
Autonomous Wireless Charging
System for Robot Swarms
Charging Station Design

Mahmoud Ayoub, Manno Versluis
4404130, 5061857

EE
3L

11
Th

es
is

Re
po

rt

Autonomous Wireless Charging
System for Robot Swarms

Charging Station Design

EE3L11 Thesis Report

Mahmoud Ayoub, Manno Versluis
4404130, 5061857

June 20, 2023

Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)
Delft University of Technology

Delft University of Technology

The undersigned hereby certify that they have read and recommend to the Faculty of
Electrical Engineering, Mathematics and Computer Science (EEMCS) for acceptance

a thesis entitled
Autonomous Wireless Charging System for Robot Swarms

by
Mahmoud Ayoub, Manno Versluis

in partial fulfillment of the requirements for the degree of
EE3L11 Thesis Report

Dated: June 20, 2023

Supervisor(s):

Reader(s):

Abstract

This project focuses on building a wireless charging station for the Lunar Zebro robots and
building upon the existing functionalities by matching the interfacing voltage and current
requirements for the wireless power transceiver.

Autonomous Wireless Charging System for Robot Swarms Mahmoud Ayoub, Manno Versluis

Table of Contents

Abstract i

1 Introduction 1
1-1 Robot charging . 1
1-2 Document structure . 2

2 Programme of requirements 3
2-1 Assumptions . 3
2-2 Mandatory requirements . 3

2-2-1 Functional requirements . 3
2-2-2 Non-functional requirements . 4

2-3 Trade-off requirements . 4

3 Choice analysis 5
3-1 Duckiebot communication . 5

3-1-1 PIR vs AIR . 5
3-2 Multiple charging pads . 6
3-3 Charging station layout . 7
3-4 Communication protocols . 8

3-4-1 Serial Peripheral Interface . 8
3-4-2 Controller Area Network . 8
3-4-3 Universal Asynchronous Receiver/Transmitter 9
3-4-4 Inter-integrated Circuit . 9
3-4-5 Comparison . 9

3-5 Switches . 11
3-5-1 Multiplexer/Demultiplexer . 11
3-5-2 Shift Register . 12
3-5-3 comparison . 12

Mahmoud Ayoub, Manno Versluis Autonomous Wireless Charging System for Robot Swarms

Table of Contents iii

4 Theory 13
4-1 I2C . 13
4-2 Serial Lines . 13

5 Implementation 16
5-1 Algorithms . 16

5-1-1 Traffic lights . 16
5-1-2 Charging station entrance traffic light 18
5-1-3 Charging pad entrance traffic lights . 18
5-1-4 Charging pad exit traffic lights . 19
5-1-5 Charging pad kickoff request traffic lights 19

5-2 Hardware . 21
5-2-1 Microcontroller . 21
5-2-2 Breakbeam sensor . 21
5-2-3 Shift registers . 22
5-2-4 Traffic lights . 22

6 Verification and results 23
6-1 Simulation . 23
6-2 Integration . 25

6-2-1 Wireless charging hardware subgroup . 25
6-2-2 The charging station design subgroup 25
6-2-3 The robot control and navigation subgroup 26
6-2-4 Integrated subgroups . 26

7 Conclusion 27
7-1 Future Work . 27

References 29

A Appendix 30
A-1 Verification simulation code . 30
A-2 Algorithm implementation code . 41

Autonomous Wireless Charging System for Robot Swarms Mahmoud Ayoub, Manno Versluis

iv Table of Contents

Mahmoud Ayoub, Manno Versluis Autonomous Wireless Charging System for Robot Swarms

Introduction

1-1 Robot charging

In order to stay functional, robots need to stay charged. To optimise productivity, it is de-
sirable to keep robots charged and thus operating, as much as possible. Since a lot of robots
can’t connect or disconnect themselves to or from a charger, or go to and from their charging
station on their own, someone else needs to do this for the robots. Having someone move
robots to a charging station and then connect and disconnect the robots to and from the
charging station will cost time and money. It will also lead to inefficiencies, since it will take
time to find out that a robot needs to be charged and the robots will not be removed from
the charging station the moment they are recharged, which is undesirable.

A possible solution to this is to have the robots navigate to the charging station on their
own and then charge wirelessly, thus not needing to connect or disconnect to the charging
station. This way, no one needs to do this for the robots, saving time and money. It also
leads to reduced inefficiencies, since the robots can go to and from the charging station
when needed instead of having to wait for a human to arrive and then do so for the robot.

Figure 1-1: A Duckiebot robot
that was used for the project

Designing this possible solution for the Duckiebot, the
robot shown in figure 1-1, is the goal of the Bachelor
Final Project this thesis is a part of. The problem was
split into three parts for the three different subgroups:

1. The Wireless Charging Hardware subgroup:
The hardware needed to perform the wireless
charging of the Duckiebots on both the Duck-
iebots themselves and on the charging pads in
the charging station that the Duckiebots can
charge from.

2. The Charging Park Design subgroup: The traffic
control inside the charging station needed for the
robots navigate to and from the charging pads
and an orderly way as well as prioritisation in

Autonomous Wireless Charging System for Robot Swarms Mahmoud Ayoub, Manno Versluis

2 Introduction

case more Duckiebots want to charge at once
than there are charging pads.

3. The Robot Control and Navigation subgroup:
Controlling the robots and ensuring the robots
are capable of navigating to and from the charging station and can navigate inside the
charging station based on communication with the charging station.

This thesis is about the traffic control and prioritisation inside the charging station part of
the Bachelor Final Project.

1-2 Document structure

Chapter 2 specifies the programme of requirements for the Charging Park Design subgroup.
In chapter 3, the choices that were made are explained and supported. The theory involving
some of those choices is explained in chapter 4. In chapter 5 the designed algorithms and
the hardware needed to implement it is explained. In chapter 6, the developed algorithm
was verified and the results were shown. Finally, in chapter 8 a conclusion is drawn and
recommendation were given for future development.

Mahmoud Ayoub, Manno Versluis Autonomous Wireless Charging System for Robot Swarms

Programme of requirements

In order for the charging station part of the project to be considered a success, a number of
requirements must be satisfied. The requirements needed and the assumptions made will be
listed here.

2-1 Assumptions

After discussion with other subgroups and consulting the Duckiebot manual [1] regarding the
specification of the Duckiebot, the following assumptions were made:

1. The camera on the Duckiebot can accurately capture images from a distance of at least
2 meters.

2. Duckiebots can follow coloured lines on a road.

3. Duckiebots can use image recognition to recognise predefined objects.

4. Duckiebots can measure the distance to objects in front of it.

2-2 Mandatory requirements

These are criteria that need to be fulfilled for the minimum viable product. They can be
divided into functional and non-functional requirements. Functional requirements are re-
quirements the product must do and non-functional requirement are requirement the product
must have.

2-2-1 Functional requirements

1. The traffic control must be able to guide the Duckiebots from the entrance of the
charging station to a charging pad.

2. The traffic control must be able to guide the Duckiebots from the charging pad to the
exit of the charging station.

3. The traffic control must prevent the Duckiebots from colliding inside the charging sta-
tion.

Autonomous Wireless Charging System for Robot Swarms Mahmoud Ayoub, Manno Versluis

4 Programme of requirements

2-2-2 Non-functional requirements

1. The charging of the Duckiebot must happen wirelessly.

2. Communicating with the Duckiebot must happen wirelessly.

3. The communication with a Duckiebot must be received by that Duckiebot inside the
charging station.

4. The roads in the charging station must be large enough for the Duckiebot.

2-3 Trade-off requirements

There are criteria that are not vital, but do add significant value.

Figure 2-1: The SoC of the Duckiebot

1. When a Duckiebot with a critically low
SoC enter the charging station when all
charging pads are occupied, the charg-
ing station will attempt to empty a pad

2. The charging station should receive the
state of charge, SoC [2], and the min-
imum desired state of charge, mSoC,
shown in figure 2-1 from the Duck-
iebots on the charging pads.

3. When asking Duckiebots to leave their
charging pad, they should be asked to
leave in order based on their SoC and
mSoC.

4. The Duckiebots must function as in-
dependent robots with minimal cen-
tralised control.

Mahmoud Ayoub, Manno Versluis Autonomous Wireless Charging System for Robot Swarms

Choice analysis

3-1 Duckiebot communication

Since the Duckiebot only has a camera on its front to receive information with, it was decided
to send the information needed for the Duckiebot to navigate to and from a charging pad
without colliding with other Duckiebots using traffic lights . The reason for this was the
following, that the goal is for the Duckiebots to function as autonomous mechanical organisms.
Cameras are the mechanical analogue to eyes in the animal kingdom. Cameras are relatively
inexpensive, established and thus simple to incorporate into a vehicle, blend easily onto the
vehicles and can distinguish shapes, colours and thus can are able to understand the meaning
of objects such as road signs. Whereas LIDAR systems are expensive, bulky, impacted by
weather influences, not as estabished as Camera technology and unable to distinguish between
colours or Characters. Similarly RADAR struggles in the recognition and classification of
objects. If the velocity of a static object is the same as the vehicle, then this is difficult to
detect. Furthermore, detecting small objects is difficult for shorter wavelengths and finally,
reaction times can be slower. All of these differences make the Camera for a more reliable
system to utilise right out of the box and can be applied to other Duckiebots in the future.

3-1-1 PIR vs AIR

The Camera can be considered an one-way communication method, where the Charging
station is the Transceiver and the Duckiebot the Receiver. This means that the Duckiebots
can’t communicate with one another on a higher more complex level, unless the Duckiebots
are able to somehow interact with the charging station, influence it and have the charging
station communicate those changes back to the other Duckiebots. The use of sensors rectifies
that problem. The choice was made between Passive Infrared (PIR) detectors and Active
Infrared in the shape of Photoelectric Beam detectors, also colloquially known as "Break-
Beam Sensors". The manner in which PIR functions is that, PIR sensors are detecting the
changes of the infrared energy levels that are caused by movement from objects (i.e. Humans,
Animals, Falling leaves.... etc). PIR has some drawbacks due to the fact that PIR sensors
are sensitive to the temperature changes of the environment, which can cause false positives.
For AIR the functionality is different in that it consists of two parts namely, a light emitting
diode (LED) and a photo electric receiver. This means that when an object is near the sensor,
the infrared light from the LED reflects off of the object and is detected by the receiver.

Autonomous Wireless Charging System for Robot Swarms Mahmoud Ayoub, Manno Versluis

6 Choice analysis

Solution Difficulty Work needed Potential danger Chance of success
Multiple charging pads – - – ++
Ordering new battery - - - +
Designing new battery ++ ++ ++ –

Table 3-1: Comparison of possible solutions for slow charging.

However, for Break-Beam Sensors the application is slightly different, as on one side lies an
infrared light transmitter with opposite to it on the other side lies a photo electric receiver.
The light transmitter continually sends out a beam to the receiver, so that when an object
passes through the beam this results in the connection being broken, signalling that an object
has entered the promixity. An additional difference is that PIR detects those differences in
movement over a larger area than AIR, which is more precise due to the limited detection
distance, so that random objects causing false positives is a lot less likely. For those reasons
is why the choice went towards the Break-Beam Sensors.

3-2 Multiple charging pads

The battery of the Duckiebot can’t charge with more than 10 W, so it takes around 5 hours
to fully charge the battery, while the battery can become empty in only 2.5 hours.[1] In order
to be able to keep multiple Duckiebots in the field, either the battery must be replaced with a
different battery, decreasing the charging time, or the charging station must multiple charging
pads, allowing multiple Duckiebots to charge at once. A comparison of possible solutions
can be seen in figure 3-1. Designing a new battery is an unrealistic goal to do during this
project, with a lot of work needed, high risks involved, such as the battery spontaneously
combusting, with a low chance of success. Ordering a different battery that is compatible
with the Duckiebot is much more realistic, though it will likely still be less safe than the
battery of the Duckiebot. Making multiple charging pads is little added work, with no more
risk than making just a single charging pad. It also makes the charging station expandable,
by adding more charging pads. Due to multiple charging pads being the superior option, the
charging station was designed with 3 charging pads, though more can be added with relatively
small changes to the code and hardware.

Mahmoud Ayoub, Manno Versluis Autonomous Wireless Charging System for Robot Swarms

3-3 Charging station layout 7

3-3 Charging station layout

Due to there being multiple charging pads in the charging station, the layout of the charging
station needs to be chosen. The charging pads can either be placed in series, or in parallel of
each other, with the traffic through the charging station being either one or two directional.

Figure 3-1: Charging pads series and par-
allel layout

The advantage of parallel charging pads,
shown in figure 3-1 is that the Duckiebots
on the charging pads can enter and leave in
any order independent of the other charg-
ing pads, while with charging pads in series,
shown in figure 3-1, it works using a first in
first out, FIFO, principle, which means that
when a Duckiebot has been fully charged,
it has to wait until the Duckiebot before it
leaves until it can leave the charging station.
It also means that when a Duckiebot with a
critically low SoC wants to enter, the Duck-
iebot in front of the line needs to leave for
the critical Duckiebot to enter. The advan-
tage of charging pads in series is that it is
easy to implement a waiting queue and han-
dle the traffic control, due to there being only
one way for the Duckiebots to go through the
charging station.

Because a parallel layout has better results
than a series layout, the parallel layout was
implemented.
To make the charging station bidirectional,
would require that the Duckiebots can exit
the charging pads in both directions, regardless of the direction that the Duckiebots entered
in. To do this, the Duckiebots must either be able drive backwards without collisions, or be
able to turn around on the spot. Due to the facts that the Duckiebots only have a camera
on the front and no camera on the back and thus can’t drive backwards safely and that
Duckiebots also can’t turn around in place, two directional traffic can’t be implemented in
the charging station, leaving one directional traffic to be implemented.

Autonomous Wireless Charging System for Robot Swarms Mahmoud Ayoub, Manno Versluis

8 Choice analysis

3-4 Communication protocols

This chapter discusses several serial communication protocols to communicate between the
charging pads and the charging station and explains the reason behind the choice for I2C.
Popular communication protocols such as SPI, CAN and UART are briefly introduced. Some
protocols mentioned in the state-of-the-art analysis are not considered due to their cost com-
plexity factor and are also becoming rare in recent times.

3-4-1 Serial Peripheral Interface

Serial Peripheral Interface (SPI) is a synchronous and a high speed (with speeds of usually
up to 60 MHz) communication protocol with four bus lines [14]. Those four bus lines aid in
the communication interfacing between the master and slave devices, where the master device
both reads and writes the data. Furthermore, SPI supports two communication interfacing
modes, namely standard mode and point-to-point mode. In standard mode, a single master
device can communicate with multiple slave devices and in point-to-point mode the master
device communicates with a singular slave device. The four bus lines are as follows: the Serial
Clock (SCLK), the Master In Slave Out Line (MISO), the Master Out Slave In (MOSI) and
the Slave Select (SS).

Slave Select has the same function as chip select and it is utilised instead of an addressing
concept. The SS bus line is used to select a slave. In case of multiple slaves, additional SS
lines are required. For instance running 5 devices one would require 8 lines, as the formula
is 3 reserved lines (SCLK, MISO and MOSI) with n number of SS lines, one for each slave
device. This would the make SPI not immensely scalable as one works with increasing number
of devices. A benefit however is that the message size of SPI is arbitrary, dependent on the
design of the application.

3-4-2 Controller Area Network

Controller Area Network (CAN) is an asynchronous, multi-master, robust serial communi-
cation bus that utilises multi-cast communication[12][20]. The way CAN operates is that
each individual device, that is connected to the bus, is its own master and thus is capable
of transmitting or request data to and from another device or multiples thereof. Depending
on the purpose of the data transmission, the formatting can be done in different structures.
On a physical level the way CAN works is that, two bus lines in twisted-pair make use of
differential signalling between the two bus lines in order to transmit and receive messages.
The reason for this is that the differential signalling and the twisted-pair configuration create
noise immunity. Furthermore, depending on the bit timing being programmed CAN is able
to operate at a data transmission rate of 20 kbit/s up to 1 Mbit/s and in CAN 2.0 or CAN
FD (Flexible Data-rate) the speeds can go up to 5Mbit/s. In addition to this, CAN also has
built-in error checking mechanisms, such as avoidance by arbitration on the message priority,
the cyclical reduncancy check and finally the collision detection.

Mahmoud Ayoub, Manno Versluis Autonomous Wireless Charging System for Robot Swarms

3-4 Communication protocols 9

3-4-3 Universal Asynchronous Receiver/Transmitter

Universal Asynchronous Receiver/ Transmitter (UART) is an asynchronous, single-to-single,
serial communication protocol in a microcontroller or an integrated circuit (IC) that is used
to implement serial communication, with the main purpose being that of transmission and
receiving serial data to and from devices in an embedded system[13]. The UART has two
bus lines, where one is used for transmission (TX) and the other for receiving (RX), but is
also unique in that it can operate on one bus line, when a pull-up resistor is introduced to
the Transceiver side. These bus lines communicate through a digital pin 0 and a digital pin
1. The UART data is sent over the bus in the form of a packet, which consists of a start bit,
data frame, a parity bit, and stop bits. The parity bit is utilised as an error check mechanism
to help ensure the integrity of the data.
The UART protocol is considered to be “universal”, as the parameters including transfer
speed and data speed are configurable by the developer. Furthermore, the UART supports
bidirectional data transmission through 3 ways: simplex, half-duplex and full-duplex oper-
ations. As the UART is asynchronous this entails that the system doesn’t utilise a clock
signal to synchronize the output bits from the transmitting UART to the sampling bits on
the receiving UART. This means, that the receiving and transmitting UART need to be of
the same bit rate or baud rate, as this is what allows the system to know where and when
the bits have been clocked.

3-4-4 Inter-integrated Circuit

Inter-integrated Circuit (I2C) is a synchronous, multimaster, serial communication bus. It
is mainly used for many similarities between seemingly unrelated designs such as intelligent
controls, general purpose circuits and application-oriented circuits[15]. I2C has the following
features, a bi-directional two-wire bus which allows all I2C-bus compatible devices to com-
municate with each other. These two bus lines consist of a serial data line (SDA) and a
serial clock line (SCL). The SDA is responsible for data transferal between the master and
slave, whereas the SCL carries the clock signal. Each device connected to the bus have their
own unique address and undergo simple master/slave relationships with other devices, both
of which are software driven. And as it is a multi-master bus, the bus contains an error
scheme that enables collision detection from transmission between the multiple devices, and
prevents data corruption via arbitration. Furthermore, it has two directions of data transfers,
bidirectional and unidirectional. The Bi-directional data transfer offers 2 modes of transmis-
sion, Quick mode with a maximum data rate up-to 400 kbit/s and High-Speed mode with a
maximum data rate up to 3.4 Mbit/s. In Unidirectional data transfer the data rates go up
to a maximum of 5 Mbit/s. Finally, I2C even has on-chip filtering which prevents spikes to
occur on the bus line in order to prevent data integrity.

3-4-5 Comparison

The described protocols for serial communication are compared on several aspects, which can
be observed in Table 3-2.
To start off SPI and I2C are synchronous because both use a clock line, while CAN and UART
are asynchronous, as all of the devices have their own particular clocks, that are specifically

Autonomous Wireless Charging System for Robot Swarms Mahmoud Ayoub, Manno Versluis

10 Choice analysis

SPI CAN UART I2C
Synchronicity Synchronous Asynchronous Asynchronous Synchronous
Noise Immunity Low High Medium Medium
Message Formatting None Multiple Struc-

tures
Multiple Struc-
tures

1

Maximum Speed 60Mbit/s 1.0 Mbit/s 1.5625 Mbit/s 3.4 Mbit/s
Number of Masters and Slaves One master to

many slaves
Multi-masters Point-to-Point Multi-masters

Wire Complexity Increasingly
complex when
more devices
implemented

Simple to imple-
ment new devices

Simple to imple-
ment new devices

Simple to im-
plement new
devices

Different Required Bus Lines 3 + n * SS 2 1 2
Error Detection and Handling None CSMA/CD+AMP Frame Check CSMA/CD

Bit Monitoring Overrun Check Arbitration
CRC
Frame Check

Table 3-2: Differences Between the Serial Communication Protocols

programmed for their respective use cases. Additionally, UART and SPI are typically used in
point-to-point communication and respectively require one bus line for UART (or just 1 line)
and four different bus lines for SPI. The topology for SPI is relatively simple when utilised for a
small number of nodes, however it will become increasingly complex as more devices enter the
network, because an additional bus line is required for each additional slave. Furthermore,
SPI has no standard message formatting, which means that the developer has to design a
messaging format in order to achieve their requirements. This is different for UART, where
only one bus line as long as a pull-up resistor is introduced to the Transceiver side and thus
reduces the expenses due to the wiring and the complexity that is needed for it to operate
correctly. SPI also does not have any error detection and handling mechanisms, whereas
UART implements parity bit check for general error detection and correction purposes, making
it more reliable and advantageous, than SPI under critical accuracy requirements. If data
must be transferred at ‘high speed’, then SPI is the protocol of choice over UART, because
SPI does not define any speed limit, as implementations often go over 10 Mbit/s.

The way CAN and I2C function is via a Multi-master two-wire bus line topology. In com-
parison to SPI the "minimum number" of bus lines in CAN and I2C reduces the expenses
(comparatively to SPI) due to less wiring and thus the complexity itself. Devices can be
easily added and removed to and from these buses due to their wiring configurations. Despite
the increasing complexity of SPI, it has a significantly higher maximal data transfer speed
compared to all the other protocols. I2C is faster than CAN, its maximal speed differs by a
factor of three, whereas CAN has a higher noise immunity due to its twisted pair configura-
tion and use of differential signals. This makes CAN more robust compared to SPI, UART
and I2C. Just like UART, CAN and I2C have their own implementations of error detection
and handling, whereas SPI has none. This means that SPI requires additional programming
in order to mitigate errors. When we compare CAN, UART and I2C to oneanother, then
the CAN protocol has a greater number of error detection and handling schemes. Despite
that SPI and I2C are comparatively low-cost to the other implimentations. I2C is often con-
sidered a good choice for connecting short-distanced, low-speed devices like microcontrollers,
EEPROMs, I/O interface, and other peripheral devices like sensors in an embedded system.

Mahmoud Ayoub, Manno Versluis Autonomous Wireless Charging System for Robot Swarms

3-5 Switches 11

It is deemed that I2C is the most suitable for the application of communication in the "Au-
tonomous Wireless Charging System for Duckiebot Swarms" for a multitude of reasons, as
when comparing I2C to SPI, the flow control and error handling, makes it a more reliable
protocol comparatively, as I2C uses a two-wire interface where slave devices share the data
and clock lines. This means that adding multiple devices to the bus is simple and reduces
complexity of the circuit Furthermore, I2C can support multi-masters in a configuration, while
SPI can only support one master. So while SPI has a speed advantage, it is more difficult
and costlier to add multiple slave devices to the bus. This is because each slave needs its own
slave select line, so the number of wires needed to communicate increases with each device.
Unlike communication protocols like I2C and SPI, UART is a physical circuit. This means
that while SPI and I2C use a master/slave paradigm to control devices and send data, UART
communication need to implement two UART devices to send and receive the data. It also
doesn’t operate using a clock so it is necessary for the baud rates of each UART to be within
10% of each other to prevent data loss. While different in these aspects, UART[19] is simi-
lar to I2C and SPI certain ways. For instance, both I2C and UART implement a two-wire
interface to send and receive data and is often ideal for low-speed data transmission. As
mentioned, UART and I2C also both make use of error checking mechanisms to help ensure
data integrity, as I2C uses an ACK/NACK bit and UART uses a parity bit to distinguish any
changes in data during transmission. Additionally, both UART and SPI support full-duplex
communication and cannot support a multi-master configuration. To conclude, the choice
for I2C is due to the weighing of it being relatively low-cost, faster than the other protocols
(besides SPI), making use of error checking schemes, built-in message formatting, CSMA/CD,
relative simple implementation and the Multi-master configuration.

3-5 Switches

3-5-1 Multiplexer/Demultiplexer

A Multiplexer (Mux)[18] is used to select one of several outputs based on some fewer number
of inputs representing a binary number. For example, an address bus on a CPU is connected
the inputs of a "3-to-8 multiplexer" to address lines A11, A12, and A13. Since the 3-input
binary value has its lowest bit connected to address line A11 there are 11 address lines before
it that can all change to any binary value from 0-2047 (address lines A0-A10). Once an
address shows up >= 2048 (2KB) the first output pin (1 of 8) will go HIGH and the rest will
remain LOW. The lower address bits can continue to count up and the first output will stay
high for any address from 2048 - 4095. Once the address gets high enough and the address
lines set address line A11 HIGH and lowers A11, the first output bit will change to LOW and
the second output bit(2 of 8) will go HIGH.

Conversely, a Demultiplexer (Demux)[16] is used to select one of several outputs based on
some fewer number of inputs representing a binary number. The way this works is that one
can see the GPIO outputs as already being multiplexed and using by a demultiplexer one is
able to separate the three GPIO outputs (inputs) into eight output signals.

Autonomous Wireless Charging System for Robot Swarms Mahmoud Ayoub, Manno Versluis

12 Choice analysis

3-5-2 Shift Register

A shift register [17] is a number of flip-flops (generally speaking 8) that are connected in
series. Each flip-flop can store and output one singular bit. When a 1 or 0 is placed on the
’Data In’ pin and the ’Clock’ pin on the shift register is taken HIGH (or LOW, some shift
registers’ clock is active HIGH and some are active LOW) the shift register will grab the 1
or 0 on the ’Data In’ pin and shift it into the first flip-flop. All flip-flips are connected to the
clock pin so they each grab their input and latch it at the same time. Since the first flip-flop
output is connected to the second flip-flop input and so on, the shift register will "shift" all
of the bits over one position for each clock pulse. Lastly, each output of each flip-flop is also
connected to an output pin. So if the LEDs to the outputs and shifted in "11011011" those
bits would show up on the 8 outputs.

There are several flavors of shift register: Serial to Parallel shift registers will take in a serial
input and expand it to 8 parallel outputs as described before. This is often used to expand
the number of OUTPUT pins on a micro controller. A Parallel to Serial shift register works
the other way as it has 8 parallel inputs and 1 serial output and that can be use to get the
value of 8 different inputs using one input pin connected to Serial Out and one output pin
for the clock line. Lastly, there are shift registers that have both Serial and Parallel inputs
and Serial and Parallel outputs. Using an additional pin to tell it which way to shift (in or
out) and this shift register can do everything the other two can do combined. This is often
used to expand the number of input pins on the micro controller if the system runs out. Or
it makes an easy way to interface with something like a 4-row 4-column keypad matrix using
only a few pins on the micro controller.

3-5-3 comparison

The switches will be briefly recapped and compared. A multiplexer switches between inputs,
whereas the reverse is true for a demultiplexer, where the switching occurs between the
outputs and as for a shift register it takes a parallel word and shifts it out as a sequence of
bits. The mux/demux is faster than a shift register and also come in analogue and digital
variants. However, the mux/demux use more pins than a shift register e.g. for 30 sensors
one would need at least 6 pins, whereas a shift register would only need to 3 pins, for any
number of bits. Furthermore, shift registers are cheaper than multiplexers/demultiplexers. In
conclusion, the shift register was chosen for the reasons that the implementation is cheaper
and can be daisy chained for a large number of sensors.

Mahmoud Ayoub, Manno Versluis Autonomous Wireless Charging System for Robot Swarms

Theory

This chapter describes the comprehensive theory behind the chosen protocols that are neces-
sary to implement the algorithms and hardware solution.

4-1 I2C

I2C (Inter-Integrated Circuit) is a synchronous and single-ended communication bus that
enables packet switching, and multi-master/multi-slave (controller/target) communication. It
is broadly used for short, intra-board communication between lower-speed auxiliary integrated
circuits and microcontrollers or processors.

4-2 Serial Lines

The communication bus consists of two wires, the Serial Data Line (SDA) and the Serial
Clock Line (SCL), where the SDA is responsible for the data transfer (sending and receiving)
between the master and slave devices and the SCL carrying the clock signal generated by the
master.

At the physical layer, both the busdrivers (SCL and SDA lines) are of an open-drain (MOS-
FET) or open-collector (BJT) bus design. This means that the busdrivers can pull the
corresponding signal line low, but cannot drive it high. Thus, there can be no bus contention
where one device is trying to drive the line high while another tries to pull it low. meaning
that they can pull the corresponding signal line low, but cannot drive it high. Each signal
line has a pull-up resistor on it, to restore the signal to high when no device is asserting it
low.

By pulling the line to the ground the result is a logic "0" as an output, and by letting the line
float (the output having a high impedance) a logic "1" is obtained as an output, as this causes
the pull-up resistor to pull it high. The lines are never actively driven high. This enables the
wires to allow for several nodes to connect to the bus without having to short the circuit due
to signal contention. With systems, where speed is critical, such as with High-speed systems,a
current source may be utilised instead of a pull-up only resistor configuration to pull up the
SCL or both the SCL and the SDA, as to enable faster rise times and to accommodate for
higher bus capacitance.

Autonomous Wireless Charging System for Robot Swarms Mahmoud Ayoub, Manno Versluis

14 Theory

Figure 4-1: I2C serial lines

The crucial consequence of this is that now multiple nodes can drive the lines simultaneously.
What happens when any node is driving the line low, is that the line will be low as well.
Nodes that are trying to transmit a logical "1" (by letting the line float high causing a high
impedance) can detect this difference and thus conclude that another node is active on the
line at the same time. If this principle is used on the SCL, then this can be utilised as a
flow-control mechanism for targets and is also known as "clock stretching", whereas When
this principle is utilised on SDA, this is called arbitration and ensures that there is only one
transmitter at a time.
In the situation that the system is idle, then both lines are high. To resume transmission
once more, the SDA is pulled to a low value whilst the SCL remains the previous high value.
Next up is for the SCL value to be pulled down to a low value. It is considered "illegal" to
transmit a stop marker by releasing SDA to float high again before pulling the the SCL to a
low value, although this is usually considered harmless. The only time the SDA line changes
its value is when the clock value is low. The exception to this are the start and stop signals.
The manner of how a data bit is transmitted is by pulsing the SCL line high while the SDA
line is steady at the level of desire. Next up is for the transmitter to set the SDA to the
value of their desire whilst the SCL is low, then after a small delay for value propagation, the
SCL is set to float high. Now the controller waits for the value of the SCL to actually go to
high. This process can be delayed by the parasitic capacitance of the bus line, the RC time
constant of the Pull-up resistor in the circuit and finally due to the clock stretching of the
target.
As the SCL is now on a high value, the controller waits a minimum time frame, which is
usually around 4 µs for standard-speed I2C mode as to ensure that the receiver has seen the
bit, then finally pulls the bus low again. This concludes the transmission of one bit. Now
after every 8 data bits in (any particular) direction, an bit for the acknowledgement will be
transmitted to the opposite side. After the transmitter and receiver both perform this action
for one bit, is when the initial receiver ends up transmitting a single "0" bit (ACK) back.
In the event that the transmitter witnesses a "1" bit (NACK) instead, it will understand that

Mahmoud Ayoub, Manno Versluis Autonomous Wireless Charging System for Robot Swarms

4-2 Serial Lines 15

the target (the controller being the initial transmitter) is incapable of accepting the data for
a multitude of reason such as, that the message isn’t clear, that there aren’t any (viable)
targets, or that the target is simply unable to accept more data. In the event that the target
is transmitting a message to the controller, then this means that the controller is requesting
the data transmission to cease after the current data byte. It needs to be noted that control
over the SCL bus line is always maintained by the controller and that only the direction
in the SDA bus line changes when the acknowledge bits are being sent. Finally, after the
acknowledge process the clock line is now set on low, which gives the controller three options:
1. Sending a stop message, which releases the I2C bus, 2. a repeated start message, which
starts the transmission over the bus without release the bus, and 3. the transfer of another
message.

Autonomous Wireless Charging System for Robot Swarms Mahmoud Ayoub, Manno Versluis

Implementation

5-1 Algorithms

In order to correctly implement the traffic lights and allow the Duckiebots to get charged, a
number of algorithms were used to control the various traffic lights[3][4]. There algorithms
will be explained in this chapter. In figure 5-1 the various ways that a Duckiebot can go
through the charging station are shown.

5-1-1 Traffic lights

Figure 5-3: Two different kinds of traffic
lights

There are four different kinds of traffic lights
used in the charging station. The Duckiebots
distinguish these traffic lights from one an-
other based on the different coloured borders
around the LED in the traffic light, an exam-
ple of which is shown in figure 5-3.
The way that these traffic lights work is that
the traffic control subgroup made the Duck-
iebot able to follow coloured lines on the
road. At every intersection where the Duck-
iebot can go to multiple different directions,
there is a differently coloured line for each
of the different directions. When the Duck-
iebot decides what direction it wants to go, based on the status of the traffic light, it will then
start following the corresponding coloured line to go in the correct direction.
One kind of traffic light is used at the entrance of the charging station to show the Duckiebots
if there are empty charging pads, or if all charging pads are occupied. Another kind of traffic
light is used at the entrances of the charging pads to show if the Duckiebot should go to that
charging pad or not. The third kind of traffic light is used to ask Duckiebots to leave their
charging pad when a Duckiebot with a critically low SoC enters the charging station and
there are no empty charging pads. The last kind of traffic light is used to prevent collisions
at the intersections that Duckiebots can go to from multiple different directions, for example
the intersections at the exits of the charging pads, or at the charging station exit. The layout
of the charging station can be seen in figure 5-2.

Mahmoud Ayoub, Manno Versluis Autonomous Wireless Charging System for Robot Swarms

5-1 Algorithms 17

Figure 5-1: Duckiebot flowchart

Autonomous Wireless Charging System for Robot Swarms Mahmoud Ayoub, Manno Versluis

18 Implementation

Figure 5-2: Charging station layout

5-1-2 Charging station entrance traffic light

The traffic light at the entrance of the charging station will be on if there are less Duckiebots
in the charging station, then there are charging pads and it will be off if the amount of
Duckiebots inside the charging station is equal or larger than the amount of charging pads.
This way, when the entrance light is on, incoming Duckiebots will know that there are free
charging pads they can charge on, while if the entrance light is off, Duckiebots will know
there are no empty charging pads, so they can either enter the waiting area, look for another
charging station, or enter anyways if they have a critically low SoC. A Duckiebot decides for
themselves if their SoC is critically low. This is shown in figure 5-4.

5-1-3 Charging pad entrance traffic lights

When there there is no Duckiebot on a charging pad, the traffic light at the entrance will be
enabled, while if there is a Duckiebot on a charging pad, the traffic light will be disabled.
This way Duckiebots that are passing by see the entrance traffic light and know if a charging
pad is occupied or not.

If all charging pads are occupied, it may happen that a Duckiebot with a critical SoC arrives
and no Duckiebot is willing to leave their charging pad. To solves this, of the charging pads
with an empty emergency queue, which is shown in figure 5-2, the charging pad where the
SoC minus the minimum desired SoC is the largest, the charging pad whose Duckiebot will
be willing to leave the earliest, will have their traffic light turn on. This way, the Duckiebot
with a critical SoC can wait there for the Duckiebot on the charging pad to leave. This is
shown in figure 5-5.

Mahmoud Ayoub, Manno Versluis Autonomous Wireless Charging System for Robot Swarms

5-1 Algorithms 19

Figure 5-4: Charging station entrance light

5-1-4 Charging pad exit traffic lights

Since Duckiebots can only detect other Duckiebots using the camera on the front, they might
not be able to detect other Duckiebots in time to prevent a collision on an intersection. To
prevent such collisions, it was decided to give Duckiebots exiting the charging pads priority,
while making other Duckiebots wait at the intersections for the Duckiebot exiting the charging
station. This is because while it is known when a Duckiebot exits the charging pad, it can’t
be easily determined when a Duckiebot passes through such an intersection from the other
direction without adding more sensors. This is implemented by using a timer that turns on
the exit traffic light when a Duckiebot leaves their charging pad, until a few seconds later.
This is also used for Duckiebots that turn right at the charging station entrance, only with
an added breakbeam sensor to detect incoming Duckiebots. This is shown in figure 5-5.

5-1-5 Charging pad kickoff request traffic lights

Since the communication between the Duckiebot and the charging pad is unidirectional, with
the Duckiebot sending information and the charging pad receiving information, traffic lights
were added to ask the Duckiebots to leave their charging pad.

The traffic lights have two ways of asking a Duckiebot to leave: low priority and high priority.
For both high and low priority, the traffic light will go on and then off again, with the traffic
light staying on longer with high priority. The chance for a Duckiebot to leave with high
priority is higher than with low priority. In both cases, the Duckiebot can decides if it stays
on the charging pad, or if it leaves.

Autonomous Wireless Charging System for Robot Swarms Mahmoud Ayoub, Manno Versluis

20 Implementation

Figure 5-5: Charging pad entrance and exit traffic lights

When a Duckiebot with a critical SoC enters the charging station when all charging pads
are already occupied, the charging station will try to get a Duckiebot on a charging pad to
leave the charging station with low priority. It will also ask the Duckiebots that are on the
charging pads with another Duckiebot in the emergency queue to leave with low priority as
well. If a charging pad with an empty emergency queue becomes empty, the Duckiebot will
go there. If not, the Duckiebot will enter the empty emergency queue behind the Duckiebot
that is expected to leave the earliest.

If all charging pads and emergency queues are occupied, it will ask all Duckiebots on the
charging pads to leave with high priority in order to prevent the Duckiebot with the critical
SoC from leaving the charging station again without charging, which would likely lead to that
Duckiebot "dying" due to a lack of charge. This is shown in figure 5-6.

Mahmoud Ayoub, Manno Versluis Autonomous Wireless Charging System for Robot Swarms

5-2 Hardware 21

Figure 5-6: Charging pad kickoff requests

5-2 Hardware

In order to correctly execute the developed algorithms, making sure the Duckiebot can get
charged, hardware is needed to execute the algorithms. The hardware used will be explained
in this chapter. A block diagram of the hardware used can be seen in figure 5-7. For easy
of viewing, only a single charging pad and breakbeam were shown. In reality, 3 similarly
connected charging pads and breakbeams are used.

5-2-1 Microcontroller

For the microcontroller, the TeensyLC [5] was used. It was chosen for a number of reasons:
it can be programmed and powered using a USB connection, not needing some kind of trans-
former or converter to give the microcontroller the correct input voltage and current. The
TeencyLC is also compatible with Arduino, allowing for easy coding the programs needed.
The bootloader on de microcontroller is stored on a different chip, preventing the bootloader
from being erased when programming the chip. Finally, the in and output voltages of the
pins of the microcontroller, 3.3V and one 5V pin, are compatible with the other components.

5-2-2 Breakbeam sensor

The breakbeam sensor consists of an IR emitter and an IR receiver, there specifications of
which can be seen in [6]. The IR emitter is powered by the microcontroller and send out an

Autonomous Wireless Charging System for Robot Swarms Mahmoud Ayoub, Manno Versluis

22 Implementation

Figure 5-7: Charging station block schematic.

IR beam. When the IR receiver receives this IR beam, it causes a voltage over the input pin
of the microcontroller. When a Duckiebot drives through a breakbeam, it will prevent the
IR receiver from receiving the breakbeam, resulting in no voltage over the input pin of the
microcontroller, thus detecting the Duckiebot.

5-2-3 Shift registers

The shift registers[7] were used to control the traffic lights, because although the microcon-
troller used has enough pins to control, power and communicate with all other components
needed for three charging pads, this way the amount of charging pads can be expanded with-
out running out of pins.

Since the charging station uses 12 traffic lights, 2 8-bit shift registers were used. These shift
registers are powered and controlled by the microcontroller, with the serial data being the
desired outputs of the traffic lights and the clock inputs updating the shift register and storage
register. When data is shifted through the shift registers, the last bit of the first shift register
is the input of the second shift register.

5-2-4 Traffic lights

For the traffic lights LED’s were used. These LED’s are controlled by the shift registers. The
LED’s are powered by the microcontroller, due to the shift registers having an open drain
output. A high output on the shift register results in the pin being grounded, thus powering
the LED’s from the microcontroller and a low output results in the pin being floating, and
thus the LED not being powered.

Mahmoud Ayoub, Manno Versluis Autonomous Wireless Charging System for Robot Swarms

Verification and results

This chapter describes how the algorithm and hardware used are tested and how the algo-
rithms and hardware will be integrated into the results of the other subgroups. Due to the
necessary hardware not being delivered on time, it was unfortunately not possible to integrate
the results of the different subgroups and test the system in the real world.

6-1 Simulation

In order to be able to simulate the algorithms used, a number of assumptions have been made:

1. The Duckiebots will enter the first charging pad they come across with an enabled en-
trance light. Implementing this is the responsibility of the robot control and navigation
subgroup.

2. The Duckiebots will measure the distance to a mark on the road placed a set distance
behind the charging pads, in order to stop on the charging pads. Implementing this is
the responsibility of the robot control and navigation subgroup.

3. The breakbeam sensors will detect the Duckiebots correctly. This assumption was made
due to the breakbeam sensors not being delivered on time.

4. The IR communication between the Duckiebots and the charging pads and the I2C
communication between the charging station and the charging pads will work correctly.
This assumption was made due to the charging pads not being finished in time.

Autonomous Wireless Charging System for Robot Swarms Mahmoud Ayoub, Manno Versluis

24 Verification and results

Figure 6-1: Part of the results of the veri-
fication simulation.

Due to these needed assumptions, using the
code of the verification simulation in ap-
pendix A-1, a number of Duckiebots were
simulated to enter the charging station at
predefined times. It was also predefined to
which charging pad or exit the Duckiebots
went, according to the assumptions and the
algorithms used.
The results of this simulation, an example of
which can be seen in 6-1 are that provided
that the assumptions that were made are in-
deed correct, the algorithms do indeed work
correctly, though there was a potential prob-
lems. The algorithms allow the Duckiebots
to move to and from the charging pads, with
prioritization of Duckiebots with a critically
low state of charge and with an emergency
queue in case there is a critical Duckiebot,
but none of the robots on the charging pads
are willing to leave.
The potential problem that was found is that
when all charging pads are occupied, and
none of the Duckiebots on a charging pad are willing to leave, Duckiebots entering the charg-
ing station have to go to an emergency charging pad, which are shown in figure 6-2. Since
there were no breakbeam sensors available to detect if a Duckiebot has reached the emer-
gency queue, due to the hardware not being delivered, this was instead implemented using a
timer. This timer makes it so that it is assumed that when the Duckiebot doesn’t exit the
charging station within a certain amount of time, thus triggering the breakbeam sensor, it
will have entered the emergency queue it is supposed to. When multiple critical Duckiebots
enter the charging station very shortly after each other and none of the Duckiebots on the
charging pads are willing to leave, the charging station won’t direct the second Duckiebot
to an emergency queue, either forcing it to exit the charging station, or making it enter an
occupied emergency queue.
This problem can be solved by either using breakbeam sensors to detect when Duckiebots en-
ter an emergency queue, or by making only a single emergency queue for multiple Duckiebots,
thus leaving no doubt as to where the second Duckiebot is, or by making the Duckiebots hold
a certain amount of distance from other Duckiebots when near or inside the charging station,
thus preventing Duckiebots from entering right after each other.

Mahmoud Ayoub, Manno Versluis Autonomous Wireless Charging System for Robot Swarms

6-2 Integration 25

Figure 6-2: Charging station layout

6-2 Integration

6-2-1 Wireless charging hardware subgroup

The wireless charging hardware subgroup has made both a charging receiver on the Duckiebot
and a wireless sender on the charging pad connected to a power supply in order to charge the
Duckiebot [8]. The wireless sender and receiver will also negotiate the amount of power sent
to the Duckiebot using IR communication for the Duckiebot to the charging pad. In order
for a Duckiebot to be charged, it must be on the charging pad. This is achieved by the robot
control and navigation subgroup and the charging station design subgroup.

6-2-2 The charging station design subgroup

The charging station design subgroup is responsible for handling the traffic control inside the
charging station. This is done by communicating with the charging pads using I2C to know
if there is a Duckiebot on that charging pad and if so, to know what it’s state of charge and
minimum desired state of charge are. There are also a number of breakbeam sensors inside
the charging station, these are used to keep track of how many Duckiebots enter and exit the
charging station. The traffic lights are used to communicate the state of the charging station
to Duckiebots passing by, for example if there are free charging pads inside the charging
station, or if a certain charging pad is empty. The traffic lights are also used to ask the
Duckiebots to leave their charging pad in case a Duckiebot with a critically low state of
charge enter the charging station.

Autonomous Wireless Charging System for Robot Swarms Mahmoud Ayoub, Manno Versluis

26 Verification and results

6-2-3 The robot control and navigation subgroup

The robot control and navigation subgroup mas made the robot able to perform object recog-
nition, object detection, distance measurement and made the robot capable of following a
coloured line[9]. By having differently coloured lines going in every possible direction at an
intersection and having the Duckiebot follow the coloured line of the desired colour based
on the state of the detected traffic lights, the Duckiebot can navigate the charging station
correctly. Using the distance measurement and a mark on the road at a predefined distance
behind the charging pad, the robot can stop on the charging pad. The subgroup is also
responsible for making the Duckiebots decide when they want to go to the charging station,
what their minimum desired state of charge is: what state of charge the Duckiebot at least
wants to obtain, and if the Duckiebot leaves when it is asked to leave by the charging station.
If the Duckiebot decides to leave, it communicates this to the charging pad using the IR
communication of the wireless charging hardware group, which will then stop charging the
Duckiebot, after which the Duckiebot will leave.

6-2-4 Integrated subgroups

This way, with the implementations all of the different subgroups integrated, the Duckiebots
should be able to go to the charging station when their battery begins to get low, where they
will then be able to get charged, with prioritization of Duckiebots with a critically low state
of charge, and leave when they have obtained their desired state of charge. This way the
Duckiebots should be able to stay charged without human interaction.

Mahmoud Ayoub, Manno Versluis Autonomous Wireless Charging System for Robot Swarms

Conclusion

This project serves as a study to improve the functionality of the Lunar Zebro Project as
a whole, by introducing a system that enables the seemless facilitation between wireless
charging mechanisms and traffic flow control protocols. This system was necessary, as the
previously existing systems didn’t account for the wireless charging of the Duckiebots and
wireless communication between the charging station and the Duckiebots needed to satisfy
the requirements. By working out the constraints, both on a hardware and software level,
a model of the charging station was created. This model satisfies the program of require-
ments in that a charging queuing protocol is implemented, while still taking the autonomy
of the Duckiebots as a mechanical organism into account, but also the cooperative and social
aspects that you often see in successful species in nature, as the Duckiebots still will leave
when one of their compatriots are critical depleted of energy (critically low SoC). All of the
functional requirements have been met, as the traffic flow control protocols are able to guide
the Duckiebots from the entrance of the charging station to a charging pad, from the charging
pad to the exit of the charging station and prevent the Duckiebots from colliding with one
another in the charging station area. Furthermore, the non-functional requirements have been
met as well, as the roads in the charging station area are large enough to accommodate the
Duckiebots, the charging of the Duckiebots occurs wirelessly and the communication with
the Duckiebot occurs in a wireless fashion via the traffic lights, IR Breakbeam sensors and
the IR communication over the I2C serial bus protocol at the charging pads.

7-1 Future Work

Although the current system setup complies to the programme of requirements, there are still
ways for the system to be improved:

• Look more in-depth into other sensor integrations, such as Radar or LIDAR, allowing
for more robustness

• The Duckiebots could be altered to allow of radio communication[10][11] between them,
allowing for more versatility.

• Explore the environmental impacts on the Duckiebot harder in space more in depth to
show case any future complications.

Autonomous Wireless Charging System for Robot Swarms Mahmoud Ayoub, Manno Versluis

Bibliography

[1] Duckietown-Team, “The Duckiebot operation manual,” online (pdf): https://docs.
duckietown.com/daffy/opmanual-duckiebot/ intro.html, 2022.

[2] P. S. P. M. Iwan Wahyuddin and H. Sudibyo, “State of Charge (SoC) Analysis and
Modeling Battery Discharging Parameters,” online (pdf): https:// ieeexplore.ieee.org/
document/8528631 , 2018.

[3] S. Zhang and J. J. Q. Yu, “Electric Vehicle Dynamic Wireless Charging System: Optimal
Placement and Vehicle-to-Grid Scheduling,” online (pdf): https:// ieeexplore.ieee.org/
document/9528835 , 2021.

[4] J. P. Q. Tuan Nguyen Gia and T. Westerlund, “Exploiting LoRa, edge,
and fog computing for traffic monitoring in smart cities,” online (pdf):
https://www.researchgate.net/publication/340070758_Exploiting_LoRa_edge_and_
fog_computing_for_traffic_monitoring_in_smart_cities, 2020.

[5] PJRC, “Teensy® lc development board,” 2023. [Online]. Available: https://www.pjrc.
com/store/teensylc.html

[6] Adafruit-Industries, “Ir break beam sensor with premium wire header ends
- 5mm leds,” adafruit industries blog RSS, 2021. [Online]. Available: https:
//www.adafruit.com/product/2168

[7] N. B.V., “Power logic 8-bit shift register; open-drain outputs,” online (pdf): https://
assets.nexperia.com/documents/data-sheet/NPIC6C596A_Q100.pdf , 2020.

[8] O. Nezamuddin and E. C. dos Santos, “Vehicle-to-Vehicle In-Route Wireless Charging
System,” online (pdf): https:// ieeexplore.ieee.org/document/9161472 , 2020.

[9] J.-H. A. Sujin Youn and K. Park, “Entrance detection of a moving object using inten-
sity average variation of subtraction images,” online (pdf): https:// ieeexplore.ieee.org/
document/4505600 , 2008.

Mahmoud Ayoub, Manno Versluis Autonomous Wireless Charging System for Robot Swarms

https://docs.duckietown.com/daffy/opmanual-duckiebot/intro.html
https://docs.duckietown.com/daffy/opmanual-duckiebot/intro.html
https://ieeexplore.ieee.org/document/8528631
https://ieeexplore.ieee.org/document/8528631
https://ieeexplore.ieee.org/document/9528835
https://ieeexplore.ieee.org/document/9528835
https://www.researchgate.net/publication/340070758_Exploiting_LoRa_edge_and_fog_computing_for_traffic_monitoring_in_smart_cities
https://www.researchgate.net/publication/340070758_Exploiting_LoRa_edge_and_fog_computing_for_traffic_monitoring_in_smart_cities
https://www.pjrc.com/store/teensylc.html
https://www.pjrc.com/store/teensylc.html
https://www.adafruit.com/product/2168
https://www.adafruit.com/product/2168
https://assets.nexperia.com/documents/data-sheet/NPIC6C596A_Q100.pdf
https://assets.nexperia.com/documents/data-sheet/NPIC6C596A_Q100.pdf
https://ieeexplore.ieee.org/document/9161472
https://ieeexplore.ieee.org/document/4505600
https://ieeexplore.ieee.org/document/4505600

29

[10] Y.-W. S. Jin-Shyan Lee and C.-C. Shen, “A Comparative Study of Wireless Proto-
cols: Bluetooth, UWB, ZigBee, and Wi-Fi,” online (pdf): https:// ieeexplore.ieee.org/
document/4460126 , 2008.

[11] E. Ferro and F. Potorti, “Bluetooth and Wi-Fi wireless protocols: a survey and a com-
parison,” online (pdf): https:// ieeexplore.ieee.org/document/1404569 , 2005.

[12] A. J. E. Hannah M. Boland, Morgan I. Burgett and R. M. S. III, “An Overview of CAN-
BUS Development, Utilization, and Future Potential in Serial Network Messaging for Off-
Road Mobile Equipment,” online (pdf): https://www.intechopen.com/chapters/77277 ,
2021.

[13] A. K. Pranjal Sharma and N. Kumar, “Analysis of UART Communication Protocol,”
online (pdf): https:// ieeexplore.ieee.org/document/9936199 , 2022.

[14] I. K. Pia Kotiranta and M. Rouvala, “SPI Proceedings: Analysis of High-Speed Dig-
ital Interfaces in Flexible Interconnections,” online (pdf): https:// ieeexplore.ieee.org/
document/4069465 , 2007.

[15] NXP-Semiconductors, “I2C-bus specification and user manual,” online (pdf): https://
www.nxp.com/docs/en/user-guide/UM10204.pdf , 2021.

[16] A. Dalal and A. Atri, “A General Overview of Multiplexer and Demultiplexer,” online
(pdf): https:// journals.pen2print.org/ index.php/ ijr/article/download/966/913 , 2014.

[17] B. Kjos-Hanssen, “Automatic complexity of shift register sequences,” online (pdf): https:
//www.sciencedirect.com/science/article/pii/S0012365X18301559 , 2018.

[18] S.-Y. R. Li and X. J. Tan, “Mux/Demux Queues, FIFO Queues, and Their Construc-
tion by Fiber Memories,” online (pdf): https:// ieeexplore.ieee.org/abstract/document/
5714255 , 2011.

[19] M. Zibayiwa, “A Review on The Inter-Processor Communication: I2C, UART, and
SPI interfacing techniques,” online (pdf): https://www.researchgate.net/publication/
356556000_A_Review_on_The_Inter-Processor_Communication_I2C_UART_and_
SPI_interfacing_techniques, 2021.

[20] H. S. I. Illgen and E. Schnieder, “Infrared CAN Interface – Principles of CAN Data
Transmission using infrared light,” online (pdf): https://www.can-cia.org/fileadmin/
resources/documents/proceedings/2000_illgen.pdf , 2000.

Autonomous Wireless Charging System for Robot Swarms Mahmoud Ayoub, Manno Versluis

https://ieeexplore.ieee.org/document/4460126
https://ieeexplore.ieee.org/document/4460126
https://ieeexplore.ieee.org/document/1404569
https://www.intechopen.com/chapters/77277
https://ieeexplore.ieee.org/document/9936199
https://ieeexplore.ieee.org/document/4069465
https://ieeexplore.ieee.org/document/4069465
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://journals.pen2print.org/index.php/ijr/article/download/966/913
https://www.sciencedirect.com/science/article/pii/S0012365X18301559
https://www.sciencedirect.com/science/article/pii/S0012365X18301559
https://ieeexplore.ieee.org/abstract/document/5714255
https://ieeexplore.ieee.org/abstract/document/5714255
https://www.researchgate.net/publication/356556000_A_Review_on_The_Inter-Processor_Communication_I2C_UART_and_SPI_interfacing_techniques
https://www.researchgate.net/publication/356556000_A_Review_on_The_Inter-Processor_Communication_I2C_UART_and_SPI_interfacing_techniques
https://www.researchgate.net/publication/356556000_A_Review_on_The_Inter-Processor_Communication_I2C_UART_and_SPI_interfacing_techniques
https://www.can-cia.org/fileadmin/resources/documents/proceedings/2000_illgen.pdf
https://www.can-cia.org/fileadmin/resources/documents/proceedings/2000_illgen.pdf

Appendix

A-1 Verification simulation code

This code can be uploaded to an Arduino compatible microcontroller, without needing addi-
tional hardware. It was made with and tested using the TeensyLC

1

2 int charging_pads = 3; // amount of charging pads
3 int robots = 0; // robots in charging station
4 int robots_old = 0;
5 bool pad_1_occ = false; // true if pad was occupied, false if not, updates ...

based on pad_1_SoC
6 bool pad_2_occ = false;
7 bool pad_3_occ = false;
8 bool pad_1_lock = false; // keeps pad_1_occ enabled until pad_1_soc ...

detects a robot
9 bool pad_2_lock = false;

10 bool pad_3_lock = false;
11 int pad_1_SoC = 0; // SoC of robot on pad, 7 bit, 000000 is no robot, else ...

robot on pad, updates based on I2C (not implemented yet)
12 int pad_2_SoC = 0;
13 int pad_3_SoC = 0;
14 int pad_1_mSoC = 0; // minimum desired SoC of robot on pad, 7 bit?
15 int pad_2_mSoC = 0;
16 int pad_3_mSoC = 0;
17 bool pad_1_em = false; // is emergency queue occupied?
18 bool pad_2_em = false;
19 bool pad_3_em = false;
20 bool robot_to_em = false;
21 int pad_em_on = 0; // 0 if 0−2 pads occupied, or 6 pads occupied, pin of ...

pad which has entrance light on
22 unsigned long exit_timer = 5000; // how long until the exit light goes off ...

again in ms
23 unsigned long robot_enter = 0; // time when robot enters if 3 < x ≤ 6 pads ...

occupied
24 unsigned long pad_1_exit = 0; // the time when the exit light goes on, ...

used to disable exit light after ... ms.
25 unsigned long pad_2_exit = 0;
26 unsigned long pad_3_exit = 0;
27 unsigned long station_exit = 0;

Mahmoud Ayoub, Manno Versluis Autonomous Wireless Charging System for Robot Swarms

A-1 Verification simulation code 31

28 unsigned long kickoff_high = 100; // how long the light is on for a high ...
priority kick off request (all pads and emergency queues occupied)

29 unsigned long kickoff_low = 30; // how long the light is on for a low ...
priority kick off request (all pads but not all emergency queues occupied)

30 unsigned long kickoff_start = 0; // when kickoff attempt starts
31 unsigned long waiting_out_time = 0; // the amount of time between the ...

waiting area light and the entrance light activating (waiting first)
32 bool station_in_enable = false; // allows station_in to be on
33 int kickoff_tries = 0; // how many kick off requests this round
34 int kickoff_priority; // 1 = high, 0 = low
35 int kick_prev = 0; // last kick off attempt
36 int bb_in_state = 2; // 0 means no robot seen at last check, 1 means robot ...

seen at last check, but not one before,
37 // 2 means robot seen at last check and at 1+ before, ...

if signal goes from 0 to 1 to 0, seen sensor error, ...
not car

38 int bb_out_state = 2;
39 int bb_in2_state = 2;
40 unsigned long old_m_1 = 0; // old value in milliseconds
41 unsigned long old_m_2 = 0;
42

43 // pin assignments
44 // traffic lights, update pin numbers to correct values
45 bool station_in = true; // at station entrance
46 bool pad_1_in = true; // at pad 1 entrance
47 bool pad_2_in = true;
48 bool pad_3_in = true;
49 bool pad_1_out = false; // at pad 1 out
50 bool pad_2_out = false;
51 bool pad_3_out = false;
52 bool station_out = false; // at station exit
53 bool pad_1_kick = false; // at pad 1 kick off
54 bool pad_2_kick = false;
55 bool pad_3_kick = false;
56 bool waiting_out = true; // at waiting area out
57 // breakbeams
58 bool bb_in = false; // charging station entrance breakbeam
59 bool bb_out = false; // charging station exit breakbeam
60 bool bb_in2 = false; // breakbeam for robots that turn right at entrance
61

62 // I2C??? how to implement this, maybe use list for bits and then decode ...
when done?

63

64 void setup() {
65 // put your setup code here, to run once:
66 // use the pin numbers from the board with pinMode(pin, input/output)
67 // use digitalRead(pin) and digitalWrite(pin, high/low)
68 Serial.begin(9600);
69

70 }
71

72 void loop() {
73 // put your main code here, to run repeatedly:
74 unsigned long curr_m = millis();
75 if (curr_m − old_m_1 ≥ 10) { // runs this every 1000 ms
76 old_m_1 = millis();

Autonomous Wireless Charging System for Robot Swarms Mahmoud Ayoub, Manno Versluis

32 Appendix

77 robotCount(); // updates robots (value) if robots enter/exit and ...
enables exit traffic lights upon exit of robots

78 lightsControl(); // enables/disables entry traffic lights of pads and ...
station

79 kickOff();
80 if (robot_to_em && (curr_m − robot_enter ≥ 5000) && pad_em_on != 0) {
81 emergencyQueue(); // checks if emergency queue updates
82 }
83 if (curr_m − pad_1_exit ≥ exit_timer) { // disables charging pad exit ...

lights if on for ... ms
84 if (pad_1_out) {Serial.println("Disable charging pad 1 exit traffic ...

light.");}
85 pad_1_out = false;
86 }
87 if (curr_m − pad_2_exit ≥ exit_timer) {
88 if (pad_2_out) {Serial.println("Disable charging pad 2 exit traffic ...

light.");}
89 pad_2_out = false;
90 }
91 if (curr_m − pad_3_exit ≥ exit_timer) {
92 if (pad_3_out) {Serial.println("Disable charging pad 3 exit traffic ...

light.");}
93 pad_3_out = false;
94 }
95 if (curr_m − station_exit ≥ exit_timer) { // disable exit lights for ...

going right a station entrance
96 if (station_out) {Serial.println("Disable charging station exit ...

traffic light.");}
97 station_out = false;
98 }
99 if (curr_m − waiting_out_time ≥ 2000 && station_in_enable) {

100 if (!station_in) {Serial.println("Enable charging station entrance ...
traffic light.");}

101 station_in = true;
102 station_in_enable = false;
103 }
104 if (robots != robots_old) {
105 Serial.print("There are currently: ");
106 Serial.print(robots);
107 Serial.println(" Duckiebots in the charging station.");
108 robots_old = robots;
109 }
110 }
111 testBench(); // to simulate various inputs
112 }
113

114 void testBench() {
115 unsigned long curr_m = millis();
116 // inputs: bb_in, bb_out, bb_in2 all at least 1 cycles on, robot in, ...

out, turns right at entrance
117 // inputs: pad 1, 2, 3 SoC, 0 means no robot on pad
118 // inputs: pad 1, 2, 3 mSoC, minimum desired SoC, kick off requests ...

based off lowest mSoC − SoC
119 if (old_m_2 == 0) {old_m_2 = millis();} // testbench starts when this is ...

executed
120 if (curr_m − old_m_2 ≥ 1) {
121 bb_in = true;

Mahmoud Ayoub, Manno Versluis Autonomous Wireless Charging System for Robot Swarms

A-1 Verification simulation code 33

122 }
123 if (curr_m − old_m_2 ≥ 15) {
124 bb_in2 = true;
125 }
126 if (curr_m − old_m_2 ≥ 30) { // 1 robot inside
127 bb_in = false;
128 }
129 if (curr_m − old_m_2 ≥ 40) { // robot turned right at entrance
130 bb_in2 = false;
131 }
132 if (curr_m − old_m_2 ≥ 3000) { // robot on pad 1
133 pad_1_SoC = 50;
134 pad_1_mSoC = 80;
135 }
136 if (curr_m − old_m_2 ≥ 3500) {
137 bb_in = true;
138 }
139 if (curr_m − old_m_2 ≥ 3530) { // 2 robots inside
140 bb_in = false;
141 }
142 if (curr_m − old_m_2 ≥ 6500) { // robot on pad 1 and 2
143 pad_2_SoC = 10;
144 pad_2_mSoC = 70;
145 }
146 if (curr_m − old_m_2 ≥ 6600) {
147 bb_in = true;
148 }
149 if (curr_m − old_m_2 ≥ 6630) { // 3 robots inside
150 bb_in = false;
151 }
152 if (curr_m − old_m_2 ≥ 9500) { // robot on pad 1, 2 and 3
153 pad_3_SoC = 30;
154 pad_3_mSoC = 60;
155 }
156 if (curr_m − old_m_2 ≥ 10000) {
157 bb_in = true;
158 }
159 if (curr_m − old_m_2 ≥ 10030) { // 4 robots inside
160 bb_in = false;
161 }
162 if (curr_m − old_m_2 ≥ 10150) { // robot on pad 1 left to make space for ...

incoming robot, 3 robots inside
163 pad_1_SoC = 0;
164 pad_1_mSoC = 0;
165 }
166 if (curr_m − old_m_2 ≥ 13000) { // robot on pad 1, 2 and 3
167 pad_1_SoC = 5;
168 pad_1_mSoC = 55;
169 }
170 if (curr_m − old_m_2 ≥ 14000) {
171 bb_in = true;
172 }
173 if (curr_m − old_m_2 ≥ 14030) { // 4 robots inside, robot will go to ...

emergency queue of charging pad 3
174 bb_in = false;
175 }
176 if (curr_m − old_m_2 ≥ 20000) { //

Autonomous Wireless Charging System for Robot Swarms Mahmoud Ayoub, Manno Versluis

34 Appendix

177 bb_in = true;
178 }
179 if (curr_m − old_m_2 ≥ 20030) { // 5 robots inside, robot will go to ...

emergency queue of charging pad 1
180 bb_in = false;
181 }
182 if (curr_m − old_m_2 ≥ 26000) { //
183 bb_in = true;
184 }
185 if (curr_m − old_m_2 ≥ 26030) { // 6 robots inside, robot will go to ...

emergency queue of charging pad 2
186 bb_in = false;
187 }
188 if (curr_m − old_m_2 ≥ 32000) { //
189 bb_in = true;
190 }
191 if (curr_m − old_m_2 ≥ 32030) { // 7 robots inside
192 bb_in = false;
193 }
194 if (curr_m − old_m_2 ≥ 36030) {
195 bb_out = true;
196 }
197 if (curr_m − old_m_2 ≥ 36060) { // 6 robots inside, robot left through ...

exit breakbeam
198 bb_out = false;
199 }
200 if (curr_m − old_m_2 ≥ 37000) { //
201 bb_in = true;
202 }
203 if (curr_m − old_m_2 ≥ 37030) { // 7 robots inside
204 bb_in = false;
205 }
206 if (curr_m − old_m_2 ≥ 37330) { // robots on pad 1 and 3 left
207 pad_1_SoC = 0;
208 pad_1_mSoC = 0;
209 pad_3_SoC = 0;
210 pad_3_mSoC = 0;
211 }
212 if (curr_m − old_m_2 ≥ 38030) { // robots in emergency queue moved up, ...

charging pads 1, 2 and 3 occupied, emergency queue on pads 1 and 3 ...
now empty

213 // robot will go to emergency queue of ...
charging pad 1

214 pad_1_SoC = 20;
215 pad_1_mSoC = 80;
216 pad_3_SoC = 15;
217 pad_3_mSoC = 85;
218 }
219 }
220

221

222 void kickOff() { // kicks off robots if needed
223 unsigned long curr_m2 = millis();
224

225 if ((kickoff_priority == 1) && (curr_m2 − kickoff_start > kickoff_high)) {
226 pad_1_kick = false;
227 pad_2_kick = false;

Mahmoud Ayoub, Manno Versluis Autonomous Wireless Charging System for Robot Swarms

A-1 Verification simulation code 35

228 pad_3_kick = false;
229 //Serial.println("kick_high off");
230 }
231 else if ((kickoff_priority == 0) && (curr_m2 − kickoff_start > ...

kickoff_low)) {
232 pad_1_kick = false;
233 pad_2_kick = false;
234 pad_3_kick = false;
235 //Serial.println("kick_low off");
236 }
237 if (robot_to_em){ // if all pads and emergency queues occupied and ...

another robot enters, tries to kick off all robots on pads with high ...
priority

238 if (pad_1_em && pad_2_em && pad_3_em && kickoff_tries == 0) { // if ...
all emergency queues occupied, no robot can enter anywhere

239 pad_1_kick = true;
240 pad_2_kick = true;
241 pad_3_kick = true;
242 kickoff_start = millis();
243 kickoff_priority = 1;
244 kickoff_tries = −1;
245 Serial.println("Ask all Duckiebots on charging pads to leave.");
246 }
247 else { // else kick off robots with occupied em queue and try to get 1 ...

free pad with low priority
248 kickoff_priority = 0;
249 if (kickoff_tries == 0) { // finds robot that will first leave
250 //Serial.println("Kick off try 1");
251 if (pad_1_em) {pad_1_kick = true;
252 Serial.println("Ask the Duckiebot on charging pad 1 to leave.");}
253 if (pad_2_em) {pad_2_kick = true;
254 Serial.println("Ask the Duckiebot on charging pad 2 to leave.");}
255 if (pad_3_em) {pad_3_kick = true;
256 Serial.println("Ask the Duckiebot on charging pad 3 to leave.");}
257 if (!pad_1_em && (pad_2_em || (pad_2_mSoC − pad_2_SoC ≥ pad_1_mSoC ...

− pad_1_SoC)) && (pad_3_em || (pad_3_mSoC − pad_3_SoC ≥ ...
pad_1_mSoC − pad_1_SoC))) {

258 pad_1_kick = true;
259 Serial.println("Ask the Duckiebot on charging pad 1 to leave.");
260 kick_prev = 1;
261 }
262 else if (!pad_2_em && (pad_3_em || (pad_3_mSoC − pad_3_SoC ≥ ...

pad_2_mSoC − pad_2_SoC))) {
263 pad_2_kick = true;
264 Serial.println("Ask the Duckiebot on charging pad 2 to leave.");
265 kick_prev = 2;
266 }
267 else {
268 pad_3_kick = true;
269 Serial.println("Ask the Duckiebot on charging pad 3 to leave.");
270 kick_prev = 3;
271 }
272 kickoff_tries += 1;
273 kickoff_start = millis();
274 }
275 else if (kickoff_tries == 1 && (curr_m2 − kickoff_start ≥ 200)) { // ...

finds next robot to leave

Autonomous Wireless Charging System for Robot Swarms Mahmoud Ayoub, Manno Versluis

36 Appendix

276 //Serial.println("Kick off try 2");
277 if (!pad_1_em && (kick_prev != 1) && (pad_2_em || (pad_2_mSoC − ...

pad_2_SoC ≥ pad_1_mSoC − pad_1_SoC) || kick_prev == 2) && ...
(pad_3_em || (pad_3_mSoC − pad_3_SoC ≥ pad_1_mSoC − pad_1_SoC ...
|| kick_prev == 3))) {

278 pad_1_kick = true;
279 Serial.println("Ask the Duckiebot on charging pad 1 to leave.");
280 }
281 else if (!pad_2_em && (kick_prev != 2) && (pad_3_em || (pad_3_mSoC ...

− pad_3_SoC ≥ pad_2_mSoC − pad_2_SoC))) {
282 pad_2_kick = true;
283 Serial.println("Ask the Duckiebot on charging pad 2 to leave.");
284 }
285 else if (!pad_3_em && (kick_prev != 3)) {
286 pad_3_kick = true;
287 Serial.println("Ask the Duckiebot on charging pad 3 to leave.");
288 }
289 kickoff_tries += 1;
290 kickoff_start = millis();
291 }
292 else if (kickoff_tries == 2 && !pad_1_em && !pad_2_em && !pad_3_em ...

&& (curr_m2 − kickoff_start ≥ 200)) { // finds last robot to leave
293 //Serial.println("Kick off try 3");
294 if ((pad_2_mSoC − pad_2_SoC < pad_1_mSoC − pad_1_SoC) && ...

(pad_3_mSoC − pad_3_SoC < pad_1_mSoC − pad_1_SoC)) {
295 pad_1_kick = true;
296 Serial.println("Ask the Duckiebot on charging pad 1 to leave.");
297 }
298 else if (pad_3_mSoC − pad_3_SoC < pad_2_mSoC − pad_2_SoC) {
299 pad_2_kick = true;
300 Serial.println("Ask the Duckiebot on charging pad 2 to leave.");
301 }
302 else {
303 pad_3_kick = true;
304 Serial.println("Ask the Duckiebot on charging pad 3 to leave.");
305 }
306 kickoff_tries = −1;
307 }
308 }
309 }
310 }
311

312 void emergencyQueue() {
313 robot_to_em = false;
314 if (pad_em_on == 1) {
315 if (!pad_1_em) {Serial.println("Charging pad 1 emergency queue ...

occupied.");}
316 pad_1_em = true;
317 }
318 else if (pad_em_on == 2) {
319 if (!pad_2_em) {Serial.println("Charging pad 2 emergency queue ...

occupied.");}
320 pad_2_em = true;
321 }
322 else if (pad_em_on == 3) {
323 if (!pad_3_em) {Serial.println("Charging pad 3 emergency queue ...

occupied.");}

Mahmoud Ayoub, Manno Versluis Autonomous Wireless Charging System for Robot Swarms

A-1 Verification simulation code 37

324 pad_3_em = true;
325 }
326 }
327

328 void lightsControl() {
329 if (robots ≥ charging_pads) {
330 if (waiting_out) {Serial.println("Disable waiting area exit traffic ...

light.");}
331 if (station_in) {Serial.println("Disable charging station entrance ...

traffic light.");}
332 waiting_out = false;
333 station_in = false;
334 station_in_enable = false;
335 }
336 else {
337 if (!waiting_out) {Serial.println("Enable waiting area exit traffic ...

light.");}
338 waiting_out = true;
339 if (!station_in_enable) { // to prevent it from resetting ...

waiting_out_time constantly
340 waiting_out_time = millis(); // station_in will be activated with a ...

small delay to (hopefully) prevent collisions
341 }
342 station_in_enable = true;
343 //Serial.println("enable station");
344 }
345 // if a robot enters the charging station before the previous robot has ...

stopped, it might cause problems
346 if (pad_1_occ && pad_2_occ && pad_3_occ) { // if all pads occupied, ...

entrance light on/off depends on emergency queue
347 if (pad_1_em && pad_2_em && pad_3_em) { // if all emergency queues ...

occupied, no robot can enter anywhere
348 if (pad_1_in) {Serial.println("Disable charging pad 1 entrance ...

traffic light.");}
349 if (pad_2_in) {Serial.println("Disable charging pad 2 entrance ...

traffic light.");}
350 if (pad_3_in) {Serial.println("Disable charging pad 3 entrance ...

traffic light.");}
351 pad_1_in = false;
352 pad_2_in = false;
353 pad_3_in = false;
354 pad_em_on = 0;
355 }
356 else{
357 // enable entrance light of charging pad with lowest mSoC − SoC and ...

no robot in emergency queue, other entrance lights off
358 if (!pad_1_em && (pad_2_em || (pad_2_mSoC − pad_2_SoC ≥ pad_1_mSoC − ...

pad_1_SoC)) && (pad_3_em || (pad_3_mSoC − pad_3_SoC ≥ pad_1_mSoC ...
− pad_1_SoC))) {

359 if (!pad_1_in) {Serial.println("Enable charging pad 1 entrance ...
traffic light.");}

360 if (pad_2_in) {Serial.println("Disable charging pad 2 entrance ...
traffic light.");}

361 if (pad_3_in) {Serial.println("Disable charging pad 3 entrance ...
traffic light.");}

362 pad_1_in = true;
363 pad_2_in = false;

Autonomous Wireless Charging System for Robot Swarms Mahmoud Ayoub, Manno Versluis

38 Appendix

364 pad_3_in = false;
365 pad_em_on = 1;
366 }
367 // light 1 if off, so between 2 and 3
368 else if (!pad_2_em && (pad_3_em || (pad_3_mSoC − pad_3_SoC ≥ ...

pad_2_mSoC − pad_2_SoC))) {
369 if (pad_1_in) {Serial.println("Disable charging pad 1 entrance ...

traffic light.");}
370 if (!pad_2_in) {Serial.println("Enable charging pad 2 entrance ...

traffic light.");}
371 if (pad_3_in) {Serial.println("Disable charging pad 3 entrance ...

traffic light.");}
372 pad_1_in = false;
373 pad_2_in = true;
374 pad_3_in = false;
375 pad_em_on = 2;
376 }
377 else { // lights 1 and 2 are off, so 3 is on
378 if (pad_1_in) {Serial.println("Disable charging pad 1 entrance ...

traffic light.");}
379 if (pad_2_in) {Serial.println("Disable charging pad 2 entrance ...

traffic light.");}
380 if (!pad_3_in) {Serial.println("Enable charging pad 3 entrance ...

traffic light.");}
381 pad_1_in = false;
382 pad_2_in = false;
383 pad_3_in = true;
384 pad_em_on = 3;
385 }
386

387 }
388 }
389 else{ // on/off depends on occupied
390 if (pad_1_occ) {
391 if (pad_1_in) {Serial.println("Disable charging pad 1 entrance ...

traffic light.");}
392 pad_1_in = false;}
393 else {
394 if (!pad_1_in) {Serial.println("Enable charging pad 1 entrance ...

traffic light.");}
395 pad_1_in = true;}
396 if (pad_2_occ) {
397 if (pad_2_in) {Serial.println("Disable charging pad 2 entrance ...

traffic light.");}
398 pad_2_in = false;}
399 else {
400 if (!pad_2_in) {Serial.println("Enable charging pad 2 entrance ...

traffic light.");}
401 pad_2_in = true;}
402 if (pad_3_occ) {
403 if (pad_3_in) {Serial.println("Disable charging pad 3 entrance ...

traffic light.");}
404 pad_3_in = false;}
405 else {
406 if (!pad_3_in) {Serial.println("Enable charging pad 3 entrance ...

traffic light.");}
407 pad_3_in = true;}

Mahmoud Ayoub, Manno Versluis Autonomous Wireless Charging System for Robot Swarms

A-1 Verification simulation code 39

408 pad_em_on = 0;
409 }
410 }
411

412 void robotCount() {
413 if (bb_in_state == 1) { // if robot blocks entrance breakbeam sensor for ...

10−20 ms, it will count another robot entering the charging station
414 bb_in_state = breakBeam_update(bb_in, bb_in_state);
415 if (bb_in_state == 2) {
416 robots += 1;
417 Serial.println("Duckiebot enters charging station.");
418 if (robots ≥ 4) { // if emergency queue used and robot enters
419 robot_to_em = true;
420 kickoff_tries = 0;
421 robot_enter = millis();
422 }
423 }
424 }
425 else {
426 bb_in_state = breakBeam_update(bb_in, bb_in_state);
427 }
428 if (bb_out_state == 1) { // if robot blocks exit breakbeam sensor for ...

10−20 ms, it will count another robot exiting the charging station
429 bb_out_state = breakBeam_update(bb_out, bb_out_state);
430 if (bb_out_state == 2) {
431 robots −= 1;
432 Serial.println("Duckiebot exits charging station");
433 if (robots ≥ 4) { // if emergency queue used and robot exits ...

through exit breakbeam
434 robot_to_em = false;
435 }
436 }
437 }
438 else {
439 bb_out_state = breakBeam_update(bb_out, bb_out_state);
440 }
441 if (bb_in2_state == 1) { // if robot blocks breakbeam sensor to to the ...

right of entrance for 10−20 ms, it will count activate station exit light
442 bb_in2_state = breakBeam_update(bb_in2, bb_in2_state);
443 if (bb_in2_state == 2) {
444 station_out = true;
445 station_exit = millis();
446 Serial.println("Duckiebot turns right at charging station entrance.");
447 }
448 }
449 else {
450 bb_in2_state = breakBeam_update(bb_in2, bb_in2_state);
451 }
452

453 if (!pad_1_lock && pad_1_occ && pad_1_SoC == 0) { // robot left charging pad
454 if (pad_1_em) { // robot in emergency queue now goes to charging pad
455 pad_1_em = false;
456 Serial.println("Duckiebot leaves charging pad 1, Duckiebot in ...

emergency queue of charging pad 1 goes to charging pad 1.");
457 pad_1_lock = true;}
458 else {
459 robot_to_em = false; // else possible incoming robot goes here instead

Autonomous Wireless Charging System for Robot Swarms Mahmoud Ayoub, Manno Versluis

40 Appendix

460 Serial.println("Duckiebot leaves charging pad 1.");
461 pad_1_occ = false;
462 }
463 robots −= 1;
464 pad_1_out = true; // enable exit traffic light
465 Serial.println("Enable charging pad 1 exit traffic light.");
466 pad_1_exit = millis(); // save current time to disable exit traffic ...

light after ... sec
467 }
468 else if ((!pad_1_occ || pad_1_lock) && pad_1_SoC != 0) { // robot ...

entered charging pad
469 pad_1_occ = true;
470 Serial.println("Duckiebot entered charging pad 1.");
471 pad_1_lock = false;
472 }
473 if (!pad_2_lock && pad_2_occ && pad_2_SoC == 0) { // robot left charging pad
474 if (pad_2_em) { // robot in emergency queue now goes to charging pad
475 pad_2_em = false;
476 Serial.println("Duckiebot leaves charging pad 2, Duckiebot in ...

emergency queue of charging pad 2 goes to charging pad 2.");
477 pad_2_lock = true;}
478 else {
479 robot_to_em = false; // else possible incoming robot goes here instead
480 Serial.println("Duckiebot leaves charging pad 2.");
481 pad_2_occ = false;
482 }
483 robots −= 1;
484 pad_2_out = true; // enable exit traffic light
485 Serial.println("Enable charging pad 2 exit traffic light.");
486 pad_2_exit = millis(); // save current time to disable exit traffic ...

light after ... sec
487 }
488 else if ((!pad_2_occ || pad_2_lock) && pad_2_SoC != 0) { // robot ...

entered charging pad
489 pad_2_occ = true;
490 Serial.println("Duckiebot entered charging pad 2.");
491 pad_2_lock = false;
492 }
493 if (!pad_3_lock && pad_3_occ && pad_3_SoC == 0) { // robot left charging pad
494 if (pad_3_em) { // robot in emergency queue now goes to charging pad
495 pad_3_em = false;
496 Serial.println("Duckiebot leaves charging pad 3, Duckiebot in ...

emergency queue of charging pad 3 goes to charging pad 3.");
497 pad_3_lock = true;}
498 else {
499 robot_to_em = false; // else possible incoming robot goes here instead
500 Serial.println("Duckiebot leaves charging pad 3.");
501 pad_3_occ = false;
502 }
503 robots −= 1;
504 pad_3_out = true; // enable exit traffic light
505 Serial.println("Enable charging pad 3 exit traffic light.");
506 pad_3_exit = millis(); // save current time to disable exit traffic ...

light after ... sec
507 }
508 else if ((!pad_3_occ || pad_3_lock) && pad_3_SoC != 0) { // robot ...

entered charging pad

Mahmoud Ayoub, Manno Versluis Autonomous Wireless Charging System for Robot Swarms

A-2 Algorithm implementation code 41

509 pad_3_occ = true;
510 Serial.println("Duckiebot entered charging pad 2.");
511 pad_3_lock = false;
512 }
513 }
514

515 int breakBeam_update(int beam_name, int beam_state) { // returns breakbeam ...
state value: 0, 1 or 2, 0 means no robot seen at last check,

516 // 1 means robot seen at last check, but not at one before that, 2 means ...
robot seen at last check and at 1+ before

517 // if signal goes from 0 to 1 to 0, seen sensor error, not car
518 int beam_ret = 2;
519 if (beam_name){ // signal not blocked, so no car
520 beam_ret = 0;
521 }
522 else if (beam_state == 0) { // car blocks signal
523 beam_ret = 1;
524 }
525 return beam_ret; // returns the new beam state
526 }

A-2 Algorithm implementation code

1

2 int charging_pads = 3; // amount of charging pads
3 int robots = 0; // robots in charging station
4 bool pad_1_occ = true; // true if pad was occupied, false if not, updates ...

based on pad_1_SoC
5 bool pad_2_occ = true;
6 bool pad_3_occ = true;
7 bool pad_1_lock = false; // keeps pad_1_occ enabled until pad_1_soc ...

detects a robot
8 bool pad_2_lock = false;
9 bool pad_3_lock = false;

10 int pad_1_SoC = 0; // SoC of robot on pad, 7 bit, 000000 is no robot, else ...
robot on pad, updates based on I2C (not implemented yet)

11 int pad_2_SoC = 0;
12 int pad_3_SoC = 0;
13 int pad_1_mSoC = 0; // minimum desired SoC of robot on pad, 7 bit?
14 int pad_2_mSoC = 0;
15 int pad_3_mSoC = 0;
16 bool pad_1_em = false; // is emergency queue occupied?
17 bool pad_2_em = false;
18 bool pad_3_em = false;
19 bool robot_to_em = false;
20 int pad_em_on = 0; // 0 if 0−2 pads occupied, or 6 pads occupied, pin of ...

pad which has entrance light on
21 unsigned long exit_timer = 5000; // how long until the exit light goes off ...

again in ms
22 unsigned long robot_enter = 0; // time when robot enters if 3 < x ≤ 6 pads ...

occupied
23 unsigned long pad_1_exit = 0; // the time when the exit light goes on, ...

used to disable exit light after ... ms.

Autonomous Wireless Charging System for Robot Swarms Mahmoud Ayoub, Manno Versluis

42 Appendix

24 unsigned long pad_2_exit = 0;
25 unsigned long pad_3_exit = 0;
26 unsigned long station_exit = 0;
27 unsigned long kickoff_high = 100; // how long the light is on for a high ...

priority kick off request (all pads and emergency queues occupied)
28 unsigned long kickoff_low = 30; // how long the light is on for a low ...

priority kick off request (all pads but not all emergency queues occupied)
29 unsigned long kickoff_start = 0; // when kickoff attempt starts
30 unsigned long waiting_out_time = 0; // the amount of time between the ...

waiting area light and the entrance light activating (waiting first)
31 bool station_in_enable = false; // allows shift_array[0] to be on
32 int kickoff_tries = 0; // how many kick off requests this round
33 int kickoff_priority; // 1 = high, 0 = low
34 int kick_prev = 0; // last kick off attempt
35 int bb_in_state = 2; // 0 means no robot seen at last check, 1 means robot ...

seen at last check, but not one before,
36 // 2 means robot seen at last check and at 1+ before, ...

if signal goes from 0 to 1 to 0, seen sensor error, ...
not car

37 int bb_out_state = 2;
38 int bb_in2_state = 2;
39 unsigned long old_m_1 = 0; // old value in milliseconds
40 unsigned long old_m_3 = 0; // old value in ms
41 int storage_clock_counter = 0; // how many bits sent
42 int x = 0;
43

44 // pin assignments
45 // traffic lights, update pin numbers to correct values, no pins, shift ...

register now
46 // since shift_array[0] enters the register first, it will be output from ...

the last output bit of the register, not the first
47 bool shift_array[] = {false, false, false, false, false, false, false, ...

false, false, false, false, false};
48 //bool shift_array[0] = false; // at station entrance
49 //bool shift_array[1] = false; // at pad 1 entrance
50 //bool shift_array[2] = false; // at pad 2 entrance
51 //bool shift_array[3] = false; // at pad 3 entrance
52 //bool shift_array[4] = false; // at pad 1 out
53 //bool shift_array[5] = false; // at pad 2 out
54 //bool shift_array[6] = false; // at pad 3 out
55 //bool shift_array[7] = false; // at station out
56 //bool shift_array[8] = false; // at pad 1 kick off
57 //bool shift_array[9] = false; // at pad 2 kick off
58 //bool shift_array[10] = false; // at pad 3 kick off
59 //bool shift_array[11] = false; // at waiting area out
60 // shift register pins
61 int data_serial = 0; // the input data
62 int storage_clock = 0; // updates output based on stored data
63 int shift_clock = 0; // stores current input data, moves all data 1 place ...

further
64 // breakbeams
65 int bb_in = 12; // charging station entrance breakbeam
66 int bb_out = 13; // charging station exit breakbeam
67 int bb_in2 = 14; // breakbeam for robots that turn right at entrance
68

69 // I2C??? how to implement this, maybe use list for bits and then decode ...
when done?

Mahmoud Ayoub, Manno Versluis Autonomous Wireless Charging System for Robot Swarms

A-2 Algorithm implementation code 43

70

71 void setup() {
72 // put your setup code here, to run once:
73 // use the pin numbers from the board with pinMode(pin, input/output)
74 // use digitalRead(pin) and digitalWrite(pin, high/low)
75 pinMode(data_serial, OUTPUT);
76 pinMode(storage_clock, OUTPUT);
77 pinMode(shift_clock, OUTPUT);
78 pinMode(bb_in, INPUT);
79 pinMode(bb_out, INPUT);
80 pinMode(bb_in2, INPUT);
81 Serial.begin(9600);
82 }
83

84 void loop() {
85 // put your main code here, to run repeatedly:
86 unsigned long curr_m = millis();
87 if (curr_m − old_m_1 ≥ 1000) { // runs this every 10 ms
88 old_m_1 = millis();
89 robotCount(); // updates robots (value) if robots enter/exit and ...

enables exit traffic lights upon exit of robots
90 lightsControl(); // enables/disables entry traffic lights of pads and ...

station
91 kickOff(); // tries to kick off robots if needed
92 if (robot_to_em && (curr_m − robot_enter ≥ 5000) && pad_em_on != 0) {
93 emergencyQueue(); // checks if emergency queue updates
94 }
95 if (curr_m − pad_1_exit ≥ exit_timer) { // disables charging pad exit ...

lights if on for ... ms
96 shift_array[4] = false;
97 }
98 if (curr_m − pad_2_exit ≥ exit_timer) {
99 shift_array[5] = false;

100 }
101 if (curr_m − pad_3_exit ≥ exit_timer) {
102 shift_array[6] = false;
103 }
104 if (curr_m − station_exit ≥ exit_timer) { // disable exit lights for ...

going right a station entrance
105 shift_array[7] = false;
106 }
107 if (curr_m − waiting_out_time ≥ 2000 && station_in_enable) {
108 shift_array[0] = true;
109 station_in_enable = false;
110 }
111 Serial.println(robots);
112 }
113 if (curr_m − old_m_3 ≥ 1) { // every 1 ms
114 old_m_3 = millis();
115 shiftReg();
116 }
117 }
118

119 void shiftReg() { // sends data to shift register
120 if (x ≤ 31) {
121 if (x % 2 == 0) { // 2 8 bit shift register, so 16 bits sent
122 digitalWrite(shift_clock, LOW); // shifts at rising edge

Autonomous Wireless Charging System for Robot Swarms Mahmoud Ayoub, Manno Versluis

44 Appendix

123 if (x < 26) { // we only have 12 bits input and 2*12 < 26
124 if (shift_array[x]){
125 digitalWrite(data_serial, HIGH); // this bit is high
126 }
127 else {
128 digitalWrite(data_serial, LOW); // this bit is low
129 }
130 }
131 else {
132 digitalWrite(data_serial, LOW); // not needed, so assumed low
133 }
134 }
135 else { // shifts everything 1 bit further
136 digitalWrite(shift_clock, HIGH); // shifts values 1 bit
137 }
138 x += 1;
139 }
140 else {
141 digitalWrite(storage_clock, HIGH); // updates the output
142 x = 0;
143 }
144 }
145

146 void kickOff() { // kicks off robots if needed
147 unsigned long curr_m2 = millis();
148

149 if ((kickoff_priority == 1) && (curr_m2 − kickoff_start > kickoff_high)) {
150 shift_array[8] = false;
151 shift_array[9] = false;
152 shift_array[10] = false;
153 Serial.println("kick_high off");
154 }
155 else if ((kickoff_priority == 0) && (curr_m2 − kickoff_start > ...

kickoff_low)) {
156 shift_array[8] = false;
157 shift_array[9] = false;
158 shift_array[10] = false;
159 Serial.println("kick_low off");
160 }
161 if (robot_to_em){ // if all pads and emergency queues occupied and ...

another robot enters, tries to kick off all robots on pads with high ...
priority

162 if (pad_1_em && pad_2_em && pad_3_em && kickoff_tries == 0) { // if ...
all emergency queues occupied, no robot can enter anywhere

163 shift_array[8] = true;
164 shift_array[9] = true;
165 shift_array[10] = true;
166 kickoff_start = millis();
167 kickoff_priority = 1;
168 kickoff_tries = −1;
169 Serial.println("kick all em");
170 }
171 else { // else kick off robots with occupied em queue and try to get 1 ...

free pad with low priority
172 kickoff_priority = 0;
173 if (kickoff_tries == 0) { // finds robot that will first leave
174 Serial.println("kick try 1");

Mahmoud Ayoub, Manno Versluis Autonomous Wireless Charging System for Robot Swarms

A-2 Algorithm implementation code 45

175 if (pad_1_em) {shift_array[8] = true;}
176 if (pad_2_em) {shift_array[9] = true;}
177 if (pad_3_em) {shift_array[10] = true;}
178 if (!pad_1_em && (pad_2_em || (pad_2_mSoC − pad_2_SoC ≥ pad_1_mSoC ...

− pad_1_SoC)) && (pad_3_em || (pad_3_mSoC − pad_3_SoC ≥ ...
pad_1_mSoC − pad_1_SoC))) {

179 shift_array[8] = true;
180 kick_prev = 1;
181 }
182 else if (!pad_2_em && (pad_3_em || (pad_3_mSoC − pad_3_SoC ≥ ...

pad_2_mSoC − pad_2_SoC))) {
183 shift_array[9] = true;
184 kick_prev = 2;
185 }
186 else {
187 shift_array[10] = true;
188 kick_prev = 3;
189 }
190 kickoff_tries += 1;
191 kickoff_start = millis();
192 }
193 else if (kickoff_tries == 1 && (curr_m2 − kickoff_start ≥ 200)) { // ...

finds next robot to leave
194 Serial.println("kick try 2");
195 if (!pad_1_em && (kick_prev != 1) && (pad_2_em || (pad_2_mSoC − ...

pad_2_SoC ≥ pad_1_mSoC − pad_1_SoC)) && (pad_3_em || ...
(pad_3_mSoC − pad_3_SoC ≥ pad_1_mSoC − pad_1_SoC))) {

196 shift_array[8] = true;
197 }
198 else if (!pad_2_em && (kick_prev != 2) && (pad_3_em || (pad_3_mSoC ...

− pad_3_SoC ≥ pad_2_mSoC − pad_2_SoC))) {
199 shift_array[9] = true;
200 }
201 else if (!pad_3_em && (kick_prev != 3)) {
202 shift_array[10] = true;
203 }
204 kickoff_tries += 1;
205 kickoff_start = millis();
206 }
207 else if (kickoff_tries == 2 && !pad_1_em && !pad_2_em && !pad_3_em ...

&& (curr_m2 − kickoff_start ≥ 200)) { // finds last robot to leave
208 Serial.println("kick try 3");
209 if ((pad_2_mSoC − pad_2_SoC < pad_1_mSoC − pad_1_SoC) && ...

(pad_3_mSoC − pad_3_SoC < pad_1_mSoC − pad_1_SoC)) {
210 shift_array[8] = true;
211 }
212 else if (pad_3_mSoC − pad_3_SoC < pad_2_mSoC − pad_2_SoC) {
213 shift_array[9] = true;
214 }
215 else {
216 shift_array[10] = true;
217 }
218 kickoff_tries = −1;
219 }
220 }
221 }
222 }

Autonomous Wireless Charging System for Robot Swarms Mahmoud Ayoub, Manno Versluis

46 Appendix

223

224 void emergencyQueue() {
225 robot_to_em = false;
226 if (pad_em_on == 1) {
227 pad_1_em = true;
228 Serial.println("pad_1_em true");
229 }
230 else if (pad_em_on == 2) {
231 pad_2_em = true;
232 Serial.println("pad_2_em true");
233 }
234 else if (pad_em_on == 3) {
235 pad_3_em = true;
236 Serial.println("pad_3_em true");
237 }
238 }
239

240 void lightsControl() {
241 if (robots ≥ charging_pads) {
242 shift_array[11] = false;
243 shift_array[0] = false;
244 station_in_enable = false;
245 Serial.println("disable station");
246 }
247 else {
248 shift_array[11] = true;
249 if (!station_in_enable) { // to prevent it from resetting ...

waiting_out_time constantly
250 waiting_out_time = millis(); // shift_array[0] will be activated ...

with a small delay to (hopefully) prevent collisions
251 }
252 station_in_enable = true;
253 Serial.println("enable station");
254 }
255 // if a robot enters the charging station before the previous robot has ...

stopped, it might cause problems
256 if (pad_1_occ && pad_2_occ && pad_3_occ) { // if all pads occupied, ...

entrance light on/off depends on emergency queue
257 if (pad_1_em && pad_2_em && pad_3_em) { // if all emergency queues ...

occupied, no robot can enter anywhere
258 shift_array[1] = false;
259 shift_array[2] = false;
260 shift_array[3] = false;
261 pad_em_on = 0;
262 }
263 else{
264 // enable entrance light of charging pad with lowest mSoC − SoC and ...

no robot in emergency queue, other entrance lights off
265 if (!pad_1_em && (pad_2_em || (pad_2_mSoC − pad_2_SoC ≥ pad_1_mSoC − ...

pad_1_SoC)) && (pad_3_em || (pad_3_mSoC − pad_3_SoC ≥ pad_1_mSoC ...
− pad_1_SoC))) {

266 shift_array[1] = true;
267 shift_array[2] = false;
268 shift_array[3] = false;
269 pad_em_on = 1;
270 }
271 // light 1 if off, so between 2 and 3

Mahmoud Ayoub, Manno Versluis Autonomous Wireless Charging System for Robot Swarms

A-2 Algorithm implementation code 47

272 else if (!pad_2_em && (pad_3_em || (pad_3_mSoC − pad_3_SoC ≥ ...
pad_2_mSoC − pad_2_SoC))) {

273 shift_array[1] = false;
274 shift_array[2] = true;
275 shift_array[3] = false;
276 pad_em_on = 2;
277 }
278 else { // lights 1 and 2 are off, so 3 is on
279 shift_array[1] = false;
280 shift_array[2] = false;
281 shift_array[3] = true;
282 pad_em_on = 3;
283 }
284

285 }
286 }
287 else{ // on/off depends on occupied
288 if (pad_1_occ) {shift_array[1] = false;}
289 else {shift_array[1] = true;}
290 if (pad_2_occ) {shift_array[2] = false;}
291 else {shift_array[2] = true;}
292 if (pad_3_occ) {shift_array[3] = false;}
293 else {shift_array[3] = true;}
294 pad_em_on = 0;
295 }
296 }
297

298 void robotCount() {
299 if (bb_in_state == 1) { // if robot blocks entrance breakbeam sensor for ...

10−20 ms, it will count another robot entering the charging station
300 bb_in_state = breakBeam_update(bb_in, bb_in_state);
301 if (bb_in_state == 2) {
302 robots += 1;
303 if (robots ≥ 4) { // if emergency queue used and robot enters
304 robot_to_em = true;
305 kickoff_tries = 0;
306 robot_enter = millis();
307 }
308 Serial.println("bb_in on");
309 }
310 }
311 else {
312 bb_in_state = breakBeam_update(bb_in, bb_in_state);
313 }
314 if (bb_out_state == 1) { // if robot blocks exit breakbeam sensor for ...

10−20 ms, it will count another robot exiting the charging station
315 bb_out_state = breakBeam_update(bb_out, bb_out_state);
316 if (bb_out_state == 2) {
317 robots −= 1;
318 if (robots ≥ 4) { // if emergency queue used and robot exits ...

through exit breakbeam
319 robot_to_em = false;
320 }
321 Serial.println("bb_out on");
322 }
323 }
324 else {

Autonomous Wireless Charging System for Robot Swarms Mahmoud Ayoub, Manno Versluis

48 Appendix

325 bb_out_state = breakBeam_update(bb_out, bb_out_state);
326 }
327 if (bb_in2_state == 1) { // if robot blocks breakbeam sensor to to the ...

right of entrance for 10−20 ms, it will count activate station exit light
328 bb_in2_state = breakBeam_update(bb_in2, bb_in2_state);
329 if (bb_in2_state == 2) {
330 shift_array[7] = true;
331 station_exit = millis();
332 Serial.println("bb_in_2 on");
333 }
334 }
335 else {
336 bb_in2_state = breakBeam_update(bb_in2, bb_in2_state);
337 }
338

339 if (!pad_1_lock && pad_1_occ && pad_1_SoC == 0) { // robot left charging pad
340 if (pad_1_em) { // robot in emergency queue now goes to charging pad
341 pad_1_em = false;
342 pad_1_lock = true;}
343 else {
344 robot_to_em = false; // else possible incoming robot goes here instead
345 pad_1_occ = false;
346 }
347 robots −= 1;
348 shift_array[4] = true; // enable exit traffic light
349 pad_1_exit = millis(); // save current time to disable exit traffic ...

light after ... sec
350 }
351 else if ((!pad_1_occ || pad_1_lock) && pad_1_SoC != 0) { // robot ...

entered charging pad
352 pad_1_occ = true;
353 pad_1_lock = false;
354 }
355 if (!pad_2_lock && pad_2_occ && pad_2_SoC == 0) { // robot left charging pad
356 if (pad_2_em) { // robot in emergency queue now goes to charging pad
357 pad_2_em = false;
358 pad_2_lock = true;}
359 else {
360 robot_to_em = false; // else possible incoming robot goes here instead
361 pad_2_occ = false;
362 }
363 robots −= 1;
364 shift_array[5] = true; // enable exit traffic light
365 pad_2_exit = millis(); // save current time to disable exit traffic ...

light after ... sec
366 }
367 else if ((!pad_2_occ || pad_2_lock) && pad_2_SoC != 0) { // robot ...

entered charging pad
368 pad_2_occ = true;
369 pad_2_lock = false;
370 }
371 if (!pad_2_lock && pad_3_occ && pad_3_SoC == 0) { // robot left charging pad
372 if (pad_3_em) { // robot in emergency queue now goes to charging pad
373 pad_3_em = false;
374 pad_3_lock = true;}
375 else {
376 robot_to_em = false; // else possible incoming robot goes here instead

Mahmoud Ayoub, Manno Versluis Autonomous Wireless Charging System for Robot Swarms

A-2 Algorithm implementation code 49

377 pad_3_occ = false;
378 }
379 robots −= 1;
380 shift_array[6] = true; // enable exit traffic light
381 pad_3_exit = millis(); // save current time to disable exit traffic ...

light after ... sec
382 }
383 else if ((!pad_3_occ || pad_3_lock) && pad_3_SoC != 0) { // robot ...

entered charging pad
384 pad_3_occ = true;
385 pad_3_lock = false;
386 }
387 }
388

389 int breakBeam_update(int beam_name, int beam_state) { // returns breakbeam ...
state value: 0, 1 or 2, 0 means no robot seen at last check,

390 // 1 means robot seen at last check, but not at one before that, 2 means ...
robot seen at last check and at 1+ before

391 // if signal goes from 0 to 1 to 0, seen sensor error, not car
392 int beam_ret = 2;
393 if (digitalRead(beam_name) == 1){ // signal not blocked, so no car
394 beam_ret = 0;
395 }
396 else if (beam_state == 0) { // car blocks signal
397 beam_ret = 1;
398 }
399 return beam_ret; // returns the new beam state
400 }

Autonomous Wireless Charging System for Robot Swarms Mahmoud Ayoub, Manno Versluis

	Front Matter
	Cover Page
	Title Page
	Signatures
	Abstract
	Table of Contents

	Main Matter
	Introduction
	Robot charging
	Document structure

	Programme of requirements
	Assumptions
	Mandatory requirements
	Functional requirements
	Non-functional requirements

	Trade-off requirements

	Choice analysis
	Duckiebot communication
	PIR vs AIR

	Multiple charging pads
	Charging station layout
	Communication protocols
	Serial Peripheral Interface
	Controller Area Network
	Universal Asynchronous Receiver/Transmitter
	Inter-integrated Circuit
	Comparison

	Switches
	Multiplexer/Demultiplexer
	Shift Register
	comparison

	Theory
	I2C
	Serial Lines

	Implementation
	Algorithms
	Traffic lights
	Charging station entrance traffic light
	Charging pad entrance traffic lights
	Charging pad exit traffic lights
	Charging pad kickoff request traffic lights

	Hardware
	Microcontroller
	Breakbeam sensor
	Shift registers
	Traffic lights

	Verification and results
	Simulation
	Integration
	Wireless charging hardware subgroup
	The charging station design subgroup
	The robot control and navigation subgroup
	Integrated subgroups

	Conclusion
	Future Work

	References

	Appendices
	Appendix
	Verification simulation code
	Algorithm implementation code

