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1. Het snelheidsverschil over en de breedte van een ondiepe menglaag bepalen

nict de waarde, maar de groeisuelheid van de grootte en de intensiteit van
horizontale coherente structuren in de menglaag.

Dit proefschrift.

. Horizontale coherente structuren in ecn ondiepe menglaag komen voort uit

grootschalige componenten van de bodemturbulentie.

Dit proefschrift.

. Voor de voorspelling van de breedteontwikkeling van de menglaag is gede-

tailleerde kennis over de ontwikkeling van horizontale coherente structuren
in de menglaag niet noodzakelijk.

Dit proefschrift.

4. De impulsoverdracht tussen de hoofdgeul en de uviterwaard van een rivier

wordt niet bepaald door secundaire stroming.
Dit proefschrift,

in reactie op Shiono&Knight, Journal of Fluid Mechanics, Vol. 222, 1991.
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. Monientane stromingsgrootheden als de waterdiepte en de stroomsnelheid

bepalen nict de waarde, maar de groeisnelheid van de hoogte van rivier-
duinen tijdens een hoogwatergolf.

In reactie op Julien & Klaassen, Journal of Hydraulic Engineering Vol.121(9),1995.

. De kosten van de uitgifte van wetenschappelijke publicaties dienen niet

verhaald te worden op de lezers, maar op de auteurs.

. Wetenschappers hebben liever een verre vriend op hun eigen vakgebied

dan een goede buur op een aanverwant vakgebied.

. De complexiteit van de presentatie van een computersimulatie is een goede

indicatie voor de onnauwkeurigheid van de simulatie.

. Vanwcege de grote draagwijdte van lage tonen en de geringe draagwijdte

van hoge tonen wordt de nit auto’s afkomstige moderne popmuziek te vaak
als eentonig bestempeld.

Het als zodanig studeren van hoge noten (hoger dan g3) op een trompet
is vergeefse moeite. Het uit den treure studeren van lage noten (lager dan
f#0) geeft uiteindelijk het beoogde resultaat.

Deze stellingen worden verdedigbaar geacht en zijn als zodanig goedgekeurd door de
promotor prof. dr ir J.A. Battjes.



PROPOSITIONS
additional to the thesis
Shallow Mixing Layers

of

Bram vau Prooijen

Delft, 1 March 2004

1. The velocity difference over and the width of a shallow mixing layer do
not determine the values but the growth rates of the size and intensity of
horizontal coherent structures in the mixing layer.

This thesis.

2. Horizontal coherent structures in a shallow mixing layer are initiated by
large scale components of the bottom turbulence.

This thesis.

3. Detailed knowledge of the development of horizontal coherent structures
is not required for the prediction of the development of the width of a
shallow mixing layer.

This thesis.

4. The momentum exchange between the main channel and the flood plain
of a compound channel is not dominated by secondary circulations.

This thesis,

in response to Shiono & Knight, Journal of Fluid Mechanics Vol. 222, 1991.
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Instantaneous flow quantities like the water depth and the velocity do not
determine the value but the growth rate of the height of river dunes.

In response to Julien&Klaassen, Journal of Hydraulic Engineering Vol.121(9), 1995.

. The publication costs of scientific journals should be borne by the authors

rather than by the readers.

. Scientists prefer a distant friend in their own field to a neighbour in a

related research area.

. The complexity of the presentation of a computer simulation is a good

indication of the inaccuracy of that simulation.

. Because low tones travel farther than high tones, modern popular music,

emanating from cars, is too often labeled monotonous.

Practicing high blowing on a trumpet (above g3) by trying to play high
notes is a waste of time. The desired goal is better achieved by long term
practice on pedal tones (lower than #0).

These propositions are considered defendable and as such have been approved by the
supervisor prof. dr ir J.A. Battjes.




Shallow Mixing Layers

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus prof. dr ir J.T. Fokkema.
voorzitter van het College voor Promoties,
in het openbaar te verdedigen op maandag 1 maart 2004 om 15.30 uur

door

sy

Bram Christiaan VAN PROOLJEN "~ )
civiel ingenieur I
geboren te 's-Gravenhage




Dit proefschrift is goedgekeurd door de promotor:
Prof. dr ir J.A. Battjes

Toegevoegd promotor:
Dr ir W.S.J. Uijttewaal

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr ir J.A. Battjes Technische Universiteit Delft, promotor
Dr ir W.S.J. Uijttewaal Technische Universiteit Delft, toegevoegd promotor

Prof. dr ir H.J. de Vriend  Technische Universiteit Delft

Prof. dr ir A.E. Mynett UNESCO-IHE, Delft

Prof. dr ir G.J.F. van Heijst Technische Universiteit Eindhoven

Prof. dr G.H. Jirka Universitat Karlsruhe, Duitsland

Prof. dr P.K. Stansby University of Manchester Institute for Science and Technology,
Groot-Brittanié.

This research is supported by the Technology Foundation STW, applied science division
of NWO and the technology programme of the Ministry of Economic Affairs.

Copyright (© 2004 by Bram van Prooijen
Printed by PrintPartners Ipskamp B.V.

This thesis is also published in the series ‘Communications on Hydraulic and Geotechni-
cal Engineering’ of the Faculty of Civil Engineering and Geosciences, Delft University of
Technology, Report No. 04-1, ISSN 0169-6548.




L

“At the time we were all convinced that we must talk and
talk and write and publish as quickly as possible, and as
much as possible, and that this was all necessary for the
good of mankind. And thousands of us, contradicting
and abusing one another, published and wrote with the
aim of teaching others. Failing to notice that we knew
nothing, that we did not know the answer to the most
basic question of life - what is good and what is evil -
we all spoke at the same time, never listening to one
another. At times we indulged and praised each other
in order to be indulged and praised in return, at other
times we grew angry and shrieked at each other, just as
if we were in a madhouse”.

Leo Tolstoy (1882)
A Confession and Other Religious Writings.
tr. Jane Kentish. London: Penguin Books, 1987.
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Abstract

At the confluence of two parallel streams with different velocities a mixing layer develops.
If the flow domain is bounded by a bottom and a free surface and the width of the mixing
region is large compared to the water depth. we deal with a shallow mixing laver. Horizontal
coherent structures with dimensions of the order of the mixing layer width develop in the
mixing layer due to instabilities in the transverse shear flow. The bottom boundary laver
gives rise to turbulence with dominant length scales in the order of the water depth. This
bottom turbulence dissipates encrgy of the horizontal coherent structures.

Shallow shear flows are often found in the natural environment. Examples are: the
confluence of rivers. compound channel flows. wakes behind islands. or flow in grovne
fields. As shallow flows accommodate a variety of functions. like navigation. disposal for
waste water and drinking water intakes. and as the surroundings have to be protected
against flooding. there is a need for reliable models predicting these flows.

In this thesis the development of shallow mixing layer flow and its coherent structurcs
is studied using three methodologies: experiments, analytical modeling, and numerical
modeling. The aim is to obtain better insights in the development of shallow mixing lavers
and to translate these insights into reliable modeling tools.

Experiments are carried out for two flow conditions, differing in water depth. Parti-
cle Tracking Velocimetry is performed resulting in timeseries of two-dimensional surface
velocity maps. From the mean streamwise velocity data the characteristic properties of
the downstream development of a shallow mixing layer were determined: the decrease of
the velocity difference, the non-linear widening of the mixing layer and the shift of the
mixing layer to the low velocity side. The high turbulence intensities indicate a large
momentum transfer in the mixing zone. In this region, significant peaks were found in
the energy density spectra, representing the large scale horizontal coherent structures. By
means of an eduction method based on pattern recognition, the coherent structures could
be detected and conditionally averaged. The mean flow, the turbulence intensities and
the conditionally averaged vortices are used later on for validation of the analytical and
numerical models.

The analytical modeling consists of two parts. First, the mean streamwise velocity is
modeled. The concept of self-similarity is used for determination of the transverse profile
of the streamwise velocity. Subsequently the downstream development of the velocity
difference, the velocity in the center of the mixing layer, the mixing layer width and the
lateral shift of the mixing layer were determined, resulting in a closed set of equations for
the mean velocity field, with the entrainment coeflicient as the only remaining constant.
A good agreement was found between the modeled velocity fields and the measured ones.
Second, the downstrcam development of the coherent structures is determined. Linear
stability analysis has been used for the determination of the growth rates of instabilities for
the velocity profiles as found by the sclf-similarity model. By intcgrating the growth rates
for each wavenumber in downstrecam direction, the energy densities at each downstream
position could be determined, for given energy density spectra at the inflow. The encrgy
density spectra so obtained compared well with the measurements, despite the assumption
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of linear behavior.

Validity of the linear theory for the development of the coherent structures has the
important consequence that the intensity of the coherent structures depends on the en-
ergy density level of the perturbations at the inflow boundary. This hypothesis has been
validated using a numerical model, in which the large scale depth averaged motion is re-
solved while the small scale bottom turbulence is modeled by means of an eddy viscosity
concept. Computations are performed with perturbations of different energy density levels
at the inflow. Analogous to the linear analytical model, the perturbations at the inflow
condition were required for the numerical simulations as well. The necessary large scale
perturbations were associated with the large scale components of the bottom turbulence.

In order to determine the properties of the large scale motions, a fully three-dimensional
Large Eddy Simulation of a wide uniform open channel flow has been performed. In this
simulation the spectrum of the length scales associated with bottom turbulence is resolved
for the greater part. Averaging over the depth resulted in the required components of the
bottom turbulence. This depth-averaged motion is subsequently mimicked by means of
a kinematic simulation, which is implemented as a forcing term in the two-dimensional
shallow-water equations resulting in the 2D-TRANS+ks model. This model has been val-
idated using the data sets of the two measured shallow mixing layers. The mean flow
properties were well represented, but some discrepancies were found between the measured
and simulated intensities of the horizontal coherent structures. In addition to the devel-
oping mixing layer, the model has been applied to a compound channel flow with lateral
roughness variation. This qualitative analysis confirmed the need for an implementation
of the forcing terms as proposed in the 2D-TRANS+ks model.

The findings of this study are extended also to the flow in a straight uniform compound
channel with transverse depth variation, described in Appendix I. A new physically based
model is presented for the transverse exchange of streamwise momentum. The model takes
into account the effects of bottom turbulence and horizontal coherent structures. Special
attention was paid to the effect of the depth variation on the dynamics of the horizontal
coherent structures. A comparison with experimental data from literature confirmed the
validity of the model.

New insights have been obtained in the development of shallow mixing layers and
the coherent structures therein. Quick and simple tools have been developed for a rough
prediction of the mean streamwise velocity and the development of the coherent structures.
For a more detailed description of shallow mixing layers, the developed numerical model
2D-TRANS+ks is recommended.
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Samenvatting

Wanneer twee parallele stromen met verschillende snelheden samenvloeien ontwikkelt zich
tussen de stromen een menglaag. waarin impuls wordt overgedragen van de hoge naar de
lage snelheidszijde. We spreken van een ondiepe menglaag als de stroming hoofdzakelijk
horizontaal is en beperkt wordt door de bodem en het vrij wateroppervlak. zo dat de breedte
van de menglaag groot is ten opzichte van de opgelegde waterdiepte. Grootschalige hori-
zontale wervels, coherente structuren, kunnen ontstaan in een dergelijke ondiepe menglaag.
Deze worden gevoed door het snelheidsverschil. Naast de grootschalige wervels is er
kleinschalige turbulentie met lengteschalen in de orde van grootte van de waterdiepte.
Deze zogenaamde bodemturbulentie speelt een belangrijke rol in de ontwikkeling van de
grootschalige wervels.

Ondiepwaterstromingen waarin een horizontaal snelheidsverschil een rol speelt komen
op vele plaatsen voor. Voorbeelden zijn: de samenvloeiing van rivieren: de stroming in
rivieren bestaande uit een hoofdgeul en uiterwaarden: zogstroming achter een eiland en
kribvakstroming. Ondiepwaterstromingen zoals rivieren en estuaria vervullen vaak een
groot aantal functies, zoals scheepvaart: lozing van afval- en koelwater: aanvoer van ge-
bruikswater. Bovendien vormt ondiep water cen belangrijke ccologische functie en dient
de omgeving tegen overstromingen beschermd te worden. Er is daarom cen behoefte aan
betrouwbare modellen voor de voorspelling van ondiep-waterstroming.

In dit proefschrift wordt de ondiepe menglaag onderzocht aan de hand van drie ver-
schillende methoden: laboratorium cxperimenten, analytische modellering en numerieke
modellering. Het doel van deze studie is om meer inzicht te krijgen in de ontwikkeling van
ondiepe menglagen en om de inzichten te vertalen naar een betrouwbaar modelinstrumen-
tarium.

Twee cxperimenten zijn uitgevoerd met verschillende stromingscondities. Particle Track-
ing Velocimetry is gebruikt als meetmethode, resulterend in tijdreeksen van snelheidsvelden

|
|
|
van de oppervlaktesnelheid. Op basis van de tijdsgemiddelde snelhcidsvelden zijn de vol-
gende karakteristieke eigenschappen van de stroming bepaald: de afname van het snelhei-
dsverschil tussen de twee parallelle stromen, de niet-lineaire verbreding van de menglaag
en de verschuiving van het centrum van de menglaag naar de lage- snelheidszijde. De hoge
turbulentie-intensiteiten in de menglaag wijzen op een verhoogde impulsoverdracht in de
menglaag. Een sterke piek in de energiedichtheidsspectra representeert grootschalige coher-
ente structuren. Met behulp van een patroonherkenningstechniek zijn deze gedetecteerd,
resulterend in conditioneel gemiddelde wervels. De gemiddelde snelheid, de turbulentic-
intensiteit, en de conditioncel gemiddelde wervels zijn later in dit proefschrift gebruikt voor
de validatie van analytische en numerieke modellen.
De analytische modellering is gesplitst in twee onderdelen. Ten eerste is de gemid-

delde snelheid gemodelleerd. Het gelijkvormigheidsprincipe is gebruikt voor de bepaling
van het dwarsprofiel van de snelheid in de stroomrichting. Daartoe is een stelsel vergeli-
jkingen afgeleid voor de benedenstroomse ontwikkeling van het laterale snelheidsverschil,
de menglaagbreedte en de verschuiving van het centrum van de menglaag met een dimen-
sieloze entrainment factor als enig overblijvende empirische constante. Bij gebruikmaking
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van een realistische, uit de literatuur bekende waarde voor deze constante wordt een goede
overeenkomst gevonden tussen de gemodelleerde en de gemeten snelheidsvelden.

Ten tweede is de stroomafwaartse ontwikkeling van de coherente structuren bepaald. Er
is gebruik gemaakt van lineaire stabiliteitsanalyse voor de bepaling van de groeisnelheden
van instabiliteiten behorend bij de reeds bepaalde snelheidsprofielen. Integratie van de
groeisnelheden, per golfgetal, in stroomafwaartse richting geeft de lokale energiedichtheid
voor een gegeven energiedichtheid op de instroomrand. Ondanks de ruwe aanname van
lineair gedrag blijken de gemodelleerde energiedichtheidsspectra redelijk goed overeen te
komen met de gemeten energiedichtheidsspectra.

De geldigheid van de lineaire theorie voor de ontwikkeling van grootschalige wervels
heeft de belangrijke consequentie dat de intensiteit van de coherente structuren afhangt
van de energiedichtheid van bovenstrooms opgelegde perturbaties. Deze hypothese is
gevalideerd met een numeriek model, waarin de grootschalige dieptegemiddelde waterbe-
weging is opgelost en waarin de kleinschalige bodemturbulentie is gemodelleerd met behulp
van een turbulentiemodel. Evenals uit de analytische modellering bleek dat perturbaties
op de instroomrand benodigd zijn voor de simulatie van grootschalige wervels.

Om te bepalen welke perturbaties op de instroomrand opgelegd dienen te worden is een
volledig driedimensionale simulatie van een kanaalstroming uitgevoerd, waarbij de domein-
lengte en -breedte vele malen groter zijn dan de waterdiepte. In deze simulatie wordt de
bodemturbulentie grotendeels opgelost. Middeling van de snelheden over de diepte geeft
de benodigde dieptegemiddelde fluctuaties. Deze fluctuaties zijn vervolgens nagebootst
met behulp van een kinematische simulatie. Ten slotte zijn de nagebootste fluctuaties
geimplementeerd in de tweedimensionale ondiep-watervergelijkingen, resulterend in het
zogenaamde 2D-TRANS+ks model. Dit model is getoetst aan de hand van de gegevens
verkregen uit de laboratoriumexperimenten. De gemiddelde snelheid werd goed gerepresen-
teerd, maar verschillen werden gevonden tussen de gemeten en de gemodelleerde coherente
structuren. Naast de samenvloeiing van twee parallelle stromen is het model toegepast voor
een stromingssituatie bestaande uit een kanaal met ruwheidsvariatie in de dwarsrichting.
Uit een kwalitatieve analyse van de resultaten bleek de noodzaak van de implementatie
van de perturbatietermen, zoals voorgesteld in het 2D-TRANS+ks model.

In Appendix A wordt een nieuw model beschreven voor de impulsoverdracht tussen de
hoofdgeul en de uiterwaard in een samengesteld kanaal. Dit model houdt rekening met de
effecten van bodemturbulentie en grootschalige horizontale wervels. Speciale aandacht is
besteed aan de effecten van de dieptevariatie op de grootschalige wervels. Het ontwikkelde
model is getoetst aan de hand van meetgegevens uit de literatuur.

In deze studie zijn nieuwe inzichten verkregen in de ontwikkeling van de ondiepe
menglaag en de grootschalige horizontale wervelstructuren. Snelle en eenvoudige methoden
zijn ontwikkeld voor een ruwe schatting van de gemiddelde snelheid en de ontwikkeling van
de structuren. Voor een meer gedetailleerde beschrijving van het stroomveld in een ondiepe
menglaag wordt het numerieke model 2D-TRANS+ks aangeraden, waarbij de grootschalige
wervels worden opgelost. Voorzichtigheid blijft echter geboden bij de toepassing van dit
model in de prakijk der civiele techniek.
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Chapter 1

Introduction

1.1 General

The shallow shear flows as addressed in this study are defined as turbulent. predominantly
two-dimensional flows with transverse gradients in the streamwise velocity and a water
depth that is small with respect to the horizontal dimensions of the flow. The clearly
visible and often spectacular phenomena associated with these flows have made them of
interest for many years. One of the first studies known on shallow shear flows was carried
out by Leonardo da Vinci to regulate the River Arno (Italy) partly in order to make a
navigable connection from the city Florence to the Mediterranean Sea. His idea was to
regulate the river by means of spurdikes such that the water depth remains suitable for
sailing. An example of such spurdikes is shown in Figure 1.1. The dams confine the flow
and relatively high velocities are rcached in the opening. Downstream of the largest dam
a steady circulation is present. This gyre is fed by the momentum exchange in the mixing
layer between the flow through the gap and the gyre. It can be seen from the details
in the figure that in the mixing layer coherent structures develop. They are small just
downstrcam of the dam and grow to sizes probably much larger than the water depth, and
they eventually dissipate.

; I
B N

Figure 1.1: Drawing of the river regulation dasms and the flow in the River Arno (Italy) by
Leonardo Da Vinci (Barbera. 1983).



2 Introduction

Nowadays, shallow flows as found in rivers, estuaries or coastal seas accommodate a
variety of functions. The waters are for example used for navigation; the surrounding land
has to be protected against floods; drinking water might be extracted; wastewater can be
discharged; the waters might be used for swimming and the waters often have an important
ecological function. These different functions are often conflicting. Interventions in the
system require a careful approach. As the functions are strongly related to the dynamics
of the flow, reliable models are required to predict the flow. Such a set of models should
range from simple tools that can be used in the early stages of the design, to sophisticated
numerical models for a detailed description of the flow in the final stage. In order to
develop and interpret the results of such models, understanding of the physical processes
in shallow shear flows is indispensable.

1.2 Basic flow types

Shallow shear flows can be considered as a combination of two archetypes of flow. On the
one hand, they are plane free shear flows and on the other hand shallow shear flows fall in
the category of open-channel flows.

1.2.1 Plane free shear flows

Wakes, jets and mixing layers are the three important types of plane free shear flows, see
for example Pope (2000). 'Free’ implies that there is no influence of a wall and that the
turbulence arises from the mean-flow gradients. As we consider shallow flows, we restrict
ourselves to the plane types of free shear flows, contrary to for example asymmetric shear
flows. The flows are uni-directional and have a transverse gradient in the streamwise
velocity. As an example, the velocity profile of a mixing layer is given in Figure 1.2a.
Traveling with the flow in downstream direction, momentum is transferred from the high
velocity side to the low velocity side resulting in a wider mixing region, and a smaller
velocity gradient. This exchange is caused by the turbulent motion. The shape of the
profile turns out to be maintained, such as an error- or tanh-profile in case of a mixing
layer. The mean velocity field is thus determined by the velocity difference across the
mixing layer and the width of the mixing layer. This concept of modeling is referred to
as the self-similarity concept (Townsend, 1976). Plane wake flows and plane jets can be
described similarly.

The transverse gradient in the streamwise velocity makes the flow unstable. According
to Fjortofts theorem (Drazin & Reid, 1981), instability is reached in case of an inflection
point in the transverse profile. Kelvin Helmholtz instabilities can therefore develop lead-
ing to the horizontal structures as visualized in Figure 1.1 and 1.3. One of the earliest
experimental proofs of such vortices was the visualization by Fligel (1939) 1. Vortical
structures were presented with length scales in the order of magnitude of the mixing layer

1The development of the coherent structures is comparable to the more famous, but later published,
visualizations of Brown&Roshko (1974)
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Figure 1.2: Profiles of the mean streamwise velocity.

width. With the use of linear stability analysis. parameters like the wavenumber of the
most unstable mode and growth rates could be determined to some extent (Michalke, 1964;
Michalke. 1965; Drazin & Reid, 1981).

Extensive numerical studies on plane shear flows (see for example Vreman (1995),
Lesieur (1997), Balaras et al.  (2001)) and experimental studies (see for example
Brown&Roshko (1974), Winant&Browand (1974), Oster&Wygnanski (1982),
Zhou&Wygnanski (2001)) have been carried out, resulting in more insights in the dy-
namics of the coherent structures.

1.2.2 Open-channel flow

Here we consider open-channel flows, i.c. turbulent wall flows with a free surface, extending
over the full water depth. A review of open-channel flow can be found in Nezu&Nakagawa
(1993). A typical vertical profile of the streamwise velocity is sketched in Figure 1.2b. Due
to the no-slip condition at the bottom the flow is slowed down and a velocity gradient is
created, resulting in the well known logarithmic profile for the streamwise velocity. The
turbulent motion is characterized by ejection and sweep events and is typically threc-
dimensional. The dominant length scales are assumed not to exceed the water depth,
although this is only justified for vertical motions. Motions with larger length scales can
be found in the horizontal directions. see for example Kim& Adrian (1999) and Chapter 5.

The effect of the bottom on the flow is two-fold. On the one hand the shear stress
acts as a drag force on the total water body and results in lower streamwise velocities.
On the other hand the bottom turbulence evoked by the vertical shear gives rise to an
effective eddy viscosity, enabling an incrcased lateral transfer of momentum in case of
lateral variations of the streamwise velocity.
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1.2.3 Shallow free shear flows

Shallow free shear flows are a combination of a plane free shear flow and an open channel
flow (see Figure 1.2¢), which makes them interesting from the fluid mechanical point of view
and complicated when it comes to precise predictions. Depending on the flow parameters
the free shear flow will dominate or the wall flow will dominate. In the class of shallow
flows, which we discuss here, neither the horizontal shear nor the bottom turbulence can
be neglected. The flow configuration will possess the following characteristics:

e £/D > 1 The flow is predominantly two-dimensional, yielding horizontal length
scales (£), like the diameter of the vortices, far exceeding the water depth D.

e U =~ O(u,). The typical velocity scales associated with the horizontal vortices (U)
are in the order of magnitude of the friction velocity (u.).

The anisotropy caused by the large horizontal length scales and the small vertical length
scales has considerable consequences for the development of the coherent structures. In
case of such a predominantly two-dimensional domain vortices cannot be stretched in the
direction of their vorticity axes. This mechanism of 'vortex stretching’ is very effective in
three-dimensional turbulence in transferring energy to eddies of smaller length scales. As
this mechanism is suppressed, horizontal eddies as found in two-dimensional turbulence are
relatively large and long living. This is in contrast with fully three-dimensional deep-water
free-shear flows, where vortices may break up due to instabilities in the vertical dimension
(Vreman, 1995; Lesieur, 1997).

Shallow shear flows can be categorized in accordance with three vortex generation
mechanisms (Jirka, 2001). The strongest type of generation mechanisms is referred to as
topographical forcing. Coherent structures develop on the lee side of an object and are
shed regularly. The well known example of this type of generation mechanism is the Von
Karman vortex street in the wake of an island (Cramp et al., 1991). Another example is
the flow downstream of a spurdike. A somewhat weaker generation mechanism is defined
as internal transverse shear instabilities. Hydrodynamic instabilities gradually grow due to
a transverse gradient of the streamwise velocity into large scale coherent structures. The
term internal is used to emphasize that there is no external forcing, like in the first type.
Examples are shallow jets, shallow mixing layers (Figure 1.3) or compound channel flows.
The weakest mechanism as mentioned is defined as secondary instabilities of base flow.
Through upcascading processes the three-dimensional bottom turbulence might develop to
large scale motion.

As soon as coherent structures are gencrated they develop depending on the production
and dissipation mechanisms. The coherent structures are fed by the transverse shear and
decay under the influence of bottom turbulence, partly noticeable as a bottom shear stress
and partly as an effective eddy viscosity. This balance between the dissipation and the
production of turbulent kinetic energy of the large scale horizontal motion was expressed
for shallow mixing layers by Chu&Babarutsi (1988) in the bottom friction parameter:

5 U,
S=pau
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with the bottom friction coefficient ¢;. the width of the mixing layer d, the water depth D,
the velocity difference over the mixing layer AU and the center velocity U,.. Only the effect
of shear stress of the bottom turbulence is accounted for and the effect of the turbulence
viscosity was neglected. From a lincar stability analysis. it was concluded that the flow
would be stable for a bottom friction parameter larger than the critical value S, >~ ©(0.1)
and unstable for smaller values. Similarly. a wake parameter was proposed by Chen&Jirka
(1995). which could categorize different types of wake formation.

Although a bottom friction or wake parameter allows to some extent for a classification
of the flow type, it does not provide information on the dimensions and intensities of the
large scale horizontal coherent structures.

One of the basic tvpes of shallow free shear flows is investigated: the shallow mixing
layer over a horizontal uniform bottom. Regarding the generation mechanism of coherent
structures. this flow type falls in the category internal transverse shear instabilities (Jirka.
2001). Vortical structures are not shed from an obstacle, but they are expected to be
generated by the shear instabilities. The omnipresent bottom turbulence is expected to
play a role not only in the dissipation of horizontal eddics, but also in their generation.

The emphasis is put on a developing mixing layer. as found at the confluence of two
strcams. Although this flow type is chosen for its relatively simple properties, examples are
readily found in the natural environment. In Figure 1.3, a satellite image of the confluence
of the Padma and the Meghna (Bangladesh) is shown. As the rivers differ in color. the
entrainment effects of the horizontal eddies is visualized. In addition to the developing
shallow mixing layer, attention is paid to the streamwise uniform mixing layer flow in a
shallow compound channel. The velocity difference in such a compound channel is caused
by a lateral variation in depth and/or roughness.

Figure 1.3: Vortical structures at the confluence of the Padma and the Meghna (Ashworth et al.,
1996).
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1.3 Objective and outline

We aim at a better understanding of the genesis and development of horizontal coherent
structures in shallow mixing layers. The insights to be obtained should be translated into
a set of modeling tools for the prediction of shallow shear flows.

Three methodologies of investigation are followed: laboratory experiments, theoretical
analysis and numerical simulations. In Chapter 2 we start with laboratory experiments.
These are carried out to identify the physical mechanisms and to validate analytical and
npumerical models later on. Two different developing shallow mixing layers are studied
in order to investigate the influence of the water depth. Particle Tracking Velocimetry
(PTV) is used as a measurement tool. With this technique the spatial structure of the
large coherent structures can be captured. The mean flow, turbulence intensities, power
density spectra and conditionally averaged vortices are determined.

A theoretical analysis is performed in Chapter 3. First, the mean flow is modeled using
an analytical approach with a profile function for the transverse distribution of the mean
streamwise velocity. A quasi one-dimensional model for the mean streamwise velocity is
obtained. Second the development of the coherent structures is predicted by linear stability
analysis. The results obtained with the proposed linear analysis, demonstrate a dependency
of the large coherent structures on the perturbations at the inflow boundary.

This dependency is further investigated in Chapter 4, with the aid of numerical simu-
lations, in which the large scale depth-averaged motion is resolved. Additional laboratory
experiments are performed in which the inflow perturbations are varied. The dependency
of the inflow perturbations was confirmed. A closer look at the origin of the perturbations
was thus required. It was hypothesized that in reality the large scale components of the
bottom turbulence served as perturbations.

The bottom turbulence is investigated in greater detail in Chapter 5, making use of a full
three-dimensional Large Eddy Simulation. The results of this three-dimensional simulation
are used to build a model for the depth-averaged motion in which bottom turbulence is
mimicked by means of kinematic simulation.

In Chapter 6, the proposed model is applied to the mixing layer flow over a horizontal
bed with uniform roughness. Additionally, a compound channel flow with lateral roughness
variation is simulated.

A spin-off of Chapter 2 and 3 is presented in Appendix A, where a new momentum
exchange model for straight uniform compound channel flow is proposed. Such a compound
channel, consisting of a relatively deep main channel and a relatively shallow flood plain.
is representative for low-land rivers.

Finally, in Chapter 7, conclusions will be drawn and the new insights will be discussed.
This includes the applicability of the developed models as well as recommendations for
further research.



Chapter 2

Laboratory experiments

Three different methodologies for studying shallow water flows are followed in this thesis:
laboratory experiments., analytical modeling and numerical modeling. This chapter deals
with the experimental approach. Although a number of experiments on shallow mixing
layers have already been performed (Chu & Babarutsi, 1988: Tukker. 1997: Uijttewaal &
Booij. 2000). new experiments were set up in which the measurement technique Particle
Tracking Velocimetry (PTV) was used to determine the spatial structure of the flow. The
objective of the experiments is twofold. The experimental results will be used on the one
hand for understanding of the mechanisms that govern the energy and momentum balances
of shallow water flows and on the other hand for validation of analytical and numerical
modeling,.

This chapter describes the experimental setup, the data analysis and some selected
results. Part of the results regarding the mean flow and the spectral distribution of the
turbulent kinetic energy will be presented in Chapter 3, where they are compared with an
analytical model. A further comparison of numerical simulations with the measurements
will be presented in Chapter 6.

2.1 The flume and flow conditions

Experiments were conducted in a shallow flow facility with a total length of 20m and a
width of 3, see Figure 2.1. This flow facility in the Fluid Mechanics Laboratory at Delft
University of Technology is dedicated to shallow water experiments. It has already been
used for experiments as described by Tukker (1997) and Uijttewaal & Booij (2000). The
facility was designed for experiments with a turbulent and sub-critical flow, as is the case in
lowland rivers. The Reynolds numbers Re = UD/v are sufficiently large (Re > 4000) and
the Froude numbers Fr = U/\/gD are smaller than about 0.5 to meet these requirements.

The inlet section of the facility is divided into two parts, each with a separate water
supply. It has a vertical contraction that connects to the horizontal bottom of the flume.
Screens are placed between the contraction and the entrance of the horizontal part to
obtain a homogeneous inflow. Foam boards are mounted, floating just downstream of the
screens to suppress free surface waves. In order to have a fully developed wall flow at the
confluence of the two streams, the flows are initially separated by a 3m long thin splitter




8 Laboratory experiments

— T T Fo...- {l ..... f| ..... 0oy || ..... p ..... [ |
"""" e S — |’
20m
= N

Figure 2.1: Top and side view of the shallow flow facility. The PTV measurements areas are
indicated with the dashed squares.

Table 2.1: Flow conditions at the end of the splitter plate.

| Dlmm] Ui fm/s]Ulm/s] sl
Case 42 42 0.25 0.11 0.0032
Case 67 67 0.32 0.13 0.0027

plate. The horizontal bottom and the side walls of the flume consist of glass plates, assuring
a smooth surface. A sharp crested weir regulates the outflow.

Two configurations are studied here, which are close to the cases studied by Uijttewaal
& Booij (2000). The flow conditions at the end of the splitter plate are given in Table
2.1. These two configurations demonstrate the effect of the water depth on the evolution
of coherent structures. Significant horizontal coherent structures were found in the case
with the larger depth, whereas these were less dominant in the more shallow case, where
bottom friction is supposed to play a more important role. The single point technique of
Laser Doppler Anemometry (LDA) has been used by Uijttewaal & Booij (2000). In order
to determine the spatial structure of the flow, Particle Tracking Velocimetry (PTV) is used
in the present study, yielding time series of spatial velocity maps.

2.2 Experimental techniques

2.2.1 Flow visualization

In order to get a first impression of the flow in a developing shallow mixing layer, a bird’s-
eye view of a dye visualization is shown in Figure 2.2. Dye is injected downstream of the
splitter plate and we look in downstream direction. Due to the continuous injection of dye,
a dye band is created. This dye band rolls up, due to the large scale horizontal coherent
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Figure 2.2: A bird's-eye view of a dye injection downstream of the splitter plate. The arrows
indicate the magnitude and direction of the velocity.

structures. These coherent structures are predominantly horizontal and largely exceed the
water depth. In addition to the rolling up of the dye-band, the dye is dispersed slightly,
due to the effect of the small scale bottom turbulence.

2.2.2 Particle Tracking Velocimetry (PTV)

Particle Tracking Velocimetry is a straightforward and powerful measurement technique.
The principle is based on tracking individual particles in the flow. The velocity of a
particle is determined by recording its displacement during a certain time interval. With
the increase of computational and storage capacity of computers. the paths of thousands of
particles can be determined simultaneously, such that spatial information about the flow
can be obtained with a high resolution.

In order to determine the flow field, floating polypropylene beads with a diameter of
2mm were distributed homogeneously on the water surface. As the particles are submerged
for more than 90%. they are expected to follow the surface velocity. A distributor is used
to spread the beads homogeneously on the water surface. This distributor was placed just
upstream of the measurcment area, so that the effect of particles moving out of vortex
centers due to secondary circulations is reduced. A digital camera mounted on a bridge
over the flume recorded the positions of the particles. The camera (Kodak ES1) has a
resolution of 1008 x 1018 pixels with 256 gray levels and a frame rate of 30 Hz. Time series
of images are stored directly on the hard disk of a PC to a maximum of 10,000 frames
for a single continuous sequence. Measurements are performed for nine connected areas,
covering the mixing layer over a length of 11m, as indicated in Figure 2.1. The first three
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200 400 600 800 1000
Figure 2.3: A typical image and an associated unstructured velocity map.

measurement planes have a dimension of 0.82m x 0.82m to obtain a sufficient resolution
to resolve the relatively small coherent structures. The six areas further downstream have
dimensions of 1.65m x 1.65m in order to capture the full mixing layer width.

The PTV-algorithm used here has been developed by Bastiaans et al. (2002) and
consists of three steps. First, a sequence of images is recorded. Second, the particle
positions are determined, based on the size, shape and contrast of the particles. Third, the
trajectories of the particles are determined, which result in the velocities. The final result
is a velocity field on an unstructured grid. Typically 2500 velocity vectors were detected
per image. Figure 2.3 shows a typical image and an associated unstructured velocity field.
For further analysis the vector fields are interpolated to a grid with 40 x 40 mesh points,
using a cubic spline method. The mesh size is such that only the large scale motion is
captured with this method. Turbulence with a typical length scale smaller than the water
depth is not resolved.

2.3 Statistical analysis

The transverse profiles of the time-averaged streamwise velocity U are plotted in the figures
2.4a and 2.5a for the Cases 42 and 67. The profiles have a self-similar character, although
there are some deviations on the high velocity side of the mixing layer. The characteristics
of a shallow mixing layer as mentioned for example in Chu&Babarutsi (1988) are found in
these profiles: (1) the velocity difference is decreasing; (2) the growth rate of the mixing
layer width is decreasing; and (3) the center of the mixing layer is shifting to the low
velocity side. These differences are discussed in detail in Chapter 3, in which an analytical
model for the mean strecamwise velocity is proposed.
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In principle the turbulence intensities contain the contributions of the full frequency
range of turbulent fluctuations. This range is limited on the low frequency side by the
measurement duration and on the high frequency side by the sampling frequency. In
this study emphasis is put on measuring the large scale fluctuations. The large scale
surface velocity fluctuations are assumed to be similar to the large scale depth-averaged
fluctuations. The fluctuations are split into a large scale part «’ and a small scale part u”.
The measured turbulent intensities can then be written as:

w(t) = U =d'(t) + u"(t)

The large scale motion can be resolved by the measurcments. The small scale motion is not
properly measured. since only the surface velocity is measured and the spatial resolution is
limited by the distance between the particles. The small scale motion is effectively filtered
out by applving a low pass cosine filter with a timescale 7. see Emery&Thomson (1997).
Since it is not the aim to measure the three-dimensional bottom twbulence, coherent
structures with a length scale smaller than two times the water depth are filtered out. The
corresponding time scale is determined by using the mean streamwise velocity in the center

of the mixing layver:
_ 2
T= T

The filtered turbulence intensities «’, v’ and the corresponding Reynolds stress —u'v’ are
plotted in the figures 2.4b-d and 2.5b-d. A clear peak develops in downstream direction
with a width scaling with the width of the mixing layer. As a consequence of the transverse
gradient of the streamwise velocity, instabilities can grow and form large-scale coherent flow
structures. However, the instabilities will be dissipated due to the bottom shear stress and
due to small scale turbulence, acting effectively as a turbulent viscosity. At a certain
position downstream the dissipative influence of the bottom friction will be stronger than
the production of kinetic energy by the transverse shear, such that the large scale turbulent
kinetic energy decreases. The position where the dissipation becomes stronger than the
production is reached at a location more upstream for Case 42 than for Case 67 as the
bottom friction is more significant for Case 42. The peak values in the turbulence intensitics
are growing for almost the full length of the flume for Case 67, whereas the peak value
decreases already after about one meter downstream of the splitter plate for Case 42. A
detailed description and quantification of the balance between production and dissipation
of kinetic energy will be given in Chapter 3. It should be noted that the low peak value
close to the splitter plate is a result of the low-pass filtering. At this position, the horizontal
motion has a length scale smaller than the water depth.

On the high velocity side of the mixing layer of Case 67, slight negative values are
found for the Reynolds stresses. These are consistent with slightly negative transverse
gradients of the mean streamwise velocity (Figure 2.5a). Slight negative values are also
found in the mixing laver experiments of Uijttewaal&Booij (2000) and the compound
channel experiments of Knight&Shiono (1990). No sound explanation has been found for
this phenomenon.
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Figure 2.4: Transverse profiles of the mean streamwise velocity U (a), the turbulence intensities

4’ (b), v’ (c) and the Reynolds stress —u/v’ (d) for Case 42.
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2.4 Spectral analysis

Power density spectra are determined to reveal the energy distribution over the different
time scales. These spectra are obtained from timeseries in the center of the mixing laver.
In order to smooth the spectra, the timeseries are divided in 15 half-overlapping segments.
which are multiplied by a Kaiser filter. The Fast Fourier Transformation is carried out and
the average of the 15 spectra determines the final spectrum. A detailed description of this
method is given in Emery & Thomson (1997).

The energy density spectra for the transverse velocity fluctuations E,, of Case 42 and
Case 67 are plotted in Figure 2.6 for different positions downstream. In the spectra of
Case 67, a profound peak is developing. This peak is associated with the presence of
horizontal coherent structures. Moving in downstream direction, the frequency of the peak
decreases, corresponding to an enlargement of the coherent structures. The magnitude of
the peak increases, implying that the coherent structures grow in intensity. The energy
density spectra of Case 42 show a different development in downstream direction. A
peak is moving to the low frequency range. Coherent structures are present and grow in
size. However, the magnitude of the peak is decreasing after about « = 4m. Apparently
the coherent structures decay from this position on. The development of the coherent
structures is supposed to be dependent on the production of large scale kinetic energy by
the mean shear and the dissipation by the bottom friction and the small scale turbulence.
In Case 67 the production dominates over the full length of the measured area. For Case
42 the production initially dominates, but due to the decrease of the velocity difference
and the increase of the mixing layer width, the production reaches values smaller than the
dissipation, leading to an effective dissipation. A quantitative analysis of the development
of the energy density spectra is given in Chapter 3.

The slope on the high frequency side of the peak is close to -3. Such a slope is found in
many shallow water flow experiments (Dracos et al., 1992; Chen & Jirka, 1999; Uijttewaal
& Booij, 2000) and is often associated with two-dimensional turbulence as derived by
Batchelor (1969) and Kraichnan (1967). It is however questionable whether this derivation
is valid for the flow considered here since it contains a strong horizontal velocity gradient
and bottom turbulence.

The energy density spectra for the different components of the fluctuations are plotted
in Figure 2.7. The peak is more pronounced in the E,,-spectra than in the F,,-spectra.
although the peak value is larger for the streamwise velocity fluctuations. A smaller dom-
inant peak frequency is found for the spectra of the streamwise fluctuations than for the
spectra of the transverse fluctuations.

It is not unambiguous to translate the energy density spectra into characteristics of the
coherent structures. However, these structures leave their footprints in the spectra, so that
at least some characteristics of the coherent structures can be inferred. These footprints
are discussed below.

A wider peak and lower peak frequencies are found for the spectra of the streamwise
fluctuations than for the spectra of the transverse fluctuations. This can be explained by
the the passing of vortices at different transverse positions. In order to explain this effect. a
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Figure 2.6: Energy density spectra of the transverse velocity at the positions r=3m, x=5.8m,

2=8.6m for Case 42 (a) and Case 67 (b).
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Figure 2.7: Energy density spectra of the streamwise velocity, the transverse velocity and the

cross spectra at £=5.8m for Case 42 (a) and Case 67 (b).
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Figure 2.8: Artificial sequence of vortices with transverse displacements of the vortex centers. (a)
velocity field, (b) streamwise velocity at y = 0, (c) transverse velocity at y = 0.

svnthetic signal is created by a sequence of idealized vortices which are randomly displaced
in transverse direction. Figure 2.8a shows the vector field of such a sequence of vortices.
The minimum and the maximum values of the transverse velocity are found around y =0
(see already Figure 2.10c for the contours of the transverse velocity of an idealized vor-
tex). The streamwise gradients of the transverse velocity are significantly higher than the
transverse gradients of the transverse velocity. A slight transverse displacement of the
vortices results in only small effects on the transverse velocity signal, see Figure 2.8c. The
minima and maxima of the streamwise velocity for each vortex have more or less the same
downstream position (see already Figure 2.10b). The transverse gradient of the stream-
wise velocity is thercfore higher than the streamwise gradient for this component. Slight
transverse displacements of the vortex centers have great consequences for the timeseries at
y = 0 (Figure 2.8b). From the timeseries, it obviously follows that the strcamwise velocity
fluctuations will have a lower dominant frequency than the transverse fluctuations. The
regular oscillation of the transverse velocity will result in a narrower peak in the spectrum
of the transverse fluctuations than in the spectrum of the streamwise velocity component.

The energy density level of the streamwise fluctuations is generally higher than the
level of the transverse fluctuations. An explanation can be found in a possible elongation
of the vortices. In Figure 2.9, a schematized representation of a vortex elongation is
shown. In case of elongated vortices. the streamlines diverge in streamwise direction and
converge in transverse direction. As continuity has to be obeyed, the intensity of the
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Figure 2.9: Streamlines of an idealized isotropic (left) and clongated (right) vortex.

streamwise fluctnations becomes higher and the intensity of the transverse Huctuations
lower. A higher energy density level of the streamwise fuctuations could therefore be
explained by clongation of the coherent structures in streamwise direction.

2.5 Coherent structures

The large coherent structures have their footprints in the power density spectra. but as
discussed above, these spectra are insufficient for the determination of the characteristics
of the coherent structures themselves. The instantaneous velocity maps obtained by PTV
allow for the determination of the spatial distribution of the coherent motion. The eduction
of coherent structures from velocity maps is a difficult task. Various methods for the
identification of coherent structures are discussed in Bonnet et al. (1998). These arc for
example based on vorticity, a Weiss-function, wavelets, or pattern recognition techniques.
Typical for applications to a mixing layer is the combination of a shear layer and coherent
structures. This combination excludes the use of vorticity based methods, as the shear
itself contains vorticity, regardless of the presence of eddy structures.

In order to identify coherent structures in a velocity map, we make use of a pattern
recognition technique which is heavily based on the method of Scarano et al. (1999). This
method has the advantage that the velocities are used instead of the velocity gradients as
1s the case in a method based on the Weiss function, for example. The pattern recognition
method is based on the correlation between a predefined velocity pattern. a mask eddy.
and the instantaneous velocity map at a certain time.

The method consists of the following iteration procedure. First, an initial vclocity
pattern, a mask cddy. centered at x = 0, y = 0 is chosen as

Y expl x4y

= 'Zexp T)
2 22

with L the length scale of the eddy. The contours of the velocity fields are plotted in figure
2.10. The length scale L has to be chosen in the order of the sizc of the expected coherent
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Figure 2.10: The velocity vectors (a), streamwise velocity contours (b) and transverse velocity

contour (¢} of the mask eddy.

structures. As will be shown below, the whole pattern recognition procedure contains a
few iteration steps in which the mask eddy is redefined. The precise size and shape of the
initial mask eddy therefore turned out to be of minor importance.

Second, the cross-covariance between the streamwise and transverse component of the
mask eddy and the velocity map is determined at different transverse position for a down-

stream position z;:

1 xi+L  py;+L
Cu(wiyyj’t) = Zl—:—z-/ . / L ﬁ(w,y) * u(a:,y,t)dyda:
L= Y~

1 xi+L
Cu(ziv yj’t) = 4_1—]2’/
Ti—

As an example, the cross-covariance functions obtained from a sequence at z = 8.6m
are plotted in Figure 2.11a-b. The gradients in transverse direction are largest for the
streamwise component and the gradients in streamwise direction are largest for the trans-
verse component. Therefore, the transverse velocity covariance is most suitable for the
determination of the streamwise position of an eddy and the streamwise co-variance for
the transverse position. In the method of Scarano et al. (1999) not only the streamwise
and transverse velocity components, but also the components at 45° and 135° are used.
It turned out that these components were not needed here. Third, the cross-covariance
functions of the streamwise and transverse correlations are multiplied:

v;+L
/ 6(1"> y) : v(m,y,t)dydx
L yj—L

Cqu(I« Y, t) = Cu(’JI, Y, t) - Cy(, y, t)

Here, the method differs again from the eduction method described by Scarano et al.
(1999), in which the correlation functions are summed. Multiplication results in more
significant peaks at the positions of the vortex centers. Additionally, the cross-covariance
functions are used instead of the cross-correlation functions, in order to account for the
intensity of the vortices, as we aim at identifying the energy containing vortices.
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Figure 2.11: The contours of a part of the timeseries of the positive values of the covariance
functions C, (a), Cy (b) and the product C,C, (c) at x = 8.6m.

Contours of the covariance product C,Cy(z,y,t) at £ = 8.6m as function of time
t and transverse position y arc plotted in figure 2.11c. A maximum in the covariance
function C,,Cy(z;, y.t) indicates the transverse position of the center of an eddy at a certain
time. In order to determine the conditionally averaged eddy, the times at which the
covariance attains a maximum are selected. The velocity maps at these times are averaged,
resulting in what is called here a conditionally averaged eddy. A correction is made for the
transverse positions of the vortices. The vortices are aligned to the center of the mixing
layer. Without this correction the conditionally averaged vortex would be smeared out.
The averaged velocity map thus obtained is subsequently used as the new mask eddy, and
the whole procedure is repeated a few times until the conditionally averaged velocity maps
are not changing anymore. The conditionally averaged velocity field for a certain position
downstream is then determined and can be used for the determination of the characteristics
of the coherent structures.
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The conditionally averaged vortices have been determined at two different positions
downstream for Case 67 in accordance with the above described procedure. The coherent
structures in Case 42 turned out to be too weak to apply the pattern recognition procedure.
The vector fields (relative to the mean velocities), transverse velocity contours (relative to
the mean transverse velocity), vorticity contours and the Weiss-function contours are shown
in the figures 2.12 and 2.13. The Weiss function is defined as the difference between the
squared shear and the squared vorticity:

oo () (808 - (3-3)

dr Oy dr Oy ox Oy

A negative value indicates dominance of rotation. A vortex can then be defined as the
area within a zero contour of the Weiss function. The following properties of the coherent
structures can be identified from the figures 2.12 and 2.13. The vortices are elongated in
streamwise direction. This already follows from the vector fields, but it is better visible
in the Weiss function and vorticity. The zero contour of the Weiss function indicates the
edge of a vortical structure. In these cases the zero contour is however a bit contaminated
due noise.

The length scale of the vortices can be determined proportional to the distance between
the minimum and the maximum value in the transverse velocity map. Here we define the
length scale L as twice this distance. This length scale can be compared with the length
scale associated with the peak in the energy demnsity spectra. The length scales found
by the coherent structure eduction method Leguction(z = 3.0) = 0.9m and Legyction(T =
8.6) = 1.8m are in good agreement with the length scales are obtained from the spectra:
Lgpectra(z = 3.0) = 0.8m and Lypectro(z = 8.6) = 1.7m.

Figure 2.12¢ shows a strong mean shear at the position in the near field, £ = 3.0m. The
contribution to the total vorticity of the mean shear is much larger than the contribution
of the vortex structures. For both cases, the maximum vorticity is not in the center of the
eddy, but slightly upstream. This is explained by the decreasing mean shear in downstream
direction, caused by the widening of the mixing layer and the decreasing velocity difference
over the mixing layer. The maximum vorticity at the downstream position z = 8.6m
is much higher than the background shear. This indicates that the coherent structures
become relatively more important further downstream.

2.6 Summary and conclusions

The PTV measurements have resulted in an extensive dataset, containing spatial and tem-
poral information. Various analysis methods are applied, showing the presence and the
development of horizontal coherent structures. A significant difference is found between
the two measured cases with different depths. Such a difference was also found by Uijt-
tewaal&Booij (2000). This difference is ascribed to the stronger influence of the bottom
turbulence in Case 42. The balance between the production and dissipation of the coherent
structures needs further investigation, as will be done in the next chapter.
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The advantage of the use of PTV is that spatial information is obtained. In contrast
with single point measurements, coherent structures are measured directly. A disadvantage
is that only the surface velocity is measured with a limited frequency of 30Hz and a finite
duration of 5 minutes. However, this surface velocity is sufficient for the determination of
the large scale horizontal motion. The detection of the vortices is done by the use of pattern
recognition. Conditionally averaged vortices are determined, of which characteristics like
the size, intensity and shape are determined. These characteristics will be used lateron in
Chapter 6 for a comparison with numerical simulations.
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Figure 2.12: Properties of the measured conditionally averaged vortex centered at z = 3.0m. (a)
velocity vectors relative to the mean advection velocities, (b) transverse velocity (Av = Imm/s),
(c) vorticity (Aw = 0.05s™!) and (d) Weiss-function (AQ = 0.05s%). Negative values are
indicated with a dashed line, positive values with a solid line and zero contours with a dotted

line.
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Figure 2.13: Properties of the measured conditionally averaged vortex centered at x = 8.6m. (a)
velocity vectors relative to the mean advection velocities, (b) transverse velocity (Av = 1lmm/s),
(¢) vorticity (Aw = 0.05s71) and (d) Weiss-function (AQ = 0.03s72). Negative values are
indicated with a dashed line, positive values with a solid line and zero contours with a dotted

line.
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Chapter 3

Theoretical analysis

In this chapter. shallow mixing layers are investigated via an analytical approach. In
such an approach the equations of motion are reduced to simple expressions. This has
two advantages: (1) the dominant physical mechanisms determining the flow are made
clear and (2) the model can be used for a quick prediction of idealized flow types. The
disadvantage is however that complex flows cannot be investigated. First, the governing
shallow water equations arc given in Section 3.1. The development in downstreain direction
of the mean flow field of a developing mixing layer is described in Section 3.2 by a quasi
one-dimensional model, based on self-similarity of the velocity profiles. In Section 3.3, the
development of the properties of the large scale motion in this developing mixing layer is
determined by linear stability analysis, using the calculated mean flow field as base flow.
The results are validated by experimental data as described in the preceding chapter. The
results are discussed and conclusions are drawn in Section 3.4. The analysis as described
in this chapter is published in Van Prooijené& Uijttewaal (2002a).

3.1 Shallow water equations

The shallow water equations form the basis of the modeling of the mean flow field and
the linear stability analysis. As the horizontal length scales are significantly larger than
the water depth, the flow is described by the two-dimensional shallow water equations (De
Saint Venant equations). As the Froude numbers are small, a rigid lid is imposed at the
water surface (Ghidaoui & Kolyshkin, 1999). The continuity equation and the momentum
equations in the horizontal plane are averaged over the water depth and averaged over a
period larger than the time scale of the three-dimensional bottom turbulence, but smaller
than the time scale of the large scale motion, resulting in:

dDu  9Dv _

- 1
5z | Oy 31
ouw Ou _ou _ 10p 5. /s -
ot T or +v8y - pox D T u Vi (3:2)

o0 90 90 19p ¢ 2
8t+u8x+l't)y— >y Dz,\/u + 02+ 1 Vo (3.3)
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where u is the velocity in streamwise direction z, v the velocity in lateral direction y of
the horizontal plane and D the water depth. The depth-and-short-time-average operator
is denoted by a tilde ~. Capitals will be used to denote the long-time-average operator.
The bed friction coefficient ¢y for turbulent flow over a smooth bottom is determined by

the relation:
1 1

N [In (Re/cy) +1] (3.4)
in which Re(= UD/v) denotes the depth-based Reynolds number. Since it is our aim to
resolve the large scale coherent motion, the small scale turbulent fluctuations, produced in
the bottom boundary layer, are to be modeled by an effective eddy viscosity v, see also
Chen&Jirka (1998). The small scale bottom turbulence is estimated here by using a simple
expression for the turbulence eddy viscosity, see for example Fisher et al. (1979):

v = 0.15Du, = 0.15D,/c;U (3.5)

This definition differs from the approach of Alavian&Chu (1985) who used an eddy viscosity
based on the large scale motion, using the mixing layer width and the velocity difference
across the mixing layer, which resulted in a higher eddy viscosity.

3.2 Mean flow field

In order to determine the base flow for the stability analysis, an analytical model is formu-
lated to predict the mean streamwise velocity field. This model is based on the assumption
of self-similarity. An overview of the possibilities of the application of the self-similarity
concept is given in Townsend (1976). In a self-similar flow the lateral profiles of the stream-
wise velocity and the Reynolds stress can be described by a shape function, which is made
dimensional with a typical length scale and velocity scale which may vary in downstream
direction. Self-similar profiles are found for unbounded mixing layers (Townsend, 1976;
Lesieur, 1997), but also for shallow mixing layers, according to the experiments described
in this thesis and the experiments of Chu&Babarutsi (1988) and Uijttewaal&Booij (2000).
Characteristic properties of the shallow mixing layer are: the downstream decrease of the
velocity difference, the decreasing growth rate of the mixing layer width and the shift of
the center of the mixing layer to the low velocity side. A model for the mean flow field
should be able to capture all these properties.

3.2.1 Self-similarity

The flow outside the mixing layer is not influenced by the mixing layer. The mean stream-
wise velocity on the high and low velocity side are denoted with U; and U,, respectively.
The flow outside the mixing layer defines the mean velocity difference over the mixing layer
(AU = Uy —U,) and the mean velocity in the center of the mixing layer (U, = (U, +Us)/2).
The width of the mixing layer (9) is defined here as the ratio of the velocity difference AU
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Figure 3.1: Sketch of the lateral profile of the streamwise velocity, according to Equation 3.7

to the lateral gradient of the velocity in the center (% BE

. AU
0= 0 (3.6)
Oy ¢
Self-similarity implies that the transverse profiles of the strcamwise velocity can be de-
scribed by a profile function. A variety of functions can be considered, e.g. the error
function or the hyperbolic tangent. We use the hyperbolic tangent (tanh), because it fits
the data well. The exact shape turned out to affect the results of this analysis only weakly.
The mean flow field is then approximated by (see the sketch in figure 3.1):

) = Uy DU@ (9= 4l@)
Ulzx,y) =U(x) + 5 ta h( T5(z) ) (3.7)

By using a profile function, the two-dimensional formulation is reduced to a formulation
depending on the downstream position (r) only. The downstream development of the
velocity difference AU, the velocity in the center of the mixing layer U,, the transverse
position of the center of the mixing layer y,, and the mixing layer width § will be specified
below.

3.2.2 Mean velocity in the center of the mixing layer

The velocity in the center of the mixing layer is approximated by a constant, U.. This
assumption is justified by using the incompressibility condition. The discharge at the inlet
section should be equal to the discharge far downstream:

Dw Dw
l.-fl (T()) T + l]z (Io)

= U, DW, (3.8)

with W the width of the flow domain, D the constant water depth. U;(zo) and Usz(zo)
the initial streamwisc velocities outside the mixing layer and U, the uniform velocity far
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downstream. This leads to Uy = gﬁf—"—)—;ﬂf"—) = U,. In the experiments, U, shows a slight
increase (< 3%) in downstream distance due to the free-surface slope as a result of bed
friction and the horizontal bottom.

3.2.3 Velocity difference over the mixing layer

The velocities outside the mixing layer are not influenced by the mixing layer. These
flows can be considered to be one-dimensional. The development of the velocity difference
AU(x) is then determined by the momentum equation in streamwise direction (Equation
3.2) for the high velocity side, denoted by the index 1 and the low velocity side denoted
by the index 2 (Chu & Babarutsi, 1988):

ld_Uf &UZ lﬂ

sz T o 0 (3.9)

LU | ey, 14Ps
2 dz D? pdx
The streamwise gradient of the pressure is the same for both sides as demonstrated in
previous experiments (Uijttewaal & Booij, 2000). After subtraction of 3.10 from 3.9 and

using a constant U, the velocity difference AU(z) is expressed, following Chu&Babarutsi
(1988), as:

=0 (3.10)

D

where AUj denotes the velocity difference at the inflow. The predicted exponential decrease
of the velocity difference is in good agreement with the measurements as shown in figure
3.2.

AU(z) = AlUpexp (-ﬁw) , (3.11)

3.2.4 Mixing layer width

The lateral distribution of the flow properties in plane shear flows is assumed to be self-
similar (Townsend, 1976; Uijttewaal & Booij, 2000). This means that the flow quantities
can be described by shape functions. The parameters of the shape functions are only
dependent on the downstream position x. It was already mentioned that the mean velocity
profile can be approximated by a hyperbolic tangent. Substituting the shape functions into
the steady streamwise momentum equation gives:

dAUf,  1dP ¢ -
(U, + AUfy) w pg;—D(Uc+AUf1)

ldqgf:»
0 dn

with 1
U=U+ §AUf1(7l)

w = g4 f2(n)
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Figure 3.2: Development of the velocity difference AU(x) in streamwise direction for the Cases
42 and 67 according to the measurements and the model. Equation 3.11.

with 7 = % and shape functions f. The pressure gradient term equals the bottom
friction term in the center of the mixing layer, so that the streamwise momentum can be
rewritten into

diav 1 2 1d
(U+—AUf) dxﬁz_%((?uuo +MAUﬁ>—5§f

A new length scale, the frictional length scale of the flow, is defined by L = 02’ which

is much larger than the water depth and cven the mixing layer width (D « § < L).
As follows from Equation 3.11, the streamwise gradient of the velocity difference can be

written as: JAU 5
Cr
=——AU 3.12

dr D ( )
Substitution of the length scale L and Equation 3.12 in the streamwise momentum equation
leads to

1 1 AU d§ 1 (/1 2
I3 - N = - L
OT+QAUﬁ)< LAUﬁ+-%(mL) L<<2AUﬁ)-+wAUﬁ> o

This equation is finally made dimensionless by multiplying it with == AU

Ue db 8 1@
maﬂ—ﬂﬂ f1f1 Lflfl

Awh (3.13)

The momentum equation now consists of a set of shape functions which are varying with
the lateral coordinate 77 and quantities varying with the streamwise coordinate x. Equation
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3.13 can therefore only be valid if the factors

v ds 5 16§ @
20U dz 2L 4dx 4L AU?

(3.14)

are constant or negligible. As mentioned above, the mixing layer width is generally an
order of magnitude smaller than the development length of the flow, % < 1, so that the
second and fourth terms can be neglected. The last term refers to the mixing and is
not zero and should therefore be constant. Two conditions remain which can imply self
similarity: —l%ﬁ, =constant and/or % > 1. If these conditions are fulfilled, the flow is self-
similar. However, the first condition nor the second condition is automatically fulfilled for

a shallow mixing layer. Generally 2% > 1, especially in the far field, so that we continue

AU
with the assumption of self-similarity, based on %% > 1 and %‘U% = constant. From the
latter condition, the development of the mixing layer width can be derived:

dé AU(z)
—= 3.15
dz @ U, ( )

The entrainment coefficient « has an empirically determined value of a ~ 0.085 for undis-
turbed unbounded mixing layers, based on numerous independent experiments (Lesieur,
1997). Substitution of the velocity difference AU from Equation 3.11 and integration with

respect to z leads to
_ AUy D 2¢s
éz)=a 7. 2, (1 — exp ( D x)) + 0o (3.16)

The initial width &; is imposed by the thickness of the boundary layers that have developed

on both sides of the splitter plate and is approximately § ~ D. The virtual origin of
the mixing layer is located upstream of the splitter plate apex. This expression differs
in two respects from the expression proposed by Chu&Babarutsi (1988). First twice as
high an entrainment coefficient was used by Chu&Babarutsi (1988). As discussed by
Uijttewaal&Booij (2000), the need for this can be ascribed to a too short an inflow section
in their experiments. Second, the extra empirical critical bottom friction parameter used
by Chu&Babarutsi (1988) turned out not to be necessary.

Figure 3.3 shows the development of the width of the mixing layer as obtained from
the measurements and the development as obtained by Equation 3.16. Some scatter is
found in the measured mixing layer widths, which is ascribed to the sensitivity to errors of
the determination of the mixing layer width due to the presence of the velocity gradient
in the definition of the mixing layer width. The different measurement segments can also
be distinguished by a kind of block behavior in the mixing layer width, but this is hardly
noticeable in the velocity differences of Figure 3.2. No clear explanation was however found
for this phenomenon. In any case, the modeled mixing layer width development is in fair
agreement with the trend in the measurements.
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Figure 3.3: The measured and modeled (Equation 3.16) development of the mixing layer width
for the Cases 42 and 67.

3.2.5 Lateral shift of the mixing layer

Due to the deceleration of the flow on the high velocity side and the acceleration at the
low velocity side, the center of the mixing layer is displaced in the lateral direction to the
low velocity side. To estimate this lateral shift, the center of the mixing layer is assumed
to be a streamline of the mean flow field. An integral mass balance can then be derived
for, for example, the high velocity side:

Ye() W
/ DU (x,y)dy = D——2—-U1 (20) (3.17)
0

from which y, can be solved. The predicted shift of the center of the mixing layer is
comparcd with the measurements in figure 3.4. The trend of the measurements is repro-
duced, although also for the lateral shift of the mixing layer some scatter is found in the
measurements.

3.2.6 Total velocity field

The mean flow field is now completely determined by the Equation 3.7, 3.8, 3.11, 3.16
and 3.17 and the boundary conditions, i.e. the two inflow velocities and the water depth.
The only empirical parameter used is the entrainment coefficient «, for which a value
determined from unbounded mixing layers is used, which is correct since the mixing layer
considered here is initially effectively unbounded. The value of ¢; is well defined for fully
developed flows over smooth surfaces. Figure 3.5 shows an overview of the measured and
modeled mean streamwise velocity for Case 67. The model predicts the measured flow field
rather well and the results are considered suitable as input for the stability analysis.




32 Theoretical analysis

0
N :«H’ + measurement 42
-0.1 ~H model 42
+{- . . measurement 67
<. ~— — —  model 67
_ 02
E
50
-0.3}
-0.4
-0.5 — PR
0o 2 4 6 8 10 12 14

X [m]

Figure 3.4: Development of the measured and modeled transverse position of the center of the
mixing layer for the Cases 42 and 67.

It is noted that both experiments could be well described by the simple integral model,
despite differences found between the coherent structures in the two cases. These differences
therefore seem to be of limited importance for the widening of the mixing layer. This
apparent contradiction is discussed in Chapter 4.
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Figure 3.5: Velocity vectors (measurements) and profiles (model) of the mean velocity field of the
Case 67. The dashed line indicates the position of the center of the mixing layer.
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3.3 Stability analysis

3.3.1 Model description

A linear stability analysis of shallow water flows has been carried out by various authors
(Alavian & Chu, 1985; Tamai et al., 1986; Chu et al., 1989; Chen & Jirka, 1998; Ghidaoni
& Kolyshkin, 1999). The equations for the stability analysis used here are equal to the
ones of Alavian&Chu (1985), but differ slightly from the analysis of Chu et al. (1989) and
Chen&Jirka (1998: 1997). A short description of the model is given below.

The shallow water equations (Equation 3.1-3.3) are used as starting point. In contrast
with the analysis by Chu et al. (1989) the viscosity term is maintained here. Chen& Jirka
(1998) have demonstrated the importance of the turbulence viscosity since it affects the
stability of the flow.

Following the common approach in linear stability analysis, small perturbations are
superposed on the mean velocity and pressure:

u= U("Ev ?]) + u(x. yt) U= 1’($ay7t) p=PFP +p(17yvt) (318)

Reynolds decomposition of the shallow water equations (Equation 3.1-3.3) results in
equations for the perturbations. Dropping the higher order terms, this leads to:

du  Ov .
Ry (3.19)
Ou Ou U  dp 2U Pu Ot
at+U%+’U—5?;———a—a;— D Vy (()_1‘2'+0TJ2 (320)
v v dp U v %
ot Ua =g 5 (5t o 320

The second term on the right-hand-side of Equation 3.20 and 3.21 is obtained from a first
order Taylor expansion of the bottom friction contribution. It should be noted here that
the bottom friction term used by Chen&Jirka (1997; 1998) is a factor 2 larger than the
one in equation 3.21.

A normal mode solution of the form [u,v,p| = [4(y), ¥(y), P(y)] exp (i(kx — wt)) is as-
sumed, in which & and w are the complex wave number and frequency, respectively. Sub-
stitution of the normal mode solution into 3.19-3.21 results in:

iki+ ' =0 (3.22)

2¢,U ‘
~iwi + kUa + 80" = —ikp — =L+ v, (" = K*0) (3.23)
—iwd + ikUD = —p — %’f} + v (8" — K*0) (3.24)

The prime denotes the differentiation with respect to the lateral coordinate y. Elimi-
nating 4 and p, the set of equations (Equation 3.22- 3.24) can be reduced to:
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U - %)(@” — k*0) — 9U" = Dys + Dyis (3.25)

with
!

-CfU 2 U At N/
Dbf = Z—D (—k ’U+2—UU + 20 )

Duss = i=H(5" — 2K%" + K*0)

Equation 3.25 is similar to the Orr-Sommerfeld equation (Drazin & Reid, 1981). The
terms on the right hand side are however different. The first term denotes the stabilizing
influence of the bottom shear stress and the second term the stabilizing influence of the tur-
bulence viscosity. The viscosity term differs from the viscosity term in the Orr-Sommerfeld
equation in the use of an eddy viscosity, representing the small scale turbulence, instead of
the molecular viscosity. The bottom friction term is a consequence of the depth-and-short-
time averaged vertical shear, and is always stabilizing as follows directly from Equation
3.23 and 3.24.

The following boundary conditions are valid for unbounded shear flow:

B(—00) = ¥'(—00) = B(00) = ¥'(00) = 0,

The eigenvalue problem (Equation 3.25) can now be solved following a spatial approach
or a temporal approach. The spatial approach assumes an exponential growth of the
perturbations in downstream direction z. In that case the frequency of the disturbance w
is real, and k is complex, with k, representing the wave number and k; the spatial growth
rate. The temporal approach assumes the disturbances to grow exponentially in time. In
that case k is real and w complex, with w; representing the temporal growth rate:

[u, v, p] = [a(y), 9(y). H(y)] exp (i(ke — (wr + iwi)t))

As shown by Michalke (1965) the spatial approach covers the physical phenomenon of
a spatial mixing layer slightly more precisely than the temporal approach. The eigenvalue
problem of the spatial approach is however more complicated to solve than the eigenvalue
problem of the temporal approach, due to the nonlinearity in k. For this study we have
chosen to solve the temporal eigenvalue problem instead of the spatial one. The wave
number is therefore real and will be denoted without a subscript & = k,, unless defined
differently. The temporal approach is allowed since the length scale over which the growth
takes place is much larger than the length scale of the perturbations. A comparison of the
temporal method with the spatial method (Chen & Jirka, 1998) will be made below. Ac-
cording to Gaster (1962), the spatial growth rate kY can be determined from the temporal
growth rate w] by kf = wl /cT with ¥ = wI'/kT as the propagation velocity.

The eigenvalue problem of Equation 3.25 is solved for given wave numbers yielding the
growth rate w; and frequency w,, by using a finite difference technique. The stability of
the flow follows from the stability curves (k,w;{k)). Perturbations with wave number k
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Figure 3.6: Neutral stability curves of an inviscid flow obtained with Equation 3.25 with the
correct (x) and erroneous (+) bottom friction term and the result by Chen&Jirka (1998) (drawn
line).

are growing if w;(k) > 0. In order to validate the proposed temporal method for the linear
stability analysis, a comparison is made with the inviscid calculations of Chen & Jirka
(1998), who solved the eigenvalue problem with the spatial method. Stability curves are
therefore calculated for a range of profiles, determined by the bed friction number defined
by Alavian&Chu (1985) as:
e iU

VT YDAU
The zero-crossings of these curves determine the neutral stability curve, which is chosen
as the criterion for comparison. The neutral stability curves determine the critical wave
numbers where w;(k) = 0. Figure 3.6 shows three different neutral stability curves. The
first is the neutral stability curve according to the above described model, and the second
is obtained from Chen& Jirka (1998). The difference between these curves is ascribed to the
incorrect expression for the bottom friction term in the eigenvalue problem of Chend&:Jirka
(1998). Implementation of the erroneous bottom friction term into the current model
results in the third curve, which coincides with the original curve of Chen& Jirka (1998).
With this comparison the use of the temporal approach instead of the spatial approach
is justified. In the following section the linear stability analysis model described above
is used. We refer to Chen&Jirka (1998) for sensitivity analyses regarding the effects of
bottom friction and eddy viscosity.
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Figure 3.7: Dispersion relation for the Cases 42 (+) and 67 (o). The solid lines represent kU..

3.3.2 Experimental validation

The above described stability analysis is applied to the experiments described in chapter
2. The validated velocity profiles, computed with the 1d-model of Equation 3.7, are used
as base flow. Stability curves are determined for a number of positions downstream of
the splitter plate up to a length of 15m. The frequencies w, so determined are shown
versus k in figure 3.7. The frequencies are linearly proportional to the wave numbers with
a proportionality constant equal to the velocity at the center of the mixing layer, again
justifying the use of the temporal method

Figure 3.8 shows the growth rates at three positions downstream of the splitter plate for
both mixing layers. A positive value of the growth rate indicates growth of the perturbation
of the particular wave number and a negative value indicates decay of that mode. For
each position downstream, a maximum growth rate is found, determining the locally most
unstable mode. The wave number of this unstable mode is close to k& ~ 0.445/(0.56) as
found by Michalke (1964). The size of the most unstable mode is therefore proportional
to the mixing layer width. The wave number of this most unstable mode decreases in
downstream direction as reflected in the broadening of the mixing layer width.

The wavenumber of the most unstable mode is decreasing more rapidly for the Case 67
than for Case 42 as the mixing layer width is growing faster for the Case 67. The magnitude
of the growth rate also decreases in downstream direction. This decrease in magnitude is
stronger for Case 42 than for Casc 67. The dissipative influence of the bottom friction is
the same for each wave number, as directly follows from Equation 3.23 and 3.24. Note
that the influence of the bottom friction is also implicitly present in the decrease of the
mean velocity difference. The dissipation due to the turbulence viscosity is proportional to
k?, thus affecting the modes with large wave numbers more strongly than the modes with
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Figure 3.8: Stability curves for the Case 42 () and Case 67 (- -) for different positions downstream
(r=2. 4.5 and 10m).

small wave numbers.

Comparing the two cases shows that the growth rates of the modes with small wave
numbers are larger for Case 67 than for the Case 42, because the influence of the bottom
friction is smaller for the deeper Case 67. The growth rates of the modes for the large wave
numbers arc more strongly influenced by the eddy viscosity, resulting in smaller growth
rates for Case 67 than for Case 42 in the high wave number range. In the case with bottom
friction and/or viscosity, the dissipative terms can become larger than the production
terms. resulting in a negative growth rate. For these cases existing disturbances arc being
dissipated and a stable situation is reached, as for example for Case 42 at x = 10m.

The stability curves of figure 3.8 represent the growth rate for various wave numbers
at a given downstream position, but they do not predict the energy density of the wave
numbers at that particular position. In order to find this energv density, the history of
the development of the structures has to be taken into account. Integrating the growth
rates over the streamwise coordinate yiclds an amplification factor for the initial perturba-
tion. The energy density speetrum of the lateral velocity component for a certain position
downstream z; can then determined by:

E(k,1,) = E(k, x0) exp (2 /m w;(k, :t)dr) (3.26)

k
“']1(]‘) Juag
The initial spectrum denoted by E(k. ) is assumed flat for small wave numbers, as found
in the experiments. The initial energy density level is taken such that it equals the measured
encrgy density at a position just downstream of the splitter plate, figure 3.9. The resulting
spectra at several positions, which are obtained from Equation 3.26 by numerical evaluation
of the integral, arc plotted in figure 3.9a and b for Case 42 and Case 67 respectively. The
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Figure 3.9: Measured (--) and modeled (-) energy density spectra of the lateral velocity component

v for Case 42 (top panels) and Case 67 (bottom panels) in the center of the mixing layer at the
downstream positions z=0m (left), 4.5m (middle) and 10m (right).

measured energy density spectra of the lateral velocity obtained in the center of the mixing
layer are plotted in the same figure, showing a remarkably good agreement. Since the
measured spectra are obtained from time series, the frequency axes are converted to wave
numbers by using the advection velocity (U,).

The presence of large coherent structures is reflected in a significant peak in the spectra.
Moving in downstream direction, the wave number of the peak shifts to the low wave
number side, corresponding to an enlargement of the structures. The energy density of the
peak is growing for the Case 67 over the full stretch, yielding more intense vortices. The
peak in the spectrum of Case 42 at £ = 10m is lower than the one at z = 4.5m, indicating
a decrease in strength for the large coherent structures.
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Figure 3.10: Development of the growth rates of the most unstable modes and the dominant
modes for the Cases 42 and 67. The three different growth regimes are indicated for Case 67.

Although the linear stability analyvsis is used here beyond its limits of small pertur-
bations, and the growth rates are integrated over a stretch several times the length scale
of the perturbations, the analysis gives a good prediction of the energy density and the
typical wave number of the coherent structures. The energy density in the high wave
number range of the spectrum, which is influenced by the dissipative small scale motion,
is underestimated. Obviously Equation 3.5 does not fully apply to this range of the spec-
trum, because the small-scale three-dimensional motion in this range is not resolved in this
analysis.

The successful prediction using a linear analysis suggests that the coherent structures
arc hardly influencing each other and that the energy density spectrumn at a certain position
downstream is governed by the spectral distribution of the turbulent kinetic energy at the
inflow boundary.

In order to track the development of the large coherent structures, the dominant mode
is followed. The dominant mode is defined as the wave number associated with the maxi-
mum cnergy density and is therefore representing the large coherent structures at a given
downstream position. As mentioned earlier, the most unstable mode is the wave number
for which the energy is growing fastest at that location.

The growth in intensity of the coherent structures in downstream direction is deter-
mined by following the growth of the dominant mode. The growth rates w; of the dominant
modes are plotted as function of the downstream position x in figure 3.10. At a certain
position downstream, the growth rate of the dominant mode becomes zero, indicating that
from that position on the coherent structures are losing energy. The coherent structures
are still present, but decaying. An unstable mode with positive growth rate can however
still be found up to the downstream position where the most unstable mode has a growth
rate equal to zero. From that position on the flow is stable and all perturbations will
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Figure 3.11: Development of the length scale of the most unstable mode, the dominant mode and
the measured dominant mode for the Cases 42 and 67.

decay. At this position the bottom friction parameter has reached its critical value S = S,
(Alavian & Chu, 1985).

Three different regimes can now be distinguished. These are indicated in figure 3.10
for Case 67. The first regime (I) is characterized by a positive growth rate of the dominant
mode. In the second regime (II) the growth rate of the dominant mode is negative (the
coherent structures are decaying), while some other modes still have positive growth rates.
The flow is therefore not fully stable yet. The third regime (III} is the stable regime,
in which all modes have negative growth rates. Although the flow is stable, coherent
structures still might exist in this stable regime. As these large perturbations have a small
wave number k, they are hardly influenced by the turbulence viscosity. The bottom friction
is expected to be the dominating dissipation mechanism.

The development in downstream direction of the characteristic length scale associated
with the coherent structures is related to the wave number of the dominant mode and can be
determined from the modeled and measured spectra. The time scale of the dominant mode
is determined by the frequency of the peak in the spectrum. Multiplying this time scale by
the advection velocity results in the length scale of the dominant mode. The development
of these measured and modeled length scales is plotted in figure 3.11 together with the
development of the length scales of the most unstable modes. As demonstrated in figure
3.9, the modeled and measured length scales of the dominant modes are in good agreement.
As figure 3.11 shows, the length scale of the most unstable mode is much larger than the
length scale of the dominant mode. This is because the coherent structures generated
upstream have had the opportunity to grow in strength while being advected downstream.
The effect of the advection is made more clear in figure 3.12 by the dimensionless wave
number k* = k§/2 as also used by Michalke (1964). This normalized wave number of
the most unstable mode is almost constant and close to the value of k* ~ 0.445 reported




3.4 Discussion and conclusions 41

i T
0.9
08
07
0.6
T
o 0.5
e
-~
04r
03
——  dominant mode 67mm
02+ — — — most unstable mode 67mm
- = dominant mode 42mm
o1k S most unstable mode 42mm
0 " " N A L _ L L L . L
0 1 2 3 4 5 6 7 8 9 10 Il 12
X [m}]

Figure 3.12: Development of the dimensionless wave number A* = kd/2 of the most unstable
mode and the dominant mode for the Cases 42 and 67.

by Michalke (1964) and Chu et al. (1989). The wave number of the dominant mode is
not constant, but changes in downstream direction. The higher values found for the wave
numbers of the dominant mode compared to the ones for the most unstable mode are a
result of the development of the mixing layer width. The coherent structures generated
upstream have larger wave numbers than the wavenumbers for the local most unstable
mode. The wave number found far downstream is about twice as large as the wave number
of the most unstable mode.

The most unstable mode is therefore not a suitable property for the characterisation
of the large scale motion. It highly overestimates the size of the coherent structures.
The accumulated energy of the coherent structures has to be taken into account for the
determination of the typical length scale using the dominant mode instead of the most
unstable mode.

3.4 Discussion and conclusions

In this chapter it has been demonstrated that with relatively simple techniques and means
a detailed view can be obtained of the shallow mixing layer and its large scale structures.

The quasi-1D-model predicts a mean flow field in accordance with the measured flow
field. The validity of the model suggests that the effects of shallowness on the mean flow
field are mainly governed by the decrease of the velocity difference over the mixing layer as
a result of bottom friction. The contribution of small scale three-dimensional turbulence
to the growth rate of the mixing layer and the associated entrainment appears to be
negligible. Only at downstream locations where Reynolds stresses in the horizontal plane
have become of the same order of magnitude as those in the vertical plane. can a change
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in the entrainment coefficient o be expected.

The use of a mean flow field as a base flow gives an extension to the use of linear
stability analysis. In contrast with the classical analysis based on a single velocity profile
for which the growth rates and the most unstable mode are determined at a single location,
the use of a flow field here allows for the determination of the spatial evolution of the energy
densities and the characteristic length scales. The development of the growth rate of the
dominant mode shows that the flow 'stabilizes’ (i.e. the dominant mode decays) well before
the critical bottom friction number is reached S = S,, where all modes decay. The critical
bottom friction number, as proposed in Chu&Babarutsi (1988), is therefore not a useful
number to characterize the large scale motion. Although the linear stability analysis is
used here beyond its limits, the characteristics of the large scale motion are well predicted.
This implies that the different modes hardly influence each other. A non-linear analysis is
expected to yield a more strict criterion as to the extent in which the linear approach is
Jjustified.

A consequence of the validity of the linear stability analysis is that perturbations at
the inflow determine the downstream development of the coherent structures, see Equation
3.26. This means that increasing the perturbation level at the inflow results in stronger
coherent structures downstream. This hypothesis will be tested in the next chapter with
a non-linear analysis.



Chapter 4

Effects of upstream large scale perturbations

4.1 Background

In Chapter 3. it was hypothesized that perturbations at the inflow boundary affect the
downstream development of the coherent structures. This phenomenon will be investigated
further in this chapter by means of numerical simulations and laboratory experiments.

The influence of imposed perturbations on the development of unbounded temporal
and spatial mixing layers and the associated coherent structures has been investigated
already by a number of authors, experimentally and numerically. Hussain&Zedan (1978a:
1978b) concluded from experiments that tripping the boundary layer along the splitter
plate has significant influences on the downstream development of the mean profile and
turbulence intensities. Experiments performed by Slessor et al. (1998) showed that tripping
the boundary layers at the high speed side resulted in a decrease of the 2D organization
of the large scale vortices. Another method for varying the inflow condition is to use
an oscillating flap at the end of the splitter plate. Oscillations of various frequencies
and amplitudes could be produced with such a flap, so different inflow conditions could
be imposed. Single frequency forcing was imposed by Oster&Wygnanski (1982). The
influence of double frequency forcing was investigated by Zhou&Wygnanski (2001). It
was concluded from these experiments that excitation of the mixing layer with a single
frequency results in higher turbulence intensities and a wider mixing region downstream
than without excitations. A double frequency resulted in even higher turbulence intensities
downstream.

High resolution numerical simulations of temporal mixing layers have for example been
carried out by Balaras et al. (2001). They found that the initial perturbations had a
considerable influence on the temporal development of the mixing layer. Different self-
similar states were found for different initial perturbations.

From the above mentioned experiments and numerical simulations it is concluded that
the development of coherent structures in mixing layers is affected by the turbulence at
the inflow condition.

The shallow mixing layers considered in this study are different from unbounded mixing
layers, as indicated above. The shallowness and the no-slip condition at the bottom result
in bottom turbulence. Shallow mixing layers are therefore always perturbed to a certain
extent by three-dimensional velocity fluctuations.
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In this chapter the sensitivity of the development of the shallow mixing layer to three-
dimensional perturbations is investigated.

First, numerical simulations are described. The large scale depth-averaged motion is
resolved in these simulations and the small scale turbulence is modeled. As this kind of
simulations is not unambiguous for relatively coarse grids, a classification of the different
possible concepts for this kind of simulations is given first. Perturbations with different
spectra are imposed at the inflow condition in order to investigate the downstream devel-
opment of the coherent structures. It is not the aim to exactly reproduce the experimental
results, but rather to analyze the influence of imposed perturbations on the development
of the mixing layer and the coherent structures.

Second, laboratory experiments are carried out in which the turbulence level at the
inflow is enhanced by covering the inflow segment with a bed of stones, generating three-
dimensional turbulence. Point measurements are performed with a Laser Doppler Anemome-
ter.

The numerical part of this chapter is partly published in Van Prooijen&Uijttewaal
(2002b) and the experimental part in Van Prooijen et al. (2003) and De Nijs (2003).

4.2 Numerical simulations

4.2.1 Classification of modeling concepts

Turbulent flows can be simulated at different levels of detail, by making a difference between
the resolved part and a modeled part. In this section the lowest, the highest and several
intermediate levels of detail are discussed. The main difference between the approaches lies
in the separation of the resolved part and the modeled part and in the associated model
for the modeled part. The distinction between the levels of resolution is made clear by
Spalart (2000) for a wake flow, Figure 4.1. The simulation at the lowest level of detail,
Figure 4.1(left), does not show any coherent motion. Only the mean flow is resolved, the
turbulent motion is entirely modeled. The simulation at the intermediate level of detail,
Figure 4.1(middle), shows the Von Karman vortex street as a smooth large scale motion.
The large scale motion is resolved, and the small scale motion is modeled. The simulation
at the highest level of detail, Figure 4.1(right), shows in addition to the Von Karman vortex
shedding also small scale instabilities. Most of the energy containing turbulent motion is
resolved. The simulation at the highest level of detail is closest to reality, but the price for
the detailed result is the high computational cost.

The lowest level of 'simulating’ the turbulent flow is the Reynolds Averaged Navier
Stokes (RANS) approach. The flow quantities are decomposed in a time mean and a
fluctuation. The fluctuations include all the turbulent motions. Substitution of such a
decomposition in the Navier Stokes equations leads to the well-known Reynolds equations,
in which the effects of turbulent motion appears as the Reynolds stress. With these stresses
the closure problem arises, which can be solved, in analogy with the viscous stresses in
laminar flow, by using the eddy viscosity concept. The closure problem is now shifted to
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Figure 4.1: Simulations of a wake flow with a low (left). intermediate (middle) and high (right)
level of detail (Spalart. 2000).

the determination of an effective eddy viscosity. The eddy viscosity is the product of a
typical length and velocity scale v, = L. Different turbulence models can be used to
determine these length and velocity scales. The most simple model for channel flows is the
Elder formulation, v = au,D. where the typical velocity scales with the friction velocity
U ~ u, and the length with the water depth £ ~ D.

In the case of multi-lavered simulations more advanced models like the & — ¢ model
and its variants can be used. These models are however still based on a single length scale
and cannot take into account the anisotropy of shallow shear flows. To this end, Bijvelds
et al. (1999) developed a two-length scale model. The eddy viscosity is split into a two-
dimensional and a three-dimensional part. This method has shown to be an improvement
with respect to the single length-scale models. The advantage of the RANS-models is
that relatively coarse grids can be used: mesh sizes depending on the length scales of the
mean flow, which are generally larger than the water depth. The disadvantage is that the
dynamics of the horizontal structures is poorly or not simulated.

The highest level of detail in resolving shallow water flow is based on the Large Eddy
Simulation (LES) approach!. Overviews of LES can be found in textbooks (Sagaut, 1998;
Pope, 2000). In the LES-approach the bottom turbulence is resolved and the very small
scale isotropic motion is modeled. The separation between the resolved and modeled
motion is visualized for LES in the spectral representation of Figure 4.2a. Implementing
the decomposition in the Navier Stokes equations leads to the equations for the filtered
motion. The closure problem in this equation remains for the filtered motion in the form
of a subgrid shear stress. Again, the eddy viscosity concept is used. Often used subgrid
models are the classical Smagorinsky model and the more sophisticated dynamic model
(Germano et al., 1991). The mesh size should be chosen in such a way that the cut-
off wavenumber lies in the incrtial subrange. At least 80% of the turbulent motion has
to be resolved (Pope, 2000). This requirement disqualifies LES as an engineering tool for
environmental flows in the next decades since the mesh size should then be at least an order
of magnitude smaller than the water depth. A computationally less demanding simulation
method is therefore desirable.

The approaches described above are widely accepted and used as tools in scientific re-

!Direct Numerical Simulation is not considered as it is far from feasible for our applications.
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Figure 4.2: Sketches of the separation of the turbulent motion in a resolved and a modeled part
according to the (V)LES-approach (top) and the TRANS-approach (bottom) (Sagaut, 1998).

search (RANS and LES) and in the engineering practice (RANS). A variety of approaches
exists for simulations at intermediate levels of detail, like Transient RANS (TRANS) (Han-
jalic, 2002), Unsteady RANS (URANS) (Spalart, 2000), sub-depth scale modeling (SDS-
2DH) (Nadaoka & Yagi, 1998), Horizontal Large Eddy Simulation (HLES) (Kernkamp &
Uittenbogaard, 2001), Very Large Eddy Simulation (VLES) (Pope, 2000). As the num-
ber of different names already suggests, none of the approaches is widely accepted. The
intermediate approaches can be separated in two groups. The first group (VLES, HLES)
is based on the same principle as Large Eddy Simulation. The turbulent motion is fil-
tered like in LES, but the filter width is much larger. Just the horizontal large eddies
are resolved. An aspect of discussion is the subgrid model which is more important than
in a three-dimensional LES as a larger part of the turbulent motion has to be modeled.
The cut-off wave number does not lie in the range where the turbulence can be considered
isotropic and where the self-similar energy cascading takes place. Dedicated subgrid mod-
els are therefore needed as for example developed at Delft Hydraulics by Uittenbogaard
(Kernkamp & Uittenbogaard, 2001). It is noted that this specific subgrid model only
accounts for the depth-averaged fluctuations with length scales roughly smaller than the
mesh size. The three-dimensional bottom turbulence is modeled with an Elder formulation
(a RANS-approach).

The second group (TRANS, URANS, SDS-2DH) is related to the RANS approach. The
turbulent motion is split in a very-large-scale coherent part and a non-coherent part over
the full spectral range, see figure 4.2b (according to Sagout (1998)). The very-large-scale
coherent part is to be resolved and the non-coherent part is to be modeled by a turbulence
model as used in the RANS-approach. Consequently, the turbulence model is not a function
of the mesh size. Different RANS-models are used in TRANS simulations of shallow water
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flows, varying from the Elder formulation to for example non-linear & — ¢ models (Kimura
et al., 2002). A disputable aspect of this method is the separation between the very
large scale coherent part and the non-coherent part and consequently the interpretation
of the large scale coherent motion. It should be noted that strictly spoken all turbulent
motions can be considered as coherent. Here we consider fully three-dimensional small-scale
turbulence as non-coherent.

To the author’s knowledge, no unambiguous method is known to split the non-coherent
motion from the coherent one. In case of regular vortex shedding. as for example in wake
flows (Von Carmer et al. (2001)). phase-averaging might be a possible method to split
the coherent motion from the non-coherent one. A good illustration of the difficulty of
interpreting the separation between coherent and non-coherent motion is given by Spalart
(2000):"As an analogy. this type of averaging (phase averaging) would amount to averaging
a number of human beings that walk by and do not have the same height. The average
is not a human body.” The results of a RANS-related-approach are therefore difficult to
interpret.

In the case of shallow shear flows, a clear distinction can often be made between the
typical length scales of the large-scale horizontal coherent motion and those related to the
bottom turbulence (Nadaoka & Yagi, 1998). Although bottom turbulence contains some
large scale components, as for example shown by Kim&Adrian (1999) and in Chapter
5, the energy content of this large scale bottom turbulence is much less than the energy
content of the large-scale horizontal coherent motion. This implies that the phase averaged
motion is almost equal to the low-pass filtered motion. Therefore the following procedure is
proposed: the separation between the resolved motion and the modeled motion is made by
low-pass filtering and the turbulence model is based on a RANS approach, 'independent’
of the mesh size. A classical RANS model, like an Elder formulation, can be used. The
mesh size then has to be in the order of the water depth as only the turbulent motions
with length scales larger than the water depth need to be resolved.

It is noted that this assumption of interpreting the large scale coherent motion by the
large scale motion is made implicitly in most of the studies on shallow water flows using
a RANS-type turbulence model (Nadaoka & Yagi. 1998; Kimura et al., 2002; Hinterberger
et al., 2002; Bousmar, 2002).

For convenience the term 2D-TRANS (two-dimensional Transient Reynolds Averaged
Navier-Stokes) is used for the applied procedure from now on.

4.2.2 Model description

As described in the former subsection the only method to simulate shallow water flows in
which the large scale coherent structures are resolved, without too high a computational
effort, is a simulation at the intermediate level of detail, a 2D-TRANS simulation. The
details of this model will be described here for application to a shallow mixing layer.
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Governing equations

The short-time depth-averaged shallow water equations with rigid lid are used:
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with the constant water depth D, pressure p, the velocities u and v in the streamwise and
transverse directions  and y, the bottom friction parameter c;, the turbulence viscosity
v;. The tilde ~ denotes the short-time-depth-averaging operator. As the Froude number is
small for the studied cases the rigid lid assumption for the free surface is justified.

The turbulence viscosity is an important parameter as already discussed in the former
section because it reflects the closure problem. A turbulence viscosity based on the friction
velocity u. and the water depth D (Elder formulation) is chosen:

v, = au, D (4.4)

with the empirical constant o = 0.05 — 0.2 (see Fisher (1979)). Here a value of o = 0.15
is used, comparable to the value used in Chapter 3.

Numerics

A finite volume method based on the model of Eggels (1994) is used to perform the 2D-
TRANS simulations. For spatial discretization of the governing equations, a simple second
order accurate central differencing scheme is used on a staggered equidistant orthogonal
grid. The coupling of the pressure to the momentum equations is done with the pressure-
correction method. The second order explicit Adams-Bashfort scheme is used for time
discretization. Since an explicit method for the time discretization is used, the Courant-
Friedrich-Lewy number is set to CF L = 0.35 to assure stability. The tridiagonal matrix is
solved with Gauss elimination. Tests were carried that confirmed the negligible influence
of numerical dissipation, but these are not discussed here.

Flow conditions and numerical parameters

The flow conditions are chosen in accordance with experiment Case 67 as described in
Chapter 2. The computational domain starts just downstream the splitter plate and rep-
resents a length L = 17m, a width W = 3m and a depth D = 0.067m. As the flow is
assumed to be two-dimensional, length scales smaller than the water depth are not re-
solved, but modeled. In order to represent motion with a length scale of the order of two
times the water depth, a mesh size of Ax = Ay = 0.3D = 0.02m is used. This results in a
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Figure 1.3: (left) The energy density spectra of the transverse velocity fluctuations realized just
downstream the splitter plate. (right) Energy density values for the low-frequency range.

grid with 850 x 150 cells. The time step is set to At = 0.02s, assuring CFL < 0.35. Free-
slip conditions are imposecd at the side boundaries. At the outflow an advective boundary
condition is imposed.

Special attention is paid to the inflow boundary condition. It follows from the linear
stability analysis of Section 3.3, that existing perturbations are amplified in the mixing
layer. The imposed perturbations are therefore expected to play a significant role in the
further development of the mixing layer and the large scale coherent structures. The inflow
boundary condition is prescribed as a mean flow profile with perturbations superposed on
it. The transverse profile of the mean streamwise velocity is prescribed by a hyperbolic
tangent, with a mixing layer width of §(xy) = D and velocities outside the mixing layer
U; = 0.32m/s and 0.13m/s.

The inflow boundary is perturbed by making use of a kinematic simulation. A ’tur-
bulent’ flow ficld is generated by a number of Fourier modes. The modes are chosen such
that the flow field approximately satisfies continuity and obeys a uniform encrgy density
spectrum. The flow field thus obtained is advected into the domain with the local mean
velocity, making use of the frozen turbulence hypothesis. The velocity fluctuations at the

inflow boundary are prescribed by means of a kinematic simulation (see for example Fung
et al. (1992)):

N

: EN k"
u(r.y) = Z v E(k”)ﬁ sin (27 (kpU(y)t + kyy) + ¢™) (4.5)
n=1 ’

N
\ kl\’ k,} 3 n T n
v(zy) = — Z \/ & E(k")ﬁ sin (27 (KU ()t + kjy)+") (4.6)
n=1
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k7 = cos(6™)k", ky =sin(0")k", k" = kR + k;‘2 (4.7)

with k" the wave number of mode n, N the number of Fourier modes, &V the cut-off wave
number, E(k™) the power density spectrum, ¢" a random phase shift and 8" a random
angle. The number of Fourier modes is set to N = 200, with the wavenumbers equally
distributed from kV¥/N to kV. The cut-off wavenumber has to be at least smaller than
the wavenumbers that cannot be resolved, k < %”. Measured 1D-velocity-spectra of open
channel flow turn out to have a more or less constant energy density level for the low
frequency range. A homogeneous spectral density is therefore assumed for the wavenumbers
k* < kN with different magnitudes of E, given in Figure 4.3(right). The energy density
spectra of the transverse velocity fluctuations as realized just downstream from the inflow
boundary are given in figure 4.3, showing an almost flat spectrum up to the imposed cut-off
frequency.

4.2.3 Statistical analysis

The influence of the perturbation amplitudes on the mean flow field is reflected in the
development of the mixing layer width, defined by the ratio between the velocity difference
and the transverse gradient of the streamwise velocity in the center of the mixing layer,
Equation 3.6. Figure 4.4 shows the downstream development of the mixing layer width
for the different fliow conditions. The growth of the mixing layer for Case a is significantly
smaller than for the other cases. The relatively slow widening of the mixing layer width
for Case a is associated with the absence of coherent structures. The widening is governed
by small scale three-dimensional turbulence modeled by the eddy viscosity. Note that a
completely undisturbed inflow condition can principally not be reached as there are always
discretization errors. The intensity of these perturbations is however too small to cause

0.8 " T v v v ~

o casca

x [m]

Figure 4.4: The development of the mixing layer width.
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Figure 4.5: Transverse profiles of the Reynolds stress (top) and transverse normal stress (bottom)
for the positions x = 2m (left), r = 5m (middle) and = = 10m (right).

significant effects in the computational domain.

The development of the mixing layer width is almost similar for the Cases b, ¢ and
d. The width increases slightly with increasing level of upstream perturbations. In the
presence of coherent structures, the mixing layer grows faster as momentum is exchanged
in transverse direction by the coherent structures. However, the effects on the mean flow
of the inflow perturbations for the Cases b, ¢ and d differ mutually not much compared to
the difference with Case a.

Reynolds stress profiles are plotted at the top of figure 4.5 for different positions down-
stream: r = 2m, r = 5m and # = 10m for the Cases b, ¢ and d. For Case a, Reynolds
stresses could not be calculated due to the absence of coherent structures. For the other
cases, a peak is found in the center of the mixing layer. Initially the peak grows in down-
stream direction, until it reaches its maximum value. From this position on, the peak value
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decreases again. This development is associated with the growth and decay of the coherent
structures, as described in Chapter 2. Initially, at = 2m, a significant difference is found
between the Cases b, ¢ and d. The ratio between the maximum stresses for the Cases b and
d i$ WV maxd/ WV maxp = 3.1. The ratio is smaller at £ = 5m: 4"V yax 4/WV maxb = 1.5. In
the far field, x = 10m, the difference has almost vanished: uyax d/%maxy = 1.1. In addition
to the Reynolds stress profiles of the large scale motion, the Reynolds stress profiles of the
small scale turbulence, as modeled by the Elder formulation, are plotted for Case ¢ (labeled
as Case ¢ 3D). The modeled shear stresses for the Cases b and d are very similar. However,
the shear stresses for Case b are slightly higher and for Case d slightly smaller. The dif-
ferences between the total shear stresses are therefore smaller than the differences between
the resolved shear stresses suggest. The widening of the mixing layer is initially dominated
by small-scale three-dimensional motion, which is not resolved. Further downstream the
resolved Reynolds stresses dominate.

The transverse normal stresses are plotted at the bottom of figure 4.5. Significant
differences are found at £ = 2m: U0/ max 4/V 0 max b = 3.8 and * = 5m: V0 ey a/V"V max b =
1.9. At = 10m the differences are small, although still present: V'V max d /Wmaxb =13
The differences between transverse normal stresses of the different cases appear larger than
the differences between the Reynolds shear stresses.

It is concluded that the formation of coherent structures plays a role in the widening of
the mixing region. In Case a, in which the coherent structures were absent, a significantly
smaller growth of the mixing layer width was found compared to the Cases b, ¢ and
d, in which coherent structures were present. The influence of a difference in upstream
perturbations on the width of the mixing layer is however limited. Increasing the intensity
of the inflow perturbations results in a slightly wider mixing layer. Higher turbulence
levels at the inflow result in higher turbulent stresses downstream. The differences are
more pronounced in the transverse stresses than in the Reynolds stresses. Far downstream
the influence of the inflow perturbations vanishes.

4.2.4 Spectral analysis

Figure 4.6 shows power density spectra of the transverse velocity fluctuations for Case
¢ in the center of the mixing layer, at different positions downstream. The peak in the
spectrum is associated with the coherent structures. Going in downstream direction, the
peak grows in intensity up to a maximum as energy is picked up from the mean shcar.
Further downstream the peak intensity decreases. The frequency of the peak shifts to the
low frequency range as the mixing layer broadens. A growth of the intensity and the shift of
the peak to the lower frequency range reflects the same trend as found in the measurements
of Chapter 2.

Figure 4.7 shows normalized power density spectra of the transverse velocity fluctua-
tions for the Cases b, ¢ and d at the downstream positions z = 2m, z = 5m and r = 10m.
These spectra have been made dimensionless with the spectra at the inflow:

_E(fm)
FU) = B )
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Figure 4.6: Power density spectra of the transverse velocity for Case c.

These dimensionless power density spectra can be interpreted as amplification functions.
They represent the amplification of the energy density of each mode over a certain reach.

According to the linear stability analysis proposed in Chapter 3, perturbations will
grow as a function of the transverse variation of the mean streamwise velocity. In figure
4.4 it was shown that the differences in mixing layer width between the Cases b, ¢ and
d were small. Based on the linear stability analysis, similar amplification functions are
therefore expected.

At r = 2m the amplification spectra are virtually equal. The inflow perturbations
develop in a similar way in downstream direction. At x = 5m ~ 75D. small deviations
are found, which are largest for the higher frequency modes, which can be explained by
the influence of the turbulence eddy viscosity. The difference in peak energy density is
small (Fiaxe/Fmaxh = 1.2). At * = 10m more significant differences are found, with a
peak ratio of Fiuax.c/Fmaxa = 1.6. The ratio betwecen the peak values of Case ¢ and Case
b is however still quite small (Fuax.c/Fmaxt = 1.2). Especially the amplification function
of Case d deviates from the other two. The explanation for the differences can be found
partly in the differences in development of the mixing layer width. More intense coherent
structures lead to a higher growth rate of the mixing layer and therefore a wider mixing
layer. This wider mixing layer results in less production of kinetic energy and therefore
in relatively lower energy density levels. The highest amplification functions are therefore
found for the case with the weakest coherent structures, Case b. Another explanation for
the differences in amplification levels arc non-linear effects, like the merging of two vortices
to a larger one. This was obscrved for Case d. The larger shift of the peak to the low
frequency range in this Case d. is another indication of the merging process. Obviously.
these non-linear effects are strongest for intense vortices.
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It is concluded from the spectral analysis that inflow perturbations have an important
influence on the downstream development of the energy density spectra. Almost similar
dimensionless power density spectra are found for the Cases b, ¢ and d indicating linear
behavior. However, relatively far downstream (z > 100D), non-linear effects become
important especially in the case of intense vortices.
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Figure 4.7: Amplification spectra at z = 2m (top left), = 5m (top right) and z = 10m (bottom).
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4.3 Experiments

In the preceding section the influence of perturbations at the inflow on the development of
large coherent structures was investigated by mecans of numerical simulations. In this sec-
tion laboratory experiments are discussed in which the inflow perturbation level is varied.

4.3.1 Experimental set-up

Two cascs are studied in the shallow flow facility that has been described in Chapter 2. The
distinction between both experiments was determined by the encrgy density level of the
perturbations generated at the inflow boundary. In experiment 1, turbulence is generated
by the flow over a smooth bottom. In experiment 2 additional perturbations are evoked
by means of a bed of submerged stones (Figure 4.8). The stones have a mean diameter of
approximately D = 3cm and are placed in a staggered pattern on a grid with a meshsize
of 0.04m. For both cases the discharge is kept the same. The flow conditions, the water
depth and velocities, are chosen in such a way that the flow is turbulent and subcritical.

Laser Doppler Anemometry (LDA) data are presented here; sce Uijttewaal&Booij
(2000) for details about the LDA-system used. The glass bottom allows for optical ac-
cess from below. For each position about 10° bursts were detected in a period of about ten
minutes. This data rate allowed for a sampling rate of 100 Hz, which is sufficient for the
investigation of the large scale horizontal structures with typical time scales larger than
one second. Measurements have been performed at two different positions downstream of
the splitter plate, at x = 0.4m and in the far field at £ = 5.0m. For each position the
streamwise and transverse velocity is measured simultaneously at z = 0.6D.

4.3.2 Statistical analysis

The mean velocity profiles for both experiments are shown in Figure 4.9 for z = 0.4m
and in figure 4.10 for z = 5.0m. At the position closest to the inflow section (figure 4.9),
differences between the two profiles are found. The center of the mixing layer lies at y = 0
for experiment 1, while it is shifted to the high velocity side in experiment 2. The mixing
layer is wider for experiment 2 than for experiment 1 and a strong spatial oscillation is
found on the high velocity side of the mixing layer of experiment 2. A number of three-
dimensional effects play a role in this region, what makes it too speculative to address the
different mechanisms causing these differences.

Figure 4.10 shows that at = 5.0m the differences between the mean velocities in the
two experiments are small. Therefore, the higher turbulence intensity at the inflow has no
significant effect on these mean velocity profiles. It is noted here that also in the numerical
simulations described earlier in this chapter just a slight difference was found between the
cases with differing inflow conditions.

The turbulent normal and shear stresses we/, vv/ and wv' are also plotted in the
figures 4.9 and 4.10 for the two downstream positions. At r = 0.4m a distinct peak is
found for all stresses in the center of the mixing layer for experiment 1. The peak values
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of the stresses are of the same order of magnitude. The peak is therefore associated with
the presence of turbulent structures developing in the mixing region. No such peak is
found at £ = 0.4m for experiment 2. With the small mixing layer width here, turbulent
motion appears to be dominated by the three-dimensional turbulence generated in the
wake of the stones. The stresses w/u/, v'v' scale with the mean velocity squared. The
shear stress v’ shows a different behavior. A peak is found in the center of the mixing
layer. Outside the mixing layer the shear stress is relatively small compared to the normal
stresses. Outside the mixing layer both positive and negative values are found, because
positive and negative gradients of the mean streamwise velocity exist as a result of the
inhomogeneities introduced by the bed of stones. The distance between the maxima is
comparable with the distance between the stones. A much stronger spatial oscillation is
found on the high velocity side than on the low velocity side.

At the downstream position = 5.0m all stress profiles have a peak in the center of the
mixing layer. The turbulent motion in the mixing layer is dominated by the large coherent
structures in both experiments. A significantly higher peak value for the normal stresses
and the shear stress is found for experiment 2 than for experiment 1. The peak values

bed of stones

O =™ 3m

040m  §om

y.v —> .
L»"*“ 20 m

D [mm] | Uy [m/s] | U [m/s]
8 | 033 | 011

Figure 4.8: Sketch of the top view of the measurement set up (top), a picture of the inflow section
covered with stones (bottom left), and the flow parameters at the inflow boundary (bottom right).
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Figure 4.9: Transverse profiles of the mean streamwise velocity and the turbulence stresses at
z = 0.40m for experiment 1 (4) and experiment 2 (-).
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x = 5m for experiment 1 (+) and experiment 2 (-).
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Figure 4.11: Power density contour values (E,..[(m/s)?/Hz]) at r = 5.0m for experiment 1 (left)
and experiment 2 (right). The frequency is made dimensionless with fo = 1Hz. The contour
interval is set to AE,, = 0.0004(m/s)?/Hz

differ a factor 1.8 for v/u/ and w/v' and a factor 2.0 for v'v’.
Enhancement of the turbulence intensities by the bed of stones has resulted in higher
turbulence stress levels downstream, but not in a wider mixing layer.

4.3.3 Spectral analysis

A difference between the two experiments was found with respect to the turbulent stresses.
However, it cannot be concluded from these stresses whether the turbulent kinetic energy
can be associated with the horizontal coherent structures. To investigate this, energy
density spectra are used.

Contours of the energy density of the transverse luctuations at = 5.0m are plotted
against the frequency and the transverse position in figure 4.11. The coherent structures
are represcented by a bulge in the spectra that are measured in the mixing region, sec also
Chapter 2. In both experiments a maximum is found in the center of the mixing layer at
a frequency of f ~ 0.15Hz. There is some scatter in the contours, but the bulge as found
for experiment 2 is substantially higher than the one for experiment 1.

The spectra E,,, E,, and E,, in the centers of the mixing layers at the positions
r = 0.4m and o = 5.0m are plotted in figure 4.12. In the near field, a higher energy
density level in the high frequency range is found for experiment 2. A pcak is found at
about f = 0.8Hz, indicating the presence of turbulence structures.

At the downstream position & = 5.0 m, significant peaks are found in E,, and E,,.
Such a peak is less profound in the spectra E,,, as these spectra are contaminated by the
varying transverse locations where the coherent structures pass. A much higher peak value
is found for experiment 2. These data suggest that the large scale coherent structures arc
more intense for experiment 2. This confirms the hypothesis of the lincar theory, in the
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sense that perturbations at the inflow affect the development of the coherent structures
downstream.

According to the linear stability analysis, perturbations will grow as function of the
transverse profile of the mean streamwise velocity. The mean velocity profiles of the two
experiments are almost the same. The inflow perturbations are then expected to be ampli-
fied in the same way. The ratios of the spectral densities of the modes at the two positions,
the amplification functions as formulated in Equation 4.2.4, therefore are expected to be
the same. Figure 4.13 shows the amplification functions for both experiments. Despite
some scatter, they are quite similar in the low frequency range, indicating the validity of
the proposed linear behavior.

4.4 Discussion

The simulations of a shallow mixing layer presented in this chapter show the dependency
on the imposed perturbations at the inflow boundary. If no perturbations are imposed,
no large scale structures are found on the downstream reach of the domain. Imposing
perturbations on the inflow boundary does result in the development of large coherent
structures. From the numerical simulations and the experiments the following is observed:
e From the numerical simulations it followed that higher turbulence levels at the inflow
result in slightly wider mixing layers. No measurable differences were found in the
widths of the mixing layers for the two experiments.

e Higher normal and shear stresses v/, v/v' and v’ are found for cases with higher
inflow turbulence levels, in the experiments as well as in the numerical simulations.

e In the experiments and in the numerical simulations, higher energy density levels are

found for cases with higher inflow turbulence levels.

There seems to be a contradiction between the first and the second item. On the one
hand higher turbulence levels at the inflow result in stronger vortices, but on the other hand
no significant differences are found in the mean profiles. This behavior is also found for the
experiments of Chapter 2. Significant coherent vortices were found for Case 67, which were
growing over the full domain, whereas weak vortices were found in Case 42, which were
dissipating soon after the splitter plate. Despite these differences in coherent structures,
the mean velocity field could be described well by a simple quasi one-dimensional model,
which did not take into account the development of coherent vortices. Similar behavior is
found by Dracos et al. (1992). In these shallow jet experiments significant differences were
found in the development of the intensity of the coherent structures, but the spreading
rate of the jet turned out to be the same. No explanation was given for this contradiction.

Apparently the intensity of the coherent structures has no direct influence on the broad-
ening of the mixing layer, although this was expected, as stronger vortices should result in
an increase in momentum exchange.

In Chapter 3, it was concluded that the large scale motion behaves mainly linearly.
This implies that inflow perturbations are amplified mainly depending on the mean velocity
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Figure 4.12: Transverse velocity power density spectra Ey,. (top left), Ey, (top right) and E,,
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Figure 4.13: Spectral amplification function for experiment 1 (-) and experiment 2 (- -).

profile and only slightly on the turbulence levels themselves. This behavior is also found
in the numerical simulations as well as in the experiments. However, non-linear effects
played a role in the simulation with the highest level of inflow perturbations. Merging of
vortices took place, resulting in a lower energy density levels and a lower peak frequency. A
sensitivity study on the influence of these non-linear effects would be desirable to investigate
the limitations of the linear approach.

This chapter was devoted to the influence of perturbations of the inflow on the devel-
opment of the mixing layer and the coherent structures. It turned out that the mean flow
was only slightly affected, but the intensity of the coherent structures were sensitive to
amplitude differences of perturbations at the inflow. No attention was paid however to the
origin of these perturbations and how these perturbations can be quantified. As it turned
out that the development of the coherent structures is sensitive to these inflow perturba-
tions, the depth-averaged motions have to be quantified beforehand in order to be able
to model the development of the coherent structures in shallow shear flows properly. For
that purpose, a three-dimensional simulation of a wide uniform channel flow is performed
in Chapter 5. From these results, the depth-averaged motion can be extracted in order to
quantify the large scale depth-averaged motion that has to be imposed in depth-averaged
simulations.



Chapter 5

Simulation of large scale bottom turbulence

5.1 Introduction

In the previous chapter, it was concluded that perturbations have to be imposed in a
depth-averaged simulation of a shallow mixing layer. Without perturbing the flow, no
coherent structures are initiated and the spreading rate of the mixing layer is strongly
underestimated.

The perturbations that have to be imposed, are expected to be the large scale compo-
nents of the bottom turbulence. Although the bottom turbulence has a dominant length
scale smaller than the water depth, motions with larger length scales may be present.
Since these large scale motions are a result of the shear at the bottom, they should also be
present in uniform channel flow. As input for the two-dimensional simulations the depth-
averaged large scale bottom turbulence is required. Such data is however not available.
Mcasurements on channel flows are generally performed in relatively narrow flumes and
additionally it is difficult to measure such large scale motion as the energy content is small
and the large scale motion as measured by point measurements will be contaminated by
the aliasing effect (Tennekes & Lumley, 1972). Kim& Adrian (1999) showed that large scale
motion is present in uniform channel flow. However, the data we need for determination
of the imposed perturbations could not be extracted. Numerical simulations are gencrally
performed for too small a flow domain, so that the large scale motion cannot develop due
to the side boundaries, see for example Moser et al. {(1999).

In this chapter the large scale bottom turbulence in a wide uniform channel flow is
therefore studied with respect to amplitude and spectral distribution in order to quantify
the perturbations that have to be imposed. To this end a fully three-dimensional Large
Eddy Simulation is performed.

This chapter is built up as follows. In section 5.2 a fully three-dimensional Large Eddy
Simulation (3D-LES) is described in which the bottom turbulence is resolved. The results
of the 3D-LES are validated with results from a Direct Numerical Simulation (DNS) of a
channel flow (Moser et al., 1999). The computational domain of the 3D-LES was chosen
large enough to quantify the large scale bottom turbulence. Two-dimensional power density
spectra are used to determine the characteristics of the large scale bottom turbulence. In
section 5.3 a kinematic simulation is used to mimic the large scale bottom turbulence, by
its characteristics as obtained from the 3D-LES. This kinematic simulation is subsequently
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implemented not only at the inflow condition but also as a perturbation term over the
full domain in the depth-averaged shallow water equations. The depth-averaged Transient
Reynolds Averaged Navier Stokes model with kinematic simulation (2D-TRANS+ks) thus
obtained, is used to simulate a uniform channel flow. Finally, conclusions are drawn in
section, 5.4.

5.2 Three-dimensional Large Eddy Simulation (3D-
LES)

Large eddy simulation is used here as a research tool and is considered to be suitable
without modifications of the numerical scheme or subgrid model. Conventional numerical
procedures and subgrid scale models are therefore used which have been proved to be
applicable in channel flows. Details of various LES methods are described in textbooks by
for example Sagaut (1998) and Pope (2000).

5.2.1 Model description

The Navier-Stokes equations (NSe) form the basis of a large eddy simulation:

auz-

Bx,-

ot ‘or; pox; 0z;0z;
withi=1,2,3 and j = 1,2, 3. In LES the large scale motion is separated from the residual
motion by a spatial filter:

(), t) = /G(rj,a:j)u,-(:cj —rj, t)dr

Different filters G can be applied. In this thesis the top hat filter is used, which results in
the filtered NSe: 94
il
=0 5.1
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The influence of the residual motion on the filtered motion is expressed in the subgrid scale
(SGS) stress tensor 7,75, Note the similarity with the Reynolds Averaged Navier Stokes
(RANS) equations (Equation 4.2 and 4.3). The SGS stress only represents the stress on the
subgrid scale, whereas the turbulence stresses in RANS represent all turbulent motions.
LES can now be carried out by integrating Equation 5.1 and 5.2 using a model for 1'505 \
the subgrid model.

(5.2)
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Often used subgrid models are the Smagorinsky model, the dynamic model and the
mixed model (sce for example Pope (2000). Sagaut (1998) and Germano (1991)). Good
results are obtained for channel flow with the simple Smagorinsky model, which is therefore
used. The Smagorinsky model is determined as:

with

I/S(.'S — (CgA)ZS

with S = (2§,~j5‘,-j)1/2 the rate of strain. 'y the Smagorinsky coefficient. and A the mesh
size. A value of Cy = 0.065 gave optimal results for channel ow (Moin & Kim. 1982) and
is used here.

In order to reduce the number of grid cells a wall function is applied to model the
viscous sublayer. Therefore an extra shear stress 7, is added to the momentum balance of
the first cell counting from the bottom. Different models have been developed to represent
the shear stress at the wall 7, (Pope. 2000: Sagaut, 1998; Piomelli et al., 1989). Here the
Schumann-Grétzbach model (Schumann, 1975) is used:

_u(ry, z)
Twgw = m<7w> (5.3)
Twew = M(ﬂu) (54)

(u(z, y.21))
with 2; being the first grid point from the wall. The brackets denote the long time aver-
aging. The ratio between the instantaneous velocity and stress is assumed to be equal to
the ratio of the time mean velocity and stress. The stress and velocity are assumed to be
in phase. The mean velocity (u) is calculated and the stress 7,, is determined using the log

law: _ )
) _ (-111 ot 5.5)
%

14

Tw = pul (5.5)

The above described set of equations is solved with a large eddy simulation model de-
veloped at the Laboratory for Aero and Hydrodynamics at Delft University of Technology.
Details of the numerics can be found in Eggels (1994).

5.2.2 Flow conditions

In order to check the proper performance of the code with the above described bottom
boundary condition, the flow conditions of the channel flow of Moser, Kim and Mansour
(1999)' (MKM) are adopted. MKM performed a direct numerical simulation (DNS) for a

1An extensive data set of the MKM simulations can be found at
www.lam.uiuc.edu/Faculty /Moser/channel.
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Figure 5.1: Sketch of the computational domain (top), and parameter settings (bottom).

relatively high Reynolds number, resulting in a large number of grid points on a small do-
main. However, the length and the width of the domain in this study are strongly increased
in order to be able to reveal the large scale depth-averaged motion. As a consequence the
resolution of the grid is decreased. A sketch of the domain and the coordinates used is
given in figure 5.1.

A uniform channel flow is characterized by the Reynolds number Re, = u,D/v, where
u, is the friction velocity, D the depth of the flow and v the viscosity. All velocities are
made dimensionless with the friction velocity. The simulation for Re, = 590 is chosen for
comparison with MKM. The number of cells in the direction perpendicular to the bottom
(2) is set at N, = 20, yielding acceptable results with a relatively coarse grid. The grid size
in streamwise direction and transverse direction are stretched by a factor 1.6 with respect
to the vertical grid size. A grid of 20 108 cells could be implemented on a computer cluster
with 20 active nodes, allowing a domain size of L, x L, = 80D x 80D.

Periodic boundary conditions were imposed on the inflow, outflow and side walls. Where
MKM simulated a closed channel with a no-slip rigid lid upper boundary condition, an open
channel with a free-slip rigid lid upper boundary condition is simulated here. A proper
comparison is still possible when comparing the open channel with only half the closed
channel.

The initial conditions were created by perturbing the log profile with random fluctua-

tions with an intensity of 1/u(ty) = u,. This initial condition is needed to start up the
generation of coherent structures. The data presented are gathered from the moment a
stationary flow is obtained and the wall shear stress balances the mean pressure gradient.
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Figure 5.2: Profiles of the mean velocities (left) and the turbulence intensities (right), relative to
the friction velocity. The DNS results are obtained from Moser et al. (1999)

5.2.3 Validation with MKM

The mean velocity profile calculated with 3D-LES is plotted in figure 5.2 together with
the results obtained with the DNS by MKNM. The differences between the LES and DNS
are very small. As can be expected from a simulation with insufficient resolution, a small
deviation from the DNS is found close to the bottom. The turbulence intensities are also
plotted in figure 5.2. The maximum intensities near the bottom are fairly well represented,
despite the low resolution. The low intensities of the vertical fluctuations in the LES-results
close to the water surface are a consequence of the rigid lid at the surface, whereas this
elevation from the bottom equals the center of the channel in the DNS, allowing vertical
velocity fluctuations.

In view of our application it should also be established how the turbulent motions are
distributed over the wavenumber range. The power density spectra of the LES and the
DNS are therefore compared. The range in which the results can be compared is however
restricted. On the one hand, the horizontal dimensions of the domain of the DNS are
limiting. The minimum wavenumber should be at least larger than the value related to the
domain size kDpin pns = 0.16. On the other hand the maximum wavenumber is limited by
the resolution of the LES. The maximum value should be at least smaller than the Nyquist
wavenumber related to the gridsize kDy40..ps = 6.1. The power density spectra obtained
from the streamwise and the transverse velocity at middepth are plotted in Figure 5.3.
The velocities were made dimensionless with the friction velocity and the wavenumbers
with the water depth. The normalized spectra of the 3D-LES and the DNS collapse in
the range 0.3 < kD < 3. Domain-size effects play a role on the low wavenumber side and
numerical effects on the high wavenumber side, reducing the range where the data should
collaps. The overall agreement with the DNS is concluded to be sufficient. The resolution
and the wall function used in the 3D-LES model are therefore concluded to be suitable for
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Figure 5.3: Dimensionless power density spectra of the streamwise (left) and transverse velocity
(right) at = = 0.5D. The DNS results are obtained from Moser et al. (1999).

the determination of the large scale depth-averaged motion.

5.2.4 Large scale motion

In the wavenumber range where a comparison of the DNS and the 3D-LES is meaningful,
the LES results are in fairly good agreement with the DNS results. The validated 3D-LES
results can now be used for the determination of the characteristics of the large scale depth-
averaged motion. The perturbations that are to be imposed in the depth-averaged TRANS
simulations should have the same characteristics. These characteristics are evaluated by
means of the two-dimensional energy density spectra.

In order to determine the two-dimensional velocity spectra, instantaneous velocity maps
are first averaged over the depth. Two-dimensional energy density spectra are subsequently
determined, providing the energy distribution over the wave number field &, k,. Spectra
are obtained from 100 statistically independent velocity maps. Contour plots of the aver-
aged energy density spectra are presented for the streamwise and the transverse velocity
in the figures 5.4a and b. The maximum value for the spectrum of the streamwise fluctua-
tions is found for k, D =~ 0 and k,D = 0.35. Such a spectrum is associated with streamwise
elongated patches of low and high streamwise velocities. (An instantaneous velocity map
is shown in figure 5.6, further in this chapter.) The energy density levels in the spectrum
of the transverse fluctuations are significantly lower than those in the spectrum of the
streamwise fluctuations. A ridge is found about the line kD = k,D with a maximum at
k:D = kyD =~ 0.15. The symmetry along the line k,D = kyD indicates that the pattern
of transverse fluctuations is not clongated in streamwise direction as it is the case for the
streamwise flow pattern, see Figure 5.6.
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Figure 5.4 Two-dimensional energy density spectra of the depth-averaged streamwise (left) and
transverse (right) velocity fluctuations .

5.3 Kinematic simulation

In the previous section the distribution of the depth-averaged turbulent kinetic energy over
the wavenumber field has been determined. In this section, it is attempted to mimic this
depth-averaged large scale motion by means of kinematic simulation. Mimicking turbulent
motion by means of kinematic simulation is for example described by Fung et al. (1992). In
such a simulation, the instantancous turbulent velocity field is simulated by the summation
of Fourter modes:

1 n=N

wes(2.y) = Z " sin (Kpx + kly + o") (5.6)
‘ n=|
n=N

vks(z,y) = I Z " sin (kyz + kjy + o") (5.7)
n=1

with a random phase ¢. The amplitudes @ and ¢ have to be prescribed such that the
corresponding encrgy density distribution mimicks the spectra of the three-dimensional
LES. Four different properties are distinguished in this respect. The first property of the
large scale motion is continuity. This demand couples the spectra of the streamwise and
transverse fluctuations. The continuity equation should be fulfilled by the imposed velocity
fluctuations. The second property is anisotropy of the streamwise velocity. The elongation
of the streamwise velocity in the streamwise direction has to be reproduced, sec figure
5.4 (left). However, this elongation should not be reflected in the transverse velocity, see
figure 5.4 (right). As a consequence of the anisotropy and the continuity, the energy density
of the streamwise velocity is higher than that of the transverse velocity. The anisotropy
term not only reflects the energy distribution, but also the ratio between the energy of the
streamwise and transverse fluctuations. The factor representing the anisotropy is proposed
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to scale with k, and is made dimensionless with k. Elongated vortices (k, > k) will
therefore have higher energy density levels. The third property is velocity scaling. The
fluctuations are related to the friction velocity. Higher energy density levels should be
found for rougher bottoms and/or higher mean streamwise velocities. The fourth property
is length scaling. The wavenumbers are made dimensionless with the depth. The associated
factor is chosen such that the spectra fit the data well. Appropriate expressions have been
postulated reflecting these four properties, leading to the following total expressions for
the amplitudes:

kn a3 k
(kT BN — . Ak k™ Y Y 5.
u(ky, k) au Alk lDex;zr( Alk lDl(|k"|) o] (5.8)
velocity scaling length scaling N e N
anisotropy continuity
b(k?, k™) = M IDexp (D) () ks 5.9)
o(kz, ky) = oty exp |D) = = (5.
velocity scaling length scaling Sm—— N

anisotropy continuity

k| = /K2 + k2

in which o, 8 and A have to be determined from the three-dimensional LES. Fitting
Equation 5.8 and 5.9 to the results of the depth-averaged LES resulted in optimum values
o =13, 8=23.0and A = 0.3. The corresponding two-dimensional power density spectra
for the streamwise and transverse fluctuations are plotted in figure 5.5. The main features
of the parameterized spectra are in fair agreement with those of the depth-averaged three-
dimensional LES (Figure 5.4), except that the spectrum E,, does not have its ridge along

Figure 5.5: Two-dimensional energy density spectra of the depth-averaged streamwise (left) and
transverse (right) velocity fluctuations, as described by Equation 5.8 and 5.9.
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the line k, = k; but on the line k, = 1.4k,. The anisotropy parameter 3 is however chosen
such that the ratio between the energy of the streamwise and transverse fluctuations is
correctly reproduced. More sophisticated expressions for the spectra would possibly lead
to a better approximation. However, as will be shown below, good results are obtained
with the here proposed expression.

Substitution of the so obtained amplitudes in the kinematic simulation, Equation 5.6
and 5.7, results in the perturbations that will be imposed in the two-dimensional simula-
tions.

5.4 Transient RANS with kinematic simulation (2D-
TR ANS+ks)

5.4.1 Implementation of kinematic simulation in the TRANS
model

After defining the large scale (non-resolved) motion using a kinematic simulation, it is
implemented in the depth-averaged model (2D-TRANS). In Chapter 4, the perturbations
were imposed only at the inflow boundary. For a uniform channel flow, this would lead
to the dissipation of these inflow perturbations. As there is no source like a transverse
gradient of the streamwise velocity to sustain the perturbations, all energy is dissipated
due to the bottom friction and the eddy viscosity. Naturally, this is not the case for
a three-dimensional large eddy simulation of a uniform channel flow due to the vertical
velocity gradient. This channel flow turbulence is typically three-dimensional with length
scales in the order of the water depth, but it appears to have also larger scale components,
resulting in residual turbulent fluctuations after depth-averaging. Such turbulent motions
can principally not be reproduced by a depth-averaged model, as the vertical gradient of
the streamwise velocity is absent. In order to account for these depth-averaged motions,
extra force terms have to be inserted in the shallow water equations over the entire domain.
Such terms are for example implemented by Chasnov (1991) and Leith (1990) for three-
dimensional Large Eddy Simulations. They aimed to mimick the effects of the non-linear
interactions of the small scale non-resolved motion on the large scale resolved motion by
adding random fluctuations. In the case of shallow water flow, we aim to mimick the
depth-averaged large scale motions that were filtered out by the depth-averaging operator.

The additional terms should be implemented in the momentum equations. For a fully
developed uniform channel flow, the fluctuating force should compensate for the dissipative
influence of the bottom friction and the eddy viscosity.

To determine the force representing the large scale bottom turbulence we start with

the shallow water equations for the velocity fluctuations in a uniform channel flow, see also
3.20 and 3.21:
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On the r.h.sof the equations, the dissipative bottom friction and viscosity terms can be
recognized. They consist of a fluctuating component and a mean component. The proposed
perturbation force is defined here in the same form as the bottom friction and the viscosity
term, with opposite sign. The velocity fluctuations in these terms are replaced by the
fluctuations obtained from the kinematic simulation. The perturbation forcing terms to
be inserted into the r.h.sof Equation 5.10 and 5.11 are then:

2(‘/U <82Uks azuks>

F" s v
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These perturbation forces are implemented in the depth-averaged shallow water equations,
leading to
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kinematic simulation
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kinematic simulation

In section 5.3 the kinematic simulation has only been described as a spatial velocity
field. For the proposed implementation time dependency is needed. The classical way of
implementation of the time dependency is by replacing the coordinates x and y by z— fo udt
and y— fo vdt. This can be interpreted as a turbulent flow field that is entering the domain
from the inflow boundary and that is advected mainly with the mean streamwise velocity.
As the fluctuations are small, the influence of the fluctuations on the celerity is small.
Such an implementation implies however that perturbations are only generated at the
inflow, but the perturbations we intend to mimic are generated locally. A physically more
sound method would be to make the amplitude of the perturbations time dependent. The
transient kinematic simmulation then becomes:

uks (2,9, t) = Z \/§Sln(/ (kU + k,V)dt + 6™)a"sin (k= +ky+o" ) (5.14)

vrs(T, 9, 1) Z 2 sin( / (kU + kyV)dt + 07)0" sin (Kjx + kJy + ¢") (5.15)
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The amplitude varies depending on the local mean velocities and the wavelengths of the
mode. The factor /2 is needed to keep the total kinetic energy correct.

The term 2D-TRANS+ks is used from here on to refer to the depth-averaged TRANS
model with kinematic simulation.

5.4.2 Comparison with 3D-LES

The channel flow as simulated with 3D-LES in the first part of this chapter is simulated
with the two-dimensional model 2D-TRANS+ks as described above. The mesh sizes are
chosen as Ar = Ay = D/3. as it is aimed to resolve the scales larger than about two
times the water depth. The computational domain then consists of 2V, x N, = 240 x 240
grid points. In order to compare the velocities obtained from the 2D-TRANS-+ks with
the depth-averaged velocities of the 3D-LES a low-pass spatial filter is applied. A cut-off
kA = 2D is used as the larger scales arc intended to be simulated. Instantaneous filtered
streamwise velocity fields are plotted in Figure 5.6 as obtained from the 3D-LES (a) and
from the 2D-TRANS+ks (b). As shown the elongated patches of strcamwise velocity are
fairly well reproduced. Also the instantaneous filtered transverse velocity fields are plotted
as obtained from the 3D-LES (c¢) and from the 2D-TRANS+ks (d). The isotropic pattern
is simulated. The fair agreement between the 3D-LES and the 2D-TRANS+ks is partly a
result of the imposed spectrum.

5.5 Summary and conclusions

The large scale motion in a wide uniform channel flow is simulated. First a three-dimensional
large eddy simulation is performed, in which the bottom induced turbulence is resolved.
The vertical profiles of the mean streamwise velocity and the turbulence intensities are in
good agreement in overlapping wavenumbers with the results obtained from a DNS (Moser
et al., 1999). Also the power density spectra of the fluctuations at half the depth showed
good agreement. Two-dimensional spectra of the depth-averaged motion are determined
representing the energy distribution in wave number space. These spectra are parame-
terized and implemented in a kinematic simulation representing the large scale bottom
turbulence. The perturbations obtained via kinematic simulation are implemented in the
inflow condition and as perturbation forces in the shallow water momentum equations,
leading to the 2D-TRANS+ks model (Transient Reynolds averaged Navier Stokes with
kinematic simulation). This 2D-TRANS+ks model is applied to a uniform channel flow.
The main features of the large scale depth-averaged bottom turbulence could be reproduced
properly.
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Figure 5.6: Contours of the instantaneous depth-averaged streamwise (first and second) and
transverse velocity fluctuations (third and fourth) obtained from 3D-LES (first and third) and
2D-TRANS+ks (second and fourth). The velocities are scaled with the mean streamwise velocity.
Only a part of the total flow domain is plotted.




Chapter 6

Application of 2D-TRANS+ks

In this chapter the model 2D-TRANS+ks is applied to shallow shear lows. The mode] was
tested in the former chapter for a uniform channel flow. without streamwise and lateral
velocity gradients. These gradients are however present in shear flows. The performance
of the kinematic simulation is therefore first tested for flows with velocity gradients. After
a slight modification of the 2D-TRANS+ks model, two different shear flow configurations
arc simulated. First, the shallow mixing layers, Case 42 and Case 67 as described in
Chapter 2 are computed. A comparison between the simulations and the measurements is
made, based on the statistical properties, the spectral distribution of the energy and the
conditionally averaged vortices. Second, a compound channel flow with lateral roughness
variation is simulated. This configuration is chosen to emphasize the need of imposing
perturbations over the full domain.

Finally, the applicability of the 2D-TRANS+ks model for engineering purposes is dis-
cussed.

6.1 Temporal dependency of kinematic simulation

The shallow shear flows discussed in this chapter differ from a uniform flow with respect
to the presence of streamwise and transverse velocity gradients. From testing the model
for flows with velocity gradients, it turned out that these gradients have distorting effects
on the time evolution of the kinematic simulation. This can be understood as follows. The
base structure of the kinematic simulation equation (Equation 5.8) can be simplified to:

Ups (2. t) = asin(kU (x)t) sin{kx) (6.1)

The first sine term denotes the temporal variation of the amplitude and is affected by the
local advection velocity. The second sine term denotes the spatial variation. In case of a
spatially varying velocity U(x), the first sine term becomes spatially dependent as well as
the second sine term. This can cause spurious beat effects, resulting in an unacceptable
distortion of the acceleration field that is to be imposed.

In order to avoid the beat effects, a constant mean strecamwise velocity is chosen in the
expression for the temporal evolution of the amplitude. It is noted that the amplitude @
remains dependent on the local velocity, which varies in time and space. The perturbations



76 Application of 2D-TRANS-+ks

are then defined as:

n=N

l t
ugs(,y,t) = N E \/isin(/ (keld + K, V)dt + 6™)i" sin (ki + kyy + ") (6.2)
n=1 70

n=N t
1
Oka(2,9,1) = > Vasin( / (kU + kyV)dt + 60" sin (k2z + Ky + ¢") (6.3)
n=1 0

with constant velocities U and V. This modified expression for the kinematic simulation has
the advantage that beat effects are excluded, but the disadvantage is that the description
is less generally applicable and physically realistic.

6.2 Shallow mixing layer

6.2.1 Simulation set-up

Computations are performed to simulate the shallow mixing layer flows of Case 42 and Case
67, see Chapter 2. Following the arguments as used in Chapter 4, the mesh size is chosen
to approximately one third of the water depth: Az = 1.5cm for Case 42 and Az = 2cm
for Case 67. As measurements are available up to the downstream position x = 10m, the
length of the flow domain is set to L = 12m. The duration of the simulations is set to
T = 15 minutes for Case 42 and T = 20 minutes for Case 67. This is three respectively
four times the duration of the measurements.

The parameter settings for the kinematic simulation are taken from Chapter 5: a = 1.3,
B = 3.0 and XA = 0.3. As described above, the velocities i/ and V have to be set as well.
These are set told = U, = (U1 + Uz)/2 and V = 0.

6.2.2 Statistical analysis

The transverse profiles of the mean streamwise velocity at different downstream positions
are plotted in figure 6.1a for Case 42 and in figure 6.2a for Case 67. There is a good agree-
ment between the simulations and the measurements for both cases. The mean features of
the downstream development of the mixing layer are captured, like the decreasing velocity
difference, the growth of the mixing layer width and the shift of the mixing layer to the
low velocity side.

The turbulence intensities u’ and v’ and the Reynolds stresses of the numerical simula-
tions and the measurements are filtered in time for a proper comparison, see Section 2.3.
The turbulence intensities v’ are plotted in Figure 6.1b and Figure 6.2b. The simulated
values are generally smaller than the measured values, not only outside the mixing region,
but also in the mixing zone. The significant peak as found in the measurements is much
less pronounced in the simulations. The transverse turbulence intensities »’ are plotted in
Figure 6.1¢ and Figure 6.2c. Outside the mixing region, the simulated results are smaller
than the measured ones. In the mixing region the transverse intensities are overestimated.
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Figure 6.1: Profiles of the mean velocity U, the intensity of the streamwise fluctuations u’, the
intensity of the transverse fluctuations v’ and the Reynolds stress u/v’ for Case 42. The dots

represent the measurements and the solid line the simulation.
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The Reynolds stresses are plotted in Figure 6.1d and Figure 6.2d. A fair agreement is
found for Case 42, but the Reynolds stresses for Case 67 are underestimated, especially
when considering the fact that free-surface data are compared with depth-averaged data.

From the above comparison it can be concluded that especially for the turbulence
intensities discrepancies are found between the simulations and the measurements. These
discrepancies will be discussed further. The simulations are essentially two-dimensional:
the plotted velocitics represent the depth-averaged motion. This is different from the
quasi two-dimensional motion of the measurements from which only the surface velocity
is measured. The measurements represent the “footprint® of the quasi two-dimensional
flow on the surface velocity. Some effects of the three-dimensional character on the two-
dimensional flow are taken into account in the simulations, by the bottom shear stress and
the turbulence viscosity. Two effects that are reflected in the measurements will however
not be found in the two-dimensional simulations.

The first cffect that is not taken into account is the dispersion due to the vertical gra-
dient in streamwise velocity. The part of a horizontal eddy close to the water surface is
advected faster than the part at the bottom, resulting in elongation of the vortex. Elon-
gation of vortices leads to convergence of the streamlines on the sides of the vortex and
to divergence of the streamlines at the front and the back, see Figure 2.9. Relatively high
intensities of the streamwise fluctuations and relatively low intensities of the transverse
fluctuations were therefore found in the experiments. The absence of the vertical gradient
in the simulations results in less elongated, more isotropic vortices. The streamwise fluc-
tuations will therefore be underestimated and the transverse fluctuations overestimated in
two-dimensional simulations.

The second effect of the two-dimensional approach in the simulations is that secondary
circulations which have their axes in the horizontal plane are filtered out. These circula-
tions will however be reflected in the velocity fluctuations at the surface as measured by
PTV. This has the effect that the measured turbulence intensities will be higher than the
simulated ones.

Although these two effects might explain some of the discrepancies found between the
measurements and the simulations, a closer look at the distribution of the energy over the
different scales is desirable. To that end, spectral analysis is performed in the next section.

6.2.3 Spectral analysis

The energy density spectra of the transverse fluctuations at the center of the mixing layer
are plotted in Figure 6.3 for Case 42 and for Case 67 for three different downstream
locations. As discussed in Chapter 2, a peak is found in the spectra, associated with
the coherent structures. This peak is moving to the low frequency side of the spectra
with increasing distance downstream, in accordance with a growth in size. This shift is
reasonably well simulated. If we consider for example Case 67, z = 5.6m, the measured
peak frequency is f = 0.18Hz and the simulated one f = 0.20Hz. The peak frequencies are
fairly well represented. The magnitudes of the peaks are overestimated, but on both sides
of the peak, the energy density is strongly underestimated. For both cases, the energy
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Figure 6.3: Energy density spectra of the transverse velocity fluctuations at the positions z = 3m
(top), x = 5.8m (middle) and x = 8.6m (bottom) for Case 42 (left) and Case 67 (right). The

dots represent the measurements and the solid lines the simulations.
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density is concentrated in too narrow a frequency range relative to the measurements. One
of the reasons for this narrow band might be that the simulations represent the depth-
averaged energy density, whereas the measured spectra represent the energy density of the
surface velocity fluctuations. Possible secondary circulations as mentioned in the former
section are not taken into account in the simulations. but might have their footprints in
the observed energy density spectra.

The developments of the peak values are similar to the developments as found in the
measurements: the peak values decrease for Case 42 and increase for Case 67.

In Figure 6.4. the energy density spectra of the streamwise fluctuations and the cross
spectra between the streamwise and transverse fluctuations are plotted for both cases for
the downstream position @ = 5.6m. The energy density levels of the streamwise fluc-
tuations as found in the simulations generally underestimate the measured levels, The
peak frequencies and peak values are fairly well represented. This is also the case for the
cross spectra. Like in the spectra of the transverse fluctuations, the simulated energy is
concentrated in a narrower frequency range than for the measured spectra.

It is concluded that the trends as found in the measured power density spectra arc
well reproduced by the simulation. Peaks are found for which the associated frequen-
cies and peak values are fairly close to the measured ones. A detailed analysis of the
three-dimensional motion is required for a proper understanding of the discrepancies found
between the measurements and the simulations, as both the simulations and the measure-
ments are different 2D-projections of the full three-dimensional motion.

6.2.4 Coherent structures

In Chapter 2. conditionally averaged vortices have been determined from the measurements
of Case 67 at the downstrcam positions: z = 3.0m and z = 8.6m. The same pattern
recognition technique as described in Section 2.5 is applied here to the numerical results
for the same two downstream positions.

The vector fields, the transverse velocity contours. the vorticity contours and the Weiss-
function contours of the conditionally averaged vortices are plotted in Figure 6.5 for z =
3.0m and in Figure 6.6 for # = 8.6m. For a comparison with the experimental data the
results presented in Figure 2.12 and Figure 2.13 can be used. Qualitatively, the simulated
vortices are in good agreement with the ones found in the experiments. The orientation of
the vortex is for example fairly well reproduced. The amplitudes of the transverse velocity
arc somewhat overestimated, the vorticity is in good agreement and the values for the
Weiss function are overestimated.

The size of the vortex is defined as twice the distance between the positions of the
minimum and the maximum value of the transverse velocity, resulting in L(x = 3.0m) =
0.85m and L(z = 8.6m) = 1.4m. Comparing these length scales with the ones found for
the measurements, L(z = 3.0m) = 0.9m and L(x = 8.6m) = 1.7m. we see that especially
the length scale at = 8.6m is underestimated. This is again attributed to the incomplete
representation of the vertical shear.
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Figure 6.4: Energy density spectra of the streamwise velocity fluctuations (top) and the cross
spectra between the streamwise and transverse fluctuations (bottom) at z = 5.6m for Case 42
(left) and Case 67 (right).The dots represent the measurements and the solid lines the simulations.

From the analysis of the conditionally averaged vortices it can be concluded that the
simulations reproduce the coherent structures fairly well, although the elongation as found
in the measurements is underestimated, resulting in too small an amplitude for the trans-
verse velocity, and an underestimation of the values of the Weiss function.
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Figure 6.5: Properties of the conditionally averaged vortex at * = 3.0m, based on the 2D-
TRANS-+ks simulations. (a) relative velocity vectors, (b) transverse velocity (Av = lmm/s), (c)
vorticity (Aw = 0.05s7!) and (d) Weiss-function (AQ = 0.05s=2). Negative values are indicated
with a dashed line, positive values with a solid line and zero values with a dotted line.




84 Application of 2D-TRANS+ks

0.1 T v — v T T T
. S .
I L NN s
B e SRR
P A \\:i:;-::::::::::
-0. e p PSS LSS S, RN NN N R
| TUNSNNANNNNNNNNNNS S
_'-0.2 ARARRARR RN N
L NN
ir A
> NN
o S
R 2 A e
~05F et et et ot o ol gl
: el et et et
_06 T ——
. e ‘
8.8 9 9.2
0.1 > r <~
T - T~
il tr el \\\\ \
oF 1,77 R RN N
IS4 NS
WS g2, - I\ \\\\
A 7,22
-0.1 N NIRRT WY
Wi NN \\\\\‘\\
_ -02r 4 \\\\\\\”‘I[
5_03_ “\\\\\\\\\\\\ \ 8 myyd, ) I'L
> RN
-04f Wi :,/ﬁ,/ﬁ,/ 7]
\ = 7,
W AN S 4 /
05} WA
N -z s
NN — 2. /,
=06 R = -7 /‘
.8 9 9.2
0.1
0
~0.1
0.2
E
=03
041
-0.5 b

Figure 6.6: Properties of the conditionally averaged vortex at z = 8.6m, based on the 2D-
TRANS+ks simulations. (a) relative velocity vectors, (b) transverse velocity (Av = lmm/s), (c)
vorticity (Aw = 0.05s7!) and (d) Weiss-function (AQ = 0.03s72). Negative values are indicated
with a dashed line, positive values with a solid line and zero values with a dotted line.
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6.3 Compound channel flow with roughness variation

In order to demonstrate the wider applicability of the developed techniques and to em-
phasize the need for imposing the kinematic simulation terms, a new flow configuration is
introduced: a straight compound channel flow with lateral variation in roughness. Such
flow configurations can for example be found in areas which are partly vegetated. Lab-
oratory experiments on these flow tyvpes have been carried out by lkeda&Ohta (1993).
Analogous to the shallow mixing layers as discussed in this thesis, large scale vortices were
found in the mixing layer at the interface between the rough part and the smooth part.
Simulations are carried out with and without the kinematic simulation terms. Only a
qualitative comparison is made to illustrate the effects of the kinematic simulation.

6.3.1 Flow set up

A sketch of the flow configuration is given in figure 6.7. The inflow consists of a uniform
rough channel. Further downstream a lateral variation in roughness is imposed. The veloc-
ity in the relatively smooth part accelerates and the velocity in the rough part decelerates.
A velocity difference develops between the smooth and rough part. At the interface be-
tween the rough and the smooth part, a mixing layer will develop. Depending on the flow
parameters, coherent structures may be expected.

There are two differences between this flow configuration and the shallow mixing layer
downstream of a splitter plate. First, the very steep velocity gradients as found in the
initial region of the shallow mixing layer downstream of a splitter plate are absent here.
Second, with a rough uniform channel flow upstream of the mixing layer, the effects of the
inflow boundary are less important.

0.98m
0.6m

X,u 16m
| model | kinematic simulation
Case A 2D-TRANS -
Case B 2D-TRANS inflow only
Case C | 2D-TRANS+ks full domain

Figure 6.7: Sketch of the flow configuration (top) and simulation settings (bottom).
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Figure 6.8: Transverse profiles of the mean streamwise velocity of Case C (-). Equilibrium profile
as measured by Ikeda&Ohta (1993) (--). The positions of the profiles are indicated by the dashed
line (- -).

The flow conditions are chosen the same as the ones used in the experiments carried
out by Tkeda&Ohta (1993): a mean streamwise velocity U = 0.26m/s and a water depth
D = 6cm. The friction coefficients of the smooth and rough areas are chosen such that in
the far field, the velocities outside the mixing zone equal the experimental values, resulting
in Cfrougn = 0.042 and Cfemooth = 0.0037. The width of the computational domain is
chosen equal to the width of the experimental set-up of Ikeda&Ohta (1993): W = 0.98m.
The length of the flow domain is set to L;,; = 16m, with the length of the inflow channel
Linfiow = 4m.

Three different simulation methods are applied for comparison: (case A) a 2D-TRANS
simulation, without any imposed perturbations; (case B) a 2D-TRANS simulation, with
perturbations at the inflow only; and (case C) a 2D-TRANS+ks simulation, with pertur-
bations at the inflow and with imposed forcing terms in the entire domain.

6.3.2 Results

Transverse profiles of the mean streamwise velocity of case C are shown in figure 6.8. For
comparison the equilibrium profile as measured by Ikeda (1993) is plotted at z = 12m. As
expected, the flow accelerates on the smooth part until the equilibrium velocity difference
is reached. There is a fair agreement between the measured and the simulated equilibrium
profiles, although the simulations appear to overestimate the mixing layer width.

The differences between the three cases is discussed using the development of the mix-
ing layer width (Figure 6.9a) and the instantaneous streamwise profiles of the transverse
velocity at y = Om, the interface between the rough and the smooth area (Figure 6.9b).

For Case A no fluctuations in transverse velocity are observed, which is clear in the
context of Chapter 4. Obviously, the mixing layer is not able to amplify perturbations that
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are not there. The flow domain is not long enough to amplify the small numerical errors
to significant fluctuations. As a consequence, the mixing layer growth rate is small and
only governed by the effective eddy viscosity representing the small scale turbulence.

Perturbations were imposed at the inflow boundary for Case B. As there is no transverse
gradient in the streamwise velocity, no production of turbulent kinetic energy takes place
in the inflow section. The energy imposed at the inflow boundary will be dissipated as
a consequence of the bottom friction and the eddy viscosity. This dissipation is reflected
in the decrease of the amplitude of the transverse fluctuations, see Figure 6.9b. At the
position where the inflow section ends and the roughness difference starts (x = 0), the
perturbations have almost vanished. The remaining perturbations are weak and do not
play a role in the initial development of the mixing layer. The widening of the mixing layer
is initially equal to that found for Case A. Upstream of r = 4m perturbations can hardly
be detected in the transverse velocity, although a closer look would reveal small amplitude
residual perturbations. Downstream of & = 4m, the amplitudes of the perturbations grow
rapidly until they reach an equilibrium value. The influence of the coherent structures
becomes important downstream of r = 6m, where the mixing layer width deviates from
the width found for Case A. Although it is expected that the mixing layer width will tend
to an equilibrium, the domain was not long enough to reach the equilibrium width.

The full 2D-TRANS+ks model is applied in Case C. Perturbations are imposed at
the inflow boundary and forcing terms are added to the equations of motion. In contrast
to the other two cases, a more or less constant intensity of the transverse fluctuations is
obtained for the inflow section, see Figure 6.9b. The imposed forcing terms maintain the
inflow perturbation level. Perturbations are therefore present at the start of the mixing
layer, which are amplified in the mixing layer. These fluctuations contribute directly to
the broadening of the mixing layer, see Figure 6.9a. A monotonically growing mixing
layer width is obtained. The mixing layer width tends to an equilibrium that is somewhat
higher than the mixing layer width found in the experiments of Ikeda (1993). Clearly, the
experiment is more complicated than the simple representation of the vegetation by extra
roughness.

From this qualitative analysis, it is concluded that imposed forcing terms in the equa-
tions of motion, representing the large scale bottom turbulence, are required for a proper
and realistic simulation of a developing mixing layer starting at an arbitrary position in
the flow.

6.4 Discussion on practical use of 2D-TRANS+ks

In Chapter 5 a TRANS model with kinematic simulation (2D-TRANS+ks) has been pro-
posed. In this chapter the model has been applied to shallow shear flows. Good results
are obtained for the mean flow and reasonable results for the development of the coherent
structures. The case of the compound channel flow with roughness variation illustrates the
need of imposing perturbations on the entire flow domain.

Although this gives some confidence in favour of the use of the 2D-TRANS-+ks model
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Figure 6.9: (a) Mixing layer widths of the simulations and the equilibrium width as measured by
Ikeda&Ohta (1993). (b) Instantaneous streamwise variation of the transverse velocity at y = 0,
the interface between the rough and smooth part.
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in the practice of civil and environmental engineering, some comments have to be made.

First, the model as implemented here requires a grid that is aligned to the main flow
direction. This dependency is reflected in the different definitions for the amplitudes of the
kinematic simulation, see Equation 5.8 and 5.9 and Figure 5.5. The orientation dependency
of the grid is also reflected in the way the kinematic simulation is implemented in the
shallow water equations, see Equation 5.12-5.13. A more general implementation of the
kinematic simulation is thereforc necded for complex grids and complex flows, which can
be related to the principal axes of the rate-of-strain tensor of the 2D velocity field.

Second, as was mentioned in the first part of this chapter, a constant velocity is used
to determine the temporal development of the acceleration terms. Although reasonable
results were obtained with a constant value, a sensitivity study on this subject should be
carried out to investigate the comsequences of this assumption. An example where the
assumption of a uniform velocity is probably not allowed is a recirculating flow.

Third, in the simulations the flow was assumed two-dimensional, neglecting the in-
fluence of the dispersion of the vortices by the mean vertical shear. As a consequence,
the simulated vortices are not stretched by this mechanism, resulting in transverse veloc-
ity fluctuations that are too high and streamwise fluctuations that are too low. With a
multi-layered simulation these discrepancies might be overcome.

Fourth, the kinematic simulation is based on the turbulence characteristics of a uniform
channel flow. Irregularities in the bathymetry may cause different types of fluctuations.
Difficulties can for example be expected in cases with river dunes on the bottom.

Fifth, we focused on the generation mechanism known as internal instabilities (Jirka,
2001). No attention was paid to the generation type topographical forcing, where separation
becomes important. Such flow conditions have not been tested with the 2D-TRANS+ks
model.

In view of these comments, it is concluded that we should take care with the use of
the 2D-TRANS+ks model as an engineering tool for a wide range of applications. Its
limitations should be kept in mind when applying it, as with every model. However,
the proposed model gives fairly good results without tuning of parameters and it can be
considered as an improvement to the current state-of-the-art models. Further improvement
may lead to a wider application to more complex flow types.




90

Application of 2D-TRANS-+ks




Chapter 7

Conclusions and recommendations

Shallow mixing layer flows have been investigated with the aim to obtain better insights
in the genesis and development of the large scale horizontal coherent structures and to
use these insights for tools that can be applied in the practice of civil and environmental
engineering. Three methodologies have been followed: laboratory experiments, analytical
modeling and numerical modeling. The results of these methods of analysis are combined
leading to a description for the development of the mixing layer and horizontal structures
(Section 7.1). The insights are used in the development of a better set of models to predict
shallow shear flows in the practice of environmental engineering. Quick and simple models,
or rules of thumb, are given in Section 7.2. Such models can be used for a first impression
of the development of the mean flow and the coherent structures. For a more detailed
description of shallow shear flows, numerical models are appropriate, see Section 7.3. In
such models the horizontal coherent structures are resolved. Finally, questions that came
up during the project and questions that still remain are discussed in Section 7.4, together
with suggestions for further research.

7.1 Development of mean flow and coherent struc-
tures

The results of the different methodologies are combined in this section, leading to a classi-
fication in accordance with the following stages in the development of the mean flow and
the coherent structures over a horizontal bottom:

e Stage 1: “near field”

In the near field downstream of the splitter plate the velocity difference is high
and the mixing layer width is of the order of magnitude of the water depth. The
transverse profile of the streamwise velocity is influenced by the boundary layers that
have developed along the splitter plate. The flow is strongly three-dimensional and
non-linear interactions are expected to play an important role. The initial region
ends where the mixing layer width is larger than roughly twice the water depth
xr < z(d ~2D).



92 Conclusions and recommendations

e Stage 2: “growth of intensity of the dominant mode”
This stage starts at the position where the mixing layer width is about twice the
water depth z(8 ~ 2D). The coherent structures grow in size and intensity due to
the dominating horizontal shear. This stage ends where the coherent structures start
to decay and is found at the position where the growth ratio of the dominant mode
becomes zero (w; gom = 0).

e Stage 3: “unstable flow, with a decreasing intensity of the dominant mode”

The dominant mode has reached its highest energy density level and starts to decay:
widom < 0. This does not imply that all modes decay. As the dominant mode
is highly determined by the upstream development of the coherent structures, the
wavenumber of the dominant mode is generally larger than the wavenumber of the
most unstable mode. Unstable modes may therefore still exist. This stage ends where
the growth rate of the most unstable mode becomes zero (w;m.. = 0). The bottom
friction parameter resches its critical value S = S.. Although the energy density
decreases, the length scale of the dominant mode still increases. In this stage the
paradoxical situation exists that the flow is unstable but that the mean turbulent
kinetic energy of the horizontal coherent structures decreases.

e Stage 4: “stable flow with coherent structures”
At this stage the flow is stable, as the growth rates of all modes are negative (w; < 0
or S = S.), but coherent structures still exist. The end of this stage is reached,
where the coherent structures have been dissipated so that the energy density level
is similar to the level of the bottom turbulence (E =~ Ep;).

e stage 5: “stable flow without coherent structures”
At this final stage, the horizontal coherent structures are absent. In case a velocity
difference still exists, the mixing layer widens due to bottom turbulence until uniform
channel flow is reached.

As a mixing layer can be seen as an amplifier of coherent structures, initial perturbations are
required for the genesis of coherent structures. It is inferred that the coherent structures in
shallow mixing layer flows have their origin in the large scale depth averaged components of
the bottom turbulence. These components were found to exist with a large eddy simulation
model in which the bottom turbulence was resolved. Regarding the generation mechanism
of the turbulence structures as proposed by Jirka (2001), the shallow mixing layer falls in
two categories. The large scale bottom turbulence falls in the third category secondary
instabilities of base flow. The further development, under influence of the horizontal shear,
is in accordance with the second type of generation internal transverse shear instabilities.

The evolution of the coherent structures is determined by the feeding due to the mean
shear and the dissipation by the bottom friction and the eddy viscosity. In the flow config-
urations investigated here, non-linear interactions turned out to be weak. A linear approx-
imation as proposed in Chapter 3 is found to be a good approximation for the prediction
of the development of coherent structures. For intense coherent structures the non-linear
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interactions, like vortex merging, can play a role. Further investigation is required to derive
criteria for the importance of the non-linear interactions.

7.2 Quick and simple tools

7.2.1 Developing shallow mixing layer

In order to get a first impression of the development of the mean streamwise velocity in a
developing mixing layer, the self-similarity modecl as described in Chapter 3 appears useful.
This set of equations describes the mean flow well compared to the measurements. The
explicit determination of the size and intensity of coherent structures appeared not to be
necessary for this purpose.

A first impression of the presence of coherent structures can be obtained with the
bottom friction parameter S (Equation 1.2.3). From the position where the bottom friction
has reached its critical value, all modes dissipate. The kinetic energy of the coherent
structures is dissipated for the greater part at a position a few times A downstream of the
position where S = S, with S, = 0.05 — 0.12.

A more sophisticated method to determine the size and intensity of the coherent struc-
tures is the method based on linear stability analysis as proposed in Chapter 3. With
this method the growth rates obtained by linear stability analysis are integrated in down-
stream direction, resulting in the development of the amplification of each mode of the
inflow perturbation and the determination of the locally dominant mode. The history of
the coherent structures is thus taken into account.

7.2.2 Compound channel flow

In slight deviation from the main research line, the uniform flow in a straight prismatic
compound channel has been investigated in Appendix I. For the prediction of the con-
veyance of such a channel, the transverse profile of the mean streamwise velocity in the
mixing layer between the relatively deep main channel and the relatively shallow floodplain
has to be known. For that purpose, a number of models has been developed in the past
for the transverse exchange of momentum. However, most of these models lack a physical
background and require empirical constants with a sometimes wide and unrealistic range
of values. Therefore a new physically based model has been developed, representing the
most important mechanisms for the momentum exchange. This model takes into account
the effects of bottom turbulence and the effects of horizontal coherent structures. Spe-
cial attention was paid to the influence of the lateral depth variation on the dynamics of
the horizontal coherent structures. It turned out that the proposed model gives realistic
predictions of observed depth averaged mean streamwise velocities and depth averaged
transverse shear stresses.
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7.3 Numerical modeling

Numerical models can be applied at different levels of detail. A depth-integrated numerical
model in which the large scale horizontal motion is resolved and the small scale bottom
turbulence is modeled is most appropriate for simulating horizontal coherent structures
in shallow shear flows. This way of modeling is referred to as two-dimensional Transient
Reynolds Averaged Navier Stokes (2D-TRANS) simulations. More detailed simulations,
like three-dimensional Direct Numerical Simulations (DNS) or three-dimensional Large
Eddy Simulations (LES), require a very high computer capacity whereas simulations at
a lower level of detail, like two- or three-dimensional Reynolds Averaged Navier Stokes
(RANS) simulations are computationally less expensive, but they do not resolve the dy-
namics of the horizontal coherent structures.

Compared to conventional 2D-RANS simulations, a few modifications have to be made
to perform 2D-TRANS simulations. The mesh size has to be chosen in the order of mag-
nitude of the water depth. For example, resolving the length scales of the order of twice
the water depth requires roughly a mesh size of one third of the water depth. Further-
more, a classical RANS turbulence model should be used for the representation of the
small scale bottom turbulence. It is noted that for larger mesh sizes a more sophisticated
turbulence model is required to take into account also the non-resolved depth averaged
motion (Kernkamp & Uittenbogaard, 2001).

In Chapter 4 it was concluded that imposed perturbations are required to initiate
the development of the horizontal coherent structures. These perturbations represent the
large scale components of the bottom turbulence, that can principally not be resolved by
a depth averaged simulation. This large scale bottom turbulence is therefore mimicked by
means of a kinematic simulation, leading to the 2D-TRANS+ks model (see Chapter 5).
This kinematic simulation has been implemented as a velocity fluctuation at the inflow
boundary and as a forcing over the entire domain. The necessary parameters have been
extracted from a full three-dimensional simulation of a uniform channel flow. The 2D-
TRANS+ks model was tested in Chapter 6 for shallow shear flows, leading to good results
for the mean flow field. However, some discrepancies between the measurements and the
simulations have been found for the properties of the coherent structures.

7.4 Further improvements

A number of questions were not answered in the course of this project. Maybe the most
striking unresolved question deals with the relation between the mean flow development
and the development of the coherent structures. The measured cases of two different
depths show a significant difference in intensity of coherent structures, whereas the mean
flow development can be described with a self-similarity model, using the same entrainment
coefficient. Similar results were obtained with the numerical simulations. Increasing the
level of the inflow perturbations has led to significant differences in intensity of coherent
structures, but to limited effects on the mean flow, including the mixing layer width. Such
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results were also obtained for shallow jet flows (Dracos et al., 1992). The spreading rates
of the jets as found by Dracos et al. are all within a very narrow range (96%-108% of
the mean spreading rate), regardless of the significant differences in intensity of coherent
structures. No sound physical explanation has been found for this apparent discrepancy.
However, the consequence is convenient from an engineering point of view, as the mean
flow appears to be hardly dependent on the intensity of the coherent structures. This
property of shear flows partly explains the validity of the analytical approach as proposed
in Chapter 3, in which first the mean flow was modeled and subsequently the development
of the coherent structures.

In the numerical simulations, a simple turbulence model (Elder formulation) has been
used for the dissipation of kinetic energy by the small scale bottom turbulence. The
Elder formulation has been validated for uniform channel flows. The empirical constant
is determined accounting for the total turbulent motion, including large scale motions.
No further improvement of the eddy viscosity model for the three-dimensional turbulent
motion was made here. Eddy viscosity models should be tested with a three-dimensional
large eddy simulation of for example a shallow mixing layer.

One of the discrepancies between the measurements and the 2D-TRANS+ks simulations
was ascribed to the effects of the vertical shear, which was present in the experiments,
but absent in the numerical simulations. Due to this shear the coherent structures are
elongated in streamwise direction. This dispersion effect could not be quantified properly
by the measurements as only the surface velocity was measured.

Another three-dimensional effect that was briefly mentioned is the secondary circulation
in the vortices. It could be observed in the experiments that particles, spread over the water
surface, tend to move away from the center of the vortices. Although these secondary
velocities were small, they might have a net effect on the dispersion of contaminants out
of the center of a vortex. Experiments for determining these small secondary effects are
expected to be difficult as spatial information is required in all three dimensions. Large
eddy simulation seems to be a more appropriate method for the determination of these
three-dimensional effects.

No attention was paid here to coherent structures generated by the stronger type of
generation reffered to as topographical forcing, in which coherent structures are shed from
an obstacle (Jirka, 2001). For flow configurations of this type the generation of coherent
structures out of bottom turbulence is expected to play a minor role. The local flow and
bathymetry properties in the neighborhood of the topographical forcing are likely to be
more important.
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Appendix A

Momentum exchange in straight uniform
compound channel flow

abstract

Transverse exchange of momentum between the channel and the floodplain in straight
uniform compound channel flow is considered in this paper. This process results in the so-
called ‘kinematic effect’, a lowering of the total discharge capacity of a compound channel
compared to the case where the channel and the floodplain are considered separately.
The mechanisms responsible for the momentum exchange are considered. The transverse
shear stress in the mixing region is modeled using a newly developed effective eddy viscosity
concept, that contains (1) the effects of horizontal coherent structures moving on an uneven
bottom, taking compression and stretching of the vortices into account, and (2) the effects
of the three-dimensional bottom turbulence. The model gives a good prediction of the
transverse profiles of the streamwise velocity and the transverse shear stress of the Flood
Channel Facility experiments. Characteristic features of the lateral profile of the eddy
viscosity are also well predicted qualitatively, but in a quantitative sense there is room
for improvement. Secondary circulations are shown to be of minor importance in straight
uniform compound channel flows.

Introduction

Many rivers consist of a channel with adjacent floodplains. The bottom of the floodplain is
generally higher and rougher than the bottom of the main channel, so that during flood the
river consists of a relatively deep channel and shallow floodplains, a so-called compound
channel. In this paper we consider uniform flow in straight compound channels to investi-
gate in particular the influence of the lateral depth variation on the flow. The schematised
cross section of such a compound channel is shown in Figure A.1. Due to the difference
in water depth and bottom friction, a difference in streamwisc velocity is generated, the
velocity on the floodplain being lower than that in the channel. The cross section of a river
can now be divided in transversely uniform zones (assuming sufficiently high width/depth
ratios) and a mixing zone, sce Figure A.1. The depth-integrated transverse exchange of
mass and momentum in the transversely uniform zones is zcro. In the mixing zone, trans-
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Figure A.1: Sketch of half the cross section of a compound channel

verse gradients in bottom level and/or the velocity are present, causing exchange of mass
and momentum.

An important consequence of the presence of the mixing region is the reduction of dis-
charge capacity of the river compared to a situation in which the channel and the floodplain
are considered as separated channels. This is called the 'kinematic effect’ (Barishnikov &
Ivanov, 1971). In order to determine the stage-discharge relationship for a compound
channel, the transverse profile of the streamwise velocity in the mixing region has to be
known. A number of studies has been devoted to the determination and prediction of these
profiles (Alavian & Chu, 1985; Shiono & Knight, 1991; Lambert & Sellin, 1996; Ervine
et al., 2000).

Transverse exchange of momentum is caused by mean flow and turbulence. The mean-
flow contribution can be separated in a contribution by the depth-averaged downstream
and lateral velocities and another one by the effect of the vertical variation of these ve-
locities, the so-called advective dispersion. The latter is usually associated with secondary
circulations, i.c. vortex tubes with their axes in the streamwise direction. They are found
in the compound channel flow experiments of Tominaga&Nezu (1991) and Shiono&Knight
(Shiono & Knight, 1991) and they were successfully simulated with a three-dimensional
numerical model by Sofialidis&Prinos (1999).

The turbulence contribution is due to small-scale turbulence induced by the bottom
resistance and by turbulence generated by lateral shear of the mean flow, which manifests
itself primarily in the form of large coherent structures, with their axes more or less perpen-
dicular to the bottom. They are generally much larger than the water depth. Examples of
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these horizontal coherent structures can be found in many different types of shallow flows,
such as island wakes (Cramp et al., 1991), shallow jets (Dracos et al., 1992) or shallow
mixing layers (Uijttewaal & Booij, 2000; van Prooijen & Uijttewaal, 2002a). The first
visualizations of large scale coherent structures in compound channel flows were made by
Sellin (1964). High resolution numerical simulations, in which the large scale motion is
resolved. have recently been performed by Nadaoka&Yagi (1998) and lkeda& Toda (2002).

Bottom turbulence is induced by the no-slip condition at the bottom. This turbulent
motion contains the characteristic burst phenomena as found in wall flows. The typical
turbulence length scale is of the order of the water depth.

Accurate modeling of the above-mentioned mechanisms of momentum exchange turned
out to be difficult, as is evident from the use of a variety of exchange models (Alavian &
Chu. 1985: Shiono & Knight. 1991; Lambert & Sellin. 1996: Ervine et al.. 2000). In each
study. one of the mechanisms is generally considered most important and modeled with
an effective eddy viscosity. Most of the models for the transverse profile of the streamwise
velocity turned out to be reasonably capable of predicting the transverse profiles of the
streamwise velocity, but only after calibration of one or more empirical constants. The large
diversity in the mechanisms that have been modeled, and their empirical character, makes
the general applicability of the models questionable. Besides, no explicit comparisons have
been made between the measured and modeled transverse shear stress or eddy viscosity
in, for example, Alavian&Chu (1985). Shiono&Knight (1991), Lambert&Sellin (1996), and
Ervine et al. (2000).

In this paper different mechanisms responsible for the momentum exchange in a straight
compound channel are briefly examined. Subsequently, the mechanisms considered most
important are modeled with a new physically based eddy viscosity in which large coherent
structures play a key role. The results compare favorably well with the transverse profiles
of the mean streamwisc velocity and the transverse shear stress measured in the Flood
Channel Facility experiments (Knight&Shiono, 1990).

Governing equations

In order to study the processes in steady open channel flow, the depth-integrated and
time-averaged shallow water equations are used as a starting point:

oDU oDV 0

or + Ay
oDUU oDUV OH oDT,, ODT,,
Ox + oy —gDE —ht Or oy (A1)

where x,y are the streamwise and transverse coordinates, U,V are the time- and depth-
averaged streamwise and transverse velocities, D is the water depth, H the water level
above an arbitrary horizontal reference plane, 1, the bottom shear stress, parameterised as
Ty =cC fpmm, with ¢, the bottom friction coefficient, T, the sum of depth averaged down-
stream normal stresses and Tmy the sum of the depth averaged transverse shear stresses due
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to advective dispersion, turbulence and viscosity (Vreugdenhil, 1994). Capitals indicate
time-averaged quantities and the overline denotes the depth-averaging operator.

In this paper streamwise uniform flows are studied, in which 0H/dx = 8z,/0x = -8,
with 2, the bottom elevation and Sp the bottom slope and V = 0 due to impermeable
lateral boundaries. The remaining downstream derivatives are zero. The balance for the
streamwise momentum (A.1) then reduces to

dDT,,

dy
in which the depth-averaged transverse shear stress (transverse exchange of downstream
momentum) is given by

gDS(] - CfUIU| = - (AQ)

Toy=—(U=-0)(V-V) - (w0} (A.:3)

in which —(uv) is the depth averaged Reynolds stress with u and v the streamwise and
transverse velocity fluctuations and the brackets representing the time-averaging operator.
Here we have neglected the viscous contribution relative to the depth averaged Reynolds
stress, which is justified for sufficiently high Reynolds numbers. The left-hand-side of equa-
tion (A.2) can be interpreted as the deviation of the flow from an equilibrium channel flow
without transverse exchange. The right-hand-side represents the transverse exchange of
streamwise momentum between the channel and the floodplain, with T, given in equa-
tion (A.3), consisting of a contribution by the advective dispersion and the Reynolds stress.
If this exchange is small, the flow tends to the solution of two separated channels. The
transverse momentum exchange is the only term left to be modeled.

Existing models for transverse exchange of momentum

A variety of models for estimating the transverse momentum exchange in compound chan-
nels has been proposed in the literature. It is not our aim to discuss all of them here. Only
five different models are chosen, see Table A.1.

A constant eddy viscosity was adopted by Ogink (1985). It turned out that a constant
value of v; = 0.5 m?/s could be used for a branch of the River Rhine.

A mixing length approach was proposed by Alavian&Chu (1985), using the mixing layer
width § as length scale and the velocity difference between the channel and the floodplain
AU as velocity scale. They assume that horizontal coherent structures are the dominant
mechanism for momentum exchange. The necessary empirical constant is in the range of
the values found for mixing layers.

Lambert&Sellin (1996) also employed a mixing length approach, but they used the
water depth as a length scale, suggesting that the bottom turbulence is playing a major role.
The specific characteristics of compound channel flow are not reflected in this approach.

Secondary circulations are modeled by Shiono&Knight (1991) in combination with an
Elder formulation for the contribution of bottom turbulence. However, the contribution
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of the sccondary circulation was switched off at the slope between the channel and the
floodplain and taken into account in the channel and on the floodplain only. This is
surprising because, if secondary circulations play a role, it will be in the mixing region
(Tominaga & Nezu. 1991). The range of the empirical constant A used in the Elder
formulation (see Table A.1 for a definition and numerical values) is very high and not
in agreement with the range found for simple straight channcl flow. A ~ 0.05 — 0.2, for
which the Elder formulation has a physical basis.

Sccondary circulations were also modeled by Ervine et al. (2000). in combination with
an Elder formulation. Their contribution is maximal in the mixing region as it scales with
the gradient of the squared velocity. The possible contribution of secondary circulations is
discussed later in this paper.

After tuning. all the aforementioned models give a fairly good estimate for the trans-
verse profile of the depth-averaged mean streamwise velocity. despite differences in un-
derlying mechanisms and the way these are modeled. Yet not all models are sufficiently
credible. For example, changing the water depth will not influence the transverse exchange
in the model of Alavian&Chu (1985). where it will change the momentum exchange if we
use the model of Shiono&Knight (1991). On the other hand. the model of Shiono& Knight
(1991) contains the bottom slope (Sp), which is present in none of the other models.

A striking feature found in the experiments of Knight&Shiono (1990) is the very high
eddy viscosity on the floodplain, close to the interface (see Figure A.7 below). Such a
phenomenon cannot be modeled with an Elder formulation, nor with a conventional mixing
length model, unless the empirical parameters are changed dramatically and on an ad hoc
basis. The models mentioned above are therefore expected to be applicable only in the
parameter range in which they were calibrated.

Table A.1: Selected existing models for transverse exchange of streamwise momentum.

author T,y constants
Ogink 1985 nGy vy = 0.5 [m?/s]
Alavian&Chu1985  AAT§Y A =0.05..0.15

Shiono&Knight1991 ’\“'*DL:TZ -~ fyyf IgSedy X =0.07.40, I = —0.25..0.15

Lambort&Sellin1996 (G, D)?<Z ‘g‘ Coi=06

Ervine et al 2000 Au,D - KT A =0.07..0.5, K =0..0.04
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Figure A.2: Timeseries of the streamwise and transverse velocity (u and v) and their product
(uv), from Knight&Shiono (1990) with permission of Journal of Hydraulic Research.

Modeling the transverse momentum exchange

It is well known (for example: Sellin (1964) and Van Prooijen&Uijttewaal (2002a)) that
coherent structures develop in a shallow mixing region, with length and time scales much
greater than those of the bottom induced turbulence. They are also present in the experi-
ments of Knight&Shiono (1990). Figure A.2 shows the time signal of the streamwise and
transverse velocity and the cross product of the streamwise and transverse velocity fluctu-
ations from one of their measurements. A large scale motion can be clearly distinguished
with superposed on it a small scale fluctuation which is due to bottom induced turbulence.
The effects of this large scale motion and the small scale bottom turbulence are considered
important and have to be taken into account in the modeling of the transverse momentum
exchange. We shall initially neglect the contribution from advective dispersion, but we
return to that later. The depth averaged turbulent shear stress is thus assumed to account
for the total momentum exchange: T}, ~ —(uv).
To model the turbulent shear stress, we adopt the eddy viscosity concept, or Boussinesq
approach: .
— dU
—(w) = v, " (A4)
with v, the eddy viscosity. The determination of the momentum exchange is shifted to
the determination of a proper eddy viscosity. Following Wormleaton (1988), the eddy
viscosity is split into two components: a contribution due to bottom turbulence (1) and a
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contribution due to transverse shear (1)).
) " .
v =v,+ v, (A.D)

Both contributions are modeled as the product of a typical length and velocity scale, L4,
associated with the underlying mechanisms. The contribution due to lateral shear is as-
sumed here to be caused by the horizontal coherent structures as visualized by the large
scale fluctuations in the time signal of Figure A.2. In view of the schematized approxima-
tion we propose in this paper. the interaction between the horizontal coherent structures
and the bottom turbulence is neglected.

For the bottom turbulence part. the Elder formulation is adopted. whith the water
depth as the length scale (£ = D) and the friction velocity as the velocity scale (U = U, =

vy) = aD U (A.6)
with & a constant of the order 10 ' (Fischer et al.. 1979).

The contribution of the horizontal coherent structures to the total momentum exchange
is modeled by means of Prandtl’s mixing length model. This model turns out to work well
for free shear flows (Tennekes & Lumley, 1972). if the length scale is taken proportional to
the width of the mixing region §. Accordingly, we write:

v

VW) =88 |3 (A7)

in which 3 is a proportionality constant. As shown in Pope (2000) the turbulent eddy
viscosity in the center of a developing plane turbulent mixing layer can be approximated
by v, =~ 0.1566AUS, with the spreading rate § = dé/dzx =~ 0.05 — 0.10. The associated
values of 3 would then be in the range 0.088 — 0.124.

The width of the mixing layer is determined as indicated in Figure A.3. The distance
between the position yas0, where U(yasey) = U;+0.25(U,. —U;) and yr59, where U (y50) =

Uf +0.75(U. — Uy), determines half the mixing layer width:

0 = 2(yrs% — Yasx) (A.8)

This definition allows a possible asymmetry in the velocity profile.

The conventional mixing length approach applies to mixing layers with a constant
depth and does not account for lateral depth variation. although that has considerable
consequences for the large scale vortices. As demonstrated in Sellin (1964) and Tamai
(1986), the coherent structures move partly in the main channel and partly on the flood-
plain. Considering the motion within a single vortex in a simplified way, it can be scen
that the transverse component of the velocity of the coherent structure at the front (down-
stream) part is in the direction from the main channel onto the shallow floodplain. In view
of continuity the transverse component of the velocity of the coherent structure will there-
fore increase roughly inversely proportional to the local water depth (1/D(y)). In the same
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way, it can be argued that the transverse component of the velocity of the coherent struc-
ture at the back (downstream side) of the coherent structure will decrease proportional
with 1/D(y). A sketch of this concept is given in Figure A 4.

In order to account for these variations in lateral velocity in the coherent structures,
an extra factor which depends on the local water depth is incorporated in the model for
v;, changing the expression of equation A.7 to:

Dm oy o
v (y) = =<0 6
‘W)= D)
in which D(y) is the local water depth and D,, is the mean water depth: D,, = (D.+Dy)/2.

The total eddy viscosity is now determined by the sum of equation (A.6) and equation
(A.9):

@l (A.9)

2dU

v = ay/GUD + —(ﬂé) (A.10)

Substituting this total eddy viscosity in equation (A.2), using equations (A.3) and (A.4)
as intermediate steps, results in:

gDSy — c;U|U| = — = (Du,(;(;) (A.11)

The depth averaged mean streamwise velocities in the channel (U.) and on the floodplain
(Uy), far from the mixing region, are used as boundary conditions to this second-order
nonlinear ordinary differential equation:

U(yc) = Uc , U(y;) = ﬁf (A.12)

The equations (A.8), (A.10), (A.11) and (A.12) form a closed set, requiring as input a
depth profile D(y) and values for the coefficients ¢f, a and 3. With this input, equation

U

Upsa

Y 5% Yi5%

Figure A.3: Definition sketch for the determination of the width of the mixing layer 4.
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Figure A.4: Sketch of a vortex moving on an uneven bottom. The transverse velocity increases
at the front and decreases at the back of the vortex.

(A.11) can be integrated. We used a Newton iteration method. The iteration starts with
an assumed tanh-profile for the streamwise velocity U(y), with an initial value of § equal to
the width of the transition between channel bottom and floodplain bottom. The width of
the mixing layer as determined from the profile in each iteration step according to equation
(A.8) is used as a known constant in the next step. The profile evolves to a final form
which is independent of the initial profile.

Comparison with FCF data

The results of the closure model described above will now be compared with the SERC
Flood Channel Facility data (FCF). The FCF is a large scale flow facility (56 m long and 10
m wide) at HR Wallingford for studying compound channel flows. A number of cases (series
A) concerned flow in straight, prismatic compound channels. The four best documented
cases of these (Series 02) are used here to validate the model. These differ in water level,
as indicated with the relative water depth Dr = D;/D,. The bottom slope was constant
and common to all cases: Sy = 1.027 1073, Details can be found in Knight&Shiono (1990).

The constants a and 3 in equation (A.11) are the same for all four cases. The constant
o is set a priori to o = 0.10 according to for example Fischer et al. (1979). The constant
 has to be in the range of 3 = 0.088 — 0.124 for unbounded mixing layers, according
to Pope (2000). After tuning, a value of § = 0.07 is chosen here for an optimum fit
for all four cases. It is noted that this weak tuning was the only fitting required for the
prediction of the profiles of the depth averaged mean strcamwise velocity, transverse shear
stress and eddy viscosity for four different cases. The data used here have been obtained
from four different papers. The profiles of the depth-averaged mean streamwise velocities
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Table A.2: Flow conditions of the FCF experiments: U and D from Ervine et al. (2000) and
Lambert&:Sellin (1996), ¢5 from Equation A.13. (Knight & Shiono, 1990; Shiono & Knight, 1991;
Wormleaton, 1996)

Drl] | De(mm) | Ue(m/s) | Dy(mm) | Ug(m/s) | cpel] | cssl]

0.11 169 0.85 19 0.25 0.0023 | 0.0030
0.15 177 0.86 27 0.30 0.0023 { 0.0029
0.20 188 0.90 38 0.45 0.0023 | 0.0018
0.25 200 0.92 50 0.45 0.0023 | 0.0023

have been obtained from Lambert&Sellin (1996) for Cases Dr=0.15 and 0.20 and from
Ervine et al. (2000) for Cases Dr=0.11 and 0.25. The profiles of the transverse depth-
averaged turbulent shear stress and the transverse profiles of the eddy viscosities have been
taken from Knight&Shiono (1990). The bottom shear stresses have been obtained from
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Figure A.5: Transverse profiles of the measured depth averaged mean streamwise velocity for the
cases Dr=0.11(A), 0.15 (), 0.20 (+) and 0.25 (x) (Lambert & Sellin, 1996; Ervine et al., 2000).
The solid lines represent the modeled profiles. The cross section is shown in the lower right panel.
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Shiono&Knight (1991). Relevant flow characteristics are summarized in Table A.2.
The bottom friction parameter ¢; is here determined separately for the main channel
and for the floodplain according to equation A.13:
=T (A13)

_9D%
Uj:z ' « [—pz

gD.Sy
Crf

These definitions ensure that in our model the pressure gradient and the bottom friction
balance outside the mixing layer. i.c. in the transversely uniform zones.

At the interface. ¢f is determined by linear interpolation between the values of the
channel and the floodplain. This is justified according to the measured friction factor
(Knight&Shiono (1990). Figure 17).

Figure A.5 shows a comparison between the modeled and measured transverse profiles
of the depth-averaged mean streamwise velocity. They arc in good agreement. The velocity
on the floodplain close to the interface is somewhat overestimated. especially for the cases
Dr=0.20 and 0.25.
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Figure A.6: Transverse profiles of mcasured (Knight & Shiono, 1990) and modeled depth averaged

transverse shear stress. sec Figure A.5 for caption.
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The modeled and the simulated depth-averaged transverse shear stress profiles are
plotted in Figure A.6. The measured values are obtained from averaging the transverse
shear stresses obtained from several measurement points over the depth (Knight&Shiono
(1990), Figure 14). There is a fair agreement for the cases Dr=0.11, 0.15 and 0.20. The
peak is well represented as well as the asymmetry between the channel and the floodplain.
The shear stress in case Dr=0.25 is overestimated.

The eddy viscosity is plotted in Figure A.7. The simulated profiles agree with the
experimental data in a qualitative sense. In particular the higher value on the floodplain
when compared with the main channel, and the decrease further onto the floodplain, are
well reflected in the results. So is the location of the maximum eddy viscosity on the
floodplain side of the interface. The good reproduction of this characteristic lateral profile
of the eddy viscosity is due to our depth-dependent modeling of the contribution from the
coherent structures. However, the eddy viscosity is overestimated in the main channel and
underestimated on the floodplain for all cases. Obviously, more details should be included
in order to obtain better quantitative agreement.

The contributions of the two mechanisms to the total modeled eddy viscosity are shown
in Figure A.8 for the cases Dr = 0.11 and Dr = 0.25. On the floodplain the horizontal
coherent structures dominate. In the main channel the bottom turbulence part plays an
important role, as the depth is relatively large and the velocity relatively high compared to
the floodplain. It is also seen that the influence of the horizontal coherent structures reduces
with increasing relative depth while the influence of the bottom turbulence increases.

Overall, the agreement is good, taken into account the simplicity of the model. Admit-
tedly, the proportionality coefficients in the eddy viscosity model have been optimised on
the basis of the same FCF data, implying some degree of calibration, but it must be noted
that this required only a minor adjustment of the conventional values found in classical
literature. Moreover, using the same values for all the cases presented gave good predic-
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Figure A.7: Transverse profiles of the measured (Knight & Shiono, 1990) and modeled effective

eddy viscosity v, see figure A.5 for caption.
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Figure A.8: The modeled effective eddy viscosity of the bottom turbulence v} and the horizontal
coherent structures v’ for the Cases Dr = 0.11 (- -) and Dr = 0.25 (-).

tions of the cross-flow profiles of downstream velocity and lateral shear stress, which is an
aspect of validation. The good results obtained lend credibility to the model.

Secondary circulations

According to Shiono&Knight (1991), secondary circulations in the Flood Channel Facility
play a role in the lateral momentum exchange in the mixing region, and they would account
for an imbalance between the pressure gradient and the bottom friction in the transversely
uniform zones. However, Shiono&Knight (1991) did not verify this on the basis of measured
secondary flow velocities. The secondary flow velocity required to explain the observed
imbalance is estimated below and compared to the expected and the observed values,
based on the following consideration. If secondary circulations are to play a significant role
in the momentum exchange in the mixing region, their contribution should be of the same
order of magnitude as the turbulent Reynolds stress. Knowledge of the latter then allows an
estimate of the strength of the secondary flow velocities required to achieve this equivalence.
To quantify this, we use essentially the same procedure as followed by Wormleaton (1996)
in an analysis of the flow in the laterally uniform regions on the floodplain.

The streamwise velocity is assumed to follow a logarithmic profile (Knight & Shiono,
1990; Sofialidis & Prinos, 1999). Wormleaton (1996) has in fact shown that this holds in
good approximation for most FCF Series A data. The profile of the transverse velocity
is more difficult to determine as (to the authors’ knowledge) no experimental data were
published for the vertical profile of the mean transverse velocity in the FCF. For an order
of magnitude estimation, which is all that is required for the present purpose, we use a
simple half-cosine approximation for the transverse secondary velocity. This leads to the
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Figure A.9: Vertical profiles of the streamwise velocity U(z), transverse velocity V(z) v =
0.15m/s) and the product U(2)V (z). The dashed line indicates the depth averaged product Uv.

following formulation for the advective dispersion due to the secondary circulations, using
V = 0 (see also Figure A.9):

. 2p+D U .
—pUV = ——p/ \:—07 In (zio) (—V cos (w%)) dz (A.14)
2 D e ———
| LAY
U(z) V(z)

with k& = 0.41 the Von Karman constant, 2 the elevation above the bed where the (ex-
trapolated) logarithmic velocity profile goes through zero (determined from the relation
1//¢7 = k7 In(e™*D/z), or zo = Dexp(—«//c; — 1), using the local friction coefficient
¢s and depth D), and V the maximum value of the transverse mean velocity.

Figure A.9 shows the two velocity profiles U(z) and V (z) as well as the resulting product
U(z)V(z) and its depth-averaged value. Note that the latter is an order of magnitude
smaller than the product UV. If the stress due to advective dispersion is important in
the mixing region, it should be of the same order of magnitude as the Reynolds stress:
—pUV = O(F,,). In order to get an estimate of the secondary motion that is required for
such a resulting advective dispersion, we take Case Dr = 0.15 as an example. According
to Figure 10 of Shiono&Knight (1991), the apparent imbalance is highest at the interface
just on the floodplain (y = 0.90m). Therefore we estimate the required strength of the
secondary circulation at this position. At y = 0.90m the depth is D = 27mm, the mean
streamwise velocity is U = 0.45m/s (Figure A.5), the depth-averaged turbulent shear stress
is Ty = —5.25N/m? (Figure A.6) and the bottom friction coefficient on the floodplain is
c¢rp = 0.0029 (Table A.2). These values are substituted in equation A.14, which results
in a required maximum transverse velocity V = 0.15m/s. This is one order of magnitude
greater than the observed values, which are 2cm/s at most (Shiono&Knight (1991), Figure
11). It is concluded that the influence of the secondary circulations on the momentum
exchange in the mixing region can be neglected.
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Conclusions

In this paper the momentum exchange in straight uniform compound channel flow is stud-
ied. Different mechanisms that could play a role have been investigated. It turned out
that the momentum exchange is dominated by the horizontal coherent structures and the
bottom turbulence. Secondary circulation turns out to be of minor importance.

A new eddy viscosity model is proposed, in which the horizontal coherent structures and
the bottom turbulence are incorporated. The bottom turbulence is modeled with an Elder
formulation and the contribution of the horizontal coherent structures by a modified mixing
length approach which takes into account the effect of transverse depth variation on the
coherent structures. The results obtained with the proposed model are in good agreement
with the Flood Channel Facility data. The modeled depth averaged mean streamwise
velocities and the depth averaged transverse shear stresses are in good agreement with the
measured profiles. The peak of the eddy viscosity on the floodplain is well reproduced due
to the inclusion of the influence of the depth variation on the large coherent structures.
The proposed model still needs two empirical constants, which however have their origin in
the fundamental flow types, wall flow and mixing layer flow, with corresponding realistic
values.

The developed model can be used for the prediction of the stage-discharge relation of
straight uniform compound channels, in a similar way as performed by Lambert&:Sellin
(1996). An other application is the implementation of the eddy viscosity model in one-
dimensional conveyance models as used in the practice of civil engineering.

Although the model turned out to work well, we do not claim that it can be used for
a very wide range of applications. The present investigation was restricted to straight
uniform compound channels, with a mild slope on the interface. In case of meandering,
roughencd floodplains, steep slopes (or vertical walls) at the interface, or non-uniformity
it should be reconsidered what mechanisms dominate the momentum exchange.

Further study is required to validate the assumptions on the local stretching and com-
pressing of the coherent structures, the interaction between the horizontal coherent struc-
tures and the bottom turbulence and the general applicability of the estimated parameter
values. Sophisticated numerical modeling is recommended for such further research.
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Notation

¢s = friction coefficient

Cnu = coefficient used by Lambert & Sellin (1996)

D = depth

D,, = mean depth (Ds+ D.)/2

Dr = relative depth D;/D,

g = gravitational acceleration

H = waterlevel

Ai = streamwise gradient of water depth

K = coefficient used by Ervine et al. (2000)

S = spreading rate of a developing mixing layer

Sy = Dbottom slope

T = stress

U = streamwise velocity fluctuation

u, = friction velocity

U = time-averaged streamwise velocity

v = transverse velocity fluctuation

v = time-averaged transverse velocity

W = width

z = streamwise coordinate

y = transverse coordinate

z = vertical coordinate

20 = integration constant

o = coefficient in eddy viscosity due to bottom turbulence

B = coefficient in eddy viscosity due to large horizontal structures

é = mixing layer width

K = Von Karman constant

A = coefficient used by Alavian&Chu (1985)

A = coefficient used by Shiono&Knight (1991)

17 = total eddy viscosity

vy = eddy viscosity due to large horizontal structures

v/ = eddy viscosity due to bottom turbulence

p = mass density

T = bottom shear stress

r = coefficient used by Shiono&Knight (1991)
Subscripts

b = bottom

¢ = main channel

f = floodplain
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Appendix B

Notation

Roman symbols

friction coeflicient
cross-covariance

Smagorinsky coefficient

depth

energy density spectrum
frequency

shape function

shape function

amplification function

Froude number

gravity

wave number

typical length scale

typical length scale

counter

integer

pressure

time-averaged pressure

Weiss function

Reynolds number

bottom friction parameter
critical bottom friction parameter
duration

time step

streamwise velocity

streamwise velocity amplitude
friction velocity

u intensity of large scale streamwise velocity fluctuations
u intensity of small scale streamwise velocity fluctuations
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122 Notation
U; velocity in direction ¢

U time-averaged streamwise velocity

U, streamwise velocity on high velocity side

U, streamwise velocity on low velocity side

U, streamwise velocity in the center of a mixing layer
AU velocity difference over a mixing layer

U typical velocity scale

v intensity of large scale transverse velocity fluctuation
V" intensity of small scale transverse velocity fluctuation
|4 time-averaged transverse velocity

w width

z streamwise coordinate

Ax grid spacing in streamwise direction

Y transverse coordinate

Ye transverse position of the center of the mixing layer
Ay grid spacing in transverse direction

z spanwise coordinate

Az grid spacing in spanwise direction

Greek symbols

I>EI IO R

=

©

theta

Tw
TSGS

Wy
wr

entrainment coefficient
emperical constant
emperical constant
mixing layer width
mixing layer width

mesh size

dimensionless transvers coordinate
Von Karman constant
emperical constant
kinematic viscosity

eddy viscosity

density

angle

time scale

wall shear stress
subgrid-scale shear stress
vorticity

growth rate

frequency
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10) phase shift

Subscipts

0 at the tip of the splitterplate

C center of the mixing layer

ks kinematic simulation

maxr maximuin

min minimum

Abbreviations

2D two dimensional

3D three dimensional

DNS Direct Numerical Simulation

HLES Horizontal Large Eddy Simulation

LDA Laser Doppler Anemometer

LES Large Eddy Simulation

MEKM Moser. Moin and Mansour

PTV Particle Tracking Velocimetry

RANS Reynolds Averaged Navier Stokes

TRANS Transient Reynolds Averaged Navier Stokes
TRANS+ks Reynolds Averaged Navier Stokes with kinematic simulation
SDS-2DH Sub Depth Scale 2-Dimensional Horizontal
SGS SubGrid Scale

URANS Unsteady Reynolds Averaged Navier Stokes
VLES Very Large Eddy Simulation
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