Validity
This section presents the potential threats to the validity of this study.

Construct Validity The formula to calculate the maintainability value (M (v)) was inferred
based on the BCH’s reports. The high amount of different projects and backgrounds may
require other maintainability standards. However, BCH does use a representative benchmark
of closed and open-source software projects to compute the thresholds for each maintain-
ability guideline (Visser 2016; Baggen et al. 2012). Maintainability is computed as the
mean of all guidelines. Different software versions (vulnerable/fixed) of one vulnerability
may have the same overall score and still be affected by different guidelines. Therefore,
we provide an analysis per guideline, and our results are all available on GitHub for future
reproductions and deeper analysis.

Internal Validity The security patches dataset provided by previous work (Reis and Abreu
2017a) was collected based on the messages of GitHub commits produced by project
developers to classify the changes performed while patching vulnerabilities. This approach
discards patches that were not explicit in commits messages. We assume that patches were
performed using a single commit or several sequentially. The perspective that a developer
may quickly perform a patch and later proceed to the refactor is not considered. We assume
that all patches were only performed once. Depending on the impact of the vulnerabil-
ity in the system, some vulnerabilities may have more urgency to be patched than others.
For instance, a vulnerability performing a Denial-of-Service attack that usually brings
entire systems down may be more urgent to patch than a cross-site scripting vulnerability
which generally does not have an impact on the execution of the system but rather on the
data accessibility. We manually inspected 25.1% of the security patches looking for floss-
refactorings—122 from each dataset. We did find 23 cases we argue to be floss-refactorings
and toss them to minimize the impact of this threat.

Baseline commits are retrieved randomly from the same project as the security patch.
This approach softens the differences that may result from the characteristics of each

@ Springer

127 Page 24 of 27 Empir Software Eng (2021) 26:127

project. However, maintainability may still be affected by the developers’ experience,
coding style, and software contribution policies which are not evaluated in this study. Fur-
thermore, this evaluation considers that 969 regular commits—any kind of commit—are
enough to alleviate random irregularities in the maintainability differences of the baseline.

External Validity The BCH tool uses private and open-source data to determine the thresh-
olds for each guideline. We only analyze patches of open-source software. Thus, our
findings may not extend to private/non-open source software. Different programming lan-
guages may require different coding practices to address software safety. The dataset
comprises more commits in Java, i.e., the dataset may not be representative of the population
regarding programming languages. For both datasets, manual validation of the message of
the commits was performed. Only commits in English were considered. Thus, our approach
does not consider patches in any other language but English.

7 Related Work

Many studies have investigated the relationship between patches and software quality. Pre-
vious work focused on object-oriented metrics has evaluated the impact of patches and
exhibited proof that quantifying the impact of patches on maintainability may help to choose
the appropriate patch type (Kataoka et al. 2002). In contrast to this work, Heged(s et al.
(2018) did not select particular metrics to assess the effect of patches. Instead, statisti-
cal tests were used to find the metrics that have the potential to change significantly after
patches.

Researchers performed a large-scale empirical study to understand the characteristics of
security patches and their differences against bug fixes (Li and Paxson 2017). The main
findings were that security patches are smaller and less complex than bug fixes and are
usually performed at the function level. Our study compares the impact of security patches
on software maintainability with the impact of regular changes.

Studying the evolution of maintainability issues during the development of Android apps,
(Malavolta et al. 2018) discovered that maintainability decreases over time. Palomba et al.
(2018) exhibits proof that code smells should be carefully monitored by programmers since
there is a high correlation between maintainability aspects and proneness to changes/faults.
In 2019, Cruz et al. (Cruz et al. 2019) proposed a formula to calculate maintainability based
on the BCH’s guidelines and measured the impact of energy-oriented fixes on software
maintainability. Recent work proposed a new maintainability model to measure fine-grained
code changes by adapting/extending the BCH model (di Biase et al. 2019). Our work uses
the same base model (SIG-MM) but considers a broader set of guidelines. Moreover, we
solely focus on evaluating the impact of security patches on software maintainability.

Researchers investigated the relationship between design patterns and maintainabil-
ity (Hegedds et al. 2012). However, other studies show that the use of design patterns may
introduce maintainability issues into software (Khomh and Gueheneuce 2008). Yskout et. al
did not detect if the usage of design patterns has a positive impact but concluded that devel-
opers prefer to work with the support of security patterns (Acar et al. 2017). The present
work studies how security weaknesses influence maintainability for open-source software.

There are studies that investigated the impact of programming languages on software
quality Ray et al. (2014, 2017). The first one shows that some programming languages are
more buggy-prone than others. However, the authors of the second one could not repro-
duce it and did not obtain any evidence about the language design impact. Berger et al.

@ Springer

Empir Software Eng (2021) 26:127 Page 25 of 27 127

(2019) tried to reproduce Ray et al. (2014, 2017) and identified flaws that throw into
distrust the previously demonstrated a correlation between programming language and soft-
ware defects. Our work studies how security patches affect software quality based on the
code maintainability analysis and provides shows that programming languages may have an
impact on maintainability.

8 Conclusion and Future Work

This work presents an empirical study on the impact of 969 security patches on the main-
tainability of 260 open-source projects. We leveraged Better Code Hub reports to calculate
maintainability based on a model proposed in previous work (Olivari 2018; Cruz et al.
2019). Results show evidence of a trade-off between security and maintainability, as 41.9%
of security patches yielded a negative impact. Hence, developers may be hindering soft-
ware maintainability while patching vulnerabilities. We also observe that some guidelines
and programming languages are more likely to be affected than others. The implications of
our study are that changes to codebases while patching vulnerabilities need to be performed
with extra care; tools for patch risk assessment should be integrated into the CI/CD pipeline;
computer science curricula need to be updated; and more secure programming languages
are necessary.

As future work, the study can be extended in several directions: investigate which
guidelines affect most the maintainability per weakness; check if vulnerability patches are
followed by new commits and how much time does it take to do it; expand our methodology
with other software quality properties; validate these findings with closed/private software;
and, expand this analysis to other quality standards.

Acknowledgements We thank SIG’s Better Code Hub team for all the support as well as help in validating
our methodology and results; and, Pedro Adao for the invaluable feedback in the early stages of the project.

This work is financed by National Funds through the Portuguese funding agency, FCT - Fundacdo para a
Ciéncia e a Tecnologia with reference UIDB/50021/2020, a PhD scholarship (ref. SFRH/BD/143319/2019),
the Security Aware Project (ref. CMU/TIC/0064/2019)—also funded by the Carnegie Mellon Program—, and
the FaultLocker Project (ref. PTDC/CCI-COM/29300/2017).

References

Acar Y, Stransky C, Wermke D, Weir C, Mazurek ML, Fahl S (2017) Developers need support, too: A
survey of security advice for software developers. In: 2017 IEEE cybersecurity development (SecDev),
pp 22-26. https://doi.org/10.1109/SecDev.2017.17

Alves TL, Correia JP, Visser J (2011) Benchmark-based aggregation of metrics to ratings. In:
2011 Joint conference of the 21st international workshop on software measurement and
the 6th international conference on software process and product measurement, pp 20-29.
https://doi.org/10.1109/IWSM-MENSURA.2011.15

Alves TL, Ypma C, Visser J (2010) Deriving metric thresholds from benchmark data. In: 2010 IEEE inter-
national conference on software maintenance, pp 1-10. https://doi.org/10.1109/ICSM.2010.5609747

Baggen R, Correia JP, Schill K, Visser J (2012) Standardized code quality benchmarking for improving
software maintainability. Softw Qual J 20(2):287-307. https://doi.org/10.1007/s11219-011-9144-9

Berger ED, Hollenbeck C, Maj P, Vitek O, Vitek J (2019) On the impact of programming languages on code
quality. arXiv:1901.10220

Bijlsma D, Ferreira MA, Luijten B, Visser J (2012) Faster issue resolution with higher technical quality of
software. Softw Qual J. 20(2):265-285. https://doi.org/10.1007/s11219-011-9140-0

@ Springer

https://doi.org/10.1109/SecDev.2017.17
https://doi.org/10.1109/IWSM-MENSURA.2011.15
https://doi.org/10.1109/ICSM.2010.5609747
https://doi.org/10.1007/s11219-011-9144-9
http://arxiv.org/abs/1901.10220
https://doi.org/10.1007/s11219-011-9140-0

127 Page 26 of 27 Empir Software Eng (2021) 26:127

Chowdhury I, Zulkernine M (2010) Can complexity, coupling, and cohesion metrics be used as early
indicators of vulnerabilities? In: Proceedings of the 2010 ACM symposium on applied com-
puting, SAC ’10. pp 1963-1969, Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/1774088.1774504

Common Criteria Working Group (2009) Common methodology for information technology security
evaluation. Tech. rep., Technical report, Common Ceriteria Interpretation Management Board

Cruz L, Abreu R, Grundy J, Li L, Xia X (2019) Do energy-oriented changes hinder maintainability? In: 2019
IEEE International conference on software maintenance and evolution (ICSME), pp 2940

di Biase M, Rastogi A, Bruntink M, van Deursen A (2019) The delta maintainability model: Measuring
maintainability of fine-grained code changes. In: 2019 IEEE/ACM international conference on technical
debt (TechDebt), pp 113-122

Elkhail AA, Cerny T (2019) On relating code smells to security vulnerabilities. In: 2019 IEEE 5th intl con-
ference on big data security on cloud (BigDataSecurity), IEEE Intl Conference on High Performance
and Smart Computing, (HPSC) and IEEE intl conference on intelligent data and security (IDS), pp 7-12

Foundation TO (2017) Owasp top 10 - 2017, The ten most critical web application security risks. Tech. rep.,
The OWASP Foundation. Release Candidate

Foundation TO (2017) Owasp top 10 - 2017, The ten most critical web application security risks. Tech. rep.,
The OWASP Foundation. Release Candidate

Hegedtis P, Kadar I, Ferenc R, Gyiméthy T (2018) Empirical evaluation of software maintain-
ability based on a manually validated refactoring dataset. Inf Softw Technol 95:313-327.
https://doi.org/10.1016/j.infsof.2017.11.012

Hegediis P, Ban D, Ferenc R, Gyiméthy T (2012) Myth or reality? analyzing the effect of design patterns
on software maintainability. In: Computer applications for software engineering, disaster recovery, and
business continuity. Springer, Berlin, pp 138-145

Heitlager I, Kuipers T, Visser J (2007) A practical model for measuring maintainability. In: 6th International
conference on the quality of information and communications technology (QUATIC 2007), pp 30-39.
https://doi.org/10.1109/QUATIC.2007.8

International Organization for Standardization (2011) International standard ISO/IEC 25010 systems and
software engineering - systems and software quality requirements and evaluation (SQuaRE) - system
and software quality models

Islam MR, Zibran MF (2016) A comparative study on vulnerabilities in categories of clones and non-cloned
code. In: 2016 IEEE 23rd international conference on software analysis, evolution, and reengineering
(SANER), vol 3, pp 8-14

Just R, Jalali D, Inozemtseva L, Ernst MD, Holmes R, Fraser G (2014) Are mutants a valid substitute for
real faults in software testing? In: Proceedings of the 22nd ACM SIGSOFT international symposium on
foundations of software engineering. ACM, pp 654-665

Kataoka Y, Imai T, Andou H, Fukaya T (2002) A quantitative evaluation of maintainability enhancement
by refactoring. In: International conference on software maintenance, 2002. Proceedings., pp 576-585.
https://doi.org/10.1109/ICSM.2002.1167822

Khomh F, Gueheneuce Y (2008) Do design patterns impact software quality positively? In:
2008 12th European conference on software maintenance and reengineering, pp 274-278.
https://doi.org/10.1109/CSMR.2008.4493325

Kurilova D, Potanin A, Aldrich J (2014) Wyvern: Impacting software security via programming language
design. In: Proceedings of the Sth workshop on evaluation and usability of programming languages and
tools, pp 57-58

Li F, Paxson V (2017) A large-scale empirical study of security patches. In: Proceedings of the 2017 ACM
SIGSAC conference on computer and communications security, CCS *17, pp 2201-2215, Association
for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3133956.3134072

Malavolta I, Verdecchia R, Filipovic B, Bruntink M, Lago P (2018) How maintainability issues of android
apps evolve. In: 2018 IEEE international conference on software maintenance and evolution (ICSME),
pp 334-344. https://doi.org/10.1109/ICSME.2018.00042

Maruyama K, Tokoda K (2008) Security-aware refactoring alerting its impact on code vul-
nerabilities. In: 2008 15th Asia-pacific software engineering conference, pp 445-452.
https://doi.org/10.1109/APSEC.2008.57

McCabe TJ (1976) A complexity measure. IEEE Trans Softw Eng SE-2(4):308-320.
https://doi.org/10.1109/TSE.1976.233837

McGraw G (2004) Software security. IEEE Secur Priv 2(2):80-83

McGraw KO, Wong SP (1992) A common language effect size statistic psychological bulletin.
https://doi.org/10.1037/0033-2909.111.2.361

@ Springer

https://doi.org/10.1145/1774088.1774504
https://doi.org/10.1016/j.infsof.2017.11.012
https://doi.org/10.1109/QUATIC.2007.8
https://doi.org/10.1109/ICSM.2002.1167822
https://doi.org/10.1109/CSMR.2008.4493325
https://doi.org/10.1145/3133956.3134072
https://doi.org/10.1109/ICSME.2018.00042
https://doi.org/10.1109/APSEC.2008.57
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1037/0033-2909.111.2.361

Empir Software Eng (2021) 26:127 Page 27 of 27 127

Nistor L, Kurilova D, Balzer S, Chung B, Potanin A, Aldrich J (2013) Wyvern: A simple, typed, and pure
object-oriented language. In: Proceedings of the 5th Workshop on MechAnisms for SPEcialization, Gen-
eralization and InHerItance, MASPEGHI ’13, pp 9-16, Association for Computing Machinery, New
York, NY, USA. https://doi.org/10.1145/2489828.2489830

Olivari M (2018) Maintainable production: A model of developer productivity based on source code
contributions. Master’s thesis University of Amsterdam

Palomba F, Bavota G, Penta MD, Fasano F, Oliveto R, Lucia AD (2018) On the diffuseness and the impact on
maintainability of code smells: A large scale empirical investigation. Empirical Softw Engg 23(3):1188-
1221. https://doi.org/10.1007/s10664-017-9535-z

Ponta SE, Plate H, Sabetta A, Bezzi M, Dangremont C (2019) A manually-curated dataset of fixes to vulnera-
bilities of open-source software. In: Proceedings of the 16th international conference on mining software
repositories, MSR ’19. IEEE Press, p 383-387. https://doi.org/10.1109/MSR.2019.00064

Pothamsetty V (2005) Where security education is lacking. In: Proceedings of the 2Nd annual conference on
information security curriculum development, InfoSecCD ’05, pp 54-58, ACM, New York, NY, USA.
https://doi.org/10.1145/1107622.1107635

Pratt JW (1959) Remarks on zeros and ties in the wilcoxon signed rank procedures. J Am Stat Assoc
54(287):655-667

Ray B, Posnett D, Devanbu P, Filkov V (2017) A large-scale study of programming languages and code
quality in github. Commun ACM 60(10):91-100. https://doi.org/10.1145/3126905

Ray B, Posnett D, Filkov V, Devanbu P (2014) A large scale study of programming languages
and code quality in Github. In: Proceedings of the 22Nd ACM SIGSOFT international sympo-
sium on foundations of software engineering, FSE 2014, 155-165, ACM, New York, NY, USA.
https://doi.org/10.1145/2635868.2635922

Reis S, Abreu R (2017) A database of existing vulnerabilities to enable controlled testing studies. Int J Secur
Softw Eng (IISSE) 8(3). https://doi.org/10.4018/1JSSE.2017070101

Reis S, Abreu R (2017) Secbench: A database of real security vulnerabilities. In: Proceedings of the
international workshop on secure software engineering in devops and agile development (SecSE 2017)

Schneier B (2006) Beyond fear: Thinking sensibly about security in an uncertain world. Berlin, Springer
Science & Business Media

Shin Y, Meneely A, Williams L, Osborne JA (2010) Evaluating complexity, code churn, and developer
activity metrics as indicators of software vulnerabilities. IEEE Trans Softw Eng 37(6):772-787

Slaughter SA, Harter DE, Krishnan MS (1998) Evaluating the cost of software quality. Commun ACM
41(8):67-73

Telang R, Wattal S (2007) An empirical analysis of the impact of software vulnerability announcements on
firm stock price. IEEE Trans Softw Eng 33(8):544-557

The OWASP Foundation (2009) OWASP application security verification standard 2009 - web application
standard. Tech rep

Visser J (2016) Building maintainable software, java edition: Ten guidelines for future-proof code. O’Reilly
Media, Inc

Visser J (2020) Sig/tUvit evaluation criteria trusted product maintainability: Guidance for producers.
Available: https://bit.ly/3hnYOAm

Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics Bulletin 1(6):80-83

Xu H, Heijmans J, Visser J (2013) A practical model for rating software security. In: 2013 IEEE
seventh international conference on software security and reliability companion, pp 231-232.
https://doi.org/10.1109/SERE-C.2013.11

Zazworka N, Shaw MA, Shull F, Seaman C (2011) Investigating the impact of design debt on software qual-
ity. In: Proceedings of the 2nd workshop on managing technical debt, MTD ’11, pp 17-23, Association
for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/1985362.1985366

Zibran MF, Saha RK, Asaduzzaman M, Roy CK (2011) Analyzing and forecasting near-miss clones in
evolving software: An empirical study. In: 2011 16th IEEE international conference on engineering of
complex computer systems, pp 295-304

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://doi.org/10.1145/2489828.2489830
https://doi.org/10.1007/s10664-017-9535-z
https://doi.org/10.1109/MSR.2019.00064
https://doi.org/10.1145/1107622.1107635
https://doi.org/10.1145/3126905
https://doi.org/10.1145/2635868.2635922
https://doi.org/10.4018/IJSSE.2017070101
https://bit.ly/3hnY0Am
https://doi.org/10.1109/SERE-C.2013.11
https://doi.org/10.1145/1985362.1985366

	Fixing vulnerabilities potentially hinders maintainability
	Abstract
	Introduction
	Motivation and Research Questions
	Methodology
	Datasets
	Security Patches vs. Regular Changes
	Random-Baseline
	Size-Baseline

	Bettter Code Hub
	Maintainability Analysis
	Statistical Validation

	Results & Discussion
	Guideline/Metric
	Overall Score (M(v))
	Severity
	Programming Language
	Summary
	Summary
	Summary

	Study Implications
	Follow Best Practices
	Prioritize High and Medium Severity
	Some Types of Vulnerabilities Need More Attention
	Tools for Patch Risk Assessment Wanted
	Computer Science Curricula Needs to be Updated:
	Secure Programming Languages by Design:

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Related Work
	Conclusion and Future Work
	References

