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Abstract
Quantum circuit simulation is crucial for quantum computing such

as validating quantum algorithms. We present Qymera, a system

that repurposes relational database management systems (RDBMSs)

for simulation by translating circuits into SQL queries, allowing

quantum operations to run natively within an RDBMS. Qymera sup-

ports a wide range of quantum circuits, offering a graphical circuit

builder and code-based interfaces to input circuits. With a bench-

marking framework, Qymera facilitates comparison of RDBMS-

based simulation against state-of-the-art simulation methods. Our

demonstration showcases Qymera’s end-to-end SQL-based execu-

tion, seamless integration with classical workflows, and its utility

for development, benchmarking, and education in quantum com-

puting and data management. A video demonstrating Qymera’s

key features can be found at https://youtu.be/j_fTKnVIV6c.

CCS Concepts
• Computing methodologies→ Simulation tools; Quantum
mechanic simulation; • Information systems → Relational
database model.
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1 Introduction
Quantum computing, heralded as the next frontier of computational

science, promises revolutionary processing power beyond classical

hardware. However, quantum computing remains in its early stages,

known as the Noisy Intermediate-Scale Quantum (NISQ) era, where

quantum hardware is limited by small numbers of qubits and noise.

For instance, Heron
1
, one of IBM’s most performant quantum pro-

cessors, has only 156 qubits and lacks full error correction. In this

landscape, simulation serves as a core mechanism for exploring

and validating quantum technologies, such as advancing quantum

algorithm design, hardware development, and error correction [7].

1
https://docs.quantum.ibm.com/guides/processor-types
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Figure 1: Overview of Qymera

Simulation refers to the use of classical computers to numerically

reproduce the behavior of quantum circuits, tracking the evolution

of quantum states and operations.

Existing simulation frameworks such as Qiskit
2
, PyQuil

3
, Cirq

4
,

typically access data relying on programming languages, e.g., Python.

They require users to specify the simulation methods. To improve

performance, low-level optimizations are needed, such as paral-

lelization and Single-Instruction, Multiple-Data (SIMD) [8]. This

approach can be cumbersome, especially for large-scale simulations,

and places a high burden on developers to fine-tune performance.

Our proposal.We introduce a novel method that utilizes relational
database management systems (RDBMSs) for simulating quantum
circuits. In this approach, quantum circuits—comprising a series

of quantum gates applied to qubits—are represented by storing

qubit and gate information in tables. The simulation process is then

driven by SQL queries that specify the required computations. By

leveraging the declarative nature of RDBMSs, simulation engineers

and database researchers can concentrate on defining the desired

outcomes without delving into the underlying execution details.

RDBMSs then handle the complexity by automatically optimizing

and executing these queries through techniques such as logical and

physical query planning, caching, and hardware-aware techniques

such as parallelism [5].

However, using RDBMSs as an out-of-the-box solution for simu-

lation poses quantum-specific challenges. First, quantum circuits

often involve bit-level operations (e.g., manipulating specific qubits),

which SQL does not natively support. Second, although RDBMS-

based simulation can outperform existing simulation methods for

certain circuits, they are not universally optimal [3]. In our prelimi-

nary experiments with a 2.0 GB memory limit, RDBMS approach

simulated up to 3,118× more qubits than a conventional simulation

method for sparse circuits but performed 14% worse on dense cir-

cuits (see appendix B4, Fig. 10 in [4]). Consequently, it is critical

to identify scenarios where RDBMSs excel by benchmarking them

2
Aer: https://qiskit.github.io/qiskit-aer/

3
https://pyquil-docs.rigetti.com/en/stable/

4
qsim: https://quantumai.google/qsim/cirq_interface
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T1 AS (
  SELECT
    ((T0.s & ~1) | H.out_s) AS s,
    SUM((T0.r * H.r) - (T0.i * H.i)) AS r,
    SUM((T0.r * H.i) + (T0.i * H.r)) AS i
  FROM T0
  JOIN H
    ON H.in_s = (T0.s & 1)
  GROUP BY
    ((T0.s & ~1) | H.out_s)
),

T2 AS (
  SELECT
    ((T1.s & ~3) | CX.out_s) AS s,
    SUM((T1.r * CX.r) - (T1.i * CX.i)) AS r,
    SUM((T1.r * CX.i) + (T1.i * CX.r)) AS i
  FROM T1
  JOIN CX
    ON CX.in_s = (T1.s & 3)
  GROUP BY
    ((T1.s & ~3) | CX.out_s)
),

T3 AS (
  SELECT
    ((T2.s & ~6) | (CX.out_s << 1)) AS s,
    SUM((T2.r * CX.r) - (T2.i * CX.i)) AS r,
    SUM((T2.r * CX.i) + (T2.i * CX.r)) AS i
  FROM T2
  JOIN CX
    ON CX.in_s = ((T2.s >> 1) & 3)
  GROUP BY
    ((T2.s & ~6) | (CX.out_s << 1))
)

SELECT s, r, i FROM T3 ORDER BY s;
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Figure 2: Running example of the SQL translation flow: (a) the input circuit transforming initial state |𝜓 ⟩
0
into final state |𝜓 ⟩

3
,

where horizontal wires represent qubits, and boxes indicate initial, intermediate, and final states; (b) tables for the initial state
|𝜓 ⟩

0
, the H gate, and the CNOT gate; and (c) SQL queries {𝑞1, 𝑞2, 𝑞3} generated for each gate operation in the input circuit, along

with the resulting intermediate tables 𝑇1,𝑇2 and final output table 𝑇3.

against existing simulation methods, rather than applying them

blindly.

We present Qymera, a novel system for simulating quantum

circuits using RDBMSs. Qymera translates quantum circuits into

SQL queries, enabling RDBMS-based simulations. Its key features

include: 1) a graphical circuit builder for intuitive design and pa-

rameterized circuits via Qiskit- or PyQuil-like syntax, 2) a unique

feature of supporting RDBMS-based simulation, alongside state-of-

the-art simulation methods such as state-vector, tensor networks,

e.g., MPS, and LIMDD.
5
and 3) a benchmarking suite for systemati-

cally comparing RDBMS performance against alternative simulators

on a wide range of circuit inputs.

2 Transforming Quantum Circuits into SQL
A quantum circuit consists of a sequence of gates, which operate on

quantum states. Simulating quantum circuits involves translating

the abstract mathematical representation of quantum states and

gates into computational operations.

In this section, we explain how Qymera maps quantum states

and gates to tables and translates circuit operations into SQL queries

while addressing quantum-specific challenges. We walk through

the SQL translation process using a running example in Fig. 2.

2.1 From Quantum States and Gates to Tables
An 𝑛-qubit quantum state is represented as

|𝜓 ⟩ =
2
𝑛−1∑︁
𝑗=0

(
𝑎 𝑗 + 𝑖 𝑏 𝑗

)
| 𝑗⟩ ,

where 𝑗 is an integer index ranging from 0 to 2
𝑛 − 1, | 𝑗⟩ is the

computational basis state (binary strings of length𝑛, such as |0 · · · 0⟩

5
These simulation methods (also known as data representations) are a complex and ac-

tive research area in quantum computing. We provide detailed definitions, explanations

and examples in Appendix A and B1 of our online technical report [4].

to |1 · · · 1⟩). Each basis state | 𝑗⟩ has a complex amplitude 𝑎 𝑗 + 𝑖𝑏 𝑗 ,
where 𝑎 𝑗 and 𝑏 𝑗 are the real and imaginary parts, respectively.

We define the relational schema for a state |𝜓 ⟩ as T(s, r, i),
where 𝑠 is the computational basis state | 𝑗⟩ encoded as an integer,

and 𝑟 and 𝑖 represent the real and imaginary parts of its complex

amplitude, both being real-valued. Only nonzero basis states are

stored.

A quantum gate transforms an input quantum state into an

output state. We represent this transformation in a relational table

that captures the integer indices of the input and output states,

along with their transition amplitudes. We define the relational

schema for a gate as T(in_s, out_s, r, i), where in_s and

out_s denote input and output state indices, and r and i represent

the real and imaginary parts of the transition amplitude.

Example 2.1 (Quantum states and gates as tables). Consider
the circuit shown in Fig. 2a), generating a 3-qubit GHZ state. Initially,
the state is |000⟩, represented as (0, 1.0, 0). A Hadamard gate
mapping input indices to outputs, each with amplitude 1√

2

applied to

the first qubit transforms it into the superposition 1√
2

( |000⟩ + |100⟩),
stored in the relational form as tuples (0, 1√

2

, 0) and (1, 1√
2

, 0).
Subsequent CX gates manipulate the state further by updating the
table to represent resulting intermediate states |𝜓 ⟩

2
and |𝜓 ⟩

3
.

2.2 From Simulation Operations to SQL
Simulating quantum circuits requires bit-level manipulation, since

each gate operates on specific qubits. To enable this in SQL, we

adopt the previously explained integer encoding and apply bitwise
operations (see Table 1) to pinpoint the relevant qubit and perform

bit-level gate operations.

Example 2.2 (H Gate Operation via SQL). Query 𝑞1 in Fig. 2c)
represents the Hadamard gate operation from Fig. 2a). Since the gate
acts on the first qubit, we locate it in T0 using T0.s & ~1 and join
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Bitwise Operation Symbol Description
AND & Bitwise AND of two operands

OR | Bitwise OR of two operands

NOT ~ Inverts bitstring of operand

Left Shift << Shifts bits left by 𝑛 bits.

Right Shift >> Shifts bits right by 𝑛 bits.

Table 1: Bitwise Operations used in the SQL queries

with H table via JOIN H ON H.in_s = (T0.s & 1). The value of s
of the output state is computed as (T0.s & ~1) | H.out_s.

We can see from the above example that by using bitwise opera-

tors in Table 1, we can directly locate and manipulate individual

qubits and directly access and operate on them.

Discussion.We have presented a declarative, SQL-based approach

that specifies what operations gates perform without requiring

users to manage how to implement them. Our work improves ex-

isting methods [2, 6] in the following aspects. First, Blacher et al.

[2] encode gates as tensor computations, often requiring multiple

columns per index dimension, leading to no clear performance ad-

vantage over NumPy, as shown in their experiments. By contrast,

our integer-based encoding leverages bitwise operations, reduc-

ing storage overhead and potentially improving performance. [6]

treats qubit states as strings, which increases storage costs and

complicates indexing. Our approach includes CPU-native bitwise

instructions and the integer indexing of qubit state, enabling more

efficient lookups and compact storage than string-based represen-

tations in [6].

3 System Overview
Qymera is an end-to-end, web-based system demonstrating how

RDBMSs are leveraged for quantum circuit simulation. As depicted

in Fig. 1, it organizes its functionality across four different layers.

3.1 Circuit Layer
Existing frameworks like Qiskit and Cirq offer powerful APIs but

lack intuitive graphical interfaces, limiting accessibility for non-

programmers. Browser-based tools like Quirk
6
and the Quantum

Länd Simulator
7
attempt to bridge this gap but have significant limi-

tations: Quirk, built on JavaScript, supports only 16 qubits and lacks

parameterized circuit support, while the Quantum Länd Simulator

provides a QASM interface with limited and unintuitive handling

of parameterized circuits.

To address these shortcomings, we introduce the Circuit Layer,
shown in Fig. 3a, a flexible, user-friendly interface for quantum

circuit construction and integration. It provides multiple methods

for circuit input, including:

• Graphical Circuit Builder: An intuitive drag-and-drop inter-

face that allows researchers, particularly those new to quantum

computing, to visually construct quantum circuits.

• File Upload: Quantum researchers can upload circuits in stan-

dardized formats, such as JSON, to import pre-defined designs.

• Parameterized Circuit Families: Researchers can define pa-

rameterized circuits programmatically using various APIs.

6
https://algassert.com/quirk

7
https://thequantumlaend.de/quantum-circuit-designer/

3.2 Translation Layer
The Translation Layer, as detailed in Sec. 2, is responsible for con-

verting abstract quantum circuits into executable SQL queries.

• SQL Generation: The translation layer parses the input circuit,

identifies qubits and gates involved, and generates the corre-

sponding SQL queries.

• Gate Representation: Quantum gates are stored as tables en-

coding input-output mappings and transition probabilities.

• Query Optimization: To improve performance, consecutive

gates are fused into single SQL query where possible, minimizing

intermediate results and leveraging database query optimizers.

3.3 Simulation Layer
The Simulation Layer handles the execution of the SQL queries gen-

erated in the Translation Layer. Quantum researchers can manage

simulation runs as shown in Fig. 3b.

• Backend Integration:Qymera executes SQL queries on RDBMS

engines to compute the resulting quantum state or measurement

probabilities. It supports SQLite 2.6.0, and DuckDB 1.1.

• Support for Multiple Methods: Qymera allows quantum and

database researchers to compare database-driven simulations

with alternative simulation methods like tensor network and

state-vector simulators (cuQuantum [1]) or decision diagram

based simulators (MQT DD [9]).

• Parameterized Simulations: Quantum researchers can define

families of circuits with varying parameters, and Qymera auto-

mates simulation across the parameter space.

• Out-of-Core Simulation: For large circuits that exceed memory

capacity, Qymera leverages database features to efficiently man-

age intermediate states and I/O, enabling simulations at scales

beyond traditional in-memory methods.

3.4 Output Layer
The Output Layer, as illustrated in Fig. 3c, provides researchers with

tools to analyze simulation results and benchmarking metrics.

• Simulation Results: The system outputs the final quantum

state, including measurement probabilities.

• Performance Metrics: Execution time, memory usage, and

other relevant metrics are logged and displayed for each sim-

ulation method.

• Visualization Tools: Interactive plots enable the user to ex-

plore the behavior of circuits, compare simulation methods, and

analyze performance across parameterized families of circuits.

• Export and Reporting: Results and visualizations can be ex-

ported for analysis or publication.

TheOutput Layer ensures that researchers derive insights from their

simulations, through detailed analysis and high-level comparisons.

4 Demonstration Scenarios
The demonstration of Qymera will showcase its application in quan-

tum circuit simulation using RDBMSs, serving both as a simulation

method and an infrastructural backbone for circuit exploration. SIG-

MOD attendees will interact with the system through an intuitive

interface as shown in Fig. 3. They can explore Qymera’s ability to

convert quantum circuits into SQL queries, execute them efficiently
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(a) Circuit Panel Tab

(b) Simulation Panel Tab

(c) Visualization Panel Tab

Figure 3: Qymera’s core UI tabs.

within an RDBMS, and benchmark parameterized quantum circuits

using various simulation backends.

The demonstration is structured into the following scenarios.

Quantum Algorithm Design and Testing. This scenario high-

lights how Qymera enables rapid iteration and testing of quantum

algorithms. For example, attendees will construct and analyze a

simple quantum parity check algorithm, which determines whether

the number of ones in a given bitstring is even or odd.

Qymera will translate the algorithm into SQL, execute it within

an RDBMS, and allow attendees to inspect intermediate quantum

states and measure execution performance. Additionally, attendees

can compare the execution with other simulation techniques, such

as state-vector simulation, to assess the trade-offs in performance

and accuracy. This will demonstrate how researchers and develop-

ers can leverage Qymera to refine quantum algorithms efficiently

and select the optimal simulation method for their needs. Simula-
tion Method Benchmarking. Benchmarking different quantum

circuit simulators is crucial for assessing performance trade-offs.

In this scenario, attendees will evaluate the efficiency of various

simulation backends using a GHZ state preparation circuit and an

equal superposition of all possible states as test cases. The system

will execute the circuit across different simulation approaches as

introduced in Sec. 3.

Performance metrics, including execution time, and memory us-

age, will be analyzed, providing insights into the strengths and lim-

itations of each simulator. This comparative analysis will highlight

the conditions under which SQL-based simulation is advantageous

and when alternative simulators may be preferable.

Educational Exploration of Quantum Computing Concepts.
Qymera also serves as a tool to explore fundamental quantum

computing principles. This scenario will focus on illustrating en-

tanglement and superposition using the GHZ state as a case study.

Attendees will construct a circuit, observe the evolution of quantum

states through SQL queries, and explore measurement outcomes.

By interacting with Qymera, SIGMOD attendees will develop a

deeper understanding of quantum mechanics concepts.

To further enhance educational effectiveness, Qymera will in-

tegrate interactive visualizations explicitly focused on quantum

states and gate operations. Specifically quantum states visually

represented as Block spheres and how they evolve upon applying

different gates in the graphical circuit builder. This scenario is de-

signed to provide a conceptual and interactive learning experience,

making quantum computing principles more accessible.

Through the above scenarios, participants will gain a compre-

hensive understanding of Qymera, including its novel SQL-based

approach to quantum circuit simulation, its role in benchmarking

different simulation methods, and its educational potential.
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