

Delft University of Technology

Variants of the min-sum link-disjoint paths problem

Beshir, AA; Kuipers, FA

Publication date
2009
Document Version
Accepted author manuscript
Published in
Proceedings of the 16th annual symposium on communications and vehicular technology in the benelux

Citation (APA)
Beshir, AA., & Kuipers, FA. (2009). Variants of the min-sum link-disjoint paths problem. In s.n. (Ed.),
Proceedings of the 16th annual symposium on communications and vehicular technology in the benelux
(pp. 1-6)

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

1

Variants of the Min-Sum Link-Disjoint
Paths Problem

Anteneh Beshir and Fernando Kuipers

Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands

Email:{A.A.Beshir, F.A.Kuipers}@tudelft.nl

A survivable connection usually requires computing link-disjoint primary and backup
paths. Finding a min-sum pair of link-disjoint paths whose total cost is minimized
can be solved in polynomial time. However, adding extra requirements may render
the problem NP-complete. In this paper, we study different variants of the min-sum
link-disjoint paths problem. We examine the complexity of these problem variants
and provide exact and heuristic algorithms for them.

1 Introduction

In networks, such as optical networks, that transport a tremendous amount of traffic,
survivability, which is the ability to recover from failures, is indispensable. In order
to prevent single-link failures, which are the most prevalent types of failures, it
is necessary to establish connections on link-disjoint primary and backup paths
between the source and destination nodes. The primary path is used during normal
operations, while the backup path takes over during the failure of the primary path.
There can be several objectives associated with finding link-disjoint paths. The most
common and simpler one is the min-sum link-disjoint paths problem, which is finding
a pair of link-disjoint paths whose combined cost is minimized. Depending on how
frequently failures occur on the primary path, it may be desirable to minimize the
cost of the primary (shorter) path (min-min problem) [7] or the backup (longer)
path (min-max problem) [4]. In constrained routing, the costs or bandwidths of the
primary and backup paths need to be bounded [3]. In load balancing, it may be
necessary to find a pair of paths with the largest residual bandwidth so that heavily
loaded links are avoided (shortest-widest problem) [5].
Among the aforementioned objectives, only the min-sum [6] and the shortest-widest
[5] problems are polynomially solvable, while the others are NP-complete. We will
investigate whether we can use these other objectives as secondary objectives to the
min-sum link-disjoint problem. We show that the NP-complete secondary objectives
turn the polynomially solvable min-sum problem to NP-complete min-sum problem
variants. However, through simulations we show that due to the strongly reduced
search space, exact algorithms can, in practice, solve the respective problem variants
in a reasonable time.
In Section 2, a formal definition and the complexity of each problem variant is
presented. In Section 3, we provide algorithms for these problem variants. In Section
4, we present our simulation results, and in Section 5, we give our conclusions.

2

s

a2a1 an

d

a3

x
s

a2a1 an

d

a3

x

Figure 1: All links without labels have zero cost.

2 Problem Definition

Given a graph G(N ,L), where |N | = N and |L| = L, a cost c(l) and a bandwidth
B(l) associated with each link l ∈ L, a source node s and a destination node d, two
bounds ∆1 ≥ 0 and ∆2 ≥ 0, find a pair of link-disjoint paths from s to d such that
Min-Sum Min-Min Link-Disjoint Paths Problem: The total cost of the pair
of link-disjoint paths is minimized and if there is a tie, the cost of the shorter path
is minimized.
Min-Sum Min-Max Link-Disjoint Paths Problem: The total cost of the pair
of link-disjoint paths is minimized and if there is a tie, the cost of the longer path
is minimized.
The Bounded Min-Sum Link-Disjoint Paths Problem: The total cost of the
pair of link-disjoint paths is minimized, and then the cost of the shorter path should
be less than or equal to ∆1 and the cost of the longer path should be less than or
equal to ∆2.
The Widest Min-Sum Link-Disjoint Paths Problem: The total cost of the
link-disjoint paths is minimized, and if there is a tie, the smallest bandwidth of all
links in the two paths is maximized.
The min-sum min-min link-disjoint paths problem is proven to be NP-complete by
Yang et al [8].

Theorem 1 The min-sum min-max link-disjoint paths problem is NP-complete.

To prove this theorem, we make use of the NP-complete partition problem [2], which
is defined as follows.
The partition problem: Given a set of values ai ∈ A, ai ≥ 0 for i = 1, . . . , n,
where S =

Pn
i=1 ai. Find a subset I ⊆ A such that

P
ai∈I ai =

P
ai∈A\I ai =

S
2
.

Proof. We will only provide a proof for undirected graphs. The directed case
follows analogously. In Figure 1, the labels on the links represent their cost and all
links without labels have zero cost. Let x = 0. Clearly, the shortest link-disjoint
pair of paths from s to d have a total cost of S. Thus, for any link-disjoint paths pair
{P1, P2}, the best possible value for the min-sum min-max problem in this network
is when c(P1) = c(P2) =

S
2
. However, finding this pair of link-disjoint paths requires

solving the NP-complete partition problem.

Theorem 2 The bounded min-sum problem link-disjoint paths problem is NP-complete.

3

Proof. Here also, we use Figure 1 and the partition problem. Let ∆1 =
S
2
and

∆2 = x + S
2
. If x = 0, ∆1 = ∆2, otherwise ∆1 6= ∆2. In either case, finding a pair

of link-disjoint paths, where the shorter path is bounded by ∆1 and the longer path
is bounded by ∆2 involves solving the NP-complete partition problem.
The widest min-sum link-disjoint paths problem is not NP-compete and in the next
section, we provide an exact polynomial-time algorithm for it.

3 Algorithms

The min-sum+ algorithm given below is an outline of algorithms that can be used
for exactly solving the three NP-complete variants of the min-sum problem. The
algorithm basically goes through all the possible candidate pairs of link-disjoint
paths, namely those with a total cost equal to that of the min-sum link-disjoint
paths pair returned by algorithms such as Bhandari’s algorithm [1]. As in Bhandari’s
algorithm, in Steps 1−3, min-sum+ finds the shortest path p between s and d, and
modifies the graph in such a way that the links along the shortest path are redirected
from d to s and their cost is set to the negative of their original cost. If a shortest
path q1 exists in the modified graph G0, c(q1) is used to identify the other candidate
paths. This is due to the fact that any path qk with a cost greater than c(q1) will
lead to a pair of link-disjoint paths whose total cost (which is equal to c(qk) + c(p))
is higher than the total cost of the shortest pair. Hence, the while loop in Step 4b
exits when c(qk) > c(q1). In G0, all the shortest simple paths whose cost is equal to
c(q1) can be obtained using such algorithms as the one given in [9]. Once all equal
cost shortest paths are computed in G0, their corresponding links that overlap with
p in the original graph G are removed to obtain the corresponding shortest pairs of
link-disjoint paths in the while loop of Step 4d. Among these link-disjoint paths,
the pair that satisfies the corresponding objective of the different problem variants
is chosen as a solution.

MIN-SUM+(G,s,d)

1. Find the shortest path p between s and d.

2. Graph G
0
is obtained by directing each link (i, j) of p from d to s, and setting

the cost of the links on the shortest path as cost(j, i) = −cost(j, i).
3. Find the shortest path q1 in G0.

4. if q1 exists:

(a) Set k := 1 and C := c(q1)

(b) while (c(qk) = C)

i. Find the (k + 1)-th shortest simple path qk+1.
ii. Set k := k + 1

(c) Set K = k, k := 1,min_len := INF

(d) while (k ≤ K)

4

i. In the original graph G, remove the interlacing links between p and
qk to obtain a pair of link-disjoint paths {qk1, qk2}

ii. For theMin-Sum Min-Min problem:
if (min_len > min {c(qk1), c(qk2)})
A. Set min_len := min {c(qk1), c(qk2)}
B. Set P1 := qk1 and P2 := qk2
For theMin-Sum Min-Max problem:
if (min_len > max {c(qk1), c(qk2)})
A. Set min_len := max {c(qk1), c(qk2)}
B. Set P1 := qk1 and P2 := qk2
For the Bounded Min-Sum problem:
if (min {c(qk1), c(qk2)} ≤ ∆1 and max {c(qk1), c(qk2)} ≤ ∆2)

A. Set P1 := qk1 and P2 := qk2
B. return {P1, P2}

iii. Set k := k + 1

(e) return {P1, P2}
5. else return no solution

The major operation in min-sum+ is finding all possible shortest paths. For k > 1,
finding each k-th shortest path using the algorithm in [9] takes O(N(L+N logN))
time. Let K be the total number of such paths. Thus, the total running time of
min-sum+ is O(K · N(L + N logN)). The size of K, which is dependent on the
type of network and the distribution of the link costs, can in the worst case grow
exponentially. But by fixing K to a given constant, and exiting the algorithm after
at most K link-disjoint paths are computed, heuristic algorithms can be obtained
for the three NP-complete problem variants.
We also provide an outline of the wide-min-sum algorithm, which is an exact
algorithm for the widest min-sum problem. The algorithm begins by computing the
shortest pair of link-disjoint paths in the original graph G. In each iteration k, a new
graph Gk+1 is obtained from Gk (G1 is the original graph) by dropping all links with
a bandwidth less or equal to that of the bottleneck link of the shortest link-disjoint
paths in Gk. This process stops either when there are no link-disjoint paths in Gk

or when the total cost of the shortest link-disjoint paths in Gk exceeds that of the
shortest pair in the original graph. Finally, the pair with the highest bandwidth is
returned. The wide-min-sum algorithm is an exact algorithm because,

1. By dropping links with bandwidth less than that of a bottleneck link in Gk,
only pairs of link-disjoint paths which use any of these links are affected.
Hence, no better solution is dropped in the process.

2. If the shortest pair of link-disjoint paths in Gk have a total cost higher than
that of the shortest pair in the original graph, dropping more links from Gk

will not lead to a better result.

Since the major operation in wide-min-sum is finding the shortest link-disjoint
paths and in the worst case O(L) links are dropped before exiting the algorithm,
the complexity of the algorithm is O(L2 + LN logN).

5

4 Results and Discussion

We present simulation results for random and lattice networks comparing the exact
algorithms (min-sum+), heuristic algorithms (min-sum+withK = 2) and the min-
sum Suurballe’s algorithm [6]. The results we have provided are only for min-sum
min-min and min-sum min-max problem variants, because they represent extreme
cases of the bounded min-sum problem, where the primary or the backup bounds
are tight, respectively. Since the exact algorithm goes through all the possible pairs
of min-sum link-disjoint paths, its complexity depends on the total number of such
pairs of paths. If there is high granularity in the link costs (e.g., fractional costs) the
number of equal cost (min-sum) link-disjoint paths is likely to be small and if there
is no granularity (e.g., equal link costs), the heuristic and Suurballe’s algorithms
will more likely find the optimal solution. Therefore, to increase the possibility of
having more min-sum pairs of paths, we use integral link costs that are randomly
generated in the range [1, 100]. In these simulation results, the number of nodes
is varied, and for each number of nodes, we have considered 1000 networks, each
network with 1000 randomly generated requests. It can be seen that the heuristic
algorithms (withK = 2) perform close to the their respective exact algorithms. The
exact algorithms also perform in a reasonable time (order of tens of ms) as shown
in Figure 2 (similar results have been obtained for the min-sum min-max problem).

Table 1: The average number of times that the heuristic algorithms and Suurballe’s
algorithm fail to find the optimal solution out of 1000 requests.

Random Networks
N 100 200 300 400 500 600 700 800 900

min-min Suurballe 3.9 6.67 7.78 8.1 7.83 7.35 6.69 5.73 5.19
Heuristic 0.16 0.49 0.76 0.91 0.98 0.92 0.90 0.82 0.74

min-max Suurballe 10.7 21.1 23.1 23.4 22.7 21.2 19.9 18.3 16.9
Heuristic 1.05 5.36 7.46 8.84 9.82 10.1 10.3 10.2 10.0

Lattice Networks
N 121 225 324 441 529 625 729 841 961

min-min Suurballe 2.73 3.61 4.07 4.52 4.58 5.07 5.23 5.56 5.68
Heuristic 0.04 0.1 0.12 0.14 0.14 0.2 0.22 0.22 0.27

min-max Suurballe 5.08 6.22 6.74 7.41 7.74 7.78 8.09 8.29 8.48
Heuristic 0.13 0.19 0.21 0.25 0.26 0.29 0.29 0.36 0.4

5 Conclusion

In this paper, we have considered the effect of having secondary objectives in the
min-sum link-disjoint paths problem. We have shown that NP-complete secondary
objectives lead to NP-complete min-sum problems. From the simulations, it can be
inferred that our heuristic algorithms in each case outperform Suurballe’s algorithm,
and the results obtained are close to the corresponding exact algorithms. In addition,
because of the reduced search space, the exact algorithms can solve the respective

6

100 200 300 400 500 600 700 800 900
0

5

10

15

20

25

Number of Nodes

A
ve

ra
ge

 T
im

e
(m

s)

Exact
Heuristic
Suurballe

(a)

121 225 324 441 529 625 729 841 961
0

2

4

6

8

10

12

Number of Nodes

A
ve

ra
ge

 T
im

e
(m

s)

Exact
Heuristic
Suurballe

(b)

Figure 2: The average times (in ms) of the three algorithms for the min-summin-min
problem variant in (a) random networks, and (b) lattice networks.

problems in a reasonable running time. Therefore, for practical purposes, it is
possible to use the exact algorithms.

References

[1] R. Bhandari, Survivable Networks: Algorithms for Diverse Routing, Kluwer Academic, 1999.

[2] M.R. Garey and D.S. Johnson, Computers and Intractability: a Guide to the Theory of NP-
Completeness, Freeman, San Francisco, 1979.

[3] A. Itai, Y. Perl, and Y. Shiloach, “The complexity of finding maximum disjoint paths with

length constraints,” Networks, vol. 12, no. 3, pp. 277-286, 1982.

[4] C.-L. Li, S. T. McCormick, and D. Simchi-Levi, “The complexity of finding two disjoint paths
with min-max objective function,” Discrete App. Math., vol 26, no 1, pp. 105—115, Jan. 1990.

[5] B.H. Shen, B. Hao, and A. Sen, “On multipath routing using widest pair of disjoint paths,”
Workshop on High Performance Switching and Routing, pp. 134-140, 2004.

[6] J. Suurballe and R. Tarjan,“A quick method for finding shortest pairs of disjoint paths,”

Networks, vol. 14, pp. 325—336, 1984.

[7] D. Xu, Y. Chen, Y. Xiong, C. Qiao, and X. He, “On the complexity of and algorithms for finding
the shortest path with a disjoint counterpart,” IEEE/ACM Transactions on Networking, vol.

14, no. 1, Feb. 2006.

[8] B. Yang, S.Q. Zheng, and E. Lu, “Finding two disjoint paths in a betwork with minsum-
minmin objective function”, Proc. of the International Conference on Foundations of Computer

Science, Las Vegas, Nevada, Jun. 2007.

[9] J.Y. Yen, “Finding the k-shortest loopless paths in a network,” Management Science, vol. 17,
no. 11, pp. 712-716, July 1971.

