
Delft Center for Systems and Control

Symmetric Canonical Polyadic
Decomposition And Gauss-
Newton Optimizer For Nonlinear
Volterra System Identification

Zhehan Li

M
as

te
ro

fS
cie

nc
e

Th
es

is

Symmetric Canonical Polyadic
Decomposition And Gauss-Newton
Optimizer For Nonlinear Volterra

System Identification

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Zhehan Li

July 18, 2022

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

Most real-life systems are nonlinear in nature so that empirical modeling of a nonlinear system
from the measured input–output data becomes an important tool for accurately reflecting the
system under research. High order discrete-time nonlinear Volterra systems have been widely
used in various application areas. The main drawback of these systems is their parametric
complexity implying the need to estimate a huge number of parameters. Recent research has
applied various tensor decomposition techniques on the Volterra kernels to induce a substan-
tial parametric complexity reduction. One of these tensor decomposition techniques is the
parallel factor (PARAFAC) decomposition, whose obtained Volterra system model is called
the Volterra-PARAFAC model. This thesis applies the Gauss-Newton optimizer to estimate
the parameter values of the Volterra-PARAFAC model by minimizing a nonlinear least square
cost (NLS) function given the input and output measurements.

First, we model the multiple-input single-output (MISO) Volterra system as a linear system
with a canonical polyadic decomposition constrained solution (LS-CPD), whose parameter
values are estimated by the numerical optimization method. Next, we perform several inter-
nal validations on this innovative framework by using it to identify an artificial MISO Volterra
system, with the aim to investigate the influence of its hyper-parameters on the identification
performances. Meanwhile, we compare this developed framework with the existing frame-
works by performing an external validation on identifying the same artificial MISO Volterra
system under a storage complexity budget. In addition, we apply the developed framework
to model the evoked cortical response (ECR) data set, which has been proven to be highly
nonlinear. Finally, we test the plausibility of the modelled system on the ECR data set by
examining its validation output residual signals. The advantages and disadvantages of the
developed framework are found based on the validation and application experimental results.

Master of Science Thesis Zhehan Li

ii

Zhehan Li Master of Science Thesis

Table of Contents

Acknowledgements xi

1 Introduction 1
1-1 Thesis Motivation . 7
1-2 Thesis Objective . 7
1-3 Thesis Outline . 9

2 Development: From Tensor To Numerical Optimization 11
2-1 Tensor Basics . 11
2-2 Volterra Tensor . 13
2-3 Symmetric CPD On Volterra Tensor . 15
2-4 Nonlinear Least Squares Optimization Structure For LS-CPD 18

2-4-1 NLS objective function . 18
2-4-2 GN optimization algorithm . 21

2-5 Conclusion On Phase I . 22

3 Validation: Identifying An Artificial Volterra System 25
3-1 Proof-of-concept Experiment Setup . 25
3-2 Experiment I: Influence Of Rank R . 27
3-3 Experiment II: Choice Of Initialization Method 29

3-3-1 Complexity compensation rates . 32
3-3-2 Performance compensation rate . 34

3-4 Experiment III: Comparison With State-of-the-art 36
3-5 Conclusion On Phase II . 40

Master of Science Thesis Zhehan Li

iv Table of Contents

4 Application: Modeling Evoked Cortical Responses 43
4-1 Data Set Description . 43
4-2 Modeling Experiments Setup . 44
4-3 Experiments Results . 45

4-3-1 Hyper-parameter tuning . 46
4-3-2 Similarity . 51

4-4 Conclusion On Phase III . 52

5 Conclusions And Future Work 55
5-1 Concluding Remarks . 55
5-2 Future Research . 56

5-2-1 Development . 57
5-2-2 Validation . 57
5-2-3 Application . 58

A State-of-the-art Volterra Identification Frameworks 59
A-1 Tensor Operations . 59
A-2 Three Tensor Network Based Frameworks . 60

A-2-1 ALS . 62
A-2-2 MALS . 63
A-2-3 MPP . 64

A-3 Persistently Exciting Condition . 66

B Algebraic Initialization Method 69
B-1 Newton Type Algorithms Examples . 69
B-2 Algebraic Initialization Method For Algorithm 1 69

Glossary 77
List of Acronyms . 77

Zhehan Li Master of Science Thesis

List of Figures

1-1 Example of LTI and NTI systems pairwise in continuous (.1) and discrete (.2) time
domain . 2

1-2 The number of parameters for SISO Volterra kernels hd (top) and hsym
d (bottom)

for different M grows exponentially and factorially with d, respectively. The latter
grows much slower than the former. 6

2-1 Diagrammatic notations of tensors. (a) From left to right: a scalar x ∈ R, a
vector x ∈ RI1 , a matrix X ∈ RI1×I2 , and a 3 way tensor X ∈ RI1×I2×I3 ; (b) The
vectorization of the 3 way tensor X into a vector x ∈ RI1I2I3 12

2-2 Diagrammatic notations of the multidimensional contraction operation of the 4-
way Volterra tensor V and the transpose of the input sequence uT

t . The result is
the scalar y(t). The red arrow represents the product of V and uT

t in each mode
of V . 15

2-3 Diagrammatic notation of the symmetric CPD for a third-order Volterra tensor.
The blue arrow represents the outer product of bi. 16

2-4 The storage complexities of three formats of Volterra tensor: V, Vsym and symmet-
ric CPD formats under different values of d I and R, respectively. In general, the
symmetric CPD format reduces the storage complexity significantly for d > 10.
However, the reduction is insignificant (even counteractive) when d < 10 and
R > 50 as pointed out in the red circle. 17

3-1 Evolution of the GN components’ values over iterations in one trial with R = 5
and random initialization. 28

3-2 Influence of R ∈ [1, 2, 3, 4, 5, 6, 10, 20] with increasing tensor dimension I ∈ [5, 10, 15, 20]
on training error (first plot), validation error (second plot), symmetric coefficient
(third plot), and training run time (last plot). The results are from 30 trials of the
GN algorithm with random initialization for each value combination of R and I. . 30

3-3 Evolution of the GN components’ values over iterations in one trial with random
(blue) or algebraic initialization (red) under the default system configuration. . . 31

3-4 Growths of CCRc (left) and CCRs (right) for increasing I and R for three cases
when d = 5, 10, 20. Both CCRc and CCRs grows exponentially with increasing
I, and stay constant with increasing R. The growths are dominated by the value
of d, while the influence of R is much weaker. 33

Master of Science Thesis Zhehan Li

vi List of Figures

3-5 Growths of CCRc (left) and CCRs (right) for increasing d and R for three cases
when I = 5, 10, 20. Both CCRc and CCRs grows exponentially with increasing
d, and stay constant with increasing R. The growths are dominated by the value
of I, while the influence of R is much weaker. 33

3-6 Distribution of the PCR values under different sizes of the Volterra tensor to be
identified. For each tensor size, the random initialization method is performed 30
trails, and 1 trail for the algebraic initialization method. 35

3-7 The maximum rank value for four frameworks named by corresponding parameter
estimation algorithm when the storage complexity threshold of 105 bits is enabled. 38

3-8 Identification performances of four frameworks when the storage complexity thresh-
old is enabled. A stands for MPP, B for ALS, C for MALS, and D for GN. 39

3-9 Identification performances of four frameworks when the suggested rank values are
used. A stands for MPP, B for ALS, C for MALS, and D for GN. 39

4-1 EEG experimental setup and overview. Participants were seated with their right
forearm fixated to an arm support and their hand strapped to the handle of a
robotic manipulator (figure from [16]). (1) The top-right inset provides a schematic
illustration of one 36s trial. The three various colors reflect different multisine
realizations, and each lobe represents one 1s period of the perturbation signal.
Highlighted periods are removed, leaving 10 periods per realization for examination
in each experiment. (2) One of the perturbation signal realizations is shown in the
bottom-left inset. (3) The bottom-right inset depicts a close-up of the hand in the
robotic manipulator. The axis of rotation of the manipulator was aligned with the
wrist joint. 44

4-2 Training (left) and validation (right) performances of three system order values
d = 1 (first row), d = 2 (second row), d = 3 (third row), while M = 25, R = 20
are kept as constant. The first order system have low values of V AFt and V AFv.
The third order system suffers from the over-fitting issue. The second order system
has the highest V AFv. 46

4-3 Auto-correlation (left) and cross-correlation (right) of the validation residuals for
three modelled systems in Figure 4-2. (1) Left: the spikes at zero leg are obvious
for three order cases. The second order system has the least spikes at non-zero leg
that exceed the confidence interval. (2) Right: the second order system has the
less spikes at positive leg that exceed the confidence interval than the third order
system. The first order system has spikes that exceed the confidence interval only
for a few negative leg values. 48

4-4 Validation performances for M = [10, 20, 30, 40] with d = 2, R = 20. The V AFv
increases with M . 49

4-5 Auto-correlation (left) and cross-correlation (right) functions of the validation
residuals for four modeled systems in Figure 4-4. For both functions, the number
of spikes that exceed the confidence interval with positive lag values decreases with
increasing M . 50

4-6 Validation performance for R = [10, 12, 20, 30, 40, 70] with d = 2, M = 30. The
V AFV stays almost the same when R > 20. and decreases insignificantly when
R < 20. 51

4-7 Relative differences between any two of the seven modelled systems for the first
participant. In the ideal situation, each element in this table should be close to
zero. The results cast doubt on the credibility of the seven modeled systems all
being the true underlying system. 52

A-1 Diagrammatic notation of the TT decomposition of a 3-way Volterra tensor. . . 61
A-2 TN diagram of the "half sweep" of the (a) ALS algorithm and (b) MALS algorithm

for 4-way tensor. 65

Zhehan Li Master of Science Thesis

List of Figures vii

A-3 Diagrammatic notation of TT decomposition of Ũ and vec
(
V(k)

)
and the identi-

fication of Vsym. 67

Master of Science Thesis Zhehan Li

viii List of Figures

Zhehan Li Master of Science Thesis

List of Tables

3-1 Mean and standard deviation (Std) of the values regarding the figure of merits
over 20 trails with R = 5 when starting with random initialization. 27

3-2 The values of the figures of merit on identifying the default system with two
initialization methods. Twenty trials are performed for the random initialization,
and one trial for the algebraic initialization. 32

3-3 The storage complexities of three TN based and the proposed frameworks. The
name of the algorithm that estimates the parameter value is used to represent the
corresponding framework. The value of R in the first three algorithms represents
the maximal TT rank value, which implies that the expressions in this table for the
first three frameworks are over-estimated in favor of the simplification. The value
of R for the GN algorithm represents the approximation rank value. 36

3-4 The suggested rank values and the corresponding storage complexity for the four
frameworks. 38

Master of Science Thesis Zhehan Li

x List of Tables

Zhehan Li Master of Science Thesis

Acknowledgements

“Challenge the future” is the motto of Delft University of Technology, which has been motivat-
ing me to take on challenges of proactive self-improvement throughout my master studying.
My decision to research in the field of nonlinear system identification for my master thesis
comes from the grade of 6 in the course "Filtering And Identification". I discovered my weak-
nesses in both the theoretical and practical application of system identification throughout
the integration project and other courses. Afterwards, I spent nine months working on my
weak spots and preparing this report. This extremely educative experience highlights the
intricate complexity of performing a thorough in-depth exploration of cutting-edge research.
This report could not have been completed without the contribution of many people.

First of all, I would like to express my sincere gratitude to my daily supervisor dr. ir.
Kim Batselier. Thanks for all the critical discussions and all the patience you had. Your
perfectionism was challenging to pursue yet easy to admire. Your thorough and compelling
feedback on every experiment report draft was often challenging but never misplaced. In ad-
dition, I would love to thank the research team who developed the Tensorlab. All the tensor
computations in my report are based on the Matlab package from Tensorlab. I would also
love to thank dr. ir. Alfred Schouten for all the advice about modeling the wrist dataset and
indispensable feedback on my approach. Furthermore, I would like to thank the other two
committee members of my thesis, dr. Riccardo Ferrari and MSc. Eva Memmel for interest
in my research. Lastly, I would love to thank Heleen Sakkee-Zaal for the administrative and
technical support for my thesis defense.

I had the chance to combine my master studying with some extra-master experience. Firstly,
I would love to thank Prof. dr. Simon Watson and Lily Li for giving me the opportunity to
assist the organization and participant in the TORQUE2022. Secondly, a big thank you to
Marie Louise Verhagen and dr. Jens Kober for the chance to work as the technical assistant
for the CCF2021 and AIM2021. In addition, I would love to thank dr. ir. Özge Okur and dr.
ir. Iulia Left for having me as the teaching assistant for the courses, EPA1333 and TB133D.
Your advice has improved my Python programming and communication skills, and stress-
management ability. Lastly, I must also thank my internship supervisors Caspar Walhout
and Paul Stefen Mooij from Husky Intelligent Fridges for your guidance and involvement
in my internship project. Without your help, I could not have gone through all the diffi-
cult phases and stages of my internship research. I would also love to thank Prof. dr. Hans

Master of Science Thesis Zhehan Li

xii Acknowledgements

Hallendorn and Birgit de Bruin for listening to my presentations and giving valuable feedback.

I was fortunate to have many colleagues and friends from whom to learn. Firstly, I would
love to thank Vivek Varma (teammate for courses SC42056, SC42155, SC42150, SC42145,
SC42025, and SC52035), Hassan Sewailem (teammate for courses SC42050 and SC42125),
Yabin Wang (teammate for course AP3132) and many others. Big Thanks for your cooper-
ation with me and many enjoyable sleepless nights we have spent together on the projects.
Furthermore, I would love to thank my friends Roland Varga, Pierre Antoine Denarie, Baijing
Yuan, Daniel Barroso Plata, Arjan Vonk, Surya Narayanan, Theodoulos Kapnisis, Valentin
Wurzbauer, Csaba Balla Somogyi, Jingru Feng, Dong Shen, Rohan Chandrashekar, Daniel
Varela, Chenghao Xu, Pepijn Bogaard and many others for your encouragement and our
beautiful friendships. In addition, I would love to thank Robert Dujmovic for your mentor-
ship and career guidance.

Finally, a special thanks goes to my parents, grandparents, cousins and all other relatives.
Thank you mama and papa. I dedicate this manuscript to you. And thank my girlfriend
Qingyi Ren for your love, patience, trust and joy, despite the nearly 10,000 km distance and
the six-hour time difference between us.

Delft University of Technology Zhehan Li
July 18, 2022

Zhehan Li Master of Science Thesis

“知己知彼，百战不殆”
— 《孙子·谋攻篇》

“If you know both the enemy and yourself, you will fight a hundred battles without
danger of defeat”
— 《SUN-TZU: The Art Of Warfare》

Chapter 1

Introduction

Models of real-world systems are of fundamental importance in virtually all disciplines [1].
From a control engineering perspective, system modeling determines the quality of the final
problem solution. This is because the quality of most advanced techniques in control en-
gineering (such as controller design, optimization, supervision and fault detection, etc.) is
often constrained by the quality of the modeling. As a result, there is a significant demand
for advanced modeling techniques.

Empirical modeling based on measured input–output data is one of the essential tools in
the field of system modeling. It begins with the selection of a suitable model structure, fol-
lowed by the estimation of model parameters using an identification method by processing
the input–output signals. The field of system identification uses statistical methods to build
mathematical models of dynamical systems from measured data [2].

For the identification of linear systems, there are extensive advanced algorithms available in
literature [3, 4, 5]. Most real-life systems are nonlinear in nature so that nonlinear models are
often preferred over linear models for accurately representing the studied system. However,
identification of complex nonlinear systems is a difficult endeavor due to several challenges,
some of which are the lack of understanding of system dynamics, the huge computational and
storage cost, and the availability of only short and partially observed measurements [6].

The convolution integral and the convolution summation that describe the behavior of linear
time-invariant (LTI) systems in continuous and discrete time domain, respectively, can also
be used for the description of the nonlinear time-invariant (NTI) systems. Examples of using
convolution expressions to describe the LTI and NTI systems are shown in Figure 1-1. The
mathematician and physicist, Vito Volterra, used series of convolution expressions to define
the input-output relationship of NTI systems in the continuous time domain, mathematically

Master of Science Thesis Zhehan Li

2 Introduction

Figure 1-1: Example of LTI and NTI systems pairwise in continuous (.1) and discrete (.2) time
domain. (A.1)(A.2): the first order LTI systems. (B.1)(B.2): the second-order NTI systems.
(C.1)(C.2): the combined higher-order systems. Note that in the continuous time domain the
delay is represented by τ ∈ (−∞, ∞). And in the discretized time domain the truncated delay is
denoted by k ∈ [0, M − 1], where M stands for the input memory. The output of the dth order
system is represented by a Volterra series consisting of the sum of the individual components, each
determined by a convolution expressions in the continuous time domain, or summation expression
in the discretized time domain.

Zhehan Li Master of Science Thesis

3

expressed as [7]:

y(t) =

1st order Term︷ ︸︸ ︷∫ ∞

−∞
h1 (τ1) u (t− τ1) dτ1 +

2nd order Term︷ ︸︸ ︷∫ ∞

−∞

∫ ∞

−∞
h2 (τ1, τ2) u (t− τ1) u (t− τ2) dτ1dτ2 + . . .

+
∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞
hn (τ1, τ2, . . . , τn) u (t− τ1) u (t− τ2) . . . u (t− τn) dτ1dτ2 . . . dτn︸ ︷︷ ︸

nth order Term

(1-1)

where the output y(t) of an nth order system is the summation of the first, second, ..., nth or-
der convolution terms. These terms depend on the weighting functions h1, h2, . . . , hn named
as the first, second, . . . , nth order Volterra kernels, and the multiple copies of the lagged
input u (t− τ1) , u (t− τ2) , . . . , u (t− τn) with delay τ . In some texts [8], a 0th order kernel h0
representing the bias or offset, is added to Equation 1-1. Systems expressed by Equation 1-1
are called Volterra systems.

Regarding the identification of Volterra systems, most research focus on the discrete time
domain [9, 10]. Therefore, this thesis also focuses on the identification of the discrete time
truncated Volterra system. In the discrete time domain, the dth order response of a single-
input single-output (SISO) truncated Volterra system with finite memory M is defined as
follows [11]:

Definition 1: Discrete time truncated dth order SISO causal Volterra system
with finite input memory M

y(t) = y0(t) + y1(t) + y2(t) + · · ·+ yd(t)

= h0 +
d∑

i=1

M−1∑
k1,...,ki=0

hi (k1, . . . , ki)
i∏

j=1
u (t− kj)

(1-2)

where yi(t) and hi (k1, . . . , ki) denote the ith order output at time instance t and the
ith order Volterra kernel with delay indices (k1, . . . , ki), respectively. Only the causal
system is considered, which implies hi (k1, · · · , ki) = 0 when any of the delay indices is

negative. The notation
M−1∑

k1,...,ki=0
=

M−1∑
k1=0
· · ·

M−1∑
ki=0

has been used for simplicity.

The output y(t) relies on the input at time instant t as well as its values before t,
which implies that the output y(t) is described by polynomial expressions of the input
u (t− kj) at different kj . Therefore, the input–output relationship is nonlinear.

Volterra systems have been extensively researched and widely used in modeling the nonlin-
ear systems, such as nonlinear networked system control [12, 13], nonlinear communication
channel identification [14, 15], as well as human cortical responses modeling [16].

For the Volterra system in Definition 1, the kernels are playing the most important role.
If the dynamic of a system is known precisely, such that its dynamic can be described by
a (several) mathematical analytical function(s), the kernels of this system can be retrieved

Master of Science Thesis Zhehan Li

4 Introduction

directly. However, in most cases when only the input-output measurements are known, kernel
estimation concerns a huge number of parameters, which suffers from the following two issues:

1. Curse Of Dimensionality: The second order Volterra kernel
M−1∑

k1,k2=0
h2 (k1, k2) in

Equation 1-1 can be arranged as a square matrix with dimension of (M ×M), mathe-
matically expressed as,

M−1∑
k1,k2=0

h2 (k1, k2) =


h2(0, 0) h2(0, 1) · · · h2(0, M − 1)
h2(1, 0) h2(1, 1) · · · h2(1, M − 1)

...
...

h2(M − 1, 0) h2(M − 1, 1) · · · h2(M − 1, M − 1)

 (1-3)

which can be extended to the third order kernel that consists of M square matrices
having the dimension of (M ×M). For the dth order Volterra kernel, it is modelled by
Md coefficients. For a multiple-input multiple-output (MIMO) Volterra system with
p inputs and l outputs, the situation becomes even worse. The dth order Volterra
kernel for one particular output is characterized by (pM)d coefficients, which increases
exponentially as pM and d grow. It is practically infeasible to store and estimate these
coefficients. Such issue is commonly known as the curse of dimensionality [17].

2. Delay Index Permutation: Each coefficient hd (k1, · · · , kd) of the dth order Volterra

kernel corresponds to an input product term
d∏

j=1
u (t− kj). Both of them are determined

by the delay indices k1, · · · , kd. For all distinct permutations of the indices k1, · · · , kd,
the dth order Volterra kernel contains repeated coefficients, which can be expressed as
follows,

hd (k1, · · · , kd)
d∏

j=1
u (t− kj) = hd

(
kπ(1), · · · , mπ(d)

) d∏
j=1

u
(
t− kπ(j)

)
(1-4)

where π(.) stands for all distinct permutations of the indices k1, · · · , kd. The number
of unique coefficient of the SISO dth order Volterra kernel is less than Md. Similarly,
the number of unique coefficient of the MIMO dth order Volterra kernel for one par-
ticular output is less than (pM)d. The issue of delay index permutation results in the
unnecessary over-count of the number of kernel coefficients.

The issue of delay index permutation can be solved by grouping the product terms in Equa-

tion 1-4. Then a symmetric kernel
M−1∑

k1,k2=0
hsym

d (k1, · · · , kd) is obtained by summing the

coefficients hd (k1, · · · , kd) over all distinct permutations π of the delay indices and dividing
by the number of such permutations denoted as num (π (k1, · · · , kd)). For example, all the re-
peated coefficients in Equation 1-4 are represented by one unique coefficient hsym

d (k1, · · · , kd)
of the symmetric kernel, expressed as:

hsym
d (k1, · · · , kd) =

∑
π(.) hd

(
kπ(1), · · · , mπ(d)

)
num (π (k1, · · · , kd))

=
∑

π(.) hd

(
kπ(1), · · · , mπ(d)

)
d ! .

(1-5)

Zhehan Li Master of Science Thesis

5

The number of unique coefficients of the dth order SISO symmetric Volterra kernel is CM+d−1
d =

(M+d−1)!
d!(M−1)! [18]. Figure 1-2 shows the growth of the number of parameters of the Volterra ker-

nels hd and the symmetric Volterra kernels hsym
d with increasing d for M ∈ [5, 10, 20, 40],

respectively. Although the number of coefficients of hsym
d with a certain M grows much

slower than the number for hd, it still requires a large storage complexity.

State-of-the-art research has reduced the storage complexity for symmetric Volterra kernel
using the tensor decomposition approaches. The Parallel factor (PARAFAC) tensor 1 decom-
position is applied on the symmetric Volterra kernels in [18]. The symmetric Volterra kernels
consist of h0, hsym

1 , · · · , hsym
d . The obtained model is called the Volterra-PARAFAC model.

To make it easier to express the mathematical concepts, we denote this model by f(.) as
follows,

[h0, hsym
1 , · · · , hsym

d] = f(A1, · · · , Ad) (1-6)

where A1, · · · , Ad are assumed to be the coefficients of the Volterra-PARAFAC model 2. This
model induces a significant storage complexity reduction. Several adaptive algorithms are pro-
posed to identify the coefficients of the Volterra-PARAFAC model when input-output signals
are complex-valued. However, the determination of the rank for PARAFAC decomposition
is an NP-hard problem [19], and the identification performance suffers from the numerical
instability when trying to find proper rank values. In addition, the Volterra systems are de-
scribed in the Tensor Network (TN) formats by using the Tensor Train (TT) decomposition
in [9, 11]. These approaches are explained in Appendix A-2.

The computation of PARAFAC decomposition of a given tensor has been extensively re-
searched [20, 21]. Optimisation-based algorithms have been used to estimate the optimal
value of the PARAFAC parameters by minimising the least-squares (LS) cost function, which
is the Frobenius norm of the difference between the given tensor and the estimated tensor [22].
For convenience, we denote the given tensor as Vtru, and the estimated tensor as Vest, the
PARAFAC decomposition as function g(.), and the PARAFAC parameters as B1, · · · , Bm.
The LS cost function can then be expressed as follows,

min
B1,··· ,Bm

∥Vtru − Vest∥F , Vest = g(B1, · · · , Bm) (1-7)

where the optimization variables are the PARAFAC parameters, and the estimated tensor is
recovered as g(B1, · · · , Bm). The Frobenius norm is denoted as ∥∥F .

The majority of optimisation-based methods for calculating the PARAFAC decomposition
are first-order methods that use gradient term of the LS cost function in Equation 1-7 to
determine the next optimization step [23, 24]. These methods have been shown to be suscep-
tible to convergence problems, such as requiring a large number of iterations, being unstable
to reach the global minimum, and being sensitive to the initial conditions. Using second-
order information from the Hessian term of the cost function, like the Gauss-Newton (GN)
optimizer, can lead to fewer iterations and improved convergence in general [25].

1The definition of tensor is introduced in the first paragraph of section 2-1. Readers who are unfamiliar
with tensor are advised to read there first and then proceed with the remainder of this chapter.

2Equation 1-6 and Equation 1-7 are the conceptional models. The calculation of f(.) and g(.), as well as
the construction of A1, · · · , Ad and B1, · · · , Bm are explained explicitly in the next chapter.

Master of Science Thesis Zhehan Li

6 Introduction

Figure 1-2: The number of parameters for SISO Volterra kernels hd (top) and hsym
d (bottom)

for different M grows exponentially and factorially with d, respectively. The latter grows much
slower than the former.

Zhehan Li Master of Science Thesis

1-1 Thesis Motivation 7

1-1 Thesis Motivation

The optimisation-based algorithms discussed in Equation 1-7 can not be applied to Volterra
identification problem directly. The Volterra identification problem stands for the situa-
tion where only the input and output measurements {y(t), u(t)}t=[0,N−1] of Equation 1-2 are
known, and the ground truth Volterra kernels h0, hsym

1 , · · · , hsym
d are unknown and needed

to be estimated. The Volterra identification problem can be expressed by the following opti-
mization framework,

min
h0,hsym

1 ,··· ,hsym
d

∥y− ŷ∥F (1-8)

where y = y(t)t=[0,N−1] and ŷ = ˆy(t)t=[0,N−1] stand for the ground truth and estimated out-
put measurements, respectively. The estimated output measurements can be recovered based
on the estimated Volterra kernels and the input measurements following Equation 1-2.

If the Volterra kernels h0, hsym
1 , · · · , hsym

d in Equation 1-8 are modeled using the Volterra-
PARAFAC model in the form of Equation 1-6 , the optimization variables of Equation 1-8
become the coefficients of the Volterra-PARAFAC model. Furthermore, if the connection
between Equation 1-8 and Equation 1-7 could be found, the second order optimization al-
gorithm to solve Equation 1-7 could be applied (with some changes) to solve Equation 1-8.
As a result, it is crucial to investigate how to establish one such connection and how to use
the second order optimization technique to solve Equation 1-8 using the Volterra-PARAFAC
model.

Recent research has applied the second and higher order Volterra systems 3 to model the
highly nonlinear human cortical responses [16]. The PARAFAC decomposition has not yet
been used to reduce the storage complexity of the modelled higher order Volterra system.
Therefore, it is meaningful to investigate if the Volterra-PARAFAC model can be used to
model the highly nonlinear human cortical responses and then estimated by the above men-
tioned optimization-based method.

1-2 Thesis Objective

The thesis objective is to answer the following main research question:

Research Question

How to develop, validate and apply an identification framework that can estimate the
parameter values of the Volterra-PARAFAC model from the given input and output
measurements using a second order optimization algorithm?

To answer the above defined main research question, the following phases are formulated.
Each phase contains several research sub-questions that will be answered at the end of each
following chapters.

3A higher order Volterra system denotes a Volterra system with an order value d equal to or greater than
three.

Master of Science Thesis Zhehan Li

8 Introduction

Phase I: Development

1. How does the Volterra-PARAFAC model address the issue of curse of dimension-
ality in identifying the Volterra kernel parameters? If it does not solve the issue,
what is the lacking factor?

2. What is(are) the benefit(s) of using the Gauss-Newton (GN) optimizer to optimize
the Least squares (LS) cost function? How to calculate the components of this
optimizer?

3. The GN optimizer minimises the Least squares (LS) cost function starting from
an initial value. How to initialise this optimization procedure?

4. Does the developed framework apply to the MIMO case? If not, which step (com-
ponent) of the developed framework should be modified in order to do so?

Phase II: Validation

1. How to validate that the synthetic Volterra-PARAFAC model is estimated cor-
rectly using the developed framework?

2. What is(are) the suitable figure(s) of merit to reflect the identification perfor-
mance of the proposed framework?

3. What is(are) the hyper-parameter(s) of the proposed framework? What is the
effect of having different hyper-parameter(s) values on the identification perfor-
mance?

4. Is the identification performance influenced by the initial value for the optimizer?
What are the advantages and disadvantages of different initialization methods?

5. When there is a storage complexity budget, what are the advantages and dis-
advantages of the proposed framework compared to the existing frameworks on
identifying the simulated artificial Volterra system?

Phase III: Application

1. The human cortical responses are modeled by the Volterra-PARAFAC model
whose kernel coefficients are estimated by the developed framework. Does the
modeling quality rely on the values of the hyper-parameter(s) of the framework?

2. How to test the plausibility of the modelled system? What are the potential rea-
son(s) for the modelled system not representing the true underlying system?

This research is innovative for the following reasons:

• The second order information from the cost function has not previously been used for
identifying the Volterra-PARAFAC model.

Zhehan Li Master of Science Thesis

1-3 Thesis Outline 9

• The experiment to compare the Volterra identification performance of different tensor-
based frameworks under the storage complexity budget has not been explicitly per-
formed before.

• The human cortical responses have not been modelled by the Volterra-PARAFAC model
and estimated by the second order optimization method.

An open-source MATLAB implementation of the proposed framework and the experiments
performed in this thesis is made available on Github.

1-3 Thesis Outline

This brings us to the following chapter-by-chapter outline of the thesis which serves as pro-
viding the reader with a structural overview of the thesis. The thesis is structured in such a
way that the research questions of each phase are answered through a separate chapter.

Chapter 2 describes the development of the proposed Volterra system identification frame-
work, which consists of two stages. The first stage models the input-output relationship
using the tensor operations and a decomposition technique, while the second stage estimates
the parameter values of the modelled system using a second-order numerical optimization
algorithm.

Chapter 3 validates internally and externally the developed framework by identifying an
artificial Volterra system. The internal validation focuses on the influence of the hyper-
parameter and different initialization methods of the optimization algorithm on the identi-
fication performance, while the external validation compares the developed framework with
three TN based frameworks on identifying the same artificial Volterra system under the stor-
age complexity budget.

Chapter 4 applies the validated framework to model the evoked cortical responses. The
modification of the data set to fit the validated framework and the update of the hyper-
parameter values to improve the modeling quality are explained first. The challenges and the
plausibility of the modelled system are then discussed.

Chapter 5 summarizes the thesis and provides an overview of future research.

Appendix A contains three sections. In Appendix A-1, the tensor operations that are used in
this thesis are explained. In Appendix A-2, the storage complexity of three TN based frame-
works is calculated individually and used in this thesis. In Appendix A-3, the persistently
exciting condition for the input signal of the Volterra system is reviewed from [11].

Master of Science Thesis Zhehan Li

https://github.com/haroldlee0116/Master_thesis.git

10 Introduction

Appendix B contains two sections. In Appendix B-1, several second-order optimization
algorithms to approximate the Hessian term of the cost function are introduced. In Appendix
B-2, it provides the algebraic initialization method for the developed optimization framework.
The computational and storage complexity of this method are calculated and used in this
thesis. This method is a modified version of the result from [22].

Zhehan Li Master of Science Thesis

Chapter 2

Development: From Tensor To
Numerical Optimization

This chapter aims to describe the development of the proposed tensor-based Volterra system
identification framework. Section 2-1 covers the symbolic notations and the terminology of
the tensor technique. The Volterra tensor is defined in section 2-2 to model the input-output
relationship of the multiple-input single-output (MISO) Volterra system. The two following
sections contain the essential innovation of this thesis. In section 2-3 the symmetric canonical
polyadic decomposition (CPD) is applied on the Volterra tensor, and a linear framework is
proposed to model the MISO Volterra system. The application of a second-order numerical
optimization algorithm to estimate the linear framework parameters is introduced in section 2-
4. This chapter ends by answering the research sub-questions of Phase I in section 2-5.

2-1 Tensor Basics

Tensors are multi-dimensional arrays that generalize the notions of vectors and matrices to
higher orders. In a vector, each entry is determined by one index. In a matrix, there are
two indices. In a dth order tensor, each of its entries is determined by d indices. Scalars are
denoted as Roman letters x ∈ R, vectors as lower-case boldface letters x ∈ RI1 , matrices
as capital bold letters X ∈ RI1×I2 . dth order tensors are given as capital calligraphic letters
X ∈ RI1×···×Id . R denotes the fields of real numbers. The positive integers d, I1, I2, . . . , Id are
called the order and the dimensions of the tensor, respectively. Note that the terminology
order, way and mode of a tensor are interchangeable; and vectors or matrices can also be
written as 1st or 2nd order tensors, respectively.

The notations of some basic linear algebra operations are defined as follows. XT , X−1 and X†

stand for the transpose, inverse and Moore-Penrose pseudoinverse of X, respectively. The nth

element in a sequence is denoted by a superscript in parentheses. For example, x(1), x(2), x(3)

denote the first three elements of the vector x. The exponentiation operation is denoted by

Master of Science Thesis Zhehan Li

12 Development: From Tensor To Numerical Optimization

Figure 2-1: Diagrammatic notations of tensors. (a) From left to right: a scalar x ∈ R, a vector
x ∈ RI1 , a matrix X ∈ RI1×I2 , and a 3 way tensor X ∈ RI1×I2×I3 ; (b) The vectorization of the
3 way tensor X into a vector x ∈ RI1I2I3 .

the superscript of the exponent in the top right part of the base. For example, ud stands for
u raised to the power of d, where d is the exponent and u is the base.

Tensors are described and computed more easily when using diagrammatic notations adopted
from physics and quantum chemistry [26]. The notations for a scalar, a vector, a matrix, and
a three-way tensor are shown in Figure 2-1 (a). Each node corresponds to a tensor. The edges
reflect the indices of tensor indices, and hence the number of edges correlates to the order of
tensor. The edges are interchangeable. A node with one edge is a vector, or a 1st order tensor.

Reshaping is a critical operation on tensors. The reshaping method used in this thesis is
vectorization, which reorganizes the entries of a d way tensor X ∈ RI1×···×Id into a vector
x ∈ RI1···Id . The operation of vectorization of tensor X is denoted as vec(X). In Figure 2-1
(b), the diagrammatic notation of the vectorization of a 3 way tensor X ∈ RI1×I2×I3 into a
vector x ∈ RI1I2I3 , denoted as vec(X) is provided.

A tensor is called cubical if each mode has the same size, for example a d way cubical
tensor X ∈ RI×···×I . Furthermore, this d way cubical tensor is symmetric if its elements stay
constant regardless of any index permutation, expressed as follows:

X (i1,i2,...,id) = X π(i1,i2,...,id) (2-1)

where π(.) stands for all distinct index permutations.

Tensor operations are higher order equivalents to vector and matrix operations. Tensor con-
traction and product serve as the mathematical foundations in this chapter. The mode-n
product is denoted as ×n. The Kronecker, Khatri-Rao, row-wise Khatri-Rao, Hadamard and
outer products are denoted as ⊗, ⊙, ⊙T , ∗, and ◦, respectively. The calculation details of
these tensor operations are provided in Appendix A-1.

The properties of the tensor operations that are used in this thesis are summarized as follows,

Zhehan Li Master of Science Thesis

2-2 Volterra Tensor 13

Property 1: Properties Of Tensor Operations [27]

The multidimensional contraction of d way symmetric tensor A ∈ RI×···×I with a vector
x ∈ RN is the scalar

Axd := A×1 xT ×2 xT ×3 · · · ×d xT (2-2)

which equals to
Axd := (x⊗ x⊗ · · · ⊗ x) vec(A) (2-3)

The product of the row-wise Khatri-rao product of A ∈ RN×I and Khatri-rao product
of B ∈ RI×R can be calculated by the Hadamard product operation as follows,

(A⊙T A)(B⊙B) = AB ∗AB = (AB).2 ∈ RN×R (2-4)

where ().t represents the element-wise tth power.

2-2 Volterra Tensor

The above introduced tensor techniques are used to model the input-output relationship of
the discrete time dth order truncated Volterra system. Since the single-input single-output
(SISO) system expressed in Equation 1-2 belongs to a multiple-input single-output (MISO)
system, the following definitions and properties of MISO systems also apply to SISO systems.

Based on Equation 1-2, the input-output relationship of the dth order MISO Volterra sys-
tem is expressed as follows,

y(t) : = y0(t) + y1(t) + y2(t) + · · ·+ yd(t)

= h0 +
d∑

i=1

P∑
z1,...,zi=1

M−1∑
k1,...,ki=0

hi (z1, . . . , zi; k1, . . . , ki)
i∏

j=1
uzj (t− kj)

(2-5)

where hi (z1, . . . , zi; k1, . . . , ki) denotes the ith order Volterra kernel for the multiplication of
the z1

th to zi
th inputs at time instance t with delay indices of k1 to ki for each input, re-

spectively. The output y(t) is a multivariate polynomial of degree d in inputs ui(t − τ) for
τ ∈ [0, M − 1] and i ∈ [1, p].

The dth order Volterra kernel in Equation 2-5 has coefficient number of (pM)d. These co-
efficients can be represented by a vectorized d way cubical tensor Vd ∈ RpM×···×pM . For
simplicity, the input sequence ut ∈ R(pM+1) is defined as a row vector with entries of 1, u1(t),
u2(t),. . ., up(t), . . ., u1(t − M + 1), u2(t − M + 1),. . ., up(t − M + 1). The input-output
relationship in Equation 2-5 can be formulated as the multidimensional contraction of the d
way MISO Volterra tensor V ∈ R(pM+1)×···×(pM+1) and uT

t ∈ R1×(pM+1), by defining the d
way MISO Volterra tensor as follows,

Master of Science Thesis Zhehan Li

14 Development: From Tensor To Numerical Optimization

Definition 2: MISO Volterra Tensor [11]

For the MISO Volterra system in Equation 2-5, the d-way cubical Volterra tensor V is
defined by

y(t) : = y0(t) + y1(t) + y2(t) + · · ·+ yd(t)

= h0 +
d∑

i=1

P∑
z1,...,zi=1

M−1∑
k1,...,ki=0

hi (z1, . . . , zi; k1, . . . , ki)
i∏

j=1
uzj (t− kj)

= V ud
t

= V ×1 uT
t ×2 uT

t · · · ×d uT
t

=
(
uT

t ⊗ uT
t ⊗ · · · ⊗ uT

t

)
vec(V)

(2-6)

where the diagrammatic notation of the multidimensional contraction of V and uT
t is

shown in Figure 2-2. The last three rows of Equation 2-6 are based on the tensor
operation properties in Equation 2-2 and Equation 2-3.

By storing the output measurements {y(t)}t=[0,N−1] in a row vector, Equation 2-6 can be
expressed as follows,

y ∈ RN =


y(0)
y(1)

...
y(N − 1)

 =


uT

0 ⊗ uT
0 ⊗ · · · ⊗ uT

0
uT

1 ⊗ uT
1 ⊗ · · · ⊗ uT

1
...

uT
N−1 ⊗ uT

N−1 ⊗ · · · ⊗ uT
N−1

 vec(V)

=




uT
0

uT
1
...

uT
N−1

⊙T


uT

0
uT

1
...

uT
N−1

⊙T · · · ⊙T


uT

0
uT

1
...

uT
N−1


 vec(V)

=
(
U⊙T U⊙T · · · ⊙T U

)
vec (V)

:= Ũ vec (V)
(2-7)

where the symbol U stands for a matrix that stacks uT
t row-wisely for t ∈ [0, N−1], expressed

as follows

U =


uT

0
uT

1
...

uT
N−1

 ∈ RN×(pM+1) (2-8)

Equation 2-7 is a linear system with d-times row wise Khatr-Rao product of U as the coef-
ficient matrix, and vec (V) as the solution. In [11], the condition for the input signal being
persistently exciting of order d is provided and reviewed in Appendix A-3. According to
[11], if the input is persistently exciting and N ≥ rank(Ũ), there are infinite number of solu-

Zhehan Li Master of Science Thesis

2-3 Symmetric CPD On Volterra Tensor 15

Figure 2-2: Diagrammatic notations of the multidimensional contraction operation of the 4-way
Volterra tensor V and the transpose of the input sequence uT

t . The result is the scalar y(t). The
red arrow represents the product of V and uT

t in each mode of V .

tions vec(V) ∈ R(pM+1)d satisfying Equation 2-7. One of the solutions that has
(

pM + d
pM

)
distinct coefficients must correspond to a vectorized d-way symmetric tensor, denoted as
vec(Vsym). The uniqueness of one symmetric solution implies the absence of more symmetric
solutions.

By symmetrizing the Volterra tensor V, the solution vec(Vsym) is the unique solution of
Equation 2-7, expressed as,

y ∈ RN =
(
U⊙T U⊙T · · · ⊙T U

)
vec(Vsym) (2-9)

where the storage complexity of the solution vec(Vsym) is still large because all the unique

elements of vec(Vsym) ∈
(

pM + d
pM

)
grow factorially with d.

In the next section, the tensor decomposition technique is introduced. After applying this
technique on vec(Vsym), the unique elements of vec(Vsym) are replaced by only a few numbers.

2-3 Symmetric CPD On Volterra Tensor

Building on the well-established field of matrix decomposition technique such as the singu-
lar value decomposition (SVD) approach, various tensor decomposition techniques have been
proposed to reveal the underlying information in a tensor in a compact way by minimizing
the storage complexity [28]. One of these tensor decomposition techniques is the canonical
polyadic decomposition (CPD). It was introduced by Hitchcock [20] and it is also named
as PARAFAC, canonical decomposition (CANDECOMP), and rank decomposition. CPD is
a versatile model that has been used in a wide variety of applications in machine learning,
computer vision, data mining, signal processing, and biomedical sciences [29, 23, 30].

Master of Science Thesis Zhehan Li

16 Development: From Tensor To Numerical Optimization

Figure 2-3: Diagrammatic notation of the symmetric CPD for a third-order Volterra tensor. The
blue arrow represents the outer product of bi.

From now on, the notation I is used to replace pM + 1. For the d-way Volterra tensor
V, it can be represented by a sum of R rank-1 terms, mathematically expressed as,

V ≈
R∑

r=1
crb(1)

r ◦ b(2)
r ◦ · · · ◦ b(d)

r (2-10)

where cr ∈ R is a scalar, b(i)
r ∈ RI are vectors for i = 1, 2 · · · d. Each element of the tensor V

is determined by the element-wise product of vector b(i)
r :

v(i1i2···id) ≈
R∑

r=1
cr

(
d∏

n=1
b(n,in)

r

)
(2-11)

where the scalar b
(n,in)
r stands for the in

th element of b(n)
r .

The operation performed in Equation 2-10 is called the polyadic decomposition (PD) of
the tensor V. Moreover, in case R is the minimal number of the components in an ex-
act PD, the operation in Equation 2-10 is also called CPD of the tensor, where the term
exact applies if the decomposition is not an approximation but an equality. By defining
B(i) = [b(i)

1 , b(i)
2 , · · · , b(i)

R] ∈ RI×R and c = [c1, c2, · · · , cR] ∈ R1×R, the vectorization of the
CPD of tensor V can also be defined as follows,

vec(V) :=
(
B(1) ⊙B(2) ⊙ · · · ⊙B(d)

)
· c (2-12)

where B(i) is called the ith component factor, and c is called the weighting vector. Determin-
ing the minimum rank R is an NP-hard problem [19].

For the symmetric Volterra tensor Vsym, the component factors B(i) for all values of i are the
same. The corresponding symmetric CPD of the Volterra tensor is defined as below:

Zhehan Li Master of Science Thesis

2-3 Symmetric CPD On Volterra Tensor 17

Figure 2-4: The storage complexities of three formats of Volterra tensor: V, Vsym and sym-
metric CPD formats under different values of d I and R, respectively. In general, the symmetric
CPD format reduces the storage complexity significantly for d > 10. However, the reduction is
insignificant (even counteractive) when d < 10 and R > 50 as pointed out in the red circle.

Definition 3: Symmetric CPD Of Volterra Tensor

The symmetric CPD of the d-way Volterra tensor V ∈ RI×I×···×I is represented as a
sum of R rank-1 terms, mathematically expressed as:

V ∈ R

d times︷ ︸︸ ︷
I × I × · · · × I =

R∑
r=1

cr

d times︷ ︸︸ ︷
br ◦ br ◦ · · · ◦ br (2-13)

whose diagrammatic notation for the third order system is shown in Figure 2-3. The
storage complexity of the symmetric CPD is O

(
B ∈ RI×R + c ∈ RR

)
=O ((I + 1)R),

which grows linearly with R and I.

Equation 2-13 is also called the Volterra-PARAFAC model, which is discussed in the
introduction chapter. In this thesis, the terms symmetric CPD and Volterra-PARAFAC
model refer to the operation represented in Equation 2-13.

The symmetric CPD addresses the parametric complexity problem in Equation 2-9, which
can be evidenced by Figure 2-4. Figure 2-4 shows the number of coefficients of the Volterra

tensor (NV = Id), the symmetric Volterra tensor
(

NV S =
(

I − 1 + d
I − 1

))
and its symmetric

CPD format (NV P = R(I +1)) under different values of I, d and R, respectively. The number
of coefficients of the symmetric is not influenced by the value of d, thus it reduces the storage
complexity significantly in general. However, as pointed out by the red circle for d < 10, the
reduction is insignificant for R = 10, and even becomes counteractive for R > 50.

Master of Science Thesis Zhehan Li

18 Development: From Tensor To Numerical Optimization

By performing the symmetric CPD on the Volterra tensor in Equation 2-9, the Volterra
system is modeled as a linear system with a symmetric CPD constrained solution and a row-
wise Khatri-Rao structured coefficient matrix. A linear system under the same structure is
named LS-CPD in [22]. The dth order MISO Volterra system modeling framework in the
LS-CPD format is proposed in this thesis, mathematically expressed as follows:

Proposition 1: The dth Order MISO Volterra System Modeling In The LS-
CPD Framework

The dth order MISO Volterra system with the input and output measurements can be
modeled as:

y ∈ RN =


y(0)
y(1)

...
y(N − 1)

 =
(
U⊙T U⊙T · · · ⊙T U

)
vec (Vsym)

=
(
U⊙T U⊙T · · · ⊙T U

)
(B⊙B⊙ · · · ⊙B) · c

=

 d
∗

i = 1
UB

 · c
= (UB)·d · c

(2-14)

whose derivation is based on the tensor operation property in Equation 2-4.

2-4 Nonlinear Least Squares Optimization Structure For LS-CPD

In this section, several second-order optimization algorithms are considered to search for the
solution of Equation 2-14 by optimizing an Nonlinear Least Squares (NLS) objective function.
In subsection 2-4-1, the NLS objective function is introduced, and the Gauss-Newton (GN)
algorithm is selected. In subsection 2-4-2, the components and procedure of the Gauss-Newton
(GN) algorithm to optimize the NLS objective function are explained.

2-4-1 NLS objective function

The solution Vsym of Equation 2-14 given the input-output measurements {y(t), ui(t)}i=[1,p]
t=[0,N−1]

can be obtained by the NLS method by finding the optimal variable z∗ =
[
vec (B∗) ; (c∗)T

]
∈

RR(I+1). The NLS method minimizes the squared error between the ground truth output y
and the simulated output determined by z and U following Equation 2-14. The objective
function of the NLS method can be expressed mathematically as,

min
z

f(z) with f(z) ∈ R = 1
2∥r(z)∥2F , r(z) ∈ RN = (UB)·d · c− y (2-15)

Zhehan Li Master of Science Thesis

2-4 Nonlinear Least Squares Optimization Structure For LS-CPD 19

where ∥ · ∥2F denotes the squared Frobenius norm calculated as:

∥r(z)∥2F =
N∑

n=1
|r(z)(n)|2 (2-16)

where the scalar r(z)(n) denotes the nth element (row) of the residual vector r(z).

Line search and trust region algorithms are two iterative methods for updating the vari-
ables of optimization problem in Equation 2-15 such that zk is closer to a (possibly local)
optimum. Line search methods use the objective function to generate a search direction pk,
and then concentrate their efforts on finding a step length λk that is optimal for this direction,
expressed as follows,

zk = zk−1 + λkpk

λk = arg min
λ>0

f (zk−1 + λpk) (2-17)

where pk can be chosen by the steepest descent method. The steepest descent method is not
used in this thesis because its convergence has been proven to be slow and not monotone [31].

Trust-region approaches identify an area ∆k around the current iteration where they trust
the model f̃k is a sufficient approximation of the objective function fk and then decide the
step pk as the approximate minimizer of the model f̃k in this region, expressed as

pk = arg min
pk

f̃(pk) subject to ∥pk∥2 ≤ ∆k,

zk = zk−1 + pk,
(2-18)

where ∥.∥2 is the squared Euclidean norm.

The size of the trust region ∆k is critical to the effectiveness of each step pk. If the re-
gion is too small, the algorithm misses an opportunity to take a substantial step that will
move it much closer to the minimizer of the objective function. If too large, the minimizer of
the model may be far from the minimizer of the objective function in the region, so we may
have to reduce the size of the region and try again [31]. In this thesis, the size of the region
is determined by the performance of the algorithm during previous iterations. The reader
is recommend to reference the Algorithm 4.1 in [31] where a detailed derivation of the trust
region calculation is provided and used in this thesis.

The step direction pk in Equation 2-18 can be determined by the derivatives gk and Hessian
Hk of the objective function fk locally approximated by a Taylor series at the current guess
zk:

f (zk + p) ≈ f (zk) + pT · ∇zf (zk)︸ ︷︷ ︸
gk

+1
2pT · ∇2

zf (zk)︸ ︷︷ ︸
Hk

·p + . . . (2-19)

where gk and Hk are calculated by the (partial) derivative as follows,

gk =
[

∂f

∂z
(1)
k

∂f

∂z
(2)
k

· · · ∂f

∂z
(R(I+1))
k

]T
∈ RR(I+1) (2-20)

Master of Science Thesis Zhehan Li

20 Development: From Tensor To Numerical Optimization

Hk =



∂2f

∂(z(1)
k

)2
∂2f

∂z
(1)
k

∂z
(2)
k

· · · ∂2f

∂z
(1)
k

∂z
(R(I+1))
k

∂2f

∂z
(2)
k

∂z
(1)
k

∂2f

∂(z(2)
k

)2
· · · ∂2f

∂z
(2)
k

∂z
(R(I+1))
k...

...
∂2f

∂z
(R(I+1))
k

∂z
(1)
k

∂2f

∂z
(R(I+1))
k

∂z
(2)
k

· · · ∂2f

∂(z(R(I+1))
k

)2


∈ RR(I+1)×R(I+1) (2-21)

where z
(i)
k represents the ith element of the optimization variable zk at iteration k.

The approximation model f̃k can be obtained by limiting the Taylor series in Equation 2-19
to the first three elements, expressed as

f̃(p) = f (zk) + pTgk + 1
2pTHkp (2-22)

To obtain the optimal step direction pk, the gradient of f̃ , i.e., ∇pf̃ = gk + Hkp, is set to
zero, which results in the standard Newton’s method:

Hkpk = −gk. (2-23)

where pk is called the Newton step.

Equation 2-23 can be solved by calculating the inverse of the Hessian Hk. However, this
is ill-conditioned and expensive because of following two reasons:

1. The Hessian Hk is often difficult or expensive to compute explicitly. Each element of
Hk requires a twice partial derivative evaluation of the cost function. For large I and
R, the computational cost to calculate the twice partial derivations is high.

2. Even though the Hessian Hk could be calculated explicitly, Hk is not promised to be
positive-definite, and thus it could not be invertible. For example, Hk could contain
negative or zero eigenvalue(s) for some value combinations of B and c.

Instead of calculating the inverse of Hessian Hk, Hk can be approximated by several Newton
type algorithms, such as nonlinear conjugate gradient , Gauss-Newton (GN) and Levenberg-
Marquardt algorithms [25]. Some examples of such approximations of these algorithms are
given in Appendix B-1. The GN algorithm is used in this thesis to find the step direction pk,
which is expressed as follows,

JT
k Jkpk = −JT

k rk (2-24)

where Jk ∈ RR(I+1) is the Jacobian of the cost function, and the Newton step pk can be
solved exactly using the pseudoinverse of JT

k Jk or inexactly using conjugate gradient (CG)
iterative technique. The reader is recommended to reference [31] for a detailed description of
CG technique.

The advantages of using the GN algorithm to optimize the NLS objective function in Equa-
tion 2-15 are the motivation of using the GN algorithm, which are listed as follows,

1. The approximation of Hessian Hk by the Jacobian Jk saves the trouble of computing
the individual element of the Hk.

Zhehan Li Master of Science Thesis

2-4 Nonlinear Least Squares Optimization Structure For LS-CPD 21

2. The multilinear information of tensor operations in the LS-CPD format can be used
elegantly to calculate of the Jacobian Jk, which is shown in the next subsection.

3. The convergence of the GN algorithm is quadratic when near to the local optimum.
This property has been proven in Theorem 10.1 in [31].

4. Several recent research have demonstrated that the GN algorithm allows the constraints,
symmetry, coupling and regularization to be implemented easily on the LS-CPD format
[32, 33, 34].

The procedure of the GN algorithm to solve the NLS objective function will be explained in
the next coming subsection.

2-4-2 GN optimization algorithm

The GN algorithm solves the NLS problem in Equation 2-15 by approximating the Hessian
Hk at iteration k and then update the variable zk along the direction pk by solving the
linear system in Equation 2-23, whose components are obtained in the following manners.
For simplicity, the underscript k is dropped.

• Jacobian J can be partitioned into two parts [JB, Jc] corresponding to the variables B
and c with:

JB = ∂r
∂ vec(B) =

(
d(UB)·(d−1) ⊙ cT

)
⊙T U ∈ RN×RI

Jc = ∂r
∂c = (UB)·d ∈ RN×R

(2-25)

whose computational complexity together are O (NR(I + d)). The reader is recom-
mended to reference [22] for a detailed derivation of Equation 2-25.

• Hessian H is approximated by

H = JTJ ∈ RR(I+1)×R(I+1) (2-26)

where J ∈ RN×R(I+1) is the Jacobian. The computational complexity of Equation 2-26
is O

(
NR2I2).

• Gradient g can be calculated explicitly by

g = JTr ∈ RR(I+1) (2-27)

whose computational complexity is O (NRI).

The GN algorithm for solving the LS-CPD in Equation 2-14 with trust region method is sum-
marized in Algorithm 1, where a random factor matrix B0 and weighting vector c0 can be
used to initialize the algorithm. It can also start from the output of an algebraic framework
proposed in [22] that is proven to provide a better initialization and explained in Appendix
section B-2. The algorithm is available in the MATLAB ® script lscpds_krt_nls.m in the

Master of Science Thesis Zhehan Li

22 Development: From Tensor To Numerical Optimization

Tensorlab package [35].

Algorithm 1: GN algorithm with trust region method to solve LS-CPD in Equation 2-14
[22]
Input: U, y, initial values for B0, c0

1 while not converged do
2 Compute Jacobian Jk and gradient gk;
3 Approximate the Hessian Hk by JT

k Jk;
4 Find the Newton step pk by solving Hkpk = −gk using pseudoinverse or CG ;
5 Update the variable zk along the Newton step zk = zk−1 + pk;
6 end

Output: B∗, c∗

The stopping criteria for Algorithm 1 is the fulfillment of any of the following conditions.

• The value of the objective function is lower than the tolerance with the default value as
10−12. 1

• The difference in objective function value between two successive iterations is lower than
the tolerance with the default value as 10−12.

• The number of iterations reach the maximum default value of 200.

• The value of the Newton step size reaches the tolerance with the default value as 10−6.

If Equation 2-23 is solved by pseudoinverse of the Hessian Hk, the computational com-
plexity of Algorithm 1 is O

(
itGN (NR2I2 + R3I3)

)
with itGN stands for the number of

GN iteration [22]. In each iteration, Algorithm 1 updates the values for the following
components, H, J, g, r, z and p. The storage complexity of Algorithm 1 is then the sum-
mation of the size of all these components and of the inputs y and U. The result is
O
(
R(I + 1)(N + 3) + N(I + 2) + R2(I + 1)2).

2-5 Conclusion On Phase I

In this chapter, the Volterra system identification problem is modelled within the LS-CPD
framework introduced in Equation 2-14. The parameters values of this framework can be
optimized by the NLS optimization problem which is solved with the GN algorithm with the
trust region method explained in Algorithm 1.

Based on the content discussed this chapter, the research sub-questions related to Phase
I are answered as follows.

1The default values in each condition are chosen to achieve a good balance between the quality of the final
optimal solution and the extra unnecessary computational cost when the solution is already near to the global
(local) minimum.

Zhehan Li Master of Science Thesis

2-5 Conclusion On Phase I 23

Phase I: Development

1. How does the Volterra-PARAFAC model address the problem of parametric com-
plexity in identifying the Volterra kernel parameters? If it does not solve the
problem, what is the lacking factor?

(a) Firstly, it should be recalled that in this thesis, the Volterra-PARAFAC
model is equivalent to the symmetric CPD of Volterra tensor defined in
Equation 2-13. The symmetric CPD technology decomposes the Volterra
tensor as a sum of R rank-1 terms. These terms are the same for each rank
value, and are determined by the factor matrix and the weighting vector.
The storage complexity of these two components grows linearly with the
rank value and the dimension size of the Volterra tensor.

(b) The effect of the symmetric CPD on lowering the parametric complexity
is less attractive and even becomes negative, when with small order and
dimension size but large rank values. Meanwhile, determining the rank R
of the Volterra tensor is a NP-hard problem [9]. In many cases, the domain
knowledge or trial-and-error are used to find the correct rank value. Because
the rank R is a hyper-parameter in this proposed framework, it is crucial
to investigate the impact of various rank values on the same identification
configuration.

2. What is(are) the benefit(s) of using the Gauss-Newton (GN) optimizer to optimize
the Least squares (LS) cost function? How to calculate the components of this
optimizer?

(a) The main advantage of the Gauss-Newton (GN) optimizer is that the cal-
culationally expensive Hessian term of the cost function is approximated
by the Jacobian term. The other benefits are: it leverages the multilin-
ear information of the tensor product operation to compute the Jacobian,
achieves quadratic convergence when near to the local optimum, and al-
lows constraints, symmetry, coupling and regularization to be implemented
easily.

(b) The components for the GN algorithm consist of the Hessian, Jacobian,
gradient and Newton step. The calculation of these terms is explained in
section 2-4.

3. The GN optimizer minimises the Least squares (LS) cost function starting from
an initial value. How to initialise this optimization procedure?

(a) The random initialization and algebraic initialization methods have been
introduced in subsection 2-4-2 and Appendix B-2. The former initializes
the optimization variable from random values, while the latter initializes
from the result of some algebraic operations, which could be already close
to the optimal value.

4. Does the developed framework apply to the MIMO case? If not, which step (com-
ponent) of the developed framework should be modified in order to do so?

Master of Science Thesis Zhehan Li

24 Development: From Tensor To Numerical Optimization

(a) It does not apply to the MIMO case because the developed framework only
updates a pair of factor matrix and weighting vector. For the MIMO system,
each output corresponds to a Volterra tensor. The symmetric CPD should
be applied to each Volterra tensor, respectively. This results in each output
corresponds to a pair of factor matrix and weighting vector.

(b) Three components should be modified for the MIMO case. (1) The output
measurements are stored in a matrix Y where each column corresponds to
one output. The vector y in the developed cost function should be changed
by the defined matrix Y. (2) By stacking the elements of all the factor
matrices and weighting vectors row-wisely in a vector, this vector becomes
the new optimization variable for the new cost function, whose value is
updated by the GN optimizer. (3) The Jacobian term of the GN optimizer
should be calculated in a different manner, which takes all the factor matrices
and weighting vectors into consideration.

Zhehan Li Master of Science Thesis

Chapter 3

Validation: Identifying An Artificial
Volterra System

This chapter aims to validate the developed Volterra system identification framework. Section
3-1 covers the simulation of an artificial MISO Volterra system, and definition of the figures
of merit used to determine the quality of the identification performance. The artificial MISO
Volterra systems with different parameter values are simulated and used in three proof-of-
concept experiments. The fist two experiments performed in section 3-2 and section 3-3 are
the internal validations. They focus on the influence of the hyper-parameter R and two
initialization methods of the GN algorithm on the identification performance. The third
experiment performed in section 3-4 is the external validation. It compares the developed
framework with three TN based frameworks on identifying the same artificial Volterra system
when the storage complexity budget is added. This chapter ends by answering the research
sub-questions of Phase II in section 3-5. All computations were done on an Intel i5 quad-core
processor running at 2.4 GHz with 8 GB RAM using MATLAB ® 2018a and Tensorlab 3.0
[35].

3-1 Proof-of-concept Experiment Setup

In this chapter, an artificial MISO Volterra system is simulated to demonstrate the validity
of the developed identification framework. The default system order, the input memory, the
input number, and the simulation time length are set to d = 5, M = 5, p = 2 and N = 10001,
respectively. The factor matrix B ∈ RI×R in the LS-CPD format in Equation 2-14 is created

1The selection of the system default setting is based by balancing the size of the synthetic Volterra tensor
with the computational and storage capacity of the computer. If the size of the synthetic Volterra tensor
(determined by d and pM + 1) is disproportionately large, the framework demands an excessive amount of
resources. In this case, a single iteration of the GN algorithm may last a few minutes. Some experiments in
this chapter are run thirty trials under same system parameters. Having an excessively large tensor size will
add many hours to the completion of these studies.

Master of Science Thesis Zhehan Li

26 Validation: Identifying An Artificial Volterra System

as the sampled decaying exponential function with each column i ∈ [1, R] expressed as [9]

B(:, i) = |αi| exp (−βi[1 : I]) (3-1)

where αi is sampled from a standard normal distribution and βi is an integer sampled uni-
formly from the range [1, 10]. The default rank value is set to R = 5. The weighting vector
c ∈ RR contains pseudo-random values drawn from the standard uniform distribution on the
open interval (0,1). The input measurements ui(t) ∈ R for t ∈ [0, N −1] and i ∈ [1, p] are cre-
ated as standard normal Gaussian white noise, which guarantees the input matrix U ∈ RN×I

in Equation 2-14 being persistently exciting of any order [9].

The corresponding symmetric Volterra tensor Vsym is recovered by following Definition 3.
This can be achieved by using the MATLAB ® script cpdgen.m in the Tensorlab package
[35]. The cpdgen.m function takes the user-defined B and c as the input, and returns Vsym

as the output. The output measurements y ∈ RN are simulated within the LS-CPD format
introduced in Equation 2-14. The measurement noise is also Gaussian white noise with a
variance chosen such that different signal-to-noise ratio (SNR) can be created. The noiseless
output is denoted as y, and the output with noise SNR value of x is denoted as y(SNR = x).
The SNR is defined as the ratio of the summed square magnitude of the signal to the summed
squared magnitude of the noise, expressed as [18],

SNR = 20 log10

(∥y∥F
∥N∥F

)
(3-2)

where N = y(SNR = x)− y, and ∥ · ∥F denotes the Frobenius norm.

The first 700 samples of the output measurements are used for training, denoted as yt, while
the remaining 300 samples are used for validation, denoted as yv. The estimated training
output is denoted as ŷt, and the modelled validation output is denoted as ŷv. Both of them
are calculated within the LS-CPD format along with the input matrix U, the estimated factor
matrix B̂ and the weighting vector ĉ. The latter two components are the output of Algorithm
1, mathematically expressed as:

ŷt =
(
U(1 : 700, :)B̂

)·d
ĉ

ŷv =
(
U(701 : 1000, :)B̂

)·d
ĉ

(3-3)

where U(1 : 700, :) stands for the first 700 rows of the matrix U. The estimated Volterra
tensor, denoted as V̂, is recovered by the estimated factor matrix B̂ and the weighting vector ĉ.

The identification performance is characterized by the following figures of merit. These are
adopted from the recent research [9]:

• The relative training and validation error, denoted as rt and rv, respectively, are defined
as follows,

rt := ∥yt − ŷt∥F
∥yt∥F

rv := ∥yv − ŷv∥F
∥yv∥F

(3-4)

Zhehan Li Master of Science Thesis

3-2 Experiment I: Influence Of Rank R 27

Table 3-1: Mean and standard deviation (Std) of the values regarding the figure of merits over
20 trails with R = 5 when starting with random initialization.

rt rv s tir(s) tgn(s) tt(s)
Mean 2.98*10−16 1.22*10−13 3.45* 10−19 4*10−5 2.86*10−2 2.86*10−2

Std 1.01*10−31 2.29*10−17 5.25*10−20 1.43*10−6 8.54*10−4 8.54*10−4

• The symmetry of the estimated Volterra tensor V̂ is reflected by computing the sym-
metry coefficient s as follows [9],

s :=
∑

p

∥V̂ − permute(V̂, π)∥F , (3-5)

which compares V̂ to all possible index permutations π, and is exactly zero when V̂ is
symmetric.

• The running time required for the initialization of Algorithm 1 with the random ini-
tialization or the algebraic initialization, are denoted as tir and tia, respectively. The
running time required from Algorithm 1 to converge is denoted tgn. All the running
times are measured by the MATLAB ® script tic.m and toc.m with unit of second.
The total running time for the overall identification procedure, denoted as ttr (random
initialization) or tta (algebraic initialization), is calculated as follows,

ttr := tir + tgn

tta := tia + tgn
(3-6)

3-2 Experiment I: Influence Of Rank R

This experiment aims to (1) investigate the influence of the approximation rank value on the
GN algorithm identification performance when the size of the Volterra tensor to be estimated
is different; (2) discuss the compensation that choosing an overestimated rank value has on
the figures of merit.

In the experiment, the default system parameter values and the noiseless output measure-
ments are used. The random initialization is applied instead of the algebraic initialization
because it has been checked that the latter already provides an (close-to-)optimal solution.
Having an optimal initial value reduces the evidence of the GN optimization capability, which
is not consistent with the aim of this experiment.

This experiment has two steps. First, the default value rank R = 5 is chosen, and the
GN algorithm is run for twenty trials. Each trial starts with a different random initial value.
The corresponding figures of merit of all trials are summarized in Table 3-1. The average
number of iterations required for Algorithm 1 to converge is 11 (with deviation of ± 3). The
values of several optimization components over iterations of one trial are displayed in Fig-
ure 3-1. In this trial, the second stopping criteria (the relative objective function value reaches

Master of Science Thesis Zhehan Li

28 Validation: Identifying An Artificial Volterra System

Figure 3-1: Evolution of the GN components’ values over iterations in one trial with R = 5 and
random initialization.

the minimum tolerance) is satisfied at the 11th iteration when the training error rt drops to
10−10. The optimization variable zi at the 8th iteration may be already close to the optimal
value, given the fact that both the Newton step size pi and the relative objective function
value f(zi−1)− f(zi) keep as small value after 8th iteration. Meanwhile, the estimated tensor
is symmetric over all iterations, given the fact that the symmetric coefficient si always stays
smaller than 10−14. This is expected since the symmetric structure of the resultant tensor is
enforced by the LS-CPD format.

The above experiment proves that the proposed framework is able to identify the artificial
Volterra system with the default rank value. However, in practical applications, the number
of input p, memory M , and dimension I of the tensor to be estimated are all or partially
unknown.

The second step of the experiment is to compare the identification performances with various
rank values R ∈ [1, 2, 3, 4, 5, 6, 10, 20] and tensor dimensions I ∈ [5, 10, 15, 20]. For each value
combination of I and R, the GN algorithm is run for thirty trials with random initialization.
The corresponding figures of merit are displayed as a box-plot shown in Figure 3-2.

The black circle in the box-plot is the median value, representing the average level of the
data. The length of the box represents the variance. The upper and lower bounds of the
bins are the upper and lower quartiles of the data, respectively. This means that the bin
contains 50% of the data. Therefore, the width of the bins reflects, to some extent, the degree
of fluctuation in the data. The line above and below the box represents the maximum and

Zhehan Li Master of Science Thesis

3-3 Experiment II: Choice Of Initialization Method 29

minimum value, respectively. The outlier data are plotted as small boxes outside these two
lines.

In general, the identification performance is sensitive to the choice of R, especially with
small tensor dimension. The sensitivity can be explained by the two following observations
from Figure 3-2.

1. The training and validation error increase as the approximation rank values decreases
when the approximation rank is under-estimated (R < 5). Both errors drop significantly
when the approximation rank is greater than or equal to the true rank value R = 5.
This implies that the GN algorithm does not converge to the local(global) minimum
when the rank is under-estimated. This is more evident as I increases.

2. The training run time increases with I, which is expected due to the fact that the size of
the optimization variable z ∈ RR(I+1), the computational complexity and the iterations
of the GN algorithm, all increase with growing R and I. However, the running time
unexpectedly drops to the shortest when R equals to the true rank value. This sudden
drop is insignificant as I increases.

In conclusion, the good fit between the model estimated by the GN algorithm and the ground
truth model is reached when the approximation rank is greater than or equal to the true
rank. The approximation rank value R can be chosen in such a way that a trade-off between
the computational (storage) complexity and the validation error is satisfied. For the trial-
and-error approach, a significant drop in the training run time when the rank starts from a
small number, might indicate that the current rank value is chosen sufficiently. When the
dimension of the tensor to be estimated is large, the accuracy of this indication decreases.
The method to find an appropriate rank value of the proposed framework for different tensor
dimensions requires further research.

3-3 Experiment II: Choice Of Initialization Method

In the previous experiment, the simulation results summarised in Table 3-1 prove that the
GN algorithm is able to converge to a local(global) minimum value when starting from a
random value. The algebraic initialisation method explained in Append A-1 can offer a more
accurate initial value for the GN algorithm [22].

A preparation experiment is designed to prove the effectiveness of the algebraic initialisa-
tion method. In the preparation experiment, two initialization methods are used for the GN
algorithm to identify the default artificial system, respectively. Twenty trials are performed
for the random initialization, and one trial for the algebraic initialization. The identifica-
tion performances in terms of figures of merit of two initialization methods are compared in
Table 3-2. The values of the components of the GN algorithm of two methods are also com-
pared and shown in Figure 3-3, where one trial of the random initialization method is plotted.

Master of Science Thesis Zhehan Li

30 Validation: Identifying An Artificial Volterra System

Figure 3-2: Influence of R ∈ [1, 2, 3, 4, 5, 6, 10, 20] with increasing tensor dimension I ∈
[5, 10, 15, 20] on training error (first plot), validation error (second plot), symmetric coefficient
(third plot), and training run time (last plot). The results are from 30 trials of the GN algorithm
with random initialization for each value combination of R and I.

Zhehan Li Master of Science Thesis

3-3 Experiment II: Choice Of Initialization Method 31

Figure 3-3: Evolution of the GN components’ values over iterations in one trial with random
(blue) or algebraic initialization (red) under the default system configuration.

Based on the results in Table 3-2 and Figure 3-3, the effectiveness of the algebraic initializa-
tion method comes at the expense of a long running time. This conclusion is provided based
on the following analysis of the results:

1. In Figure 3-3, the objective function value (training error) at the zero iteration for the
algebraic initialization method is 10−30 times smaller than that of the random method.
This implies that the initial value provided by the algebraic initialization method is
much closer to the ground truth than the random value.

2. In Table 3-2, the validation error with the algebraic initialization method is significantly
lower (10−16 times less) than the random initialization. Meanwhile, the symmetric
coefficient of the estimated Volterra tensor with the algebraic initialization method is
also considerably lower (10−8 times less) than the random initialization.

3. In Table 3-2, it only takes 1 iteration for the GN algorithm to converge with the algebraic
initialization method, while 11 iterations in average for the random initialization. In
Figure 3-3, the first, second and fourth stopping criteria are met simultaneously with
the algebraic initialization method after the 1st iteration.

4. In Table 3-2, the running time for the algebraic initialization method is 105 times more
than that of the random method. Meanwhile, when using the algebraic initialization,
the total running time is dominated by the time consumed for initialization.

The longer total running time for the algebraic method results from its expensive computa-
tional and storage complexities. The computational and storage complexities of the algebraic
initialization method are O

(
1
2NIF 2 + 7

6F 3 + NF
)

and O
(
FId

)
, respectively. The value of

F equals
(

I − 1 + d
I − 1

)
. The detailed derivations of the computational and storage complex-

ities are given in Appendix B-2. The computational and storage complexities of the algebraic
initialization depend on three system parameters: I, d and N . It is necessary to investigate

Master of Science Thesis Zhehan Li

32 Validation: Identifying An Artificial Volterra System

Table 3-2: The values of the figures of merit on identifying the default system with two initial-
ization methods. Twenty trials are performed for the random initialization, and one trial for the
algebraic initialization.

Element Random (mean+Std) Algebraic
rt 2.98*10−16(1.01 ∗ 10−31) 5.64*10−32

rv 1.22*10−13(2.29 ∗ 10−17) 6.23*10−29

s 3.45*10−19(5.25 ∗ 10−20) 2.45*10−27

tir(s) 4*10−5(1.43 ∗ 10−6) 3.2
tgn(s) 2.86*10−2(8.54 ∗ 10−4) 4.32*10−4

tt(s) 2.86*10−2(8.54 ∗ 10−4) 3.2
itgn 11 (3) 1

under which situation the algebraic initialization is worth using. The purpose of this inves-
tigation is to optimize the overall computational and storage complexity of the framework,
which is the summation of the computational and storage complexity of the initialization
method and the GN algorithm.

The experiment in this section is designed with the aim of achieving this purpose by: (1)
defining additional figures of merit to numerically reflect the balance between advantages and
disadvantages of the algebraic initialization method; (2) recording the figures of merit of using
the algebraic method for the GN algorithm to identify the artificial Volterra systems with
different parameter values.

This experiment has two steps. Each step starts with the definition of the related figure
of merit, followed by the simulation results and discussions. Each following subsection covers
one step.

3-3-1 Complexity compensation rates

The figures of merit used in the first step are the rates between the computational and storage
complexity of the algebraic initialization method and the GN algorithm. The complexity
compensation rates (CCR) are defined to calculate the rates as expressed in Equation 3-7.
These include two elements regarding the computational complexity denoted as CCRc, and
the storage complexity denoted as CCRs, expressed respectively as follows,

CCRc(%) := 100 |Cgn − Ca|
Cgn

CCRs(%) := 100 |Sgn − Sa|
Sgn

(3-7)

where Cgn and Ca (Sgn and Sa) stands for the computational (storage) complexities of the
GN algorithm and the algebraic initialization method, respectively. The value of each term

Zhehan Li Master of Science Thesis

3-3 Experiment II: Choice Of Initialization Method 33

Figure 3-4: Growths of CCRc (left) and CCRs (right) for increasing I and R for three cases
when d = 5, 10, 20. Both CCRc and CCRs grows exponentially with increasing I, and stay
constant with increasing R. The growths are dominated by the value of d, while the influence of
R is much weaker.

Figure 3-5: Growths of CCRc (left) and CCRs (right) for increasing d and R for three cases
when I = 5, 10, 20. Both CCRc and CCRs grows exponentially with increasing d, and stay
constant with increasing R. The growths are dominated by the value of I, while the influence of
R is much weaker.

Master of Science Thesis Zhehan Li

34 Validation: Identifying An Artificial Volterra System

is recalled as follows,

Cgn = O
(
itGN (NR2I2 + R3I3)

)
Ca = O

(1
2NIF 2 + 7

6F 3 + NF

)
Sgn = O

(
R(I + 1)(N + 3) + N(I + 2) + R2(I + 1)2

)
Sa = O

(
FId

)
(3-8)

where an empirical value for itGN = 5 is used. The values of CCRc and CCRs both depend
on d, R, I and N . In this thesis, the influence of d, R and I is analyzed because these are
usually unknown in practice.

The values of CCRc and CCRs under different value combinations of d, R and I are visual-
ized Figure 3-4 (different R and I) and Figure 3-5 (different R and d). Following conclusions
can be made by analysing the growth of CCRc and CCRs in these visualizations:

1. For large Volterra tensor that has higher values of d and I, Ca and Sa are both much
higher than Cgn and Sgn. In this case, the algebraic initialization method is not recom-
mended since it uses excessive resources in comparison to the GN algorithm, especially
for the consideration of optimizing the overall computational and storage cost.

2. Although the rank value could influence the identification performance when starting
with the random initialization as discussed in section 3-2, it does not influence CCRc

and CCRs. This is expected because the rank value does not influence Ca and Sa.

3. The growth of CCRs has the same pattern as CCRc, but is relatively faster, especially
for large Volterra tensor.

3-3-2 Performance compensation rate

The identification performances should also be taken into consideration. As shown in Figure 3-
3, the advantage of the algebraic initialization method is that its validation error, denoted
as rva, is much smaller than that of the random initialization, denoted as rvr. But its dis-
advantage is that the total running time tta is longer than that of the random initialization
ttr. The trade-off between its advantage and disadvantage should be made. The performance
compensation rate PCR reflects the balance between the validation error reduction, denoted
as PCRr, and the total running time rise, denoted as PCRt, of two initialization methods.
The PCR is defined as follows,

PCR(%) : = 100PCRr + PCRt

PCRr

= 100 log
rvr
rva
10 + log

ttr
tta
10

log
rvr
rva
10

(3-9)

where PCRr > 0 and PCRt < 0. The logarithm operation is used to calculate the order of
the reduction and growth of the PCRr and PCRt, respectively.

Zhehan Li Master of Science Thesis

3-3 Experiment II: Choice Of Initialization Method 35

Figure 3-6: Distribution of the PCR values under different sizes of the Volterra tensor to be
identified. For each tensor size, the random initialization method is performed 30 trails, and 1
trail for the algebraic initialization method.

The value of PCR is expected to be positive. The larger it is, the better balance between the
advantage and disadvantage of the algebraic initialization method can be reached, and the
more worthwhile it is to use this method. For the simulation results in Table 3-2, the average
value of PCR is calculated as follows,

PCR(%) = 100 log
1.22∗10−13
6.23∗10−29
10 + log

2.86∗10−2
3.2

10

log
1.22∗10−13
6.23∗10−29
10

≈ 10016− 2
16 = 87.5 (3-10)

which implies that the algebraic initialization method is preferred over the random initializa-
tion method when identifying the default artificial system .

The PCR values are recorded when identifying the artificial systems with different value com-
binations of I and d. Each value combination corresponds to an unique size of the Volterra
tensor to be estimated. For each tensor size, the random initialization method is performed
for thirty trails, and 1 trail for the algebraic initialization method. This results in the number
of PCR for each tensor size being 30. The distribution of PCRs for different tensor sizes is
visualized in Figure 3-6. The average value and the variance of PCRs decrease with increasing
I and a constant d value. The decrease is more significant for large value of d. This implies
that the advantage of the algebraic method is partially countered by its disadvantage when
the size of the tensor to be estimated is large.

In conclusion, the algebraic initialization method can provide a better initial value for GN
algorithm, but such gain is offset by its large computational and storage complexity, and long
running time. The increase of the d and I of the Volterra tensor to be estimated results

Master of Science Thesis Zhehan Li

36 Validation: Identifying An Artificial Volterra System

Table 3-3: The storage complexities of three TN based and the proposed frameworks. The
name of the algorithm that estimates the parameter value is used to represent the corresponding
framework. The value of R in the first three algorithms represents the maximal TT rank value,
which implies that the expressions in this table for the first three frameworks are over-estimated
in favor of the simplification. The value of R for the GN algorithm represents the approximation
rank value.

Algorithm Storage Complexity
MPP O

(
N + IR(N + 1) + 2(d− 1)R2I + NR + R2(I + 1)

)
ALS O

(
N + R2(NI + 2I + 1)

)
MALS O

(
N + R2I2(I + 1) + 2R2I

)
GN (proposed) O

(
R(I + 1)(N + 3) + N(I + 2) + R2(I + 1)2)

in the effect of such offset being more significant. This implies that the algebraic initial-
ization method is more expensive and thus less attractive to use when identifying a larger
Volterra tensor. The decision to use the algebraic initialization method depends on the total
computational and storage complexity budget for the proposed identification framework.

3-4 Experiment III: Comparison With State-of-the-art

In Appendix A-2, three TN-based identification frameworks are reviewed. The Volterra tensor
is decomposed into TN format in these frameworks, and the parameter values of the corre-
sponding TN format are estimated by the alternating linear scheme (ALS) [11], modified
alternating linear scheme (MALS) [11] and Moore-Penrose pseudoinverse (MPP) algorithms
[9], respectively. The storage complexities of these three frameworks that are explicitly ex-
plained in Appendix A-2, and together with the storage complexity of the GN algorithm that
has been introduced in subsection 2-4-2, are recalled in Table 3-3.

The four frameworks in Table 3-3 have been proven to be effective in solving the MISO
Volterra system identification problem without suffering from the curse of dimensionality in
[11, 9] and this thesis, respectively. The tensor decomposition techniques and parameter value
estimation algorithms used in the four frameworks are different. It is not "fair" to compare the
identification performances of these frameworks on the same Volterra system directly. The
reasons are as follows,

1. As evident in Table 3-3, the storage complexity of each method is different, even if they
may have the same identification performance on the same system. A framework that
can estimate the parameters accurately but requires a large storage complexity is not
recommended.

2. The TT rank values of the first three frameworks can either be chosen such that the
condition of input signal being persistently exciting is satisfied, or being adapted during
each iteration. However, there is no established algorithm to determine a proper rank
value for the symmetric CPD. The performance of the proposed framework is sensitive
to the value of rank value, as proven in section 3-2.

Zhehan Li Master of Science Thesis

3-4 Experiment III: Comparison With State-of-the-art 37

The aims of this experiment are (1) designing a relatively fair experiment set up to compare
the performances of these four frameworks such that the above reasons can be taken into
consideration; (2) Discussing the advantages and disadvantages of the proposed framework
based on the comparison results.

The first aim is achieved by adding the same storage complexity threshold for each framework.
The maximum rank value that satisfies the threshold is used in each framework to identify
the same Volterra system. The artificial Volterra system with the default parameter values
introduced in section 3-1 is used as the benchmark. Four different output noise values are
chosen, SNR ∈ [−20, 20, 40, +∞]. The threshold is chosen as 105 bits. The storage complex-
ity growth with increasing R for each framework and the threshold are shown in Figure 3-7,
where the maximum rank value for ALS=4, MALS=2, MPP=12 and GN=11.

The performance is evaluated by four figures of merit: training error rt, validation error
rv, total running time tr (the random initialization method is used for GN), and symmetric
coefficient s. The first 700 samples are used for training, and the last 300 samples for vali-
dation. For each SNR value, thirty trials are performed for each framework. The results are
visualized by the box-plot in Figure 3-8.

Several conclusions can be drawn as follows by analysing Figure 3-8,

1. For noiseless case (SNR = +∞), the TN based frameworks are all outperformed by the
proposed method, given that the rt and rv of the TN based framework are much higher
than that of the proposed method. The ALS and MALS framework even fail to find
the symmetric result, given that the s of these two framework are close to 1.

2. The performance of the proposed framework is sensitive to the initial value, given that
the length of its bins in each sub-plot is long, especially for tr. This implies that the
iteration number of the GN algorithm highly depends on the quality of the initial values.

3. All the frameworks fail to identify the system when the noise is added (SNR=40,20,-20).
This implies that the robustness against the noise of discussed frameworks should be
improved.

The reason for the first conclusion is that the maximum rank values under the storage com-
plexity threshold for the TN based frameworks are all lower than the maximum of the sug-
gested TT rank values. The suggested rank values are the least rank values for (1) identifying
the unique parameters in the symmetric Volterra tensor and (2) satisfying the input signal
being persistently exciting. Having lower rank values could result in the identification of the
unique parameters being inadequate. The (maximum) suggested rank value and the corre-
sponding storage complexity of each framework are summarized in Table 3-4. The reader is
suggested to reference [11, 9] for detailed explanations of how the suggested rank values for
the TN based frameworks are determined.

When the suggested rank values are used for the TN based frameworks, the performances
are improved significantly as shown in Figure 3-9. Two conclusions are drawn by analysing
Figure 3-9 as follows,

Master of Science Thesis Zhehan Li

38 Validation: Identifying An Artificial Volterra System

Figure 3-7: The maximum rank value for four frameworks named by corresponding parameter
estimation algorithm when the storage complexity threshold of 105 bits is enabled.

Table 3-4: The suggested rank values and the corresponding storage complexity for the four
frameworks.

Algorithm ALS MALS MPP GN
Suggested Rank Values (maximum) 6 6 56 5
Storage Complexity (bits) 6.5 ∗ 105 2.6 ∗ 106 4.1 ∗ 105 4.4 ∗ 104

1. For the noiseless case (SNR = +∞), the average values of rt, rv and s for TN based
frameworks are all much lower than those in Figure 3-8. The improvement can also
be seen for the GN algorithm. With the ground truth rank value R = 5, the influence
of the random initialization on all the figures of merit decrease, given that the lengths
of its bins in four sub-plots are short than those in Figure 3-8. The non-iterative
MPP algorithm requires the least amount of running time compared to the other three
iterative methods.

2. For the cases with noise (SNR = −20, 20, 40), the symmetric solutions can be found
in four frameworks, given that the values of s are all lower than 10−10. However, the
symmetric solutions are not accurately representing the ground truth systems, given
that all rt and rv are closer to 1.

In conclusion, the proposed framework outperforms the TN based frameworks to identify the
default artificial Volterra system, when the storage complexity threshold is enabled. This is
the first advantage of the proposed method. When the threshold and the noise are removed,
all the frameworks identify the ground truth system accurately and the resultant Volterra
tensors are symmetric. The second advantage of this method is that it requires 10 times less
storage complexity than the other frameworks. However, all the frameworks are unable to

Zhehan Li Master of Science Thesis

3-4 Experiment III: Comparison With State-of-the-art 39

Figure 3-8: Identification performances of four frameworks when the storage complexity threshold
is enabled. A stands for MPP, B for ALS, C for MALS, and D for GN.

Figure 3-9: Identification performances of four frameworks when the suggested rank values are
used. A stands for MPP, B for ALS, C for MALS, and D for GN.

Master of Science Thesis Zhehan Li

40 Validation: Identifying An Artificial Volterra System

identify the default system when the output noise is added, which is a disadvantage of this
method. The performance of this method is sensitive to the initial value and the rank value.
This is another disadvantage.

3-5 Conclusion On Phase II

This chapter has proven the validity of the proposed framework to identify the artificial MISO
Volterra systems. The conclusions from the three experiments point out that the performance
of the proposed framework is sensitive to the choice of the rank value R and the initial value
for the GN algorithm.

Based on the content discussed this chapter, the research sub-questions related to Phase
II are answered as follows,

Phase II: Validation

1. How to validate that the synthetic Volterra-PARAFAC model is estimated cor-
rectly using the developed framework?

(a) The synthetic Volterra-PARAFAC model are determined by two main com-
ponents, the factor matrix and the weighting vector. Given the estimated
factor matrix and weighting vector, the input data and the value of d, the es-
timated (training and validation) output measurements are simulated within
the LS-CPD format, and compared to the ground truth (training and val-
idation) output measurements. The developed framework can be validated
in terms of the difference between the estimated and ground truth output
measurements.

2. What is(are) the suitable figure(s) of merit to reflect the identification perfor-
mance of the proposed framework?

(a) The figures of merit should be able to qualitatively describe (1) the closeness
of the identified system to the ground truth system, and (2) the resources
the framework takes to convergence.

(b) Five figures of merits that qualify the above conditions are used and ex-
plained in section 3-1.

3. What is(are) the hyper-parameter(s) of the proposed framework? What is the
effect of having different hyper-parameter(s) values, on the identification perfor-
mance?

(a) The system order d, the tensor dimension I and the symmetric CPD rank
value R are the hyper-parameters of the proposed framework when identi-
fying an unknown system. If the objective system is partially known, such
that the values of d and I are given, only R is the hyper-parameter. An
example of the partially known system is the artificial Volterra system.

Zhehan Li Master of Science Thesis

3-5 Conclusion On Phase II 41

(b) The effect of having an overestimated (estimation rank value is higher than
the ground truth value) and underestimated (estimation rank value is lower
than the ground truth value) rank value R is opposite. With an over-
estimated rank value, the framework can accurately identify the artificial
Volterra system. It fails to do so with an underestimated rank value.

(c) The influence of d and I can be investigated on an unknown system iden-
tification, such as the human cortical response system. This is because the
simulated output measurements of the artificial Volterra system depend on
the values of d and I. It is not appropriate to use the performance results
under different output measurements to discuss the hyper-parameter effect.
However, for an unknown system, the influence of d and I will yield an
empirical result and may not reflect the underlying true system.

4. Is the identification performance influenced by the initial value for the optimizer?
What are the advantages and disadvantages of different initialization methods?

(a) Yes, the influence has been shown in the experiment results in Table 3-
2, where the difference between the validation errors of two initialization
methods (random and algebraic methods) is significant.

(b) The random initialization does not require extra resources but its validation
error is much higher than the algebraic method. The algebraic method
returns an almost-optimal initial value, but it consumes large storage and
computational complexities. Three figures of merit are designed in section 3-
3 to reflect the balance between the quality and the extra resources required
from the algebraic method. Simulation results indicate the need for extra
resources when the Volterra tensor to be estimated has large values of d and
I.

(c) The decision of which initialization method is used depends on the priority
in practice. The algebraic initialisation approach is preferred if the accuracy
of the estimated model is a priority and the total computational and storage
complexity budget for the framework is sufficient. Otherwise, if the budget
takes priority, the random initialization method is used.

5. When there is a storage complexity budget, what are the advantages and dis-
advantages of the proposed framework compared to the existing frameworks on
identifying the simulated artificial Volterra system?

(a) The experiment in section 3-4 is designed specifically to answer this question.
The reader is suggested to reference the conclusion of section 3-4.

Master of Science Thesis Zhehan Li

42 Validation: Identifying An Artificial Volterra System

Zhehan Li Master of Science Thesis

Chapter 4

Application: Modeling Evoked Cortical
Responses

This chapter aims to apply the developed framework to model the evoked cortical responses.
Section 4-1 describes the data acquisition process and the structure of the data set. The
procedure of modifying the data set and the figures of merit used to reflect the modelling
quality are covered in section 4-2. The purposes, expected challenges and results of two
modelling experiments are explained in section 4-3. This chapter ends by answering the
research sub-questions of Phase III in section 4-4. All the computations were performed in
the same environment as the previous chapter.

4-1 Data Set Description

The wrist joint manipulation elicits a response from the sensors in the periphery which, via
the spinal cord, arrives in the cortex. The evoked cortical responses can be measured on the
scalp using electroencephalography (EEG). The EEG data set features the response in the
human cortex (output) to robotic manipulations of the wrist joint (input) [36]. It has been
used as the benchmark for testing the nonlinear system identification framework.

The EEG data set is collected from ten healthy right-handed participants. Participants were
seated with their right forearm fixed to an arm support and their right hand fastened to the
handle of a robotic manipulator，as shown in Figure 4-1. The right forearm of the subject
is strapped into an armrest and the right hand is strapped to the handle, requiring no hand
force to hold the handle. Participants were instructed to gaze at the screen, which showed
a static target. Participants were asked to relax their wrists and not respond to the robotic
manipulator’s continual rotational disturbance.

The input perturbation were the summation of several multisine signals with frequencies
range from 1 to 23 Hz with a duration of 1 s. For each participant, seven different phase real-
izations of the input multisine signals (i.e. same amplitude per frequency, yet other random

Master of Science Thesis Zhehan Li

44 Application: Modeling Evoked Cortical Responses

Figure 4-1: EEG experimental setup and overview. Participants were seated with their right
forearm fixated to an arm support and their hand strapped to the handle of a robotic manipulator
(figure from [16]). (1) The top-right inset provides a schematic illustration of one 36s trial. The
three various colors reflect different multisine realizations, and each lobe represents one 1s period
of the perturbation signal. Highlighted periods are removed, leaving 10 periods per realization
for examination in each experiment. (2) One of the perturbation signal realizations is shown in
the bottom-left inset. (3) The bottom-right inset depicts a close-up of the hand in the robotic
manipulator. The axis of rotation of the manipulator was aligned with the wrist joint.

phases) are used. Seven corresponding output measurements were recorded from the EEG
amplifier. The output measurements are assumed to be corrupted by the white noise that is
defined as a normal distribution with stationary and finite variance. The reader is suggested
to reference [16] for a detailed explanation of the experimental setup, the input perturbation
signals and the data post-processing.

Recent research has applied the Volterra system to model the EEG data set. [16] concludes
that the linear model can only explain 10% of the variance of the evoked response, and over
80% of the response is generated by nonlinear behavior. In this article, a second order trun-
cated Volterra system is used to model the non-linearity in the EEG data set. The obtained
model is able to explain 46% of the variance of the evoked response. This result offers insight
into the relevance between modeling the evoked response and Volterra system identification.

The experiments in this chapter aim to (1) modify the EEG data set into the LS-CPD format
that can be identified by the proposed framework; (2) choose the figure(s) of merit to describe
the modeling performance; (3) investigate the influence of the values of hyper-parameters on
the modeling performance; (4) test the plausibility of the modeled system.

4-2 Modeling Experiments Setup

The input and output measurements of the EEG data set are modified to fit the LS-CPD
format. The training and validation data set for the modeling experiments are built based on

Zhehan Li Master of Science Thesis

4-3 Experiments Results 45

the modified measurements. The procedure is explained as follows,

1. For every realization, the corresponding input matrix U ∈ RN×(M+1) is built in the same
structure as in Equation 2-7. There are 210 samples in each realization. The value of
N is 210. The corresponding output vector y ∈ RN stores the output measurements of
210 samples row-wise.

2. The first M rows of the resultant input matrix U include some elements with a negative
time index t−τ < 0, where τ stands for the delay index. The value of these elements are
zero (unknown). In order to decrease the transient effect, the first M rows of U and y for
each realization are removed. This result in the new input matrix U ∈ R(N−M)×(M+1)

and output vector y ∈ RN−M for each realization.

3. For each participant, six realizations are used for training and the remaining realization
is used for validation.

4. In the training data set, the training output data is built by storing the output vectors of
the six realizations in a row vector, denoted as yi

t ∈ R6(N−M). The value of i represents
the sequence number of the realization that is used for validation. The corresponding
training input data is built in the same manner, denoted as Ui

t ∈ R6(N−M)×(M+1).

5. The input matrix and output vector of the ith realization are used to build the validation
data in which the validation input data is denoted as Ui

v ∈ R(N−M)×(M+1) and the
validation output data is denoted as yi

v ∈ RN−M .

6. The above procedure is repeated seven times to achieve seven-fold cross-validation. The
repetition results in seven groups of Ui

t, yi
t, Ui

v, and yi
v. Each group has a corresponding

estimated model.

The same figure of merit from [16] is used as an unified criterion for the comparisons among
research. The performance of each estimated model is evaluated by the variance accounted
for (VAF) on the training and validation output data, mathematically expressed as,

VAFt =
(

1− var(yi
t − ŷi

t)
var(yi

t)

)
· 100%

VAFv =
(

1− var(yi
v − ŷi

v)
var(yi

v)

)
· 100%

(4-1)

where VAFt and VAFv represent the training and validation VAF, respectively. var(.) repre-
sents the variance, and ŷ represents the modelled output.

4-3 Experiments Results

In this section, two modelling experiments with the modified EEG data set of one single
participant are performed. The first experiment focuses on improving the modeling quality
on one validation realization. It involves tuning the hyper-parameters empirically, and in-
vestigating the influence of each hyper-parameter on the modeling performance in terms of

Master of Science Thesis Zhehan Li

46 Application: Modeling Evoked Cortical Responses

Figure 4-2: Training (left) and validation (right) performances of three system order values d = 1
(first row), d = 2 (second row), d = 3 (third row), while M = 25, R = 20 are kept as constant.
The first order system have low values of V AFt and V AFv. The third order system suffers from
the over-fitting issue. The second order system has the highest V AFv.

V AFt and V AFv. The second experiment focuses on the similarity within the seven models
estimated from the seven-fold cross-validation. In both experiments, twenty trials with the
algebraic initialization method are performed for each training data set, while only one trial
is plotted in the following figures. This is because that the algebraic initialization method has
been proven to provide an almost-optimal solution for the GN algorithm, and the variance of
V AFt and V AFv for twenty trials is found to be small.

4-3-1 Hyper-parameter tuning

The first six realizations of the first participant are modified as the training data set, denoted
as U7

t and y7
t . The remaining realization is modified as the validation data set, denoted as

U7
v and y7

v. The symmetric CPD rank is initially set as R = 20 1, and the memory value is
set initially as M = 25 2.

1This number is chosen to ensure that the storage and computational complexity and the training time for
the GN algorithm are moderate. The rank value is tuned afterwards.

225 samples corresponds to approximately 120 ms at a sampling rate of 256 Hz. The choice is inspired by
[16].The memory value is also tuned afterwards.

Zhehan Li Master of Science Thesis

4-3 Experiments Results 47

Tuning d

Three system order values are used, d = 1, 2, 3. The simulated training and validation output,
denoted as ŷ7

t and ŷ7
v, respectively, for three order values are visualized in Figure 4-2. The

corresponding VAFt and VAFv are provided in the title of each plot. Several observations
and conclusions based on the analysis of Figure 4-2 are listed as follows,

1. The first order system have both low value of VAFt and VAFv. This indicates that
modeling the EEG data set with linear system is insufficient.

2. The second order system has the highest VAFv. However, this only represents one
validation realization. There is no claim being made that the actual underlying system
can be modelled by the second order Volterra system.

3. The third order system suffers from the over-fitting problem, given that the correspond-
ing VAFt is the highest but the VAFv is the lowest. One potential solution to solve this
problem is to recollect the data set with a richer perturbation signal, in terms of more
excited frequencies and longer period length.

The assumption is recalled that the output measurements are corrupted by the white noise.
In an ideal situation (the modeled system represents exactly the true underlying system), the
estimated validation output has the following properties:

Property 2: Properties Of The Estimated Validation Output [37]

The estimated validation output residuals ri
v, calculated as ri

v = yi
v− ŷi

v, are also white
noise. This implies that ri

v are normally distributed with zero mean and finite variance
σ. This further means that the auto-correlation function of ri

v has an impulse value at
zero leg, mathematically expressed as follows,

E[ri
v(n)ri

v(n− τ)] =
{

σ2, τ = 0
0, otherwise

(4-2)

The relationship between the validation input measurements Ui
v[:, 1], denoted as ui

v,
and the estimated validation output ŷi

v is fully embedded in the model class. This
implies that ri

v and ui
v are uncorrelated, which further implies that the cross-correlation

of ri
v and ui

v has zero value at any leg value, mathematically expressed as follows,

E[ri
v(n)ui

v(n− τ)] = 0, for any τ (4-3)

One way to test the plausibility of the modeled systems in Figure 4-2 is to examine the
properties of the corresponding validation output residual ri

v. If ri
v could satisfy Equation 4-2

and Equation 4-3 simultaneously, it is plausible that the modeled systems resemble the true
underlying system.

The MATLAB ® script autocorr.m is used to calculate the auto-correlation first with the

Master of Science Thesis Zhehan Li

48 Application: Modeling Evoked Cortical Responses

Figure 4-3: Auto-correlation (left) and cross-correlation (right) of the validation residuals for
three modelled systems in Figure 4-2. (1) Left: the spikes at zero leg are obvious for three order
cases. The second order system has the least spikes at non-zero leg that exceed the confidence
interval. (2) Right: the second order system has the less spikes at positive leg that exceed the
confidence interval than the third order system. The first order system has spikes that exceed the
confidence interval only for a few negative leg values.

confidence interval. The left three plots in Figure 4-3 depict the auto-correlation of the resid-
ual for each modelled system in Figure 4-2, respectively. The spike at leg τ = 0 is clear in
three cases. However, as pointed out by the blue marks, the spikes at non-zero leg values with
τ = 1, 2, 3, 4 exceed the confidence intervals in the first and third order system. For the third
order system, the spikes at τ = 7, 8, 9 also exceed the confidence interval. For the second
order system, it is a bit closer to the properties, given that less spikes at non-zero leg values
exceed the confidence interval.

The results indicate that residual signals are not white for three modelled systems. The
dynamics active in the residuals do not fully come from the noise. Therefore, three modelled
systems do not meet the properties, and thus are not precise enough to resemble the true
underlying system. This conclusion can be substantiated by the visualization of the cross-
correlation between the residuals and the input measurements for three modeled systems,
shown in Figure 4-3(right).

The MATLAB ® script crosscorr.m is used to calculate the cross-correlation and the con-
fidence interval. In Figure 4-3(right), the magnitude of the correlation function for d = 2
has much lower and less spikes that exceed the confidence interval for positive leg values,
compared to the case of d = 3. This implies that the influence of previous input exists in
the current residuals for both systems, while the second-order system has less influence. For
the first order system, the spikes exceed the confidence interval for negative leg values. This

Zhehan Li Master of Science Thesis

4-3 Experiments Results 49

Figure 4-4: Validation performances for M = [10, 20, 30, 40] with d = 2, R = 20. The V AFv

increases with M .

implies that the current residual affect future inputs, which does not mean that the model is
faulty because this could be seen as an indication of output feedback.

In conclusion, the properties of the modelled system for d = 2 are more closer to the ideal
situation, given the current data set. This is aligned with the modeling results in [16], where
the dynamic in the EEG data set is modeled by a second-order Volterra system. However,
from the results in this sub-section, it can not be concluded that there are no nonlinearities
in the system higher than the second order. The estimation of higher order Volterra kernels
would increase the storage and computational complexities, and the over-fitting issue might
require an experiment to recollect the data set with a richer perturbation signal.

Tuning M

In the previous experiment, the memory value is set as R = 20. The spikes of the cross-
correlation function for the second order system exceed the confidence interval for some pos-
itive leg values. This implies the past inputs influence the current residual, which indicates
that the modeling quality could be improved by increasing the memory value. The larger
memory values is, the more past input measurements are considered to predict the current
output measurement.

Four memory values are used, M = [10, 20, 30, 40]3, while d = 2 and R = 20 are kept
3This range contains both the memory values that are less and more than the initial value, which can be

used to verify the above indication from both aspects. In order to have the moderate storage and computational

Master of Science Thesis Zhehan Li

50 Application: Modeling Evoked Cortical Responses

Figure 4-5: Auto-correlation (left) and cross-correlation (right) functions of the validation resid-
uals for four modeled systems in Figure 4-4. For both functions, the number of spikes that exceed
the confidence interval with positive lag values decreases with increasing M .

constant. Each memory value corresponds to a pair of training and validation input data.
The validation performances are shown in Figure 4-4, where V AFv is expected to increase
with M . Meanwhile, Figure 4-5 shows the auto-correlation (left) and cross-correlation (right)
functions of the validation residual signals ri

v of the four modelled system, respectively. The
spikes that exceed the confidence interval at the positive leg values for both auto-correlation
and cross-correlation functions shrink with increasing M . For M = 40, there is no spike at
the positive lag value that exceeds the confidence interval, which further supports that the
validation residual of the modelled second order system with M = 40 is closer to the ideal
situation than M < 40.

Tuning R

Another question is that is the low-rank identification possible for modeling this system? To
answer this question, a big range of rank values are adopted, R = [10, 15, 20, 30, 40, 70], while
d = 2, M = 30 remain constant. The small memory value M = 30 is used instead of M = 40 to
decrease the computational complexity. The corresponding validation performances are shown
in Figure 4-6. The V AFV stays almost the same when R > 20. and decreases insignificantly
when R < 20. This implies that choosing a large rank value is unnecessary due to the higher
computational complexity and insignificant improvement of the performance. The low-rank
identification is possible in exchange of the model accuracy. The choice of rank value is left
as an open question.

complexity, the maximal rank value R = 40 is used.

Zhehan Li Master of Science Thesis

4-3 Experiments Results 51

Figure 4-6: Validation performance for R = [10, 12, 20, 30, 40, 70] with d = 2, M = 30. The
V AFV stays almost the same when R > 20. and decreases insignificantly when R < 20.

4-3-2 Similarity

The true underlying system for the cortical response of the same participant should be con-
sistent regardless of disturbance signals. This requires that the seven modelled systems corre-
sponding to seven-fold cross-validation for the same participant (participant 1) are supposed
to be similar. Therefore, the plausibility of the seven modelled systems can be tested by
calculating the relative differences between the modelled Volterra tensors that are recovered
from the estimated factor matrix and weighting vector following Equation 2-13. The relative
differences ri,j are calculated as follows,

ri,j = ∥V
i −Vj∥F
∥Vi∥F

(4-4)

where Vi stands for the recovered Volterra tensor with the ith realization used for validation.
In the ideal situation, the value of ri,j is close to zero for every value combination of i and j.

The relative differences between any two of the seven modelled systems for the first participant
are shown in Figure 4-7. Although the differences are smaller for two adjacent realizations,
given that the elements near the left-diagonal are smaller, the large value and inconsistency
of the differences cast doubt on the credibility of the seven modeled systems all being the
true underlying system.

Master of Science Thesis Zhehan Li

52 Application: Modeling Evoked Cortical Responses

Figure 4-7: Relative differences between any two of the seven modelled systems for the first
participant. In the ideal situation, each element in this table should be close to zero. The results
cast doubt on the credibility of the seven modeled systems all being the true underlying system.

4-4 Conclusion On Phase III

This chapter has shown that the second order Volterra system is able to model the modified
EEG data set. Although it is not necessarily believed that the modelled system can accurately
represent the true underlying system by examining the residuals, the potential of applying
the framework in modeling the highly-nonlinear systems is demonstrated.

Based on the content discussed this chapter, the research sub-questions related Phase III
are answered as follows,

Phase III: Application

1. The human cortical responses are modeled by the Volterra-PARAFAC model
whose kernel coefficients are estimated by the developed framework. Does the
modeling quality rely on the values of the hyper-parameter(s) of the framework?

(a) The modeling quality is described by the the variance accounted for (VAF)
on the training and validation output measurements. The corresponding
calculations are expressed in Equation 4-1.

(b) The hyper-parameters contain d, M and R. In section 4-3, results have
shown that the validation VAF is influenced significantly by d and M . The
second order system with M = 40, R = 20 returns the highest validation
VAF. Low-rank (R < 20) approximation is also possible in exchange of lower
validation V AF . The large rank value, however, requires high computational
and storage complexity. The decision of R value depends on the overall
computational and storage complexity budget.

2. How to test the plausibility of the modelled system? What are the potential rea-
son(s) for the modelled system not representing the true underlying system?

Zhehan Li Master of Science Thesis

4-4 Conclusion On Phase III 53

(a) The output measurement is assumed to be disturbed by the white noise.
The validation output residual signal can be used. In an ideal situation, the
auto-correlation function of the residuals has an impulse value at leg τ = 0
and stays within the confidence interval for non-zero leg values. The cross-
correlation function of the residual and input measurement stays within
the confidence interval for all leg values. If the validation residual of the
modelled system meets this assumption, it is plausible that the modelled
system resembles the true underlying system.

(b) Results in section 4-3 cast doubt on the credibility of the modeled system
being the true underlying system. The reasons could be that (1) the mod-
ification of the data set is not appropriate so that the transient effect still
exists; (2) The hyper-parameters are tuned empirically in the experiments.
The prior information about the data set is insufficient; (3) The framework
has been shown to have a weak robustness against the noise for identifying
the artificial system. There are white noise in the output measurements of
the EEG data set. The robustness of the framework is weak.

Master of Science Thesis Zhehan Li

54 Application: Modeling Evoked Cortical Responses

Zhehan Li Master of Science Thesis

Chapter 5

Conclusions And Future Work

In the final chapter, a summary of the thesis and an overview of open questions for future
research are provided.

5-1 Concluding Remarks

In this thesis, the connection between the symmetric canonical polyadic decomposition (CPD,
also called PARAFAC) and the second order numerical optimization method is established
to identify the high order multiple-input single-output (MISO) Volterra system. As a result,
we now have an innovative identification framework to estimate the parameter values of the
MISO Volterra-PARAFAC model by minimising the nonlinear least-square (NLS) cost func-
tion via the Gauss-Newton (GN) algorithm. In the following, we give a chapter-by-chapter
overview of this thesis.

In Chapter 2, we have used the tensor operations and the symmetric CPD technique to model
the Volterra system within the LS-CPD framework. The parameter values of this framework
is estimated by minimising the NLS cost function. The cost function is calculated as the
squared error between the ground truth output and the simulated output that is recovered
based on the LS-CPD framework and the components of the Volterra-PARAFAC model. The
optimization variable of the cost function contains the components of the Volterra-PARAFAC
model, and is optimized by the GN algorithm with the trust region method. The random
initialization and algebraic initialization methods are provided for the GN algorithm. The
former initializes the optimization variable from random values, while the latter initializes
from the result of some algebraic operations. The algebraic initialization method can return
an almost-optimal initial value, but it consumes large storage and computational complexities.

In Chapter 3, we have proved the validity of the developed framework to identify an ar-
tificial MISO Volterra system. The output of the artificial Volterra system is simulated by
the synthetic Volterra-PARAFAC model and input measurements. The synthetic Volterra-
PARAFAC model contains two components that are the factor matrix and the weighting

Master of Science Thesis Zhehan Li

56 Conclusions And Future Work

vector. The former has each column created as the sampled decaying exponential function,
while the latter contains pseudo-random values drawn from the standard uniform distribution
on the open interval (0, 1). The input measurements are created as standard normal Gaus-
sian white noise to guarantee the input signal being persistently exciting. Several figures of
merit are defined to reflect the identification performances of the developed framework on
identifying the artificial Volterra systems under different configurations.

Experiments result show that the developed framework can accurately identify the artifi-
cial Volterra system in terms of validation figures of merit when an over-estimated rank value
is used. It fails to do so with an underestimated rank value. Meanwhile, three figures of merit
are designed to reflect the balance between the quality and the extra resources required from
the algebraic initialization method. Simulation results indicate the need for extra resources
when the size of the Volterra tensor to be estimated is large. In addition, when the noise
on the output is removed, the developed framework outperforms the Tensor-Network (TN)
based frameworks to identify the same artificial Volterra system when the storage complexity
budget is added, and performs equally but requires 10 times less storage complexity than the
other frameworks when the budget is removed. However, the performance of the developed
method is sensitive to the choice of the initial value and the rank value, and is not robust
against the white noise added to the output.

In Chapter 4, we have applied the validated framework to model the evoked cortical re-
sponses data set that are measured on the scalp using electroencephalography (EEG) and
its input-output relationship has been previously proven to be highly nonlinear. This non-
linearity is planned to be modelled by the unknown order Volterra-PARAFAC model. The
realizations (input-output measurements) are first modified to fit the LS-CPD format as a
single-input single-output (SISO) system. The GN algorithm is then used to estimate the fac-
tor matrices and weighting vectors of several Volterra-PARAFAC models with different value
combinations of system order d, input memory M and approximation rank R. The modeling
quality is reflected by the variance accounted for (VAF) on the training and validation output
data, respectively. The results have shown that the validation VAF is influenced significantly
by d and M . The second order systems with M = 40 and R ∈ [20, 40] return the highest
validation VAF. The low-rank (R < 20) approximation is also possible in exchange of lower
validation VAF. The large rank value (R > 40), however, requires high computational and
storage complexity. Meanwhile, the validation output residual signals are used to test the
plausibility of the modelled systems. The test results cast doubt on the credibility of the
modeled systems being the true underlying system. The reasons could be the inappropriate
data set modification that results in the transient effect, the insufficient prior information on
the choice of framework hyper-parameters, the limited range of hyper-parameter values where
they are tuned empirically, and the poor robustness of the developed framework against the
noise.

5-2 Future Research

Many theoretical and computational challenges remain unsolved because this thesis represents
the humble beginning of a Volterra system identification framework. Besides the permanent

Zhehan Li Master of Science Thesis

5-2 Future Research 57

objective of applying the tensor techniques to solve engineering problems, we would suggest
the following topics as the future research for each chapter of this thesis:

5-2-1 Development

The MISO Volterra system is modeled within the LS-CPD format. This format is originally
proposed in [38] and has been proven to provide a broad framework for the analysis of mul-
tilinear systems of equations [22]. Based on the development of the proposed identification
framework, many tensor techniques can be used to extend its functionality in system identi-
fication.

Multiple-input Multiple-output (MIMO) Volterra System Identification: A dth

order MIMO Volterra kernel can be defined as a d + 1 way Volterra tensor, which can be seen
as a vector with d elements and each element is a d way tensor. Each output of the MIMO
system is determined by one corresponding element. The current LS-CPD format is expected
to be modified in the manner how the d + 1 way MIMO Volterra tensor is decomposed and
stacked.

Acceleration On Newton Step Calculation: The New-step is obtained by solving the
linear system expressed in Equation 2-23 by the pseudoinverse or the conjugate gradient
method. The convergence rate of solving this linear system can be improved by clustering
the eigenvalues of the Hessian H using the preconditioner M to replace Equation 2-23 by the
equation as follows,

M−1Hp = −M−1g (5-1)

where the sparsity of the eigenvalues of M−1H can be controlled by different choice of M
such that M−1 is not expensive to compute. The recently published results in [32, 25] are
both useful starting points for this direction.

Complex-valued Input-output Measurements: The developed framework only consid-
ers the case where the input-output measurements are all real-valued. In real-life application,
having the complex-valued measurements is possible 1. The adaptive algorithms to estimate
the parameter values of the Volterra-PARAFAC model with complex-valued measurements in
[18] can serve as a starting point for extending the complex-valued property of our framework.

5-2-2 Validation

Both the internal and external validation experiments are performed on a limited range of
parameter values due to the computation power of our computer. As a result, the conclusions
made in this thesis can not represent the true property of the developed framework. The
following experiments can be performed to address this gap.

1In electrical engineering, the Fourier transform is used to analyze varying voltages and currents. The
treatment of resistors, capacitors, and inductors can be unified by introducing imaginary resistors that are
frequency-dependent and combining them into a single complex number called the impedance. In fluid me-
chanics, complex numbers are used to describe potential flow in two dimensions.

Master of Science Thesis Zhehan Li

58 Conclusions And Future Work

Higher Order Artificial Volterra System: The order value of the default artificial
Volterra System in this thesis is d = 5, which is much smaller than the potential true system
order values of the real-life systems. It is meaningful to investigate the identification perfor-
mances when the order value is larger, for example d = 20. Meanwhile, a larger value range
for the default CPD rank can also be used to examine the influence of the approximation
rank values more precisely.

Robustness Against Noise: The experiment results indicate that the development frame-
work has a weak robustness against noise. Measurements from real world applications are
noisy, hence the coefficient of the Volterra tensor will always be subject to some uncertainty.
Starting from the recently published results on [39, 40], further research will need to investi-
gate how these uncertainties can be used to determine a suitable confidence interval.

5-2-3 Application

The EEG data set is modelled only by the developed framework in this thesis. The horizontal
comparisons of the modeling performance with TN based frameworks are missing. This con-
strains the comprehensiveness of the strengths and weaknesses of the developed framework.
One of the key research points is therefore obviously to look for ways to further exploit the
limitations of the developed framework.

Modeling Performances Of All Participants: Only the modelled systems for one out of
ten participants in the EEG data set are studied in this thesis. The signal characteristics and
models for each participant have been proven to be diverse in [16]. It is necessary to further
compare the modeling performances of the developed framework on each participant and test
the plausibility of these modelled systems.

Application On More Benchmark Nonlinear Systems: A list of hosted nonlinear
dynamical system data sets can provided in [41]. The Volterra system has been used to
model most of these nonlinear systems [42, 43]. These research can serve as a starting point
to determine whether it is possible to apply the developed framework to obtain a better
performance.

Zhehan Li Master of Science Thesis

Appendix A

State-of-the-art Volterra Identification
Frameworks

A-1 Tensor Operations

1. The Mode-n product of an order-N tensor A ∈ RI1×I2×···×IN with a matrix U ∈ RJ×In

will yield an order- N tensor which is mathematically given by

C = A×n U ∈ RI1×···×In−1×J×In+1×···×IN (A-1)

where the operator indicates the index (mode) of contraction in term of its subscript.
The size of this index is required to match the one of the corresponding matrix. The
entries of the resultant tensor are determined by element-wise summations written as

ci1,...,in−1,j,in+1,...,iN =
In∑
in

ai1,...,in,...,id
uj,in (A-2)

2. The Kronecker product of two matrices A ∈ RI×J and B ∈ RK×L , denoted by A⊗B,
results in a matrix expressed as

C ∈ RIK×JL := A⊗B =


a11B a12B · · · a1JB
a21B a22B · · · a2JB

...
...

aI1B aI2B · · · aIJB

 (A-3)

3. The Khatri-Rao product of two matrices A ∈ RI×K and B ∈ RJ×K , denoted by A⊙B,
results in a matrix expressed by

C ∈ RIJ×K := A⊙B =
[

a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK

]
(A-4)

where ai ∈ RI represents the ith column of A.

Master of Science Thesis Zhehan Li

60 State-of-the-art Volterra Identification Frameworks

4. The row-wise Khatri-Rao product of A ∈ RI×K and B ∈ RI×J denoted by A ⊙T B,
results in a matrix expressed by

C ∈ RI×KJ := A⊙T B =


a1 ⊗ b1
a2 ⊗ b2
· · ·
aI ⊗ bI

 (A-5)

where ai ∈ R1×K represents the ith row of A.

5. The Hadamard product of two matrices A and B with the same size ∈ RI×J , denoted
by A ∗B, results in a same size matrix defined by

C ∈ RI×J := A ∗B =


a11b11 a12b12 · · · a1Jb1J

a21b21 a22b22 · · · a2Jb2J
...

...
aI1bI1 aI2bI2 · · · aIJbIJ

 (A-6)

6. The outer product of two vectors a ∈ RI1 and b ∈ RI2 results in a matrix, expressed as

C ∈ RI1×I2 := a ◦ b = ab⊤ (A-7)

where the entries of the C are determined by the element-wise summations defined by

ci1,i2 =
1∑

i=1
ai1bi1 (A-8)

A-2 Three Tensor Network Based Frameworks

In this section, the procedure to calculate the storage complexity of three TN-based frame-
works are explained. For simplicity, three frameworks are denoted as, ALS and MALS from
[11], and MPP from [9]. The reader is recommend to reference [11][9] for a detailed derivation
of these frameworks.

The TN refers to the network that utilizes the tensor train (TT) decomposition tool to de-
compose the objective tensor. The TT decomposition of the d-way Volterra tensor is defined
as follows,

Definition 4: Tensor Train Decomposition Of Volterra Tensor

The TT decomposition of the d-way Volterra tensor V ∈ RI×I×···×I is represented by
the TT cores interconnected by the Mode 1-3 tensor contraction operation denoted by
×1

3, mathematically expressed as:

V ∈ R

d times︷ ︸︸ ︷
I × I × · · · × I = V(1) ×1

3 V(2) ×1
3 · · · ×1

3 V(d) (A-9)

Zhehan Li Master of Science Thesis

A-2 Three Tensor Network Based Frameworks 61

Figure A-1: Diagrammatic notation of the TT decomposition of a 3-way Volterra tensor.

where the 3-way tensors V(k) are called the TT cores with the size of RRk−1×I×Rk . The
indices Rk−1 and Rk in 1st and 3rd modes of the kth TT core are called TT ranks. The
boundary rank values for Equation A-9 are R0 = Rd = 1. Each element of V can be
calculated by

vi1,i2,...,id
=

R1∑
r1=1

R2∑
r2=1
· · ·

Rd−1∑
rd−1=1

v
(1)
1,i1,r1

v
(2)
r1,i2,r2

· · · v(d)
rd−1,id,1 (A-10)

where scalar v
(n)
ri,it,ri+1

represents the rth
i in mode-1, ith

t in mode-2 and rth
1+1 in mode-3

element of the nth TT core.

The Mode-1,3 tensor contraction of the first and second TT cores means that the 3nd

mode of V(1) is contracted with the 1st mode of V(2). It results in a new 4-way tensor,
mathematically expressed as

C ∈ R1×I×I×R2 = V(1) ×1
3 V(2) (A-11)

where the entries of the resultant tensor C are calculated element-wise as

c1,i1,i2,r2 =
R1∑

r1=1
v

(1)
1,i1,r1

v
(2)
r1,i2,r2

(A-12)

The storage complexity of the Volterra tensor in the TN format is O
(
IdR2), where all TT

ranks values are presented by R. O
(
IdR2) is linearly increasing with d and I. Therefore

Equation A-9 can also solve the curse of dimensionality issue, especially with small TT ranks
values. Figure A-1 shows the diagrammatic notation of the TT decomposition of a 3-way
Volterra tensor.

The advantage of applying the TT decomposition on Volterra tensor is that the output y(t) in
Equation 2-6 can also be modelled by the multidimensional contraction operation as follows

Master of Science Thesis Zhehan Li

62 State-of-the-art Volterra Identification Frameworks

[11],
y(t) ∈ R : = V ×1 uT

t ×2 uT
t · · · ×d uT

t

=
(
V(1) ×2 uT

t

) (
V(2) ×2 uT

t

)
· · ·
(
V(d) ×2 uT

t

)
=
(
VT

k+1 ⊗ uT
t ⊗ Vk−1

)
vec

(
V(k)

) (A-13)

where
VT

k+1 =
(
V(1) ×2 uT

)
· · ·
(
V(k−1) ×2 uT

)
∈ R1×Rk

Vk−1 =
(
V(k+1) ×2 uT

)
· · ·
(
V(d) ×2 uT

)
∈ R1×Rk−1

(A-14)

By stacking the output y(t) in a row vector for t ∈ [0, N − 1], Equation 2-7 can also be
expressed as follows,

y ∈ RN = U(k) vec
(
V(k)

)
(A-15)

where U(k) ∈ RN×Rk−1IRk .

A-2-1 ALS

ALS is used to estimate the parameters values of vec
(
V(k)

)
in Equation A-15 sequentially.

The advantage of ALS is that each small sub-problem related to only one TT core is addressed
sequentially, rather than solving a single massive problem related with the simultaneous
update of all TT cores. The ALS is formulated in Algorithm 2:
Algorithm 2: ALS for TT decomposition [11][44]
Input: TT ranks R0, R1, · · · , Rd, the value of d and I, and the input output

measurements
1 Initialize right-orthogonal TT cores V1, · · · ,Vd with specified ranks R0, R1, · · · , Rd

2 while termination criterion not satisfied do
3 for i = 1, · · · , d− 1 do
4 vec

(
V(i)

)
← Compute and solve Equation A− 15

5 V(i) ← reshape
(
V(i), [Ri−1I, Ri]

)
6 Compute thin QR decomposition of matrix V(i)

7 Ṽ(i) ← reshape (Q, [Ri−1, I, Ri])
8 V(i+1) ← reshape

(
V(i+1), [Ri, IRi+1]

)
9 V(i+1) ← tensorization

(
RV(i+1), [Ri, I, Ri+1]

)
10 end
11 Repeat the above loop in reverse order
12 end

Output: Optimal TT cores Ṽ(1), · · · , Ṽ(d) that solves Equation A-15

The thin QR decomposition of matrix V(i) ∈ RRiI×Ri in the 6th line of Algorithm 2 is
expressed as follows,

[Q ∈ RRi−1I×Ri , R ∈ RRi×Ri] = qr(V(i)) (A-16)

Zhehan Li Master of Science Thesis

A-2 Three Tensor Network Based Frameworks 63

where Q is an orthogonal matrix and R is an upper triangular matrix. Half sweep of 2 is
visualized in Figure A-2(a).

The storage complexity of ALS algorithm is the summation of the size of y ∈ RN , U(k) ∈
RN×Rk−1IRk , vec

(
V(k)

)
∈ RRk−1IRk , Q ∈ RRi−1I×Ri and R ∈ RRi×Ri . The storage complex-

ity is approximated as O
(
N + R2(NI + 2I + 1)

)
, with R represents the maximal TT rank

value.

A-2-2 MALS

The drawback of ALS is that the TT ranks should be specified as priori. The quality of the
output of ALS is sensitive to the choice of the TT ranks. MALS is developed to not only
updates the TT cores but also adapts the TT ranks during each iteration.

The modification is to contract two subsequent cores V(i),V(i+1) into one compound core
W(i) ∈ RRi−1×I×I×Ri+1 by summing over all possible Ri values, expressed as

W(i) :=
Ri∑

ri=1
V(i)(Ri−1, I, ri)V(i+1)(ri, I, Ri+1) (A-17)

which can be applied to Equation A-13 as follows,

y(t) : = Vk−1
(
V(k) ×2 uT

) (
V(k+1) ×2 uT

)
Vk+2

= Vk−1
(
W(k) ×2 (uT) 2⃝

)
Vk+2

=
(
VT

k+2 ⊗ (uT) 2⃝ ⊗ Vk−1
)

vec
(
W(k)

) (A-18)

where y(t) can be stacked row-wise for t ∈ [0, N − 1], and Equation A-19 can be modified as

y ∈ RN = U(k,k+1) vec
(
W(k)

)
(A-19)

where U(k,k+1) ∈ RN×Rk−1I2Rk+1 .

The MALS is formulated in Algorithm 3.

Master of Science Thesis Zhehan Li

64 State-of-the-art Volterra Identification Frameworks

Algorithm 3: MALS for TT decomposition [11][44]
Input: TN The value of d and I, and the input output measurements

1 Initialize right-orthogonal TT cores V1, · · · ,Vd with ranks 1
2 while termination criterion not satisfied do
3 for i = 1, · · · , d− 1 do
4 vec

(
W(i)

)
← Compute and solve Equation A− 19

5 W(i) ← reshape
(
W(i), [ri−1ni, ni+1ri+1]

)
6 Compute SVD of matrix W(i)

7 Determine the numerical rank ri from tolerance τ

8 Ṽ(i) ← reshape (U, [ri−1, ni, ri])
9 V(i+1) ← reshape

(
SVT , [ri, ni+1, ri+1]

)
10 end
11 Repeat the above loop in reverse order
12 end

Output: Optimal TT cores Ṽ(1), · · · , Ṽ(d) that solves Equation A-19

The SVD of W(i) ∈ RRi−1I×IRi+1 in the 6th line of 3 is expressed as follows,

[U ∈ RRi−1I×Ri , S ∈ RRi×Ri , V ∈ RRi×IRi+1] = SV D(W(i)) (A-20)

where U, V are orthogonal matrices and S is a diagonal matrix with positive entries s1 ≥
. . . ≥ sq, with q = min (Ri−1I, IRi+1). The rank Ri can be determined from a tolerance τ
such that s1 ≥ · · · ≥ sr1 ≥ τ ≥ · · · ≥ sq, which is decided by τ = ϵs1 max (Ri−1I, IRi+1),
where ϵ is the machine precision. Half sweep of 3 is visualized in Figure A-2(b).

The storage complexity of MALS algorithm is the summation of the size of y ∈ RN , U(k,k+1) ∈
RN×Rk−1I2Rk , vec

(
W(k)

)
∈ RRk−1I2Rk , U ∈ RRi−1I×Ri , S ∈ RRi×Ri and D ∈ RRi×IRi+1 . The

storage complexity is approximated as O
(
N + R2I2(I + 1) + 2R2I

)
, with R represents the

maximal TT rank value.

A-2-3 MPP

The input matrix Ũ ∈ RN×Id in Equation 2-7 can be expressed in the TT format as follows,

Ũ =
(
U⊙T U⊙T · · · ⊙T U⊙T

)
= U (1) ×1

4 U (2) ×1
4 · · · ×1

4 U (d)
(A-21)

where U (k) ∈ RRk×1×I×Rk+1 and R1 = N, Rd+1 = 1. The TT cores can be calculated by in
Algorithm 4 [9], which is a modified version of Algorithm 2 in [5].

Zhehan Li Master of Science Thesis

A-2 Three Tensor Network Based Frameworks 65

Figure A-2: TN diagram of the "half sweep" of the (a) ALS algorithm and (b) MALS algorithm
for 4-way tensor. Image is reproduced from [44]. The highlighted TT core V(i) (or compound core
W(i) in the MALS instance) is optimized in each ith iteration. Afterwards, the non-orthogonal
TT core is shifted to the next one V(i+1) (or W(i+1)) by performing the QR decomposition of
V(i) (or SVD of W(i)). When the procedure reaches the rightmost TT core, it is reversed in
the "back sweep" (not depicted here).

Algorithm 4: Constructing TT cores U (1,2...d) from U [9][5]
Input: The value of d, and matrix U

1 U (d) ← reshape(U, [1, N, I, 1])
2 for k = d : −1 : 2 do
3 T ← reshape

(
U (k), [N, IRk+1]

)
4 T ← T ⊙U
5 T ← reshape (T , [NI, IRk+1])
6 [Q, S, V]← Compute SVD of matrix T

7 Determine the rank Rk =
(

d− k + I − 1
I − 1

)
8 U (k) ← reshape

(
VT , [Rk, 1, I, Rk+1]

)
9 U (k−1) ← reshape (QS, [1, N, I, Rk])

10 end
Output: TT cores U (1,2...d) in Equation A-21

The rank condition Rk can be further bounded by the proposed Theorem 3 in [9] when
considering the symmetric solution of Vsym, expressed as

Rk ≤ min
((

k + I − 1
I − 1

)
,

(
d− k + I − 1

I − 1

))
(A-22)

Compared with Ũ ∈ RN×Id , the TT formats U (1,2...d) obtained from Algorithm 4 only re-
quires the storage complexity of O (NIR), with R stands for the maximal rank value. The

Master of Science Thesis Zhehan Li

66 State-of-the-art Volterra Identification Frameworks

diagrammatic notation of TT format U is depicted in Figure A-3(b).

The TT cores of the symmetric Volterra tensor can be obtained by the MPP. The MPP
depends on thin SVD performed on U (1) ∈ R1×N×I×R2 that is explained in Algorithm 5.

Algorithm 5: Thin SVD on U (1) [9]
Input: TT cores U (1,2...d) from Algorithm 4

1 U1 ← reshape
(
U (1), [N, IR2]

)
2 [Q1, S, H]← Compute SVD of matrix (U1)

3 Truncate Q1, S, H to the rank R =
(

d + I − 1
I − 1

)
4 H(1) ← reshape (H, [1, R, I, R2])
5 H(k) ← U (k)(k = 2, . . . , d)

Output: Components matrices S, Q1, and H(1)

The thin SVD of U1 ∈ RN×IR2 in the 2nd line of 5 is expressed as follows,

[Q1 ∈ RN×R, S ∈ RR×R, H ∈ RR×IR2] = SV D(U1) (A-23)

where Q1, H are orthogonal matrices and S is a diagonal matrix.

The TT format of symmetric Volterra tensor in Equation A-9 can be obtained by the MPP,
expressed as

V(1)
sym ∈ R1×I×R1 = H(1)S−1QT

1 y
V(k)

sym ∈ RRk−1×I×Rk = H(k), for k=[2,d]
(A-24)

whose diagrammatic notation is visualized in Figure A-3 (c).

The storage complexity of MPP framework is the summation of the size of y ∈ RN ,

U (1) ∈ RNIR1 , V(1)
sym ∈ RIR1 ,

k=d∑
k=2
U (k) ∈ R(d−1)IR2 ,

k=d∑
k=2
V(k)

sym ∈ R(d−1)IR2 , H(1) ∈ R1×R×I×R2 ,

S ∈ RR×R and Q1 ∈ RN×R. The storage complexity is approximated as
O
(
N + IR(N + 1) + 2(d− 1)R2I + NR + R2(I + 1)

)
, with R represents the maximal TT

rank value.

A-3 Persistently Exciting Condition

The condition for the input measurement U in Equation 2-7 being persistently exciting of
order d is defined in Lemma 1.

Lemma 1: Persistent Exciting Input Rank Condition [11]

The input sequence in matrix U is called persistent exciting inputs of order d if the

column rank of Ũ in ?? equals
(

pM + d
pM

)
.

Zhehan Li Master of Science Thesis

A-3 Persistently Exciting Condition 67

Figure A-3: Diagrammatic notation of (a) Equation 2-7 (b) TT decomposition of Ũ and
vec
(
V(k)) where U (k) are constructed from Algorithm 4; (c) constructing V(k)

sym from Algorithm
5. Image modified on [9].

.

Proof: The vector ut is polynomial in pM variables of degree d. With u d⃝
t ∈ R(pM+1)d :=

ut ⊗ ut ⊗ · · · ⊗ ut denoting the d-times repeated Kronecker product of vector ut,

there are only
(

pM + d
pM

)
entries of u d⃝

t being unique. Therefore, the rank of

(
(u d⃝

0)T , (u d⃝
1)T , . . . , (u d⃝

N−1)T
)T

, denoted as Ũ, equals to
(

pM + d
pM

)
.

Master of Science Thesis Zhehan Li

68 State-of-the-art Volterra Identification Frameworks

Zhehan Li Master of Science Thesis

Appendix B

Algebraic Initialization Method

B-1 Newton Type Algorithms Examples

Several Newton type algorithms estimate the Hessian Hk term in Equation 2-23 in the fol-
lowing manners,

1. For gradient or steepest descent algorithm, Hk = I and the step direction is simply the
direction of the steepest slope.

2. For nonlinear conjugate gradient method algorithm,Hk = I−γpk−1δT, i.e., the identity
plus a rank-1 correction. The values γ and δ depend on the current and previous step
pk−1.

3. For Gauss-Newton algorithm, Hk = JT
k Jk with Jk denoting the Jacobian matrix, and

Hk is then called the Gramian (of the Jacobian).

4. For Levenberg-Marquardt algorithm, Hk = JT
k Jk +λI with Jk the Jacobian matrix and

λ ≥ 0 a chosen constant.

B-2 Algebraic Initialization Method For Algorithm 1

The result of the algebraic method proposed in [22] that solves Equation 2-14 can be used
as the initial value for Algorithm 1. This section aims to explain how the computational
complexity of the algebraic method is calculated. The reader is advised to consult [22] for
the detail derivation. For simplicity, the LS-CPD in Equation 2-14 is referred as follows:

y ∈ RN =


y(0)
y(1)

...
y(N − 1)

 =
(
U⊙T U⊙T · · · ⊙T U

)
vec(V)

= At

(B-1)

Master of Science Thesis Zhehan Li

70 Algebraic Initialization Method

where A ∈ RN×Id denotes the d-time row-wise Khatri-rao products of U, and t ∈ RId repre-
sents the vectorization of Volterra tensor vec(V) ∈ RId .

If A has full column rank, the naive technique for determining the CPD factors of tensor
V is to solve the linear system t = A−1y, reshape (tensorization [26]) t into tensor V, and
then decompose V into CPD format using the MATLAB ® script cpd.m in the Tensorlab
package [35], expressed as:

[B, c] = CPD(V)
= CPD(tensorization(t))

= CPD
(
tensorization

(
A−1y

)) (B-2)

where B = [B1, · · · , Bd] is the factor matrices and c is the weighting vector, which are de-
fined in Equation 2-12, and becomes symmetric CPD if Bi are same for i = [1, d]. Because A
contains repeated columns and does not have full column rank, the calculation of the inverse
of A directly is ill-conditioned.

The algebraic method adopts the Cholesky decomposition [31] method to solve the inverse of
A expressed as:

y = At

y = WPt, with W ∈ RN×F , and P = {0, 1}F ×Id ∈ RF ×Id

y = Wz, with z = Pt
WT y = WT Wz
WT y = cz, with c = chol(WT W)

c−1WT y = z
c−1WT y = Pt

P+c−1WT y = t

P+
(
WT W

)−1
WT y = t

[B, c] = CPD(tensorization(t))

(B-3)

where W is the matrix containing the unique columns of A. The value of F equals to the

rank of A that is
(

I − 1 + d
I − 1

)
. P is the binary matrix containing the location of W in A.

P+ is the pseudoinverse of P.

The first 6 lines are the common Cholesky decomposition method to solve z, which requires
the computational complexity of O

(
1
2NIF 2 + 1

6F 3 + NF
)
, and the computational complex-

ity of last three lines are dominated by the pseudoinverse of P with O
(
F 3). In total, the

computational complexity of Equation B-3 is O
(

1
2NIF 2 + 7

6F 3 + NF
)
.

The result is supposed to be symmetric CPD, thus the last step of the algebraic method
is to check the identity of the resultant factor matrices Bi. By defining B1 = [B1, · · · , Bd−1],

Zhehan Li Master of Science Thesis

B-2 Algebraic Initialization Method For Algorithm 1 71

and BN−1 = [B2, · · · , Bd], the identity of the resultant factor matrices can be calculated by
the relative difference in Frobenius norm between B1 and BN−1, mathematically expressed
as: ∑

p ∥B1 − permute (BN−1, π)∥F
∥B1∥F

< SymmetryTolerance (B-4)

where π is the index permutation and scaling matrix such that each element of B1 is optimally
permuted and scaled to fit the BN−1, ∥∥F is the Frobenius norm, and the SymmetryTolerance
has the default value of 10−6. If Equation B-4 does not hold, which implies that the algebraic
method does not find a suitable symmetric solution, the pseudo random factor matrix and
a weighting vector for symmetric CPD are returned as the output of the algebraic method,
using the MATLAB ® script cpd_rnd.m in the Tensorlab package [35].

The computational cost of the algebraic method is dominated by Equation B-3 as
O
(

1
2NIF 2 + 7

6F 3 + NF
)
. The storage complexity is dominated by the three main compo-

nents P, Z and y in Equation B-3. The total size of these three components is
O
(
FId + NF + N

)
, which can be approximated as O

(
FId

)
given that Id >> N > F .

Master of Science Thesis Zhehan Li

72 Algebraic Initialization Method

Zhehan Li Master of Science Thesis

Bibliography

[1] Oliver Nelles. Nonlinear System Identification: From Classical Approaches to Neural
Networks, Fuzzy Models, and Gaussian Processes. Springer Nature, 2020.

[2] Tohru Katayama et al. Subspace methods for system identification. Vol. 1. Springer,
2005.

[3] Michel Verhaegen and Vincent Verdult. Filtering and system identification: a least
squares approach. Cambridge university press, 2007.

[4] Constantin Paleologu, Jacob Benesty, and Silviu Ciochină. “Linear system identification
based on a Kronecker product decomposition”. In: IEEE/ACM Transactions on Audio,
Speech, and Language Processing 26.10 (2018), pp. 1793–1808.

[5] Kim Batselier, Ching-Yun Ko, and Ngai Wong. “Tensor network subspace identification
of polynomial state space models”. In: Automatica 95 (2018), pp. 187–196.

[6] Rolf Isermann and Marco Münchhof. Identification of dynamic systems: an introduction
with applications. Vol. 85. Springer, 2011.

[7] Angelo Guerraggio and Giovanni Paoloni. Vito Volterra. Vol. 15. Springer-Verlag, 2010.
[8] Wim Van Drongelen. Signal processing for neuroscientists. Academic press, 2018.
[9] Kim Batselier. “Enforcing symmetry in tensor network MIMO Volterra identification”.

In: IFAC-PapersOnLine 54.7 (2021), pp. 469–474.
[10] Kim Batselier et al. “A tensor-based volterra series black-box nonlinear system identi-

fication and simulation framework”. In: 2016 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE. 2016, pp. 1–7.

[11] Kim Batselier, Zhongming Chen, and Ngai Wong. “Tensor Network alternating linear
scheme for MIMO Volterra system identification”. In: Automatica 84 (2017), pp. 26–35.

[12] Francis J Doyle, Ronald K Pearson, and Babatunde A Ogunnaike. Identification and
control using Volterra models. Springer, 2002.

[13] Li Tan and Jean Jiang. “Adaptive Volterra filters for active control of nonlinear noise
processes”. In: IEEE Transactions on signal processing 49.8 (2001), pp. 1667–1676.

Master of Science Thesis Zhehan Li

74 BIBLIOGRAPHY

[14] Chi-Hao Cheng and Edward J Powers. “Optimal Volterra kernel estimation algorithms
for a nonlinear communication system for PSK and QAM inputs”. In: IEEE Transac-
tions on Signal processing 49.1 (2001), pp. 147–163.

[15] Edward Bedrosian and Stephen O Rice. “The output properties of Volterra systems
(nonlinear systems with memory) driven by harmonic and Gaussian inputs”. In: Pro-
ceedings of the IEEE 59.12 (1971), pp. 1688–1707.

[16] Martijn P Vlaar et al. “Modeling the nonlinear cortical response in EEG evoked by
wrist joint manipulation”. In: IEEE Transactions on Neural Systems and Rehabilitation
Engineering 26.1 (2017), pp. 205–215.

[17] Mario Köppen. “The curse of dimensionality”. In: 5th Online World Conference on Soft
Computing in Industrial Applications (WSC5). Vol. 1. 2000, pp. 4–8.

[18] Gérard Favier, Alain Y Kibangou, and Thomas Bouilloc. “Nonlinear system model-
ing and identification using Volterra-PARAFAC models”. In: International Journal of
Adaptive Control and Signal Processing 26.1 (2012), pp. 30–53.

[19] Johan Håstad. “Tensor rank is NP-complete”. In: Journal of Algorithms 11.4 (1990),
pp. 644–654.

[20] Frank L Hitchcock. “The expression of a tensor or a polyadic as a sum of products”.
In: Journal of Mathematics and Physics 6.1-4 (1927), pp. 164–189.

[21] Evrim Acar, Daniel M Dunlavy, and Tamara G Kolda. “A scalable optimization ap-
proach for fitting canonical tensor decompositions”. In: Journal of Chemometrics 25.2
(2011), pp. 67–86.

[22] Martijn Boussé et al. “Linear systems with a canonical polyadic decomposition con-
strained solution: Algorithms and applications”. In: Numerical Linear Algebra with Ap-
plications 25.6 (2018), e2190.

[23] Dana Lahat, Tülay Adali, and Christian Jutten. “Multimodal data fusion: an overview
of methods, challenges, and prospects”. In: Proceedings of the IEEE 103.9 (2015),
pp. 1449–1477.

[24] Anh Huy Phan, Petr Tichavsky, and Andrzej Cichocki. “On fast computation of gra-
dients for CANDECOMP/PARAFAC algorithms”. In: arXiv preprint arXiv:1204.1586
(2012).

[25] N Vervliet and L De Lathauwer. “Numerical optimization-based algorithms for data
fusion”. In: Data Handling in Science and Technology. Vol. 31. Elsevier, 2019, pp. 81–
128.

[26] Ulrich Schollwöck. “The density-matrix renormalization group in the age of matrix
product states”. In: Annals of physics 326.1 (2011), pp. 96–192.

[27] Tamara G Kolda and Brett W Bader. “Tensor decompositions and applications”. In:
SIAM review 51.3 (2009), pp. 455–500.

[28] Andrzej Cichocki et al. “Tensor networks for dimensionality reduction and large-scale
optimization: Part 1 low-rank tensor decompositions”. In: Foundations and Trends® in
Machine Learning 9.4-5 (2016), pp. 249–429.

[29] Andrzej Cichocki et al. “Tensor decompositions for signal processing applications: From
two-way to multiway component analysis”. In: IEEE signal processing magazine 32.2
(2015), pp. 145–163.

Zhehan Li Master of Science Thesis

BIBLIOGRAPHY 75

[30] Evangelos E Papalexakis, Christos Faloutsos, and Nicholas D Sidiropoulos. “Tensors for
data mining and data fusion: Models, applications, and scalable algorithms”. In: ACM
Transactions on Intelligent Systems and Technology (TIST) 8.2 (2016), pp. 1–44.

[31] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Busi-
ness Media, 2006.

[32] Michiel Vandecappelle, Nico Vervliet, and Lieven De Lathauwer. “A second-order method
for fitting the canonical polyadic decomposition with non-least-squares cost”. In: IEEE
Transactions on Signal Processing 68 (2020), pp. 4454–4465.

[33] Martijn Boussé and Lieven De Lathauwer. “Nonlinear least squares algorithm for canon-
ical polyadic decomposition using low-rank weights”. In: 2017 IEEE 7th International
Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAM-
SAP). IEEE. 2017, pp. 1–5.

[34] Michiel Vandecappelle, Nico Vervliet, and Lieven De Lathauwer. “Nonlinear least squares
updating of the canonical polyadic decomposition”. In: 2017 25th European Signal Pro-
cessing Conference (EUSIPCO). IEEE. 2017, pp. 663–667.

[35] N. Vervliet et al. Tensorlab 3.0. Available online. Mar. 2016. url: https : / / www .
tensorlab.net.

[36] Martijn P Vlaar et al. “Modeling the nonlinear cortical response in EEG evoked by
wrist joint manipulation”. In: IEEE Transactions on Neural Systems and Rehabilitation
Engineering 26.1 (2017), pp. 205–215.

[37] Mike de Pont. “Non-Linear Bayesian System Identification of Cortical Responses Using
Volterra Series”. In: (2020).

[38] Stijn Hendrikx et al. “Algebraic and optimization based algorithms for multivariate
regression using symmetric tensor decomposition”. In: 2019 IEEE 8th International
Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAM-
SAP). IEEE. 2019, pp. 475–479.

[39] Eva Memmel and Kim Batselier. “Bayesian tensor network-based Volterra system iden-
tification”. In: Delft University of Technology (2021).

[40] Kim Batselier, Zhongming Chen, and Ngai Wong. “A Tensor Network Kalman filter
with an application in recursive MIMO Volterra system identification”. In: Automatica
84 (2017), pp. 17–25.

[41] “WORKSHOP ON NONLINEAR SYSTEM IDENTIFICATION BENCHMARKS”. In:
(Apr. 2021). Available online. url: https://drive.google.com/file/d/1YE396kMM68Nb-
rM_NRih58c_OtLgIy2t/view.

[42] SB Shiki et al. “Characterization of the nonlinear behavior of a F-16 aircraft using
discrete-time Volterra series”. In: ISMA. 2014.

[43] Carl Andersson et al. “Deep convolutional networks in system identification”. In: 2019
IEEE 58th conference on decision and control (CDC). IEEE. 2019, pp. 3670–3676.

[44] Sebastian Holtz, Thorsten Rohwedder, and Reinhold Schneider. “The alternating lin-
ear scheme for tensor optimization in the tensor train format”. In: SIAM Journal on
Scientific Computing 34.2 (2012), A683–A713.

Master of Science Thesis Zhehan Li

https://www.tensorlab.net
https://www.tensorlab.net
https://drive.google.com/file/d/1YE396kMM68Nb-rM_NRih58c_OtLgIy2t/view
https://drive.google.com/file/d/1YE396kMM68Nb-rM_NRih58c_OtLgIy2t/view

76 BIBLIOGRAPHY

Zhehan Li Master of Science Thesis

Glossary

List of Acronyms

3mE Mechanical, Maritime and Materials Engineering
LTI Linear time-invariant
NTI Nonlinear time-invariant
SISO Single-input single-output
MIMO Multiple-input multiple-output
TN Tensor network
TT Tensor train
PD Polyadic decomposition
CPD Canonical polyadic decomposition
LS Least squares
LS-CPD Linear system with a canonical polyadic decomposition constrained solution
SVD Singular value decomposition
ALS Alternating linear scheme
MALS Modified alternating linear scheme
PARAFAC Parallel factor model
MISO Multiple input single output
CANDECOMP Canonical decomposition
MPP Moore-Penrose pseudoinverse
SNR Signal-to-noise ratio
NLS Nonlinear Least Square
GN Gauss-Newton
CG Conjugate gradients
CCR Complexity compensation rates

Master of Science Thesis Zhehan Li

78 Glossary

PCR Performance compensation rate
EEG Electroencephalography
VAF Variance accounted for

Zhehan Li Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements

	Main Matter
	Introduction
	Thesis Motivation
	Thesis Objective
	Thesis Outline

	Development: From Tensor To Numerical Optimization
	Tensor Basics
	Volterra Tensor
	Symmetric CPD On Volterra Tensor
	Nonlinear Least Squares Optimization Structure For LS-CPD
	NLS objective function
	GN optimization algorithm

	Conclusion On Phase i

	Validation: Identifying An Artificial Volterra System
	Proof-of-concept Experiment Setup
	Experiment i: Influence Of Rank R
	Experiment ii: Choice Of Initialization Method
	Complexity compensation rates
	Performance compensation rate

	Experiment iii: Comparison With State-of-the-art
	Conclusion On Phase ii

	Application: Modeling Evoked Cortical Responses
	Data Set Description
	Modeling Experiments Setup
	Experiments Results
	Hyper-parameter tuning
	Similarity

	Conclusion On Phase iii

	Conclusions And Future Work
	Concluding Remarks
	Future Research
	Development
	Validation
	Application

	Appendices
	State-of-the-art Volterra Identification Frameworks
	Tensor Operations
	Three Tensor Network Based Frameworks
	ALS
	MALS
	MPP

	Persistently Exciting Condition

	Algebraic Initialization Method
	Newton Type Algorithms Examples
	Algebraic Initialization Method For Algorithm 1

	Back Matter
	Glossary
	List of Acronyms

