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Abstract

Rapid and continuous advances in communications and computer technology are spurring
a host of new concepts in road traffic control. From simple traffic control measures like
lane segregation for wheeled and pedestrian traffic in the 14" century to the use of artificial
intelligence to control traffic, we have come a long way. The advancement of technology in
the automotive sector along with the industrial revolution led to the number of vehicle owners
seeing a drastic increase in the 20" century. There was a growing need for infrastructure to
handle this new volume of vehicles which led to the construction of several road networks in
both urban and freeway settings. Adding infrastructure was a valid method to handle traffic
problems until we realized that each new addition required a significant amount of land that
was slowly reducing. This brought along the need for newer and more efficient traffic control
techniques due to increased vehicles on the road, the different kinds of vehicles itself and the
need to reduce construction of roads as a means of reducing traffic.

In this thesis report, we discuss the different control methods using reinforcement learning
to tackle the freeway traffic control problem. The thesis covers the fundamentals of freeway
traffic control, reinforcement learning and the agents used for control. It focuses on the
creation of the freeway network, environment setup for reinforcement learning application
and the choice of agents mainly SAC in order to implement continuous actions to improve
combined ramp metering and variable speed limit control in more complex scenarios.

Important terms- Freeway traffic control, ramp metering, variable speed limits,
reinforcement learning, SAC
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Preface

Traffic control has been a growing area of research ever since the industrial revolution and
increasing vehicles on the road. Freeway traffic control came into prominence when engi-
neers realized that just building infrastructure could not solve all the traffic problems. More
freeways meant more space required for construction and more energy spent on possibly in-
effective infrastructure. Thus freeway traffic control became an area of research where in
engineers worked to make traffic on freeways and subsequently freeway networks flow more
efficiently. The idea for the thesis was first brought up in a meeting between Dr.Dabiri and
myself where she suggested the topic of reinforcement learning in freeway traffic control and
we discussed the possible directions and potential for the thesis. As someone who has stayed
in the Netherlands for two years and having seen the transport system that has been adopted
here along with my interest in A, I felt a connection which I wanted to pursue. The complete
idea came into being after a meeting with Dingshan Sun, a post Doctoral fellow in the Civil
Engineering department. This thesis report will deal with the application of reinforcement
learning agents mainly SAC for freeway traffic control. The report also includes the additional
issue of dealing with continuous action spaces in the freeway traffic control problem. The aim
of this report is to show that continuous action spaces are viable and that the choice of SAC
as the RL agent to control the combined ramp metering and variable speed limit problem is
justified.
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Chapter 1

Introduction

From the advent of mankind, learning through experience and interaction has been a natural
instinct for our species. Most innovations took place through observations and interaction
with the environment and a rigorous process of trial and error. As an infant left to its devices,
they have no explicit teacher or knowledge of the world but it does have a direct sensorimotor
connection to its environment. Through this connection we gain a wealth of information about
cause and effect, actions, their nature and the consequences and the know how on performing
specific tasks to achieve certain goals. These interactions provide the foundation for learning
and are an inexhaustible source of knowledge and information as they happen throughout
the lifespan of the human species. Regardless of the actions undertaken by humans, we are
extremely aware and observant of how our environment responds and in-turn we seek to
influence what happens through our behaviour. Learning from interaction is a foundational
idea underlying nearly all theories of learning and intelligence.

Reinforcement learning at its core is learning how to map situations to actions in order
to maximize a numerical reward. This type of learning is showcased wherein the learner
must discover which actions lead to best reward by trial and error and not through direct
instructions. The choice of actions can not only determine the immediate reward but also
consequently affect subsequent rewards which can vary from a case to case basis. The core
distinguishing features of reinforcement learning can be said to be - trial and error approach
and delayed rewards - as described above.

Reinforcement learning is considered to be the third paradigm of machine learning and must
not be grouped with supervised or unsupervised learning. The fundamental difference between
supervised learning and reinforcement learning lies in the fact that the former uses a set of
examples provided by an external supervisor and learns through the set. The objective of
supervised learning is to extrapolate or generalize the structure learned from the examples to
instances not present within the training set. This approach although important sets it apart
from learning through interaction which is the basis of RL. When it comes to unsupervised
learning there is an urge to either classify reinforcement learning as a kind of unsupervised
learning since the latter aims to find patterns hidden in unlabelled data and does not explicitly
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2 Introduction

rely on examples of correct behaviour but this does not address the fundamental problem in
reinforcement learning of maximizing the reward signal.

Due to the nature of learning through interaction, one of the challenges in reinforcement
learning is the trade-off between exploration and exploitation. The success of the reinforce-
ment learning agent is dependent upon the variety of actions it takes to identify those that
are effective in producing a reward but in order to discover such actions, new actions that
were not performed before need to be selected. Thus, in order to succeed in obtaining a
reward the agent has to exploit what it has learned but to improve the reward obtained the
agent also has to explore new actions. In order to succeed at the task neither exploration or
exploitation can be performed exclusively. A key feature of reinforcement learning is that it
considers the whole problem of a target-centric agent with an uncertain environment which is
in contrast with many approaches that consider sub-problems without addressing their value
in solving the bigger problem. Reinforcement learning starts off with a complete, interac-
tive, goal seeking agent with explicit goals that can sense their environment and furthermore
choose actions to influence said environment. When reinforcement learning is used in con-
junction with other approaches, important sub-problems ,which play an important role in
the reinforcement learning agents, are isolated and studied even if all the details of the agent
cannot always be filled.

As technology has improved, reinforcement learning has a had a growing substantive relation-
ship with other disciplines and has distinguished itself from other approaches by placing an
emphasis on learning from interaction with the environment with an agent without the need
for a complete model of the environment.. Reinforcement learning uses a formal framework of
Markov decision processes as a simple way of representing the essential feature of the artificial
intelligence problem, which are, a sense of cause and effect, uncertainty and nondeterminism
and having explicit goals.

1-1 Motivation

Freeway traffic control has become a critical issue in modern society due to the exponential
increase in vehicular movement, urbanization, and the corresponding challenges in maintain-
ing road safety, reducing congestion, and minimizing environmental impact. Effective traffic
management on freeways is not just about regulating the flow of vehicles but also about en-
suring sustainability, economic efficiency, and the overall quality of life for urban populations.
In the aftermath of COVID, which caused significant changes to traffic patterns in both urban
and freeway settings, it has also become necessary to incorporate any such potential situations
to while planning traffic control strategies in the long run.

This section explores the motivations behind freeway traffic control, focusing on safety, effi-
ciency, environmental sustainability, and technological advancements.

1-1-1 Enhancing Road Safety
One of the primary motivations for freeway traffic control is enhancing road safety. Free-
ways are often high-speed environments where even minor disturbances can lead to severe

accidents. According to the World Health Organization (WHO), road traffic injuries are one

Prajwal Bindu Vinod Master of Science Thesis



1-1 Motivation 3

of the leading causes of death globally, particularly among young adults aged 15-29 years.
Implementing traffic control measures such as speed limits, dynamic lane management, and
automated enforcement can significantly reduce the risk of collisions and fatalities. Intelligent
Traffic Systems (ITS) and adaptive signal controls are increasingly being used to predict and
mitigate potential traffic incidents, thereby enhancing overall safety on freeways.

1-1-2 Reducing Traffic Congestion

Congestion on freeways results in significant economic losses, wasted time, and increased fuel
consumption. An example of the above would be the Texas A&M Transportation Institute’s
Urban Mobility Report (2023)[18] which estimates that congestion costs the United States
economy over $200 billion annually in lost productivity and excess fuel consumption. Traffic
control measures, including ramp metering, congestion pricing, and real-time traffic informa-
tion systems, help manage the flow of vehicles and reduce bottlenecks. By optimizing the
use of available road capacity, these measures not only alleviate congestion but also improve
travel time reliability for commuters [29].

1-1-3 Environmental Sustainability

The environmental impact of freeway traffic is another critical concern. Vehicle emissions
contribute to air pollution and climate change, with transportation being responsible for a
significant share of global greenhouse gas emissions. Freeway traffic control systems can play
a vital role in reducing emissions by minimizing stop-and-go driving conditions, which are
known to increase fuel consumption and emissions. Strategies such as promoting carpool-
ing, encouraging the use of electric vehicles through dedicated lanes, and integrating traffic
management with public transportation networks contribute to more sustainable freeway use

[3].

1-1-4 Economic Efficiency and Productivity

Efficient freeway traffic control also contributes to economic productivity. By reducing de-
lays and improving the predictability of travel times, businesses can better plan logistics,
leading to more efficient supply chains. The implementation of smart traffic management
systems, which use data analytics and machine learning to optimize traffic flow, can lead to
substantial economic benefits. These systems help reduce the time vehicles spend idling, lower
transportation costs, and improve the overall efficiency of freight movement on highways [27].

1-1-5 Technological Advancements and Innovation

The advent of advanced technologies such as the Internet of Things (IoT), big data analytics,
and artificial intelligence (AI) has revolutionized freeway traffic control. These technologies
enable the development of smart infrastructure that can adapt to real-time traffic conditions,
predict congestion, and even communicate with autonomous vehicles to enhance traffic flow.
For instance, connected vehicle technology allows vehicles to share information about road
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4 Introduction

conditions, traffic incidents, and optimal speeds, which can be integrated into traffic man-
agement systems to improve safety and efficiency [24]. The motivation to leverage these
technologies stems from the need to create more resilient and adaptive transportation net-
works that can meet the demands of modern society.

Freeway traffic control is motivated by a combination of factors, including the need to im-
prove safety, reduce congestion, promote environmental sustainability, and enhance economic
efficiency. The rapid advancement of technology further drives the implementation of sophis-
ticated traffic management systems, which are essential for addressing the challenges posed
by modern urbanization and increasing vehicular traffic. As society continues to evolve, so
too must our approaches to freeway traffic control, ensuring that our transportation systems
remain safe, efficient, and sustainable for future generations.

1-2 Research

The focus of the literature report leading upto the thesis was to gain knowledge regarding the
existing freeway traffic control methods and the existing reinforcement learning algorithms.
Research on the former gave me a broad understanding of the methods used to mimic and
generate traffic scenarios using mathematical models like METANET and more recently using
software such as SUMO, VISSISM or GTSim. The method of freeway traffic control most
commonly used from literature was ramp metering by either controlling the flow through the
ramp or controlling the signal timings of the ramp signal with most common control algorithm
being ALINEA. Then, variable speed limits were introduced to control the maximum speed
on the highway which showed some good results. Eventually, a combination of both ramp
metering and speed limits started being experimented with to improve the overall conditions
of the highway and to tackle multiple issues at once such as delays due to weather, accidents,
reduction of all while focussing on keeping the traffic flowing smoothly on the highway. As the
complexity of the control methods started increasing, there was a need for better algorithms
to match the need to control more variables. Thus, reinforcement learning algoritms were
introduced into freeway traffic control in order to provide an environment where each and
every variable required by the user could be defined and applied in order to get the best result
possible. The advent of reinforcement learning in freeway traffic control meant that taking
advantage of the structure of the environment, the user could include any and all metrics
as observation and model rewards as required while defining the control input as actions.
The main advantage of using reinforcement learning was the fact that one could mould the
reward function with respect to what the user deemed to be the most important metrics for
any particular scenario. From literature, several RL algorithms like simple Q-learning, DQN,
DPG, A2C, PPO, DDPG and TD3 have been used across various papers to improve freeway
traffic conditions. In general, the literature is divided when it comes to using discrete or
continuous observations but they all use only discrete actions. The literature report aimed
to find some unexplored areas of interest and to take the thesis in that direction. The main
objectives and outline of the thesis is discussed in Sections 1-3 and 1-4 respectively.
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1-3 Objectives

The objective of this thesis is to expand on the existing literature regarding freeway traffic
control and apply known control methods with improvements and new reinforcement learning
algorithm to further the work that has been done in this field. The main objectives of this
thesis can be broadly summarized as follows:

1. Create a simple easy to follow structure for designing a freeway traffic environment

2. Application of continuous actions for both ramp metering and variable speed limits to
improve fine control and reduce restrictions caused by discrete, specific values

3. Applying the soft actor critic(SAC) algorithm

4. Comparing the results between different control strategies and reinforcement learning
algorithms

1-4 Thesis Outline

In this thesis, we discuss the freeway traffic control problem with increased complexities both
inherently and with respect to the reinforcement learning agent. The two main features of the
proposed method for control in this thesis are the use of continuous actions to control ramp
metering and variable speed limits and the implementation of SAC reinforcement learning
agent and compare the results to existing control methods and DDPG reinforcement learning
agent. This thesis report presents the methodology and results for the aforementioned problem
in detail. In chapter 2, a background of reinforcement learning and some important RL agents
is provided along with a review of literature with respect to reinforcement learning in freeway
traffic control. Chapter 2 also provides insight into some important hyperparameters and the
interdependencies on the environment. In chapter 3, the proposed network, RL environment
and RL agents setup are described in detail. The simulation settings along with the results
and accompanying plots are provided in chapter 4. Chapter 5 highlights the results obtained
and their importance to the field of traffic control. Lastly, chapter 6 gives an optimistic
outline of future prospects and improvements that can be made to the methodology and
results provided in this thesis.
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Chapter 2

Background

2-1 Reinforcement Learning Algorithms

Reinforcement learning at its core is learning how to map situations to actions in order
to maximize a numerical reward. This type of learning is showcased wherein the learner
must discover which actions lead to best reward by trial and error and not through direct
instructions. The choice of actions can not only determine the immediate reward but also
consequently affect subsequent rewards which can vary from a case to case basis. The core
distinguishing features of reinforcement learning can be said to be - trial and error approach
and delayed rewards - as described above.[31]

Reinforcement learning is considered to be the third paradigm of machine learning and must
not be grouped with supervised or unsupervised learning. The fundamental difference between
supervised learning and reinforcement learning lies in the fact that the former uses a set of
examples provided by an external supervisor and learns through the set. The objective of
supervised learning is to extrapolate or generalize the structure learned from the examples to
instances not present within the training set. This approach although important sets it apart
from learning through interaction which is the basis of RL. When it comes to unsupervised
learning there is an urge to either classify reinforcement learning as a kind of unsupervised
learning since the latter aims to find patterns hidden in unlabelled data and does not explicitly
rely on examples of correct behaviour. But this does not address the fundamental problem
in reinforcement learning of maximizing the reward signal.

Due to the nature of learning through interaction, one of the challenges in reinforcement
learning is the trade-off between exploration and exploitation. The success of the reinforce-
ment learning agent is dependent upon the variety of actions it takes to identify those that
are effective in producing a reward but in order to discover these, new actions that were not
performed before need to be selected. Thus, in order to succeed in obtaining a reward the
agent has to exploit what it has learned, and in order to improve the reward obtained the
agent also has to explore new actions. In order to succeed at the task neither exploration
nor exploitation can be performed exclusively [14]. A key feature of reinforcement learning is
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8 Background

that it considers the whole problem of a target-centric agent with an uncertain environment,
which is in contrast with many approaches that consider sub-problems without addressing
their value in solving the bigger problem. Reinforcement learning starts off with a complete,
interactive and goal seeking agent with explicit goals that can sense their environment and
furthermore choose actions to influence said environment. When reinforcement learning is
used in conjunction with other approaches, important sub-problems are isolated and studied
even if all the details of the agent cannot always be filled.

As technology has improved, reinforcement learning has had a growing substantive relation-
ship with other disciplines and has distinguished itself from other approaches by placing an
emphasis on learning from interaction with the environment without the need for a complete
model of the environment. Reinforcement learning uses a formal framework of Markov deci-
sion processes as a simple way of representing the essential feature of the artificial intelligence
problem.[31].

In this section, the reinforcement learning algorithms that will be applied to the freeway traffic
control problem in the thesis are discussed to give the readers an introduction to reinforcement
learning.

2-1-1 Reinforcement Learning and Markov Decision Processes

Markov decision process(MDP) is a classical formalization of sequential decision making,
where actions influence not just immediate rewards, but also subsequent situations or states,
through future rewards. They represent a mathematically idealized form of the reinforcement
learning problem for which precise theoretical statements can be made. This section will
introduce the elements of the mathematical structure of the MDP problem such as returns,
value functions, and Bellman equations which will aid in the understanding of the following
algorithms and subsequent sections.

Agent-Environment Interface

Markov decision processes are meant to be a direct approach to the concept of learning with
interaction. The learner and decision maker is called an agent and everything outside the
agent that it interacts with is called the environment. The interaction between the agent
and the environment happens continuously, wherein, the agent selects the action and the
environment responds to said actions and presents new situations to the agent.

":| Agent ||
state reward action

S: R, A,
o R1+1 [
- S.. | Environment ].._

L.

Figure 2-1: Agent-Environment Interaction in an MDP
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2-1 Reinforcement Learning Algorithms 9

The agent and the environment interact at a sequence of discrete time steps ¢, at which the
agent receives a representation of the environments state Sy € S on which basis it selects
the action A; € A. As a consequence of the performed action at time step ¢, the agent
receives a reward R;y1 € R in the subsequent time step ¢ + 1 and a new state S;11. The
MDP and agent together thereby give rise to a sequence or trajectory that begins as follows,
So, Ao, Rl, Sl, Al, Rs, SQ, AQ, Rs,....

In a finite MDP, the set of states, actions and rewards all have a finite number of elements.
In this case, the random variables R; and S; have discrete probability distributions that are
dependent only on the previous state and action. The function p, that defines the dynamics
of the MDP is shown below:

p(s'r|s,a) =Pr{Si=8 R =r|Si_1=s]4_1=a}, (2-1)
forall ', se S, reR,ac A(s).

The function in Eq.2-1 is a deterministic function of four arguments with conditional proba-
bility p, that specifies a probability distribution for each choice of s and a, that is,

ZZp(s',r\s,a)zl, for all s € S,a € A(s) (2-2)

s’eSTreR

In an MDP, the probabilities given by p completely characterize the environment’s dynamics,
i.e, the probability of each possible value for S; and R; depends only on the immediately
preceding state and action, S;_1 and A;_1, and, given these, not on all earlier states and
actions. This is observed as a restriction on the state not the decision process. The state
must include information about all aspects of the past agent—environment interaction that
make a difference for the future. If it does, then the state is said to have the Markov property.
From the four-argument dynamics function, state transition probabilities p, can be computed,
with slight abuse of notation,

p(s']s,a) =Pr{S;=5"|S_1=s4_1=a} = Zp(s',r | s,a) (2-3)
reR

Expected rewards for state-action pairs as a two argument function r : S x A — R, can be
computed as,

r(s,a) =E[R | Seci=s,Ai_1=a]=>_r > p(s,r]sa), (2-4)
reR s'eS

and expected rewards for state—action—next-state triples as a three-argument function r :
S x A xS — R can also be computed as follows,

r(s,a,8) =E[R | Si—1=s8,41-1=a,5 =5] = Z ps

The MDP framework is abstract and flexible and can be applied to a variety of problems. The
flexibility of the MDP framework stems from the definitions of what can be used as variables
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in the decision process. For example, time steps need not be actual real time intervals but can
be based on stages for decision making and acting. The states of the agent can take a variety
of forms, from low-level sensor readings to abstract high-level symbolic descriptions of objects.
They can also be from completely subjective past memories, mental or computational. The
actions taken by the agent can also be defined as low-level basic actions like, application of
voltages, or high-level abstract actions such as, decisions taken in daily life. The general rule
followed is that anything that cannot be changed arbitrarily by the agent is considered to be
outside of it and thus part of its environment and it is not assumed that everything in the
environment is unknown to the agent.

The MDP framework is a considerable abstraction of the problem of goal-directed learning
from interaction. The framework proposes that regardless of the details of the problem and
the objective to be achieved, a reinforcement learning problem can be reduced to three signals
communicated between an agent and its environment: one signal to define the agent’s choices
(the actions), one signal to define the basis for the choices (the states), and one signal to
define the agent’s goal (the rewards). This framework may not be sufficient to represent all
decision-learning problems usefully, but has proved to be widely useful and applicable.

Policy and Value Functions

The reinforcement learning algorithms discussed in this section involve estimating value func-
tions — functions of states (or of state—action pairs) that estimate goodness of the agent in
a given state (or how good it is to perform a given action in a given state). The notion of
performance here is defined in terms of future rewards that can be expected, or in terms of
expected return. The rewards the agent can expect to receive in the future depend on what
actions it will take. Accordingly, value functions are defined with respect to particular ways
of acting, called policies.

Policies are a mapping from states to probabilities of selecting each possible action. If the
agent is following policy 7 at time ¢, then 7(als) is the probability that A; = a if S} = s.
Reinforcement learning methods specify how the agent’s policy is changed as a result of its
experience.

The value function of a state s under a policy 7, denoted v, (s), is the expected return when
starting in s and following 7 thereafter. For MDPs, it can be formally defined as,

[e.e]

Un(8) =Er [Gy | St =8| =B | > V" Rijisr | Si = 5|, forall s € S, (2-6)
k=0

where E,[.] denotes the expected value of a random variable given that the agent follows
policy 7, and t is any time step. The value of the terminal state, if any, is always zero. The
function vy, is called the state-value function for policy .

Similarly, the value of taking action a, in state s, under a policy 7, denoted by Qr(s,a), can
be defined as follows:

Qr(s,a) =E [Gy| St = s, A =a] =E, Z YRpy1 | Si =54 =a (2-7)
k=0
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2-1 Reinforcement Learning Algorithms 11

The function ¢, is called the action value function for policy . The value functions defined
in Eq.2-6 and Eq.2-7 are estimated from experience as will be seen in the following sections.

2-1-2 Deterministic Policy Gradient

In an environment which provides a continuous action space we can derive a deterministic
policy by using Deterministic policy gradient (DPG). Rather than returning a probability
distribution over actions A given a state, a deterministic policy p(s) = a returns a single
action in a deterministic way. The main objective J(#) in an off-policy actor-critic algorithm,
which mainly optimizes the value function is defined as:

70) = [ *(:)Q (s po(s) ds, (2-8)
where 0 are the parameters and S is the state space.
inf
d" (s') = [ > A" tdo(s)d" (s — ', k) ds, (2-9)
S k=1

is defined as the discounted sum of state visitation probability density at state s'-d*(s — &, k)
giving the probability density from state s to state s’ after moving k steps by using policy
p. do(s) is the initial distribution over states. The gradient of J(6) using the Deterministic
policy gradient theorem can now be computed as,

Vo (6) = /S 0 (3)V 0 Q" (5, @) Vo 19(5) |y (s) 05
=Es~an [VG#G(S)VGQM(& CL) |a:u9(s)]

First, the chain-rule yields the gradient of QV,Q" (s, a) with respect to a. Second, the gradient
of the deterministic policy Vgpug(s) with respect to theta, which optimizes our policy is
derived. As an example to show how to compute updates, DPG in combination with on-
policy actor-critic policy SARSA is considered. First, the TD-error in SARSA is computed,

(2-10)

Ot = R +YQu (St+1, ar41) — Qu (8¢, az) (2-11)

The parameter update of the value function is defined as:

W41 = Wy + awétiQw (St, at) (2—12)

Then, the Deterministic policy gradient theorem is used to compute policy parameter updates
of # using Eq.2-10:

Orr1 = 0 + apVaQ"(5,a)Voro(s)| oy, (s) (2-13)

One problem of using DPG is exploration because of the deterministic nature of the policy
we optimize. One way to prevent this is to add noise to the parameter space or action space,
which in this case would result in an off-policy nondeterministic policy.
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2-1-3 Deep Deterministic Policy Gradient

Deep deterministic policy gradient is an off-policy, model free reinforcement learning algorithm
that was introduced to solve problems in environments with continuous action spaces. It can
be seen as a variation on deep Q-networks, as it combines deterministic policy gradient with
deep Q-learning, experience replay, target values and policy network, which thus can be said
to be an actor-critic algorithm. DDPG has 4 neural networks: actor, critic, target actor and
target critic, wherein, the actor is a policy function 7(s) that computes an action for a given
state. The critic, or the Q-value function, computes the Q-value as a numerical value which
represents the discounted future reward for state-action pairs, and also is the main objective
to be optimized by taking the maximum real value[2]. The optimal policy is derived from the
minimization of loss between the output of approximation and the Bellman equation, shown
below,

Q* (st ar) = E[r(se, ar) + ymaza,,, Q™ (si41, 7 (s1)] (2-14)

In the Eq.2-14, v represents the discount rate that diminishes the additional reward of steps
in the future. This shows that in this algorithm the immediate rewards take precedence
over future rewards. From the above equation, given target function and neural networks as
function approximators, we derive the loss function as,

L(69) = E[(Q(st, ar|6?) - Y2)?], (2-15)

such that, Y; represents the target computed as follows,

Yy = (st ar) +YQ(sei1, p(s141]6%), (2-16)

where 09 represents the function parameters for policy p and value function Q.

Exploration Noise:

As observed in Section 2-1-2, the updates from DPG could inhibit exploration depending
on the environment. DDPG takes this into account and employs the use of some noise (N)
added to the to the actions of the policy network u to create a new exploration policy ,u,/,
that guarantees exploration in the continuous action space. This new policy is simply shown
as,

/

p(se) = p(se) + N (2-17)

Target Value and Policy Networks:

DDPG uses frozen copies of value and policy functions to compute the target due to the
decreasing stability of the learning process which occurs because of the change in weights
during optimization.

e Step 1: Batch of training data is sampled from the experience buffer
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2-1 Reinforcement Learning Algorithms 13

o Step 2: Loss function (L) is computed using target values and policy networks to get
the target.

The target networks then get soft updated by the following scheme,

09 — 769 + (1 — 7)6?

/ / 2-18
0" «— 10% 4+ (1 —1)0" ( )

In the Eq.2-18, the terms on the LHS represent the parameters of the target value and policy
networks and the terms on the RHS represent the parameters of the given value and policy
networks. The variable 7 is a hyperparameter that is much less than 1, which therefore
scales down the step update in order to realize a soft update and slows down the change
of parameters of the target compared to the actor-critic networks. The pseudocode for the
DDPG algorithm is given in A-1.

Experience Replay Buffer:

The experience sample buffer used in DDPG consists of samples generated by the interaction
of the policy and environment. These samples are then used in batches to perform updates
using the value function, bellman equation and DPG. The experience replay is a fixed-size
buffer that holds the most recent transitions collected by the policy. It greatly improves the
sample efficiency of the algorithm by enabling data to be reused multiple times for training,
instead of throwing away data immediately after collection, and also improves the stability
during training. It is typically implemented as a circular buffer wherein an old transition
makes room for a newer transition which are sample at fixed intervals for training. The
sampling strategies can be used like uniform sampling, prioritized experience replay and
distributed experience replay buffer.[7]

2-1-4 Twin Delayed Deep Deterministic Policy Gradient

As shown in Section 2-1-3, one of the drawbacks of the DDPG algorithm is the overestima-
tion of Q-value which can result in breaking of policy. The TD3 algorithm uses three main
improvements to reduce the effect of the overestimation bias mentioned above[2]:

e Clipped Double Q-learning

The first improvement to address the overestimation bias in DDPG is done by intro-
ducing an additional critic or value function network and the target is optimized over
the minimum of the two Q-values,

Y =r(sp,a) + 7}2%% Qo; (5t+1, Ho! (St+1)) (2-19)

By choosing the minimum of the two values it is harder for the value function to over-
estimate the Q-value.
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o Delayed Policy Network Updates

By reducing the frequency of updates for the policy network compared to the value
network, it prevents the convergence of the value function in failure where overestimation
of actions often occurs. Overestimated output of a poor policy by the value function
can be overcome using additional updates of the value network using the same policy.

e Target Policy Smoothing

The third improvement is adding noise to the output of the target policy network. This
is done by modifying an action produced by the target policy with added noise by
clipping it into an interval. This covers a clipped area in the action space instead of
predicting a deterministic action. Noise can act as a regularizer for incorrect Q-values
produced by the value function for an action, thus getting smoothed.

All the above mentioned improvements provide added stability for approximations of optimal
policy [8]. The pseudocode for the TD3 algorithm is given in A-2.

2-1-5 Soft Actor-Ciritic

The Soft Actor-Critic algorithm applies the maximum entropy framework to augment the
standard reinforcement learning reward with an entropy maximization term. The use of
maximum entropy within the confines of reinforcement earning is not a novel idea but in pre-
vious literature it is observed that the term is used as a regularizer rather than maximizing
the entropy. SAC uses three main components: an actor-critic architecture with separate
policy and value function networks, an off-policy formulation that enables reuse of previously
collected data for efficiency, and entropy maximization to enable stability and exploration[11].
This method further combines off-policy actor-critic training with a stochastic actor to max-
imize the entropy of this actor with an entropy maximization objective. The SAC algorithm
is a far more stable and scalable algorithm and exceeds in both efficiency and performance
compared to DDPG and similar algorithms when it comes to complex tasks with high dimen-
sional sample sets. The SAC algorithm compensates for, to a large extent, the drawbacks
faced by model free reinforcement learning approaches namely, high sample complexity and
brittle convergence properties or hyperparameter sensitivity [10]. SAC considers a more gen-
eral maximum entropy objective in place of the standard reward function maximization, that
favours stochastic policies with the addition of expected entropy over the policy to the objec-
tive,

T

J(m) = D By ap)mds [ (31,20) + aH (7 (- | 5))] (2-20)
t=0

The temperature parameter o determines the relative importance of the entropy term against
the reward, and thus controls the stochasticity of the optimal policy. All other notations used
in the equation are common to all reinforcement learning algorithms.

The progression of the soft actor-critic approach starts from the maximum entropy variant
of policy iteration - soft policy iteration - which is a general algorithm for learning optimal
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2-1 Reinforcement Learning Algorithms 15

entropy policies by alternating policy evaluation and policy improvement within the maximum
entropy framework.

Soft-Policy Iteration

In the policy evaluation step of soft policy iteration, the value of a policy 7 is computed
according to the maximum entropy objective in Equation 2-20. For a fixed policy, the soft Q-
value can be computed iteratively, starting from any function @ : S x A — R and repeatedly
applying a modified Bellman backup operator given by 7™ as shown below:

T7Q (st,a1) =7 (st,a0) + ey, [V (8041)] (2-21)
where
V(st) = Eayur [@Q (5t,a:) —logm (ag | 54)], (2-22)

is the soft state value function. We can obtain the soft value function for any policy w by
repeatedly applying 7™ as formalized in Lemma 1.

In the policy improvement step, the policy towards the exponential of the new Q-function is
updated. This particular choice of update can be guaranteed to result in an improved policy
in terms of its soft value. Since in practice policies that are tractable are preferred, the policy
is additionally restricted to some set of policies II, which can correspond, for example, to a
parameterized family of distributions such as Gaussians. To account for the constraint that
7w € II, the improved policy projected into the desired set of policies. For this projection,
it can be shown that the new, projected policy has a higher value than the old policy with
respect to the objective in Equation 2-20 which is formalized in Lemma 2.

The full soft policy iteration algorithm alternates between the soft policy evaluation and the
soft policy improvement steps, and it will provably converge to the optimal maximum entropy
policy among the policies in IT (Theorem 1). Although this algorithm will provably find the
optimal solution, it can perform in its exact form only in the tabular case. Therefore, to ap-
proximate the algorithm for continuous domains, it needs to rely on a function approximator
to represent the Q-values, and running the two steps until convergence would be computa-
tionally too expensive. The approximation gives rise to a new practical algorithm, called soft
actor-critic.

Realizing Soft-Actor Critic

As discussed above, large continuous domains require the derivation of a practical approxi-
mation to soft policy iteration. To that end, function approximators for both the Q-function
and the policy are used, and instead of running evaluation and improvement to convergence,
alternate between optimizing both networks with stochastic gradient descent. A parameter-
ized state value function Vi, (s;), soft Q-function Qg(s¢|as, and a tractable policy mg(as|s;) are
considered. The parameters of these networks are 1, 6 and ¢.

The state value function approximates the soft value. This quantity can be estimated from a
single action sample from the current policy without introducing a bias, although in practice,
including a separate function approximator for the soft value can stabilize training and is
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convenient to train simultaneously with the other networks. The soft value function is trained
to minimize the squared residual error;

o) =B | (Vi (50) = E[Qu (st 0) —logmy (o | s, (229
with gradient:

Vydv () = ViV (st) (Vi (st) — Qu (8¢, ar) +1og g (ar | s¢)) . (2-24)

The soft Q-function parameters can be trained to minimize the soft Bellman residual,

Jo(0) = E(s;,a0)~D B (Qe (st,a) — Q (St7at)>2] , (2-25)

with gradient,

@(%]Q(e) = VoQo (a¢, st) (Qe (st,ar) — 7 (s, ar) — VVQL (St+1)) ) (2-26)

Finally, the policy parameters can be learned by directly minimizing the expected KL-
divergence given by:

In(0) = B [Dra. (o () | 22 G205 (2-27)

The above equations form the basis of the SAC algorithm. The pseudocode for the SAC
algorithm is given in A-3. For further reference, readers are referred to [10, 11] which provide
a comprehensive study on the SAC algorithm, simulations and applications.

2-2 Effects of Hyperparameters on DDPG and SAC

Deep Deterministic Policy Gradient (DDPG) and Soft Actor-Critic (SAC) are two widely
used reinforcement learning (RL) algorithms, particularly in continuous action spaces. Both
algorithms rely heavily on the tuning of hyperparameters, which can significantly impact their
performance. Hyperparameters such as learning rates, discount factors, and the structure of
neural networks influence the stability, convergence speed, and overall success of the training
process.

This section examines the effects of key hyperparameters on the training of DDPG and SAC.
This section serves to provide information on the changes that might be observed by users due
to hyperparamters and how to interpret and correct unwanted behaviour during the training
process. Furthermore, the effect of hyperparameters based on the environment is also outlined
to highlight the intricacies of working with reinforcement learning algorithms.
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2-2-1 Brief Overview of DDPG and SAC
DDPG (Deep Deterministic Policy Gradient)

DDPG is an off-policy, model-free RL algorithm that combines the strengths of DQN (Deep Q-
Network) and the Actor-Critic framework [21]. It is particularly suited for continuous action
spaces and operates using two neural networks: an actor network that learns the policy and
a critic network that evaluates the action-value function.

SAC (Soft Actor-Critic)

SAC is a more recent off-policy, model-free RL algorithm designed to improve stability and
efficiency in training by introducing entropy regularization into the policy update [10]. The
objective of SAC is to maximize both the expected return and the entropy of the policy,
promoting exploration and preventing premature convergence to suboptimal policies.

2-2-2 Key Hyperparameters and Their Effects on DDPG Training

The parameters listed in this section, in general, affect the learning process for DDPG more
significantly than other hyperparameters.

Learning Rate

The learning rate controls the step size during the update of network weights. In DDPG,
choosing the appropriate learning rate is critical. If the learning rate is too high, the updates
can be unstable, leading to divergent behaviour where the policy fails to converge. Conversely,
if the learning rate is too low, training can become excessively slow, potentially resulting in
poor performance as the agent may not explore the action space effectively.

Discount Factor ()

The discount factor determines the importance of future rewards. A lower discount factor
makes the agent more short-sighted, focusing on immediate rewards, which can be beneficial
in environments where long-term rewards are uncertain or unreliable. A higher discount
factor, on the other hand, encourages the agent to consider long-term rewards, which can be
crucial in environments where planning is necessary. However, setting the discount factor too
high may slow down the learning process or lead to suboptimal policies in environments with
delayed rewards.

Batch Size

Batch size refers to the number of samples used in each update of the neural networks.
In DDPG, a larger batch size generally leads to more stable gradient estimates, which can
improve convergence. However, larger batch sizes also require more computational resources
and can slow down the learning per iteration. Smaller batch sizes, while faster per iteration,
might introduce more noise in the updates, potentially destabilizing the learning process.
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Exploration Noise

DDPG uses an exploration strategy based on adding noise to the deterministic policy (often
Gaussian or Ornstein-Uhlenbeck noise). The magnitude of this noise significantly affects
exploration. Too much noise can cause erratic behaviour, making it difficult for the agent to
learn a coherent policy. Too little noise can lead to insufficient exploration, where the agent
might prematurely converge to sub-optimal policies.

Target Network Update Rate (7)

DDPG employs a target network that is slowly updated towards the current network, con-
trolled by the parameter 7. A smaller 7 results in slower updates, which can stabilize training
by smoothing the changes in the policy and value estimates. However, if 7 is too small,
learning can be very slow. Conversely, a larger 7 can speed up learning but may destabilize
training by introducing excessive variance into the updates.

2-2-3 Key Hyperparameters and Their Effects on SAC Training
Learning Rate

Similar to DDPG, the learning rate in SAC must be carefully tuned. SAC generally exhibits
better stability than DDPG due to its entropy regularization, but an inappropriate learning
rate can still lead to instability. SAC typically requires a balance between the learning rates
of the actor and critic networks. Discrepancies in these learning rates can lead to one network
lagging behind the other, which can degrade performance.

Entropy Coefficient («)

One of the most distinctive features of SAC is its use of an entropy coefficient («), which
controls the trade-off between exploration and exploitation. A higher « encourages more
exploration by favouring higher-entropy policies. However, setting « too high can lead to
excessive exploration, making it difficult for the agent to exploit known good policies. Con-
versely, a lower « reduces exploration, which might cause the agent to converge prematurely
to a suboptimal policy. Most SAC implementations favour an automatic entropy co-efficient
policy but tend to settle on values below 0.5 thus favouring exploitation over exploration. It
is important to know the characteristics of the user environment before making a change to
the « value as it is an important factor in the learning process for SAC.

Target Network Update Rate (7)

In SAC, the target networks (both for the value function and for the policy) are updated using
a similar technique as in DDPG. The target update rate 7 affects how quickly these networks
follow the main networks. As with DDPG, smaller values of 7 tend to stabilize training by
providing smoother updates, whereas larger values can lead to faster but potentially more
unstable learning.
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Discount Factor ()

The discount factor in SAC operates similarly to DDPG, influencing the agent’s consideration
of future rewards. Given SAC’s entropy maximization, the discount factor also interacts with
the entropy term, where a high v with high entropy might overly diffuse the policy, while a
low v might limit the ability to learn long-term strategies effectively. As mentioned in Section
2-2-3, it is important to consider the interdependency of the entropy term while setting values
for the related hyperparameters.

Replay Buffer Size

Both DDPG and SAC utilize a replay buffer to store and sample experiences during training.
The size of the replay buffer in SAC can affect the diversity of the training samples. A larger
buffer size allows for greater diversity in experiences, which can improve learning stability.
However, if the buffer is too large, older, less relevant experiences might persist, potentially
slowing down learning. A smaller buffer might lead to over-fitting to recent experiences,
reducing the robustness of the learned policy.

2-3 Impact of Hyperparameters Based on RL Environment

The effect of hyperparameters on the performance of DDPG and SAC is not only dependent
on the agent itself but also specific RL environment. Different environments present unique
challenges, such as varying degrees of reward sparsity, dynamic complexity, and state-space
dimensionality. The following points highlight how these factors may influence the importance
of certain hyperparameters:

2-3-1 Environment Dynamics

In highly dynamic environments where state transitions are volatile, such as in robotics or
autonomous driving simulations, careful tuning of the learning rate and target network update
rate becomes crucial. For example, in a fast-paced environment, a smaller 7 can prevent the
agent from making overly aggressive updates that could destabilize learning.

2-3-2 Reward Structure
Environments with sparse rewards, where rewards are only received after completing a task,
often require a higher discount factor and a larger replay buffer to ensure the agent can

propagate the value of achieving long-term goals. In such cases, the entropy coefficient in
SAC should also be tuned carefully to ensure sufficient exploration.

2-3-3 State and Action Space Complexity

Environments with high-dimensional state or action spaces require larger neural networks to
adequately represent the policy and value functions, which in turn necessitates careful tuning
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of the learning rate and batch size. In DDPG, adding appropriate noise to actions becomes
even more critical in such environments to ensure adequate exploration of the action space.

2-3-4 Stochastic vs. Deterministic Environments

In stochastic environments, where the same action can lead to different outcomes, SAC’s
entropy regularization is particularly beneficial. The entropy coefficient should be adjusted
to encourage enough exploration to handle the uncertainty. In deterministic environments,
DDPG’s deterministic policy approach often requires less aggressive exploration noise.

Hyperparameter tuning is vital for the successful application of DDPG and SAC in reinforce-
ment learning tasks. The effects of these hyperparameters are complex and environment-
dependent, making it essential to tailor them to the specific challenges presented by each
RL environment. The interplay between learning rate, discount factor, batch size, explo-
ration strategies, and entropy regularization must be carefully managed to achieve optimal
performance. As RL continues to evolve, understanding and improving hyperparameter op-
timization processes will be crucial for advancing the effectiveness of these algorithms.

2-4 Reinforcement Learning in Freeway Traffic

Traffic models are the basis for the design of traffic controllers, both to be inserted in control
algorithms in case of model-based controllers and to be used for testing and simulation pur-
poses. As seen in literature, the three basic traffic models were discussed and in this section
will discuss in detail the two most relevant traffic models for freeway traffic control.

Continuous Macroscopic Traffic Models

Macroscopic traffic models of continuous type consider flow, speed and density as aggregate
variables and represent space and time in continuous domains by means of partial differential
equations (PDEs).

Referring to a generic location = and time ¢, the aggregate variables used in continuous
macroscopic traffic models are denoted as follows:

o o(x,t) is the traffic density [veh/km];
o v(x,t) is the mean speed [km/h];
o ¢(x,t) is the traffic flow [veh/h]

The following two equations represent the hydrodynamic and continuity equations for the
continuous flow model:

q(x,t) = o(x, t)v(z,t) (2-28)

=0 (2-29)
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The Fundamental Diagram denoted as Q(o(z,t)) correlates the density and flow in steady
state conditions and must satisfy the following conditions:

Q0)=0, Q("™)=0, —— =0 (2-30)

Eq.2-30 shows that the flow must be equal to zero when there is no density or when the
density is equal to its maximum, called jam density, and that the flow reaches its maximum
value, also known as capacity, when the density is equal to the critical density.

Analogously, the steady-state relation between mean traffic speed and density is denoted with
V(o(z,t)) and its shape must be such that:

<0, (2-31)

where v indicates the free-flow speed, i.e. the speed of vehicles in absence of traffic. Moreover,
the following relations must hold:

Q(o(z,t)) = oz, t)V (o(z,t)) (2-32)

The above equations form the basis of the continuous macroscopic traffic model and are
augmented with additional equations and conditions as required by the traffic control problem.
The discretized form of these equations also form the basis for discrete macroscopic modelling
that is discussed in the following section. The continuous model is not used that often in RL
applications and thus the discussion will be limited to the above information that is relevant
to provide some background for the following sections. For further reading, readers may refer
to [28] which gives detailed mathematical formulation.

Discrete Macroscopic Traffic Models

Discrete macroscopic traffic models consider both space and time as discrete variables and
are obtained by discretizing continuous macroscopic traffic models.

In discrete macroscopic traffic models, space(freeway link) is divided into N segments of length
L (km) and time is discretized into K intervals of duration 7. The index used to indicate
segment length is ¢ = 1,..., N and for the time duration is k = 1,..., K. It should be noted
that in some cases the discretization of freeway links might not be equal. When modelling
for multiple links, each link maybe indexed using m, for example, L,,; which represents the
link number and the segment of that particular link. The above convention will be used in
all the following equations in order to encapsulate single and multi-link modelling.
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Figure 2-2: Freeway Link

Referring to a generic portion i of a freeway link m at time step k, the discrete macroscopic
variables are as follows:

o pm,i(k) is the traffic density at time kT
o Up1(k) is the mean speed at time kT

o ¢m,i(k) is the outflow or traffic volume during interval [kT', (k + 1)T.

The hydrodynamic and continuity equations, in the discrete case, that describe the evolution
of the network over time are as follows:

The outflow of each segment is equal to the product of the density, mean speed and (if
applicable) the number of lanes (A, ):

Qm,i(k) = pm,l(k)vm,z(k’))\m (2—33)

The density of the segment is equal to the sum of the previous density and the difference
between the inflow of the upstream segment and the outflow of the segment itself:

T
Ly

pm,i(k +1) = pmi(k) + (gm,i-1(k) = qm.i(k)) (2-34)
Equations 2-33 and 2-34 are based on physical principles (hydrodynamics and continuity) and
exact, the equations describing the speed dynamics and density-desired speed relationship are
heuristic. As seen in the following Eq.2-35 the mean speed at time instant k& + 1 is dependent
on the mean speed at k, a relaxation term that describes drivers trying to achieve the desired
speed, a convection term that describes change in speed due to inflow of vehicles and an
anticipation term that describes the change in speed due to changes in density,

Um,i(k + 1) = 'Um,i(k') + g (V (pm,z(k)) - Um,z(k)) + lvm,z(k) (Um,i—l<k) - Um,z(k>)

L,
~IT pmjit1(k) = pmi(k)
7L, pm,l(k) tK

(2-35)

)

where 7,9 and k are model parameters with,
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1 (k) \ "

|4 (pm,z(k)) = VUfree,m * €XP [_ <W> ‘| 5 (2'36)
Qm \ Pcrit,m

with a,, a model parameter, and where the free-flow speed vgce,m is the average speed that

drivers assume if traffic is freely flowing, and the critical density perit,m is the density at which

the traffic flow is maximal.

A simple queue model is used model the origins:

wo(k + 1) = wo(k) +T (do(k) - QO(k)) > (2'37)

where w,(k+1) and w, (k) are the queue lengths at k+1 and k, d,(k) is the demand considered
to be independent of any control actions, and ¢, (k) is the outflow.

The outflow ¢, (k) of the origin depends on the traffic conditions on the mainstream, and on
the ramp metering rate r,(k), for the metered on ramp. The following Eq.2-38 shows that
the outflow is a minimum of three compared quantities: the available traffic in time period
k, the maximal flow that could enter the freeway because of the main-stream conditions, and
the maximal flow allowed by the metering rate.

wo (k)

Go(k) = min |d, (k) + T

Qo 7ol(k). Qo (”mm — ”m’l““)ﬂ , (2-38)
Pmax,m — Pcrit,m

where @), is the on-ramp capacity under free-flow conditions and pmax,m is the maximum
density of link m.

The equations mentioned above form the basis of a discrete second order macroscopic METANET
model which is most commonly used to model freeway traffic [15, 17]. In subsequent papers,
many augmentations and extensions to the METANET model have been made to further
improve traffic modelling [13] and to adjust to specific control strategies and traffic scenarios.
Additionally, the above first order discrete model is extended to a second order model which
considers the influence of on-ramp and off-ramp flows on mainstream behaviour which is then
extended to freeway networks [16]. For further reference, readers are directed to the papers
[15, 17, 13, 12, 28]. In literature [28], the CTM is also described in detail as a first order
discrete model for a one way road without any entrances or exits and then extended to traffic
networks in considering triangular or trapezoidal shapes for steady state conditions. The aim
of introducing these models in brief is to give a clearer picture regarding the literature shown
in table 2-4-2.

2-4-1 Freeway Traffic Model as Markov Decision Process

The freeway traffic problem will be defined as an MDP in this section.

The states of the freeway traffic model can be defined by any of the given variables:
e S = density, mean speed, queue length, demand,

depending on the control strategy and requirement.

The action space of the freeway traffic model is created based on the control strategy:
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o A = ramp metering rate, speed limits, signal phases,

The rewards used are also dependent on the control strategy adopted as well as any additional
characteristics that the agent should optimize:

o R = Outflow, queue length, TTT/ TTS(total travel time/ total time spent), deviation
from critical density, total waiting time.

The above state and action sets along with appropriate rewards from the given options both
singular or combinations can be applied to the freeway traffic models mentions above in
order to create the required traffic conditions and scenarios for any particular control tasks
in both continuous and discrete time. It should be noted that TTT and TTS are often used
interchangeably in different literature.

2-4-2 Review of Related Literature

In this section, a comprehensive overview of papers related to reinforcement learning tech-
niques applied to freeway traffic control is carried out. The papers are listed in chronological
order in the following to provide some insight into the progress of techniques within the
subject.

Table 2-1: Summary of Reinforcement Learning papers for Freeway Traffic Control

Reference RL Control State Action Reward Simulation
Algorithm Strategy Model and
Result
Davarynejad Q-learning RM Discrete; Discrete; Outflow METANET;
et al.[4] den- ramp and queue Flow
sity,queue metering length capacity is
length,demand rate maintained
and
metering
rate
Zhu et R-MART VSL Discrete; Discrete; Total DNL;
al.[38] densities speed Travel Reduce
limits Time TTT by
18%

Continued on next page
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Table 2-1: Summary of Reinforcement Learning papers for Freeway Traffic Control (Continued)

Fares et Q-learning RM Discrete; Discrete; Deviation ~ FTEFM(proposed);
al.[5] density red and from Maintains
and signal green critical optimal
at one step phase density density
before and light
phases
Fares et Multi- RM Discrete; Discrete; Deviation VISSIM;
al.[6] agent density red and from Reduce
Q-learning green critical TTS by
(indepen- phase density 6.5% and
dent, improve
coordi- avg speed
nated, by 7%
centralized)
Schmidt- Multi RM-VSL  Continuous; Discrete; Deviation METANET
Dumont et agent down/up-  red phase from macro-
al.[26] Q-learning stream dura- desired scopic
with densities  tions(RM) density model
function and queue  and speed Reduction
approximator length limits(VSL) in TTS
Walraven  Q-learning VSL Continuous; Discrete; Total time METANET;
et al.[32] densities speed spent Reduce
and speed, limits TTS
previous
and
current
speed
limits
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Table 2-1: Summary of Reinforcement Learning papers for Freeway Traffic Control (Continued)

Lu et Q-learning RM Discrete; Discrete; Total ACTM;
al.[23] queue Ramp Time Reduce
length and  metering Spent, TTS by
flow rate deviation 18.5%
in Total
Waiting
Time
Li et Q-learning VSL Discrete; Discrete; Deviation Modified
al.[20] densities speed from CTM;
of mainline limits critical Reduce
and ramp density TTS by
49.34%
Wang et Distributed VSL Continuous; Discrete; Time to MOTUS;
al.[34] Q-learning densities  speed limit  collision Reduce
and speed TTT by
51%
Zhou et Q-learning RM Continuous; Discrete; Deviation CTM;
al.[37] with value densities ramp from desired
approximation and metering density density
demand rates value
maintained
Greguric Deep VSL Continuous; Discrete; Deviation VISSIM;
et al.[9] Q-learning densities speed from Improved
and limits critical average
previous density, speed by
limits difference 13% and
in limits, reduced
speed density by
oscillations 12%

Continued on next page
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Table 2-1: Summary of Reinforcement Learning papers for Freeway Traffic Control (Continued)

Wu et DDPG VSL Discrete; Discrete; TTT, SUMO;
al.[36] (Actor- (differential) occupancy speed average improved
Critic) rates limits velocity, congestion
emergency alleviation,
decelera- accident
tion and and
emission emission
reductions
Li et DDQN VSL Continuous; Discrete; Deviation ~ CTM(macro);
al.[19] demand  speed limit in density TTS
and reduced by
density 65%
Discrete;
one step
before
speed limit
Wang et Deep RM-VSL  Continuous; Discrete; Avg. SUMO-
al.[33] Actor- flow, speed speed, TCI, TTT
Critic density limit, queue reduced by
(DDPG and speed outflow length and 35%
and TD3) and phase delay

In table 2-4-2, all papers describe the freeway systems as Markov Decision Processes, on
which the RL algorithms are implemented. Thus the main RL components in each paper are
described as such to conform to this nomenclature, namely, as states, actions and rewards, so
on.

From the table, it is observed that the choices of state space are the states of freeway systems
(i.e., density, speed, queue length, and demands), while the choice for action space is the
control action that corresponds to the control strategy used in the referenced literature. The
definition of the reward function is done in conjunction with the control objective adopted
which mainly revolves around minimizing the total time spent (TTS) by the vehicles or
regulating the densities to maximize the outflow. Both macroscopic and microscopic(rarely)
simulators are considered to test the proposed algorithms. The results mentioned in the table
take into account the best improvements over the benchmark cases presented in each paper.

As for the reinforcement learning algorithms used in literature, from table 2-4-2 we see that
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Q-learning is the most used algorithm due to its relative simplicity and success in many
applications. The drawback of Q-learning is its finite dimension space which makes it perform
poorly when dimensions of state and action spaces increase. Due to this in most studies only
a small section of the freeway is considered and it also makes integration and coordination of
RM and VSL more challenging. Some papers try to mitigate this drawback by using multi-
agent Q-learning and function approximators for Q-values to handle continuous state spaces.
But this inturn increases the computational complexity of the algorithm and makes it more
challenging to implement.

The last three entries in table 2-4-2, showcase the usage of DRL techniques in freeway traffic
which can potentially deal with large state and action spaces and coordinate RM-VSL for
large scale freeway network. DRL techniques are divided into two categories, namely, value-
based and policy-based. Value-based methods inherit the idea of QQ-learning to approximate
the value functions for state-action pairs, one most well-known method of which is Deep Q-
Network. The main limitation of DQN [9, 19] is that it can only deal with discrete action space.
Policy-based methods search for an optimal policy directly that maximizes the expected
accumulative long-term reward. The actor-critic algorithms exploit the strengths of both
value-based and policy-based methods, where an actor determines how the agent behave and
a critic evaluates the chosen action.

As far as the application of reinforcement learning to integrate RM-VSL in freeway traffic
control goes presently the only literature that explicitly does this is presented in [33] which uses
both DDPG and TD3 algorithms. It is also shown that a centralized DRL agent can handle a
large freeway network with multiple and VSL-RM hybrid controllers. A comprehensive review
of related literature is also done in [33] which outlines the different DRL algorithms(TRPO,
A2C, 3DQN) used in earlier literature as reference.

The aim of listing both urban and freeway traffic control is to show the difference in approaches
to solving both problems and some similarities in the methodologies as well. Both problems
are described as Markov decision processes but the formulation differs. For urban traffic, signal
intersections are considered; whereas, for freeway traffic, sections of freeways with ramps and
variable message boards are considered. This creates an interesting overlap between urban
and freeway traffic which is the dependence on signal phases; at intersections for urban traffic
and at ramps for freeway traffic. Although the aim of both traffic control schemes is to
improve traffic flow, the methodology adopted differs due to the different conditions under
which traffic operates in urban and freeway settings. This also brings into the fold the topic of
interdependence of the two traffic control methods. The inclusion of both urban and freeway
traffic control is to highlight these nuances.

From the literature listed in the above table it is observed that none of the papers take into
account applying RL algorithms to deal with multiple traffic scenarios. In terms of algorithms,
it is seen that none of the literature applies SAC for both urban and freeway traffic control
although it has been shown to improve performance over Deep Q-learning, DDPG and TD3.
One of the drawbacks of the studies listed above is that the studies did not train the RL agent
in with continuous actions.
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Chapter 3

Combined RM-VSL using
Reinforcement Learning

3-1 Qutline of Problem Statement

In line with objectives listed in Section 1-3, the issue being tackled in this thesis is the appli-
cation of continuous actions to a simple freeway network created in Eclipse SUMO software
environment in order to control ramp metering and variable speed limits to improve the
overall state of the traffic network. Additionally, to aid in this improvement the Soft Actor
Critic algorithm will be applied for learning using Python which is an ideal choice due to its
stochastic nature which inherently promotes randomness in exploration, along with its entropy
regularization function which balances the trade-off between exploration and exploitation.

3-2 Proposed Methodology

The traffic network used for the simulations in the thesis was created in SUMO (Simulation
for Urban Mobility). The network created is a 2.5 km stretch of straight highway with a
single on-ramp. The aim was to keep the base network as simple as possible in order to
accommodate any adjustments needed down the line as the simulations were performed. The
reason for using SUMO was the simplicity in creating different types of networks and the
availability of better reference materials. The network created was influenced by the network
described in [33].

3-2-1 Network Description
The network is divided into 5 segments of 500 metres each with each segment consisting of
two lanes. The on ramp consists of 2 segments with one lane each of length 490 meters and

10 metres respectively. The traffic signal for the on-ramp is placed at the end of the first
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segment of the ramp, with the smaller segment acting as a buffer. Each lane on each segment
has lane area detectors for gathering lane information. Induction loop detectors are placed at
the origin, destination and upstream and downstream of the junction to measure inflow and
outflow for the network. The network also includes multi-entry /exit detectors at the origins
of the mainstream and the ramp and the destinations to monitor the number of vehicles along
the network.

[Variable Speed Sign| Default SUMO lane
777777777777 Wotkahl | T T T T width (2 lanes)
\\_,_\/x/ Ramp joins at 1.5km

10 m buffer applied In SUMO

500 m single lane ramp

Figure 3-1: Full Network

The cycle time for the traffic signal is set to 60 seconds per cycle by default, which means
that one change of the signal phase between red and green happens every 60 seconds. The
cycle time can be changed according to the requirements of the simulation. The traffic light
cycle time is of importance to set the initial traffic light logic within the network and to test
non-RL based control methods for efficacy.

Figure 3-2: Junction

The network also includes a variable speed limit sign on the segment immediately upstream
from the on-ramp. A fixed variable speed limit is placed on the last segment of the mainstream
which varies between 40 km /h and free-flow speed for a specific duration to mimic congestion.

3-2-2 Demand Profile

The demand profile is an extremely important part of the traffic network creation process.
This is due to the fact that the demand along the highway directly determines the effectiveness
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of learning for any reinforcement learning agent that is applied to control the traffic. If the
demand is too lenient, there would be no reason to apply any control strategies especially
complex ones like reinforcement learning as there may be nothing to learn. Conversely, if the
demand is too harsh, regardless of the applied control strategy there may be no good solution
to the problem.

Two demand profiles have been used in this report to showcase some of the obstacles encoun-
tered while demand modelling when trying to apply different control algorithms. One of the
demand profiles for the network used in the thesis was derived from the values described in
[33] and [30] while the other has a reduction in ramp demand compared to the former. The
demand profiles used for the simulations over 5000 seconds is:

Duration 0-500 s

500-1500 s

3500-5000 s

Mainstream Demand 1 | 4500 veh/hr

4500 veh/hr

1000 veh/hr

Ramp Demand 1 500 veh/hr

2500 veh/hr

500 veh/hr

Mainstream Demand 2 | 4500 veh/hr

4500 veh/hr

1000 veh/hr

Ramp Demand 2 500 veh/hr | 2000 veh/hr | 500 veh/hr
Table 3-1: Demand Profile
Network Demand Profile S7 (TTS-W)
— Main

500 —— Ramp

400
T 300 -
£
at

200

100 A

0 . /\/‘—_’—\——‘_._\- S —— S
0 1000 2000 3000 4000 5000
Time(s)

Figure 3-3: Demand Profile in SUMO

The demand profile for the mainstream is modelled in such a way that the demand remains
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constant until 3500 seconds and drops off slowly until 500 seconds. For the ramp, the demand
stays low until 500 seconds and then increases to a higher demand to cause some queues on
the ramp and congestion on the highway and then drop down low again after 1500 seconds.
This increase in on-ramp demand coincides with the decrease in speed limit sign on the last
segment in the network as mentioned in 3-2-1 to create congestion. It is also important
to mention that in this case the only vehicles included in this demand profile are regular
passenger vehicles,

3-3 Environment Setup

The environment setup for the traffic network was done by interfacing SUMO with Python
using TraCI. The basic setup of the reinforcement learning environment for the traffic net-
work was created with reference to the environment created in [1].The SUMO-RL[1] framework
provided a basis for implementing the proper interaction between SUMO and Python while
the environment characteristics were coded as per the requirements of the network and the
thesis.

3-3-1 Observation Space

The traffic environment created has an observation space with 22 states. They represent
the densities of each segment on the mainstream and ramp excluding the buffer segment
(6 states), the average speed of vehicles on all segments of the mainstream (5 states), the
waiting times/delay on each segment of the mainstream (5 states), the queue length on the
ramp, the waiting time on the ramp, total delay/waiting time on the network, the number
of vehicles in the queue and the inflow and outflow at the upstream and downstream of the
ramp respectively. The most important part of defining the observation space is to include
as much useful information as possible for the reinforcement learning agent. The definition of
useful information will vary based on the environment and with is the size of the observation
space.

3-3-2 Action Space

The action space for the environment in this case is a continuous action space with values
ranging from [0,1]. The size of the action space varies depending on the control method.
The size of the action space is just 1 action for only ramp metering, where the action value
represents the ramp metering rate for controlling the timings of each phase. To apply both
ramp metering and adjust the speed limits on one segment the action space size is 2 different
actions for ramp metering and variable speed limits with one action corresponding to ramp
metering rate and the speed limit adjustment on the two segments each.

3-3-3 Reward

The most important part of creating an environment for reinforcement learning is defining
the reward. The modelling of reward is not only important from the perspective of the
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environment but also for the reinforcement learning agents used in training. In this instance,
for both DDPG and SAC a common reward has been modelled to better understand and
compare performance of each agent.

The reward is modelled as a hybrid weighted sum of three different values, namely, the total
time spent on the network, the number of vehicles in the queue on ramp in metres and the
waiting time of the vehicles on the mainstream or delay. The values are calculated at each
step in the environment and assigned weights given to each value based on their importance.
The hybrid reward and weights assigned to each value are taken not only from literature [33],
but also from multiple simulations done on this particular environment.

For this environment, the combination of TTS, number of vehicles in queue and delay on
mainstream gave the best results out of all the tested rewards. The reason for that is that
the TTS gives all-round information regarding the traffic network but might ignore certain
behaviour. To help correct such behaviour, the delay on mainstream is included such that the
agent has information that while reducing the T'TS, the focus must also be placed on reducing
the congestion on mainstream thereby, reducing delays. Then, the number of vehicles in queue
was included in order to penalise poor agent behaviour on the ramp causing excessive queues
and jams. From the simulations, the highest weight was assigned to the delay and equal
weights were assigned to the TTS and number of vehicles in queue which gave the best
results along with all values being assigned the negative sign to minimize them.

The reward for DDPG and SAC is modelled as follows:

r = (wy x —TTS) + (wy x —Q) + (w3 x —W) (3-1)

where, wy = 0.4,ws = 0.3 & w3 = 0.3 and @ represents no. of vehicles in queue, W
represents waiting vehicles on mainstream and T7T'S represents total time spent by all vehicles
on the network.

3-3-4 Important Features in SUMO Traffic Environment

There are some important characteristics of the traffic environment that are important to
define correctly for the simulations to work as intended.

Action Time

The action time, in this case, delta time represents the frequency with which an action is
taken. In this traffic environment, the action time is set to 60 seconds for the ramp metering
action as it is directly dependent on the action time in order to change the signal phases
within a given cycle.

The variable speed limit actions are ideally independent of the action time and modelled
as such in this environment as they need to be adjusted w.r.t the traffic conditions on the
mainstream that are influenced by the demand, ramp conditions and actions performed on
the ramp. In such a case, the frequency of the variable speed limit input will still be the same
as the ramp metering input but can change independent of the 60 second cycle.
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reset Function

The formulation of the reset function is important to the environment in order to set
the initial states for each simulation that is performed. Additionally, this function outputs
auxiliary information that is analogous to the information output by the step function
described in the following subsection.

It is essential to define the function correctly, as poor definitions can cause logical errors, in-
consistent object states, or unexpected behaviour due to wrong initial states and observations
for the environment.

step Function

Defining the step function correctly for the user environment is important as this controls
the changes taking place in the environment in each step of the simulation. Although the
application is relatively straightforward, the definition depends on the environment that is
created along with how and when the actions are supposed to be taken. The information
that needs to be extracted for plotting figures or to display the end results are also described
within this function.

In this thesis, for the traffic environment, the actions first needed to be brought into values
usable for the SUMO network from another function and separated based on time of appli-
cation. The ramp metering action takes place once every 60 seconds as shown in Section
3-3-4 since for this particular environment the sum of the red and green phases is 60. The
actions for variable speed limits are independent of the action time and act as required by
the changing states within the environment. Once these are established the calculation of the
reward, collection of general information related to the environment, setting the termination
condition and collecting specific simulation and result oriented information are described as
per user requirements within the step function. In the following section, the important for-
mulae and commands used to run the simulation will be described for ease of interpretation
and understanding.

3-3-5 Commands and Functions

In this section, the various commands used to extract information from SUMO using the
TraCl interface will be outlined along with the relevant formulae used to calculate traffic
metrics along with their units.

The table 3-2 describes the formulae used to calculate relevant metrics for the reward as well
as observations.
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3600

Metric Formula Unit
Density Nl“—ﬁe" veh/m
Quete Vehicles No. of vehicles in queue on veh

the ramp
Waiting  Vehicles on | No.of vehicles waiting/de- veh
Mainstream(Reward) layed on the mainstream

4 .

TTS 2 ig(pixlexte) +(pr Xlr xto) hours

Table 3-2: Formulae

For the TTS formula, p; & p, represents the density on each segment in the mainstream and
the ramp respectively, [. and [, represents the length of the mainstream and ramp segments,
and t. represents the cycle time. The TTS is calculated at every cycle and given to the reward
signal as a summation across all cycle times.

The table 3-3 details the various commands used to extract data from the simulation envi-

ronment.
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Value TraCI Command Detail

No. Of Vehicles getLastStepVehicleNumber | Returns the number of
vehicles on the edge or
lane

Halted Vehicles getLastStepHaltingNumber | Returns the number of
vehicles halted on lane
or edge

Waiting Time getWaitingTime Returns the time each
vehicle waits on a lane
or edge

Mean Speed getLastStepMeanSpeed Returns the mean speed
of all vehicles on an edge
or lane

Accumulated getAccumulatedWaitingTime | Returns the total wait-
Waiting Time ing time for all vehicles
in the network

Occupancy getLastStepOccupancy Returns the percentage
of space occupied by a
vehicle on the detector

Table 3-3: TraCl Value Retrieval

3-4 Reinforcement Learning Agent Setup

In this thesis, two reinforcement learning agents are tested to improve traffic conditions:
DDPG and SAC. There have already been several papers that have implemented DDPG and
TD3 for traffic control problems but there has not been much literature in regards to SAC.

3-4-1 RL Agents

The implementation that is used for the purpose of this thesis is taken from the stable-
baselines3 package. The implementation applied for DDPG is derived from [21] and
for SAC is derived from [10]. The sb3 agents are used due to the ease of application to
various problems and clear documentation on recording of agent information. The tuning of
hyperparameters is also relatively straightforward as it can be done directly and does not need
to alter anything internally within the implementation. The way the agents are implemented
also leaves room to directly alter more complex and intricate hyperparameters such as neural
network size, activation functions, optimizers, etc.
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Chapter 4

Simulations and Results

The training and simulations for this thesis were all done on the TU Delft High Performance
Computing centre’s supercomputer, DelftBlue. The results and plots in this section will
show the baselines used for comparison of the models, the relevant information regarding the
each simulated agent environment, and comparison metrics across the different untrained and
trained environments. Sections 4-1, 4-2, and 4-3 detail the individual plots for the various
control methods. It should be noted that the above plots and metrics are using the default
seed of SUMO and are singular simulation values. The last section 4-4 will detail the various
metrics compared for all control methods and the final values for all methods.

4-1 Baseline

Comparing the results obtained from different control methods is important in order to gauge
the improvement and feasibility of newer and/or more complex methods. Without such
baselines, it would not be possible to determine if newer methods are sustainable in the long
term. To that extent, in literature there seems to be a divide among what is considered
baseline for traffic simulations.

4-1-1 No Control vs Fixed Time Control

In general, the baseline values would be taken from the no control case, i.e., the case where
the ramp traffic lights are always green and there are no limits on the speed on the high-
way. This can be considered standard for most traffic scenarios like those modelled using
METANET(16] or Flow[35] but when it comes to using external software to model traffic
scenarios like SUMO|[22] there can be certain exceptions.

Taking the case of [33] and [36] which both use SUMO to simulate traffic scenarios, the
baselines used in the two papers differ, such that in the former fixed time control is used
as a baseline and in the later no control is used as the baseline. It is to be noted that in
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[33], the control method is combined RM-VSL whereas in [36] the control method is just
VSL. Although no clear argument is given especially in the former regarding the choice of
the baselines, after using and running multiple simulations for this thesis, the reason is the
inherent behaviour of the software itself.

In case of any control method which includes ramp metering, no control seems to give the
best results due to the inherent nature of the software to give priority to the vehicles at the
ramp junction more than the vehicles upstream on the network. This sacrifices the average
speed and certain amount of congestion to seemingly improve the overall throughput giving
better T'TS values. This means that regardless of the control method applied as soon as there
are changes to the signal phases at the ramp the TTS values will increase but the overall
network condition may be much smoother which may not be reflected in the TTS value.
On the other hand, when it comes to purely VSL without any direct influence from ramp
traffic signals, no control seems to be an appropriate choice since there is no priority given
to specific vehicles on the mainstream of the highway. Thus, any adjustments to speed limits
using any control method at appropriate segments of the highway will only result in better
results overall since speed changes for the vehicles in the no control case will be more extreme
comparatively. Taking into account these issues, the baseline for comparing combined RM-
VSL control methods is chosen to be fixed time control wherein, the phase change for the
signals is a constant 30 seconds of red and green in a complete 60 second cycle. But the
values for no control case are also shown to elicit performance related analysis for the RL
algorithms. The values and plot for no control and fixed time control are shown below:

Table 4-1: Values No Control

Total Delay(s) (SAC-RM-VSL)

Metrics Values Metrics Values

Queue Length (m) 1654 Queue Length (m) 14773.5
Delay on Ramp (s) 549 Delay on Ramp (s) 47850
Average Speed (m/s) 13.48 Average Speed (m/s) 12.75

Total Delay on Mainstream (s) 505848 Total Delay on Mainstream (s) 605629
TTS (h) 425 TTS (h) 460

Table 4-2: Values FTC

Queue Length(m) (SAC-RM-VSL)
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Figure 4-1: Metrics for No Control
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Figure 4-2: Metrics for Fixed Time Control

From the above table and figure we see that fixed time control is not a great control method for
this scenario. Although it provides some form of control the overall metrics and behaviour of
the network are not ideal. This is taken as the baseline for comparison with other algorithms.

4-2 ALINEA

In order to evaluate the effectiveness of the reinforcement learning algorithms, ALINEA [25]
was deployed on the same environment as a benchmark for a good control method for ramp
metering and to also test the correctness of the applied demand profile. This verification is
an important step as it can determine whether the demand profile set for the network created
is either too harsh to control, to lax to need any control or just enough for a basic algorithm
like ALINEA to show some improvement.

In this scenario, the ALINEA algorithm controls the ramp metering rate of the ramp traffic
signal instead of the flow across the ramp. The equation used for ramp metering rate control
is shown below:

my =1—K(pg — pu) (4-1)

where K is the gain, p, is the desired density and p,, is the density of the segment upstream
of the ramp. The ramp metering rate r is then converted into the signal phase timings by
linear approximation as shown below:

tg =m, X t. (4-2)

where ¢, is the green time of the signal and ¢, is the cycle time of 60 seconds. The gain K
is set 100 to accommodate the density units which is veh/m in this case compared to the
general veh/km.

The values and plots related to ALINEA control for two different demands, one with higher
ramp demand and one with lower, are shown below:
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Metrics Values
Metrics Values
Queue Length (m) 15669
Queue Length (m) 19174
Delay on Ramp (s) 392061
Delay on Ramp (s) 598003
Average Speed (m/s) 22.69
Average Speed (m/s) 18.36
Total Delay on Mainstream (s) 345462
Total Delay on Mainstream (s) 434328
TTS (h) 222
TTS (h) 345

Table 4-3: Values ALINEA
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Figure 4-6: ALINEA Ramp Rate for Lower Demand

From the figures we observe that with a small change to the ramp demand, i.e., a reduction of
500 veh/hr during congestion from 2500 veh/hr to 2000 veh/hr, there is a marked difference
in control when using ALINEA. The ALINEA algorithm works well for the latter but not
the former with the same gain K = 100 and desired density pges = 0.04. Here the density
values are in veh/m and not veh/km to match the output from the environment. But the RL
algorithms in the following sections have been applied to the scenario with higher demand as
there was no improvement for the RL algorithms observed with the lower demand even after
multiple simulations with various hyperparameters. The choice of demand profile in traffic
control will also be discussed in section 5.

4-3 Reinforcement Learning

When applying reinforcement learning, in case of ramp metering, the action between [0, 1] is
converted to the green time for the phase using simple linear approximation as shown below:
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tg = Qrm X (tc - tmin) + tmin (4_3)

where ¢, is the green time of the signal, ¢, is the cycle time of 60 seconds, t,,;, < 5 is a
minimum integer value given to the signal to avoid issues with having 0 seconds as the green
time during simulation and a is the action taken by the model.

For the combined RM-VSL control in addition to the above shown ramp metering conversion,
the action controlling variable speed limits is also similarly converted to the required value
using linear approximation as shown below:

Ulim = Qysl X Ud + Umin (4-4)

where vy, is the speed limit, vy, > 11.11m/s is the minimum speed that should be main-
tained along the highway, vy is the difference between the vy,4, = 33.33m/s(in this scenario)
and the v,,;, and a is the action taken by the agent. This precaution is again taken so as
to prevent a situation of setting 0 speed limit for any duration of time to prevent unwanted
congestions. This is a more pro-active method.

4-3-1 DDPG

In this section the metrics related to the DDPG control for both RM and combined RM-VSL
are presented. The figures and values for RM with DDPG for single simulation with default
SUMO settings are given below:

RM

The values and plots related to RM control using DDPG are shown below:

Metrics Values
Queue Length (m) 1638
Delay on Ramp (s) 555

Average Speed (m/s) 13.17

Total Delay on Mainstream (s) 516248

TTS (h) 431

Table 4-5: Results DDPG (RM)
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Figure 4-8: Control Input for DDPG (RM)

From the above, table and figures we see an improvement in queue length and ramp de-
lay compared to FTC and ALINEA as expected from an algorithm focused on controlling
the ramp metering rate. There is also an improvement in the TTS compared to FTC and

ALINEA.

Combined RM-VSL

The values and plots related to combined RM-VSL control using DDPG are shown below:

Metrics Values
Queue Length 1674
Delay on Ramp (s) 559
Average Speed (m/s) 13.28

Total Delay on Mainstream (s) 507748

TTS (h) 427

Table 4-6: Results DDPG (RM-VSL)
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The effect of adding VSL is seen in the reduction in delay on the mainstream with a slight
improvement to the average speed of vehicles on the network as seen from tables 4-6 and 4-5.

From fig. 4-8, the control input is similar to the no-control case with the value being constant
but slightly below the all green value of 1. Similarly, in fig. 4-10, the control inputs actually
overlap each other for both actions and are held at a constant value through the episode.
This shows that the learned policy is quite poor such that it is unable to handle even two
different actions in a way that they can be even controlled independently and is unable to
match the no control results.

4-3-2 SAC
RM

The values and plots related to RM control using SAC are shown in table 4-7 and fig. 4-11:
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Metrics Values
Queue Length 1699
Delay on Ramp (s) 619
Average Speed (m/s) 13.25

Total Delay on Mainstream (s) 511162

TTS (h) 424

Table 4-7: Results SAC(RM)

Total Delay(s) (SAC-RM) Queue Length(m) (SAC-RM)

15000

10000

Queue Length
5
5

5000

Accumulated Waiting Time

o
o

] 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000
Timesteps Timesteps

Density(veh/m) (SAC-RM) Average Speed(m/s) (SAC-RM)

X — E0

;g il /\u/\w/
] V |

— 7

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Timesteps Timesteps

Figure 4-11: Metrics for SAC (RM)
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Figure 4-12: Control Inputs for SAC (RM)

The figure 4-12 shows a constant ramp metering rate across one entire episode slightly below
the value of 1 which would be the no control case. Thus the policy is unable to learn proper
values for control input according to varying traffic conditions and performs overall slightly
worse than the no control case. The results and figure for ramp metering control using SAC
show marginal improvements when compared to the ramp metering control using DDPG and
is comparable to the performance of combined control using DDPG. As expected the queue
length metric is slightly better due to the focus on ramp metering.
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Combined RM-VSL

The values and plots related to combined RM-VSL control using SAC are shown in table 4-8
and fig 4-13:

Metrics Values
Queue Length 1692
Delay on Ramp (s) 543
Average Speed (m/s) 13.57

Total Delay on Mainstream (s) 500421

TTS (h) 420

Table 4-8: Results SAC (RM-VSL)
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Figure 4-13: Metrics for SAC (RM-VSL)
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Figure 4-14: Control Inputs for SAC (RM-VSL)

From figure 4-14, we see that the policy learnt by the agent holds both control inputs at
a constant value through the entire episode and achieves a balance of reward metrics with
such a strategy for this environment. This is analogous to the no-control case (all actions
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are set to 1) which is not a good learned policy. Combined RM-VSL control can be seen
to show marginal improvements over all previous control methods with slight deviations and
the overall metrics of the network have been improved across the board including the TTS.
But from the control inputs obtained along with the fact that it is unable to significantly
outperform the no control case, we can conclude that the algorithm does not perform too well
in this scenario.

4-4 Comparison and Final Results

In this section, some of the metrics will be compared across the different control methods are
shown. The first set of plots shown are the learning curves for each of the different agents.

The following table shows the basic hyperparameters that were used to get the results shown
in Section 4-3 and Section 4-4:

Hyperparamters DDPG DDPG SAC SAC
(RM) (RM-VSL) (RM) (RM-VSL)
Learning Rate 0.0005 0.0005 0.003 0.003
vy 0.999 0.999 0.99 0.99
T 0.00099 0.00099 0.005 0.005
Buffer Size 10° 10° 10° 10°
Batch Size 336 336 256 256
Action Noise Ou(0,0.3) | ©OU(0,0.3) | OU(0,0.3) | OU(0,0.3)
Entropy Coefficient N/A N/A Auto Auto

Table 4-9: Hyper-parameters for RL Agent Training

It is to be noted that the action noise used to promote exploration of policies in both agents is
the Ornstein-Uhlenbeck Noise with ¢ = 0 and o = 0.3. These values were set after checking
the performance of the agents with lower values of o which gave poorer performance and
higher values of ¢ which showed no particular improvement either in stability or learning
performance.
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Plots with learning curve over 300 episodes are depicted in figs. 4-15a- 4-16b. The SUMO
seed was set to random for each episode of the training in order to show robustness of RL
algorithms. From the plots, only figs. 4-15b, 4-16a, 4-16b show some robustness with im-
provements in training over 300 episodes.
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Figure 4-15: DDPG Learning Curves

SAC-RM (WR) SAC (WR)

77777

rrrrr
777777

77777

77777

777777

rrrrr

,,,,,

gggggggggggggggg

(a) RM (b) RM-VSL

Figure 4-16: SAC Learning Curves

From figure 4-15a, we observe that there is no upward trend or improvement in the overall
learning curve. This is possibly due to the algorithm finding a certain policy deemed to
be adequate in the first few episodes and then applying the policy on future episodes that
have the same demand but small changes in vehicle generation and position values caused by
SUMO seed set to random.

As noted above, the bottom three figures show a gradual trend of improvement with all the
final values for the reward being very close. From the tables and figures in section 4-3 we
observe that the metrics are also consequently close for a single simulation run of the trained
agents. The figures 4-17, 4-18, 4-19, and 4-20 depict the values represented as box-plots over
300 iterations for random seeds for the SUMO software different from training. The seed
values in the SUMO software control the randomness and spread of the vehicles entering the
traffic network without changing the demand.
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TTS Values over 300 Iterations
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The following table shows are the representative median values for the above iterations with
learned agents along with the average values for the no control case simulated separately:

Metrics
TTS (h) Total Delay Avg. Speed | Queue Length | Reward
Model
Mainstream (s) (m/s) (m) (Single)
NC 429 506413 13.18 1664 -1491
FTC 462 635080 12.65 14763 -2156
ALINEA 352 452268 18.08 19743 -1670
DDPG(RM) 437 516265 13.15 1633 -1469
DDPG(RM-VSL) 433 515381 13.45 1638 -1475
SAC(RM) 440 515874 13.17 1635 -1490
SAC(RM-VSL) 433 508926 13.35 1640 -1481

Table 4-10: Final Values over 300 lterations

The values in table 4-10 represent the average values of the metrics with the learned applied
to the environment shown in figs. 4-17 - 4-20 along with the reward value for the simulation
run depicted by figs. 4-2 - 4-13.

The average weighted reward values for the learned algorithm on testing have also been
included in the table. These were added in order to show that with weighted rewards the
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performance of the algorithm depends on the different values used in the reward. The improve-
ment of one value does not necessarily guarantee an overall improvement in the environment
simulation as is the case in the results marked with DDPG-U. In fact, although there is a
significant reduction in the total time spent for those two simulations the queue length blows
up and that is reflected in the final rewards values which are closer to the baselines with very
little improvement.

In case of the DDPG and SAC simulations, it is observed that optimizing or improving the
queue length is very slightly favoured in the purely RM case compared to the combined RM-
VSL case. This is expected since the actions taken on the RM case only directly control the
ramp signal timings and only indirectly affect the mainstream which in turn favours ramp
related metrics. In case of RM-VSL case, while sacrificing a little improvement in queue
length, the average speed, total delay and T'TS are simultaneously improved compared to the
used baselines but still behind the no control scenario.

Additionally, it is observed in this case that the SAC algorithm shows reduced returns in
certain cases for the traffic network. This is attributed to the fact that in the case of this
work the overall complexity of the traffic network is too low for SAC to learn. But this in
turn shows promise that even with limiting factors the learning was comparable to simpler
algorithms like DDPG and holds much more promise for higher dimensional action spaces
with more ramps and speed limits along with more nuanced applications like autonomous
vehicles in traffic.

The following figures show the single simulation comparisons of metrics. These simulations
were done using the same method mentioned in Section 4-3.

Average Speed

— FTC
25 ALINEA
—— DDPG (RM)

—— DDPG (RM-VSL)
—— SAC (RM)
20 —— SAC (RM-VSL)

Average Speed

0 20 40 60 80
Time Step

Figure 4-21: Average Speed across the Network
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Figure 4-23: Queue Vehicles on the Ramp

The above figures show the single simulation progression in metrics for each of the control
methods for one episode. A critical analysis of the merits and failures of the applied methods
will be presented in Section 5.
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Chapter 5

Conclusion

In this thesis, a simple framework for testing the Soft Actor Critic algorithm on traffic net-
works is proposed. Multiple simulations are performed using different control methods and
algorithms on the given network and attempted to check the efficacy of the SAC algorithm in
traffic control applications. The results show that in general SAC performs better than other
control algorithms and when compared to DDPG for continuous actions SAC indeed is much
better. However, certain observations have been made which will be detailed in Section 5-1.

5-1 Summary of Results

From the simulation results, it is observed that for TTS, SAC with combined RM-VSL
achieves a 6.5% improvement over Fixed Time Control, a 9.8% improvement over ALINEA,
and a 2% improvement over DDPG(RM), and SAC(RM) while matching the auto optimized
results of DDPG(RM-VSL). It is to be noted that the improvement in ALINEA is calculated
using the weighted reward since the other values are too extreme and show poor control for
the given demand.

An observation regarding the use of hybrid sum of weighted values as the reward is that in
this thesis having a better learning curve did not always equate to better performance on
applying the model for testing. This observation was made when applying certain learned
agents to the environment for testing and extracting the metrics from the simulations. Such
curves might favour certain values within the reward function and tend to minimize those
while neglecting the other values which might show up as good learning but lead to poor
performance.

Another observation to note are the metrics and plots marked with suffix U for DDPG are
simulated with the same hyperparameters as SAC to highlight the ease of manual hyperpa-
rameter selection for SAC compared to DDPG in case of a traffic scenario with continuous
action space. The optimized version of DDPG was run over several days with quite narrow
ranges for each hyperparameter in order to elicit the results displayed in the thesis. The
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effectiveness of SAC will increase with an increase in complexity of the environment and of
action spaces such that diverse and multiple actions can be accommodated.

In traffic simulations using SUMO with control using Python, there are two cases of random-
ness that need to be taken into account. One is inherently from the SUMO software which
can be overcome by doing all simulations on a single seed value. The second comes from the
RL algorithms within Python. In the case of this thesis, the simulations were done only using
a single seed for RL algorithms, due to length of simulations, multiple algorithms to be tested
and availability of slots in the TU Delft Supercomputer. The difference in seed values or
randomness in the RL algorithms manifests in the way of differing starting points for policy
selection and action selection and can affect exploration inturn affecting the training process.

The constant control input values even after sensitivity analysis/hyperparameter tuning show
that the policies being learnt by the RL agents are being limited by the environment definition
and the traffic scenario. The policy being learnt is similar to the no control case and although
this shows that the agent learns from the trend in the traffic scenario, it also shows that the
agent is unable to provide any significant improvement from the no control case. A detailed
analysis of the possible causes is discussed in section 5-2.

5-2 Analysis of Results

5-2-1 Reward Function

The figures 4-15a- 4-16b in section 4-4 show that the learning for DDPG and SAC is quite
unstable with reward values fluctuating heavily throughout the learning duration. SAC still
is slightly better with an upward trend after 100 episodes but still not smooth. This is due
to the flawed definition of the reward function. The reward function described in equation
3-1 uses the total time spent, vehicles in queue and in mainstream. Although the reward
specifically penalizes an overall inefficiency in the network it may be too delayed and sparse
causing training instability since:

o Total time spent is a delayed reward as it can be accurately predicted only at the end
of each episode. This means that actions taken early on in the simulation, when the
values are collected over each cycle time, may not have any significant feedback.

o Conversely, waiting vehicles on mainstream and queue vehicles are more immediate
rewards but have a tendency to be noisy.

e The difference in reward timings can cause reward sparsity which could in turn cause
the degradation in gradients while learning causing it to stall.

5-2-2 Continuous Control

The action space defined is continuous, i.e., it can take on any values within a given range (][0,
1] in the case of this environment). It is in the nature of such an action space to be inherently
noisy which can cause erratic signals for both variable speed limits and ramp metering in turn
leading to poor selection of actions even for learned agents leading to:
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1. Shockwaves
2. Ramp overloading

3. Destabilize mainline flow

But the lack of action noise can lead to a standstill in learning for the RL agents since it
might prevent proper exploration.

The network structure and the consequent information provided to the observation space in
this work for such a complex and noisy environment might have been lacking even though the
metrics for all segments were input individually as well as for the network as a whole, i.e., to
have both local and global network information to process states and actions.

5-2-3 Conflict between Objectives

The use of a single RL agent to control two objectives could have lead to conflict between
the ramp metering and variable speed limit and ramp metering objectives resulting in an
inability to learn coordinated policies. From the results, it can be deduced that in many cases
the objectives are indeed clashing with each other causing not only the unstable learning
curves with volatile rewards but also a lack in hierarchy while learning with the RL agents.

5-2-4 Demand Modelling

As seen in section 4-2, demand modelling is also an important aspect of traffic control. When
working with virtual scenarios, it is important to create a demand sufficiently harsh to justify
the needs for control algorithms but also not unrealistically harsh that nothing may work.
The section 4-2 perfectly shows that in certain cases just simple control like ALINEA is more
than sufficient without the need for complex RL control methods but in some cases ALINEA
is not able to adapt at all with a slight increase in demand.

5-2-5 RL Agent and SUMO Limitations

The use of predefined RL agents from Python libraries also played a part in poor training
performance as the modularity was much lower compared to self defined RL agents. This lead
to a set path of defining the RL agents and tuning of hyperparameters to in order to improve
performance. Some other limitations are as follows:

e DDPG relied on noise based exploration which caused instability in learning as seen in
section 4-4

e Poor ability to tune entropy in SAC and rely on the predefined agent decreased the
overall performance of the SAC agent

¢ Vehicle behaviour prediction within SUMO along with randomness in vehicle generation
although addressed still caused instability in the simulations especially when assessing
ALINEA control.
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DDPG and SAC perform marginally better than baseline control cases but worse than the no
control case due to a combination of the reasons mentioned in section 5-2. Although, model-
free agents such as DDPG and SAC are adaptable, the simple application to a complex
environment lead to degraded performance in this case.

Keeping in mind the above considerations and looking at the results under these constraints,
it can be said that SAC can be a better option compared to DDPG for freeway traffic control
especially with continuous actions. The improvements to the models compared to the baselines
are lower than expected from the initial idea for the work and still worse than no control
scenario, thus it cannot be considered a complete success but it does show that SAC can
perform better with continuous actions and has the potential to perform even better with
minor adjustments compared to DDPG. This can be used to manage traffic across multiple
sections and intersections using a single algorithm with real time data. To that extent, the
following chapter 6 lists the adjustments that can be made to the methodology used in this
work to improve the results for potential future implementations.
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Chapter 6

Further Work

After reviewing the work done in this thesis, there is definitely room for growth and improve-
ment in the direction of application of reinforcement learning algorithms to highway traffic
problems. This thesis has already demonstrated the viability of using continuous actions in
order to control the ramp traffic signals and variable speed limits.

First, with an improvement in the understanding of the reinforcement learning algorithms,
user coded algorithms that mimic DDPG, TD3 and SAC can be deployed with wider fine
tuning options for hyperparameters such as:

¢ Independent learning rates for actor and critic networks to improve learning and stability
and handle delayed rewards

e Implementing wider range of combinations of activation functions and optimizers
e Adjusting the size and structure of the neural networks for both actor and critic
e For SAC, create an efficient entropy tuning function for exploration

e Creating provisions to improve data collection and plotting such as episode wise itera-
tion, multiple random seed iterations, displaying model data along with output to log
simulations with ease.

Second, prioritize reward shaping by choosing appropriate combination of signals to build
hybrid rewards. For rewards with different units, reward normalization should be applied to
better equip the RL agents in training. Account for delayed and immediate rewards if they
are combined by using a function to accumulate immediate rewards and delay their effect on
the reward to prevent reward sparsity.

Third, based on the understanding of the simulation software and user defined environment,
the observation space can be expanded to its smallest bits by recording values for every lane
including density, inflow, outflow and any information that the user deems relevant to their
application.
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58 Further Work

Fourth, adjusting the network structure to reduce segment lengths to improve the frequency
and volume at which data is collected. This can bridge the gap between the actor and critic
updates by giving more information to the state to apply better actions.

Lastly, multi agent reinforcement learning to coordinate different objectives can be imple-
mented especially with continuous control to mitigate conflicts between tasks and better
handle the noisy actions.

With the right tools and advancing technology in the machine learning field, the above sug-
gestions might only be years away from being put into practical application.
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Appendix A

The algorithms in Appendix A correspond to the reinforcement learning models described in
2. Basic algorithms along with some augmented algorithms and variations are also described.
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A-1 DDPG

Algorithm 1 DDPG Algorithm

Randomly initialize critic network Q(s,a|f%) and actor p(s|0?) with weights 6% and 6
Initialize target network Q" and p' with weights GQ/ — 69, ,qu T
Initialize replay buffer R
for episode = 1, M do
Initialize random process N for process exploration
Receive initial observation state sp
fort =1, T do
Select action a; = pu(s¢|0" + Ny according to current policy and exploration noise
Execute action a; and observe reward r; and observe new state s¢41
Store transition (s, at, ¢, S¢4+1) in R
Sample a random minibatch of N transitions (s;, a;,r;, Si+1) from R

Set y; =1 + Q' (Sz‘+1,// (Si—i-l \ 9“/) | 9Q/>

Update the critic by minimizing the loss:L = % > (yZ - Q (s,-, a; | GQ))2

Update actor policy using sampled policy gradient:
Voul = § DiVaQ (50 169)| o Voun(s)] 9*‘)\
09 79 + (1 - 7)89
O 0" + (1 — 7)o"

Si
Update the target networks:

end for
end for
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A-2 TD3

Algorithm 2 TD3 Algorithm

Initialize critic networks Qy,, Qg, and actor network 7y with random parameters 61, 02
and ¢.
Initialize target networks 0/1 +— 01, 9/2 6y and ¢ + ¢.
Initialize replay buffer B.
fort =1, T do
Select action with exploration noise a ~ 7(s) + €, € ~ N (0,0) and observe reward r and
new stat s .
Store transition tuple (s, a,r, s/) in B
Sample mini batch of N transitions (s, a,r, s ) from B
a<my (') +€ €~clipN(0,5),—c,c)
y < 1+ ymini—12 Qg (s, a)
Update critics 6; < argminy, N1 (y — Q, (s, a))2
if t mod d then
Update ¢ by the deterministic policy gradient:

Ve (¢) = N~ ZVaQel(Sya)’af . Vs (s)

=g (s)
Update target networks:
0; < 76, + (1 — 7)0;
end if

end for
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A-3 SAC

Algorithm 3 SAC Algorithm

Require: The learning rates A\;, A, Ay for the functions 7y, Q., Vi respectively; weighting
factor 7 for exponential moving average
Initialize parameters 6, w, ¥ and ¥
for each iteration do
for each environment do

ay ~ mo(a|st)

St41 ~ pr(s —t+ 1s¢, ar)

D < DU sy, ap,r(s¢, ag, Sg41

for each gradient step update do
Y <Y — AvVydv(¥)
w4 w — AQVyJg(w)
00— X\:VoJ:(0)
YpeTh—(1-7)9

end for

end for
end for
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Appendix B

B-1 Lemmal

Lemma 1 (Soft Policy Evaluation). Consider the soft Bellman backup operator 7™ in
Equation 2-21 and a mapping Q° : S x A — R with | 4| < oo, and define Q¥T! = T™Q*.
Then the sequence Q* will converge to the soft Q-value of m as k — co.

Proof. Define the entropy augmented reward as 7 (3¢, a¢) = 7 (8¢, a) +Eg,, op [H (7 (- | S141))]
and rewrite the update rule as,

Q (st,ar) < 7x (st,at) + VEs,y y~payi~or [Q (St41, At41))] (B-1)

and apply the standard convergence results for policy evaluation [31]. The assumption |A| <
oo is required to guarantee that the entropy augmented reward is bounded.

B-2 Lemma 2

Lemma 2 (Soft Policy Improvement) Let 7,4 € II and let 7,y be the optimizer of the
optimization problem defined in Equation . Then Q™ev (s, a;) > Q™4 (s, a;) for all (s, a;) €
S x A with |A] < cc.

Proof. Let myq € 11 and let Q™4 and V™ld bhe the corresponding soft state-action value and
soft state value, and let 7., be defined as,

Tuew (+ | st) = arg min Dicr, (7' (- | s¢) | exp (@7 (st,+) —log 2™ (s1)))
e , (B-2)
= arg min Jr, (' (- | 5t))

It must be the case that, Jr_ , (Tnew (- | 8t)) < Jry (Told (- | St)), since we can always chose
Tnew = Tolg € 11. Hence,
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Eainrpew 108 Tnew (at | 8t) — Q™ (8¢, ar) + log Z7™! (st)] <Eaynr,yllog mora(as | st)
— Q™' (s, a;) + log Z™ (sy)]
(B-3)
and since partition function Z™d depends only on the state, the inequality reduces to,

Eaymrmpew (@™ (St;at) —10g Tnew (ag | s¢)] > V™14 (sy) (B-4)

Next, consider the soft Bellman equation:

Q™ (s,as) =7 (s, a¢) +VEs, o, [V (s¢41)]
<r (Stv at) + 7E5t+1~p [Eat+lN7T11ew [QWOM (St+1, at+1) - 10g Tnew (at-‘rl | SH—I)H

< Q™™ (sy,ay)
(B-5)

where we have repeatedly expanded Q™! on the RHS by applying the soft Bellman equation
and the bound in Equation B-4 . Convergence to Q™ follows from Lemma 1.

B-3 Theorem 1

Theorem 1 (Soft Policy Iteration). Repeated application of soft policy evaluation and soft
policy improvement to any minIl converges to a policy 7* such thatQ™ ( sy, a¢) > QT (s¢,a¢)
for all 7 € IT and (s¢,a¢) € S x A, assuming |A| < oo.

Proof. Let m; be the policy at iteration i. By Lemma 2, the sequence Q™ is monotonically
increasing. Since Q™ is bounded above for winll (both the reward and entropy are bounded),
the sequence converges to some 7*. We still need to show that 7* is indeed optimal. At
convergence, it must be case thatJr (7% (- | s)) < Jrs (7 (- | 5¢)) for all 7 € II, m # 7*. Using
the same iterative argument as in the proof of Lemma 2, we getQ™ (s;,a;) > Q™ (s;, a;) for
all (s¢,a;) € S x A, that is, the soft value of any other policy in II is lower than that of the
converged policy. Hence 7* is optimal in II.
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