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Preface

In this work, a MATLAB based graphical user interface (GUI) tool is built to analyze Quasi-
optical (QO) systems in reception with the Fourier Optics (FO) and Geometrical Optics (GO)
methods. Five canonical QO components are discussed, namely parabolic reflectors, elliptical
lenses, hemispherical lenses, hyperbolic lenses, and elliptical mirrors. The ray tracing
technique is implemented to describe reception scenarios and visualize the phase aberrations
in the QO systems. The FO method represents the fields focalized by a QO component on its
focal plane as a Plane Wave Spectrum (PWS). This spectrum is calculated by using the GO
method and can be used in spectral techniques like equivalent Floquet circuit. Moreover, the
tool is able to use this spectrum to estimate the power delivered to an antenna placed at the
focal plane. By obtaining this delivered power, the performance of the antenna-coupled QO
system is analyzed, including pattern, directivity, common efficiency terms and gain. In
addition, the performance calculated in reception is validated by CST and GRASP full-wave
simulation software. Therefore, this GUI tool represents a GO/FO based tool that can be used

to analyze and design antenna-coupled QO systems in reception.

This thesis is submitted in partial fulfillment of the requirements for the degree of Master of
Science in Electrical Engineering at Delft University of Technology.
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Chapter 1: Introduction

1.1 Background

Systems operating in the Terahertz (THz) frequency domain are becoming more common in
recent years in applications such as: Stand-off security monitoring [1, 2], next generation of
communication systems [3, 4], far-infrared observatories [5, 6] and etc. In such systems, Quasi-
optical (QO) components, e.g. reflectors and lenses, are commonly employed to enlarge the
directivity of the systems, which leads to higher angular resolution in imaging applications and
higher signal to noise ratio in sensing applications. Due to the geometrical properties of QO
components, they are employed to radiate highly directive beams when transmitting sources
are placed at their foci (transmission scenarios); or focalize incoming fields on their focal
planes and increase the sensitivity of the detectors placed at their focal planes (reception
scenarios). Here we take a parabolic reflector as an example to better illustrate transmission

scenarios (Fig. 1.1a) and reception scenarios (Fig. 1.1b).

= Incident fields
Reflected fields

Transmitter Receiver
1SM (e.g. feed antennas) Focusfl (e.g. Detectors)

| Focal Plane \ Focal Plane

@ (b)

Figure 1.1: A schematic representation of a parabolic reflector: (a) In transmission scenarios. (b) In reception
scenarios.

The analysis of QO systems can be done either in transmission or reception. These analyses
are equivalent for single-mode antennas thanks to the reciprocity theorem; whereas it is more
convenient to analyze QO systems in reception for multi-mode antennas [7, 8]. Moreover, for
absorber-coupled QO systems, they can only be analyzed in reception. In this work, we focus
on the analysis in reception because it enables us to combine well-developed methods to
analyze the coupling between QO components and antennas or absorbers. Furthermore, the
analysis in reception allows us to have a well-defined field coming from the optics that can be
used to synthesize the antennas and absorbers integrated with the transmitters and receivers.



There are several high-frequency techniques that can be used to analyze QO systems, such
as: ray tracing, Physical Optics (PO), and Fourier Optics (FO). The ray tracing technique [9-
11] approximates high-frequency electromagnetic (EM) waves as tubes of rays propagating in
a homogenous medium, following the laws of reflection and refraction. In such an approach,
visualized ray propagation is presented, which is helpful for describing phase aberrations in
QO systems. In particular, phase error terms can be included in the analysis by considering the
path length traveled by each ray. Therefore, in this work, the ray tracing is used to describe
reception scenarios. However, some software, such as ZEMAX [12], cannot provide amplitude
information of EM waves. As the result, the ray tracing has a limited use to design antennas or
absorbers coupled to QO components. Moreover, the PO method, when the high-frequency
approximation is met, can be used to evaluate EM fields scattered by arbitrarily shaped
surfaces. This goal is achieved by radiating the equivalent surface currents in absence of the
surface [13, 14]. This technique is well-established and accurate; therefore in this work, it is
employed for validation purposes. However, the PO approach is numerically cumbersome and
time-consuming, especially for multi-component QO systems. In addition, one cannot easily
apply the PO approach to include the coupling between detectors and QO systems.

In order to analyze the coupling between detectors and QO systems in reception. A Fourier
Optics approach is proposed in [7, 15] for absorber-coupled QO systems, and in [16] for
antenna-coupled systems. In these papers, when a QO system is illuminated by a plane wave,
the fields focalized by the QO system on its focal plane can be represented as a summation of
plane waves, referred to as plane wave spectrum (PWS). This spectrum is calculated by using
the Geometrical Optics (GO) technique [13]. One can link the PWS of the QO system to
equivalent Floquet circuits to evaluate the power captured by absorbers placed at the focal
plane, as described in [7] and [15]. Moreover, the PWS can be used to analyze the performance
of antenna-coupled QO systems. By resorting to the antenna in reception formalism [17], one
can use the PWS to estimate the power received by antennas, as described in [16]. Accordingly,
compared with the ray tracing and PO approaches, FO based analysis can provide more insight
for designing detector-coupled QO systems. However to our knowledge, no universal tools are
developed to implement this FO method for variety of QO systems in reception. There are a
few codes implementing the FO method [7, 15, 16], but they mainly focus on analyzing
parabolic reflectors and elliptical lenses, which constrains design possibilities. Moreover,
existing codes do not have user-friendly interfaces, meaning users cannot operate them easily.
Accordingly, a MATLAB based graphical user interface (GUI) tool is built in this thesis to aid
with analyzing QO systems in reception using the GO/FO method.



1.2 Solution proposed in the thesis

This work proposes a GUI tool for analyzing QO systems in reception using the GO/FO
methodology. To improve design possibilities, five widely used QO components are discussed,
namely parabolic reflectors, elliptical lenses, hemispherical lenses, hyperbolic lenses, and
elliptical mirrors. In addition, the tool takes into account the presence of a matching layer,
which is an essential element for designing dielectric lenses. An in-house ray tracing code is
developed to describe and visualize reception scenarios for all QO components. Users can
apply this ray tracing to preliminarily analyze QO systems by considering phase aberrations.
Moreover, a PO code is implemented to evaluate the fields focalized by a QO component on
its focal plane. These focal plane fields can be used as references for later-stage validation. The
core code is the GO/FO analysis code. It calculates the PWS of the focalized fields by using
the fields evaluated on an equivalent FO sphere ([7, 15]) centered at the focus of a QO
component. Furthermore, it uses the PWS to estimate the power received by an antenna placed
at the focal plane of the QO component, by resorting to the antenna in reception formalism
[17]. Accordingly, this GUI tool represents a GO/FO based tool that can be used to analyze

and design antenna-coupled QO systems in reception.



1.3 Thesis outline

The thesis is structured as follows. It consists of eight chapters. The second chapter describes
the most widely used QO components analyzed in reception. First, main canonical QO
components used in this work are introduced, including their applications and
parameterizations. Furthermore, the ray tracing technique is discussed to describe reception
scenarios for the QO components. In this section, incident fields are defined, and reflected and
transmitted fields are evaluated.

In chapter 3, the FO analysis is explained. The field focalized by a QO component on its
focal plane is expressed by a spectral representation with a quadratic phase term. To include
this phase term in the spectrum, the coherent FO method is investigated.

Chapter 4 focuses on evaluating the fields scattered by a QO component and propagating
these fields to the corresponding FO sphere by resorting to the GO technique. These scattered
fields are called GO fields and they are the key elements in calculating the coherent FO spectra.

In chapter 5, numerical examples and validation of GO fields and PWS are shown. In
chapter 6, antenna-coupled QO systems are analyzed in reception scenarios. To do so, the
Thevenin equivalent circuit is introduced to represent a system in reception. By calculating the
open-circuit voltage generator in this circuit, the power delivered to the antenna can be
evaluated. In addition, the performance of antenna-coupled QO systems is validated by CST
and GRASP full-wave simulation software.

In chapter 7, the developed GUI tool is described. The implementations of the ray tracing,
the PO, and the GO/FO method are explained. The procedures to obtain coherent FO spectra
and to analyze antenna-coupled QO systems are described. To conclude, chapter 8 summarizes
main points discussed in the thesis, and sets goals for the future research related to the work
done in this thesis.



Chapter 2: Main canonical QO components

QO components are important in THz systems since they can enlarge the directivity of the
systems significantly; and in this thesis, they are analyzed in reception. In this chapter, we
mainly discuss two things: One is to introduce the QO components used in this thesis; The
other is to describe reception scenarios for these QO components.

In section 2.1, the most widely used QO components are discussed, namely parabolic
reflectors, elliptical lenses, hemispherical lenses, hyperbolic lenses, and elliptical mirrors. We
first introduce some practical applications for each QO component, and then parameterize the
geometry of each component by defining its truncation angle, f-number, radial distance, and
normal vector. In section 2.2, a reception scenario, where a QO component is illuminated by a
certain incident wave, is described by using the ray tracing technique. We discuss incident
fields used in this work, analyze their propagation in reflection and transmission problems, and

finally show some examples of ray propagation.

2.1 Canonical QO components

In this section, we mainly introduce five canonical QO components by discussing their
applications in subsection 2.1.1 and parameterizations in subsection 2.1.2 and 2.1.3.

2.1.1 Applications of different QO components

® Parabolic reflector

A parabolic reflector in reception, as shown in Fig. 2.1, can focalize incident fields at its focal
plane and achieve highly directive beams. While in transmission, when a source with a
spherical wave front is placed at the focus, by using Snell’s law, the reflected fields will be
parallel to each other, which translates to highly directive far-field pattern. This high-directivity
property makes parabolic reflectors practical in many applications: In astronomical
observations, a parabolic reflector acts as a telescope; for instance, ALMA Radio-Telescope
for submillimeter observations [18] and Cassini-Huygens Mission for Saturn observation [19].
In telecommunications, it is an important component in satellite and broadcasting
communications. Moreover, it can be used in civilian and military security imaging systems
[2]. However, in an on-axis configuration, it suffers from a blockage problem, which reduces

the aperture efficiency of the system. This issue is illustrated in Fig. 2.1 where a receiver is



placed at the focal plane of the reflector. As it can be seen, the receiver is placed between the
reflector and its far-field region. Therefore, the incident fields also pass the same focal plane,
meaning this part of the fields is blocked and wasted. To mitigate this issue, Cassegrain
telescope systems [20] and off-axis reflectors are designed. Even so the main properties of the
focal plane fields can be understood from a symmetric reflector because most of the dual

reflector systems can be modelled by a single paraboloid [21].

— Incident fields
Reflected fields

Receiver Blocked portion
Foets of fields

\ Focal Plane

Figure 2.1: A schematic to illustrate wave propagation for a parabolic reflector in reception.

® Elliptical lens

Integrated antennas are widely used in THz applications. However, since dielectric slabs in
integrated chips are electrically thick in THz frequencies, antennas always suffer from surface
waves propagating in substrates, which significantly decreases radiation efficiency [22]. A
high-frequency solution to eliminate surface waves is to place a dielectric lens on the top of the
antenna. In such a structure, the antenna will radiate most of its power towards the lens [23,
24]. An elliptical surface is always preferred to be used as the dielectric lens since it can radiate
directive beams: It can transmit parallel waves when a spherical source is placed at its lower
focus (Fig. 2.2), which leads to directive pattern. In practice, elliptical silicon (e, = 11.9)
lenses are widely used in imaging systems. For example, for space-based observations, a kilo-
pixel imaging system is proposed in [6]. In this system, an array of elliptical silicon lenses is
aligned to a detector array that consists of kilo-pixel antenna-coupled MKIDs (Microwave

kinetic inductance detectors).
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Figure 2.2: A schematic to illustrate wave propagation for an elliptical lens in transmission.

® Hemispherical lens

Elliptical lenses have very good performance; however, fabricating elliptical surface in
dielectric is complicated. Therefore, in practice, one can use an extended hemispherical lens as
a substitution to synthesize a true elliptical lens in the case of silicon, as shown in Fig. 2.3. By
changing the extension length L, one can approximate an elliptical surface by a hemispherical
one with reasonable accuracy [24]. In practical applications, for instance, in a large-format

imaging system used for cosmic observations, extended hemispherical lenses are integrated

with antenna-coupled MKIDs [25].

— Hemispherical lens
== True elliptical lens

€ |

Extension
Length L

*. Focal plane Focus

Feed Antenna

Figure 2.3: Geometry of a synthesized elliptical lens from an extended hemispherical lens, compared with a true
elliptical lens in case of silicon.



® Hyperbolic lens

In this thesis, we discuss a planar hyperbolic dielectric (&,) lens, i.e. one side is planar and the
other side is hyperbolic, as depicted in Fig. 2.4. As it can be seen, this type of hyperbolic lens
can focalize the parallel incident fields at its focus without any aberration. It is worth noting
that the incident fields and the focal plane are at different sides of the hyperbolic lens.
Therefore, there is no blockage problem and the size of the receiver is not limited by the
blockage, which are advantages compared with a parabolic reflector. In practical applications,
planar hyperbolic lenses can be used for high-resolution far-field imaging [26, 27] and THz

spectroscopy systems [28].

— Incident fields
Transmitted fields

Foeus
Receiver

Focal Plane

Figure 2.4: A schematic to illustrate wave propagation for a planar hyperbolic lens in reception.

® Elliptical mirror

An elliptical mirror has two foci, F; and F,, as shown in Fig. 2.5. When a point source is placed
at one of the foci, for example F,, the reflected fields will be focalized at the other focus, F;.
Due to this property, elliptical mirrors are commonly used in illumination engineering [29, 30]:
They are able to collect the light of a source emitted from one focus at the other focus.
Moreover, in near-field applications, elliptical reflectors can be used in near-field
communication systems [31] and near-field imaging systems, e.g. the detection of breast cancer
[32] and THz imaging Radar [33].



— Incident fields
Reflected fields

Figure 2.5: A schematic to illustrate wave propagation for an elliptical mirror.

2.1.2 Parameterizing a generic surface

Before introducing a specific QO component, here a generic surface is parameterized. To do

so, two parameters are considered: Parameterization variables and normal vectors.
2.1.2.1 Parameterization variables

When defining a surface, one should perform a mapping from a 2D domain (m,n) to a 3D

domain (x, y, z). This mapping can be expressed as:

X = fx(m:n)
(m,n) -3y = f,(m,n) 2.1
z = f,(m,n)

In this thesis, two types of 2D domains (variables), (8, ¢) and (u,v), and one 3D domain,
cartesian coordinate (x,y, z), are used. We start with an arbitrary surface. As it can be seen in
Fig. 2.6, Q is a point on a generic surface S with the radial distance r(6). 7, is the normal

vector of S and 6, is the subtended rim angle where we truncate the surface.

Z
Generic surface S

r(0)

p

Figure 2.6: Sketch of a generic surface S.



® Parameterization using (0, ¢) variables

In this case, the mapping in Eq. (2.1) becomes:

X = fx(e' ¢)
6,9) =<y =100,¢) (2.2)
z = f,(6,9)

Therefore, the point Q can be parameterized as follows:

Q. =1r(0) sin O cos¢
Qy =7(6)sinfsin¢ (2.3)
Q,=1r(@)cosb

® Parameterization using (u, v) variables

The (0, ¢) variables are easy to define; however, using them would lead to a problem that the
surface is sampled denser at the center and less at the edge (illustrated clearly in Appendix
A.1). This non-uniform sampling means that the fields on the surface could require a large
number of points to converge. Therefore, we introduce another set of variables that performs
uniform sampling, the (u, v) variables, which are obtained as follows:

{u = sin 6 cos ¢

v =sinf sin ¢ (2.4)

By using these variables, the surface can be parameterized as:

Q, =r(u,v)u
Qy =r(w,v)v (2.5)
Q, =7r(u, v)\/l — (u? + v?)

Since (0, ¢) and (u, v) can be mutually transformed by using Eq. (2.4), in the following parts

of this thesis, for simplicity, expressions in (8, ¢) are reported for most cases.
2.1.2.2 Normal vectors

Normal vectors are important when calculating the Jacobian of a surface or applying Snell’s
law. Therefore, a generic expression for normal vectors of a surface is discussed. After

parameterizing the surface S, one can calculate the normal vector 7, at each point on the

surface as:
aaé y aaé
g = £ 2000 0P/Y 2.6)
0Q y 0Q
d6/u” dp/v
where 5 = QxX + Qyy + 0,2, % and a‘;% are partial derivatives of the surface with respect

to (6, ¢) or (u, v), which are explicitly calculated in Appendix A.2. The sign “+” in Eq. (2.6)



indicates the direction of the normal vector: “+” means 7, points towards the +z direction,

(13 ”

while means the —z direction. In this thesis, the selection of the sign depends on the

direction of the incident field. When the incident field propagates towards +z direction, the

G,

sign is “—""; while for - z propagation, the sign is “+”.
2.1.3 Parameterizing a specific QO component

In this subsection, we consider parameterizing a QO component, with a specific truncation

angle (derived in Appendix A.3), f-number, radial distance, and normal vector.

® Parabolic reflector

Fig. 2.7 shows the 2D geometry (front view) of a parabolic reflector. The reflector is centered
at its focus 0O, with the diameter of D, and the focal distance of f. The f-number is defined as
f} = f/D,. It is worth noting that in reception, the observation point is also located at 0, i.e.

we place a receiver at 0. The radial distance, r(8), can be expressed as:

2f
P EE— 2.7
1+ cos@ 2.7)
We can also calculate the normal vector of the surface, 7i,., by using Eq. (2.6) (extended

r(0) =

calculation in Appendix A.2):

R 1—cosf _ 1+cosf |
l, = — D — 5 2 (2.8)

® Elliptical lens

An ideal elliptical lens should achieve directive patterns. To achieve this in transmission, one
needs to ensure the fields on the lens equivalent aperture have constant phase. The resulting
lens should have the eccentricity of e = 1/4/¢,., where &, is the relative permittivity of the
dielectric; and an antenna should be placed at its lower focus. This configuration is shown in
Fig. 2.8 that we move the center of the coordinate system (observation point) to the lower focus
of the ellipse, 0,. The distance from 0, to the apex is a + ¢, where a is the semi-major axis
and c is the focal distance. The f-number is defined as f = R;/D;, where R, is the rim distance
(Appendix A.3). For the surface of the lens, the radial distance, (), can be expressed as:
1—e?

) =a—
r(6) al—ecose

(2.9)

11



where e = c¢/a = 1/+/€, is the eccentricity of the ellipse. The normal vector of the surface, #;,

is obtained as follows:

R sin @ R cosf —e
n; = p+ Z (2.10)
V1+e2—2ecosf V1+e2 —2ecosf
zZ NZ
D
| Dy | | I |
| |
iy
i, o
f 0, ¢ &
r(6) r(6)
R
6 c
g1 Y% ] 8,
0 ’ 0) P

Figure 2.7: 2D geometry of a parabolic reflector. Figure 2.8: 2D geometry of an elliptical lens.

® Hemispherical lens

A hemispherical lens (Fig. 2.9) consists of a hemisphere with the radius of R,,, and an
extended base with the length of L. The center of the hemisphere is represented by O, while
the center of the coordinate system (observation point) is 0. The f-number is defined as f* =
R,/Dy,;, where R, is the rim distance calculated in Appendix A.3. The radial distance, r(8), can

be expressed as:

— I%sin28 (2.11)

r(6) = Lcosf + \/Rszph

Since r(0) has a complicated expression, the normal vector of the surface, 7, is calculated
numerically by using Eg. (2.6).

In practical design, two types of hemispherical lenses are commonly used: One is the
configuration introduced in [24]. If the extension length is selected as L/Rg,, = 0.32~0.35,
an elliptical lens can be approximated by a hemispherical lens with reasonable accuracy. The
other configuration is called hyperhemispherical lens [24, 34]. The extension is designed to be
L = Ry /\/Er, with which incident spherical waves can be perfectly focalized by the lens on

its focal plane.

12



® Hyperbolic lens

In this work we discuss a planar hyperbolic lens, as shown in Fig. 2.10. An ideal hyperbolic
lens should achieve directive patterns. To achieve this in transmission, one needs to ensure the
fields on the lens equivalent aperture have constant phase. The resulting lens should have the
eccentricity of e = +/¢,, where &, is the relative permittivity of the dielectric; and an antenna
should be placed at its lower focus. In Fig. 2.10, we move the center of the coordinate system
to the lower focus O and define the focal distance as f = a + ¢, where a is the semi-major axis
and c is half of the distance between two foci. The f-number is defined as f* = f/D,,. The
radial distance, r(8), can be expressed as:
b?/a

1—ecos@

where b = Vc? —a? and e = ¢/a = +/¢, is the eccentricity of the hyperbola. We can also

r(0) = — (2.12)

calculate the normal vector, 7;,:
sin @ R e —cos6

+ VA (2.13)
V1 + e? —Zecosep V1 +e2 —2ecosf

ﬁh=_

Z
Dhl | I zZ Dh I
1
ny .
o
- a
Rspn h r(6) .
c
R
) L o 1%
[
=a+
0 4 0 f=atc P

Figure 2.9: 2D geometry of a hemispherical lens.  Figure 2.10: 2D geometry of a hyperbolic lens.

® Elliptical mirror

An elliptical mirror has two foci, 0, and 0,, as shown in Fig. 2.11. When a transmitter is placed
at one focus, for example 0,, a receiver should be placed the other focus, O,. Therefore,
depending on where we place a receiver (observation point), the surface can be parameterized

by r,(6,) or r,(6,). The radial distance, r;(8,) and r,(6,), can be expressed as follows:
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1—e?

n6)=a————
1+ ecosb,

2.14

1 g2 (2.14)
er(eZ) -4 1—ecosb,

where a is the semi-major axis and e = c¢/a is the eccentricity. It can be observed from Fig.

2.11 that r, (6;) and r,(8,) are related to each other as follows:

r,(6,) cos 0; + 2¢ = 1,(6,) cos 0, (2.15)
z z
| Dy, | | D, |
I | | |
ﬁ”l ﬁ'l’n
71(61) R r1(61) R
1 1
72(02) 6,] bo1 r2(62) 61| 901
p
04 Rz o7
Focal plane
0, Bo2 0, G2 Ry
Focal plane 0, P 0,
(@) (b)

Figure 2.11: 2D geometry of an elliptical mirror: (a) Observation at lower focus. (b) Observation at upper focus.

Case 1: Observation at lower focus, 0,

In this case, as shown in Fig. 2.11a, the f-number is defined as fi" = R,;/D,,, where Ry; is
the rim distance calculated in Appendix A.3. The mirror is parameterized by the radial distance,
r,(6,). By solving Eq. (2.15), one can relate 6, to 6,:
Aja(1—e?)—2c cos 6,

0, = -1 VAL = 2.16
1= 08 e +(1—-4,e)a(l—e2)"* " 1—ecosb, (2.16)
The normal vector, 71, can be expressed as:
R sin 6, R cosf, —e .
Ay = Z (2.17)

—_— p—
J1+e2—2ecosf, +/1+e2—2ecosh,

Case 2: Observation at upper focus, 04

In this case, as shown in Fig. 2.11b, the f-number is defined as ;" = (a — ¢)/D,,. The
mirror is parameterized by the radial distance, r;(6,). By solving Eq. (2.15), one can relate 6,
to 6;:

Aa(l—e?) + 2c cos 0,

1 =
2ce + (1 +A,e)a(l —e?) > 1+ecosb,

6, = cos™ (2.18)
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The normal vector, 7, can be calculated as:
sin 6; R cosf, +e
— p —
J1+e2+2ecosf; /1+e2+2ecosb,

Ay =

(2.19)

N>

2.2 Ray tracing technique

As discussed in [13], for high-frequency scenarios, i.e. the surface of a QO component is large
with respect to wavelength, one can approximate EM waves as tubes of rays that propagate
from one point to another in a homogenous medium, following the laws of reflection and
refraction. By tracing ray propagation, a reception scenario can be well described. One can
clearly observe how incident rays are focalized by a QO component in a reflection or
transmission problem. Therefore, ray tracing is helpful for describing phase aberrations for QO
systems in reception.

In this section, we introduce the ray tracing technique implemented in the tool, which
mainly focuses on calculating directions of propagation and polarizations for incident,
reflected, and transmitted rays. In subsection 2.2.1, we describe the incident field used in this
work. And then in subsection 2.2.2, we discuss how we solve reflection and transmission
problems by using Snell’s law and boundary conditions. Finally, in subsection 2.2.3, we show
some visualized ray tracing plots generated by the ray tracing technique.

2.2.1 Incident field

There are two sets of sources used in the thesis: A plane wave and a point source. For an
elliptical mirror, we use a point source (Huygens source) to generate incident fields; while for
other QO components, since the source is at infinity, we use a plane wave as the incident field.

2.2.1.1 Plane wave

In Fig. 2.12, a plane wave incoming with the skew angle of (6, ¢;) impinges on a generic
surface S. We can characterize the incident plane wave at each point Q on the surface, with the
position vector 7(6):

E;(#) = Ege JkGiMp, (2.20)
where E, is the amplitude of the electric field, k is the propagation constant of the medium, $;
is the propagation unit vector, and p; is the polarization of the electric field. The incident

magnetic field can be calculated as follows:

H@® = %s x E;(7) (2.21)
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where ¢ is the impedance of the medium. In the following sections, unless we address the
calculation of magnetic fields, we only introduce electric fields and assume a plane wave
relation described in Eq. (2.21) to calculate magnetic fields. The propagation unit vector can
be expressed as:

8; = sin B, cos ¢g X + sin 6, sin ¢ ¥ + cos O, Z (2.22)
where (8, ¢s) is the skew angle of the incident rays. As for the polarization, p;, it is defined
by using the Ludwig-111 definition described in [35]: p; can be either the reference polarization
(Co-Pol.):

pAi,Co = sin ¢ é\s + cos ¢ (f)s (2.23)
or the cross polarization (Cx-Pol.):
pAi,Cx = oS ¢ é\s — sin ¢ ({55 (2.24)

where 8, and ¢, can be expressed as:

{95 = €0s 6 coS g X + cos O, sin g § — sin 6, Z (2.25)

¢s = —sin ¢ X + cos ¢

It is worth noting that when ¢, = 90°, p; ¢, = 85, which is referred to as the TM polarization;

and when ¢ = 0°, P co = &5, Which is referred to as the TE polarization.

Generic surface S

7(6)

0 Incoming plane wav

p

Figure 2.12: A plane wave incoming with the skew angle of (6;, ¢s).
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2.2.1.2 Point source

In the case of an elliptical mirror, we want to illuminate its surface with a spherical wave. By
emitting fields with spherical wave fronts at one focus, one can obtain reflected spherical wave
fonts focalized at the other focus. To do so, a simple case is to adopt a point source as the
testing source, and put it at one of the foci of the ellipse. In this thesis, we use a Huygens source
as the point source since a symmetric far-field pattern can be achieved by this source [36];
whereas an elementary electric dipole has a ¢-related pattern. A Huygens source consists of

two elementary dipoles, one is electric and the other is magnetic, as shown in the inset in Fig.

2.13. The magnetic dipole, M, should have the following relation with the electric dipole, T

M| = ¢|]]
M-J=0 (2.26)
IxM =2

where ¢ is the impedance of the medium. It can also be seen in Fig. 2.13 that we define the

angle between the electric dipole and the x axis as the orientation angle, y. When y = 0°, Jis

oriented along x direction and the Huygens source is x-polarized (Co-Pol.); while wheny =

90°, ] is oriented along ¥ direction and the Huygens source is y-polarized (Cx-Pol.).
When we put the source at one of the foci of the ellipse (broadside incidence), the far field
generated by the Huygens source can be described as follows:

e—jkr

E; = (Ef¢ +E!9) (2.27)

r

where r is the radial distance from the focus to the surface, Ei" is the parallel (TM) component,
and E;- is the perpendicular (TE) component. When we move the source within one focal plane
with a distance, g, for instance, within the upper focal plane as depicted in Fig. 2.13, we
calculate the far field numerically by using the far-field approximation of Green’s function.

Here we define the skew angle of the incident rays, i.e. (6, ¢, ), as follows:

|55
_ -1
6 = tan atc o)
¢ = tan! |ﬁs’x| ’
S -
k |p5.y|

where gg = psx + Psy: Ps, and ps,, are the x- and y-oriented displacement, respectively. The
sign “+” in EQ. (2.28) depends on where we put the source: “—" for the case of upper focal

plane, while “+” for the case of lower focal plane.
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Figure 2.13: A Huygens source placed at the upper focal plane of an elliptical mirror, with a displacement g,.

2.2.2 Reflection and transmission at a flat interface

In this subsection, we focus on representing reflected and transmitted fields at a flat interface,
by taking propagation unit vectors, polarizations, and Fresnel reflection and transmission
coefficients into account. First, we discuss a case that involves two mediums. Furthermore, we

explore a case with the implementation of a matching layer.
2.2.2.1 Without a matching layer

To solve a reflection and transmission problem, we observe a point Q on a surface locally, as
depicted in Fig. 2.14. Since we are in the high-frequency domain, a surface can be
approximated as a locally infinite flat plane between two mediums, | and Il, with relative

permittivity €., and &,.,, respectively. 7 is the normal vector at Q pointing from Il to I.

Figure 2.14: Flat interface between medium | and 11, illuminated by an incident ray.

18



We can describe the scenario in Fig. 2.14 as: An incident ray arrives to a point Q with the
propagation unit vector §; and the incident angle ;. Part of this field is reflected back to
medium I with the direction 3, and the reflected angle 6,.; while part of the field is transmitted
into medium Il with the direction $; and the transmitted angle ;. All electric fields (E;, E,,

and Et) are divided into perpendicular (TE) and parallel (TM) components, with the

polarization unit vectors ;..

® Propagation unit vectors

We use Snell’s law to calculate the propagation unit vectors: §, and $;. Snell’s law is known

as:

Hi = 91"
{nl sin@; = n, sin 6, (2.29)

where ny,, = \/€,1/, is the refractive index of the medium. However, with this representation,
obtaining §, and $; from §; is not straight forward. By considering that sin & = § X i and
cos 8 = § - (), we can represent Eg. (2.29) in a vectorial form:

. &r1 , &1,, . 1 —— . 2.30
o= s —| 26 D+ [—Var— e (-G D)4 (2.30)
k 87"2 €r2 Erz

® Polarizations

Since we decompose the electric field into TE and TM components, we need to define their

corresponding polarization unit vectors, p; /... If we define them using the directions depicte
ding polarizat tvectors, p;.),. If we define th the directions depicted

in Fig. 2.14, the polarizations of the incident and the transmitted rays can be calculated by using
the same expression:

Sije X 7

- Si/e X ﬁ| (2.31)

Dije = Zﬁil/t X Sise

while for the reflected ray:
A S xf
Pr =15 xal (2.32)
Bl =8 x p}

And then by using Eq. (2.31) and (2.32), the incident, reflected, and transmitted fields can be

represented by their TE and TM components:

Eirye(Q) = Egse (@D + Elyrye(@QBLr e (2.33)
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where

{EiJ]T/t(Q) = Eiyre(Q) - Bijrye (2.34)

Eill/r/t(Q) = Ei/re(Q) - ﬁ}'/r/t
® Fresnel reflection and transmission coefficients

Fresnel transmission coefficients can be evaluated at Q by imposing boundary conditions on

electric and magnetic fields, which is derived in Appendix B.1 and can be expressed as follows:
2(, cos 6;
TJ'(Q) — (2 i

¢, cosB; + {; cos O,

_ 2(, cos 0;
| 7'@ = Z

1c0s 6; + {, cos 6,

(2.35)

where {; = (0/\/?1 and ¢, = CO/\/KZ are impedances of the medium I and I, respectively,
and {, = 120m is the impedance of the free space. In the case of illuminating a parabolic
reflector or an elliptical mirror, the Fresnel reflection coefficients are calculated by considering
a surface made by perfect electric conductor (PEC). Therefore, when the polarizations are
defined like Eq. (2.31) and (2.32), the reflection coefficients are constant:

rt=rt=-1 (2.36)

® Reflected and transmitted fields

By using the Fresnel coefficients derived in Eq. (2.35) and (2.36), one can also calculate the
reflected field Er and the transmitted field Et. In the case of illuminating a PEC, the reflected
field at Q can be obtained by using a compact dyadic expression as follows:

E(Q) =E(Q) R (2.37)
where R is the dyadic reflection coefficient that can be calculated as below:

R =T*prpi +'plp! (2.38)

For a transmission problem, the transmitted field at Q can be obtained by using the dyadic
transmission coefficient, T:

E(Q=E@- T (239)
where T is expressed as:

T =t'pipi +7'pipl (2.40)
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2.2.2.2 Matching layer

A matching layer is a dielectric layer fabricated on the top of a QO component. Practically, we
implement it on a lens to reduce the reflection coefficient. Especially for broadside incidence,
we can design the layer in such a way to reduce the reflected power to zero. To study a matching
layer, we start with a stratification that consists of a semi-infinite free space region at the top,
a dielectric layer with thickness L,,, below the free space, and a semi-infinite dielectric slab at
the bottom, as illustrated in Fig. 2.15a. A plane wave F?l- impinges on the stratification with the
incident angle 6;. It is transmitted into the matching layer with the transmitted angle 6;*, and

then transmitted again into the dielectric slab with the transmitted angle 6.

1 : 1 A
Zé_/” z

L/ L0
v vy

= g m+
L/0
I é

L/
Zy

(@) (b)

Figure 2.15: The stratification of a matching layer: (a) The dielectric stratification illuminated by a plane wave
with the incident angle 6;. (b) The transversal equivalent transmission line model of the stratification.

The goal of this work is to find the condition for no reflection and derive the transmission
coefficients of the stratification, i.e. to calculate /! = |E2/"|/|E;*/"|. To achieve this, one can
represent the stratification by its transversal equivalent transmission line model, as shown in
Fig. 2.15b. By solving the transmission line problem (derived in Appendix B.2), one can derive

the condition for no reflection: Design a dielectric layer with &,,, = /¢, and a thickness of [,,, =

'1—". Moreover, the transmission coefficients are derived as:
4/em
L Vi =~y
Vos (z = 0)

2.41
vl (z = —1,) cos; (241)

7l =
Vg, (z=0) cos6f

where th/ I and V,,ﬂ" are progressive voltages that propagate in different layers.
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Fig. 2.16 shows the transmission coefficients for an elliptical silicon (&, = 11.9) lens with
the maximum truncation angle 6, ~ 73°. Here we compare a lens with a matching layer to a
lens without. It can be seen in the figure that when a matching layer is added, the transmission
coefficients become more symmetric. Moreover, their values are almost 1 (no reflection)
around broadside and are still good until 40°. However, one should notice that the critical angle

exists for both cases, meaning at around 73° there is no ray transmitted into the lens.

— — 1 |T*|? - No match \\ \
0zl [——1-IT]* - No match N '
= =1 |T4> — A\/4 match \\
o1 ——1—|T/]> — X/4 match \\
0 | | | | | | |
0 10 20 30 40 50 60 70 80

0 [deg]

Figure 2.16: Perpendicular (L) and parallel (lI) transmission coefficients for an elliptical silicon (¢, = 11.9) lens
with the maximum truncation angle 8, = 73°. Black lines and red lines represent the cases with and without a
matching layer, respectively.

2.2.3 Visualized ray tracing

For each QO component, the ray tracing technique can generate the corresponding ray tracing
plot which clearly depicts the propagation of incident, reflected and transmitted rays. Fig.
2.17a-f show the ray tracing plots for a parabolic reflector, an elliptical lens, a hemispherical
lens, a hyperbolic lens, and an elliptical mirror (source placed at upper or lower focus),
respectively. Here we consider the broadside incidence. In each figure, we show incident rays,

reflected/transmitted rays, a QO surface, and an observation plane (and dielectric extension).
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Figure 2.17: Ray tracing for a (a) Parabolic reflector. (b) Elliptical lens. (c) Hemispherical lens. (d) Hyperbolic
lens. (e) Elliptical mirror — source at upper focus. (f) Elliptical mirror — source at lower focus.
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Chapter 3: FO Analysis

For detector-coupled QO systems, in order to evaluate the performance of the detectors in
reception, it has been discussed that one should study the coupling between the QO components
and the detectors. Here we consider an imaging system that consists of a QO component,
illuminated by a plane wave, and an array of detectors placed at its focal plane. For an absorber-
based array, e.g. Kinetic Inductance Detectors (KIDs) based on absorbers, the detectors can be
modeled by equivalent Floquet circuits, as described in [37]. The received power is then
derived by using the spectral plane wave expansion of the direct fields focalized by the QO
component at its focal plane, as described in [15] for broadside incidence, and in [7] for skew
incidence. In the case of an antenna-based array, the power captured by the antenna can be
evaluated by resorting to the antenna in reception formalism [17, 38], which can be expressed
as a field matching between the antenna far field and the spectrum of the incident field. This
spectrum is referred to as the plane wave spectrum (PWS).

To calculate the spectrum, one can resort to commercial full-wave simulators, like CST [39]
and GRASP software [40]. For an antenna-coupled QO system, one can use the software to
calculate the fields over an equivalent sphere centered at the focus of the QO component, i.e.
FO sphere. These fields are derived to be proportional to the spectrum. In the case of an
absorber-coupled QO system, the software can evaluate the direct fields, and then implements
Fourier Transformation (FT) to derive the spectrum. These approaches are rigorous but
numerically cumbersome and time-consuming, meaning it is not applicable for large-format
array. Alternatively, in the optical domain, a FO method is introduced by E.Wolf in [41]. In
our work, we apply the FO formalism to QO systems operating in the THz domain. Within its
applicability region, one can use this FO method to calculate the PWS effectively.

In section 3.1, we briefly discuss the PO radiation integral since the FO method is derived
from it. Moreover, it can be used as validation on the focal plane fields. The implemented PO
analysis based on the PO radiation integral is validated for all QO components. Next in section
3.2, we derive the FO integral, evaluate its applicability region, define FO spheres for all QO
components, and derive the spectral representation of focal plane fields. Finally, in section 3.3,
we apply the FO method to calculate the PWS. Two types of spectrum are discussed. The first
one is a full coherent FO spectrum obtained by calculating a convolution integral. And the
second one is a linearized coherent FO spectrum evaluated by applying a linearization

approximation.
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3.1 PO method

Physical Optics (PO) is a high-frequency technique used to analyze the scattering from
arbitrarily shaped and electrically large objects. We use PO in this work due to two reasons.
Firstly, PO radiation integral is a starting point to derive the FO method. Secondly, it is a well-
established technique which provides accurate and reliable results so it is suitable for validating
fields on a focal plane. In subsection 3.1.1, we briefly discuss how to calculate the focal plane
fields by using the PO radiation integral. And then in subsection 3.1.2, the relevant validation

IS provided.

3.1.1 PO radiation integral

Fig. 3.1a shows the schematic representation of a scattering problem in reflection. Let us
assume that an incident wave impinges on an arbitrarily shaped object. The incident field
interacts with the object, and the object scatters the field. In order to calculate the scattered
field, one can use the love’s formulation of the equivalent theorem by replacing the original

problem and the object with an equivalent problem that consists of equivalent currents fs and

1\71’S over an equivalent surface surrounding the object as shown in Fig. 3.1b.

Equivalent Equivalent
N
surface surface (A
~~~~~~~~~~~~~~~~~
{ 7 >
. . M,
o . ~— ]
. . = ‘~\‘
N N
Y N s N X y

Y
S
~
~~—

(b)

Figure 3.1: Schematic representation of a scattering problem in reflection analyzed by using the high-frequency
approximation: (a) Real geometry. (b) Equivalent problem.

-7
-

In consequence of the equivalence theorem, the scatterer is removed and these equivalent
surface currents radiate in a medium. By using the Green’s Functions (GF) in the medium, one

can derive the scattered fields in the following form:

-

E.(7) = f j G (7 —7) [,(FdP + f j Gem(# — 7") My(#)d7'

Hy(7) = ﬂ GM (7 — ) () dF +ﬂ Ghm(E _ ) ()i (.0
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where E; and H, represent the scattered fields; G/, Ge™, 6"/, and GlE™ are GFs in the
medium. The equivalent surface currents should satisfy the boundary conditions:

Ty =
where Etot and ﬁtot represent the total fields on the equivalent surface, and 7 is the normal
vector of the surface pointing towards outside from the surface.

In high-frequency scattering scenarios, i.e. the scatterer is large in terms of the wavelength,
the PO approximation assumes that the incident field at each point on the object is locally a
plane wave impinging on a flat infinite surface, in order to evaluate the surface currents locally
at each point instead of solving full-wave integrals or differential equations. Therefore, the
scattered field on each point of the equivalent surface can be approximated by using the
reflection or transmission dyad; and its direction of propagation is approximated by using the

Snell’s law. In a reflection problem, the scattered fields, (Es,ﬁs), are equal to the reflected
fields, (E., H,); and the total fields are the incident fields, (E;, H;), plus the reflected fields,
ie. Ewt = Ei + Er and ﬁtot = ﬁi + ﬁr. Whereas in a transmission problem, the equivalent
surface is chosen in such a way that only the transmitted fields are present outside the surface,

meaning the total fields are equal to the transmitted fields: Ewt = Et and ﬁwt = Ifft. Moreover,

the GFs can be approximated by their radiating parts; therefore, Eq. (3.1) can be expressed as:

N - i —jk|7-7' -,

50 = [, jEx M ar —jou [ [ - (k)] ey 07 63
- -J | | oy - - _]klr T’| , ’
he(7) = ——f [M, — (k - M)K] me—m di’ — [ jk X Js ey dF

where () and hf(F) represent the scattered fields at an observation position 7, 7' is a point

3

F—

on the equivalent surface, k = .k = kk, and k is the wavenumber in the medium. Here

X

7~

we implement Eq. (3.3) in the tool to calculate the focal plane fields.

3.1.2 Validation of the implemented PO analysis

The PO analysis described in Eq. (3.3) is validated in this subsection to demonstrate the
reliability of this analysis for later stages. The fields on the focal plane of a QO component are
calculated by using the PO analysis and validated by CST [39] or GRASP [40] software. For
large QO components, such as parabolic reflectors, elliptical mirrors and hyperbolic lenses, we
use GRASP as the reference; while for small lenses like elliptical lenses and hemispherical

lenses, we resort to CST.
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In this subsection, we only consider TM-polarized incident fields and show three examples:
an elliptical lens with a matching layer, a hemispherical lens without a matching layer, and a
hyperbolic lens. Additional examples, including TE validation, are listed in Appendix C. Here
we validate both amplitude and phase and show one of the main planes (y = 0). Notice that

we plot wrapped phase from —180° to 180°.
3.1.2.1 Elliptical lens

Here we validate an elliptical lens with a matching layer. Fig. 3.2 shows the x-component of
the electric fields on the focal plane of an elliptical silicon lens (e, = 11.9) with the diameter
of D, = 61, (f, = 300 GHz) and the f-number of f} = 0.6. An ideal quarter-wavelength
matching layer is added on the top of the lens, i.e. €,,, = v/&, = 3.45 and L,,, = A,,,/4, where
Am = /10/@ is the wavelength in the matching layer. The lens is illuminated by a unitary
TM polarized plane wave incoming from the broadside, i.e. 8, = 0°, ¢, = 0°. And the focal
plane field evaluated by using the PO analysis is compared with the CST simulation. The setup
of the simulation in CST is plotted in the inset of the figure. It can be seen in the figure that the

amplitude is well validated, and the phase error is acceptable.

— PO -\/4 match

—pos 150 ™ i
PO -\/4 match | | " CST -4 match|  ::

----- CST -\/4 match

|E.| [dB]

3 2 -1 0 1 3 2 1 0 1 2 3
z[Ad] (Mg
(@) (b)

Figure 3.2: The x-component of the electric fields on the focal plane of an elliptical silicon (&, = 11.9) lens with
D, = 6 4, (f, = 300 GHz) and f! = 0.6. A matching layer (&,, = 3.45) with the length ,, = 4,,,/4 is added on
the top of the lens. The lens is illuminated by a unitary TM polarized plane wave incident from the broadside, i.e.
6, = 0°, ¢, = 0°. The focal plane field calculated by using the PO analysis is compared with the CST simulation:
(a) Amplitude. (b) Phase. One of the main planes (y = 0) is shown. Inset is the configuration in CST.

27



3.1.2.2 Hemispherical lens

Fig. 3.3 shows the x-component of the electric fields on the focal plane of a hemispherical
silicon (e, = 11.9) lens with Dy; = 52, (fo = 300 GHz), fi** = 0.74, Rspp, = 3, and L =
0.362R,p. The lens is illuminated by a unitary TM polarized plane wave with the skew angle
of 6, = 20°, ¢, = 0°. And the focal plane field evaluated by resorting to the PO analysis is
compared with the CST simulation. The setup of the simulation in CST is plotted in the inset.

As it can be seen, the PO results are in very good agreement with the CST simulation.
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Figure 3.3: The x-component of the electric fields on the focal plane of a hemispherical silicon (g, = 11.9) lens
with Dy = 5 24 (fy = 300 GHz), f! = 0.74, Rspp, = 329, and L = 0.362R,,, illuminated by a unitary TM

polarized plane wave with the skew angle of 6; = 20°, ¢, = 0°. The focal plane field calculated by using the PO
analysis is compared with the CST simulation: (2) Amplitude. (b) Phase. One of the main planes (y = 0) is shown.

Inset is the configuration in CST.
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3.1.2.3 Hyperbolic lens

A hyperbolic plastic (& =2) lens with D, = 1004, (f, = 300 GHz) and f'! = 0.6 is
introduced here. It is illuminated by a unitary TM polarized plane wave with the skew angle of
0s = 3(14/Dy) = 1.22°, ¢ = 0°, where A, is the wavelength in the dielectric. Fig. 3.4 shows
the x-component of the electric fields on the focal plane of the hyperbolic lens. The focal plane
field obtained by using the PO analysis is compared with the GRASP simulation. The setup of
the simulation in GRASP is plotted in the inset. As it can be seen in the figure, the PO results

are in excellent agreement with the GRASP simulation.
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Figure 3.4: The x-component of the electric fields on the focal plane of a hyperbolic plastic (e, = 2) lens with
Dy, = 100 A, (f, = 300 GHz) and f;* = 0.6, illuminated by a unitary TM polarized plane wave with the skew
angle of 6, = 3(A4/Dy,) = 1.22°, ¢ = 0°. The focal plane field calculated by using the PO analysis is compared
with the GRASP simulation: (a) Amplitude. (b) Phase. One of the main planes (y = 0) is shown. Inset is the
configuration in GRASP.
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3.2 FO integral

The FO based representation of focal plane fields can be derived by approximating the

integrand of the PO radiation integral. One can assume an equivalent sphere centered at the

focus of a QO component with the radius Ry, referred to as the FO sphere and shown in Fig.

3.5. The electric field, E¢o, and the magnetic field, H;,, over the FO sphere are called

Geometrical Optics (GO) fields in this work. These fields and the procedure to calculate them

will be discussed in chapter 4. The equivalent surface currents 1\_/760 and fGo can be obtained

by using the GO fields as:
{jco =X ﬁao
Mgo = Ego X 1

where 7 is the normal vector of the FO sphere defined as i = —#'.

%
QO component

FO sphere

Figure 3.5: Schematic representation of the FO method.

3.4)

By applying Eq. (3.3) over the FO sphere, the electric field at the focal plane can be calculated

as follows:
&:(5,) = [ % x Pz T
SFo 4|y — 7|
~ eIkl
jou SFO[]GO (k ']GO)k] 47T|ﬁ ?’l ar’
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As it is discussed in [15], Eq. (3.5) can be simplified if we introduce approximations on the

unit vector k:

- pp—=T
k= |§f o~ = (.6)
- —
on the amplitude term:
1 1
~ 3.7
5 =71 Reo D
and on the phase term:
2
. s Pr
pr—T'|=Rpp— P + (3.8)
| f | FO f 2Rro
By substituting Eq. (3.6), (3.7) and (3.8) in Eq. (3.5):
_p?
i —Jksp—
L jke J/kRFog "2Rro S, 2 NAT KB R o
ef(pf) = f [an - (n . EGO)n]e”‘pfr dr' —
4‘7TRFO SFo
_pF
. _i —jRk55—
jkgeTkRroe ZRFOI ( T KB P o
i X Hgp) e¥Pr 7 dp’ (3.9
4TTREo Sro

Moreover, one can assume the GO magnetic field is orthogonal to the electric field with respect

to the normal to the FO sphere, 7, as follows:
—> 1 -
HGO = zﬁ X EGO (310)

For the FO sphere, d7*' can be expressed as d7*’ = RZ, sin8dfd¢. By substituting d7’ and

ﬁGO in Eq. (3.9), one can represent the electric focal plane field by the electric GO field only,

as:

P}
jke=IkRrog K eReg o
&(pr) = 41R f 2EGo (0, 9)e’PI™ RE, sin 0dOd¢ (3.11)
FO S

FO

Eq. (3.11) is referred to as the FO integral, for the electric field on the focal plane. And then

we will discuss its applicability region.
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3.2.1 FO applicability region

The vector, amplitude and phase approximations described in Eq. (3.6), (3.7), and (3.8) lead to
an applicability region for the FO integral. This region is derived by imposing constraints on
the error for each approximation: By choosing the maximum tolerable error for the vector
approximation as 20%, the one for the amplitude as 20%, and the one for the phase as /8.
The diameter of the FO applicability region is then derived as [15]:

Diamgo = fy min(0.4D,/2f,DA) (3.12)
where D is the diameter of a QO component and f; = Rgo/D is defined as its f-number. From
this expression, it is apparent that for a fixed diameter D, the FO applicability region is
proportional to the radius of a FO sphere, Ry, . Therefore, to maximize this region, Rz, should
be selected as large as possible. It is worth mentioning that this region is valid when the f-
number f; is relatively small; however, when f; is large, e.g. fx = 4, Eq. (3.12) is not accurate
enough. In such a case, the condition for the phase approximation should be stricter. If we
expand the term |ﬁf - ?’| to its second order, the phase approximation described in Eq. (3.8)
becomes:

L, P NP
|pf—r|zRF0—pf~r'+m[1—(pf-r)]+m(pf-r) (3.13)
By neglecting the second- and the third- order terms in Eq. (3.13) with a phase error /8, one
can find a new region for the phase approximation:
4p?D  2p7D

3 3
RFO RFO

A<0 (3.14)

where py = |,5f|. If the positive and real solution of the cubic inequality Eq. (3.14) is defined
as pg,‘f, the FO applicability region is re-evaluated as follows:
Diampo moq = min(0.4f4D, 2pf7 (3.15)

Explicit derivation of this modified region is discussed in Appendix D.

3.2.2 Parameterizing FO spheres for QO components

Fig. 3.6 shows a FO sphere S, centered at the focus O of a QO surface S. Similar to
parameterize a QO surface, a point Qr, on the FO sphere can be parameterized as follows in
(6, ¢) variable:

Qrox = Rpo sin 6 cos¢
QFO,y - RFO SineSin¢ (316)
Qro,z = Rpo cos 0
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And in (u, v) variable:

Qrox = Rrou
Qro,y = Rpov (3.17)

Qroz = Rrov1 — (u? +v2)

The normal vector of the FO sphere, 7ir,, can be calculated analytically as:

fipp = sinf cos¢ X +sinfsing y + cos b 2 (3.18)
NZ
Q N, \
A S
Qro NEo Fo
r(0)
RFO
g |-Oo
— Surface
— FO Sphere 0 p

Figure 3.6: Sketch of a generic QO surface S and its FO sphere Sg,.

The radius of the FO sphere, Ry, can be selected arbitrarily. However, in order to maximize
the FO applicability region, Rz, should be chosen as large as possible, as described in Eq.
(3.12). For different QO components, Ry, is selected as follows. In the case of a parabolic
reflector and a hyperbolic lens, as shown in Fig. 3.7 and 3.8, respectively, the radius is equal
to the focal distance:

Rpo = f (3.19)

For an elliptical lens and a hemispherical lens, as depicted in Fig. 3.9 and 3.10, respectively,
the radius is equal to the rim distance:

Rpo = R (3.20)

For an elliptical mirror (Fig. 3.11), the observation plane can be placed at either the lower
focal plane or the upper focal plane. When the observation plane is the lower focal plane (Fig.
3.11a), the radius is the same as the rim distance:

Rro = Ry, (3.21)
When the observation plane is the upper focal plane (Fig. 3.11b), the radius is expressed as:
Rpp =a—c (3.22)
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where a is the semi-major axis and c is the focal distance.
It is worth noting that here the f-number is generally defined as fy = Rpo /D for all QO

components, which agrees with the previous definition introduced in section 2.1.3.

]
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| 1 ﬁ'h &
fi, %
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— Hyperbolic Lens
0 P — FO Sphere 0 f=a+c P
Figure 3.7: 2D geometry of a parabolic reflector. Figure 3.8: 2D geometry of a hyperbolic lens
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Figure 3.9: 2D geometry of an elliptical lens. Figure 3.10: 2D geometry of a hemispherical lens.
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Figure 3.11: 2D geometry of an elliptical mirror: (a) Observation at lower focal plane. (b) Observation at
upper focal plane.
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3.2.3 Spectral representation

In this subsection, the focal plane field calculated by using the FO integral, Eq. (3.11), is
expressed by three types of spectral representation, namely spherical, cylindrical and Cartesian

representation.

® Spherical representation

In Eq. (3.11), the focal plane field is expressed in spherical coordinate system. By
considering gy = x¢X + y¢y, and #' = sinf cos ¢ X +sinfsing y + cosf 2, Eq. (3.11)

becomes:
ikR —fkp—% 21 0
kR e_J FOe ZRFO s 0_> . i
e*f(ﬁf)zj o > f f Egoe’**r e/*vYfsin @ dOd¢ (3.23)
0 0

where k, = k sin 6 cos ¢ and k,, = k sin 8 sin ¢ are spectral parameters.

® Cylindrical representation

Moreover, one can express Eq. (3.23) in a cylindrical representation by substituting the
2060,6) 1

a(kp'(p) B }kz_k;zj
2

ik pf
N o jRFOe_ijFOe_] 2RFro 2m 6
é(Pr) = o o )

where k, = /kz — k3.

® (Cartesian representation

Jacobian: , Where k, = ksin@.

B oiky ity K2 dk,d 24
Egoe eI aky ¢ (3.24)

z

In some cases, the Cartesian representation could be more convenient, which can be derived

by applying the Jacobian: ;((:—"’j)) = ki;
XNy p
2

. Pf
RFOe_]kZRFO

iR e—jk 2w 0 N ] ] 1
8 (py) =2 f f Egoe/**1e/1 —dkydk, (3.25)
0 0 z

21
If we combine some terms in Eq. (3.25) together and call it EFO (kx,ky):

jZT[RFOe_ijF
k,

- % -
Ero(ky ky) = Ego(ky ky)circ(kp, kpo) (3.26)
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the Cartesian representation can be expressed as:
. 1 _plE (e e .
& (pr) = a2 e f f Ero(ky ky)el**relyrdk, dk, (3.27)

In Eqg. (3.26), circ(kp,kpo) is a circular region that constrains the spectrum within k, €
(0, k), with k,o = k sin 8y, and Ego (ky, k) is the GO field on the FO sphere, which will be
explicitly discussed in chapter 4. It should be noticed that F?Fo (kx, ky) represents the spectrum

of &(3;), i.e. the PWS, if the quadratic phase term e /*/2RFo is neglected. Therefore, a

simple consideration is that if the observation point g is not far away from the focus, one can

ignore the quadratic phase term and assume EFO (kx, ky) to be the PWS.

However, this region could be very small compared with the FO validity region. This
means, in practice, if we consider a large focal plane array (FPA), we cannot accurately
estimate the PWS for the detectors that are far away from the center. In fact, for an FPA, we
only need an accurate PWS over the feed antenna aperture, meaning we can evaluate the
quadratic phase term at the center of the aperture. This approximation could improve the
applicability region for PWS in some extent, but still not useful for a feed that are far away

from the center. Consequently, in most cases, the quadratic phase term cannot be neglected and
EFO (kx, ky) is not the complete spectral representation of the focal plane field. To solve this

issue, in the following section, we propose a coherent FO method to evaluate an accurate PWS

within the entire FO applicability region.

3.3 Coherent FO

In this section, we will discuss a FO method called Coherent FO (CFO) to evaluate the PWS
of the focal plane field. It is called CFO since the quadratic phase term is included in the
spectrum evaluations. Two types of spectrum can be derived by using CFO: The first one is a
full coherent FO (CFO) spectrum evaluated by calculating a convolution integral; The second
one is a linearized CFO spectrum, evaluated locally within an applicability region that indicates

the maximum feed aperture diameter of an antenna.
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3.3.1 Full CFO spectrum

It has been discussed in section 3.2.3 that the quadratic phase term in the FO integral cannot be

neglected. If we represent it as a function:

f(Br) = e 2Reo (3.28)
and represent the remaining terms in Eq. (3.27) as another function:
éro( Pr) = 73 f f Ero(ky, ky )eT5¥r eV s dke dk,, (3.29)

we can express the focal plane field as follows:

& (pr) = f(Br)éro( By) (3.30)
By performing FT on Eq. (3.30) and using FT properties, one can obtain a convolution integral:

Ef(kx' ky) = F(ky ky) * EFO(_kx' —ky)
= ﬂ Epo(—ki, —k}) F(ke—kp, kyy — k) )dkidk), (3.31)

where F(k,, k,) = FT{f(3/)} can be expressed analytically:

1\? /27R 7 R
F(ky ky) = (%) ( nkF())e ~izel 2 (5 +K5) (3.32)

By using Eqg. (3.31), one can represent the field on the focal plane, 5f(ﬁf), as a plane wave

expansion:
1 @, . .
é(pr) = iz f f Ef(—ky, —ky) e/**rely¥r dk, dk, (3.33)
and here the term E(—k,, —k,,) is the PWS of the focal plane field:

Ef(—ky,—ky,) = F(=ky, —k,) * Epo(ky ky) (3.34)

It is worth noting that since we do not use any approximation, the applicability region for
this coherent FO spectrum is the same as the FO validity region. Moreover, since the spectrum
in Eq. (3.34) is calculated by using a convolution integral, it is not bounded from 0 to k. In
practice, it should be integrated from 0 to a large k, value, in order to reach a convergent
condition in the numerical calculation, which is numerically cumbersome and time-consuming.
Accordingly, we use a linearization approximation on the quadratic phase term to simplify the

calculation of convolution.
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3.3.2 Linearized CFO spectrum

The derivation of the full CFO spectrum is rigorous; however, it is numerically cumbersome,
which makes it impractical. Alternatively, we can consider a local representation of PWS since
we only need accurate spectrum over a specific feed aperture. Here we introduce a linearization
on the quadratic phase term to simplify the convolution integral. To start with, as is depicted
in Fig. 3.12, one can represent an observation point g at the surrounding of a local system
located at 0, i.e. g = p, + p', where p’ is a position on the focal plane in the neighborhood
of g,. In the case of an FPA, the dashed circle represents the feed aperture of an antenna located
at 0'.

Figure 3.12: Observation point 5 represented by a local system located at g,. The dashed circle represents the
surrounding of g,.

By substituting g, in Eq. (3.28), the quadratic phase term can be represented in the

surrounding of g,:
2
2 _.BoB . 1P
T8 %r0 ¢ M 2R70 (3.35)

2

_ . 1Po
F(Bo+ 7)) =e ' “2Rroe

[p'|

Eq. (3.35) can be approximated to a linear function, by neglecting the phase term PRI

L an kBl oD
fpotp) =e Foe ~ Rro (3.36)

If we set the tolerable error for this phase linearization approximation as /8, the applicability

region of Eq. (3.36) surrounding g, can be found as:

o'1>? m DA
1o’ <Zo < fu
2Rpp 8 8

k (3.37)

It is worth noting that in the case of an FPA, Eq. (3.37) also indicates the maximum diameter

of a feed aperture which can be analyzed using the linearization approximation:
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faDA

Dy< | = (3.38)
By neglecting the phase term, the FT of f(g, + p') can be calculated as:
—jkﬂ - -
F(ky ky)=e "2Rro8(k, — k,) (3.39)

where k, = k,% + k, and k, = %ﬁo. When we substitute 3, in Eq. (3.29), we can

represent €g, by using p’:
1 e . . '
éro(P) =7 f f Epo(—ky, —k,) e~ +x0) =iy (¥"+¥0) gk, (3.40)

and the FT of €z, ( p") is calculated as follows:

FT{8ro ()} = Epo(—ky, —ky)e I Kx¥oe~Jy¥o (3.41)
Therefore, by using Eqg. (3.39) and (3.41), one can obtain the FT of the focal plane field with a
local representation:
Ef(kx' ky) = F(ky ky) * [Ero(—ks, —ky e /xoe ™Il Yo]

_alBol® N . . )
=e ]kZRFOEFO(_kp + ko)e_](kx_kxo)xoe_](ky_kyo)YO (342)

In Eq. (3.42), it is found that Ef(kx, ky) is a linear translation of EFO in the spectral domain.

Moreover, the focal plane field can be represented surrounding g, as a plane wave expansion:
- >y 1 ® = jk xl ]k yl
&(p) = y= Ef(—ky, —k,) e/ e/kY dk dk, (3.43)

where Ef(—kx, —ky) is the coherent FO spectrum of the focal plane field, evaluated by using

the linearization approximation on the quadratic phase term:

- -7 Ma - - e - —
Er(—ky —ky) = ¢ "2RroEp, (K, + K, )ed (Fotko)Po (3.44)

Compared with the full CFO spectrum, this linearized spectrum is less cumbersome and
does not exhibit a convergent issue mentioned in the convolution method, since it calculates
the PWS locally for a feed aperture by performing a translation of the spectrum in the spectral
domain. The applicability region for this CFO is the same as the FO validity region. However,
the diameter of the feed aperture is limited by Dy which is defined in Eq. (3.38). In this work,
we only apply the coherent FO with the linearization approximation, and validation of this CFO

method will be discussed in chapter 5.
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Chapter 4: GO fields on a FO sphere

In chapter 3, we have discussed that deriving a PWS representation of the focal plane field is
significant when evaluating the performance of absorber- and antenna- coupled QO systems.
Moreover, we have analyzed that PWS is proportional to the field scattered by a QO component
on its FO sphere, which for electrically large scatterers can be approximated with the GO field.
Therefore, in this chapter, we will extensively discuss the derivation of the GO fields for each
QO component.

In section 4.1, we discuss an asymptotic procedure to evaluate GO fields. It is applied here
for general reflection and transmission problems. Next, in section 4.2, we derive analytical
closed-form expressions for GO fields, first for a case with broadside incidence; and then for

one with slightly off-broadside incidence.

4.1 GO ray fields

In this work, the fields scattered by a QO component and propagating to its FO sphere is
calculated. In other words, one should describe the wave propagation in a scattering problem.
To do so, one can resort to the Geometrical Optics (GO) technique. GO is commonly used in
high-frequency scattering scenarios (i.e. when the scatterer is large in terms of the wavelength)
to determine wave propagation for both incident and scattered fields, including amplitude,
phase, and polarization [13]. In this method, EM waves can be approximated as tubes of rays
propagating in a homogenous medium from one point to another. Moreover, under GO
approximation the scattered ray fields follow the laws of reflection and refraction at a two-
media separation surface.

In order to derive the GO ray expression, one can resort to the Luneberg-Kline high-
frequency expansion discussed in [13, 42, 43]. Alternatively, one can asymptotically evaluate

the PO radiation integral, as discussed in [44, 45]. This approach is the one used in this work.
To start with, let us a surface S illuminated by a generic incident field, Ei, as shown in Fig. 4.1.
Similar to what is discussed in the section about PO radiation integral, the scattered field ES

can be calculated from the radiation of the equivalent surface currents fs and Ms in absence of

the surface:

e

—jkr
pr— das (4.1)

Es(P) = jk [f, [f x My(Q) + {F x # x J(Q) ]

where P is the observation point, Q is the integration point on the surface, Q, is a reference
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point, 7 = QP, |#| = r, and # = #/r. Here k is the wavenumber in the homogenous medium

where the equivalent currents radiate, and ¢ is the impedance of the medium.

Figure 4.1: Field scattered by a surface S. The scattered field observed at a point P is calculated from the radiation
of the equivalent surface currents fs and Ms estimated at an integration point Q in the absence of the surface.

In the PO radiation integral, one can identify a slowly-varying function, ﬁ(Q), and a fast-

varying function, e ~/*¥®(@  as described in [44, 45]:

Ey(P) = J j F(Q) e Tk®@ gg (4.2)
S

If present, this integral is asymptotically dominated by a double stationary phase point.

Therefore, one can asymptotically evaluate the integral in Eq. (4.2) by using the Method of

Stationary Phase, as discussed in [44-46]. In particular, identifying the double stationary phase

point with Q,, the scattered field at P can be evaluated by expending the integrand in Eq. (4.2)

in the neighborhood of Q,. The asymptotic integral evaluation leads to the following
expression:

() = 2L Qe

]k\/|det{H¢ Qo)

where Hg (Q,) is the Hessian matrix of the phase function ®(Q,), and § can be +1, —1, or j,

(4.3)

depending on the sign of the eigenvalues of Hg (Q,) [44-46]. In the following, the scattered

field is discussed for the case of GO reflection and transmission problems.
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4.1.1 Reflection problem

In the case of a GO reflection problem, the reference point Q, coincides with the point of
reflection, Q. By applying Eq. (4.3) at Qr where the stationary phase condition is verified

when the observation direction $ coincides with the direction of the reflected ray $,, i.e. § =

3., the reflected field F?r(P) can be evaluated asymptotically as:

r AT
p1p2 —jks

CEDICED) (44)

E.(P) = E.(Q) \/

where s is the distance along the ray path between the reflection point Q; and the observation
point P; p] and p} are the principal radii of curvature of the reflected wave front at the
reflection point Qg, and ET(QR) is the reflected field at Q, which is described in Eq. (2.37).
In this work, the incident field is reflected by a QO surface and propagates to a FO sphere,
as depicted in Fig. 4.2. The reflection point Qf is on the QO surface S and the observation point

P is on the FO sphere, denoted as Qr,. The distance along the reflected ray path is s =

|QRQF0|. Consequently, one can express the GO reflected field as:

png —ij
(p1 +5)(p5 +5)

Ego (Qro) = ET(QR)\/ (4.5)

where s is explicitly derived in Appendix E.1, p{ and p7 are calculated in Appendix E.2.

RFO

>
= Surface \
— are AY
FO Sphere . p

Figure 4.2: Geometry for a reflection problem with the description of the GO propagation.
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4.1.2 Transmission problem

For the transmission problem, similar to the reflection case, the reference point Q, coincides
with the point of transmission, Q. By applying Eq. (4.3) at Q@ where the stationary phase
condition is verified when the observation direction § coincides with the direction of the
transmitted ray $;, i.e. $ = §;, the GO transmitted field observed at P can be asymptotically

evaluated as:

p{-pg —jks
(pi + s)(p5 +5)

E,(P) = E,(Qr) j (4.6)

where p! and p} are the principal radii of curvature of the transmitted wave front at the
transmission point Q, and Et(QT) is the transmitted field at Q,, which is described in Eq.

(2.39). In this work, E,(P) is the GO transmitted field on the FO sphere that can be expressed

as:

pfpg —jks
(pl + s)(ps +5)

EEO(QFO) = Et(QT)\/ (4.7)

The expressions of p! and pé are discussed in Appendix E.3.
From Eq. (4.5) and (4.7) one can see that when the GO field propagates along the ray path
from the reference point (Qg, Q1) towards the observation point Qr,, its amplitude tends to

attenuate (in case of diverging wave front) or to increase (in case of converging wave front)

: : P1p2 ; :
with a spreading factor, / it (prt) and its phase changes along the propagation path as,

e—jks
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4.2 Analytical GO fields

In section 4.1, we know how to obtain GO fields by applying asymptotic evaluation; however,
almost all characteristic parameters involved in the calculation need to be calculated
numerically, which makes them not intuitive. For some simplified cases, it is possible to find
analytical expressions for GO fields. In Eq. (4.5) and (4.7), we find that once we know the
field at the reference point, the GO field can be obtained by considering the spreading factor
and the phase variation.

We start with the broadside incidence. In subsection 4.2.1, we will discuss how we define
the scattered field at a reference point, calculate the spreading factor, and solve the phase
variation, for each QO component. After that in subsection 4.2.2, we consider the case of
slightly off-broadside incidence. In this case, the analytical GO field is the same as the
broadside one, but with a linear and coma phase term (for elliptical mirror also a compensation
phase term).

4.2.1 Broadside incidence

In this part, we derive the analytical GO field for each QO component with broadside incidence.
For the spreading factor, one can derive it by considering power budget among incident,
reflected and transmitted rays, which is explicitly discussed in Appendix F and can be
expressed as follows:
L/ L/ 2
p/" = p| L]
/0 _ pl/0_1/11? {1 cos b, (4.8)
K" =FH |T | = ,
¢, cos 6;
where P!, B! "and P*/" are incident, reflected and transmitted power, respectively. The
incident ray propagates in the medium | (impedance {;) and is transmitted into the medium 11
(impedance ¢;). In a reflection problem, we use a PEC as the interface, i.e. there is no
transmission and |I“l/ "| = 1. Therefore, the incident power is equal to the reflected power,

which agrees with the law of conservation of energy.
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4.2.1.1 Parabolic reflector

In the case of a parabolic reflector, a plane wave incident from broadside is shown in Fig. 4.3.
It impinges on a point Qx on the surface S and reflected to a point Qr, on the FO sphere Sg,.
$; and 8, represent the incident and reflected propagation unit vectors, respectively. O
indicates the position of the focus of the parabolic reflector, Q,, is a point on the focal plane of
the reflector, f is the focal distance, and r(6) is the radial distance between the reflector focus

and its surface.

__________________________________________

S —— Parabolic reflector ‘i
— FO Sphere i

SFO g) = —Zf E
r(®) 1+cos6 ]

r(0)
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D

v
0 Qa [N fl /

___________________

Figure 4.3: A parabolic reflector with broadside plane wave incidence.

Here we describe the incident plane wave by neglecting its phase term:

E; = Eop; (4.9)
where E, is the amplitude of the plane wave and p; is the Ludwig-I1l polarization which is
described in section 2.2.1. For broadside incidence (6; = 0°, ¢, = 0°), the polarization can be
simplified as below:

5, = §: Co — Pol.
{pl y:Co—Po (4.10)

p; = X: Cx — Pol.
At Q,, we decompose the incident field into perpendicular (TE) and parallel (TM) components:

Ei(Qa) = E{(Qu)P{ (Qu) + E{ (Qa)P!(Qa) (4.11)
where pi- and p! can be calculated by using the law of reflection with §; = +2:
o Sixf 2
i xa - ? (4.12)
Pl =P x§=—p

TE and TM electric fields are calculated as:
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1 —F.  -pt=—E. (b &
{Ei (Qa) - EI. bi EO(pl d)) (4.13)

E!(Qq) = Ei - Bl = —Eo(pi - D)
At Qrp, the reflected field on the FO sphere, F?GO (Qrp), can also be divided into TE and TM
components:
Eco(Qro) = E¢o(Qro)Pt + Ebo(Qro)P! (4.14)
In the following, the calculation of the amplitude, phase, and polarization of EGO is described.
® Amplitude

For a reflection problem, by considering the law of conservation of energy, we can relate
the reflected power, B/"(Qro), to the incident power, P/"(Q,), as follows:
2
P (Qro) = BH"(Qu)|I ()] (4.15)
where |I"l/"(QR)| =1 for a PEC (Fig. 4.3). By using this condition, one can derive the
amplitude relation between the incident field and the GO field, i.e. the spreading factor, S, ¢qq-

For a parabolic reflector, S,,..qq Can be expressed as follows (Appendix G.1):

e
Spreada(0) = T =TT cosB (4.16)

Therefore, the amplitude of E, is obtained:
|EX| = Spreqa| THEH"| (4.17)

Notice that if we define the polarization unit vector ( ;" and p;/") by using Eq. (4.12) and
as shown in Fig. 4.3, foraPEC, 't =T = —1.
® Phase

The center of the coordinate system is defined at the focus of the parabola. Since

|Qr — Q| + 1Qr — Qro| = f, the GO field has a constant phase on the FO sphere. Therefore,

/1

we can neglect this phase term in E;/".

® Polarization

The polarizations of an are derived as follows (8, = —7):

15, x A] (4.18)

By substituting (4.17) and (4.18) in (4.14), we can express an analytically for broadside

incidence:

EGO = Spread [F" (ﬁl ’ ﬁ) 9 + Fl(ﬁi ’ (5) (ﬁ]EO (4-19)
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4.2.1.2 Elliptical lens

In the case of an elliptical lens, a plane wave incident from broadside is shown in Fig. 4.4. It
impinges on a point Q on the surface S and transmitted to a point Qz, on the FO sphere Sg,.
$; and §; are incident and transmitted propagation unit vectors, respectively. O indicates the
position of the lower focus of the lens, @, is a point on the equivalent aperture of the lens, R,

is the rim distance, and r(0) is the radial distance from the lower focus to the surface.

- - - - -

~,

—— Elliptical Lens
— FO Sphere

e
L

r(6)

o e

0

vo
L
~

Figure 4.4: An elliptical lens with broadside plane wave incidence.

The incident plane wave is defined the same as Eq. (4.9). Similar to a parabolic reflector, at

Q,, we decompose the incident field into TE and TM components:

Ei(Qa) = EF (Qa) (=) + E! (Qa)P (4.20)
and at Qo we decompose the GO field:
EGO(QFO) = Eé‘o(QFo)(_dA’) + Ego(QFo)é (4.21)

To calculate the amplitude, |E§é”|, we need to consider the power budget for a transmission

problem: The transmitted power, ptl/ll (Qro), is related to the incident power, Pil/"(Qa)’ as
described in Eq. (4.8):

2 (o cos 6,

PN Qro) = PN Q)| (Qr)|” 2

{4 CcOs 6;

(4.22)

where {, is the impedance in free space, {; = {,/+/€, is the impedance of the medium, 6; and

6, are the incident and transmitted angles with respect to the normal vector of the surface (Fig.
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4.4), respectively, which are calculated in Appendix G.6. By solving Eqg. (4.22), one can derive

the spreading factor, which is explicitly derived in Appendix G.2 for an elliptical lens:
|EZ) _a(l-e?)

|rl/"El.l/"| " R, (1—-ecosh)

Spread (6) = (4.23)

where a is the semi-major axis, c is the focal distance, and e = c/a is the eccentricity.
Therefore, the amplitude of the GO field is obtained:
Ez0"] = Spreaalt/VE;"] (4.24)
The center of the coordinate system is defined at the lower focus of the lens. Since we choose
the eccentricity of the lens to be e = 1/+/¢,., the GO field has a constant phase on the FO sphere.
Therefore, we can neglect the phase term in E(%”. By substituting Eq. (4.24) in Eq. (4.21), we
can express EGO analytically for broadside incidence:
Eco = Spreaalt" @i §) 0+ 7*(pi - ) $]Eo (4.25)
4.2.1.3 Hyperhemispherical lens

We have introduced in section 2.1.3 that there are two types of hemispherical lenses. For the
one with the extension length: L/R,,, = 0.32 — 0.35 [24], it is a good approximation of an
elliptical silicon lens. Therefore, the GO field can be approximated by using Eq. (4.25). While
for a hyperhemispherical lens, it is able to perfectly focalize a convergent incident wave on its
focal plane [34]. Consequently, it is worth studying its analytical GO field for a broadside
incidence.

A hyperhemispherical lens with the extension length L = R, /v/€, is shown in Fig. 4.5. If
the incident wave is a convergent spherical wave that converges at a virtual focus 0,, below the
lens, illustrated as the blue colored rays, then geometrically the transmitted fields (green
colored rays) will converge at the center of the base, 0. It is discussed in [34] that the distance

from the apex of the lens to the virtual focus is:
F, = Ropn(er + 1) (4.26)
The incident field at Q, i.e. Ei(QT), can be expressed as:
5 - ~ 11
Ei(Qr) = [EF (@) (=) + E/(Qn)f] (4.27)
v

To derive the GO field, similar to an elliptical lens, we can first calculate the spreading factor
(Appendix G.3):
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Spread 6) =

(4.28)

|EZ! _r(6) [sin6 db, |cos6,
|TL/IIEil/"| " Rpp .|sinB, d8 |cos6;

where 6, is depicted in Fig. 4.5 and d6,,/d@ is calculated in Appendix G.6.

For the phase term, we define the center of the coordinate system at the base of the lens, O.
The field transmitted into the lens and propagating on the FO sphere has a constant phase over
the sphere. Therefore, we can neglect the phase term in EGL(;” and express E, analytically for
broadside incidence as:

Eco = Spreaa[t (B - 6,) 0 + T(E:- ) 6] (429)
where ¢, = ¢. For a hyperhemispherical lens, we just investigate the broadside incidence. The

slightly off-broadside incidence will be studied in the future.

e \\‘
—— Hyperhemispherical Lens
— FO Sphere
r(8) = Lcos@ + ’Rgph — 12(sin 0)2
0 = (8 sin @
O =) g
h ‘\\ ,I'
/ S ﬁl ﬁ \\
P Pt 0;
E; €
Qrf £,
d 0; p!
ot Ego
A I'

Figure 4.5: A hyperhemispherical lens with broadside incidence.

4.2.1.4 Hyperbolic lens

In the case of a hyperbolic lens, incident plane wave propagates in a medium (e,.) at broadside
direction ($; = —2), as shown in Fig. 4.6. It impinges on Q; and transmitted to0 Qpy. O
indicates the position of the lower focus of the hyperbola, and Q,, is a point on the equivalent
aperture of the hyperbolic lens. The incident plane wave is defined in Eq. (4.9), and it can be

expressed at Q,, as:
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Ei(Qa) = EF (Qa) (=) + E! (Qa)P (4.30)
Moreover, the GO field can be expressed as:

Eco(Qro) = E(J;-O(QFO)(_(E) + E}o(Qro)0 (4.31)

For the amplitude, |EGL(§”|, we should consider the power budget between the incident power

and the transmitted power:

2 {4 cos 6,

L/1 — pl/i /1 2ad
Qo) = BT Qa2 (4.32)
By solving Eq. (4.32) we can derive the spreading factor (Appendix G.4):
Spreea(@) = e _ 1€ (4.33)
preadv/ = |LMEH ~1—ecosh '

For the phase term, we define the center of the coordinate system at the lower focus of the
hyperbola. Since we choose the eccentricity of the hyperbolic lens to be e = +/e,., the GO field

has constant phase on the FO sphere. Therefore, we can neglect the phase term and express

an analytically for broadside incidence as:

EGO = Spread [T” (ﬁl ’ ﬁ) é + Tl(ﬁi ’ (.5) (QB]EO (4-34‘)

~,
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Figure 4.6: A hyperbolic lens with broadside plane wave incidence.

4.2.1.5 Elliptical Mirror

For an elliptical mirror, incident ray is a spherical wave emtted from a point source, as is shown
in Fig. 4.7. It impinges on Qg and reflected to Q. Since the source can be placed at either the

upper focus, 04, or the lower focus, 0,, we discuss two different cases:
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® Case 1: Source placed at the upper focus, 04
In this case (Fig. 4.7), we can decompose the spherical incident wave at Q as follows:
ﬂ 1 2 I 51
Ei(Qr) = (B (Q)¢: + B} (Qr)01) - (4:35)
1
Moreover, the GO field can be expressed as:
Eco(Qro) = E¢o(Qro) P2 + Edo(Qro)0; (4.36)
where ¢, = ¢,. Considering the law of conservation of energy and following the same steps

described in the case of the parabolic reflector, we can express the spreading factor as follows

(explicit derivation is listed in Appendix G.5):

|Eclé” v 7’1(91)7”2(92)\/ a(l—e?)

|1~¢/||Eil/"| B Rro 2c(e — cos 8,) + a(1l — e?)

Spread (6;) = (4.37)

where r; and r, are radial distances depicted in Fig. 4.7, a is the semi-major axis, c is the focal
distance, and e = c/a is the eccentricity.
For the phase term, we define the center of the coordinate system at the lower focus of the

ellipse. Since |Qg — 01| + |Qr — Qro| = 2a — Rpp, the GO field has a constant phase on the

FO sphere. Therefore, we can express an analytically for broadside incidence:

— _ - ~ ~ L — ~ ~
Ego = Syreaa|I"(E; - 61) 0, + I'+(E; - $1) §5] (4.38)

z e - - - T
— Elliptical mirror i
! — FO Sphere i
S 1-—e? 1—e? i
r1(91)=a1+ec0561 r‘z(ez):al—ecosﬂz E
J"l(@l) M _ _— _— ,”

Sro - - = = I
Qr PEC. o
r2(02) i
i\ v ,:

Figure 4.7: An elliptical mirror with broadside incidence. Source is placed at 0;.
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® Case 2: Source placed at the lower focus, 0,

In this case (Fig. 4.8), the incident wave is defined as follows:

N . ~ 1
E;(Qr) = [EiJ'(QR)(—d’z) + Ei”(QR)(—ez)] E (4.39)
and the GO field is:
Eco(Qro) = Edo(Qro)(— 1) + Elo(Qro)(—6:) (4.40)

The spreading factor is obtained as follows:

|Eé_é” W 7”1(91)7”2(92)\/ a(l—e?)

|1~¢/||Eil/"| B Rro 2c(e + cosB,) +a(l — e?)

Spread (91) = (4.41)

For the phase term, the center of the coordinate system is defined at the upper focus of the
ellipse, and it is still the case that the phase of the GO field is constant. Therefore, we can
neglect the phase term and express the GO field as follows:

EGO = Spread [F” (El ' é\2) é\1 + Fl(Ei ' ({52) ({51] (4-42)
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Figure 4.8: An elliptical mirror with broadside incidence. Source is placed at 0,.
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4.2.1.6 Comparison between GO ray fields and analytical GO fields

Both GO ray fields and analytical GO fields have been derived in the preceding subsections.
In this subsection, we compare these GO fields and check if the analytic GO fields are in good
agreement with the GO ray fields. Here we use low f-number configurations because they are
more challenging.

The preceding analytical expressions for GO fields are derived for broadside incidence.
Moreover, phase information is neglected since the analytical GO fields have constant phase
on FO spheres. Therefore, here we consider broadside incidence and compare only the
amplitude of GO fields. The amplitude is decomposed into |Ey| and |E¢,| components and the
relative error is calculated for comparison:
|Eg | — 1Eg

E§ /]
where |E§7¢| and |Eg/0¢| represent the amplitude of analytical GO fields and GO ray fields,

amp __

€079 =

-100% (4.43)

respectively.
® Parabolic reflector

A parabolic reflector with the diameter of D,, = 1004, (f; = 300 GHz) and the f-number
of fi = 0.6 is illuminated by a unitary TM polarized plane wave incoming from the broadside.

Fig. 4.9 shows the relative amplitude errors of |Eg| (Fig. 4.9a) and |E¢| (Fig. 4.9b)

components. As it can be seen, the error is extremely small, meaning the analytical GO field is

in excellent agreement with the GO ray field.

=

L Y[o - fil

50
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-50
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Figure 4.9: Relative amplitude errors of the GO fields: (a) |Eg| component. (b) |E¢| component, for a parabolic

reflector with D,. = 1004, (f, = 300 GHz) and f{ = 0.6, illuminated by a unitary TM polarized plane wave
incoming from the broadside.
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® Elliptical lens

Here we consider an elliptical silicon (g, = 11.9) lens applied with a matching layer. A
quarter-wavelength matching layer at 300 GHz made of Parylene (&, = 2.62) is applied, and
the lens has the diameter of D, = 51, (f, = 300 GHz) and the f-number of £} = 0.6,
illuminated by a unitary TE polarized plane wave in broadside. Fig. 4.10 shows the relative
amplitude errors of |Eg| (Fig. 4.10a) and |E¢| (Fig. 4.10b) components. As it can be seen, the

analytical GO field is in excellent agreement with the GO ray field.
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Figure 4.10: Relative amplitude errors of the GO fields: (a) |Eg| component. (b) |E¢,| component, for an elliptical
silicon (g, = 11.9) lens with D, = 51, (f, = 300 GHz) and £} = 0.6, illuminated by a unitary TE polarized plane
wave incoming from the broadside. A quarter-wavelength matching layer at 300 GHz made of Parylene (&, =
2.62) is applied.

y[ha - £l

0
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® Hyperhemispherical lens

A hyperhemispherical silicon (&, = 11.9) lens applied with a matching layer is introduced
here. A quarter-wavelength matching layer at 300 GHz made of Parylene (&, = 2.62) is
applied, and the lens has Dy, = 52, (fo = 300 GHz), fi* = 0.6, Ry, = 2.661,, and L =
0.29Rs,p, illuminated by a unitary x-polarized convergent wave incident from the broadside.

Fig. 4.11 shows the relative amplitude errors and it can be seen from the figure that the

analytical GO field is almost the same as the GO ray field.
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Figure 4.11: Relative amplitude errors of the GO fields: (a) |Eg| component. (b) |E¢,| component, for a
hyperhemispherical silicon (e, = 11.9) lens with D; = 54, (f, = 300 GHz), fi* = 0.6, Ry, = 2.664,, and
L = 0.29Rs,;, illuminated by a unitary x-polarized convergent wave incoming from the broadside. A quarter-
wavelength matching layer at 300 GHz made of Parylene (&, = 2.62) is applied.

® Hyperbolic lens

Here we consider a hyperbolic plastic (&, = 2) lens with D;, = 1004, (f, = 300 GHz) and
£ = 0.6, illuminated by a unitary TE polarized plane wave incoming from the broadside. Fig.
4.12 shows the relative amplitude errors and it can be seen from the figure that the analytical

GO field is in excellent agreement with the GO ray field.
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Figure 4.12: Relative amplitude errors of the GO fields: (a) |Ey| component. (b) |E¢| component, for a hyperbolic

plastic (¢, = 2) lens with D, = 1002, (f, = 300 GHz) and £/ = 0.6, illuminated by a unitary TE polarized plane
wave incoming from the broadside.
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® Elliptical mirror

For an elliptical mirror, we consider the case when a source is placed at the lower focus.
The source is a unitary Huygens source with the electric current oriented along x. The mirror
has the diameter of D,,, = 1004, (f, = 300 GHz), the semi-major axis of a = 754, and the
focal distance of ¢ = 154, i.e. the eccentricity is e = 0.2 and the f-number is ;" = 0.6. Fig.
4.13 shows the relative amplitude errors of |Ey| (Fig. 4.13a) and |E¢,| (Fig. 4.13b) components.
As it can be seen, the error is very small. Therefore, the analytical GO field can be assumed

the same as the GO ray field.
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Figure 4.13: Relative amplitude errors of the GO fields: (a) | Eg| component. (b) |E¢,| component, for an elliptical
mirror with D,,, = 1004, (f, = 300 GHz), f;™ = 0.6, and e = 0.2, illuminated by a Huygens source placed at the
lower focus with the electric current oriented along X.

® Conclusion

To conclude, for all QO components with low f-number configurations, the analytical GO
fields are in excellent agreement with the GO ray fields for broadside incidence. Therefore, we
can assume the analytical GO fields are accurate approximations of the GO ray fields for

broadside incidence.
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4.2.2 Slightly off-broadside incidence

In this subsection, we consider the analytical GO field for a slightly off-broadside incidence.
When an external source is incident from a direction slightly off broadside, (6, ¢.), we
introduce a key simplifying hypothesis to the incident field that the polarization of the incident
field remains the same as the one in broadside case, while a progressive phase shift is added:

E;(65) = E;(6; = 0)e™/® (4.44)
where @ is the progressive phase shift.

The approximation in Eq. (4.44) corresponds to neglect the z-direction polarization vector
which is proportional to tan 6. If we set the vector error as 20%, meaning tan 8, < 0.2, we
can calculate the angular limitation: 6, < 11°. We have discussed in section 4.1 that the field
on the FO sphere is evaluated by resorting to GO propagation of the incident field. Therefore,
by implementing the approximation in Eq. (4.44), the analytical GO field can also be
approximated by the one for broadside illumination (derived analytically in section 4.2.1),
multiplied by the progressive phase shift:

Ego(85) = Ego(65 = 0)eJ® (4.45)
The incident source can be a plane wave or a point source; therefore, we discuss two cases in

the following.

4.2.2.1 Plane wave incidence
For a plane wave incidence, the progressive phase can be defined as follows:

Dy =Kps o P (4.46)
where I?p,s = kl?,),s = k sin 65(cos ¢p; X + sin ¢, §) , k is the propagation constant in the

medium, g =1r(0)sinfp, p =cos¢p X +sin¢p P, and r(0) is the radial distance of the

surface S shown in Fig. 4.14.
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Figure 4.14: Geometry for the description of evaluating the progressive phase shift for slightly off-broadside
plane wave incidence.

By substituting Eq. (4.46) in Eq. (4.45):
Ego(Kys) = Ego(kys = 0)e /kpsP (4.47)
It can be seen in Fig. 4.14 that r(0) = Rpo + 6;(0), where §;(8) is the distance between Q¢
and Q. Therefore, we can express the vector g as follows:
p = (Rpo + 6:(0))sind p (4.48)

and calculate the term k,, ; - p:

. K 5:(0)
> p,S i . N
kys-p = Rpo p <1+RFO>-ksm0p

= Ky B =Prp(1+8,(0)) -k, (4.49)

where g, is called flash point that is defined as:

—

w

Prp = Rro ;:S (4.50)
and &,,(0) is the distance defined as:
5,(0) = 6};&? (4.51)
By substituting Eq. (4.49) in Eq. (4.47):
Eo(Kps) = Ego(Kys = 0)e TRoProe=iKoProdn(®) (4.52)

In conclusion, for different QO components, as long as we calculate the flash point g, and

the distance 6,,(8) within the defined applicability region, we can approximate the analytical

GO field by the one defined for the broadside illumination multiplied by two phase terms. The
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first phase term in Eq. (4.52), e‘fﬁp'ﬁfp, indicates a linear phase shift; while the second term,
e‘fﬁp'ﬁfp‘sn(g), represents a coma phase. To better explain gy, 6,,(9) and these phase terms,
we take a parabolic reflector as an example:

® Parabolic reflector

For a parabolic reflector, &,,(8) is calculated as follows:

r(6) — Rpo _1—cos®
Rro 1+ cos@

5,(0) = (4.53)

and the flash point g, is:

-

k
Pro = Rro > = f sin6;(cos b £ + sin ¢ 9) (4.54)
0

Next, we discuss a specific reflector, with the diameter of D,, = 1004, (f, = 100 GHz) and
the f-number of £, = 0.6, illuminated by a unitary TM polarized plane wave with the skew
angle of 6; = 2.3°, ¢ = 0°. Fig. 4.15 shows the variation of linear and coma phase with
respect to 6. It can be seen that the linear phase varies linearly, while the coma phase is non-

linear and reaches maximum at the edge.

Phase [deg]

|
15 20 25 30 35 40 45

8 [deg]

Figure 4.15: Variation of linear and coma phase for a parabolic reflector with D,. = 1004, (f, = 100 GHz) and
fi# = 0.6, illuminated by a unitary TM polarized plane wave with the skew angle of 8, = 2.3°, ¢, = 0°.

Furthermore, if we observe the field focalized on the focal plane by the same reflector, we
can understand these phase terms more clearly. The reflector is illuminated by two plane waves:
broadside and 6, = 2.3° = 4A,/D,,, ¢; = 0°(4 beams scanning). In this case, the flash point is
calculated as: py, = 440 f4 X. As it can be seen in Fig. 4.16, the focalized fields are evaluated
by resorting to the FO analysis with and without coma phase term, represented by the solid and
dashed lines, respectively. Here we use the PO analysis as the reference that is marked with

squares.
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Figure 4.16: The x-component of the electric fields on the focal plane of a parabolic reflector with D, = 1004,
(fo = 100 GHz) and f = 0.6. The reflector is illuminated by two plane waves: broadside and 6, = 2.3°, ¢ =
0°. The solid lines are calculated by resorting to the FO analysis, while the squares represent the PO results. The
dashed line is the case when the coma phase term is not included. One of the main planes (y = 0) is shown. The
blue region is the FO applicability region.

It can be clearly seen in the figure that when the linear phase term is included only, the
focalized field is a linear translation of the broadside one from the center to the 4-beam position,
which is exact the flash point position. However, this translation is not accurate compared with
the PO result. When the coma phase term is included, the result becomes accurate. The side
lobes become asymmetric and the main beam is deviated from the flash point. This observation
shows that the linear phase term corresponds to steer the maximum of the focal plane field of
a QO component from the center of the focal plane to the flash point position. While the coma
phase term leads to asymmetric side lobes and deviation of the main beam, which is quantified
by the distance 6,,(0).

Practically, when we scan the incident field, it is useful to find the maximum skew angle
where the coma phase term is sufficiently small and can be neglected. Within this angular
region, the focalized field is almost a linear translation of the broadside one. We can set the

phase error for neglecting the coma phase term as o
K, Brpbn(0) < a (4.55)

For a reflector, we have derived in Appendix 1.1 the limit of the coma phase in terms of the

number of beams, i.e. N = 6,/(1/D) :
2
2fu + /4f#2 — 1] (4.56)

o
coma
N max < ;
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® Elliptical lens

In the case of an elliptical lens, &,,(0) is derived as:

0 — 0
5,(0) = e(cos cos 6;)

1—ecosf
and the flash point is:
] Kos ko
Prp = Rro—— k, =—R,— . sin 65 (cos ¢s X + sin ¢bg y)
d
Moreover, the limit of the coma phase is derived in Appendix |.2:
01l —ecosBO,u, 1

Ncoma
T esin emax Zf# Cos Hmax - 4f#2 -

max

where 6, 1S the angle that maximizes the coma phase.

® Hyperbolic lens

In the case of a hyperbolic lens, §,,(8) is:

e(cos 6—-1)

6n(0) = —ecosO

and the flash point is:

-

ks
Prp = RFOk = f sm@ (cos ¢ps X + sin ¢ps J)
0

We can also derive the limit of the coma phase (Appendix 1.3):

Zf#(e -1) <2f# + /4f# - 1) l

coma _
N max S

4.2.2.2 Point source incidence

(4.57)

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)

In the case of an elliptical mirror, we use a point source to generate the incident field. We can

place a source at either the upper focal plane or the lower focal plane.

® Case 1: Source placed at the upper focal plane

In Fig. 4.17, a source is placed at the upper focal plane with the displacement g;. In this case,

the mirror and the FO sphere are parameterized by (8,, ¢,), while the incident field is defined

by (61, $1).
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Figure 4.17: Geometry used to evaluate the progressive phase shift for an elliptical mirror with a point source

placed at the upper focal plane.
Here we assume the approximation in Eq. (4.44) is still applicable, and define the

(4.63)

S
2

progressive phase term as ® = @,. To calculate ®,, we can express |7} | as:
pE
L&Y

>/ - - - - - - 2 A -
|T‘1| = |T'1—p5| :\/(rl_ps)'(rl_ps) :rl\/l_r_(rl'ps)-l'
1

2 3
~ A N N A~

(fy - Ps)?] + 972 (F1 - Ps)

n

where r; = |7 |, , = 7 /r, and ps = |Bs|. Eq. (4.63) can be approximated by expanding the

2

square root for small argument to the second order, i.e. v1 +x =1+ ’2—6 — % + -

>y A - pS

|74 =T1_T1'Ps+2_[1_ (4.64)

N
where p; = ps/ps. By using the value of |7;|, the incident field can be expressed as follows:
. S ~ ~ 2 3

kol (B + E1D) e—jko[rl-fl-ﬁs+2”751[1—(f1~ﬁs)2]+2”7512(f1ﬁs)]

- ~ ~ €
E;=(Ef¢p +Elf)——=
l ( L l ) |T1 ,r_l
kel Bt L2 - p 2+ 22
o| PPt {1~ (F1Ps) ]+2r12(r1 Ps) (4.65)

17 I3
_ (E+d + E9) o Trs

r
Therefore, we can approximate Ei by the broadside illumination with a progressive phase term:
(4.66)

E; = E;(B; = 0)e ™/
where @, is expressed as below:
2 3
p N oA Ps .. A
—[1 = (fy - p)*] + = (1 - b5) (4.67)
2r;
1

D, =ko |- ps +=—
1= Ko l T pst+ o
Next, we can divide the phase term e~/®1 | similar to Eq. (4.52), into linear phase term and

coma phase term:
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o PRl o2l — koS (D
o—J®1 — ejkofl-/_jse—]kozp_rl[l—(rrps)z]e Jkoypz(F1Ps) (4.68)
Since the mirror is parameterized by 7,(6,), we can represent 7; (6,) as a function of 7,(6,),

and calculate 7, - p, as follows (Appendix H.1):

A - T N - r A >
7‘1'Ps=r—7‘z',05 =r_51n02p'ps (4.69)
1 1

By substituting Eq. (4.69) in Eq. (4.68), and defining a compensation phase term ® .1

; 2%, B .
e_]‘bl =e'mn P Se_J‘Dcompl (470)

— 2 3
Where kp - kO Sln 92 ﬁ and cDCOTflpl - kO I:Zp_:l [1 - (7’}‘1 : ﬁs)z] + Zstf (f‘l * p\s):l

Moreover, 1, /r; can be expressed as follows (Appendix H.1):

T
r_2 = M1(1 + (Dcomal(ez)) (4.71)

1
where M; = Ry;/Rq;, and ®,,,41(6,) is:

chomal(ez) = -

e?(cos 6, cos By, — cos B, cos By, ) + e(cos By, — cos B, + cos By, — cos B,)
(1—-ecosB,)(1+ecosby,)

(4.72)

If we define the flash point 5, as:

ﬁfp = M ps (4.73)
By substituting Eq. (4.71) in Eq. (4.70), we can divide the progressive phase term into three

terms:
e=JP1 — o= iPcomp1ikpPrp oikpPrpPcomar (4.74)

The first term, e ~/®comp1 | is the compensation phase term, the second term, ef’?P'ﬁfv, is the
linear phase term, and the last term, ej’?‘P'ﬁqu’comal, is the coma phase term. Consequently, as
described in Eq. (4.45), the analytical GO field can be approximated as:

EGO (Bs) = EGO (s = 0)6_jq)“’mplejﬁp'ﬁfpejﬁp'ﬁqu’wmal (4.75)
Furthermore, ®,,,,,1 Can be approximated by a constant within a specific region |p;| < pSf max
(Appendix H.2):

ps
CI)compl ~ kO 2R11 (4.76)

If the displacement of the source is inside this region, the GO field can be expressed as:
. . T S
E¢o(Ps) = Ego(Ps = 0)e TK02Ry1¢ K p P @ R0 P roPeomar (4.77)
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® (Case 2: Source placed at lower focal plane

In Fig. 4.18, a source is placed at the lower focal plane with the displacement g,. In this case,

the mirror and the FO sphere are parameterized by (6, ¢,), while the incident field is defined
by (62, ¢2).

14 —— Elliptical Mirror
! — FO Sphere

Ps
Figure 4.18: Geometry used to evaluate the progressive phase shift for an elliptical mirror with a point source
placed at the lower focal plane.

We define the progressive phase term as ® = @,. Similar to the steps in case 1, we can

expand |#,| and obtain ®,:
2

PO p nA oA
d, =k [_Tz ~ps+2—s[1—(r2 ‘Ps)2]+
)

p?
S A A
TAGE ps)] (478)

After similar derivations described in case 1, one can divide the progressive phase term into
compensation phase term, linear phase term and coma phase term:
eIz = g=ikoPcompz g JKp Brp g JKp BrpPcomaz (4.79)
where @z = ko [2”—2 [1— (- po)?] + % (7, - s)| and K, = ko sin 8, p. The flash point
is:
Ry

Prp = Maps, My = R (4.80)
21

and cI)comaz (91) is:
chomaZ(Ql) =

e?(cos 6, cos By, — cos B, cos By, ) + e(cos By, — cos B, + cos By, — cos B,)

4.81
(14+ecosB;)(1—ecosby,) ( )
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Therefore, as described in Eq. (4.45), the analytical GO field can be approximated as:

EGO (Ps) = EGO (s = 0)e_jk0¢comp2ej%p'ﬁfpejﬁp'ﬁqu)wm“z (4.82)
Moreover, ®,,,, can be approximated by a constant within a specific region |p;| < p£ max
(Appendix H.2):

ps
Domp2 = 2Ry, (4.83)

If the displacement of the source is inside this region, the GO field can be expressed as:
. . CikePE
Eoo(Bs) = Ego(Bs = 0)e2Raie/ o ProelhoPrpPeoma: (4.84)

® |llustration of phase terms

Here we show an example to better illustrate the linear, coma, and compensation phase terms.
We consider an elliptical mirror with the diameter of D,,, = 1004, (f, = 300 GHz), the semi-
major axis of a = 8641, and the focal distance of c = 174,, i.e. the eccentricity is e = 0.2.
The mirror is illuminated by a unitary Huygens source placed at the upper focal plane, with the
electric current oriented along X and a displacement in x-direction, xg = 3.3, f;". In this case,
the f-number is calculated as " = 1.

Fig. 4.19 shows the variation of linear, coma, and compensation phase with respect to 6. As

it can be seen, the linear phase varies linearly, the coma phase has a maximum around 6 ~
%602 = 15°, and the compensation phase increases slowly and behaves like a constant. In this
case, the region where the compensation phase can be approximated as a constant is calculated

as p;imax = 3Aof4". The source displacement is pg = 3.3, f4"; therefore, this approximation

is not applicable.

Linear Phase
— — :Coma Phase
Compensation Phase

20 25 30

15
0 [deg]

Figure 4.19: Variation of linear, coma, and compensation phase for an elliptical mirror with D,, = 1004, (f, =
300 GHz), fi* = 1, and e = 0.2, illuminated by a unitary Huygens source placed at the upper focal plane, with
the electric current oriented along X and a displacement in x-direction, x; = 3.3, f4".
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Furthermore, we can observe the field focalized on the focal plane by the same mirror and
the same source, as shown in Fig. 4.20. As it can be seen, the fields evaluated by using the FO
analysis are compared with the PO result. Moreover, in FO analysis, we compare the field
calculated by using all phase terms with the one with only the linear phase term and the one
without the compensation phase term. Here the case of broadside incidence is also shown as a
contrast.

By using Eq. (4.73), one can calculate the flash point as: p,, = —4.54,f;"x. Therefore,
the linear phase term translates the main beam to this flash point, shown by the dashed red line
in Fig. 4.20a. When the coma phase term is included, the main beam deviates from the flash
point and the side lobes become asymmetric, represented by the dashed black line. However,
when the compensation phase term is included, the amplitude remains almost the same, shown
by the red solid line. Therefore, we turn to the phase plot (Fig. 4.20b). It can be seen when the
compensation phase term is neglected, the phase of the focal plane field changes obviously
within the FO applicability region. Therefore, this phase term must be included to compensate
the phase of the focal plane field. It is worth mentioning that the compensation phase is
quantified by the source displacement, g. When g is very small, the compensation phase can

be approximated as a constant, or even be neglected.

® Limit of the coma phase

For the limit of the coma phase, we introduced the term ®,,,, instead of §,,. Therefore, the
condition in Eq. (4.55) should be modified:

Ky BrpPeoma < O (4.85)
It is derived in Appendix 1.4 that when the observation plane is at the lower focal plane, the

maximum number of beams is:

o 1
Ncoma S 486
max 21 fy max(sin 0, cDcomal(QZ)) ( )

where the term “max(sin 8, ®,ma1(62))” can be roughly approximated by substituting 8, =

1 . . f . .
> 0,2; or accurately evaluated by using numerical calculation. When the observation plane is at

the upper focal plane:
peoma < _© 1 (4.87)
max = oty max(sin 0, cI’comaz(91))

where the term “max(sin 8; ®,,mq2(61))” can be roughly approximated by substituting 8, =

1 .
5 001, OF calculated numerically.
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Figure 4.20: The x-component of the electric fields on the focal plane of an elliptical mirror with D,, =
100 A4 (fy = 300 GHz), fi* = 1 and the eccentricity e = 0.2. The mirror is illuminated by a unitary Huygens
sources placed at the upper focal plane, with the electric current oriented along X and a displacement in x-
direction, x; = 3.3, f4". The solid lines are calculated by resorting to the FO analysis, while the squares represent
the PO results. The dashed red and black lines represent the cases when the coma and compensation phase terms
are neglected, respectively: (a) Amplitude. (b) Phase. One of the main planes (y = 0) is shown. The blue region

is the FO applicability region.
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4.2.2.3 Comparison of coma limits

We have derived the limits of the coma phase (coma limits) for parabolic reflectors, elliptical
lenses, hyperbolic lenses and elliptical mirrors. It can be found that a coma limit is always a
function of the f-number, f;;. Here we compare the coma limits for different QO components.

Here we choose the operative frequency as f, = 300 GHz and fix the diameter as D =
1004,. This diameter is not suitable for elliptical lenses; therefore, we compare parabolic
reflectors, hyperbolic lenses and elliptical mirrors. For hyperbolic lenses, the relative
permittivity is chosen as &, = 2. In the case of elliptical mirrors, the eccentricity is selected as
e =0.2.

The comparison of the coma limits is shown in Fig. 4.21. As it can be seen, all coma limits
(NSRY) increase monotonically with respect to the f-number, f;;. For a fixed f, the elliptical
mirror with the observation at the upper focal plane always has the highest limit; while the
hyperbolic lens always has the lowest one. Therefore, we can conclude that elliptical mirrors

are less sensitive to the coma phase term compared with parabolic reflectors and hyperbolic

lenses.
30
25 7
20 8
5515 .
<,
10 —Parabolic reflector i
—Hyperbolic lens
Mirror - observation @ lower
5 —Mirror - observation @ upper
0 | | 1 | |
0.5 1 15 2 25 3 3.5 4

Figure 4.21: Comparison of coma limits for parabolic reflectors, hyperbolic lenses, and elliptical mirrors (with
observation at upper and lower focal planes).
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Chapter 5: Validation of GO fields and PWS

In chapter 3, we have discussed the importance of PWS and shown that it is proportional to the
GO fields on a FO sphere. And later in chapter 4, GO ray fields and analytical GO fields were
derived explicitly. Finally, in this chapter, we focus on validating GO fields and their
corresponding PWS.

The radius of a FO sphere is chosen as large as possible since the applicability region for
the FO approximations is proportional to this radius, as described in Eq. (3.12). As a result, the
distance between the surface of a QO component and the FO sphere could be very small. In
such a case, the fields on the FO sphere are numerically difficult to be evaluated by using the
PO analysis, namely it is hard to validate GO fields directly on a FO sphere. In FO analysis, it
is known in Eq. (3.9) that focal plane fields can be obtained by integrating GO fields.
Consequently, instead of validating the fields on the FO sphere, one can validate the fields on
the focal plane which can be calculated easily and accurately by the PO analysis. If focal plane
fields are validated by the PO, one can assume GO fields are also validated. This assumption
is also applicable for validating PWS. One can validate the focal plane fields evaluated by using
the coherent FO method. If the focal plane fields are validated, the PWS is also assumed to be
validated.

In section 5.1, GO fields are validated. Focal plane fields calculated by using the FO
analysis are compared with the ones evaluated by using the PO analysis. In section 5.2, first
we show some numerical examples of PWS. We compare the full CFO spectrum with the

linearized CFO spectrum. And then we validate the coherent FO for all QO components.

5.1 Validating the derived GO fields

In this section, we validate both GO ray fields (section 4.1) and analytical GO fields (section
4.2) by validating the focal plane fields with the PO analysis. Here we use Eq. (3.9) to calculate
focal plane fields, i.e. use both electric and magnetic GO fields. We call the focal plane fields
calculated by using the GO ray fields “GO-FO”, and the ones evaluated by using the analytical
GO fields “Analytical FO”.

Three types of QO components, namely elliptical lenses, hyperbolic lenses, and elliptical
mirrors, with TM polarized incidence are discussed here. Additional examples of the other QO
components and TE validation are listed in Appendix J. Here we validate both amplitude and
phase and show one of the main planes (y = 0). FO applicability regions are highlighted by

blue regions, and phase is wrapped from —180° to 180°.
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5.1.1 Elliptical lens

An elliptical silicon (&, =11.9) lens with D, = 51, (f, = 300 GHz) and f} = 0.6 is
introduced here. A quarter-wavelength matching layer at 300 GHz made of Parylene (g, =
2.62) is applied. For such a lens, two different scenarios are analyzed: One is the case with

small skew angle; the other is the case with large skew angle.

® (Case 1: Small skew angle

In this case, the lens is illuminated by a unitary TM polarized plane wave with the skew
angle of 6, = 10°, ¢, = 0°, meaning analytical GO expressions are applicable. Fig. 5.1 shows
the x-component of the electric fields on the focal plane of the lens. The focal plane fields
evaluated by resorting to the analytical FO and the GO-FO approaches are compared with the
one obtained using the PO. Here the 3D PO field is plotted in the inset of the figure. It can be
seen in the figure, the agreement is within the accepted error margin inside the FO applicability

region, for both the amplitude and phase.
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Figure 5.1: The x-components of the electric fields on the focal plane of an elliptical silicon (¢, = 11.9) lens with
D, =54, (f, = 300 GHz) and £ = 0.6, illuminated by a unitary TM polarized plane wave with the skew angle
of 8, = 10°, p; = 0°. Here a quarter-wavelength matching layer at 300 GHz made of Parylene (g, = 2.62) is
applied. The focal plane fields calculated by using the analytical FO and the GO-FO approaches are compared
with the one obtained using the PO: (a) Amplitude. (b) Phase. One of the main planes (y = 0) is shown. Blue
region is the FO applicability region. Inset is the 3D PO field.

® Case 2: Large skew angle

In this case, the lens is illuminated by a unitary TM polarized plane wave with the skew
angle of 6, = 20°, ¢ = 0°, meaning analytical GO expressions are no longer accurate. Fig.

5.2 shows the x-component of the electric fields on the focal plane of the lens. The focal plane
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fields evaluated by using the analytical FO and the GO-FO approaches are compared with the
one obtained using the PO. As it can be seen, the analytical FO approach does not match with
the PO. While for the GO-FO approach, the agreement is very good within the FO applicability
region. Therefore, when the skew angle is larger than 11°, one should always apply the GO-

FO approach to ensure accuracy.

FO Region
—POQ
- = =Analytical FO
---GO-FO

FO Region
—PO
- - - Analytical FO|
- --GO-FO

|E.| [dB]

(@ (b)

Figure 5.2:The x-components of the electric fields on the focal plane of an elliptical silicon (g, = 11.9) lens with
D, =54, (f, = 300 GHz) and £} = 0.6, illuminated by a unitary TM polarized plane wave with the skew angle
of 8, = 20°, ¢ = 0°. Here a quarter-wavelength matching layer at 300 GHz made of Parylene (g, = 2.62) is
applied. The focal plane fields calculated by using the analytical FO and the GO-FO approaches are compared
with the one obtained using the PO: (a) Amplitude. (b) Phase. One of the main planes (y = 0) is shown. Blue
region is the FO applicability region. Inset is the 3D PO field.

5.1.2 Hyperbolic lens

Fig. 5.3 shows the x-component of the electric fields on the focal plane of a hyperbolic
plastic (g, = 2) lens with D, = 1001, (f; = 300 GHz) and £} = 1. The incident field is a
unitary TM polarized plane wave with the skew angle of 6, = 3.2(4,;/Dy,) = 1.3°, ¢, = 0°.
The focal plane fields evaluated by using the analytical FO and the GO-FO approaches are
compared with the one obtained using the PO. Here the 3D PO field is plotted in the inset of
the figure.

As it can be seen in the figure, for the amplitude comparison, the analytical FO and the
GO-FO approaches are validated by the PO within the FO applicability region. For the phase
comparison, the analytical FO approach is still very good while the GO-FO approach performs
some acceptable error. This is due to the fact that the interpolation operation involved in
calculating the GO ray fields for a hyperbolic lens is not very accurate for a small f-number

geometry.
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Figure 5.3: The x-component of the electric fields on the focal plane of a hyperbolic plastic (¢, = 2) lens with
D, =100 A, (f, = 300 GHz) and £, = 1, illuminated by a unitary TM polarized plane wave with the skew angle
of 0, = 3.2(14/Dy) = 1.3°, ¢, = 0°.The focal plane fields calculated by using the analytical FO and the GO-FO
approaches are compared with the one obtained using the PO: (a) Amplitude. (b) Phase. One of the main planes
(y = 0) is shown. Blue region is the FO applicability region. Inset is the 3D PO field.

5.1.3 Elliptical mirror

In the case of an elliptical mirror, a source can be placed at either its upper focal plane or
its lower focal plane. Here we consider a mirror with the diameter of D,, = 1004, (f, =
300 GHz), the semi-major axis of a = 804,, and the focal distance of ¢ = 204,, i.e. the

eccentricity is e = 0.25.

® Case 1: Source placed at the upper focal plane

In this case, the f-number is calculated as f;* = 0.95. The incident field is generated by a
unitary Huygens source placed at the upper focal plane, with the electric current oriented along
X and a displacement in x-direction, x; = 2.24,f4". Fig. 5.4 shows the x-component of the
electric fields on the focal plane of the mirror. The focal plane fields calculated by using the
analytical FO and the GO-FO approaches are compared with the one obtained using the PO. It
can be seen in the figure, the analytical FO and the GO-FO approaches are in fair agreement
with the PO inside the FO applicability region, for both the amplitude and the phase.
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Figure 5.4: The x-component of the electric fields on the focal plane of an elliptical mirror with D,, =
100 A, (fy = 300 GHz), fi™ = 0.95 and e = 0.25. The mirror is illuminated by a unitary Huygens source placed
at the upper focal plane, with the electric current oriented along X and a displacement in x-direction, x; =
2.2 f4". The focal plane fields evaluated by using the analytical FO and the GO-FO approaches are compared
with the one obtained using PO: (a) Amplitude. (b) Phase. One of the main planes (y = 0) is shown. Blue region
is the FO applicability region. Inset is the 3D PO field.

® Case 2: Source placed at the lower focal plane

In this case, the f-number is calculated as f;"* = 0.6. The unitary Huygens source is placed
at the lower focal plane, with the electric current oriented along X and a displacement in x-
direction, x; = 4.71,f4". Fig. 5.5 shows the x-component of the electric fields on the focal
plane of the mirror. The focal plane fields evaluated by resorting to the analytical FO and the
GO-FO approaches are compared with the one obtained using the PO. As it can be seen in the
figure, the agreement is very good inside the FO applicability region, for both the amplitude

and the phase.
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Figure 5.5: The x-component of the electric fields on the focal plane of an elliptical mirror with D,, =
100 A4 (fy = 300 GHz), fi" = 0.6 and e = 0.25. The mirror is illuminated by a unitary Huygens source placed
at the lower focal plane, with the electric current oriented along X and a displacement in x-direction, x, =
4.7, fa". The focal plane fields evaluated by using the analytical FO and the GO-FO approaches are compared
with the one obtained using PO: (a) Amplitude. (b) Phase. One of the main planes (y = 0) is shown. Blue region
is the FO applicability region. Inset is the 3D PO field.
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5.2 Numerical examples and validation of the coherent FO

It has been discussed in section 3.3 that the coherent FO can evaluate the PWS of the focal
plane field that includes also its phase property. Two types of spectra are derived. The first one
is the full CFO spectrum that is evaluated by calculating a convolution integral. The second
one is the linearized CFO spectrum. By using the linearization approximation on the quadratic
phase term, the convolution is approximated by a linear shift in the spectral domain, and the
full spectrum becomes a linearized local spectrum.

In section 5.2.1, numerical examples of the preceding spectra are shown. In section 5.2.2,
the coherent FO method is validated for all QO components. The focal plane fields evaluated
by using the coherent FO are compared with the ones calculated by the FO with quadratic phase
term, i.e. the analytical FO and GO-FO discussed in section 5.1.

5.2.1 Numerical examples of PWS

It has been discussed in section 3.3 that when the observation point is not far away from the
center of the focal plane, i.e. the quadratic phase term is negligible, the PWS of the focal plane
field is EFO (kx, ky) which is proportional to the GO fields. However, when we observe a point
further from the center, the quadratic phase term must be included and the PWS cannot be
approximated by EFO (kx, ky). In such a case, it is derived in the coherent FO method that the
full CFO spectrum of the focal plane field is a convolution between two spectral functions:
Ef(—ky,—ky,) = F(=ky,—k,) * Epo(ky k) (5.1)
where F(kx, ky) is the FT of the quadratic phase term and EFO(—kx, —ky) is described in Eq.
(3.26). Moreover, the convolution operation in Eq. (5.1) can be simplified by applying the

linearization approximation on the quadratic phase term. The linearized CFO spectrum can be

- |2
o

— — L_) - - (7 7 —
Ef(—ky,—ky) =€ ]kZRFOEFo (k, + ko)ej(karko)'po (5.2)

where g, is the position where we introduce the linearization, Ep = kyX + k,y, and EO =

k >
apo-

To better illustrate these spectra, we take a parabolic reflector as an example. We first
assume the quadratic phase term can be neglected; therefore, the spectrum is EFO (kx, ky).
Next, we calculate the convolution integral in Eq. (5.1) to evaluate the full CFO spectrum.

Furthermore, we apply the linearization approximation and calculate the linearized CFO
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spectrum described in Eq. (5.2). Finally, the focal plane fields evaluated by using EFO (kx, ky),
the full spectrum and the linearized spectrum are compared with the one calculated by the FO
with quadratic phase term, i.e. the analytical FO and GO-FO described in section 5.1.

The parabolic reflector has the diameter of D, = 5004, (f; = 300 GHz) and the f-number
of fi = 4, illuminated by a unitary TM polarized plane wave with the skew angle of 6, =
20(1o/D,) = 2.3°, ¢ = 0°.

® Spectrum of Erg(k,, ky)

When the quadratic phase term is neglected, the PWS of the focal plane field is EFO (kx, ky),
as shown in Fig. 5.6. Since the rim angle of the reflector is 6, the spectrum is bounded within

kyo = kosinf, . Moreover, the amplitude spectrum is divided into |Epgg| and |Epog|

components.
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Figure 5.6: Amplitude of the spectral function EFO(kx,ky) of a parabolic reflector with D, = 5004, (f, =
300 GHz) and fi =4, illuminated by a unitary TM polarized plane wave with the skew angle of 6 =
20(4¢/D;) = 2.3°,¢ps = 0°. The spectrum is bounded within k,,: Left-hand side is the |EF0,9| component while
the right-hand side is the |Ep(,,| component.

® Full CFO spectrum

Next, we consider convolving Epo(—k,, —k, ) with F(k,, k, ) and calculating the full CFO
spectrum, E¢(—k,, —k,,). The amplitude spectrum is shown in Fig. 5.7 and is divided into

|E; 6| and |E; | components. Due to the property of the convolution operation, the spectrum
is not bounded within k,,. As it can be seen, we limit the spectrum within 1.7k, since the

spectrum outside this region is negligible.
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Figure 5.7: Amplitude of the full spectrum E(—k,, —k,,) of a parabolic reflector with D, = 5004, (f, =
300 GHz) and fi =4, illuminated by a unitary TM polarized plane wave with the skew angle of 6, =
20(4¢/D;) = 2.3°,¢s = 0°. The spectrum is bounded within 1.7k,,: Left-hand side is the |Ef,9| component
while the right-hand side is the | E, ] component.

® Linearized CFO spectrum

In this case, we apply the linearization approximation on the quadratic phase term, and
linearize the full spectrum in the surrounding of the flash point position. The skew angle of the
incident plane wave is 8; = 20(4,/D,) = 2.3°, ¢; = 0°. Therefore, the linearization point is

equal to the flash point and can be calculated as g, = ps, =~ 204,y X. Fig. 5.8 shows the
amplitude of the linearized CFO spectrum, i.e. |Er(—ky, =k, )| = |Ero (k, + k, )|, with |Ef 6|
and |Ef | components. It can be seen in the figure that the linearized spectrum is a linear

translation of |Epo (ky, k)| (Fig. 5.6), with the spectral shift k,, = Rk—" Po-
FO

|E.o] |Er.o]
-55
0.1
-60
0.05
o 65
S
3 0
i
-70
-0.05
75
-0.1
-80
-0.15 -0.1 -0.05 0 0.05 0.1 -0.15 -0.1  -0.05 0 0.05 0.1
ky / ko k, / ko

Figure 5.8: Amplitude of the linearized spectrum Ef(—kx, —ky) of a parabolic reflector with D,. = 5004, (f, =
300 GHz) and fy = 4, illuminated by a unitary TM polarized plane wave with the skew angle of 9, =
20(4¢/D;) = 2.3°,¢p; = 0°. The spectrum is shifted with k,, from the center and bounded within k,,: Left-hand

side is the | | component while the right-hand side is the |E, | component.
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® Focal plane fields

The focal plane field can be evaluated by integrating its PWS, as described in Eq. (3.33).
Fig. 5.9 shows the x-component of the electric fields on the focal plane of the parabolic
reflector. The focal plane fields evaluated by using the full spectrum and the linearized
spectrum are compared with the ones obtained using the FO with and without the quadratic
phase term. Here for the linearized spectrum, the linearization point is chosen the same the
flash point, i.e. g, = 20,4 X.

It can be seen in the figure that the full-spectrum coherent FO is in fair agreement with the
analytical FO within the FO applicability region. For the linearized-spectrum coherent FO, it
is validated within the PWS applicability region. Outside this region, the phase error becomes
larger. Here the PWS applicability region is the region where the linearization approximation
is applicable. While for the FO without the quadratic phase term, the amplitude is accurate but
the phase shows a large error. Therefore, the quadratic phase term must be included when the

observation point is far away from the focus.
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Figure 5.9: The x-component of the electric fields on the focal plane of a parabolic reflector with D, = 5004,
(fo = 300 GHz) and f; = 4, illuminated by a unitary TM polarized plane wave with the skew angle of 6, =
20(Ay/D,) = 2.3°, ¢ = 0°. The linearization point is chosen the same the flash point, i.e. g, = 201,f4 2. And
the focal plane fields calculated by using the full-spectrum and linearized-spectrum coherent FO are compared
with the ones obtained using the FO with and without quadratic phase term: (a) Amplitude. (b) Phase. One of the
main planes (y = 0) is shown. Blue region is the FO applicability region and the green region is the PWS
applicability region.

5.2.2 Validation examples of the coherent FO

The full-spectrum coherent FO is accurate within the entire FO applicability region; however,
the calculation of the convolution integral requires large number of points to converge, which
is time-consuming and numerically cumbersome. Moreover, full spectrum is not always needed

in practice. One only needs to obtain a spectrum that is locally accurate around the position of
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a feed antenna. Therefore, in this subsection, we only validate the linearized-spectrum coherent
FO, by validating the focal plane fields calculated by it.
Here the spectral function EFO (kx, ky) is evaluated by using both electric and magnetic GO
fields as:
jﬂRFoe—ijFo
k.

Moreover, only TM validation is introduced here. Examples of TE validation are listed in

Epo(ky ky) = {[Eco — (A~ Ego)ft] — ¢(7 x Hgo)Jeire(ky kpo) — (5.3)

Appendix K.

® Elliptical lens

Here an elliptical lens with a matching layer is considered. Fig. 5.10 shows the x-component
of the electric fields on the focal plane of an elliptical silicon (&, = 11.9) lens with D; = 54,
(fo = 300 GHz) and f} = 0.6. A quarter-wavelength matching layer at 300 GHz made of
Parylene (g, = 2.62) is applied. The lens is illuminated by a unitary TM polarized plane wave

with the skew angle of 65 = 20°,¢; = 0° which corresponds to a flash point gs, ~
—1.72,4f%. The linearization position is chosen the as the flash point, i.e. g, = Prp- And the

focal plane field evaluated by using the coherent FO is compared with the one obtained using
the GO-FO. As it can be seen, the coherent FO is in very good agreement with the GO-FO, for
both the amplitude and the phase, within the PWS applicability region.
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Figure 5.10: The x-component of the electric fields on the focal plane of an elliptical silicon (e, = 11.9) lens
with D; = 5 A, (f, = 300 GHz) and f;} = 0.6, illuminated by a unitary TM polarized plane wave with the skew
angle of 6, = 20°, ¢, = 0°. Here a quarter-wavelength matching layer at 300 GHz made of Parylene (g, = 2.62)
is applied. The linearization point is chosen the same the flash point, i.e. g, ~ —1.74,f+%. And the focal plane
field calculated by using the coherent FO is compared with the one obtained using the GO-FO: (a) Amplitude. (b)
Phase. One of the main planes (y = 0) is shown. Blue region is the FO applicability region and green region is
the PWS applicability region.
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® Hemispherical lens

A hemispherical silicon (&, = 11.9) lens with D,; = 51, (f, = 300 GHz), f* = 0.6,
Rspn = 2.64¢, and L = 0.362Rg,, is introduced here. A quarter-wavelength matching layer at
300 GHz made of Parylene (&, = 2.62) is applied. The lens is illuminated by a unitary TM
polarized plane wave with the skew angle of 8, = 15°, ¢ = 0° which corresponds to a flash
point g, = —1.324f;%. The linearization point is chosen the as the flash point. Fig. 5.11
shows the x-component of the electric fields on the focal plane of the lens. The focal plane field
evaluated by using the coherent FO is compared with the one obtained using the GO-FO. As it
can be seen in the figure, the coherent FO is validated inside the PWS applicability region, for

both the amplitude and the phase.
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Figure 5.11: The x-component of the electric fields on the focal plane of a hemispherical silicon (¢, = 11.9) lens
with Dy = 5 24 (fy = 300 GHz), fi"* = 0.6, Rypp = 2.64,, and L = 0.362R,, illuminated by a unitary TM
polarized plane wave with the skew angle of 8, = 15°, ¢, = 0°. Here a quarter-wavelength matching layer at 300
GHz made of Parylene (s,,, = 2.62) is applied. The linearization point is chosen the same the flash point, i.e. g, ~
—1.314fM%. And the focal plane field calculated by using the coherent FO approach is compared with the one
obtained using the GO-FO: (a) Amplitude. (b) Phase. One of the main planes (y = 0) is shown. Blue region is the
FO applicability region and green region is the PWS applicability region.
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® Hyperbolic lens

A hyperbolic plastic (&, =2) lens with D, = 1004, (f, = 300 GHz) and f* =1 is
introduced. The incident field is a unitary TM polarized plane wave with the skew angle of
05 = 3.2(44/Dp) = 1.3°,¢5 = 0°, i.e. the flash point is pr, = —3.24,f'X. The linearization

point is chosen the as the flash point. Fig. 5.12 shows the x-component of the electric fields on

the focal plane of the hyperbolic lens. The focal plane field calculated by using the coherent

FO is compared with the one obtained using the analytical FO. It can be seen that the coherent

FO is validated inside the PWS applicability region.
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Figure 5.12: The x-component of the electric fields on the focal plane of a hyperbolic plastic (&, = 2) lens with
D, =100 A, (f, = 300 GHz) and £ = 1, illuminated by a unitary TM polarized plane wave with the skew angle
of 6, = 3.2(44/Dy) = 1.3°, ¢ = 0°. The linearization point is chosen the same the flash point, i.e. g,
—3.2,f4'x. And the focal plane field calculated by using the coherent FO approach is compared with the one
obtained using the analytical FO: (a) Amplitude. (b) Phase. One of the main planes (y = 0) is shown. Blue region
is the FO applicability region and green region is the PWS applicability region.
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® Elliptical mirror

For an elliptical mirror, a source can be placed at either its upper focal plane or its lower
focal plane. Here we consider a mirror with the diameter of D,, = 1004, (f, = 300 GHz), the
semi-major axis of a = 804,, and the focal distance of ¢ = 204,, i.e. the eccentricity is e =
0.25.

Case 1: Source placed at the upper focal plane

In this case, the f-number is calculated as £ = 0.95. The incident field is generated by a
unitary Huygens source placed at the upper focal plane, with the electric current oriented along
% and a displacement in x-direction, x; = 2.24,f4". This displacement corresponds to a flash
point gr, = —3.21,f4" % and the linearization point is the same as this flash point. Fig. 5.13
shows the x-component of the electric fields on the focal plane of the mirror, evaluated by
using the coherent FO and compared with the analytical FO. As it can be seen, the agreement

is within the accepted error margin inside the PWS applicability region.
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Figure 5.13: The x-component of the electric fields on the focal plane of an elliptical mirror with D,, =
100 A4 (fy = 300 GHz), fi" = 0.95 and e = 0.25. The mirror is illuminated by a unitary Huygens source placed
at the upper focal plane, with the electric current oriented along X and a displacement in x-direction, x; =
2.2, fa". The linearization point is chosen the same the flash point, i.e. g, ® —3.24,fs"x. And the focal plane
field calculated by using the coherent FO is compared with the one obtained using the analytical FO: (a)
Amplitude. (b) Phase. One of the main planes (y = 0) is shown. Blue region is the FO applicability region and
green region is the PWS applicability region.
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Case 2: Source placed at the lower focal plane

In this case, the f-number is calculated as f* = 0.6. the Huygens source is placed at the
lower focal plane, with the electric current oriented along X and a displacement in x-direction,
xs = 4.7 f4". This displacement corresponds to a flash point g, ~ —3.24,f;"% and the
linearization point is the same as this flash point. Fig. 5.14 shows the x-component of the
electric fields on the focal plane of the mirror, evaluated by using the coherent FO and
compared with the analytical FO. It can be seen that the coherent FO is in excellent agreement
with the analytical FO inside the PWS applicability region.
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Figure 5.14: The x-component of the electric fields on the focal plane of an elliptical mirror with D,, =
100 A4 (fy = 300 GHz), fi" = 0.6 and e = 0.25. The mirror is illuminated by a unitary Huygens source placed
at the lower focal plane, with the electric current oriented along £ and a displacement in x-direction, x; =
4.7, f4". The linearization point is chosen the same the flash point, i.e. g,  —3.24,f4"%. And the focal plane
field calculated by using the coherent FO is compared with the one obtained using the analytical FO: (a)
Amplitude. (b) Phase. One of the main planes (y = 0) is shown. Blue region is the FO applicability region and
green region is the PWS applicability region.
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Chapter 6: Antenna-coupled QO systems

An important application of this thesis is to analyze and design antenna-coupled QO systems
in reception. As will be shown in this chapter, for such a system, one can evaluate the power
intercepted by the antenna and coupled to its load, by resorting to the Thevenin equivalent
circuit [47] and antenna in reception formulism [17].

In this chapter, we analyze the performance of an antenna placed at the focal plane of a QO
component illuminated by a generalized incident field. The antenna is assumed to be connected
with a single-mode transmission line. Firstly, in section 6.1, we show the Thevenin equivalent
circuit for the system in reception. We can evaluate the open-circuit voltage generator in this
circuit by calculating a reaction integral; or under some approximations, by performing a field
matching integral. Next in section 6.2, we explain explicitly how to calculate the power
delivered to the antenna load. And then in section 6.3, we introduce parameters used to analyze
the performance of an antenna in reception, including pattern, directivity, gain, and common
efficiency terms. Finally, in section 6.4, the performance of antenna-coupled QO components

is validated.

6.1 Thevenin equivalent circuit and open-circuit voltage

To analyze an antenna in reception, one needs to evaluate the power delivered to the load of
the antenna. A good start point is the Thevenin equivalent circuit described in [47]. In this
circuit, as will be discussed in subsection 6.1.1, an equivalent voltage generator is proposed for
a generalized incidence. Once this voltage is known, one can estimate the power delivered to
the load.

In order to calculate this voltage (subsection 6.1.2), a reaction integral between induction
currents and fields in transmission is derived. Moreover, by introducing some approximations,
one can express the voltage as a field matching between the incident GO field on a FO sphere
and the field transmitted by the antenna. Based on this field matching integral, one can conclude
that once these fields are conjugately matched, the power received by the antenna is

maximized.

6.1.1 Thevenin equivalent circuit

We use the Thevenin equivalent circuit to estimate the power delivered to an antenna load, i.e.

P; . Fig. 6.1a shows the geometry of an antenna in reception. The antenna intercepts an incident
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field in a generic shape (Ei,ﬁi) and delivers the incident power to its load through a single-

mode transmission line. (Es,ﬁs) is the field scattered by the antenna and EOC is the total field
on the antenna gap. We select an arbitrary cross section AA" within the single-mode
transmission line. If we separate the antenna and the load as two problems and use
Schelkunoff’s formulation of the equivalent theorem [48] at the cross section AA’, after solving
these two equivalent problems, we are able to derive the Thevenin equivalent circuit (Fig. 6.1b)
for the reception scenario. Once we obtain the open-circuit voltage V, ., we can evaluate the

power dissipated by the load Z; .
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Figure 6.1: (a) An antenna intercepts an incident field and delivers its power to a load through a single-mode
transmission line (b) The Thevenin equivalent circuit that models the incident field to the antenna as a voltage
generator V., the antenna as an impedance Z,, and the load connected to the antenna as Z;.

6.1.2 Open-circuit voltage

For a single-mode transmission line, the tangent components of electric and magnetic fields in

the transmission line can be expressed as:

{Eo = Voéo

! ° (6.1)
Hy = Iyhy

where €, and ﬁo are eigen vectors that are related to each other: EO =7 X &y, V, and I, are

modal amplitudes that can be obtained at a cross section S as:

VO == ff EO ' é)odS
Scs

L IO == ff ﬁo ' ﬁodS
Scs

In the equivalent circuit, one can represent the open-circuit voltage at the cross section S, 4/ as:

6.2)

™
a
I

f f E,. - 8,dS (6.3)
S

AA’
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Moreover, one can relate Eq. (6.3) to a transmitting antenna fed by an equivalent current fo =
—2Z X ﬁo at AA’, by choosing an appropriate normal vector, i = —Z, and multiplying I, at
both sides of Eq. (6.3):
Voclo = || Fac - (1oho x =0))ds = = || Eoe -Jods (64)
SAA' S

AA

Therefore, Eq. (6.4) is now a reaction integral between two sources: the open-circuit voltage
generator V,. representing the incoming field and the antenna equivalent current fo in
transmission. However, in this work, another form of Eq. (6.4) is desirable since EOC and fo are
not straightforward quantities. Alternatively, we can represent Eq. (6.4) by another reaction
integral, by resorting to the induction theorem [49] and the reciprocity theorem. To begin with,
by using the induction theorem, one can assume Eoc is the field radiated by a set of currents fSi
and Mst that are induced by the incident fields, (Ei, ﬁi), on an arbitrary surface S;. This surface

is referred to as the induction surface that encircles the antenna and its surroundings. In the
case of an antenna-coupled QO component, we can choose the induction surface as the FO
sphere, as shown in Fig. 6.2. Accordingly, the incident fields are the GO fields described in
chapter 4, and the induction currents can be calculated as:

{%Zo=:nﬁ>:;oHioﬁ &>

where i = —#' is the normal vector of the FO sphere.

QO component

FO sphere
(Induction surface)

Antenna

Figure 6.2: Induction surface is chosen the same as the equivalent FO sphere for an antenna-coupled QO
component.
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Moreover, the open-circuit field, Eoc, can be obtained by radiating the induction currents in

the presence of the open circuited antenna and its surroundings:
Bocl®) = || GG =) oG + || GEmG =) Moo G (66)
SFo SFo

where G¢/ and G€™ are the Green’s functions in the presence of the open circuited antenna and
its surroundings. One can also introduce the fields (ng,ﬁgx) radiated by the currentf0 in

transmission and also in the presence of the antenna and its surroundings. Therefore, now we

have two sets of sources that radiate with the same Green’s functions: One is the induction
currents that radiate E,., the other is J, that produces (ng,ﬁgX). We can then apply the

reciprocity theorem on Eq. (6.4), as depicted in Fig. 6.3, and calculate the reaction between the

fields in transmission and the induction surface currents as follows:

Voe = ff [H’gx : MGO - ng 'fGO]dS (6.7)
SFo

Here a unitary current amplitude in transmission is assumed, i.e. I, = 1.

Mgo . Mo
Joo, T f:;o’ ———
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SFO\\"-\ D Jo 51-"0\"‘-.‘\ U Jo

Figure 6.3: The reciprocity theorem between the induction surface currents (fco, MGO) and the equivalent current
representing antenna in transmission fo.

Furthermore, if we assume the GO field behaves as a local plane wave and approximate the
propagation unit vector, 35, as S = i = —7', then we can relate the magnetic GO field to
the electric GO field as:

7 =7 1 AT - =7
Hgo (') = —ET X Ego (1) (6.8)

By substituting Eq. (6.8) in Eq. (6.7), and rewriting dS as RZ, sin 8d0d¢:

2m 90 1 - = e 17
v, = f f [E ET* .Ego — CHL* - HGO] R%, sin 0dOd¢ (6.9)
0 0
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In most cases, the FO sphere is in the far-field region with respect to the antenna terminal;
therefore, one can represent the fields transmitted by the antenna by its far fields, i.e. magnetic

and electric fields are related to each other as:
— 1 =
HI*(#") ~ Zf’ x ET* (7" (6.10)

By using Eq. (6.10), one can represent Eq. (6.9) as a field matching integral between the
incident GO field and the far field of the antenna:

2 (B (P,
Voo =7 f f ES* - Ego R3 sin 0d0d¢g (6.11)
0 0

Eq. (6.11) indicates that when the antenna far field is conjugately matched with the incident

GO field, i.e. ng = (EGO)*, the maximum open-circuit voltage can be achieved.

6.2 Power delivered to an antenna load

For an antenna-coupled QO system in reception, we have derived its Thevenin equivalent
circuit and open-circuit voltage in section 6.1. Therefore, we are able to evaluate the power
coupled to the load as:

|Vocl?
P, = 3R Xmatch (6.12)
a
. . _ 4RI R, .
where R, is the real part of the antenna impedance, Z,, and X, q¢cn = TR RS AL is the

efficiency of impedance matching, where Z, = R, + jX; is the load impedance and Z, =
R, + jX, is the antenna impedance. Assuming an impedance matching condition for the load,
i.e. Z;, = Zy, Eq. (6.12) can be expressed as:

Voe|?
Pioga = 80};1 (6.13)

Moreover, the antenna in transmission radiates the power, P4 = %Rallolz. When a unitary

current is impressed, i.e. I, = 1, one can relate R, t0 P44 aS:
— 2Prad
|1o]?
By substituting Eq. (6.14) in Eq. (6.13), the power delivered to the load can be expressed as:
_ Vel?
16Prad

Ra = 2Prad (614)

P, (6.15)
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Moreover, P,,, can be interpreted as the total power radiated by the antenna on the FO sphere:

2w T

Prog = f f |W,aq - #'| R% sin 6 dOde (6.16)
0 0

where Wmd is the time-average radiated power density:
—_—> 1 - —
Wyga = ERe(ng x HI**) (6.17)

By applying the expressions of V. and P,,,, one can express the coupled power for a generic

case as follows:

RS JL[HE* - Mg — EF* - Jgo] sin 6d6d¢>|2

— (6.18)
16 [ [|Wyqq - 7| sin 6 d6d

L

It is worth mentioning that this expression can be used also when the QO component is in the
near field of the antenna and for very large skewed angles.

Furthermore, if one considers the approximations described in Eq. (6.8) and (6.10), Eq.
(6.18) can be represented as the field matching between the filed in transmission and the GO
field:

N N 2
) |7 J,° EZ* - Ego sin 0d6de|

Py (6.19)

20 {2 [7|E¥|” sin 0 ddgy
For the case when the QO system is illuminated by an incident field from (6, ¢) direction,
the power delivered to the load of the antenna is represented by P, (6, ¢5). Moreover, similar
steps can be repeated for other incident skew angles. When the field in transmission, EZ", 5

significant only within the truncation angle 8, and conjugately matched with the inward GO

field, i.e. ET* = (Ego) , Eq. (6.19) can be simplified as follows:

1 (27 6 . 1 (27 6o
P = —j j |ng| sin8dfd¢ = —J J |an| sin 0d0d¢ = Py (6.20)
20y Jo 2¢Jo Jo

where P;,,, is the inward incident power, i.e. the power of the GO fields crossing the FO sphere.
As the result, a conclusion can be derived from Eq. (6.20) that once the field radiated by the
antenna in transmission is conjugately matched with the GO field in reception, all inward
incident power can be captured by the receiving antenna and delivered to the matched load; in
other words, we are able to receive 100% of the inward incident power. When the fields are

not fully matched, in order to evaluate P, efficiently, we consider two cases to calculate an

and ET*.
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® Case 1: Slightly off-broadside incidence and slightly off-focus antenna

In this case, we assume the skew angle is 6, < 11°. Therefore, one can evaluate the GO
fields analytically, as described in section 4.2.2:

Ego(8s, ¢s) = Ego (65 = O)E_j%p'ﬁfpe_j(bwma (e7/Peomn) (6.21)

where e~/ ®comp is the compensation phase term for the case of elliptical mirrors. One can also

displace an antenna within the focal plane of a QO component with a distance Ja from the
center, as shown in Fig. 6.4. For small displacements, one can approximate the far field of the

antenna as the one of a central feed multiplied by a progressive phase term:

ET*(dy) = EF*(d, = 0)e/Foda (6.22)

z
QO component [

((u
Displaced /—T
Antenna \E\l

Figure 6.4: A QO component illuminated by incident fields with the skew angle of (8, ¢,). A receiving antenna
is placed on the focal plane of the QO component with a displacement cfa from the center.

By substituting Eq. (6.21) and (6.22) in the field matching integral, Eq. (6.11), one can

represent V. as a function of the skew angle (6;, ¢,) and the displacement of the antenna c_i)a:
. 2 (2m (O, . "
Voo trda) =7 [ [ EE(da = 0)- EuolEs = 0)-
0 0

e/kpda g=JkpBrpg=iPcoma (e /Peomp)RZ,, sin OdOd¢p (6.23)
In Eq. (6.23), if the skew angle is smaller than the limit of the coma phase, i.e. e =/ ®coma ~

1, and the compensation phase term can be neglected for the case of elliptical mirrors, i.e.
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eI Pcomp ~ 1, then V. (65, ¢, dg ) is maximum when d, = 3. In other words, the coupled
power P, can be maximized from a certain skew incidence if one places the antenna feed at the

corresponding flash point position.

® Case 2: Large-angle incidence and large displacement of an antenna

In cases when the skew angle is 6, > 11°, one needs to calculate the GO ray field described in
section 4.1. Moreover, when the displacement of the antenna, c_i)a, is large so that one cannot

use the approximation in Eq. (6.22), the field radiated by the antenna, ng(cfa), should be

evaluated numerically, which will be explicitly discussed in chapter 7, section 7.5.2.

6.3 Performance of antenna-coupled QO systems in reception

One can evaluate the performance of an antenna-coupled QO system in reception by analyzing
its pattern, directivity, gain, and common efficiency terms.

e Power pattern in reception
One can define the power pattern in reception for an antenna-coupled QO system as:

PL (951 ¢)s)
maX(PL (05' d)s))

where Fg, (6, @) is the pattern for one skew angle (6, ¢,). If one wants to obtain the

FRx(HS: ¢s) = (6-24)

complete pattern in reception, one needs to illuminate the QO component by incident fields
with different skew angles: 6, € [0, Ok, ], ¢ € [0,27]. This pattern indicates how much power
is coupled to a load as a function of the incident skew angle, and due to the reciprocity, it should
be the same as the far-field pattern of the same antenna in transmission. Therefore, one can
compare the pattern in transmission with the one in reception to validate the procedure. And
examples of validation will be discussed in section 6.4 for each QO component. Moreover, one

can evaluate the directivity using the pattern in reception, Fg, (6, @), as:

FRx(gs: ¢s)>
DR* = max | 4n ————= (6.25)
" < PRx(HS' d)s)
where Py, is calculated by integrating the pattern in reception:
21 BRx
Ppy = f f Frx (6, ¢s) sin 6,d0;d s (6.26)
0 0
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® Common efficiency terms

Besides the pattern, efficiency terms are also important parameters when analyzing the
performance. Common efficiency terms are aperture efficiency, taper efficiency and spillover
efficiency. The aperture efficiency of an antenna in reception can be expressed as a ratio

between the coupled power to the load and the incident power:

P
e =5 L (6.27)
inc
The incident power in Eq. (6.27), i.e. Py, for a plane wave incidence, can be expressed as:
Pipe = EA (6.28)
inc — 2{ (0]0] '

where E is the amplitude of the plane wave, ¢ is the impedance of the medium, and 4, is the

area of the QO component. For a point-source incidence, P;,,. is calculated as follows:

21 O

Pinc = j j |V_V)inc ) ﬁl aode (6.29)
0 0

where I/I_)/l-nc = %Re(ﬁi X ﬁi) is the time-average radiated power density and 7 is the normal

vector of the QO component. By using the aperture efficiency, one can also obtain the gain in
reception:

Gam = DI néy (6.30)
where D% = j—ZAQO is the maximum theoretical directivity, which is achieved by a constant
illumination of the QO surface in transmission. The taper efficiency in reception can be
calculated as the ratio between the achieved directivity and the maximum theoretical
directivity:

Dfx

ner = (6.31)

- pmax
D ir

Finally, the spillover efficiency in reception is the ratio between the aperture efficiency and the
taper efficiency:
s = nap /i (6.32)
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6.4 Validation of the performance in reception

In this section, we validate the performance of antenna-coupled QO components in reception,
including pattern, aperture efficiency, directivity, and gain. Due to the reciprocity, one can use
the performance in transmission as the reference to validate the performance in reception. Here
the power delivered to an antenna load is evaluated by using Eq. (6.18).

First in subsection 6.4.1, we introduce an approach to display pattern in reception. And then

in subsection 6.4.2, examples of validation are shown for all QO components.

6.4.1 Display a pattern in reception

The power pattern in reception is a function of skew angles, i.e. F, (6, ¢), as described in
Eq. (6.24). To describe the pattern, one can select three 2D cuts: ¢, = 0°/45°/90°. For each
¢, cut, the pattern is a function of 6;, as depicted in Fig. 6.5a. However, displaying a pattern
for a scanning scenario is not convenient in such a matter. Since the center of the coordinate
system is located at (6, = 0°, ¢p5 = 0°), b, = 0°/45°/90° cuts may not cross the main lobe of
the pattern, as depicted in Fig. 6.5b with the dashed lines. In such cases, we introduce a local
system. As it can be seen in Fig. 6.5b, we move the center of the coordinate system to the main
lobe position, i.e. (u.,v.), and display the pattern by using ug/vs/ps cuts, where ug =
sin @, cos ¢, vs = sin 6 sin ¢, and ps = v2us. By introducing this local system, one is able
to display the pattern within a rectangular region that encloses the area around the main lobe.
Moreover, in most practical cases with semi-symmetric patterns, ug/v,/ps cuts are sufficient

to describe the whole pattern.
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Figure 6.5: Pattern in reception: (a) Pattern centered at (65 = 0°, s = 0°), with ¢p; = 0°/45°/90° cuts. (b)
Pattern shifted to (u, v.), with us/vs/ps cuts.
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6.4.2 Examples of validation for all QO components

In this subsection, all antenna-coupled QO components in reception scenarios are analyzed and
validated. A leaky-wave slot is studied here as the receiving antenna. When it is integrated with
a dielectric lens, as depicted in Fig. 6.6, the structure is referred to as the leaky lens antenna
[50]. The fields radiated by the leaky-wave slot are exported from CST. While the fields
transmitted out of the lens are calculated by using a developed PO code in transmission.

Here we use Eq. (6.18) to evaluate the power received by an antenna. In Eq. (6.18), the
induction currents on a FO sphere can be calculated by using the GO fields discussed in chapter
4. The fields radiated by the antenna on the FO sphere are evaluated by using the antenna
propagation approach, which will be discussed in the following chapter, section 7.5.2. The
power pattern, the aperture efficiency, and the gain are described in Eq. (6.24), (6.27), and
(6.30), respectively. For the directivity, we use an efficient way to calculate it, which will be
discussed in section 7.5.3, Eq. (7.30).
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Figure 6.6: A schematic representation of a leaky lens antenna.

6.4.2.1 Parabolic reflector

In the case of a parabolic reflector, we place a leaky lens antenna at its focal plane as the
receiving antenna that intercepts the fields focalized by it. Here we introduce a reflector with
the diameter of D, = 0.125 m and the f-number of fJ = 1.5 (6§ = 19°), illuminated by
unitary Co-Pol. and Cx-Pol. plane waves; and a leaky lens antenna that consists of an elliptical
silicon (&, = 11.9) lens with D; = 1.3 mm and £ = 0.526 (8} = 72°) and a y-polarized
leaky-wave slot operated at 720 GHz [51]. The leaky lens antenna is shifted from the center of

the focal plane with the distance a?a = 17.5 mm, as depicted in Fig. 6.7.
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Figure 6.7: Geometry of an antenna-coupled (leaky lens antenna) parabolic reflector. The reflector has the
diameter of D, = 0.125 m and the f-number of f;” = 1.5 (67 = 19°), illuminated by unitary Co-Pol. and Cx-Pol.

plane waves. At its focal plane, the leaky lens antenna is shifted Ja = 17.5 mm from the center. The antenna
consists of an elliptical silicon (g, = 11.9) lens with D, = 1.3 mm and f} = 0.526 (8} = 72°), and a y-polarized
leaky-wave slot operated at 720 GHz.

Fig. 6.8 shows the resulting pattern in reception (Rx), compared with the pattern in
transmission (Tx). In this case, when calculating the pattern in Rx, the far fields radiated by the
leaky lens antenna are evaluated by using the PO in transmission code. The pattern in TX is
obtained by importing the far-field pattern of the same leaky lens antenna into GRASP. Fig.
6.8a to Fig. 6.8c show uy, ps, and v, planes, respectively; and Fig. 6.8d is the 3D Co-Pol.
pattern in Rx. As it can be seen, the pattern in Rx is in excellent agreement with the pattern in
Tx, for both the Co-pol. and the Cx-pol. components. Moreover, the aperture efficiency, the

directivity and the gain in Rx are well validated, as shown in Table. 6.1.

Frequency: 720 GHz | Aperture Efficiency | Directivity [dB] | Gain [dB]
Tx 29.64% 58.51 54.20
Rx 29.40% 58.47 54.17

Table 6.1: Performance of the antenna-coupled (leaky lens antenna) parabolic reflector, evaluated in Rx and
compared with the one in Tx.
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Figure 6.8: The pattern obtained in Rx of the antenna-coupled (leaky lens antenna) parabolic reflector, compared
with the pattern evaluated in Tx: (a) u, plane. (b) p, plane. (c) vg plane. (d) 3D Co-Pol. pattern in Rx.

6.4.2.2 Elliptical lens

In the case of an elliptical lens, we analyze two types of leaky lens antennas. In the first case,
a feed is placed close to the lens base, i.e. with an electrically small air gap h (Fig. 6.9a). In the
second case, a feed is placed A/2 away from the lens base (Fig. 6.9b), which is referred to as
the resonant leaky lens antenna [52]. The difference between these two lenses is that the first

lens is in the far-field region of the feed while the second lens is in the near-field region. The

feed can be shifted with a distance cfa from the broadside position, as shown in Fig. 6.9.

95



D Z A
! z l ’
i I | — Elliptical lens | i*
i i |—— FO Sphere i
R, !
p
> Th
Feed | | G_fg ][ 12

Feed | | Czﬂ—

@) (b)

Figure 6.9: Antenna-coupled elliptical lenses: (a) leaky lens antenna. (b) Resonant leaky lens antenna.

® Case 1: Leaky lens antenna

In this case, we place a leaky-wave slot below an elliptical lens as the receiving antenna that
intercepts the fields focalized by the lens. The lens is made of silicon (&, = 11.9), with D; =
5mm and f} = 0.526 (6 = 72°), illuminated by unitary Co-Pol. and Cx-Pol. plane waves.
Here a quarter-wavelength matching layer at 480 GHz made of Parylene (&, = 2.62) is

applied. The feed antenna is y-polarized and operated at 720 GHz, shifted from the broadside

position with the distance c?a = 0.11 mm. Fig. 6.10 shows the pattern obtained in RX,
compared with the pattern in Tx. In this case, the FO sphere is in the far-field region of the
antenna. When calculating the pattern in Rx, the antenna far fields are exported from CST and
are calculated on the FO sphere by using the antenna propagation approach. The pattern in Tx
is the far field transmitted out of the lens, which is evaluated by using the PO in transmission
code. Fig. 6.10a to Fig. 6.10c show ug, ps, and v, planes, respectively; and Fig. 6.10d is the
3D Co-Pol. pattern in Rx. As it can be seen, the pattern in Rx is in good agreement with the
pattern in Tx, for both the Co-pol. and the Cx-pol. components. Moreover, the aperture

efficiency, the directivity and the gain in Rx are validated, as shown in Table. 6.2.

Frequency: 720 GHz | Aperture Efficiency | Directivity [dB] | Gain [dB]
Tx 33.55% 27.56 26.78
Rx 34.56% 27.69 2691

Table 6.2: Performance of the leaky lens antenna evaluated in Rx and compared with the one in Tx.
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Figure 6.10: The pattern obtained in Rx of a leaky lens antenna, compared with the pattern evaluated in Tx: (a)
u, plane. (b) p, plane. (c) vg plane. (d) 3D Co-Pol. pattern in Rx. The elliptical lens is made of silicon (g, = 11.9),

with D, = 5 mm and f}! = 0.526 (6% = 72°), illuminated by unitary Co-Pol. and Cx-Pol. plane waves. Here a
quarter-wavelength matching layer at 480 GHz made of Parylene (&, = 2.62) is applied. The feed antenna is y-

polarized and operated at 720 GHz, shifted from the broadside position with the distance Ja =0.11 mm.

® Case 2: Resonant leaky lens antenna

In this case, an elliptical silicon (e, = 11.9) lens has the diameter of D; = 2.78 mm and the f-
number of f{ = 1.54 (8} = 19°), illuminated by unitary Co-Pol. and Cx-Pol. plane waves.
The feed antenna is x-polarized and operated at 540 GHz, shifted from the broadside position
with the distance cfa = 0.375 mm. Fig. 6.11 shows the pattern obtained in Rx, compared with
the pattern in Tx. In this case, the FO sphere is in the near-field region of the antenna. When
calculating the pattern in Rx, the antenna near fields are exported from CST and are calculated
on the FO sphere by using the antenna propagation approach. The pattern in Tx is the far field

transmitted out of the lens, which is evaluated by CST simulation. Fig. 6.11ato Fig. 6.11c show
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us, ps, and vg planes, respectively; and Fig. 6.11d is the 3D Co-pol. pattern in Rx. It can be
seen that the pattern in Rx is in fair agreement with the pattern in Tx, for both the Co-pol. and
the Cx-pol. components. Moreover, the aperture efficiency, the directivity and the gain in Rx

are validated, as shown in Table. 6.3.

Frequency: 540 GHz | Aperture Efficiency | Directivity [dB] | Gain [dB]
Tx 41.00% 22.70 20.05
Rx 45.25% 22.86 20.48

Table 6.3: Performance of the resonant leaky lens antenna, evaluated in Rx and compared with the one in Tx.
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Figure 6.11: The pattern obtained in Rx of a resonant leaky lens antenna, compared with the pattern evaluated in
Tx: (a) ug plane. (b) ps plane. (c) vg plane. (d) 3D Co-Pol. pattern in Rx. The elliptical lens is made of silicon
(e, = 11.9), with D, = 2.78 mm and f} = 1.54 (8} = 19°), illuminated by unitary Co-Pol. and Cx-Pol. plane
waves. The feed antenna is x-polarized and operated at 540 GHz, shifted from the broadside position with the
distance Ja = 0.375 mm.
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6.4.2.3 Hemispherical lens

In this case of a hemispherical lens, we place a leaky-wave slot below the lens as the receiving
antenna that intercepts the fields focalized by the lens. Here we consider a hemispherical silicon
(¢ = 11.9) lens with Dp; = 5mm, fi! = 0.526 (6} = 56°), Rypp = 2.6 mm, and L =
0.362Rg,p, illuminated by unitary Co-Pol. and Cx-Pol. plane waves. A quarter-wavelength
matching layer at 480 GHz made of Parylene (&, = 2.62) is applied. The feed antenna is y-
polarized and operated at 720 GHz, shifted from the broadside position with the distance d, =
0.14 mm, as depicted in Fig. 6.12.
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Figure 6.12: Geometry of a leaky hemispherical lens antenna. The hemispherical lens is made of silicon (e, =
11.9), with Dy; = 5 mm, fi! = 0.526 (6} = 56°), Rspp, = 2.6 mm, and L = 0.362R,, illuminated by unitary
Co-Pol. and Cx-Pol. plane waves. Here a quarter-wavelength matching layer at 480 GHz made of Parylene (e, =
2.62) is applied. The feed antenna is y-polarized and operated at 720 GHz, shifted from the broadside position
with the distance Ja = 0.14 mm.

[— Hemispherical Lens]

Fig. 6.13 shows the pattern obtained in Rx, compared with the pattern in Tx. In this case,
the antenna far fields are exported from CST and are calculated on the FO sphere by using the
antenna propagation approach. The pattern in Tx is the far field transmitted out of the lens,
which is evaluated by using the PO in transmission code. Fig. 6.13a to Fig. 6.13c show ug, ps,
and v planes, respectively; and Fig. 6.13d is the 3D Co-pol. pattern in Rx. As it can be seen,
the pattern in Rx is in good agreement with the pattern in Tx, for both the Co-pol. and the Cx-
pol. components. Moreover, the aperture efficiency, directivity and gain in Rx are validated, as

shown in Table. 6.4.
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Frequency: 720 GHz | Aperture Efficiency | Directivity [dB] | Gain [dB]

TX 39.57% 28.37 27.50

RXx 40.83% 28.51 27.64

Table 6.4: Performance of the leaky lens antenna evaluated in Rx and compared with the one in Tx.
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Figure 6.13: The pattern obtained in Rx of the leaky hemispherical lens antenna, compared with the pattern
evaluated in Tx: (a) u, plane. (b) p, plane. (c) v, plane. (d) 3D Co-Pol. pattern in Rx.

100



6.4.2.4 Hyperbolic lens

In the case of a hyperbolic lens, we place a leaky lens antenna at its focal plane as the receiving
antenna that intercepts the fields focalized by it. Here we consider a hyperbolic plastic (e, =
2) lens with D, = 0.125 m and £ = 2 (% = 13°), illuminated by unitary Co-Pol. and Cx-
Pol. plane wave. The leaky lens antenna consists of an elliptical silicon (&, = 11.9) lens with
D, =13 mmand fi = 0.526 (8} = 72°), and a y-polarized leaky-wave slot operated at 720
GHez. It is shifted from the center of the focal plane with the distance d, = 20 mm, as depicted
in Fig. 6.14.
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Figure 6.14: Geometry of an antenna-coupled (leaky lens antenna) hyperbolic lens. The hyperbolic plastic (e, =
2) lens has the diameter of D, = 0.125 m and the f-number of £} = 2 (8% = 13°), illuminated by unitary Co-

Pol. and Cx-Pol. plane waves. At its focal plane, the leaky lens antenna is shifted d, = 20 mm from the center.
It consists of an elliptical silicon (&, = 11.9) lens with D, = 1.3 mm and f} = 0.526 (8} = 72°), and a y-
polarized leaky-wave slot operated at 720 GHz.

Fig. 6.15 shows the pattern in Rx, compared with the pattern in Tx. In this case, when
calculating the pattern in Rx, the far fields radiated by the leaky lens antenna are evaluated by
using the PO in transmission code. The pattern in Tx is also obtained using the PO in
transmission code since GRASP cannot evaluate the fields in a dielectric. Fig. 6.15a to Fig.
6.15c show uy, ps, and v, planes, respectively; and Fig. 6.15d is the 3D Co-pol. pattern in Rx.
As it can be seen, the pattern in Rx is in great agreement with the pattern in Tx, for both the
Co-pol. and the Cx-pol. components. Moreover, the aperture efficiency, the directivity and the

gain in Rx are validated, as shown in Table. 6.5.
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Frequency: 720 GHz | Aperture Efficiency | Directivity [dB] | Gain [dB]

TX 13.37% 59.85 53.76
RXx 12.70% 59.67 53.53

Table 6.5: Performance of the antenna-coupled (leaky lens antenna) hyperbolic lens, evaluated in Rx and
compared with the one in Tx.
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Figure 6.15: The pattern obtained in Rx of the antenna-coupled (leaky lens antenna) hyperbolic lens, compared
with the pattern evaluated in Tx: (a) u, plane. (b) p, plane. (c) vg plane. (d) 3D Co-Pol. pattern in Rx.
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6.4.2.5 Elliptical Mirror

For an elliptical mirror, incident fields are emitted by a Huygens source placed at one of its
focal planes; while a feed antenna is placed at the other focal plane where the reflected fields
are focalized. Here we consider a mirror with the diameter of D,,, = 0.125 m, the semi-major

axis of a = 0.3125 m, and the focal distance of ¢ = 0.0625 m, i.e. the eccentricity is e = 0.2.

® Case 1: Antenna placed at the upper focal plane

In this case, the f-number is calculated as fi" = 2 (6" = 14.4°). The incident fields are
generated by unitary Co-Pol. and Cx-Pol. Huygens sources placed at the lower focal plane. A
leaky lens antenna is placed at the upper focal plane as the receiving antenna that intercepts the
fields focalized by the mirror. It consists of an elliptical silicon (¢, = 11.9) lens with D, =

1.3mm and f} = 0.526 (6} = 72°), and a y-polarized leaky-wave slot operated at 720 GHz.

The leaky lens antenna is shifted from the center of the focal plane with the distance Efa =

20 mm, as depicted in Fig. 6.16.
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Figure 6.16: Geometry of an antenna-coupled (leaky lens antenna) elliptical mirror. The mirror has the diameter
of D,, = 0.125 m, the f-number of f;* = 2 (8" = 14.4°), and the eccentricity of e = 0.2, illuminated by unitary
Co-Pol. and Cx-Pol. Huygens sources placed at the lower focal plane. At its upper focal plane, the leaky lens

antenna is shifted Ja = 20 mm from the center. It consists of an elliptical silicon (&, = 11.9) lens with D, =
1.3 mm and f} = 0.526 (8} = 72°), and a y-polarized leaky-wave slot operated at 720 GHz.

Fig. 6.17 shows the pattern obtained in Rx, compared with the pattern in Tx. In this case,
when calculating the pattern in Rx, the far fields radiated by the leaky lens antenna are
evaluated by using the PO in transmission code. The pattern in Tx is obtained by importing the

far-field pattern of the same leaky lens antenna into GRASP. Fig. 6.17a to Fig. 6.17c show ug,
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ps, and v, planes, respectively; and Fig. 6.17d is the 3D Co-pol. pattern in Rx. It can be seen
that the pattern in Rx is well validated, for both the Co-pol. and the Cx-pol. components.
Moreover, the aperture efficiency, the directivity and the gain in Rx are in great agreement with
the ones in Tx, as shown in Table. 6.6.

Frequency: 720 GHz | Aperture Efficiency | Directivity [dB] | Gain [dB]
Tx 24.45% 58.96 53.37
Rx 24.23% 58.92 53.33

Table 6.6: Performance of the antenna-coupled elliptical mirror (leaky lens antenna placed at the upper focal
plane), evaluated in Rx and compared with the one in Tx.
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Figure 6.17: The pattern obtained in Rx of the antenna-coupled elliptical mirror (leaky lens antenna placed at the

upper focal plane), compared with the pattern evaluated in Tx: (a) u, plane. (b) p, plane. (c) v, plane. (d) 3D Co-
Pol. pattern in Rx.
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® Case 2: Antenna placed at the lower focal plane

In this case, the f-number is calculated as £, = 3 (6" = 9.6°). The incident fields are
generated by unitary Co-Pol. and Cx-Pol. Huygens sources placed at the upper focal plane. The
same leaky lens antenna described in case 1 is now placed at the lower focal plane as the
receiving antenna. It is shifted from the center of the focal plane with the distance cfa =
33.75 mm, as depicted in Fig. 6.18.

Dﬂ’l

A 4

-~

0
Rai R Huygens |~ Elliptical Mirror
o Source — FO Sphere
Leaky lens @é )
antenna &= ( \ P
-

<2 d,
D;!

Figure 6.18: Geometry of an antenna-coupled (leaky lens antenna) elliptical mirror. The mirror has the diameter
of D,,, = 0.125 m, the f-number of f;* = 3 (8" = 9.6°), and the eccentricity of e = 0.2, illuminated by unitary
Co-Pol. and Cx-Pol. Huygens sources placed at the upper focal plane. At its lower focal plane, the leaky lens

antenna is shifted d, = 33.75 mm from the center. It consists of an elliptical silicon (&, = 11.9) lens with D, =
1.3 mm and £} = 0.526 (8} = 72°), and a y-polarized leaky-wave slot operated at 720 GHz.

Fig. 6.19 shows the pattern obtained in Rx, compared with the pattern in Tx. Fig. 6.19a to
Fig. 6.19¢ show ug, ps, and v, planes, respectively; and Fig. 6.19d is the 3D Co-pol. pattern in
Rx. It can be seen that the pattern in Rx is well validated. Moreover, the aperture efficiency,

the directivity and the gain in Rx are also validated, as shown in Table. 6.7.

Frequency: 720 GHz | Aperture Efficiency | Directivity [dB] | Gain [dB]
Tx 12.16% 58.68 50.33
Rx 11.98% 58.62 50.27

Table 6.7: Performance of the antenna-coupled elliptical mirror (leaky lens antenna placed at the lower focal
plane), evaluated in Rx and compared with the one in Tx.
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Figure 6.19: The pattern obtained in Rx of the antenna-coupled elliptical mirror (leaky lens antenna placed at the

lower focal plane), compared with the pattern evaluated in Tx: (a) ug plane. (b) ps plane. (c) v, plane. (d) 3D Co-
Pol. pattern in Rx.
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Chapter 7: Designed GUI Tool

FO method is a powerful tool to represent the focalized field by a PWS at the focal plane of a
QO component in reception. By using the PWS, one can analyze the performance of detector-
coupled QO systems. However to our knowledge, no universal tools are developed to
implement this FO method for variety of QO components in reception. There are a few codes
implementing the FO method [7, 15, 16], but they are limited in applicability. First, existing
codes do not include variety of QO components. They mainly focus on analyzing parabolic
reflectors and elliptical lenses. Moreover, they are not built with user-friendly interfaces, which
means one cannot operate them easily. Accordingly, in this thesis, a MATLAB based GUI tool
is built to analyze the antenna-coupled QO systems in reception by using the FO method. The
tool includes five canonical QO components to improve design possibilities. Also, the user
interface is informative so users do not need to know the details of FO methodology. In
addition, the tool takes into account the presence of a matching layer, which is an essential
element for designing dielectric lenses.

In this chapter, we will show the interface of the tool and explain how it implements the
methods described from chapter 2 to chapter 6 to analyze antenna-coupled QO systems in
reception. The GUI tool is divided into two sub-GUIs and the interface of the main GUI is
shown in Fig. 7.1. This main GUI is introduced from section 7.1 to 7.4. First in section 7.1, we
briefly introduce how it defines the main QO components and implements the ray tracing
technique. Next in section 7.2, we discuss how it implements the coherent method. And then
in section 7.3, we explain how the GUI calculates GO fields on a FO sphere. Finally, in section
7.4, numerical examples of GO fields and focal plane fields evaluated by the GUI are shown.
In section 7.5, the second GUI is introduced. It is used to analyze the performance of antenna-

coupled QO systems. Conclusion is in section 7.6.

107



Geometry Focal Plane

Library | Eliiptical Lens ~ Geometry Observation Grid
°[mm] [ Cernter at flash point x_fp [Unif] [ -4 104 y_fp [Uni] 0
Frequency  THz ~ 072 4 E) 5
= 2T
[ Sweep Freq. Freq. Num: a5 RERbetiNL 151 Number of Y |_151 Z [Unig 0
Eon To , Xmin [Untl 6 | Ymin [Unif] | 6 Unit oA v
Diameter (D) mm ~ 5 Xmax [Unit] | 6 | Ymax [Unit] 6
25
F_in mm inf Focal Plane Fields Plot Options
2 ]
F_out mm v 355 (Fout = 3.56mim, Ilr): Ex COEy OEz FORegion  []Normalize Amp.
15 \ Ep = -5
F number (F_#) 060068 Ryp = 3mm Dynamic Range E1'Wrap Phase
1 s OHx OHy OHz Set
Max. rim angle 56.3446 Elllp,m“fll Lens X
05 —TF0 Sphere fe= RF{)/D
Permittivity 119 Dicletric plimm| Frequency List  Current Freq:
0
T 3 2 -1 0 1 2 3
Eccentricity 0.28989 FO Sphere Fields
i Ray Tracin Cal. GO Fields
R sph Matching Layer Example Update model E GO H_GO Yy g
- Materia 262 Parameterization Variables C.
Cal. Foc Fields
Extension (L) R, \ Frequenc | 480 | lGHz ~ ClExenzlng Ou-v @theta - phi
Source Method Numberofu |\ | Number of theta| 101 Plot
Amplitude 1 Huygens Source ® Analytical FO Number of v \ | Number of phi | 151 Export
Src. Position GO.FO
Pw 7 @Focus1 OFocus2 || OG0~ Interp U/Theta | 101 | Interp V/Phi 151 Pattern in Rx
Incident theta [de 20 v OPO =
[deg] X |beams . Directivity Gain Radiation Eff.
loeams] [ 41688 |y peams oY@ Cal Dir & Gain
. @ None
Crientation OCFO Errors & Wamings 3
Incident phi  [deg] 0
X0 it TUDelft
™ i THz \_|
Polarization Y_O |f-A | i
Qull @uE Gamma [deg] B S Efgf"l’ng

Figure 7.1: Layout of the main GUI tool.

7.1 Main QO components and ray tracing

® Define a QO surface

In chapter 2, five widely used QO components are parameterized, namely parabolic reflectors,
elliptical lenses, hemispherical lenses, hyperbolic lenses, and elliptical mirrors. And in this
section, we mainly discuss how to define them in the main GUI. Fig. 7.2 shows the interface
used to define QO components. One can choose a QO surface from the “Library” and define it
by inputting necessary parameters. As it can be seen in the figure, here we define an elliptical
silicon (g, = 11.9) lens with a matching layer. The corresponding 2D geometry is plotted in

the inset to visualize the surface.
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Figure 7.2: Interface used to define QO components

® Ray tracing

An in-house ray tracing code is developed to describe and visualize reception scenarios for all
QO components. Here we take the preceding elliptical silicon lens as an example. The lens has
the diameter of D, = 5 mm and the f-number of f; = 0.6. A quarter-wavelength matching
layer at 480 GHz made of Parylene (&, = 2.62) is applied.

To start a ray tracing, one needs to define incident fields: A unitary TM polarized plane
wave operated at 720 GHz with the skew angle of 6, = 20°, ¢, = 0° is defined, as shown in
Fig. 7.3a. Meanwhile, an observation plane should be chosen. And then the ray tracing of this
scenario is plotted in Fig. 7.3b. It can be seen in the figure that the ray tracing includes six basic
components: The incident and transmitted rays follow Snell’s law described in Eq. (2.30). The
FO sphere is chosen as large as possible and is defined in section 3.2.2. The lens surface
(section 2.1.3) is half transparent and the dielectric slab is from the edge of the surface to the
focal plane. Moreover, the observation plane is a 4 mm by 4 mm square centered at the focal
plane. In this work, it is approximated that the thin matching layer does not change the ray path.
Therefore, the layer is not shown. By using this ray tracing tool, one is able to preliminarily
analyze QO systems by minimizing phase aberrations associated to different path lengths.
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Figure 7.3: Ray tracing tool: (a) Interface used to set up ray tracing. (b) Ray tracing plot for the elliptical silicon
lens illuminated by a unitary TM polarized plane wave with the skew angle of 6, = 20°, ¢, = 0°.

7.2 Coherent FO

In the section of the FO integral, section 3.2, we mentioned that the focal plane electric field
can be evaluated by using both the GO electric and magnetic fields, an and 1760, as described

in Eq. (3.9); or using only the GO electric field, an, as describe in Eq. (3.11), which depends

on the incident skew angle. When the skew angle is relatively small, e.g. 8, < 11°, one can

assume E, and H,, are tangent to the FO sphere. In this case, one can use either E¢,, or Hp
to evaluate the focal plane fields. While for large skew angles, the tangential condition is not
applicable. Therefore, one needs both EGO and ﬁGO. This is the same case when evaluating the
coherent FO spectra.

In the tool, there are two options to calculate coherent FO spectra. In the first option, the
tool uses both GO electric and magnetic fields, E¢, and Hy,. While in the second option, only

one of the GO fields is used, either EGO or ﬁGO. In the following, we will explain what is

implemented in the tool for these two options.

® Option 1: Using both ﬁco and ﬁao

In this case, the focal plane electric field can be expressed as follows:

2

P

ilee —JkRFO _]szf
jke e FO

o () =

{[Ego — (A~ Ego)ft] = (A x Hgo )} e/¥Pr " g (7.1)
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where g is a point on the observation plane, Rg, is the radius of a FO sphere, 7 is the normal
vector of the FO sphere, and #' is a point on the FO sphere. Moreover, the magnetic field can
be calculated as:

i Pf
]ke ]kRFOe —Jk 2RFro

TE&H (2
hf (pf) - 47TRF0

— — 1 - o= Al
J. {[HGO — (A - Hgo)n] + 7 (7 x EGO)} e/MPrT di (7.2)
s

FO

In Eqg. (7.1) and (7.2), since we do not apply any approximation on GO fields, the focal
plane fields are calculated accurately within the FO applicability region. Furthermore, the

electric field eE&H can be expressed by its Cartesian spectral representation, as discussed in

section 3.2.3. In this representation, the electric spectral function EFO (kx, ky) can be expressed
as:

]T[RFOe_ijFO

E&H(kx’ ky) = k

{[EGO - (ﬁ * Eco)ﬁ] - ((ﬁ, X ﬁao)}CirC(kp, pr) (73)
where k, = ksinf and k, = |k? — kZ. While for the magnetic one:

— jmRpoe ¥
HES™ (ke ley) = k—
z

Therefore, the linearized coherent FO spectrum described in section 3.3.2 can be evaluated by

using EESH (ky, k) as:

_, 1 ,
{[HGO (A Hgo )R] + 7 (A x EGO)}circ(kp, kyo) (7.4)

- -7 Ma - - (T - —

EFSH(—ky,—ky) = e "2RroBESH (I, + K, )l (o +Ko) Po (7.5)

where g, is the point where we introduce the linearization and EO = RL po- Moreover, the
FO

magnetic spectrum is:
_jxlBol? N AT
HE4H (—ky, —ky) = e /“2Rro HEEH (K, + K, ) e/ (ko +Ko) Po (7.6)
These electric and magnetic spectra can be exported by the tool and used in spectral
techniques such as equivalent Floquet circuits. To validate these spectra, we have mentioned

in chapter 5 that we indirectly validate the focal plane fields calculated by using these spectra:

(
g (8" f f EFSH (—ky, —ky )e/"* e dke, dk,
(7.7)
LhE&H( f f HEH (—ky, —ky, )eToex eI dle die,,

where g’ is the point surrounding around g,,.
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® Option 2: Using either EGO or Tiao
In this case, we assume the GO magnetic field is orthogonal to the electric field with respect
to the normal to the FO sphere, 11, as follows:
1
HGO = En X EGO (78)

By using Eq. (7.8), the focal plane fields described in Eq. (7.1) and (7.2) can be simplified as:

( P}

'ke_ijFOe_]km N = Al
& (pr) = || 2Boo(0.90" 77 R sinodod
] Fo y Sro (7.9)
Jksp— L
= . jke ]kRFOe 2RFro R oo .
neM(B,) = f 2H;0 (6, p)e/*Pr*" R2, sin 6dOd¢
L7 (5 4mRpo Sro

Moreover, the spectral functions EFO (kx, ky) and ﬁm (kx, ky) can be approximated as:

j2mRpoe kR

(- E/H Fo .
(kx, key) = Ego(ky ky)circ(ky, ko)

kz
. (7.10)
j2mRppe JkRro ,
tHE/H(kx, ky) ~ . Hg;o (kx, ky)arc(kp,kpo)
z
Furthermore, the linearized coherent FO spectra can be expressed as:
160 l? S
B (e —k,) = e 2RO BEM (] 1 R, )l Gl o
7 (—kx —ky) (k5 + ko) (7.11)

2
ﬁf/H(_kx’ y) =e JkZFIJ?OFO E/H(k + k )eJ(kp+ko) Po

Similar to the option 1, these spectra can be exported by the tool and are validated by

validating their corresponding focal plane fields:

(
qE/H( f f EE/”( ky, =k, )eka" eJkyy’ dk,dk,
(7.12)

lﬁf/”(ﬁ’)=m J f HEM (~key, —ky eI kY dk dk,
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7.3 Calculation of GO fields

The coherent FO spectra are related to the GO fields and we have introduced GO ray fields and
analytical GO fields in chapter 4. In this section, we will discuss how the GUI calculates these
GO fields.

® Analytical GO fields

When the incident skew angle 6, is less than 11°, the GO electric field on a FO sphere can

be expressed as:

Ego (85, 65 = Ego (8 = 0)e /e Proe=i®coma (oI Peomn) (7.13)
where e~/ ®comp s the compensation phase term for the case of elliptical mirrors. Since the
skew angle is small, one can use the relation described in Eq. (7.8) to calculate the GO magnetic

field H;o (65, ¢s).
® GO ray fields

When the skew angle is 8, > 11°, analytical GO fields are not applicable. In such a case,
the tool calculates the GO ray fields. The GO electric field can be evaluated by using the
spreading factor S,.,4(6) and the distance along the ray path s(6, ¢) as:

Ego(0',0") = Er/e(6,8) - Spreaa(6) - e /K9 (7.14)
where Er/t is the reflected or transmitted field discussed in section 2.2.2.1, and (6', ¢") are

non-uniform parameterization variables in GO propagation which are shown in Fig. 7.4 for a

reflection case. The explicit explanation of (68, ¢") is described in Appendix E.1. Moreover,
the GO magnetic field is related to E,, as:

— 1 N = ' '

Hgo(6',¢") = E vyt X Ego(0',9") (7.15)
where §,., is the reflected or transmitted propagation unit vector. It is worth noting that the GO
fields, E;o(0',¢") and H.,(6', ¢"), are non-uniformly distributed on a FO sphere. Therefore,

one should numerically interpolate the non-uniform fields E/H;,(6', ¢") to the uniform ones

E/Hg, (6, ¢). In such an interpolation procedure, numerical errors can occur.
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7.4 Numerical examples of GO fields and focal plane fields

In this section, we will first introduce some configurations in the main GUI, and then show

some numerical examples of GO fields and focal plane fields calculated by the GUI.

7.4.1 Configurations in the GUI

Fig. 7.5 shows the configurations set in the GUI for calculating GO and focal plane fields. In
Fig. 7.5a, there are three approaches to calculate focal plane fields. “PO” is used as validation.
It calculates focal plane fields by using the PO radiation integral.

In the FO method, “Analytical FO” means that GO fields are calculated analytically by
using Eqg. (7.13). While “GO-FO” uses the GO ray fields described in Eq. (7.14). By using the
GO fields, one can calculate the focal plane fields in the presence of the quadratic phase term,
i.e. “None” option. In this option, the GUI implements Eq. (7.1), (7.2) or Eq.(7.9), depending
on the selection of GO electric and magnetic fields. Moreover, one can evaluate the linearized
coherent FO spectrum at a point (x,, y,), i.e. “CFO” option; and then calculate the focal plane
fields by integrating the PWS, as described in Eq. (7.7) or (7.12).

Next in Fig. 7.5b, one should define an observation grid, and choose components of the

focal plane fields, i.e. “E,, ,” and “H,, ,”. Finally, in Fig. 7.5c, one can decide to use both

GO electric and magnetic fields or just one of them, with (u, v) or (0, ¢) parameterization.
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Figure 7.5: Configurations in the GUI: (a) Calculation methods. (b) Observation grid and components of fields.
(c) Selection of GO fields and parameterization variables.

7.4.2 GO fields and focal plane fields calculated by the GUI

Here we take an elliptical silicon (e, = 11.9) lens as an example. The lens has the diameter of
D, = 5 mm and the f-number of f;} = 0.6. A quarter-wavelength matching layer at 480 GHz
made of Parylene (e,,, = 2.62) is applied. And the incident field is a unitary TM polarized plane
wave operated at 720 GHz with the skew angle of 6, = 10°, ¢4 = 0°.

In this case, Fig. 7.6 shows the GO ray fields on the FO sphere. GO electric field (Fig. 7.6a)
is divided into E and E4 components, and GO magnetic field (Fig. 7.6b) is divided into Hy
and Hg, components. As it can be seen, both amplitude and phase are shown.

By using the GO electric and magnetic fields, the focal plane fields are evaluated and plotted
in Fig. 7.7. Here the incident plane wave is TM polarized. Therefore, we only show the
dominant component, E,. Moreover, the 3D coherent FO field is plotted in the inset. In Fig.
7.7, we use the PO analysis as the reference, and compare the analytical FO, GO-FO, and
coherent FO, for both the amplitude and the phase. It should be mentioned that the GUI can

only use one approach at a time. Here we put all approaches together for comparison purpose.
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Figure 7.6: GO ray fields calculated by the GUI: (a) GO electric field. (b) GO magnetic field.

& Ex - xeut = o >
File Edit View Insert Jools Desktop Window Help
NDEdS kRO RL- A 0B D
Amphtude of E; - x cut Phase of E, - x cut
- . - .
. / B FO Region L ¥ L
=: (\:i‘l’;”:, 150 | ,'E /“ -::(\;s Region E :' ',, 1
: 70 ol b - - - - Analytical FO i
. - - = Aualytical FO 100-1—1 o GOF6 b
E] ol o 11
= | 2 508w i t T
o sl o il oA
= ) or i I
= 7] i | v )
= g : - a1 7
g A S0f T
] h : :
< 100} fff # ;
:
AN A ot ) J
i A N ML i A D
2 4 -8 -6 -4 -2 0 2 4
o 1 o 1
.L[/\,['f#] .l,[/\,l-f#]

Figure 7.7: Focal plane fields evaluated by the GUI.

7.5 Antenna-coupled QO systems

A second GUI is built to analyze antenna-coupled QO systems, as shown in Fig. 7.8. As it can
be seen, there are three areas, namely “Incident fields”, “Feed antenna”, and “Calculation &
Performance”. In this section, we will discuss these areas and explain how the GUI calculates
the power delivered to the load of an antenna. In subsection 7.5.1, incident fields used in this
GUI are discussed. Next in subsection 7.5.2, the procedure to obtain the fields radiated by an
antenna is explained. Finally, in subsection 7.5.3, the reaction integral and the calculation of

common efficiency terms used in the GUI are listed.
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Figure 7.8: Layout of the second GUI for analyzing antenna-coupled QO systems, which is divided into three
areas.

7.5.1 Incident fields

Two types of incident fields are discussed in section 2.2.1: A plane wave and a Huygens source.
For a plane wave incidence, we define the polarization of the plane wave by using the Ludwig-
[11 definition, as described in Eq. (2.23) and (2.24). In the second GUI, we relate the reference
polarization (Co-Pol.) to the antenna polarization as:

{ﬁmo = cos ¢ O, — sin ¢ Ps: x — pol. Antenna (7.16)

Dico = Sin ¢y @S + cos ¢ (],’35: y — pol. Antenna

For a Huygens source, the electric dipole can be x- or y- polarized, which depends on the
orientation angle y:
{y = 0° : P;co = X: x — pol. Antenna

Yy =90°:P;co = ¥: ¥ — pol. Antenna (7.17)

Moreover, the incident fields incoming from different skew angles can be defined by two sets

of variables: (6, ¢5) and (us, vg), which are related to each other as:
1%
Os = asin/uz +vZ, ¢ = atanu—s (7.18)
S

It has been mentioned in section 6.4.1 that (ug, vg) variables are preferred to display a pattern.

One can define a rectangular ug-v, grid and display the pattern conveniently.
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7.5.2 Fields radiated by an antenna

In order to calculate the reaction integral for open-circuit voltage, one needs to evaluate two
sets of sources: GO fields on a FO sphere and the fields radiated by a feed antenna. The GO
fields have been discussed. In this subsection, we mainly focus on evaluating the fields radiated

by the antenna.

® Antenna propagation

The tool is able to load the fields radiated by an antenna from external files like CST-GRASP
cuts or MATLAB matrices. In such files, the fields are always assumed to be broadside
radiated, meaning the feed antenna is placed at the center of the reference system, as depicted
in Fig. 7.9. Here we assume a far-field (FF) radiation and the radiated fields are recorded on an
FF sphere Sgr with the radius of Rzr. Therefore, the electric field radiated by the antenna on

Spr Ccan be expressed as a spherical wave:

e JkRrF

EI*(Opp, ¢rr) = (EL " Gpr + EL0p) - (7.19)

RFF
where ET** and EI*" are TE and TM components of the radiated field, respectively.

Moreover, the magnetic field is related to the electric field as:
—> 1 -
HZ;X = ?gl’,FF X ng (720)

To calculate the reaction integral, the radiated fields on a FO sphere are needed. Therefore,
one should evaluate the fields captured by the FO sphere, i.e. ng(epo,qbpo), which can be

calculated by back/forward propagating E2* (8r, ¢pp) as:

e_ijFO

ng(em' ¢ro) = ng(HFF' Grr) - Rpp - eI*RFF (7.21)

Rro
It should be noticed that since (0zr, ¢rr) and (0o, Pro) are two sets of variables, one
should use interpolation to numerically transform (8zg, ¢rr) 10 (Bro, o). The same step can

also be done for the magnetic field.

118



Focal plane

Figure 7.9: A schematic representation of broadside radiation for a central feed.

Next, we consider shifting the antenna within the focal plane of the QO component, with a

distance cfa = dxX + dyy, as depicted in Fig. 7.10. In this case, the reference system is located
at the center of the focal plane, 0. The FO sphere in this system is parameterized by the uniform
variables (6rg, ®ro), and a point on it is denoted by Qg (x, v, 2).
And then we introduce a local system centered at the antenna position, O’. In this system,
the FO sphere is parameterized by the non-uniform variables (67, ¢ro). To calculate them,
we first use the Cartesian variables (x',y’,z") to represent the point on the FO sphere, i.e.
Qro(x',y",2"):
Qrox = Qrox — dx
Qroy' = Qroy — dy (7.22)
Q;o,zl = QFo,z

The radius of the FO sphere then becomes asymmetric, i.e. Rpp = |Qro(x’,y', 2z")|. By using

Qro and Ry, the non-uniform variables (6, ¢ro) can be calculated as:

!

QF Y
Oro = cos_l—?’z
Rpo
0’ (7.23)
_1 ©FOy'
ro = tan™1— Y
QFO,x’

Finally, we discuss the fields radiated by the shifted antenna. As mentioned in the central

feed case, we only need the fields illuminating the FO sphere, shown as the blue region in Fig.
7.10. Therefore, by interpolating the broadside field EZ* (8x, ¢rr) into the off-broadside one

EZ"(B[DO, ¢ro) and considering the back/forward propagation:
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-, = , , ) e
Ea*(Oro, $ro) = [ng(HFO' bro) - Rer - e]kRFF] :

(7.24)

The same steps can also be done to derive the magnetic field ﬁgx(em, Dro)-

It is worth mentioning that Eq. (7.24) is derived under the assumption that the FO sphere is
in the far-field region of the antenna. Consequently, this method is not applicable when the FO
sphere is in the near-field region. In such cases, the tool can either directly import the off-

broadside near fields on the FO sphere, or still use Eq. (7.24) with a reduction in the accuracy.

—— QO Surface
—— FFO Sphere
FF Sphere

Figure 7.10: A schematic representation of off-broadside radiation for a displaced feed.

® Examples of fields radiated by an antenna

In the second GUI, there is an area used to load fields radiated by an antenna, as shown in
Fig 7.11a. One can define a uniform aperture by inputting the diameter and the amplitude of
the aperture. Also, one can import the fields from external files, like CST-GRASP cuts or
MATLAB matrices. The polarization of the antenna is “x” or “y”, which decides the reference
polarization (Co-Pol.) of the primary field:

{é;’éo = cos(¢pr) ?FF — sin(¢pr) dEFF: x — pol. Antenna (7.25)

el%, = sin(¢pr) Opr + cos(ppr) Ppp: y — pol. Antenna
and the displacement of the antenna is cfa = dxX + dyy. After loading the fields radiated by
the antenna, one can plot them in an external window, Fig 7.11b. In this window, one can plot
the EM fields on a far-field sphere, as described in Eq. (7.19); or the fields on a FO sphere, as

described in Eq. (7.24).
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Figure 7.11: Screenshots of the second GUI: (a) Area used to define an antenna. (b) External window used
to plot fields radiated by the defined antenna.

Here we take an elliptical silicon (e, = 11.9) lens as an example to show the loaded primary
fields inside the lens. The lens has the diameter of D, = 5 mm and the f-number of £;' = 0.6.
A quarter-wavelength matching layer at 480 GHz made of Parylene (&, = 2.62) is applied.
The antenna is a y-polarized leaky-wave antenna operated at 720 GHz [51], with a
displacement dx = —0.15 mm. Fig. 7.12 shows the Co-Pol. component of the primary electric
fields, evaluated on a FF sphere with the radius of Rz = 1 m (Fig. 7.12a) and on the FO sphere
of the lens (Fig. 7.12b). As it can be seen in Fig. 7.12a, the antenna radiates most of the field
within the rim angle subtended by the lens. Moreover, in Fig. 7.12b, the main beam position

moves due to the displacement of the antenna.

17 0 08} 0
=9 06/ =2
05¢ -10 04+ -10
<15 02| -15
= 0 -20 = 0 -20
- .25 0.2 -25
05¢ -30 04 30
-35 06/ -35
A 40 08! . 40
2 05 0 0.5
u u
(@) (b)

Figure 7.12: Co-Pol. component of the primary electric fields evaluated on: (a) A FF sphere with the radius
of Rpr = 1 m. (b) The FO sphere of the lens. The black circle is the boundary of the lens.
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7.5.3 Power delivered to an antenna load and common efficiency terms

® Power delivered to an antenna load

It has been discussed in chapter 6 that for an antenna-coupled QO system, the open-circuit
voltage of the antenna can be evaluated by calculating the reaction between the fields in

transmission and the induction currents on a FO sphere:
Voc(es’ ¢s) = ff [ﬁgx : MGO - sz 'jco]ds (7-26)
SFo

where [, = A X Hgo, Mgo = Egp X A, and 71 is the normal vector of the FO sphere. It is worth
noting that Eq. (7.26) does not apply any approximation; therefore, it can be used also when
the QO system is in the near field of the antenna and for very large skewed angles. In the GUI,
Eq. (7.26) is implemented due to its generality. Moreover, the power delivered to the load of

the antenna is evaluated as follows:

- — = - 2
|2 J,P[HE% - Moo — EZ* - Joo] sin 0d6dg|
P,(6s, ¢s) = T ——
16 [, J, |Wyaq - 7] sin 6 dod¢

(7.27)

where 6, is the rim angle of the QO surface, and Wmd = %Re(fg" X ﬁg"*) is the time-

average radiated power density.

® Common efficiency terms

In Eq. (6.31), the taper efficiency n** is calculated by using the directivity D?*. However,

ir
Df* can be obtained only when the complete pattern is evaluated, which is time-consuming.
Therefore, in the second GUI, we use another way to efficiently calculate n?* and D*. In the
GUI, the aperture efficiency in reception is calculated as:

Py

Pinc

nks = (7.28)

where P; is the power delivered to an antenna load and P;,. is the incident power. For the
spillover efficiency in reception, n%*, due to the reciprocity, we can assume it is the same as

the one in transmission, i.e n&¥ = nIx. Therefore, the taper efficiency in reception can be

evaluated efficiently as:

Nt =gy /i (7.29)
Furthermore, the directivity in reception can also be obtained efficiently as:
DE* = Dirpgy - ¥ (7.30)

where D/*** is the maximum theoretical directivity.
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® Performance in reception evaluated by the GUI

Here we use the GUI to evaluate the performance of the leaky lens antenna introduced in
subsection 7.5.2. Fig. 7.13 shows the performance of the leaky lens antenna evaluated by the
GUI. The common efficiency terms, the directivity, and the gain are shown in Fig. 7.13a,
marked by the red dashed box. The Co-Pol. power pattern is plotted in (ug, v5) with 3D (Fig.
7.13b) and u, cut (Fig. 7.13c). Moreover, there is an option to plot the phase of the open-circuit

voltage, i.e. 2V, ., as shown in Fig. 7.13d. In addition, one can plot the integrand of the reaction

integral described in Eq. (7.26), i.e. HZ" . IWGO — ng -fGO. This can be done for a specific

incident skew angle; and in Fig. 7.13e, we choose 6, = 10°, ¢, = 0°.
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In the GUI, it is also possible to analyze the case of multiple frequencies. For the same leaky
lens antenna, we choose three frequency points: f = 0.24, 0.48,0.72 THz. In this case, one can
select a specific frequency in the frequency list to plot the pattern, as shown in Fig. 7.14a.
Moreover, the efficiency terms, the directivity, and the gain are functions of frequency, as

shown in Fig. 7.14b for the aperture efficiency.
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Figure 7.14: The leaky lens antenna with three frequency points, f = 0.24,0.48,0.72 THz: (a) Frequency
list. (b) Aperture efficiency.

7.6 Conclusion

To conclude, this GUI tool represents a GO/FO based tool that can be used to analyze and

design QO systems in reception. It has the following outputs:

(1) Five commonly used QO components are included to improve design possibilities. Their
2D geometries can be plotted and exported.

(2) To preliminarily analyze QO systems, a ray tracing code is developed to visualize ray
propagation. For all QO components, ray tracing figures can be plotted.

(3) The coherent FO method is implemented and validated. The tool can evaluate and export
coherent FO spectra. Moreover, the focal plane fields calculated by using these spectra can
be plotted and exported.

(4) The tool is able to load and plot fields radiated by an antenna. Moreover, by calculating
the reaction integral, the tool outputs key parameters used to evaluate the performance of
antenna-coupled QO systems in reception, including pattern, common efficiency terms,

directivity and gain.
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Chapter 8: Conclusion

8.1 Summary and conclusion

In this thesis we discussed a GUI tool for analyzing antenna-coupled QO systems in reception
using the FO methodology. This work fulfills the need for a universal tool which implements
the FO method for variety of QO components. The current available FO based codes are limited
in applicability. The existing codes mainly focus on analyzing parabolic reflectors and elliptical
lenses, which leads to small design possibilities. Moreover, their interfaces were not developed
with the goal to be user-friendly for designing purposes. The proposed tool solves these
constrains. The tool provides five widely used QO components to improve design possibilities.
Also, the graphical user interface is informative. Users can easily operate the tool without
extensive knowledge about the FO methodology. In addition, the possibility for designing
matching layers is included for dielectric lenses, which is essential in practical dielectric lens
designs.

The GUI tool is mainly based on evaluating the GO fields on a FO sphere. Besides
evaluating the GO ray fields, analytical GO fields are also derived to increase the speed of the
tool. Once GO fields are obtained, coherent FO spectra can also be evaluated. Moreover, for
an antenna-coupled QO system in reception, the reaction between the GO fields and the fields
radiated by the antenna leads to the power delivered to the antenna. This FO analysis in
reception is convenient when analyzing multi-mode antenna configurations. More importantly,
it provides insight in synthesizing antennas. In addition, the tool is tested and validated by using
CST and GRASP full-wave simulation software. Therefore, it can be concluded that this tool
represents a GO/FO based tool that can be used for analyzing and designing antenna-coupled
QO systems in reception.

In chapter 2 we discussed the most widely used QO components in reception scenarios.
Five canonical QO components were included. We explained the applications of each one in
THz systems. These components are then parameterized by defining truncation angle, f-
number, radial distance, and normal vector. Moreover, we discussed the ray tracing technique
that can be used to describe reception scenarios for the QO components. In the ray tracing,
incident rays were defined; and by using the laws of reflection and refraction, the reflected and
transmitted rays were evaluated. In addition, in order to reduce the reflection coefficient for

dielectric lenses, the case of adding a matching layer was investigated.
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In the third chapter, we applied the FO method to derive the PWS of the direct field
focalized by a QO component. To start with, the PO analysis was introduced. It was
implemented as validation on focal plane fields. More importantly, by using the FO
approximations, the PO radiation integral was approximated by the FO integral where the focal
plane field was evaluated by integrating the fields on a FO sphere, referred to as the GO fields.
Moreover, the applicability region for those approximations was discussed. To maximize this
region, the radius of the FO sphere was chosen as large as possible for each QO component.

When the FO integral was written as a spectral representation, we found the focal plane
field could be represented by a spectral function with a quadratic phase term. It was explained
that this phase term cannot be neglected when the observation was far away from the focus. In
such a case, we discussed a coherent FO method to include this phase term in the spectrum of
the focal plane field. We showed that by applying FT on this quadratic phase term, the full
coherent FO spectrum could be evaluated by calculating a convolution integral. Furthermore,
we introduced a linearization approximation on the quadratic phase term to simplify this
convolution operation. As a result, the convolution was approximated by a linear shift in the
spectral domain, and the full spectrum became a linearized local spectrum.

Chapter 4 focuses on evaluating the fields scattered by a QO component and propagating
these fields to the corresponding FO sphere by resorting to the GO technique. Under GO
approximation, EM waves can be approximated as tubes of rays propagating in a homogenous
medium from one point to another. Moreover, the scattered ray fields follow the laws of
reflection and refraction at a two-media separation surface. In order to derive the GO ray
expression, we discussed an asymptotic evaluation on the PO radiation integral. By applying
the Method of Stationary Phase for reflection and transmission problems, the GO reflected and
transmitted fields were derived, respectively.

Subsequently, we showed that it was possible to find analytical expressions for GO ray
fields with broadside incidence on QO components. Analytical GO fields were investigated for
all QO components, by deriving spreading factor, phase variation, and polarization
information. At the end of this section, we checked that analytical GO fields were in excellent
agreement with the GO ray fields. Furthermore, we explored the case of slightly off-broadside
incidence. In this case, analytical GO fields could be approximated by the ones for broadside
illumination multiplied by the linear and coma phase terms, for plane wave incidence; while
linear, coma, and compensation phase terms, for point source incidence. Moreover, the limits
of the coma phase, where the coma phase term could be neglected, were found and compared
for all QO components.
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In chapter 5 numerical examples and validation of GO fields and PWS were shown. The
validation was done indirectly by validating the focal plane fields. First the focal plane fields
evaluated by using the GO ray fields and the analytical GO fields were compared with the ones
obtained using the PO analysis. It was shown that the agreement was very good. Furthermore,
numerical examples of PWS were shown to better illustrate the coherent FO method. The full
CFO spectrum was compared with the linearized CFO spectrum. Both spectra were accurate
but we chose to use the linearized CFO spectrum since it was numerically efficient. Finally,
the focal plane fields calculated by using the linearized CFO spectra were validated for all QO
components.

In chapter 6 antenna-coupled QO systems were analyzed in reception scenarios. To do so,
first the Thevenin equivalent circuit was introduced to represent a system in reception. The
open-circuit voltage generator in this circuit was evaluated by calculating the reaction between
the fields in transmission and the induction currents on a FO sphere. In the subsequent section,
we explained the calculation of the power delivered to an antenna load. The next section
discussed the parameters used to evaluate the performance of the systems in reception,
including pattern, directivity, gain, and common efficiency terms. Finally, we validated the
performance of antenna-coupled QO components in reception. The performance in
transmission obtained from CST and GRASP was used as the reference, and the results
corresponding to all QO components were validated.

In chapter 7 we described the interface of the developed tool and explained the
implementations in it. The GUI tool was divided into two sub-GUIs. In the main GUI, first we
described the procedures to define the main QO components and to start a ray tracing analysis.
In the next section, we explained the implementation of the coherent FO method in the GUI.
The GUI provided two options to evaluate the coherent FO spectra, namely using both GO
electric and magnetic fields or using only one of them. Next, the calculation of GO fields used
in the GUI was discussed. In addition, numerical examples of GO fields and focal plane fields
calculated by the GUI were shown.

Subsequently, the second GUI was introduced. This GUI was used to analyze the
performance of antenna-coupled QO systems in reception. It could load the fields radiated by
an antenna from external files. In order to evaluate the radiated fields intercepted by a FO
sphere, antenna propagation approach was discussed. Moreover, the reaction integral and the
calculation of common efficiency terms used in the GUI were shown. Finally, we concluded

the outputs of the entire GUI tool built in this thesis.
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8.2 Future work

The developed GUI tool is validated and proved to work accurately in analyzing antenna-
coupled QO systems in reception. However, when analyzing lenses, the execution speed of the
tool is relatively low. This is due to the fact that the interpolation procedure involved in
calculating the GO ray fields is relatively slow. To solve this issue, a fast interpolation routine
could be developed in MATLAB specially for this problem; or a parallel computation code
could be implemented. Moreover, we have shown that the accuracy of the GO ray fields for
hyperbolic lenses decreases for small f-number cases. Therefore, current calculation could be
improved. In addition, when deriving the analytical GO fields for hyperhemispherical lenses,
we only consider the broadside incidence. In the future, slightly off-broadside case could also
be investigated. Furthermore, the GUI could be extended to evaluate the performance of
absorber-coupled QO systems.

For the GUI itself, the robustness of the code could be improved by following more
extensive tests. There could be bugs needed to be fixed. Also, the GUI could be improved
according to the suggestions from users. Finally, the GUI could be packed as a software, which

IS more convenient to users.
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Appendix A Parameterizing a QO component

In this appendix, we will explain more explicitly how we parameterize each QO component.
We start with explaining the importance of introducing the (u, v) variable. Furthermore, a
more extensive derivation of normal vectors is discussed. Finally, we calculate truncation angle

for each QO component.

A.1 Comparison between (8, ¢) and (u, v) variables

Fig. A.1 shows the top view of a parabolic surface sampled by both (6, ¢) and (u, v) variables,
with 15 x 15 sampling points. It can be seen that the (6, ¢) variable samples the surface
denser around the center and less at the edge; while the (u, v) variable samples the surface
uniformly, which means for the same number of sampling points, the (u, v) variable can lead

to better convergence than the (6, ¢) one.
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Figure A.1: Top view of a parabolic surface sampled by both (8, ¢) and (u, v) variables with 15 x 15 points.
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A.2 Derivation of normal vectors for a generic surface

In Eq. (2.6), we calculate the normal vector of a surface by using a generic expression. In this

section, we will expand Eqg. (2.6) by calculating the partial derivatives: W and -2 5 ¢ T

® (0, ¢) variable

For the (0, ¢) variable, the partial derivatives are calculated as follows:

(00 _00x_ 00y _ 9, ,
X y+
466 a0 20 20 ~

(A.1)
La_Q an,\_l_aQy},;_l_ Q P
dp 09 ¢ ¢
Each 6-related derivative can be expressed as:
(0Q, _0r(6) .
0 = 30 sin 6 cos ¢ + r(0) cos 6 cos ¢p
aQ or(6)
1 == = A2
50 50 ———sin @ sin¢ + r(0) cos 6 sin ¢ (A.2)
00, 9r(6) :
30 = 70 cos@ —r(f)sinb
where 229 depends on the radial distance of a specific surface. While each ¢ -related
derivative can be calculated as:
(00x _ o
35 r(6) sin 0 sin ¢
aQ,
30 r(6) sin 6 cos ¢ (A.3)
9Q: _,
\ d¢p
Furthermore, if we define |nQ CA ¢)| = |— X —| then for any scalar field £(6, ¢), a surface
integral becomes:
([ r6.as - H 6,0)[22 2 aga (a9
S

where 6, is the truncation angle.
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® (u,v) variable
For the (u, v) variable, the partial derivatives are expressed as follows:

{a_Q:anﬂaQyA 20, ,

46u du Ju y+ Ju (A.5)
La_Q_anf+aQyA+aozé
v v v’ av

Each u-related derivative can be calculated as:
(00,  0r(u,v)

- ou u+r(u,v)
aQy 6r(u v)

Y (A.6)
00, ar(u U)W r(u, v)u

\ du V1= (u?+v?)

While each v-related derivative can be obtained as:

(00x _0r(w, v)
ov  ov
20, dr(u,v)

13, = 3, VT r(u,v) (A7)
200, _ or(u, v)\/m 3 r(u, v)v

\ av Jv \/m

If we define |7, (u,v)| = |Z—zxg—g|, then for any scalar field f(u,v), a surface integral

becomes:

sinf, sinf,

jf(u,v)d5= J Jf( )‘—x—dd (A.8)
S

—sinfy —sin 6y
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A.3 Truncation angle of a QO component

Here we discuss how to calculate the truncation angle, i.e. the subtended rim angle, for each

QO component.

® Parabolic reflector

A parabolic reflector is shown in Fig. A.2, with the diameter D,., the focal distance f, and the

truncation angle 6,. The parabolic surface is defined by the parabola equation:
2

_P
4f

where p = \/x2 + y2. The lowest point of the surface, z,,;,, can be calculated by substituting
p =D,/2inEq. (A.9):

z= (A9)

D?
By using D,- and z,,;,,, one can obtain the truncation angle as follows:
D D
6, =t -1(—T)=2t -1(—) A.ll
° n 2Zmin " 4f ( )

® Elliptical lens

Fig. A.3 shows the 2D geometry of an elliptical lens (diameter D;). Here we highlight the foci
of the ellipse with the red solid dots, i.e. 0, and 0,, and represent the center of the ellipse by

the red dashed dot. The lens is defined by the ellipse equation as:

( - ) + <E) =1 (A.12)
By substituting p = D;/2 in Eq. (A.12), one can obtain z,,;,, :
D;\?
Zoin = @ 1—(ﬁ) +e (A.13)

And then one can calculate 6, as:
0, = tan™! (L) (A.14)
2Zmin
Moreover, the rim distance, R;, can be derived by using 6,:
D
L= 2sin 6,

(A.15)
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Figure A.2: 2D geometry of a parabolic reflector. Figure A.3: 2D geometry of an elliptical lens.

® Hemispherical lens

Fig. A.4 shows the 2D geometry of a hemispherical lens which consists of a hemisphere (radius
Rspp) and an extended base (length L). The center of the hemisphere is represented by the red

dashed dot, O'. One can define the hemisphere by using the sphere equation:

(z—L)*+p*=RZ, (A.16)
The truncation angle 6, is calculated as follows:
6, = tan~ _Du_ (A.17)
Z(h + L)

where h = \/Rgph — (Dy;/2)? . And the rim distance, R;, is expressed as:

Dy,
R, = A.18
'™ 2sin 0o ( )

® Hyperbolic lens

In the case of a hyperbolic lens, as shown in Fig. A.5, the center of the hyperbola is represented
by the red dashed dot while the focus is represented by the red solid dot, 0. The hyperbolic

lens can be defined by using the hyperbola equation:

EY -©) =1 (A.19)

By substituting p = Dy, /2 in Eq. (A.19), one can obtain the highest point of the hyperbola,

Dp\?
Zmax = a |1+ (ﬁ) +c (A.20)
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The truncation angle 6, can then be calculated as follows:

Dy,
0, = tan™! (—) (A21)
ZZmax
| |
Dhl | ! V4 Dh I
1
ST'
o
T a
Ry h r(6)
Zmax
9 L 9 90
O, Z— 2 p\E
-1 +p" =Rim g p (=) -() =1 0 [=atc p

Figure A.4: 2D geometry of a hemispherical lens.  Figure A.5: 2D geometry of a hyperbolic lens.

® Elliptical mirror

In the case of an elliptical mirror, as shown in Fig. A.6, the truncation angle can be selected as

8,1 Or By, which depends on where we place the observation plane.
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Figure A.6: 2D geometry of an elliptical mirror. (a) Observation at lower focal plane. (b) Observation at upper
focal plane.

Case 1: Observation at lower focal plane

In this case, as shown in Fig. A.6a, the mirror is parameterized by the radial distance, r,
with the variable (8,, ¢,) or (u,, v,). The lowest point of the ellipse, z,,;,, is calculated by

using the ellipse equation in Eq. (A.12):
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Dpp\?
Zmin=a |1 — (5) +c (A.22)

We define the truncation angle as 6,,. By using z,,;,, One can obtain 6, directly:

D
902 = tan_1< m ) (A23)

Zmin

Moreover, one can calculate the rim distance, R,;:

Dp,
Ry = ——— A.24
2L™ 2sin 09> ( )
The second rim angle, 6,4, can be derived by using 6y, and R,;:
D
6,1 = tan™? = A25
o1 = tafl 2(Ry; cos By, — 2¢) ( )
And the second rim distance R,; can be expressed as:
Dp,
Ry=——" A.26
™ 25sin 001 ( )

Case 2: Observation at upper focal plane

In this case, as shown in Fig. A.6b, the mirror is parameterized by the radial distance, ry,

with the variable (6,4, ¢,) or (u,, v;).The lowest point of the ellipse, z,,:», is calculated as:

D\
Zmin — a 1- (%) —C (A27)

We define the truncation angle as 6,, which can be calculated as follows:

D
0p1 = tan-1< N ) (A.28)

Zmin
Rq; and R, are derived in Eq. (A.26) and Eq. (A.24), respectively. And in Eq. (A.24), 6y, IS
obtained as follows:
D
tan~! [ U
2(Ry;cos By, + 2¢)

602 = (A29)
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Appendix B Fresnel reflection and transmission coefficients

In this appendix, we will derive Fresnel reflection and transmission coefficients explicitly for

a surface with and without a matching layer, respectively.

B.1 Surface without a matching layer

When a flat interface is illuminated by an incident ray, as shown in Fig. B.1, the Fresnel

transmission coefficients can be derived by imposing boundary conditions on electric and
magnetic fields:

fix(H,—H,)|q=0 #Ax(H +H —H)lp=0
By solving the boundary conditions for both TE and TM components, one can obtain the

transmission coefficients:

2{, cos 0;
TJ'(Q) — (2 l
¢, cosB; + {; cos b,

B.2
Q) = 2, cos 6; (B.2)
k ¢1cos6; + ¢, cos B,
and the reflection coefficients:
rLQ) = ¢, cos 8; — {4 cos B,
¢, cos B; + ¢4 cos B,
0 0 (B.3)
F"(Q) — Cl Cosvu; — (2 COSs Uy
{1 cosB; + ¢, cos B,
where cos 6; and cos 6, are derived as:
cosB; = —(8; - i) = cos O,
{cos 0, = —(5; - 1) (B.4)
Moreover, one can derive a useful relation by using the preceding coefficients:
{; cos 6,
1 — | = | P L2 B.5
= 1 2 s (B.5)

In the case of illuminating a PEC, there is no field transmitted into the PEC, i.e. T+/! = 0.
Therefore, Eq. (B.5) can be simplified:
|r+/h =1 (B.6)
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Figure B.1: Flat interface between medium I and I, illuminated by an incident ray.

B.2 Surface with a matching layer

We have introduced in section 2.2.2 that when a surface is fabricated with a matching layer,

the transmission coefficients can be obtained by solving the equivalent transmission line

representation, as shown in Fig. B.2.

KRR RS

0 VJ./II VJ./II

0— 0+
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vl |z=0
1/
Zm g

Z;‘/“ m-—

T
T
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Figure. B.2: The transversal equivalent transmission line model of a dielectric stratification.

First, one needs to define the characteristic parameters of the transmission line for TE and

TM components. The incident voltages can be represented by the incident fields as:

Vor = Eff
{V" = E! cos 6; (B.7)
0+ — i i

Moreover, the propagation constants in z-direction are:

k,; = —j\/(kpi)z — (k)%,i=0,md (B.8)
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where k,, = ko\/a and k; = ko\/e_d are the wave numbers in the matching layer and the
dielectric slab, respectively. k,o = ko sin6;, k,, = kp, sin 6", and k,q = kg sin 6¢ are the
projections of the wave numbers in p-direction for air, the matching layer and the dielectric
slab, respectively. By using Snell’s law, one can obtain the transmitted angles: 6" =
sin~*(sin(6;) /\/em) and 6F = sin~!(sin(6;) /\/e4) . The characteristic impedances of

different layers are:

Zl

Il k
Z; =<i?
L

Li=0,m,d (B.9)

where ¢, = {o/+/&€m, and {y = CO/\/e_d are the impedances of the matching layer and the
dielectric slab, respectively. Next, one is able to calculate the reflection and transmission

coefficients for voltagesat z = 0 and z = —1,,,:

(V=02 g
! l/II( - 0) ZJ'/" +ZJ_/II
FJ_/|| J- /ll (Z -l ) ZJ-/|| J./||
z l/II( - 1) Zl/" +Z¢/||
) _ 74 (B.10)
L/ _ (Z =0)
“ L/u (z=0) ZJ_/II 472
i J_/II(Z - ) J./II
T
L 2 L/II( - 1) ZJ./II +ZJ./||
where ZJ'/ Iand ZJ'/ I are input impedances seen from z = 0 and z = —1,,,, respectively:
71/ _ Z””
S =
L/l L/l
ZJ_/II _ ZJ./IIZ / +]Z / tan(kzmlm) (Bll)
=

" Zl/|| +]Zl/|| tan(k, 1)

From Eqg. (B.10), one can find the condition for zero reflection:
n'=0=z""= Zol/" = - (B.12)

Moreover, by using Eq. (B.10), one can calculate the progressive voltage in the matching layer:
Vl/u (z=0) = i/n z2=0) +V, i/u (z=0) = f/”Vot/" (z=0)

J-/||
( ) [1 + FJ'/" _Zlkzmlm]

(B.13)
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and the voltage in the dielectric slab:

L L/ L/ e 03 p=ikzmim
oy LS R v/ Y] P . ;2" (z = 0)ekamt
d m 2 m+ m [1 + I"ZJ-/"e—ijzmlm]

(B.14)

+

Finally, by using Eq. (B.14), one can obtain the transmission coefficients of the stratification:
_ E_ch_ _ Vd-+(z = _lm)

Ef  Vi(z=0)
B E! B V). (z=—l,) cosb;
B E} ~ yl(z=0) cos8

1

(B.15)
!

Appendix C Additional validation of the implemented PO analysis
In this appendix, additional validation of the implemented PO analysis is introduced.

C.1 Parabolic reflector

Fig. C.1 shows the x-component of the electric fields on the focal plane of a parabolic reflector
with the diameter of D,. = 1004, (f; = 300 GHz) and the f-number of f; = 0.6. The reflector
is illuminated by a unitary TM polarized plane wave with the skew angle of 65 =
5(A9/D,) = 2.86°, ¢, = 0°. The focal plane field evaluated by resorting to the PO analysis is
compared with the GRASP simulation. The setup of the simulation in GRASP is plotted in the
inset. It can be seen in the figure that the PO results are well validated for both the amplitude

and the phase.
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Figure C.1: The x-component of the electric fields on the focal plane of a parabolic reflector with D, =
100 A, (fy = 300 GHz) and f; = 0.6, illuminated by a unitary TM polarized plane wave with the skew angle of
6, = 5(Ay/D,) = 2.86°, ¢ = 0°. The focal plane field calculated by using the PO analysis is compared with the
GRASP simulation: (a) Amplitude. (b) Phase. One of the main planes (y = 0) is shown. Inset is the configuration
in GRASP.
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C.2 Elliptical lens

® TM polarized plane wave

Here we validate an elliptical lens without a matching layer. Fig. C.2 shows the x-component
of the electric fields on the focal plane of an elliptical silicon (¢, = 11.9) lens with D; = 54,
(fo = 300 GHz) and £} = 0.6. The lens is illuminated by a unitary TM polarized plane wave
with the skew angle of 85 = 20°, ¢, = 0°. And the focal plane field calculated by using the PO
analysis is compared with the CST simulation. The setup of the simulation in CST is plotted in
the inset. As it can be seen in the figure, the PO analysis is in fair agreement with the CST

simulation, for both the amplitude and the phase.
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Figure C.2: The x-component of the electric fields on the focal plane of an elliptical silicon (&, = 11.9) lens with
D, =54, (f, = 300 GHz) and f! = 0.6, illuminated by a unitary TM polarized plane wave with the skew angle
of 6, = 20°, ¢ = 0°. The focal plane field calculated by using the PO analysis is compared with the CST
simulation: (a) Amplitude. (b) Phase. One of the main planes (y = 0) is shown. Inset is the configuration in CST.

® TE polarized plane wave

For the same elliptical lens, when the plane wave is TE polarized with the skew angle of 6, =
20°, s = 0°, the y-component of the electric field on the focal plane is shown in Fig. C.3. As

it can be seen, the PO analysis is in fair agreement with the CST simulation.
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Figure C.3: The y-component of the electric fields on the focal plane of an elliptical silicon (¢, = 11.9) lens with
D, =5 A, (fo = 300 GHz) and f{ = 0.6, illuminated by a unitary TE polarized plane wave with the skew angle
of 6, = 20°, ¢, = 0°. The focal plane field calculated by using the PO analysis is compared with the CST
simulation: (a) Amplitude. (b) Phase. One of the main planes (y = 0) is shown. Inset is the configuration in CST.

C.3 Hemispherical lens

Fig. C.4 shows the y-component of the electric fields on the focal plane of a hemispherical
silicon (g, = 11.9) lens with Dy; = 52, (fo = 300 GHz), fi"* = 0.74, Rspp, = 32, and L =
0.362R,,. The lens is illuminated by a unitary TE polarized plane wave with the skew angle
of 85 = 20°, ¢ps = 0°. The focal plane field evaluated by using the PO analysis is compared
with the CST simulation. As it can be seen, the PO results are validated for both the amplitude

and the phase.
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Figure C.4: The y-component of the electric fields on the focal plane of a hemispherical silicon (g, = 11.9) lens
with Dy, = 5 4, (fo = 300 GHz), f* = 0.74, Rspp = 3, and L = 0.362R,y,, illuminated by a unitary TE
polarized plane wave with the skew angle of 8, = 20°, ¢, = 0°. The focal plane field calculated by using the PO
analysis is compared with the CST simulation: (2) Amplitude. (b) Phase. One of the main planes (y = 0) is shown.
Inset is the configuration in CST.
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C.4 Elliptical mirror

In the case of an elliptical mirror, a source can be placed at either its upper focal plane or its
lower focal plane. Here we consider a mirror with the diameter of D,, = 5004, (f, =
300 GHz), the semi-major axis of a = 27841, and the focal distance of ¢ = 55.64,, i.e. the

eccentricity is e = 0.2.

Case 1: Source placed at the upper focal plane

In this case, the f-number is calculated as fi" = 0.6. A unitary Huygens source is placed at the
upper focal plane, with the electric current oriented along y and a displacement in y-direction,
ys = 4Aof4". Fig. C.5 shows the y-component of the electric fields on the focal plane of the
mirror. The focal plane field obtained by using the PO analysis is compared with the GRASP

simulation. As it can be seen, the PO code is well validated.

(@) (b)

Figure C.5: The y-component of the electric fields on the focal plane of an elliptical mirror with D, =
500 4, (fy = 300 GHz), fi™* = 0.6 and e = 0.2. The mirror is illuminated by a unitary Huygens source placed at
the upper focal plane, with the electric current oriented along ¥ and a displacement in y-direction, y, = 4A,fa".
The focal plane field evaluated by using the PO analysis is compared with the GRASP simulation: (a) Amplitude.
(b) Phase. One of the main planes (x = 0) is shown. Inset is the configuration in GRASP.
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Case 2: Source placed at the lower focal plane

In this case, the f-number is obtained as f,* = 0.44. The Huygens source is placed at the lower
focal plane, with the electric current oriented along X and a displacement in x-direction, x; =
104, f4". Fig. C.6 shows the x-component of the electric fields on the focal plane of the mirror.
The focal plane field obtained by using the PO analysis is compared with the GRASP
simulation. It can be seen that the PO code is in excellent agreement with the GRASP

simulation.
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s T of
= g
25 E
-50
-30
100}
35
40 150 .
2 11 -0 -9 -8 7 6 -5 -4 -3
.l‘_Al)' f
(@ (b)

Figure C.6: The x-component of the electric fields on the focal plane of an elliptical mirror with D,, =
500 A, (f, = 300 GHz), f;"™ = 0.44 and e = 0.2. The mirror is illuminated by a unitary Huygens source placed
at the lower focal plane, with the electric current oriented along £ and a displacement in x-direction, x; =
102, f4". The focal plane field evaluated by using the PO analysis is compared with the GRASP simulation: (a)

Amplitude. (b) Phase. One of the main planes (y = 0) is shown. Inset is the configuration in GRASP.
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Appendix D Re-evaluate the phase approximation for the FO
applicability region

In Eqg. (3.8), the condition for the FO phase approximation is determined by neglecting the
. PF

phase term e "*2Rro when setting a phase error of /8. This condition is valid for QO

components with relatively small f but not for cases with large fi. Therefore, here we discuss

a more general condition for the phase approximation. The term |ﬁf — 7', can be expanded as

follows:

- -7 - - - - 2 - A pz
|6r — 7| =\/(Pf—r')'(Pf—r') =RF0J1—R—(Pf'r')+R—f (D.1)
FO

2
FO
where Rpo = |7#'| and py = |ﬁf|. Eq. (D.1) can be approximated by expanding the square root

2
for small argument to the second order (VT +x = 14> ==+ --):

- =7 - T '02 ~ Y
|r —7'| = Rpo — pf - F +ﬁ[1_(pf'r) ]+

i

arg, P ") O
In Eq. (D.2), the terms with order four and higher, with respect to p, are neglected. To obtain
the phase approximation, one must neglect the second- and the third- order terms in Eq. (D.2)

with a phase error oy,

PF o Nz PP o
—k (— 2Rro (pf )+ 2RZ, (pf . r’)) < Opn (D.3)
In practice, we choose a,, = m/8. The worst case in Eq. (D.3) happens when p; - 7' =
—sin 8, = —1/2f;. By using this, Eq. (D.3) can be expressed as below:

4pfD  2pfD

3 3
RFO RFO

1<0 (D.4)

By solving the cubic equation of Eq. (D.4) and taking the positive and real solution, pg,(l), the
new condition for the phase approximation can be expressed as follows:

Pr < Ppry (D.5)
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Appendix E Characteristic parameters used in GO ray fields

In this appendix, we will discuss the characteristic parameters mentioned in section 4.1. First,
we consider evaluating the distance along the ray path, and then the principal radii of curvature
for reflected and transmitted rays, respectively. Finally, we describe a specific surface of

revolution, by deriving its principal directions and principal radii of curvature analytically.

E.1 Distance along the ray path

In the GO method, one key parameter related to represent the scattered fields is the distance
propagated along the ray path, s. In Fig. E.1, we use a reflection problem as an example to

show how we define this distance.

1
\
'
— Surface v
— FO Sphere * p

rg

Figure E.1: Geometry for a reflection problem with the description of the distance along the ray path.

It can be observed in the figure that the reflected ray propagates from Qz(6,¢) to
Qro(6',¢"). The distance s can be calculated by solving the following equations in (6, ¢)
variable:

Qx + sk, x = Rpp sin 6’ cos ¢’
Qy + sk, = Rpo sin@'sin ¢’ (E.1)
Q, + sk, = Rgp cos 8’
orin (u,v) variable:
Qx + Skr,x = RFou,
Qy + Skr,y = Rpo?' (E.2)
Q; + sky; = Rroy/1 = (W2 + ')
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where Qg = (Qx, Qy, Qz) is a point on the surface S, §, =k, ,X + k.9 + k,,Z is the
propagation unit vector of the reflected ray, and (6’, ¢') and (u’, v") are non-uniform variables
that parameterize a point on the FO sphere that is hit by the reflected ray. By solving Eq. (E.1)

or (E.2), the distance s can be expressed as:

—b —Vb? —4c
s = 5 (E.3)

where b = 2Qxky /e + 2Qyky ey +2Q2kr s, » and ¢ = QZ+ Q3 + Q7 —Rfy . After

obtaining s, one can also calculate the non-uniform variables, (6', ¢"), by solving Eq. (E.1):
Q + skr,z)

(
| 8" = cos™? (
Rpo
) (E.4)

e (2
L Qx + Skr,x

while (u', v") are derived by solving Eq. (E.2):

[ , Qx + Ser
lu' = R—
FO
E.5
gv,:Qy‘FSkr,y (E:3)
L Rpo

The preceding derivations are also applicable for a transmission problem but with a single
change: one should replace the reflected propagation unit vector $,. by the transmitted one: §; =
kexX +keyd + ke 2.

E.2 Principal radii of curvature of a reflected wave front in a reflection

problem

Fig. E.2 shows a scenario that an incident ray impinges on a surface S at Qg and reflected. In
the figure, U, and U, are the unit vectors in the principal directions of S at Q with the
principal radii of curvature R, and R,, respectively. X! and X! are the principal directions of
the incident wave front at Qx with the principal radii of curvature p! and p%. While X7 and X3
are the principal directions of the reflected wave front at Q with the principal radii of curvature
p1 and p}. Notice that X7 and X} do not point towards the principal directions of the reflected
wave front. They are unit vectors perpendicular to $,, which can be calculated by Snell’s law:

£, =Xl,-2(n-X,)A (E.6)

where 71 is the normal vector of the surface.
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Normal section curve

Figure E.2: Geometry for a reflection problem with the description of the curved surface S, incident ray and
reflected ray.

® Principal radii of curvature of the incident wave front

We have introduced two types of incident waves in this thesis: a plane wave and a spherical
wave. For a plane wave incidence, the incident wave front is planar, so the principal radii of
curvature are: pt = pb = oo. For a spherical wave, the wave front is spherical; therefore, the
principal radii of curvature are: pi = p5 = r, where r is the radial distance from the source to
the surface. As for the principal directions of the incident wave front, X! and X% can be
defined arbitrarily, as long as they keep the following relation:

XE1g, X 1§, X 1L X (E.7)
® Principal radii of curvature of the reflected wave front

To calculate GO fields, one also needs to calculate the principal radii of curvature of the

reflected wave front, pI and p5. First, we introduce a curvature matrix Q" for the reflected

wave front, as described in [43]:

- [Q1; @
o=l 2 (E8)
Q12 Q22
whose entries are calculated as follows:
fQT _ 1 2cosé (022)? | (031)?
1= pi |02 Ry R,
ro_ 2COSHL' @22@12 @11921
101, = 102 [ R, R, (E9)
o _ 1, 2cos6 (017)? (@11)2]
22~ pi |02 Ry R,
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where 0 is also a matrix that can be expressed as:

PPN I =~
0= [811 812] _ [)A(ll : lAjl )A(ll : lAlzl (E.10)
21 Y22 X, U, X, U,
And |0] is the determinant of ©:
o] = (Xi-0)(XL-0,)— (X 0,)(X5 - 0y) (E.11)
By using the curvature matrix Q", one could obtain p] and p3:
{ 1 1 T r r r 2 r 2 l
| == _{Qn + Q32 + [(Q11 — Q32)° + 4(Q12) ]2}
p1 2
11 . (E.12)
Lp—r = E{erl + Q3 — [(Qf; — Q3)* + 4(sz)2]7}
2

Notice that U,, U,, R, and R, are derived for a specific surface of revolution in Appendix
E.4. As for the principal directions of the reflected wave front, X7 and X3, they are not used
in this work, but they are useful information when we use a cascade system like multiple
reflectors. X7 and X5 can be calculated by using 7 and %7 as below:

o = [(Q22 — 1/p1) 21 — Q1,%7]
' V(@ —1/p1)? + (Q7,)? (E.13)

vr _ a vr
Xz —_ _ST X Xl
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E.3 Principal radii of curvature of a transmitted wave front in a transmission

problem

Fig. E.3 describes a scenario that an incident ray propagating in medium | impinges on a surface
S at Q, and transmitted into medium Il. The first and second mediums have the refraction
indexes of n; = v/&,; and n, = \/&,5, respectively. In the figure, U, U,, Ry, Ry, X}, and X! are
already introduced in Appendix E.2. X! and X¢ are the principal directions of the transmitted

wave front at Q with the principal radii of curvature p! and p%.

B

Normal section curve

Figure E.3: Geometry for a transmission problem with the description of the curved surface S, incident ray and
transmitted ray.

In the asymptotic procedure, when deriving the determinant of the Hessian matrix, i.e.

det{H,(Q7)}, one can define two terms to make its expression compact, namely p! = % + %
1 2

1 . .
and pf, = Ser The final expressions of p& and pf, are shown as below:

1F2

ner

1
Ps = (n; cos ;)2 [

{2 (e [1 - (81 )] = - 02) (8- 02) + (5 0)(8- B )] +

(1= (8 8] P50 ) (8- 02) + (s D) (% - B))} -

o

1
R; (n

:U|p—\ §~|r—\ ,Pﬁ
—_

([nl(sl 1) + n; cos 0, ] [(Tlt) - (ny)? (51 UZ) ])}

o~

{1 ([n (8; - 1) + ng cos 6] [(nz:)2 — (n)?(8; - Uy) D} l (E.14)
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: 1 (n)?

(8- )% -
Pm = (1 cos 6,)2 pipl ~

~ —~ 2
Xi. —
R1,01 i+ ) +ngcos 0,1(X: - U,) )

R2.01

= (I
i ( i+ ) + ng cos 0,1 (X - (71)2) _
(I

i - ) + n cos 0] (X5 - (72)2) -

n;
R2p5

([n (3; - R) + n; cos 6,](X% - U,) ) R11R2 (n;(8; - A) + n; cos B,)? ] (E.15)

Furthermore, by using p¢ and pf,, one can obtain the principal radii of curvature of the

transmitted wave front, i.e. p¢ and p}, as:

( , pi—+ ()% —4p},

p
2pm (E.16)

|
! :

p

L (p)? — 4py,

As for the principal directions of the transmitted wave front, i.e. X! and X, they are not

e

N

studied in the thesis, but they are useful information when one would like to analyze cascade

transmitting systems such as a free-standing hyperbolic lens.

E.4 Principal directions and principal radii of curvature of a specific surface

of revolution

An arbitrary surface of revolution can be represented by [13]:

xZ + 2
=gWu=—7 4 (E.17)
If we define a signed parameter K as follows:
dgw)]’
K=+ |14+2u|l—— (E.18)
du
where the sign “+” depends on the concavity of the surface, the principal radii of curvature can
be found as:
Ifl 1dg(u)
R, K du
4 ! (E.19)

R, K3| du Y

Li_ 1 [dgQw) | d*g(u)
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And the principal directions of the surface, U, and U,, can be determined as:
y o X -
X = y
JxZ+yz o ([xZ+y2
~ X Vx2+y?
0, = fh———y+ ¥
K\x?+y2  K\x%+y? Ry

.-

® Parabolic reflector

For a parabolic reflector (parabola of revolution), the surface is expressed as:

x?+y? u

Af 2f

and the derivatives in Eq. (E.19) are calculated as:

z=f-

(dz__1
du 2f
{dzz

Gz

K=+ |1+—
- e

Therefore, the principal radii of curvature are found as:

=0

K is determined to be positive:

R, = —2f (1 +2u?)E
3

LRZ = _2f (1 +2Lf2)2

(E.20)

(E.21)

(E.22)

(E.23)

(E.24)

Meanwhile, the principal directions can be obtained by substituting K and R, in Eq. (E.20).

® Elliptical lens and mirror

For elliptical lenses and mirrors (ellipse of revolution), their surfaces can be expressed as:

z+c\? x%+y? 2u
( 2 ) + b2 =1=>z=c+ta 1_F

The derivatives of z are calculated as:

dz_ a(l Zu)
du b2 b2

dzz_ a(l 2u>_
du?  b*
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For a lens, K is determined to be negative:

a’? 2u
Kiens = = |1+ 13775 (E.27)
and the principal radii of curvature are found as:

1 1
Rl,lens = a (Zucz + b4)2

1 5 (E.28)
R jens = a_b4 (2uc2 + b4)2
While for a mirror, K is positive:
a’? 2u
Kmirror = |1+ b2 b2 — 20 (E.29)
Moreover, the principal radii of curvature are found as:
1 1
Rl,mirror =—-— (2uc2 + b4)2
a (E.30)

1 2 4 i
RZ,mirror = —W(Zuc +b )2

® Hemispherical lens

In the case of a hemispherical lens (hemisphere of revolution), the surface is expressed as:

(z—L)?+x*+y>=Ri,>z=L+ /Rszph —2u (E.31)

And the derivatives of z are calculated as:

dz 1

i —(R?—-2u)"2
427 i r (E.32)

W = —(R - ZU) 2

K is determined to be negative:

K= 142" (E.33)

Consequently, the principal radii of curvature are found as:
Ry =R, = Ryp (E.34)
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® Hyperbolic lens

For a hyperbolic lens (hyperbola of revolution), the surface is expressed as:

z—c\2 x%+y? 2u
( - ) ——r—=l=sz=cta|l+3; (E.35)

And the derivatives of z are calculated as:

Ifdz a ( Zu)_%

— =—(14—
du b2 b?
X (E.36)
| d%z a 2u\ 2
=5
du? b* b?
K is determined to be negative:
dgw)]?
K=—\/1+2u 9@ (E37)

Therefore, the principal radii of curvature are found as:
1 1
Ry = —=(uc? + b*)2
a1 5 (E.38)
R, = ——— (2uc? + b*)2
2 ab4( uc® + b*)
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Appendix F Power budget

In order to obtain the spreading factor, one can consider a power budget equation for each tube
of rays. In other words, taking the law of conservation of energy in mind, the power incident
on a medium should be equal to the power reflected plus the power transmitted from the
interface. Fig. F.1 describes a case that an incident ray impinges on a point Q at surface S. Part
of the incident field is reflected back to the medium I (&,.,), while part of the field is transmitted

into the medium 11 (g,-,).

Figure F.1: Geometry for the description of power budget.

Firstly, we decompose the incident, reflected, and transmitted electric fields at Q into TE

and TM components:

Eire(Q) = Efy e (@i (Q) + El, (P}, (Q) (F.1)
At each point Q, if we model each incident ray as a local plane wave, we can estimate the

incident power crossing an infinitesimal area dA centered at Q:

/1 |E-l/”(Q)|2
P7(Q) = ——=>—"—dAcos 6 (F.2)
2¢;
Same steps can also be performed for the reflected ray:
Yoy rcoVEM (o))
Prl/II Q) = MdA cos b, = | (QE, (Q)l dA cos 6; (F.3)
24 24

and for the transmitted ray:

2 2
|E(Q)| P @E @
2—€2dA COS 91— = 2(2 dAc

PQ) = 0s 0, (F.4)
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If we substitute Eq. (F.2) in Eq. (F.3), we can represent the reflected power by the incident
power:

Prl/" _ PiJ-/llll—vJ_/lllz (F.5)
Moreover, if we substitute Eq. (F.2) in Eqg. (F.4), we can relate the transmitted power to the

incident power:

2 (1 oS 0,

Pl = Pil/" |z 4/1] (F.6)

¢, cos 0;
Furthermore, when we consider the relation between the incident power and the reflected

power, we can derive the following expression:

2
|EY] (1 — |1"i/"|2) |TJ'/”E-J_/”|2
pt/_ptih =~ dAcos 6; = -
' " 2¢; ‘ 20>
It can be seen that Eq. (F.7) agrees with the law of conservation of energy. In the case of an

dAcos6; = Ptl/ ! (F.7)

interface between a PEC and air, there is no transmitted wave into the PEC, i.e. 71/ = 0, the
reflected power is equal to the incident power:

PTJ_/H — PiJ./” (F8)
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Appendix G Spreading factor

Spreading factors for all QO components are derived extensively in this appendix from section
G.1 to G.5; and in section G.6 we describe some auxiliary derivations used when deriving

spreading factors.

G.1 Parabolic reflector

In Fig. G.1, the incident ray is reflected at Qr and propagates to Qr,. dA, = pdpd¢ is the
infinitesimal aperture area centered at Q,, dAr = 72 sin 8 dfd¢ isthe area centered at Qp, and

dAro = R%, sin 8dAd¢ is the area centered at Q.

QFO Q;dAFO
SFo
r(ﬂ) Q,
Rpg = f
2f
r@) = 1+ cos@ P
—— Parabolic reflector
—— FO Sphere Qa dA,
&> P

Figure G.1: A parabolic reflector as a reflecting surface.

The power within the incident ray tube should remain the same when propagating, also for

the reflected ray tube:

L/ __ pl/l
{Pi Qo) = P""(Qgr) GD

PGJ_O/"(QFO) = Prl/"(QR)
Considering the power budget introduced in Eqg. (F.5), the incident power Pi”" and the

reflected power Prl/ I are related by the reflection coefficient '/ at Q. By substituting Eq.
(G.1) in Eq. (F.5) one can obtain:

P (Qro) = P (Qu)|FH(Qp)|” (G.2)

where Pi” '(0,) and PGlo/ '(Qro) can be can be expressed as below:
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( L/l 2
|71 = L Z(Q“)l dA,
o (G.3)
J_/II l/”(QFO)|
(Qro) = TdAFO
By substituting Eq. (G.3) in Eq. (G.2), we have the following relation:
B @eo)|” . |rQoE ”(Qa)l
0 ———dA G.4
2(0 FO 250 a ( )

where dAro = R2, sin8d0d¢, dA, = pdpdg, and p = rsin 6. Eq. (G.4) can be simplified:
2 r dp

|EJ./|| |1-1J_/||EJ./||| RZ dg (GS)
where dp/d6 can be calculated as follows:
dp(6) _ dr(@) 2f
40 = 40 no +T(0) cosf = m = T(@) (G6)
By substituting Eq. (G.6) in Eq. (G.5):
2 r? T
R I e A e e G7)
FO FO
Consequently, the spreading factor can be expressed as below:
EJ./” T(Q) 2
Spread ) = | = = (G.8)

|Fl/”Eil/”| " Rpp 1+cos@
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G.2 Elliptical lens

Fig. G.2 shows an elliptical lens as a transmitting surface. The incident ray is transmitted at Q
and propagates to Qo . dA, = pdpd¢ is the aperture area centered at Q,, dA; =

r2sin @ dOd¢ is the area centered at Qr, and dAr, = R2, sin 8d6d¢ is the area centered at
Qro-

TTTTTTTTTTYT . — Elliptical Lens
_ — FO Sphere

1-—e¢?

1—ecos@

r(@) =a

r(8)

Zmin

Q]

P
~

~ -

Figure G.2: An elliptical lens as a transmitting surface.

The power within the incident ray tube should remain the same when propagating, also for
the transmitted ray tube:

Py = P ()
P2 (Qro) = P"(Qr)

Considering the power budget introduced in Eq. (F.6), the incident power PL.”" and the

(G.9)

/1

transmitted power P./" are related by the transmission coefficient 74/ at Qr. By substituting

Eg. (G.9) in Eq. (F.6) one can obtain:

(o cos B
Pog' @ro) = B @l Qn" 2 (G.10)
where P/1(Q,) is expressed in Eq. (G.3) and P/ (Qro) is:
J_/II(QFO) _| GO 2(;0 | dAro (G.11)
By substituting Eq. (G.3) and (G.11) in Eqg. (G.10), one can obtain:
B @)l B @I, e 2 c0s6s
TdAFO —TdA |7 Z, 05 b, (G.12)
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where dAp, = R2, sin8d8d¢, dA, = pdpdg,and p = rsin 6. Eq. (G.12) can be simplified:

2 2 r dpcosb;
FLN Z |t __ZF G13
| GO |T i | R}%O do cos gi ( )
where dp/d6 can be calculated as follows:
dp(8) dr(0) . cosf —e
40 = 40 sin @ +T(9) cosf = T(e)m (G14)
and cos 6, / cos 6; is derived in Appendix G.6 as:
cosf 1—ecosf
- = (G.15)
cos 6; cosf —e
By substituting Eq. (G.14) and (G.15) in Eq. (G.13):
2 2 r? r
|Ego'|” = [ E = [Ego' | = [o/VE | = (G.16)
RFO RFO
Therefore, the spreading factor is obtained as:
opr r(6) a(l —e?)
Spread 6) = | qo = = (G.17)

|Tl/||Eii/”| " Rrpo R,(1—-ecos®)

G.3 Hyperhemispherical lens

In the case of a hyperhemispherical, as shown in Fig. G.3, the incident wave converges at the
virtual point O,, and the transmitted field converges at the center of the lens base, 0. The
incident field is transmitted at Q; and propagates to Qr,. dA; = ;2 sin 8,, d6,d ¢, is the area

centered at Qr, and dAro = RZ, sin 8d6d¢ is the area centered at Qp,.

z -~ \
i A
\ { |—— Hyperhemispherical Lens i
o i i
n { |=—FO Sphere i
QT" Ag H i
1

ORI | r(0) = LcosO + [R%, — *(sing)? |
; i
! i sin @ :
' Pon(6) =7(0) - !
R | sin 0, J

sph h . L

! /R =Rpo \
L y

¥ J fl N
i =.
P 0; i
i i
, | o |
N f i i
\"-gv ! E QTJ & |
a | 0, i
! i i
/ [ !
] \ i

/0, . .

Figure G.3: A hyperhemispherical lens as a transmitting surface.

163



Similar to an elliptical lens, considering the power budget we can obtain the following relation:

gL/ 2 gL/ 2 0
| GO (QFO)l dA _ | i Z(QT)l dATlrJ_/”(QT)|2&COS t
0

(4 CcOs 0;

(G.18)

284 " ¢
where dAro = R2,sin8d0d¢, dAr = r2sin6,d0,d¢, and ¢, = ¢. Eq. (G.18) can be
simplified:

2 2 12 sin6,d6, cosf
EJ_/II — J_/”E.J_/” v v v t 19
[Eeo [+ RZ, sinf df cos6; (G.19)
It can be observed in Fig G.3 that the radial distance 7,,(8,) is related to r(0):
(6,) = 1(6) (G.20)
W) =T Sn 6, '
By substituting Eqg. (G.20) in Eq. (G.19):
2 2 % sin@ d@,cos 6
|Ego'| = [T E
Rf,sin 6, d6 cos6;
r |[sin@ df,cosf
EX = |/ gt v : 21
= |Ego | = [T'E; |RF0 sin@, df cos6; (G-21)
Therefore, the spreading factor is expressed as:
S ()= E;)'|  r(6) [sin6 db, [cosé, G.22)
preadis ™ |Ti/IIEii/"| " Rpo /sin6, df | cos#; '

Since d,,/d#@, cos 6;, and cos 0, are too redundant to be expressed analytically, we calculate

these terms numerically.
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G.4 Hyperbolic lens

Fig. G.4 shows a hyperbolic lens as a transmitting surface. The incident field is a plane wave
propagating in the dielectric medium (g,.). It is transmitted at Q and propagates to Qr,. dA, =
pdpdg is the aperture area centered at Q,, dAy = r?sin 8 dfd¢ is the area centered at Qr,
and dAro, = RZ, sin 8d@d¢ is the area centered at Q.

Z ET' l’ N )
; —— Hyperbolic Lens i
i — FO Sphere :
1 1
o £ ! b i
i a 1
1 - H
'\\ (6 1—ecosf }
QFO dAFO SFO
r(8) f=a+c f Y
Z?na.x 6‘ ﬁ
6
0;

Rpp=f &

99 Qr £

0

|

p \\ /’

Figure G.4: A hyperbolic lens as a transmitting surface.

Similar to an elliptical lens, the power budget for a hyperbolic lens can be described as follows:

_]_/" _ '_]_/" 1/l 2 d COoSs Ht
(@ro) = B Qa) M| 2o
_ 1B’ Qro)” £ (0| 24 cos 6
1ZGo V<FOJ] _ 171 Aead] L/ d ¢
2, dAr, 2, dAg|t"(Qr)| 2. c0s b, (G.23)
where dAp, = R2, sin8d8d¢, dA, = pdpdg, and p = rsin 8. Eq. (G.23) can be simplified:
|E”” = Jg J./|||2 r_dp cos b, (G.24)

RZ, do cos 6;
where dp/df and cos 8, / cos 6; are described in Eqg. (G.14) and (G.15), respectively. By
substituting dp/d6 and cos 6, / cos 6; in Eq. (G.24):

2 r? r
|E”” |rl/"Ei”"| R N |E§é”| = |T¢/||Eil/"|_RF0 (G.25)
Therefore, the spreading factor is obtained as follows:
S (6) = E;) r@)  1-e 626
preadt®’ = |Tl/||E,l/”| " Rpp 1—ecosf '
L
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G.5 Elliptical mirror

In the case of an elliptical mirror, incident field is emitted from a point source that can be placed

at either the upper focus or the lower focus.

z — Elliptical Mirror z
—— FO Sphere
S
S
Sro ri(64) o)
T’
Sro _
[
p 12(6;
12 (6;) o
1 1—e?
8)=a—— —
02 n(6) al+ec0591 8,
1—e2
07 o = q — 02
r(02) =a 1—-ecosb,

Figure G.5: An elliptical mirror as a reflecting surface. Left: source placed at the upper focus, 0;; Right:

source placed at the lower focus, 0,.

As it can be seen in Fig. G.5, the incident field is reflected at Qr and propagates to Q.
dAy is the area centered at Qg, and dAp, is the area centered at Qr,. Similar to a parabolic
reflector, by considering the power budget between the incident power and the reflected power,
one can derive the following relation:

EXQro)|
2%,

® Casel: Source placed at the upper focus, 04

Ir M QE Qw)|
22,

dAFO = dAR (G27)

In this case, the area d Ay is parameterized by r;(0,): dAg = 1 sin 8, d8,d ¢, while dAg,
is parameterized by (68,, ¢,): dApo = R2, sin 6,d0,d¢,, Where ¢, = ¢,. By substituting
dAro and dAg in Eq. (G.27):

2 2
|Eé_é"(QF0)| ngo sin6,d0,d¢, = |FJ'/"(QR)EL-U"(QR)| T12 sin 6, d6,d¢,

2
EX/ rZ2 sin6, do
= | GOL/II 2= R; sin 91 d91 (G28)
|['J_/IIEi | FO 2 AUy
By using the relation between 6, and 6,, one can calculate the following term:
sinf; df; r} 1
L~ =2 (G.29)

sin 4, d_HZ B r_120€ + (1 — Ae)a(l —e?)
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and by substituting Eq. (G.29) in Eq. (G.28):

El/|| e 1
| =2 - (G.30)
|1“l/“E.l/”| Rio 2ce + (1 — Ae)a(1l —e?)
l
Consequently, the spreading factor can be expressed as:
EX NXOCS a(l— e?)
Spread(ez) = | VTR Skt 2 (G.31)
|Fl/”Ei | Rro 2c(e —cosBy) +a(l—e?)

® (Case2: Source placed at the lower focus, 0,

In this case, the area dAy is parameterized by r,(0,): dAg = 1, sin 8, dB,d¢,, while
dAro is parameterized by (8, ¢;): dAro = R%, sin6,d0,d¢,. By substituting dA, and
dAg in Eq. (G.27):

|EX(Qro)| REo sin 6,6, d, = [T/N(QR)E(Qa)| 72 5in 6, d6,dp,

|El/|| _ 1§ sin6,d6,
1/1)2  R%,sinf; df
|pJ./IIEi | Fo 140

(G.32)

By using the relation between 8, and 6,, one can calculate the following term:
sinf, df, r? 1
: 272 _ 1 (G.33)
sinf, d6; 1, 2ce + (1 + Ae)a(l —e?)

By substituting Eq. (G.33) in Eq. (G.32):

B 1
|1*J_/||EJ./II|2 - RI%"O 2ce + (1 + Ae)a(1l —e?)
i

(G.34)

Therefore, the spreading factor can be expressed as:

|EJ_/II B ”‘1(91)7”2(92)\/ a(l —e?)

|pi/IIEil/”| B Rpo 2c(e 4+ cosBy) + a(l —e?)

Spreaa(61) = (G.35)
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G.6 Auxiliary derivations

In this section, we mainly discuss some auxiliary derivations used when calculating spreading

factors.

® Parabolic reflector

The incident propagation unit vector for a parabolic reflector is §; = Z, therefore, the

incident and reflected angle can be calculated as follows:
1+ cos@
cos B, =cosf; = —(§;- 1) = ’T (G.36)

The incident and transmitted propagation unit vectors for an elliptical lens are §; = —Z and

® Elliptical lens

S = —1 = —(sin8 p + cos 0 2), respectively, therefore, the incident and transmitted angle

can be calculated as follows:

I{ B = (5.7 = cosf —e
cos by ==(5-#) = V1+eZ—2ecosf _ C0sO _1—ecosb
= = (G.37)
A 1—ecosd cosf; cosf—e
cosf, = —(§;-1) =
\ V1 +e?2 —2ecosf
® Hyperhemispherical lens
By observing Fig. G.3, one can derive the angle 6, from 6:
r(6)sin @
0, = tan™?! ©) (G.38)

r(6)cosb6 +d

where r(8) = Lcos 8 + \/Rszph —L2(sin8)?, d = F, — Rgpp, — L, and F, = Rg,p (Ve + 1).
The derivative of 8,, with respect to 9 is:

dr
do. T?>+asinfd+rcosfd
v do (G.39)

d6  (rcos@ + d)? + (rsin )2
where dr/d6 is expressed as follows:
dr -o0.
25 = “Lsin 0 — L? sin 6 cos 6 [RZ,, — L? sin? 0] 0° (G.40)
Moreover, one can calculate the incident and transmitted angles numerically by using §; = —7;,

(where %, = (dZ + 7) /7)) and §, = —7*:

{cos 0; = —(5;-1n)

cos 0, = —(8; - ) (G41)

168



Appendix H Auxiliary derivations for an elliptical mirror

In section 4.2.2.2, we skip some steps when we simplify the linear phase and the compensation
phase for an elliptical mirror. Therefore, in this appendix, we mainly discuss some

simplifications used for an elliptical mirror with slightly off-broadside incidence.

H.1 Simplification of terms in the linear phase

When we calculate the linear phase term, there involve some simplifications for dot product.

® Case 1: Source placed at the upper focal plane

In this case the mirror is parameterized by 7,(6,), and 74 (6,) can be represented by using

7,(6,) as:

22 o r,, 2C,
= —_ = [ f— R —
rHh=r—2c2=>1 m 7 - 2
PO r,, 2\ , T2,
=711 Ps =(r_1r2_r_12)'ps=ar2'ps (H.1)
If we define r;(08,) and r,(6,) by using R;; and R,;, respectively,
) = 1-e?  1+ecosby
) = A os 0, . M1+ ecos b,
) (H.2)
6,) = 1—e _ 1 —ecosfy,
krz 2) =0 e cos0, "H 1 _ecosb,
then the ratio r,(6,)/r;(6,) can be expressed as follows:
r,(0,) Ry 1—ecosfy, 1+ ecosb,
=— =M1+ 7] H.3
11(0;) Ry 1+ecosfy; 1—ecosb, 11+ ®oomar 62)) (H3)
where M; = R,;/Ry; and @141 (0,) iS:
q)comal(gz) = -
e?(cos 0 cos By, — cos B, cos By, ) + e(cos By, — cos B + cos By, — cos 6,) (H.4)

(1—ecosB,)(1+ecosby,)

® Case 2: Source placed at the lower focal plane

In this case the mirror is parameterized by 74 (6,), and 7,(6,) can be represented by using

7,(60,) as:

> > A o oa rn,  2c,
h=r+22=>1h=—nH+—2
s s
R rn, 20\ , Tn,
ST pPs=\"Nh+t——Z) ps=—""T1"ps (H.5)
T2 T2 2
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r,(6,)/7,(6,) can be calculated by using Eq. (H.2):
M_E1+ec059011—ec0592
,(6;) Ry 1—ecosBy, 1+ ecosb;
where M, = Ry;/R,;, and @ y142(601) iS:

D omaz (91) =

e?(cos 0; cos By, — cos B, cos By, ) + e(cos By, — cos B; + cos By, — cos 65,)
(14+ecosB;)(1—ecosby,)

= Mz(l + Poma (01)) (H.6)

(H.7)

H.2 Simplification of compensation phase term

The compensation phase term is complex and redundant to be implemented; therefore, here we

will find a specific region where this phase can be simplified.

® Case 1: Source placed at the upper focal plane

In this case, the compensation phase term is expressed as follows:
3

Ds) (H.8)

q)Compl(ez) I_ - _( 71 Ps 2
2 2 3
Here we found 2”75 varies slowly with respect to 6,, while —575 (P, - Ps)? + 2% (y - ps) varies
1 1 1
2
fast. Therefore, we can define a slow-varying term ®4;,,, = ko ;75, and a fast-varying term

Drase = ko [—zp—i(ﬁ Ps)? + (r1 ps)] Then Eq. (H.8) can be expressed as:

(Dcompl = Do + (Dfast (H.9)
If we neglect @, for a specific phase error oy, ¢, we have the following condition:
p o3
_kO <__S(r1 ps) + 27 Sz (T1 ps)) < Oph,f (HlO)
The worst case in Eq. (H.10) happens when 7, - p; = —sin 6,;, which makes r;, = Ry;. By

considering the worst case, Eqg. (H.10) can be simplified as:

sin 901 3 (Sin 901)2 2 Oph.f
-——<0 H.11

By solving the cubic equation, ax® + bx? + cx + d = 0, with parameters: a = %,b =
11

. 2
—(SH;Z(E) c=0,d= W , We can obtain the applicability region of Eq. (H.11). If we define the

positive and real solution of the cubic equation as x; = the region can be expressed as:

f
Psmax;

105 < Pl max (H.12)
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Within this region, the fast-varying term @, can be neglected and the compensation phase

can be simplified:

2
p
cI)compl ~ Doy = kOZ_S (H.13)
r
Furthermore, we can represent the slow-varying term &, by a constant phase:
2
p
chlow = kO ZRSH (H.14)
and set the phase error as o, :
2 2
Ps Ps
—kO ZRll - <—k0 o ) < Oph,s
1 1 20 hs
L pp(Eo L) <2 s
pS rl Rll kO ( )

The worst case happens when 8, = 0, i.e. r; = a — ¢, meaning Eq. (H.15) can be expressed

as:

20—phs Ry (a—c)
< . = ps H.16
|pS| — \/ ko \/Rll _ (a _ C) ps,max ( )

In practice, when the f-number is large, we can always assume p£ max < Psmax, Meaning

we can always approximate the compensation phase as a constant within |p,| < psf max-

p2
s
chompl ~ E (H-17)

® Case 2: Source placed at the lower focal plane

In this case, the compensation phase term is expressed as:
2 2 3
ps PS5 . . p
cI)compz(gl) =k [2;2 - 2:_2 (- ps)z +—

2
2r;

(7, - ﬁs)l (H.18)

2 3
If we neglect the fast-varying term @, = ko [—575 (7, - ps)? + % (7, -ﬁs)] for a specific
2 2

phase error g, ¢, We have the following condition:

pé p3

S N A N A A

—k, (— 2, (7 - Ps)? + 2_1”22 (7 - Ps)) < Ophf (H.19)
The worst case in Eq. (H.19) happens when 7, - o = — sin 6,,, which makes r, = R,;. By

considering the worst case, Eg. (H.19) can be simplified as:

sinfy, , (sinBy)* , Opn
2RZ, P T T 2R, P ke

<0 (H.20)
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By solving the cubic equation, ax® + bx? + cx + d = 0, with parameters: a = Si;?#,b =
2l

. 2
(S”;+(Z),c =0,d= —‘;—’;h, we can obtain the applicability region of Eq. (H.20): |pg| < pl,nax,

where pgmax Is the positive and real solution of the cubic equation. Within this region, the fast-

varying term @, can be neglected and the compensation phase can be simplified as:

2
p
q)compz = Dgon = koﬁ (H.21)
2

Furthermore, we can represent the slow-varying term &, by a constant phase:

pz
S
q)slow = kO 2R ; (H-ZZ)
2
and set the phase error as oy, -
2 2
Ps Ps
—ko——| —koz| <
T < 0 2R21> = Iphs
1 1 20 ns
= 2(———)s 2 H.23
pS Rzl ,rz kO ( )

The worst case happens when 6; = 0, i.e. , = a + ¢, meaning Eqg. (H.23) can be expressed

as:

20 h, Rzl(a + C)
Ipsrcl S\/ kpo S\/(a Yo - Ry, = pgrc,max (H.24)

In practice, when the f-number is large, we can always assume p£ max < Psmax, Meaning
we can always approximate the compensation phase as a constant within |p,| < p£ ma-

pé

(Dcompz = 2R
21

(H.25)
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Appendix I Limit of the coma phase

We define the limit of the coma phase as the maximum number of scanned beams where the
focalized field is almost a linear translation of the broadside one, i.e., coma phase term can be

neglected. The condition set for this limit is that the coma phase term should be less than o:

igp . ﬁfp6n(9) <o (11)
1.1 Parabolic reflector

For a parabolic reflector, Ep =kosin@p, pr, = NAofuPyp. By substituting the expression

of §,, in Eq. (L.1):

21 1—cos@
A—()sin@ Nofs(p - ﬁfp)m <o
> N(p o) e D <2 (12)
If we define a function f(6) as:
sinf (1 — cos 8)
f(0) = (1.3)

1+ cosf
We can find f(8) is a monotonically increasing function within 8 € [0, 8,]. Therefore, the

worst case in Eq. (L.2) iswhen p - pr, = 1and 6 = 6y:

o 1+ cos 6,
N < - (1.4)
2nfy sinB, (1 — cos 6,)
Moreover, when f is large, sin 8, can be approximated by:
1 VAaféi -1
sinf, ~ — = cos b, = i (1.5)

2fy 2fy
In this case, Eq. (I.4) is related to f; as follows:

N < %[Zf# + |agz - 1] (L6)
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1.2 Elliptical lens

For an elliptical lens, iép = kysinb p, pr, = NAafupys,. By substituting the expression of &,
in Eq. (I.1):

e(cos B — cosB,)

2T 500 NAafs (5 - Do)
Adsm afulP - Prp 1—-ecosf

sin @ (cos @ — cos ) o

N(p-p < 1.7
= NP Pry) 1—ecosf T 2mfye (17)

If we define a function f(6) as:

sin 8 (cos 8 — cos 6,)

f(0) = (1.8)

1—ecosf

we should find the value for 6 € [0, 8,] that maximizes f(8). To do so we calculate the

derivative of f(8) with respect to 6:

af(#)  —esin’6 (cos 6 0]+C0820_C050C0590—0
960 (1—ecos@)z oY — %% 1—ecosf B
= —ecos3 0 + 2cos?H —cosfcosfy+ecosfy—1=0 (1.9)

We should solve the cubic equation, ax® + bx? + cx + d = 0, with parameters: a = —e, b =
2,c=—cosBy,d=ecosB,—1,to find the angle 6,,,, that maximize f(6):

Omax = cos™ 1 x, (1.10)

3’A—,A2—4A3
where xzz—i(b+cz+%>, Ay = b? = 3ac, sz(—%+j%\/§) % , and
2

A, = 2b3 — 9abc + 27a?d. For an elliptical lens, sin 8, can be calculated accurately as:

Vi -1

1
inf, =—>= O = ———— 111
sin 6, 27, cos 6, 2F (L11)
Therefore, the worst case in Eq. (I.7) happens when p - g, = 1 and 6 = 0,4,
N < o . 1 —ecosb,,,
21 fye sin 0,4, (€OS B,,4, — COS ;)

ocl—ecos@ 1

=>N<-— mar (1.12)

T esSinbpgy Zf# COS Omax — V 4f#2 -1
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1.3 Hyperbolic lens

In the case of a hyperbolic lens, Ep =kosin@p, pr, = NAofsPyrp. By substituting the
expression of &, in Eq. (I.1):
21 e(cosf —1)
—qi D-p _— <
Ao sin6 Nofu(P - Prv) 1—ecosf —
sin@ (cos0 — 1) __
1—ecos@ — 2mfze

- N(ﬁ . ﬁfp) (I.13)

If we define a function f(6) as:

©) = sinf (cos@ — 1)
1) = 1—ecos6

We can find f (@) is a monotonically increasing function within 6 € [0, 8,]. Therefore, the

(1.14)

worst case in Eq. (I.13) iswhen p - pr, = 1 and 6 = 6y:

o 1—-ecosf,
N <
2nfye sin 6, (cos B, — 1)

Moreover, when f is large, sin 8, can be approximated by using Eqg. (I.5). In such a case, Eq.
(I.15) is related to f as:

Nsnielzjf#(e—n <2f#+ /4f#2—1>—el (116)

1.4 Elliptical mirror

(1.15)

For an elliptical mirror, we introduced the term @, instead of §,,; therefore, the condition

should be modified:

Ky Brp®Peoma < 0 (1.17)
® Casel: Observation at lower focal plane

In this case, Ep =kosin@, p, prp = NAofuPrp, and @comg = Promar(62). EQ. (1.17) can

be expressed as:

2T

A sin 6, NAOf#(ﬁ : ﬁfp)q)comal(ez) <0

) o
= N(p ) pfp) sin 92 cDcomal(ez) < 2_ (1-18)
T fy

We can define a function f(6,) as:
f(ez) = sin 6, CI)comal(ez) (1.19)
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The worst case in Eq. (1.18) happens when g - pgp, = 1 and f(0;) = f(02)max- However,
£(6,) is too complex that we cannot derive an analytical 6, that maximizes f(6,). Therefore,
we use two ways to calculate N. The first approach is that we calculate f(6,)mq NUMerically,
and substitute it in Eq. (1.18):

o 1
N < (1.20)
an# f(gz)max
The second approach is that we roughly assume 6, = %902 maximizes f(6,):
1
N<Z (1.21)

-2 1 .1
mfe D omar (7 902) SIn 7 002

® Case 2: Observation at upper focal plane

In this case, ﬁp =kosin6, p, prp, = NAofuPrp, and @comg = Promaz(61)- EQ. (1.17) can

be expressed as:

2 o A
A_Sln 91 Nﬂof#(ﬂ : pfp)q)comaz(el) <o
0

= N(p- ﬁfp) Sin 01 Peomaz(01) < (1.22)

21 fy
We can define a function f(6,) as:

f(61) = sin6; Pcpma2(61) (1.23)
The worst case in Eq. (1.22) happens when 5 - p¢, = 1 and f(01) = f(61)max- When we

calculate f(6;)mqx NUmerically, and substitute it in Eq. (1.22):

o 1
N < (1.24)
27Tf# f(gl)max
When we roughly assume that 6; = %901 maximizes f(6,):
I 1
N < (1.25)

2 1 1
T[f# CI)comaz (7 901) sin 7 901

176



Appendix J Additional validation of the derived GO fields

J.1 Parabolic reflector

® TM polarized plane wave

Fig. J.1 shows the x-component of the electric fields on the focal plane of a parabolic
reflector with D,. = 1004, (f, = 300 GHz) and f; = 0.6. The reflector is illuminated by a
unitary TM polarized plane wave with the skew angle of 6; = 2.6(1,/D,.) = 1.5°, ¢p; = 0°.
And the focal plane fields evaluated by using the analytical FO and the GO-FO approaches are
compared with the one obtained using the PO. Here the 3D PO field is plotted in the inset of
the figure. As it can be seen in the figure, the agreement is within the accepted error margin

inside the FO applicability region, for both the amplitude and the phase.

Y ! L - T T T T T T T T
FO Region "
—PO 100 =g —% "‘_‘_‘,‘4 FO Region T
- - -Analytical FO| \ 4 —PO L k
---GO-FO " f - - -Analytical FO| ["" == !
sok - - -GO-FO -
= |
) = of :
= 5 :
S} i ! :
501 |
,{ 3L‘-;-,---‘—El Qe
100} L =T R
! ‘
H T
H
1 71 50 L L I : I I 1 1 1 1
4 5 6 2 4 0o 1 2 3 4 5 & 7
z[Ao - fil
(@) (b)

Figure J.1: The x-component of the electrics field on the focal plane of a parabolic reflector with D, =
100 A, (fy = 300 GHz) and f; = 0.6, illuminated by a unitary TM polarized plane wave with the skew angle of
6, = 2.6(1,/D,) = 1.5°, ¢ = 0°. The focal plane fields calculated by using the analytical FO and the GO-FO
approaches are compared with the one obtained using the PO: (a) Amplitude. (b) Phase. One of the main planes
(y = 0) is shown. Blue region is the FO applicability region. Inset is the 3D PO field.
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® TE polarized plane wave

For the same reflector, when the plane wave is TE polarized with the skew angle of 6, =
3.5(4y/D,) = 2°, ¢ = 0°, the y-component of the electric field on the focal plane is shown in
Fig. J.2. As it can be seen, the analytical FO and the GO-FO approaches are validated within
the FO applicability region.

401 FO Region
—PO

35k " -Analytical FO
---GO-FO

FO Region

- 3 —FPO
100 "’ ! f'/ - - - Analytical FO
v i r
‘ :
: :

---GO-FO

Phase [deg|
o

|E,| [dB]

R

-100F ' / ==

-150

(€Y (b)

Figure J.2: The y-component of the electrics field on the focal plane of a parabolic reflector with D, =
100 A, (fy = 300 GHz) and f; = 0.6, illuminated by a unitary TE polarized plane wave with the skew angle of
6, = 3.5(y/D,) = 2°,¢s = 0°. The focal plane fields calculated by using the analytical FO and the GO-FO
approaches are compared with the one obtained using the PO: (a) Amplitude. (b) Phase. One of the main planes
(y = 0) is shown. Blue region is the FO applicability region. Inset is the 3D PO field.

J.2 Elliptical lens

An elliptical silicon (&, = 11.9) lens with D, = 5, (f, = 300 GHz) and f} = 0.6 is
introduced here. A quarter-wavelength matching layer at 300 GHz made of Parylene (g, =
2.62) is applied. The lens is illuminated by a unitary TE polarized plane wave with the skew
angle of 6, = 16°, ¢ = 0°. Fig. J.3 shows the y-component of the electric fields on the focal
plane of the lens. The focal plane field evaluated by using the GO-FO approach is compared
with the one obtained using the PO. It can be seen in the figure that the agreement is within the

accepted error margin inside the FO applicability region.
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Figure J.3: The y-components of the electric fields on the focal plane of an elliptical silicon (¢, = 11.9) lens with
D, =5 A, (fo = 300 GHz) and f{ = 0.6, illuminated by a unitary TE polarized plane wave with the skew angle
of 8, = 16°, p; = 0°. Here a quarter-wavelength matching layer at 300 GHz made of Parylene (¢, = 2.62) is
applied. The focal plane field calculated by using the GO-FO approach is compared with the one obtained using
the PO: (a) Amplitude. (b) Phase. One of the main planes (y = 0) is shown. Blue region is the FO applicability
region. Inset is the 3D PO field.

J.3 Hemispherical lens

® TM polarized plane wave

Fig. J.4 shows the x-component of the electric fields on the focal plane of a hemispherical
silicon (e, = 11.9) lens with Dy; = 52, (f, = 300 GHz), fi"* = 0.6, Rg,p, = 2.61¢, and L =
0.362R,p. A quarter-wavelength matching layer at 300 GHz made of Parylene (&, = 2.62)
is applied. The lens is illuminated by a unitary TM polarized plane wave with the skew angle
of 6, = 15°, ¢, = 0°. And the focal plane fields calculated by using the GO-FO is compared
with the one obtained using the PO. It can be seen in the figure that the GO-FO approach is
validated by the PO within the FO applicability region.
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Figure J.4: The x-component of the electric fields on the focal plane of a hemispherical silicon (e, = 11.9) lens
with Dy, = 5 2, (fy = 300 GHz), fi"* = 0.6, Ry,p = 2.64¢, and L = 0.362R,, illuminated by a unitary TM
polarized plane wave with the skew angle of 8, = 15°, ¢, = 0°. Here a quarter-wavelength matching layer at 300
GHz made of Parylene (&, = 2.62) is applied. The focal field calculated by using the GO-FO approach is
compared with the PO: (a) Amplitude. (b) Phase. One of the main planes (y = 0) is shown. Blue region is the FO
applicability region. Inset is the 3D PO field.

® TE polarized plane wave

For the same hemispherical lens, when the plane wave is TE polarized with the skew angle
of 8, = 20°, ¢, = 0°, the y-component of the electric field on the focal plane is shown in Fig.

J.5. As it can be seen, the GO-FO approach is validated within the FO applicability region.
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Figure J.5: The y-component of the electric fields on the focal plane of a hemispherical silicon (g, = 11.9) lens
with Dy, = 524 (fp = 300 GHz), fi! = 0.6, Ry,p = 2.64¢, and L = 0.362Ry,,, illuminated by a unitary TE
polarized plane wave with the skew angle of 8, = 20°, ¢, = 0°. Here a quarter-wavelength matching layer at 300
GHz made of Parylene (s, = 2.62) is applied. The focal field calculated by using the GO-FO is compared with
the PO: (a) Amplitude. (b) Phase. One of the main planes (y = 0) is shown. Blue region is the FO applicability
region. Inset is the 3D PO field.
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J.4 Hyperbolic lens

Fig. J.6 shows the y-component of the electric fields on the focal plane of a hyperbolic
plastic (g, = 2) lens with D, = 1004, (f, = 300 GHz) and f;* = 1. The incident field is a
unitary TE polarized plane wave with the skew angle of 6, = 3.7(14/D;,) = 1.5°, ¢ = 0°.
The focal plane fields evaluated by using the analytical FO and the GO-FO are compared with
the one obtained using the PO. As it can be seen in the figure, for the amplitude comparison,
the analytical FO and the GO-FO are validated by the PO within the FO applicability region.
For the phase comparison, the analytical FO is still very good while the GO-FO shows some
acceptable error. This is due to the fact that the interpolation operation involved in calculating

the GO ray fields for a hyperbolic lens is not very accurate for a small f-number geometry.
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Figure J.6: The y-component of the electric fields on the focal plane of a hyperbolic plastic (&, = 2) lens with
D, = 100 A, (f, = 300 GHz) and £ = 1, illuminated by a unitary TE polarized plane wave with the skew angle
of 6, = 3.7(14/Dy) = 1.5°, ¢, = 0°.The focal plane fields calculated by using the analytical FO and the GO-FO
are compared with the one obtained using the PO: (a) Amplitude. (b) Phase. One of the main planes (y = 0) is
shown. Blue region is the FO applicability region. Inset is the 3D PO field.
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J.5 Elliptical Mirror

Here we consider a mirror with the diameter of D,, = 1004, (f; = 300 GHz), the semi-
major axis of a = 801,, and the focal distance of ¢ = 204,, i.e. the eccentricity is e = 0.25.
A unitary Huygens source is placed at the lower focal plane, with the electric current oriented
along y and a displacement in x-direction, xg = 6.6A,fs". In this case, the f-number is
calculated as f;" = 0.6. Fig. J.7 shows the y-component of the electric fields on the focal plane
of the mirror. The focal plane fields evaluated by using the analytical FO and the GO-FO
approaches are compared with the one obtained using the PO. As it can be seen in the figure,
the agreement is within the accepted error margin inside the FO applicability region, for both

the amplitude and the phase.
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Figure J.7: The y-component of the electric fields on the focal plane of an elliptical mirror with D,, =
100 A, (fy = 300 GHz), fi" = 0.6 and e = 0.25. The mirror is illuminated by a unitary Huygens source placed
at the lower focal plane, with the electric current oriented along y and a displacement in x-direction, x; =
6.6, f4". The focal plane fields evaluated by using the analytical FO and the GO-FO approaches are compared
with the one obtained using PO: (a) Amplitude. (b) Phase. One of the main planes (y = 0) is shown. Blue region
is the FO applicability region. Inset is the 3D PO field.
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Appendix K TE validation of the coherent FO

K.1 Parabolic reflector

A parabolic reflector with the diameter of D,, = 5004, (f, = 300 GHz) and the f-number
of fi = 4 is introduced. The incident field is a unitary TE polarized plane wave with the skew
angle of 65 = 24.4(4,/D,) = 2.8°,¢s = 0°, i.e. the flash point is ps, ~ 24.44,f;X. The
linearization point is chosen the as the flash point. Fig. K.1 shows the y-component of the
electric fields on the focal plane of the hyperbolic lens. The focal plane field calculated by
using the coherent FO is compared with the one obtained using the analytical FO. It can be
seen that the coherent FO is validated inside the PWS applicability region, for both the

amplitude and the phase.
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Figure K.1: The y-component of the electric fields on the focal plane of a parabolic reflector with D, = 5004,
(fo = 300 GHz) and f; = 4, illuminated by a unitary TE polarized plane wave with the skew angle of 6 =
24.4(4y/D,) = 2.8°, ¢, = 0°. The linearization point is chosen the same the flash point, i.e. g, = 24.4A,f4 X.
And the focal plane field calculated by using the coherent FO is compared with the one obtained using the
analytical FO: (a) Amplitude. (b) Phase. One of the main planes (y = 0) is shown. Blue region is the FO
applicability region and green region is the PWS applicability region.
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K.2 Elliptical lens

Fig. K.2 shows the y-component of the electric fields on the focal plane of an elliptical
silicon (g, = 11.9) lens with D, = 54, (f, = 300 GHz) and f; = 0.6. A quarter-wavelength
matching layer at 300 GHz made of Parylene (&, = 2.62) is applied. The lens is illuminated
by a unitary TE polarized plane wave with the skew angle of 65 = 16°, ¢ = 0°, i.e. pf, =
—1.424f}%. The linearization point is chosen the as the flash point. And the focal plane field
evaluated by using the coherent FO is compared with the one obtained using the GO-FO. As it
can be seen, the coherent FO is in excellent agreement with the GO-FO, for both the amplitude

and the phase, within the PWS applicability region.
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Figure K.2: The y-component of the electric fields on the focal plane of an elliptical silicon (g, = 11.9) lens with
D, =5 A, (fo = 300 GHz) and £ = 0.6, illuminated by a unitary TE polarized plane wave with the skew angle
of 6, = 16°, p; = 0°. Here a quarter-wavelength matching layer at 300 GHz made of Parylene (¢, = 2.62) is
applied. The linearization point is chosen the same the flash point, i.e. g, ~ —1.44,fi%. And the focal plane field
calculated by using the coherent FO is compared with the one obtained using the GO-FO: (a) Amplitude. (b)
Phase. One of the main planes (y = 0) is shown. Blue region is the FO applicability region and green region is

the PWS applicability region.
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K.3 Hemispherical lens

A hemispherical silicon (&, = 11.9) lens with D,; = 51, (f, = 300 GHz), f* = 0.6,
Rspn = 2.64¢, and L = 0.362Rg,, is introduced here. A quarter-wavelength matching layer at
300 GHz made of Parylene (&, = 2.62) is applied. The lens is illuminated by a unitary TE
polarized plane wave with the skew angle of 6; = 20°, ¢ = 0°, i.e. B, = —1.751,f{%. The
linearization point is chosen the as the flash point. Fig. K.3 shows the y-component of the
electric fields on the focal plane of the lens. The focal plane field evaluated by using the
coherent FO is compared with the one obtained using the GO-FO. As it can be seen in the

figure, the coherent FO is validated inside the PWS applicability region.
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Figure K.3: The y-component of the electric fields on the focal plane of a hemispherical silicon (¢, = 11.9) lens
with D = 52, (fy = 300 GHz), fi! = 0.6, Ry, = 2.64¢, and L = 0.362Ry,,, illuminated by a unitary TE
polarized plane wave with the skew angle of 8, = 20°, ¢, = 0°. Here a quarter-wavelength matching layer at 300
GHz made of Parylene (s,,, = 2.62) is applied. The linearization point is chosen the same the flash point, i.e. g, ~
—1.752,4f;}%. And the focal plane field calculated by using the coherent FO is compared with the one obtained
using the GO-FO: (a) Amplitude. (b) Phase. One of the main planes (y = 0) is shown. Blue region is the FO
applicability region and green region is the PWS applicability region.
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K.4 Hyperbolic lens

A hyperbolic plastic (&, =2) lens with D, = 1004, (f, = 300 GHz) and f* =1 is
introduced. The incident field is a unitary TE polarized plane wave with the skew angle of 6, =
3.7(A4/Dp) = 1.5°,¢p5 = 0°, i.e. ps, = —3.7A,f'X. The linearization point is chosen the as
the flash point. Fig. K.4 shows the y-component of the electric fields on the focal plane of the
hyperbolic lens. The focal plane field calculated by using the coherent FO is compared with
the one obtained using the analytical FO. It can be seen that the coherent FO is validated inside

the PWS applicability region.
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Figure K.4: The y-component of the electric fields on the focal plane of a hyperbolic plastic (e, = 2) lens
with D, = 100 4, (f, = 300 GHz) and f* = 1, illuminated by a unitary TE polarized plane wave with the
skew angle of 6, = 3.7(14/D;,) = 1.5°,¢p5 = 0°. The linearization point is chosen the same the flash point,
i.e. p, ® —3.7Ayf+*%. And the focal plane field calculated by using the coherent FO is compared with the
one obtained using the analytical FO: (a) Amplitude. (b) Phase. One of the main planes (y = 0) is shown.
Blue region is the FO applicability region and green region is the PWS applicability region.

186



K.5 Elliptical Mirror

Here we consider a mirror with the diameter of D,, = 1004, (f; = 300 GHz), the semi-
major axis of a = 801,, and the focal distance of ¢ = 204,, i.e. the eccentricity is e = 0.25.
A unitary Huygens source is placed at the lower focal plane (fi"* = 0.6), with the electric
current oriented along ¥ and a displacement in x-direction, x; = 6.64,f4". This displacement
corresponds to a flash point gr, ~ —4.54,f{"%, and the linearization point is the same as this
flash point. Fig. K.5 shows the y-component of the electric fields on the focal plane of the
mirror, evaluated by using the coherent FO and compared with the analytical FO. It can be seen

that the coherent FO is validated within the PWS applicability region.
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Figure K.5: The y-component of the electric fields on the focal plane of an elliptical mirror with D,, =
100 A4 (fy = 300 GHz), fi" = 0.6 and e = 0.25. The mirror is illuminated by a unitary Huygens source placed
at the lower focal plane, with the electric current oriented along y and a displacement in x-direction, x; =
6.6, f4". The linearization point is chosen the same the flash point, i.e. g, ® —4.51,f;"%. And the focal plane
field calculated by using the coherent FO is compared with the one obtained using the analytical FO: (a)
Amplitude. (b) Phase. One of the main planes (y = 0) is shown. Blue region is the FO applicability region and
green region is the PWS applicability region.
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