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Preface 
This text forms part of material taught during an elective course in advanced reservoir 
simulation at Delft University of Technology over the past 10 years. The course is aimed at 
students with an applied mathematics or physics background interested in petroleum 
engineering applications, and petroleum engineering students seeking to deepen their 
understanding of the systems-and-control aspects of reservoir management. Part of the 
material has also been presented at various short courses for industrial and academic 
researchers interested in background knowledge needed to perform research in the area of 
closed-loop reservoir management, also known as smart fields, related to e.g. model-based 
production optimization, data assimilation (or history matching), model reduction or 
upscaling techniques. All these topics have connections to system-theoretical concepts such 
as observability, controllability or identifiability. In order to facilitate the accessibility of the 
systems-and-control literature the course starts with a review of the equations for flow 
through porous media in a systems-and-control notation. Although the theory is limited to the 
relatively simple situation of horizontal two-phase (oil-water) flow, it covers several typical 
aspects of porous-media flow. Over the year various editions of the course notes “Systems 
theory for reservoir management”, which contain much more material than presented in this 
text, have found their way to interested parties outside the university. The introductory part, 
i.e. the systems description of flow through porous media, forms the topic of this brief 
monograph. Chapter or section headings marked with a star superscript indicate material that 
can be skipped without losing track of the general train of thoughts. I hope the contents of 
this text will be of value to students and researchers interested in the application of systems-
and-control concepts to oil and gas reservoir simulation and other application areas of 
subsurface flow simulation such as CO2 storage, geothermal energy, or groundwater 
remediation. I like to acknowledge the many students and colleagues, within and outside TU 
Delft, whose critical comments and constructive remarks have helped to improve the text 
over the years. If you have any further comments, please let me know at 
j.d.jansen@tudelft.nl. 

 

 Jan Dirk Jansen, Delft, February 2013. 
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1 Porous-media flow 

Abstract 

This chapter gives a brief review of the basic equations needed to simulate single-phase and 
two-phase (oil-water) flow through porous media. It discusses the governing partial-
differential equations, their physical interpretation (especially the diffusive nature of 
pressures and the convective behavior of saturations), spatial discretization with finite 
differences, and the treatment of wells. It contains well-known theory and is primarily meant 
to form a basis for the next chapter where the equations will be reformulated in terms of 
systems-and-control notation.  

1.1 Introduction 

We will restrict the theory to the relatively simple cases of isothermal, slightly compressible 
single-phase and two-phase (oil-water) flow through porous media, which, however, are 
sufficient to illustrate many of the typical aspects involved in the numerical simulation of 
subsurface flow. Moreover, we will only consider spatial discretizations using finite 
differences, which, however, is no limitation for the development of the theory in subsequent 
chapters. For more complex flows, involving multiple chemical components with multiple 
phases and possibly thermal effects and chemical interactions, we refer to standard textbooks 
on reservoir simulation such as Aziz and Settari (1979), Lake (1989), Mattax and Dalton 
(1990), or Chen et al. (2006). The latter also treats alternative spatial discretization methods 
such as finite elements. For further information on mathematical and modeling aspects of 
reservoir simulation, see e.g. Ewing (1983), Gerritsen and Durlofsky (2005), and Aarnes et 
al. (2007). For its use in reservoir management, see e.g. Fanchi (2006), Oliver et al. (2008) 
and Jansen et al. (2008). 

1.2 Notation 

Scalars will be indicated with Latin or Greek, lower or upper case letters, and vectors with 
Latin or Greek lower case letters in bold-face or in index notation. Occasionally we will use 
a bold-face-italics font to indicate vectors with a special meaning. Matrices will be indicated 
with Latin or Greek bold-face capitals. The superscript T is used to indicate the transpose, 
and dots above variables to indicate differentiation with respect to time. Unless indicated 
otherwise, vectors are always considered to be column vectors. E.g. a vector nx   is 
defined as 

 

1

2

n

x

x

x

 
 
 
 
 
 

x 


. (1.1) 

This expression also illustrates the use of the ‘embellished’ equality sign   to introduce 
definitions.  
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1.3 Single-phase flow 

1.3.1 Governing equations 

General case 

This section gives an overview of the derivation of the governing equations for single-phase 
flow. For details see e.g. Bear (1972), Peaceman (1977), Aziz and Settari (1979) or Helmig 
(1997). We consider one-dimensional, horizontal, isothermal flow of a compressible single-
phase liquid through a compressible porous medium with constant cross-sectional area; see 
Figure 1.1.  

 

Figure 1.1: Control volume. 

We can write the mass balance per unit time for a control volume with length dx as: 

 

mass rate in mass rate out mass accumulated source term

unit time

0
v

A v A dx v dx A dx q
x x t

                     
 , (1.2) 

where A is the cross-sectional area, ( , ) t x  is the fluid density, ( , )v t x  is the Darcy velocity 
averaged over the cross-section†, ( , ) t x  is the porosity, x is the spatial coordinate, t is time 
and q is a source term. Positive values of q correspond to injection, negative values to 
production. If we expand equation (1.2), drop all terms higher than first order in the 
differentials, and simplify the results, we obtain 

 
 

0
  

    
 

v
q

x t
 , (1.3) 

where ( , )q t x  is a now a source term expressed as flow rate per unit volume. We can 
generalize this result to a situation with non-constant cross-section or to two or three 
dimensions by writing 

    
0


  


    




q
t

v  , (1.4) 

where   is the divergence operator,   
x  is a geometric factor that will be defined below, 

x  is the spatial-coordinate vector with components x, y and z, and  ,
 

tv x  is the Darcy 

                                                 
† The Darcy velocity or the filtration velocity, is the superficial velocity that would occur if the entire cross 
section, and not just the pores, would be open to flow. This is as opposed to the interstitial velocity v , which is 
defined as v v , and which is the true fluid velocity in the pore space. The Darcy velocity can also be 
interpreted as a volumetric flux, i.e. the amount of volume flowing through a unit of surface area per unit time. 

dx

v
v

v dx
x





dx

v
v

v dx
x




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velocity vector†. Depending on whether we consider one-, two- or three-dimensional flow, 
the factor , the vectors 


x  and 


v , and the divergence operator are given by: 

 

 

     

   

1-D:  ,  ,  ,

2-D: ,  , ,  , ,  ,

3-D: 1 , , ,  , , ,  ,








    


 

     
 
  

      
  

  

   

    

x y

x y z

A x x v
x

h x y x y v v
x y

x y z v v v
x y z

x v

x v

x v

  (1.5) 

where h is reservoir height. Conservation of momentum in flow through porous media is 
usually expressed with Darcy’s law, an experimental relationship that contains only 
resistance and gravity terms. Disregarding the inertia forces is justified because of the very 
low flow velocities that occur in porous-media flow; see Bear (1972). For the one-
dimensional, horizontal case with constant cross-sectional area Darcy’s law can be expressed 
as 

 



 


k p
v

x
 , (1.6) 

where k(x) is the rock permeability‡, and  is the fluid viscosity. For the more general, non-
horizontal, one-, two- or three-dimensional case we can write the same equation in vector 
form as 

  1 


    


p g dv K  , (1.7) 

where 

 




 
x

  ,  
  

    

  
T

x y
  or  

   
     

   
T

x y z
 , (1.8) 

is the gradient operator for one, two or three dimensions respectively, and where  
 
K x  is the 

permeability tensor, g is the acceleration of gravity and  d x  is depth. Usually the 
orientation of the coordinate system can be aligned with the geological layering in the 
reservoir such that 


K  is a diagonal matrix: 

 

0 0
0

1-D:  ,   2-D:  ,   3-D: 0 0
0

0 0

 
            

   x
x

y
y

z

k
k

k k
k

k

K K K  . (1.9) 

Combining equations (1.4) and (1.7) results in 

                                                 
† We use an arrow above a vector or matrix to indicate that it its components are representing quantities in 
physical space. E.g. 


v  is a velocity vector with one, two or three components, depending on whether we use a 

one-, two-, or three-dimensional reservoir description. Note that the spatial-coordinate vector 

x  is unrelated to 

the state vector x as used in Chapters 2 and 3. The use of the same symbol for two different quantities is 
somewhat unfortunate, but results from conventions in different disciplines. 
‡ Permeability has a dimension of length squared and is therefore expressed in SI units in m2. In reservoir 
engineering use is often made of Darcy units, which are defined as: 1 D = 9.869 233  10-13 ≈ 10-12 m2. 
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    
0

   


            


p g d q

t
K  . (1.10) 

The variables , ,  and 

K  in equation (1.10) may all be functions of the pressure p. 

However, the dependency of  and 

K  on p is usually very small and to simplify our 

formulation we will therefore assume from now on that these parameters are pressure-
independent. The relationship between  and p follows from the equation of state for a liquid, 
which can be written in differential form as 

  
0

1 




l

T

c p
p

 , (1.11) 

where ( )lc p  is the isothermal liquid compressibility and T0 is a constant reference 
temperature, for which the reservoir temperature TR is a logical choice. Similarly, the 
relationship between  and p is given by 

   
0

1 




r

T

c p
p

 ,  (1.12) 

where ( )rc p  is the rock compressibility. Equations (1.11) and (1.12) are nonlinear ordinary-
differential equations for the dependent variables  and  respectively as a function of the 
independent variable p. They are of first-order and therefore require a boundary condition 
each, which can be specified as: 

 
0

0p p
 


  and 

0
0p p

 


  . (1.13, 1.14) 

With the aid of equations (1.11) and (1.12) we can rewrite the accumulation term   t   
in equation (1.10) as 

 
   l r t

p p p
c c c

t t t p p t t t

         
        

               
 , (1.15) 

where   t l rc c c is known as the total compressibility. Combining equations (1.10) and 
(1.15) results in 

  
accumulation term source termflux term

0t

p
p g d c q

t

   


             
K


 
 . (1.16) 

Equation (1.16) is a nonlinear partial-differential equation (PDE) for the dependent variable p 
as a function of the independent variables 


x  and t. It is of first order in t and of second order 

in x, and therefore requires an initial condition and two boundary conditions for each 
coordinate direction. The initial condition for p can be written as  

    
0

,



 
t t

p t px x  . (1.17) 
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Boundary conditions are usually specified in terms of p (Dirichlet conditions) or  


p n  
(Neumann conditions where 


n  is the outward pointing unit normal vector on the boundary†. 

With the aid of Darcy’s law (equation (1.7)) the Neumann conditions can be expressed in 
terms of the velocity, i.e. the flow rate per unit area at the boundary. Therefore we can 
express the two types of boundary conditions as: 

    ,


 

p

p t p tx  and    ,


 
 

q

q t q tx  , (1.18, 1.19) 

where is the boundary of the domain  to which equation (1.16) applies, and q  is the 
outward flow rate per unit area normal to the boundary.  

Linearized case 

In case of a weakly-compressible liquid and relatively small pressure differences we may 
assume that  and  can be linearized at a reference pressure p0, while cl and cr remain 
constant. E.g. to linearize the density, we integrate equation (1.11) for constant cl to obtain 

  exp  lC c p , (1.20) 

then determine the integration constant C from condition (1.13), use a Taylor expansion to 
approximate the exponential function, and maintain terms up to first order leading to 

    0 0 0 0exp 1            l lc p p c p p . (1.21) 

Similarly, we find for the porosity 

  0 01     rc p p . (1.22) 

Next, we also assume that the permeability is isotropic, i.e. that the tensor 

K  can be replaced 

by a scalar k, and that , k and  are constant over the spatial domain. Substitution of 
expressions (1.21) and (1.22) in equation (1.10), disregarding small terms containing the 
products cl cr, 2( ) lp c  and 0( ) lp p p c  , and dividing out 0 results in the linear equation 

  2
0 0 0 


      
t

k p
p gd c q

t
 . (1.23) 

If we furthermore define the potential 0p gd    equation (1.23) can be expressed as a 
linear diffusion equation 

 2
   


Q

t
 , (1.24) 

where 0( )tk c   is the diffusion constant, and 0( )tQ q c  is a scaled source term. 

1.3.2 Finite-difference discretization 

Formulation 

This sub-section presents a straightforward approach to the semi-discretization of equation 
(1.16) with the aid of finite differences for 2-D flow. The next sub-section will present an 
alternative approach that should be used if it is required that the numerical scheme exactly 

                                                 
† More complicated boundary conditions are possible, e.g. by specifying a relationship between p and p/n, a 
so-called mixed boundary condition. Furthermore, different boundary conditions may be specified along 
different parts of the boundary. 
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satisfies the mass conservation equations. For further information on finite-difference 
discretizations, see Peaceman (1977), Aziz and Settari (1979) and Mattax and Dalton (1990). 
For alternative discretization methods such as finite-volume or finite-element methods, see 
e.g. Patankar (1980), Helmig (1997), or Chen et al. (2006). First we rewrite equation (1.16) in 
scalar 2-D form, assuming isotropic permeability, small rock and fluid compressibilities, 
uniform reservoir thickness and absence of gravity forces: 

 0 0t

h p h p p
k k h c hq

x x y y t


 
                    

. (1.25) 

Just like equation (1.23), equation (1.25) is linear in p. However, unlike equation (1.23), 
equation (1.25) does not contain gravity effects, while it still does have the option of a spatial 
variability of k. Moreover, in equation (1.25), we have not divided out the geometric factor h, 
to stay in line with usual textbook derivation of the discretized equations. Note that because 
of dividing out the density 0 equation (1.25) is now expressed in m3s-1. We apply a block-
centered central-difference scheme with uniform grid to approximate the spatial differentials. 
The first term in equation (1.25) can then be rewritten as 
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 (1.26) 

where i and j are grid-block counters in x and y direction, and where the subscripts i+½, j and 
i-½, j indicate averaged values at the boundaries between grid blocks (i, j) and (i+1, j), and 
grid blocks (i-1, j) and (i, j) respectively†. In analogy to electrical resistances in series we can 
work out the series resistance against flow between two grid-block centers; see Figure 1.2 for 
a 1-D example.  

 

Figure  1.2: One-dimensional example of harmonic averaging of grid-block permeabilities.  

                                                 
† This two-dimensional grid-block numbering is introduced to obtain a systematic description of the 
transmissibilities in a two-dimensional reservoir model. In a numerical implementation, however, one normally  
uses a one-dimensional grid-block numbering as displayed in Figure 1.3, and a connectivity table to list the pairs 
of adjacent grid blocks. See also Table 1.2 which illustrates the two different numbering systems as applied to 
Example 1. 
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Similarly, considering flow in the x-direction for the  2-D case we can write 
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 , (1.27) 

from which we obtain the harmonic average for the permeability: 
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A similar expression can be obtained for ki+½j. After rewriting the second term in equation 
(1.25) in the same fashion, and reorganizing terms we can write 
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where V = h x y is the grid-block volume (taken identical for all grid blocks) and where 

 1 1

2 2
, , 





i j i j

y h
T k

x
 (1.30) 

is the transmissibility between grid blocks (i-1, j) and (i, j), with similar expressions for the 
other transmissibilities. Equation (1.29) can be rewritten in vector form as 
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  (1.31) 

where we have used dots above variables to indicate differentiation with respect to time, and 
where we have changed from flow rates per unit volume q  to flow rates q expressed in 
m3/s. The row vectors in the first and second term of equation (1.31) form building blocks for 
matrices that represent the flow behavior of a collection of grid blocks. The second term of 
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the equation illustrates that, for the chosen 2-D discretization, the change of a grid-block 
pressure at a certain moment in time is a function of its own value and of the pressure values 
in the four neighboring grid blocks. The vector with transmissibility matrix elements has 
therefore typically five non-zero elements. Only the rows that correspond to grid blocks at the 
edges of the domain require a special treatment to incorporate the boundary conditions. For 
no-flow boundary conditions this simply means that they only have four non-zero elements, 
because the fifth one, which represents the boundary transmissibility, is equal to zero. For 
rows corresponding to grid blocks at a corner of the domain the number of non-zero elements 
reduces to three. For a system with n grid blocks we can specify n equations of the form 
(1.31), which, when combined, can be written as 

  Vp Tp q . (1.32) 

The n × n matrices T and V are generally known as the transmissibility matrix and the 
accumulation matrix respectively. 

1.3.3 Example 1 – Single-phase flow in a simple reservoir 

We illustrate the structure of the matrices with a (very) simple example. It consists of a finite-
difference model of a two-dimensional horizontal reservoir with two vertical wells: an 
injector in block 1 and a producer in block 6. Figure 1.3 displays the block-centered finite-
difference model with six grid blocks. The reservoir and fluid properties have been listed in 
Table 1.1. 

 

Figure 1.3: Top view of a six-block finite-difference model of a reservoir with two wells. 
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Table 1.1: Reservoir and fluid properties for Example 1. 

Symbol Variable Value SI units Value Field units

h Grid-block height 20 m 66 Ft 

x, y Grid-block length/width 500 m 1640 Ft 

 Oil dynamic viscosity 5.0  10-4 Pa s 0.5 cP 

klow Permeability, low 1.0  10-14 m2 10 mD 

kmed Permeability, medium 1.0  10-13 m2 101 mD 

khigh Permeability, high 1.0  10-12 m2 1013 mD 

 Porosity 0.3 - 0.3 - 

ct Total compressibility† 2.0  10-8 Pa-1 1.4  10-4 psi-1 

Rp
  Initial reservoir pressure 30  106 Pa 4351.1 psi 

rwell Well-bore radius 0.114 m 4.50 In 

 

The transmissibility matrix T for the six grid blocks of Example 1 can be composed as 
follows: 
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  (1.33) 

Using the data of Table 1.1 we can work out the numerical values of the transmissibilities. 
The results have been displayed in Table 1.2. 

 

                                                 
† The value of the compressibility has been chosen about a factor 10 higher than would be expected for an oil-
reservoir above bubble-point pressure. This results in additional energy storage in the reservoir, an effect that in 
reality would occur in the presence of an aquifer and/or a gas cap. 
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Table 1.2: Transmissibilities for Example 1.† 

Connectivity Grid-block pair i-j Transmissibility 
numbering 

Transmissibility, 
m3/(Pa s) 

1 1-2 (1½, 1) 4.000  10-8 

2 1-4 (1, 1½) 0.727  10-8 

3 2-3 (2½, 1) 0.079  10-8 

4 2-5 (2, 1½) 4.000  10-8 

5 3-6 (3, 1½) 0.073  10-8 

6 4-5 (1½, 2) 0.727  10-8 

7 5-6 (2½, 2) 0.727  10-8 

 

The accumulation matrix for the six grid blocks of Example 1 becomes simply 
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Equation (1.32) can now be worked out as  
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 (1.35) 

 

 

                                                 
† The two-dimensional (i-j) transmissibility numbering in the third column is shown as illustration only. In a 
numerical implementation one typically uses the connectivities displayed in the first column. 
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1.3.4 Incompressible flow 

In the special case that the fluid and rock compressibilities are so small that they may be 
neglected, it follows from equation (1.31) that V 0 . In that case we can rewrite equation 
(1.32) as 

 Tp q . (1.36) 

At first sight it appears if equation (1.36) can simply be solved for the constant pressure p. 
However, as discussed in Sub-section 3.1.4, the transmissibility matrix T  is singular which 
implies that we cannot directly solve the equation. The singularity can be removed through 
prescribing the pressure in at least one of the grid blocks, or through the use of a well model, 
in which case we may indeed solve for p as discussed in more detail in Sub-section 3.2.3. 

1.3.5 Mass-conservative formulation* 

The numerical simulation of a physical process using a discretized form of the governing 
PDEs generally results in an approximate solution of those PDEs. In case of the simulation of 
reservoir flow this implies that both the mass conservation equation and Darcy’s law may not 
be represented accurately. In reservoir engineering there is often a desire to adhere to the 
mass conservation equation as much as possible, because most simulations are made to 
predict recoverable hydrocarbon volumes in some sense. Depending on the discretization 
used, mass conservation may be more or less compromised. In discussing this issue we will 
to a large extent follow the approach of Aziz and Settari (1979), pages 93-97. The effect of 
the discretization on the mass-balance error can be understood by considering equation (1.31) 
which can be interpreted as the mass-balance equation for a single grid block. It basically 
states that the mass accumulation rate of a grid block plus the sum of the mass fluxes to or 
from the four neighboring grid blocks equals the flow rate of the source term. Note that the 
matrix coefficients in each row of the transmissibility matrix exactly add up, a property that is 
also apparent from inspecting the transmissibility matrices in equations (1.33) and (1.35). 
Because of the symmetry of the transmissibility matrix, the same property holds for each 
column. Adding the rows of equation (1.31) we therefore obtain 
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nn

t i j i ji j
i j

Vc p q , (1.37) 

where the double sums indicate summation over all grid blocks in the x and y directions, and 
where the transmissibility terms do no longer appear. Equation (1.37) can be interpreted as 
the mass-balance equation for the entire system, and it states that the sum of the mass 
accumulation rates in all grid blocks equals the sum of the source terms. The summation of 
the source terms does not involve any approximation, and therefore any mass-balance error in 
the numerical solution results from errors in the accumulation terms 0tVc p  . In our derivation 
of equation (1.25), the starting point for the spatial discretization, we used the assumption of 
small and constant compressibilities cl and cr, and in substituting expressions (1.21) and 
(1.22) in equation (1.10) we therefore disregarded small terms containing the products cl cr. A 
straightforward time discretization of the accumulation terms in equation (1.31) in the form 
of  
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t t
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 , (1.38) 
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where k is the time step indicator, is therefore, in general, not mass-conservative. A mass-
conservative time discretization can be obtained by starting from the original form of the 
accumulation term, ( ) t  , as present in equation (1.10). We can now write  
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  (1.39) 

In the process of spatially discretizing equation (1.25) to arrive at equation (1.31) we 
multiplied with V and divided by 0. Starting from equation (1.39), the mass-conservative 
discretization for the accumulation term in equations (1.31) can therefore be written as  

 1 1
0 0
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k k k
t r k l

p pp
Vc V c c

t t

  

   

    
 . (1.40) 

Comparison with equation (1.38) shows that the constant coefficient Vct0 has been replaced 
by a state-dependent coefficient, which, moreover, contains an element k+1 that should be 
computed at the new time step k+1. A mass-conservative implementation therefore always 
requires some form of implicit time integration. For liquid flow, and as long as the pressure 
changes in the reservoir remain small compared to the total pressure, the effect of mass-
balance errors is small, and therefore we do not make use of the strict mass-conserving 
formulation in our numerical examples. However if compressibility plays a role, e.g. when 
free gas is present, the use of a mass-conservative formulation is essential. 

1.3.6 Well models 

Formulation 

The flow between two grid blocks is linearly proportional to the product of pressure drop p 
and transmissibility Tgb, as was discussed in Sub-section 1.3.2 above. However, the pressure 
close to a well displays very strong, nonlinear, gradients in the radial direction, and to capture 
this effect accurately a very fine grid around the well is required. Alternatively, one may 
attempt to model an additional pressure drop based on some analytical or semi-analytical 
solution for the converging flow around a well. Many authors have treated this topic, see e.g. 
Aziz and Settari (1979) and the classic paper of Peaceman (1978). For an overview of 
methods for wells with complex geometries see Ding et al. (2000). Here we will follow 
Peaceman, who developed an expression for the additional pressure drop due to steady-state 
cylindrical radial flow towards a well in the center of a grid block. In general, the pressure p 
as a function of radial distance r from a production well operating at bottom-hole pressure 
pwell, in a homogeneous reservoir with permeability k, and producing fluid with viscosity , is 
given by the logarithmic relationship  

 ln
2well

well

q r
p p

kh r




 
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 
 , (1.41) 

a classic result that follows from solving the steady-state differential equation for radial flow 
through a porous medium, see e.g. Bear (1972). Note that a negative value of the flow rate q 
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indicates production, and a positive value injection. According to equation (1.41) the pressure 
in an injection well would decrease without limit for increasing r. Similarly, the pressure in a 
production well would increase without limit. The expression has therefore only physical 
relevance for a finite domain, bounded by e.g. a circular constant-pressure boundary. 
Peaceman demonstrated that for the particular case of a repeated five-spot injection-
production configuration, the analytical solution for the pressure drop and the numerical 
solution using a fine grid produce the same value for p at an equivalent radial distance from 
the well in the order of 

 0.2eqr x   , (1.42) 

where x is the length of the (square) grid blocks. Although this result is only valid for a 
rather restricted set of assumptions, it has proven to be a very useful basis to model the near-
well pressure drop for simple, vertical, wells in regular grids. In a follow-up paper, Peaceman 
argued that for rectangular grid blocks with length x and width y, expression (1.42) should 
be modified to 

 2 20.14eqr x y     ; (1.43) 

see Peaceman (1983). Combining equations (1.41) and (1.43) we find for the additional 
pressure drop between the grid-block pressure and the well-bottom-hole pressure 
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where Jwell is known as the well index or productivity index, and where negative flow rates 
indicate production. 

Example 1 – well model 

If we consider the wells in our Example 1 and fill in the numerical values of Table 1.1 we 
find that Jwell,11 = 3.7210-8 m3/(Pa s) and Jwell,66 = 3.7210-9 m3/(Pa s). 

1.4 Two-phase flow 

1.4.1 Governing equations 

This section gives a brief overview of the derivation of the governing PDEs for two-phase 
(oil-water) flow, using the simultaneous solution method formulated in po and Sw as described 
in Aziz and Settari (1979), p.133. We consider isothermal conditions only and we will 
formulate the equations in terms of in-situ volumes. The often applied formulation in terms of 
surface volumes, using formation volume factors, is not necessary for our purpose. The mass-
balance equations can be expressed for each of the phases as 
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  (1.45, 1.46) 

where subscripts w an o are used to identify water and oil, and where Sw and So are the 
saturations, defined as the fraction of the pore space occupied by the respective phase. 
Darcy’s law can now be expressed as 
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where krw and kro are the relative permeabilities, which represent the additional resistance to 
flow of a phase caused by the presence of the other phase. For an explanation of the 
underlying physical concepts, see e.g. Lake (1989). Combining equations (1.45) to (1.48) we 
obtain: 
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 (1.49, 1.50) 

Equations (1.49) and (1.50) together contain four unknowns, pw, po Sw and So, two of which 
can be eliminated with aid of the relationships 

  1,w o o w c wS S p p p S    , (1.51, 1.52) 

where pc(Sw) is the oil-water capillary pressure. Substituting equations (1.51) and (1.52) in 
equations (1.49) and (1.50), expanding the right-hand sides, applying chain-rule 
differentiation, and substituting the isothermal equations of state 
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and the definition of rock compressibility 
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allows us to express equations (1.49) in terms of po and Sw as follows: 
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The diffusive effect of capillary pressure plays a role during displacement processes on a 
relatively small length scale (as e.g. in core-flooding experiments). During water flooding on 
reservoir scale the dispersive effect of geological heterogeneities is usually much larger than 
the diffusive effect of capillary pressures. The correct way to take this dispersion into account 
is through the use of a velocity-dependent dispersion tensor; see Russell and Wheeler (1983). 



A systems description of flow through porous media, version 1d, April 2013 23 

In addition to diffusion and dispersion caused by physical phenomena, artificial diffusion will 
occur as a result of the numerical solution of the discretized form of the equations. In many 
cases this numerical diffusion is of the same order of magnitude as or even larger than the 
physical diffusion and dispersion. At this point we will simply neglect capillary forces and 
dispersion altogether. Equations (1.56) and (1.57) can then be simplified to: 
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  (1.58, 1.59) 

where the subscript ‘o’ has been dropped for the pressure because the absence of capillary 
pressure implies that po = pw. 

1.4.2 Nature of the equations 

The nature of two-phase flow equations is discussed by e.g. Peaceman (1977), Aziz and 
Settari (1979), Ewing (1983) and Lake (1989). They illustrate that the pressure behavior is 
essentially diffusive, i.e. that the corresponding equations are parabolic and become elliptic in 
the limit of zero compressibility. The saturation behavior is mixed diffusive-convective, i.e. 
the corresponding equations are mixed parabolic-hyperbolic and become completely 
hyperbolic in the case of zero capillary pressure. This can be seen by rewriting the equations 
as follows. Consider equations (1.56) and (1.57) for 1-D flow through a conduit with constant 
cross-sectional area A, for small compressibilities such that we may assume that  is constant 
but c finite, in the absence of gravity terms and capillary pressure and source terms†, and with 
isotropic permeability k:  
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 (1.60, 1.61) 

Here we introduced the water and oil mobilities  
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Addition of equations (1.60) and (1.61) results in a PDE with only the pressure as primary 
variable‡: 

 0 ,t t
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 (1.64) 

where the total mobility t, and the total compressibility ct have been defined as 

   t w o  ,   1  t w w w o rc S c S c c  . (1.65, 1.66) 

                                                 
† Absence of source terms corresponds to considering the (1-D) flow between an injector and a producer, in 
which case the flow is driven through the boundary conditions. 
‡ The coefficients are still functions of saturation. 
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Equation (1.64) is a parabolic equation with non-constant coefficients. In the incompressible 
case the equation reduces to an elliptic equation: 
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x x
 


 

. (1.67) 

Another equation, with only the water saturation as primary variable, can be obtained as 
follows. Neglecting gravity and considering 1-D flow, Darcy’s law for water and oil, as given 
in equations (1.47) and (1.48), can be expressed as 
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Furthermore, we make use of the ratio 
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known as the water fractional flow, where vw + vo represents the total velocity vt. With the aid 
of these expressions, and realizing that fw is a function† of Sw and therefore that 

( )( )w w w wf x f S S x       , we can rewrite equations (1.60) and (1.61) as 
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Subtraction of equations (1.71) and (1.72) after premultiplication with the appropriate factors 
allows us to eliminate the p t   term and to obtain the required equation in terms of 
saturations only. In particular, for the incompressible case we find that: 
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Equation (1.73) is a first-order nonlinear hyperbolic equation, with a non-constant coefficient 
vt = vw + vo which depends on the pressure according to equations (1.68) and (1.69). In 
theory, the coupled equations (1.64) and (1.73) are therefore both nonlinear. However, 
because the changes in saturations usually occur much slower than the pressure changes†, the 
nonlinearity in the pressure equation (1.64) is weak, and the equation may often be 
considered as a linear one with slowly-varying coefficients.  

1.4.3 Relative permeabilities 

The saturation-dependency of the relative permeabilities is usually determined from 
laboratory experiments where water is forced through a small core (a cylindrical piece of 
rock) initially saturated with oil. The values to be used in reservoir simulation are typically 
provided in the form of tables or simple mathematical expressions with parameters that have 

                                                 
† ( )w wf S  is sometimes referred to as the flux function.  
† In fact, the hyperbolic saturation equation in the form given in equation (1.73) is coupled to the elliptic 
pressure equation (1.67) because we assumed incompressible flow in its derivation. In that case the pressure 
changes are instantaneous. 
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been fitted using the experimental results. Several of such expressions are known in the 
literature. Here we use the so-called Corey model given by 
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where S is a scaled saturation defined as  
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0
rwk  and 0

rok  are the end-point relative permeabilities, nw and no are the Corey exponents, Swc is 
the connate-water saturation and Sor is the residual-oil saturation. Note that the water 
fractional flow can also be expressed as  
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Moreover, in the next section we will make use of the derivative w wdf dS  which can, for the 
Corey model, be expressed analytically as 
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where 
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1.4.4 Example 2 – Two-phase flow in a simple reservoir 

Example 2 consists of the same six-block reservoir as in Example 1, but with two fluids, oil 
and water, instead of just oil. The additional reservoir and fluid properties have been 
specified in Table 1.3, and the corresponding relative permeabilities and the water fractional 
flow have been plotted in Figures 1.4 and 1.5. The water and oil compressibilities are equal 
and identical to the oil compressibility from Example 1, such that the total compressibility 
also remains unchanged. In this particular case the accumulation terms are therefore not a 
function of the saturations. The water viscosity is twice the oil viscosity. Moreover, the end-
point permeability of water is two thirds of the end-point permeability of oil, such that the 
end-point water-oil mobility ratio is equal to one third, i.e. favorable. Figures 1.4 and 1.5 
clearly display the strong saturation dependency of the relative permeabilities and the 
corresponding water fractional flow. 
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Table 1.3: Additional reservoir and fluid properties for Example 2. 

Symbol Variable Value SI units Value Field units

w Water dynamic viscosity 1.0  10-3 Pa s 1.0 cP 
0
rok   End-point relative permeability, oil 0.9  
0
rwk   End-point relative permeability, water   

no  Corey exponent, oil 2.0  

nw  Corey exponent, water 2.0  

Sor  Residual-oil saturation 0.2  

Swc  Connate-water saturation 0.2  

 

 
Figure 1.4: Relative permeabilities for Example 2. 

 

Figure 1.5: Water fractional flow for Example 2. 
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1.4.5 Buckley-Leverett equation* 

Equation (1.73) is often referred to as the Buckley-Leverett equation after the authors who 
first presented and analyzed it in the petroleum literature (Buckley and Leverett, 1942). It 
describes the one-dimensional saturation distribution of two incompressible immiscible 
fluids, neglecting the effects of gravity and capillary pressure. Without loss of generality 
consider a core-flooding experiment with boundary and initial conditions given by 

  ,0 w wcS x S  , (1.81) 

  0, 1 w orS t S  , (1.82) 

representing a situation where the core is initially filled with oil except for a small fraction 
Swc of connate water, whereafter water flooding takes place by injecting water at 0x  such 
that the oil is replaced by water except for a small fraction Sro of residual oil. As for all 
hyperbolic equations (which typically describe wave propagation problems) it is possible to 
find characteristics, i.e. relationships between x and t for which the dependent variables do 
not change. In our case of a single dependent variable Sw this means that the total derivative 

wdS dt  should remain equal to zero: 
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For a given saturation ˆw wS S  we can therefore write 
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and combination of equations (1.73) and (1.84) then gives 
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The position of the point where ˆw wS S  follows by integrating equation (1.85) resulting in 
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where the integration constant has been set equal to zero which implies that 0x  at 0t . If 
the core has length L and cross sectional area A, it is convenient to rescale equation (1.86) as 
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which leads to the dimensionless Buckley-Leverett velocity 
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Here the dimensionless length and time are defined as 
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where pV  is the pore volume of the core. Figure 1.6 displays the derivative w wdf dS  as a 
function of wS , and Figure 1.7 the corresponding Buckley-Leverett solution (1.87) at 
dimensionless time 0.2Dt , i.e. after injection of 20% of the pore volume or 
(1 ) 20% 33.3%or wcS S     of the mobile pore volume. 

 

Figure 1.6: Derivative of the water fractional flow for Example 2. 

 

Figure 1.7: Buckley–Leverett solution (dotted line) and shock solution (solid line) 
corresponding to 0.2Dt  or 33.3% mobile pore volume injected. 
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increase in water saturation at a value of Dx  somewhere in the triple value region. This effect 
can be approximated in the form of a step-wise increase of saturation known as a shock in the 
theory of hyperbolic differential equations. The magnitude and position of the shock follow 
from requiring that mass is conserved in a control volume around the shock†. If the shock of 
magnitude *  w w wcS S S  moves a distance  Dx  in a time interval  Dt  it can be derived that 
the shock velocity *

Dv  should obey (see e.g. Lake (1989) for details) 
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where we used a superscripted star to indicate the variables at shock conditions. However, the 
velocity should also satisfy equation (1.88), and we may therefore equate expressions (1.88) 
and (1.91) which leads to a condition for the shock saturation *

wS  in the form of 
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Usually equation (1.92) cannot be solved explicitly for *
wS , and requires an iterative 

numerical solution‡. The solid line in Figure 1.7 displays the saturation profile along the core 
taking into account the shock formation. Combining equations (1.87) and (1.91) we can 
express the full solution as 
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This kind of analysis, known as fractional-flow theory or the method of characteristics, has 
been successfully extended to multiple components and thermal behavior, see e.g. Lake 
(1989), but is typically restricted to one-dimensional flow. Moreover, in reality there will 
always be dispersive effects caused by capillary forces, compressibility and reservoir 
heterogeneities, and true shocks will therefore never be present. However, sharp saturation 
increases do certainly occur and the underlying characteristic hyperbolic behavior of the 
saturation equation is an important feature of multiphase flow in porous media. 

1.4.6 Linear approximation* 

In the special case of linear relative permeabilities with end values equal to one and residual 
saturations equal to zero we have  

   rw w wk S S   and    1 ro w wk S S  . (1.94, 1.95) 

If, in addition, we take 

    o w  , (1.96) 

we have 

                                                 
† We may either consider the water mass or the oil mass. Moreover, because we assume the fluids to be 
incompressible, it is sufficient to consider a volume balance rather than a mass balance. 
‡ As was first shown in Welge (1952), equation (1.92) implies that the tangent at wf  in *

wS  and the secant from 
wcS  to *

wS  are identical, leading to a simple graphical solution procedure, known as the Welge method, which 
was popular before the advent of computers. 
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  and  w wf S  , (1.97, 1.98) 

such that we can rewrite equations (1.67) and (1.73) as  
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which are linear elliptic and hyperbolic (convection) equations with spatially varying 
coefficients, with 
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If an additional diffusion term is introduced in equation (1.100) we obtain a linear 
convection-diffusion equation 
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where D is the diffusion constant. In this case equations (1.99) and (1.102) (or (1.100)) can be 
interpreted as describing the flow of two incompressible miscible fluids with identical 
properties such as water with two different colors (sometimes referred to as a blue and red 
water situation). Alternatively, the equations can be interpreted to describe the flow of 
immiscible fluids, in which case D represents the effect of dispersion due to geological 
heterogeneities. 

1.4.7 Formation volume factors* 

In our derivation we used equations of state (1.53) and (1.54) to relate pressure, temperature 
and densities of the reservoir fluids. These equations of state can also be expressed as 
relationships between pressure, temperature and volumes; e.g. for the oil we can write, 
instead of equation (1.53): 
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In many practical reservoir engineering applications, the fluid densities and volumes at 
reservoir conditions are expressed in terms of those at standard conditions† with the aid of a 
formation volume factor. In particular gas and to a lesser extent oil change volume when 
flowing from the reservoir to surface. The oil formation volume factor Bo is defined as the 
ratio of a unit volume of oil at down hole conditions p and T, including dissolved gas, and the 
volume it occupies after it has been transferred to standard conditions psc and Tsc, during 
which journey gas has escaped from the oil: 

                                                 
† In the upstream oil industry standard conditions are usually defined as a pressure psc = 100 kPa (14.7 psi) and a 
temperature Tsc = 15 C (60 F), which can be considered as typical for atmospheric conditions in temperate 
climates. Oil at standard conditions is often referred to as stock tank oil. 
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An equivalent definition holds for the water formation volume factor, although usually very 
little gas dissolves in water. The gas formation volume factor is defined as the ratio of a unit 
volume of gas at down hole conditions, and the volume it occupies after it has been 
transferred to standard conditions, during which journey possibly some liquid drop-out may 
have occurred. Gas originally at reservoir conditions dramatically expands when the pressure 
approaches standard conditions, even if it loses some liquids, and the therefore Bg is typically 
much smaller than one. Oppositely, oil at reservoir conditions always contains a large amount 
of dissolved gas which escapes from the oil when transferred to standard conditions, and 
therefore Bo is always larger than one. Water hardly changes volume, compared to oil, and 
therefore Bw is always close to one. If we substitute equation (1.104) in equation (1.103), 
taking p = po, and T = TR, it follows that 
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and similar expressions can be obtained for gas and water. Formation volume factors change 
with pressure and temperature, and therefore also the fluid compressibilities are functions of 
pressure and temperature. Even if we take the temperature constant at its reservoir value, the 
pressure dependence of the fluid compressibilities is often large enough to take them into 
account, thus introducing an additional nonlinearity in the reservoir simulation equations. 
This hold especially for gas reservoirs, and to a lesser extent for oil reservoirs that experience 
large pressure changes, e.g. during primary recovery. Determination of the pressure and 
temperature dependency of formation volume factors is usually done with the aid of 
laboratory experiments on fluid samples taken from exploration wells. In absence of samples, 
a large number of correlations available from literature can be used to estimate the pressure 
and temperature dependence of the reservoir fluids; see e.g. Whitson and Brulé (2002). Most 
of the reservoir engineering literature traditionally uses pressure-dependent formation volume 
factors rather than pressure-dependent fluid compressibilities. For liquid flow, and as long as 
the pressure changes in the reservoir remain small compared to the total pressure, the 
nonlinearity of the oil compressibility remains small, while the water compressibility remains 
as good as constant, a situation that applies to all the examples that we use in this text. To 
keep the equations as simple as possible, we have therefore chosen not to use formation 
volume factors in our derivations, but to use (constant) compressibilities instead. 

1.4.8 Finite-difference discretization 

This section gives a brief overview of the semi-discretization of equations (1.58) with the aid 
of finite differences for 2-D flow. For details and for alternative discretization schemes we 
refer to the references mentioned in Section 1.1. Following the same approach as used for 
one-phase flow, we rewrite equation (1.58) and (1.59) in scalar 2-D form, assuming isotropic 
permeability, pressure independence of the parameters, and absence of gravity forces†: 

                                                 
† To stay in line with the notation used in the single-phase flow case, we should have used 0, o,0 and w,0 to 
indicate the pressure-independence of these parameters, but we have dropped the subscripts 0 to simplify the 
notation.  
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The first term in equation (1.106) can be rewritten as 
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  (1.108) 

where the absolute permeabilities k are based on harmonic averages just as in the single-
phase case; see equation (1.28). However, the relative permeabilities krw need to be 
determined through upstream weighting to obtain the correct convective behavior; see Aziz 
and Settari (1979), p. 153. This implies that 
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The second term in equation (1.106) can be rewritten in a similar fashion. Combining and 
reorganizing all terms results in 
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where the transmissibilities are now defined as 
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A similar discretization can be obtained for equation (1.107): 
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Equations (1.110) and (1.112) can be written in matrix form as 
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where the vectors p and s contain pressures and water saturations: 

 , 1 1, , 1, , 1       T
i j i j i j i j i jp p p p pp  , (1.114) 
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and where the sub-matrices Vwp, Vws, Vop and Vos contain accumulation terms† 
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the sub-matrices Tw and To contain transmissibility terms 
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and vectors qw and qo contain the flow rates (source terms) with elements expressed in m3/s: 
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1.4.9 Example 3 – Inverted five-spot 

Example 3 concerns a square reservoir with heterogeneous permeability and porosity fields as 
depicted in Figure 1.8, modeled with 21 21 441   grid blocks. It can be seen that the 
permeability displays a marked streak running from the South-West (bottom left) corner to 
just below the North-East (top right) corner, and that the porosity is mildly correlated with the 
permeability. The other relevant parameters have been listed in Table 1.4. As in the earlier 
examples, gravity and capillary forces are neglected. 

                                                 
† Here the sub-matrices are displayed as vectors, which form, however, building blocks for matrices when the 
equations for multiple grid blocks are combined. 



A systems description of flow through porous media, version 1d, April 2013 34 

 

Figure 1.8: Well configuration, and permeability and porosity fields for Example 3. The 
reservoir is produced with a central injector and five producers in the corners. 

Figure 1.9. illustrates the sparse structure of the secant matrices for Example 3. The top-left 
figure corresponds to the accumulation matrix V which has a perfect diagonal structure in 
each of its four quadrants. The top-right figure corresponds to the transmissibility matrix T 
which has an almost penta-diagonal structure (tri-diagonal with ‘holes’ and two side bands) 
in the two left quadrants. The two right quadrants are completely filled with zeros because we 
have neglected capillary forces. The bottom-left and bottom-right figures display details of T 
and illustrate the side bands and the ‘holes’ in the tri-diagonals at every 21st row which are 
typical for a regular numbering scheme. In this case the 441 grid blocks have been numbered 
row-wise from top-left to bottom-right. A grid block i in the center of the grid, i.e. not at an 
edge or at a corner, is connected to its Western and Eastern neighbors with numbers i1 and 
i+1 respectively, which results in the tri-diagonals, and to its Northern and Southern 
neighbors i1 and i+21 respectively which results in the penta-diagonal side bands. Grid 
blocks at an edge are missing one of the connections which results in irregularities in the 
structure in the form of ‘holes’ in the tri-diagonals. 
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Table 1.4: Reservoir and fluid properties for Example 3. 

Symbol Variable Value SI units Value Field units

h Grid-block height 2 m 6.56 ft 

x, y Grid-block length/width 33.33 m 109.36 ft 

 Oil dynamic viscosity 5.0  10-4 Pa s 0.5 cP 

w Water dynamic viscosity 1.0  10-3 Pa s 1.0 cP 

ct Total compressibility 3.0  10-9 Pa-1 2.1  10-5 psi-1 

Rp
  Initial reservoir pressure 30  106 Pa 4351.1 psi 

rwell Well-bore radius 0.114 m 4.50 in 
0
rok   End-point relative permeability, oil 0.9  
0
rwk   End-point relative permeability, water   

no  Corey exponent, oil 2.0  

nw  Corey exponent, water 2.0  

Sor  Residual-oil saturation 0.2  

Swc  Connate-water saturation 0.2  

 

 

Figure 1.9: System matrices for Example 3. 
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1.4.10 Sources of nonlinearity 

Although we use a matrix-vector notation, which suggests a linear system of equations, 
equations (1.113) are nonlinear because the coefficients of sub-matrices Vwp, Vop Tw and To 
are functions of Sw. In particular, the coefficients of the transmissibility matrices Tw and To 
contain saturation-dependent relative permeabilities, for which we use the Corey model given 
by equations (1.74) to (1.76) Actually, the coefficients of the transmissibility matrices are 
also functions of p because of the upstream weighting of the relative permeabilities. That is, 
if the pressures in two adjacent grid blocks change slightly, but such that the flow through the 
grid-block boundary changes direction, the upstream relative permeability and therefore the 
transmissibility may change strongly. This nonlinear effect may cause problems during the 
iterative solution of the system equations during implicit time integration, if the flow 
direction keeps changing during subsequent iterations. However, because it is a discontinuous 
nonlinearity, we cannot differentiate the transmissibilities with respect to p, and we cannot 
take it into account during linearization of the equations as required for e.g. implicit 
integration with Newton-Raphson iteration. Another source of nonlinearity are the source 
terms qo and qw in equation (1.113) which cannot always be prescribed directly. In the case of 
a water injection well, the oil flow rates are equal to zero, and it is possible to prescribe the 
water injection rates. In a production well, however, the proportions of oil and water in the 
total flow rate qt depend on the fractional flows fo and fw, , i.e. on the relative magnitude of 
the oil and water mobilities around the well according to 
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where the saturation-dependent mobilities o and w are given by equations (1.62) and (1.63). 
Therefore we need to specify 
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where Fo and Fw are diagonal matrices of which the non-zero entries contain fractional flows:  
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To emphasize the nonlinearities, equation (1.113) may therefore be rewritten as† 
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In an injection well we have qt = qw, and we expect that soon after injection has started the 
fractional flows for water and oil close to the well will approach one and zero respectively. 
However, before injection starts, the initial condition for the saturation is usually equal to the 
connate-water saturation, which means that the fractional flows for water and oil are zero and 
one respectively, which implies that it is impossible to ever inject water. This paradox is 

                                                 
† As discussed before, we disregard the dependency of the transmissibility terms on pressure. 
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usually circumvented by simply specifying a fractional flow equal to one for every injection 
well. 

1.4.11 Incompressible flow 

In the special case that the fluid and rock compressibilities are so small that they may be 
neglected, it follows from equations (1.116) and (1.118) that  wp opV V 0 . In that case we 
can rewrite equation (1.129) as 
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which may also be expressed as: 
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Because Vws = Vos we can add the two equations to obtain the pressure equation for 
incompressible flow 

  t tT s p q  , (1.133) 

where we used the equality w o F F I , and where t w o T T T  is the total transmissibility 
matrix, which is still a function of saturation. Note that the pressure equation is no longer a 
differential equation but has degenerated to an algebraic equation. The physical background 
is that the vanishing of compressibilities means that there is no longer a possibility to store 
energy in the system. Just as in the case of single-phase flow, discussed in Sub-section 1.3.4, 
it appears as if equation (1.133) can simply be solved for the constant pressure p. However, 
the total transmissibility matrix tT  is singular which implies that we cannot directly solve the 
equation. Just as in the single-phase case, the singularity can be removed through prescribing 
the pressure in at least one of the grid blocks, or through the use of a well model, in which 
case we may indeed solve for p. Thereafter, one of the two equations (1.131) or (1.132) can 
be used to compute the water saturations. 

1.4.12 Fluid velocities* 

Total velocity* 

Darcy’s law, which specifies an empirical relationship between pressure gradients and fluid 
velocities, is at the heart of the description of flow through porous media. However, in our 
formulation of the flow equations in the previous sections we rapidly lost the fluid velocities 
as variables, through substitution in the mass-balance equations; see equations (1.4), (1.7) and 
(1.10) for the single-phase flow case, and equations (1.45) to (1.50) for the two-phase case. 
To recover the fluid velocities, after solving the flow equations, we have to revert to Darcy’s 
law. Often we are interested in the total velocity which is the sum of the phase velocities. In 
the case of two-phase oil-water flow, Darcy’s law for the total velocity is obtained by adding 
equations (1.47) and (1.48): 
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If, as before, we neglect gravity and capillary forces, assume isotropic permeability, and 
express the equations in scalar form we obtain 
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Starting from these equations we can now use a finite-difference discretization to find 
numerical approximations of the velocity components: 
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In these discretized equations the pressures are taken in the grid-block centers whereas the 
velocities and the (averaged) parameters are taken at the grid-block boundaries. Note that 
equations (1.137) and (1.138) represent the velocities at the left and bottom boundaries of a 
grid block. Similar expressions can be obtained for the right and top boundaries. 

Velocities at grid-block boundaries* 

In the case of tracing streamlines, as will be discussed in Sub-section 2.3.6, we need the 
velocities at the grid-block boundaries which can be obtained from equations (1.137) and 
(1.138). Alternatively, we can use the following, slightly different, approach that directly 
exploits the connectivity structure of the grid blocks. Consider a block-centered finite-
difference reservoir model with ngb grid blocks and ncon grid-block connectivities. If we 
represent the grid-block pressures by an ngb ´ 1 vector p, we can define a linear 
transformation 

  pL ppp  , (1.139) 

where p  is an ncon ´ 1 vector of pressure differences between the grid-block centers†, and 
pL p  is an ncon ´ ngb selection matrix with entries 1, 0 and 1 in the appropriate places‡. E.g. 

for our 6-grid-block Example 1 we find that pL p  is a 7 ´ 6 matrix given by 

                                                 
† We use a bold-face italics font to represent vectors with properties at the grid-blocks boundaries, whereas the 
conventional bold-face font is used to represent vectors with properties at the grid-blocks centers. In particular 
we use p  and p for pressures, λ  and λ  for mobilities, v  and v for Darcy velocities, and v  and v  for 
interstitial velocities. 
‡ This is an example of an incidence matrix as used in the analysis of e.g. electrical or mechanical networks, to 
define the pattern of nodes and edges. Other names used in the literature are topology matrix or connectivity 
matrix. Note that we use the term connectivity in a slightly different sense; see p. 69. 
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In passing we note that we can almost never invert equation (1.139) to reconstruct the 
pressure vector p from the pressure difference vector p , because pL p  is nearly always 
rectangular with ncon > ngb. This illustrates that knowledge of just the inter-grid-block 
pressure differences does not give us enough information to compute the absolute pressures 
in the grid blocks. The ncon ´ 1 vector tv  of total Darcy velocities over the grid-block 
boundaries can now be written as a function of p  according to 

     t diag diagv λ γ p  . (1.141) 

Here λ  is an ncon ´ 1 vector of averaged mobilities, 

 , , , 1, ,
 

 
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 
 i ro i i rw i

i con
o w

k k k k
i n  , (1.142) 

where the absolute permeabilities ki are harmonic averages of the adjacent grid blocks while 
the relative permeabilities kro,i and krw,i are usually upstream-weighted. The vector γ  is 
another ncon ´ 1 vector with elements i that are geometric factors depending on the grid-
block properties. E.g. in the case of flow in the x direction  is simply equal to 1 x . 
Combining equations (1.139) and (1.141) we can write  

 t  Spv  , (1.143) 

where the ncon ´ ngb matrix S is given by 

    diag diag  pS L  p  . (1.144) 

Equation (1.144) can be used to compute the inter-grid-block velocities for streamline 
tracking as described in Sub-section 2.3.6. 
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2 System models 

Abstract 

This chapter develops representations in state-space notation of the porous-media flow 
equations derived in Chapter 1. For single-phase flow, the states are grid-block pressures, and 
for two-phase flow they are grid-block pressures and saturations. The inputs are typically 
bottom-hole pressures or total well flow rates, the outputs are typically bottom-hole pressures 
in those wells were the flow rates were prescribed, and phase rates in those wells were the 
bottom-hole pressures were prescribed. The use of matrix partitioning to describe the 
different types of inputs leads to a description in terms of nonlinear ordinary-differential and 
algebraic equations with (state-dependent) system, input, output and direct-throughput 
matrices. Other topics include generalized state-space representations, linearization, 
elimination of prescribed pressures, the tracing of stream lines, lift tables, computational 
aspects, and the derivation of an energy balance for porous-media flow. 

2.1 System equations 

2.1.1 Partial-differential equations 

To describe the physics of fluid flow in a porous medium we generally use partial-
differential equations (PDEs). Typically the independent variables are time, t, and spatial 
coordinates x, y and z. Furthermore, in reservoir engineering we normally encounter only 
first-order derivatives in time, but higher-order (typically second-order) derivatives in space. 
Indicating the, arbitrary, dependent variable with a fat dot,  , the equations can be 
represented in general form as† 

          , , , , , , , , , , , ,  
 

       


t x y z t x y z L t x y z
t

, (2.1) 

where  and  are parameters that may be functions of time and space, L is a spatial 
differential operator and  is the source term. Note that ,  and  may be functions of the 
dependent variable, in which case the equation is nonlinear. The left-hand term in equation 
(2.1) is known as the accumulation term, the first term at the right-hand side as the transport 
term. A specific example of the general PDE (2.1) is the mass conservation equation (1.4) in 
Sub-section 1.3.1 in which case the spatial difference operator L is the divergence 
       x y z             . In addition to the PDE (2.1), we need to specify the 

spatial domain  and the time domain T on which it is valid. At the boundary  of  we need 
to specify boundary conditions, and at a specific point in time an initial condition, to 
complete the problem formulation. A PDE describes the evolution of the dependent variables 
in time and space in a continuous fashion, and the solution is therefore specified in an 
infinitely large number of points. Closed-form solutions of PDEs, i.e. to ‘infinite dimensional 
problems’, are generally restricted to simple domains and parameters that are spatially 
homogeneous. For more realistic geometries we need to solve the equations numerically, 
which requires some form of discretization of the equations, because digital computers can 
only deal with finite dimensional problems. 

                                                 
† The dependent variables follow from the physics of the problem. In case of multi-phase flow through porous 
media they are typically pressures, component masses or phase saturations; see Chapter 1. Here we use only a 
single dependent variable, but in general multiple dependent variables will occur, in which case multiple 
differential equations are required to describe the problem. 
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2.1.2 Ordinary-differential equations 

An often followed approach is to first perform a spatial discretization of the PDEs, and only 
perform the time discretization at a later stage. The initial semi-discretization of the 
equations, i.e. the discretization in space, can be done using the method of finite differences, 
finite volumes or finite elements. An example of a finite-difference discretization as applied 
to porous-media flow has been worked out in Chapter 1. All of the discretization methods 
result in systems of ordinary-differential equations (ODEs) which can typically be 
represented as 
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 (2.2) 

where the continuous dependent variable   and the continuous source term  of equation 
(2.1) are now represented with a finite number of discrete values i  and i, corresponding to 
discrete points in space, and where îe  and îf  are, in the general case, nonlinear functions†. 
Normally the functions îe  are linear in the derivatives ( )id dt , which makes it possible to 
transform the system of equations (2.2) such that the derivatives in the left-hand side terms 
are isolated, leading to: 

 

   

   

   

1
1 1 2 1

2
2 1 2 2

1 2

, , , , , ,

, , , , , ,

, , , , , ,








   




   





   









n

n

n
n n n

d
f t

dt
d

f t
dt

d
f t

dt

 (2.3) 

where the functions fi are different from the functions îf  in equation (2.2). Note that 
equations (2.2) and (2.3) are both coupled systems of ODEs because each of the dependent 
variables i  is present in more than one equation. If the functions fi are linear in the 
dependent variables, a further simplification is possible that decouples the equations leading 
to  

 
   , , , 1,2, ,


  
    i

i i i

d
f t i n

dt
, (2.4) 

                                                 
† Typically, most of the values i  are equal to zero in a single equation. E.g. in the case of one-dimensional 
single-phase flow modeled with first-order finite differences, the only three non-zero values i  in the ith 
equation in a system of n equations with 1 < i < n are given by:  1 1

ˆˆ ( , ( ) ) ( , , , )i i i i i i i ie d dt f         . 
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where the transformed dependent variables i  are linear combinations of the original 
variables i , and if  are functions again. This decoupling procedure will be addressed in more 
detail in Sub-section 3.1.2 below. In reservoir simulation the functions îe  and îf  are typically 
linear in the derivatives and nonlinear in the dependent variables, which at first sight implies 
that equations (2.3) is the most relevant representation. Moreover, system-theoretical results 
are usually derived using equations of this particular form. However, for large scale 
computations it is more efficient to use representation (2.2), and in this text we will therefore 
make use of both formulations. 

2.1.3 State-space representation 

State equations 

A more concise form of equations (2.3) can be obtained through the use of vector notation. 
We introduce the vectors 1 2[ ]T

nx x xx   and 1 2[ ]T
mu u uu   to represent the 

discrete values of the dependent variables, instead of i  and i which we used until now. The 
reason to use x and u is to adhere to the notation convention in the systems-and-control 
literature. Note that 1 2, , nx x x  do not represent spatial coordinates. Also note that we have 
indicated that the source term u has m elements instead of n. This anticipates a situation 
where many of the source terms are equal to zero, such that m  n, in which case it may be 
computationally advantageous to use a shorter vector u. Equations (2.3) can now be written 
as  

       , , t t t tx f u x , (2.5) 

where f is a nonlinear vector function of x, u and t, and where we have emphasized the 
dependence of x and u on t by writing x(t) and u(t). In reservoir simulation, the equations are 
usually nonlinear but with coefficients that do not depend on time directly, such that we can 
write 

       , t t tx f u x . (2.6) 

In the special case that f is a linear function of x and u, we can use a vector-matrix notation 
and write equation (2.6) as a linear time-varying (LTV) vector differential equation 

          t t t t t x A x B u , (2.7) 

where the coefficients of the n  n matrix A and the n  m matrix B may still be functions 
of t. The matrices A and B are usually referred to as the system matrix and the input matrix 
respectively‡. In the case that A and B are independent of t, we obtain a linear time-invariant 
(LTI) equation given by 

      t t t x Ax Bu . (2.8) 

From now on we will mostly not explicitly indicate the dependence on time of the variables, 
and we will write, e.g., ( , )x f u x  instead of ( ) ( ( ), ( ))t t tx f u x . First-order systems of 
equations such as (2.5), (2.6), (2.7) and (2.8) are referred to as state equations in the systems-
and-control literature. In this representation, the elements of vector x are the state variables 
which completely define the dynamic state of the system. A continuous sequence of values of 

                                                 
‡ An alternative name for the input matrix is distribution matrix because it distributes the inputs u over the 
states x. 
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x over a certain time interval is often referred to as a trajectory in state space. In reservoir 
engineering applications it is sometimes preferred to start from equations (2.2) rather than 
from equation (2.3), even if the functions ei are linear. We will refer to equations of the type 
of equation (2.2) as generalized state equations†. In LTI form they can be written as 

 ˆˆ ˆ Ex Ax Bu . (2.9) 

Output equations 

In addition to equations (2.5) to (2.9), which define the relationship between the input vector 
u and the state vector x of a dynamic system, we can also define a relationship between an 
output vector y and the state x. Moreover, the output may to some extent also depend directly 
on the input u, such that we can write 

  ,y h u x , (2.10) 

for the nonlinear case or  

  y Cx Du , (2.11) 

for the linear case, where C is known as the output matrix and D as the direct-throughput 
matrix. If the output vector y has p elements, the matrices C and D have dimensions p  n 
and p  m, respectively.  

Implicit nonlinear equations 

In addition to the general nonlinear system functions (2.6) and (2.10) we will sometimes use 
even more general nonlinear functions 

  , , g u x x 0 , (2.12) 

  , , j u x y 0 , (2.13) 

where g and j are nonlinear vector-valued functions‡. Note that the explicit equations (2.6) 
and (2.10) can always simply be expressed in the implicit form of equations (2.12) and 
(2.13), i.e. 

    , , , g u x x x f u x  , (2.14) 

    , , , j u x y y h u x . (2.15) 

The reverse is not always true, i.e. it may not be possible to derive an explicit expression f for 
a given implicit representation g. However, usually the implicit representation may be solved 
numerically for x , typically using some form of time discretization and an iterative 
algorithm. In that case we can still conceptually write the nonlinear equations in their explicit 
forms (2.6) and (2.10) which is often preferred for analysis purposes. In most cases the 
functions f, g, h and j are to be interpreted as numerical operations, e.g. g could represent a 
complete reservoir simulator. Detailed examples of the state variable description of reservoir 
systems will be discussed below.  

                                                 
† Sometimes this form of generalized state equations is referred to as a descriptor system. 
‡ System equations expressed as   g 0  are sometimes referred to as equations in residual form. 
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Error terms 

In systems-and-control applications it is customary to introduce error terms to account for the 
fact that a system description is only an approximation of reality. E.g. we can write 

   x Ax Bu ε , (2.16) 

   y Cx Du η , (2.17) 

for the linear case, where  is called the model error and  the measurement error. Both are 
random variables† which are often, although not necessarily, taken as zero-mean Gaussian. 
As a result of the random error terms, x and y also become random variables such that to 
completely quantify them it will be necessary to specify their probability distributions as 
functions of time. In the special case of linear equations, Gaussian error terms will result in 
Gaussian states and outputs which can be completely specified by their first and second 
moments (mean values and covariance matrices). In the more general, nonlinear, case it will 
be necessary to specify higher moments or ensembles of representative realizations of x 
and y. In reservoir simulation it is not customary to introduce error terms that are additive to 
the states (as in equation (2.16)). Instead it is much more common to consider the parameters 
of the system equations, in particular the grid-block permeabilities, as uncertain. Typically 
these parameter uncertainties are considered to be so large that they dominate the model 
errors. Measurement errors are normally introduced in computer-assisted history matching; 
see e.g. Oliver et al. (2008). In this text we will not make use of error terms in the system 
description. 

2.1.4 Linearized equations 

Jacobians 

To analyze the nature of nonlinear system equations ( , )x f u x , or to approximate their 
solution through numerical computation, it is usually necessary to linearize them around a 
point in state-input space. Using a Taylor expansion and starting from equation (2.6) we can 
write: 

            
0 0 0 0

0 0 0 0
, ,

, ,
 

     
 


f u x f u x

x f u x f u x u u x x
u x

 , (2.18) 

where we have neglected terms of second order and higher, and applied the usual short-cut 
notation 

 
   

0 0

0 0
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, ,

 

 
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u u x x

f u x f u x

x x
 . (2.19) 

Defining 

 0u u u , 0x x x , (2.20, 2.21)  

we can rewrite equation (2.18) as  

      0 0 0 0

0 0 0
, ,

,
 

   
 

 
f u x f u x

x x f u x u x
u x

 , (2.22) 

                                                 
† The random model errors are also referred to as random input, or as a stochastic forcing term.  



A systems description of flow through porous media, version 1d, April 2013 46 

which, because 

  0 0 0,x f u x  , (2.23) 

can be reduced to the linearized system equations  

    0 0 0 0, , x A u x x B u x u  , (2.24) 

where the Jacobian matrices† A  and B  are defined as 

    0 0

0 0
,

,




f u x
A u x

x
  ,     0 0

0 0
,

,




f u x
B u x

u
  . (2.25, 2.26) 

In a similar fashion we can linearize a nonlinear output function ( , )y h u x  to obtain 

    0 0 0 0, , y C u x x D u x u  , (2.27) 

where the Jacobians C  and D  are defined as 

    0 0

0 0
,

,




h u x
C u x

x
  ,     0 0

0 0
,

,




h u x
D u x

u
  . (2.28, 2.29) 

If the system and output equations are given in implicit form ( , , ) g u x x 0 and ( , , ) j u x y 0  
we obtain linearized equations in terms of Jacobians 
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where we have dropped the superscripts 0 for clarity. 

Secant and tangent matrices 

In reservoir simulation one often encounters systems ( , )x f u x  that can be expressed in the 
form* 

     x A x x B x u  . (2.36) 

In that case we obtain the linearized equations (2.24) with Jacobians defined as 

        0 0

0 0 0 0 0,
 

 
 

A x B x
A u x A x x u

x x
  ,     0 0B x B x  . (2.37, 2.38) 

If we linearize the state equations along all points of a given trajectory 0 0( ( ), ( ))t tx u  in state-
input space, the resulting model is referred to as the tangent-linear approximation of the 
nonlinear model, or simply the tangent-linear model. The Jacobians A  and B  are therefore 
also referred to as the tangent matrices of the system. Note that the matrices A and B are not 

                                                 
† Usually simply referred to as Jacobians.  
* In the systems-and-control literature this is known as a control-affine nonlinear equation. An affine function is 
a linear function plus a translation. Control affine functions are an important topic of study in nonlinear control 
theory. 



A systems description of flow through porous media, version 1d, April 2013 47 

tangent matrices because they do not describe the system dynamics tangent to the state 
trajectory. Instead they can be interpreted as secant matrices; see Figure 2.1. 

 
Figure 2.1: The secant and the tangent to a function f(x) in a point (x0, f(x0)). 

Generalized state-space form* 

In reservoir simulation we often encounter systems that can be expressed in the generalized 
state-space form 

      ˆˆ ˆ E x x A x x B x u  . (2.39) 

In that case we can linearize around a point 0 0 0( , , )u x x  to obtain the linearized equations 

      0 0 0 0 0ˆˆ ˆ, , E x x A u x x x B x u   , (2.40) 

with Jacobians defined as 

          0 0 0

0 0 0 0 0 0 0
ˆ ˆ ˆ

ˆ ˆ, ,
  

  
  

A x B x E x
A u x x A x x u x

x x x
   , 

    0 0ˆ ˆB x B x  ,     0 0ˆ ˆE x E x . (2.41, 2.42, 2.43) 

However, for analysis purposes it is normally more useful to bring this equation in the 
linearized ordinary state-space form (2.24): 

       
 

    
 

1 1ˆˆ ˆ ˆ,
 

  x f u x E x A x x E x B x u

A x B x


 

 . (2.44) 

in which case the Jacobians ( , )  A f u x x  and ( , )  B f u x u  can be obtained as   

     
          

        

0 0
1

0 0 0 0

1
0 0 0

0 0
1

0 0 0

ˆ ˆ
ˆ ˆˆ

ˆ,
ˆ ˆ

ˆ ˆ







   
   

     
 

   
        

A x E x
A x E x A x x

x x
A u x E x

B x E x
E x B x u

x x

  , (2.45) 

f(x)

x

tangent

secant
f(x)

x

tangent

secant
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       1
0 0 0ˆ 

B x E x B x  . (2.46) 

Alternatively we can write the generalized state equation (2.39) in implicit form 

        ˆˆ ˆˆ , ,   g u x x E x x A x x B x u 0   , (2.47) 

and use implicit differentiation to obtain the Jacobian A  related to the ordinary state-space 
representation. I.e., because 

 
ˆ ˆ ˆd

d

  
  
  

g g g x
0

x x x x




 , (2.48) 

we have 

 
1ˆ ˆ        

x g g

x x x




 , (2.49) 

and because ( , )     A f u x x x x  we find that 

             0 0 0
1

0 0 0 0 0 0 0 0
ˆ ˆ ˆ

ˆˆ, ,
    
    

    

A x B x E x
A u x x E x A x x u x

x x x
   , (2.50) 

which, with the aid of equations (2.41) and (2.43), can also be expressed as  

       
1

0 0 0 0 0 0 0ˆˆ, , , ,


A u x x E x A u x x   . (2.51) 

2.2 Single-phase flow 

2.2.1 System equations 

As a first application, we consider flow of a weakly-compressible single-phase liquid through 
a porous medium. The derivation of the governing PDEs and the semi-discretization has been 
presented in Chapter 1. We used a finite difference discretization, but the following theory is 
equally applicable to results derived with other semi-discretization methods. Use of any of 
the methods produces a system of ODEs that can be written in matrix form as:  

  Vp Tp q . (2.52) 

Here V and T are matrices with entries that depend on dynamic and static reservoir 
properties, p is a vector of pressures and q is a vector of volumetric flow rates. V is a 
diagonal matrix known as the accumulation matrix and T is a symmetric banded matrix, 
known as the transmissibility matrix. The flow rates q correspond to flow in to or out of the 
reservoir, i.e. to wells, and are expressed in m3/s. Positive values imply injection and negative 
values imply production. Because usually only a few grid blocks are penetrated by wells, 
only a few elements of q have a non-zero value. In the case of a reservoir modeled with n 
grid blocks and produced with m wells, V and T would be n × n matrices, and p and q would 
be n × 1 vectors, of which q would have m non-zero entries. Equation (2.52) can be re-casted 
in state variable form (2.8) through definition of 

  ,  uqu L q x p   . (2.53, 2.54) 

In single-phase flow the state variables x are just identical to the pressures p. The vector u 
represents the inputs to the system, which are in our case the non-zero elements of the flow 
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rate vector q. The matrix Luq is therefore a location matrix, also known as a selection matrix 
which contains only ones and zeros at the appropriate places. The inverse relationship is 
given by 

 quq L u  , (2.55) 

where 

 T
qu uqL L  , (2.56) 

Substitution of relationships (2.53) and (2.55) in equation (2.52) results in the generalized 
state-space representation (2.9) with matrices Â , B̂  and Ê  given by: 

 ˆ ˆ ˆ,  ,  quA T B L E V    . (2.57, 2.58, 2.59) 

The ordinary state-space form (2.8) is obtained by defining the matrices A and B as† 

 1 1,  qu
 A V T B V L   . (2.60, 2.61) 

If we choose the output vector y to consist of only those pressures that are accessible to 
measurements, the matrix C is therefore also a selection matrix. Matrix D is zero because 
there is no direct dependency of the output on the input. In reality the outputs are usually 
surface measurements of the tubing-head pressure, and therefore we should include a 
description of the dynamic behavior of the well between the reservoir and the surface. 
However, as a first assumption, we neglect well dynamics and assume that the wells are 
equipped with permanent down hole gauges (PDGs) to measure the pressures. In the case of a 
reservoir modeled with n grid blocks and produced with m wells, of which mp contain PDGs, 
matrices A and B have dimension n × n, matrix C dimension mp × n, and vectors u, x and y 
dimensions m × 1, n × 1 and mp × 1 respectively. Matrix equation (2.8) represents a system of 
linear first order ODEs with constant coefficients, i.e. an LTI system. Starting from an initial 
value x


, the ODEs for x can be integrated in time, and because the equations are linear the 

solution can be expressed analytically. Alternatively, the integration can be performed 
numerically as will be discussed in Chapter 3. 

2.2.2 Example 1 continued – Location matrix 

Reconsidering the six-grid-block example introduced in Sub-section 1.3.3, the location 
matrix Luq as defined in equation (2.53) is given by 

 




1

1

2

6

0

01 0 0 0 0 0

00 0 0 0 0 1

0
uq

q

u

u

q

 
 
 
    

     
    

 
 
  

u L

q


. (2.62) 

                                                 
† In a numerical implementation, the inverse V-1 of the diagonal matrix V can be computed very efficiently by 
just taking the reciprocals of the diagonal elements. 
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If the output y consists of the pressures in the two wells, the output matrix T
qu uq C L L  is 

given by : 

 




1

2

31

42

5

6

1 0 0 0 0 0

0 0 0 0 0 1

x

x

xy

xy

x

x

 
 
 
    

     
    

 
 
  

y C

x


. (2.63) 

2.2.3 Prescribed pressures and flow rates 

Until now we have assumed that the source terms, i.e. the flow rates in the wells, were the 
input variables, and that their values can be prescribed as a function of time. However, it is 
also possible to control the system by prescribing the state variables, i.e. the pressures in the 
wells. Note that it is not possible to prescribe both pressure and flow rate in a well; either one 
of them should be fixed and the other left free, or a mathematical relationship between them 
should be specified which may be in algebraic or differential form. The most commonly used 
method in reservoir engineering is through the definition of a well model, which is an 
algebraic relationship between the grid-block pressure and the well flow rate. Alternatively, 
one of the pressures may be prescribed directly, resulting in a reduction of the length of the 
state vector with one element. We will discuss both methods in the following sections. In 
order to take into account prescribed pressures and flow rates in a structured way it is 
convenient to re-order the variables in equation (2.52) such that the prescribed and the non-
prescribed, free, values are grouped. In addition, we take the opportunity to make a 
distinction between prescribed flow rates in grid blocks with and without wells†. We can 
formally describe the re-ordering with the aid of a permutation matrix L as: 

 

*
1

* *
2 *
*
3

p p

 
   
  

p

p p L p

p

  , (2.64,) 

where *
1p  are the pressures in the grid blocks that are not penetrated by a well, i.e. where the 

source terms *
1q  are equal to zero, *

2p  are the pressures in the blocks where the source terms 
*
2q  are prescribed as well flow rates, and *

3p  are the pressures in the blocks where the source 
terms *

3q  are obtained through prescription of the bottom-hole pressures in the wells. 
Similarly we can write 

 * *
2 *
*
3

q q

 
   
  

0

q q L q

q

  , (2.65) 

where we choose 

 * *q q p pL L  , (2.66) 

                                                 
† In grid blocks that are not penetrated by a well the prescribed flow rates are of course equal to zero. 
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which means that we re-order the elements of p and q in equation (2.52) identically, i.e. we 
interchange the rows of the equations. The permutation matrix Lp*p = Lq*q is an identity 
matrix with interchanged rows. Permutation matrices are orthogonal, which implies that 

 * *
T

p p p p L L I  . (2.67) 

The inverse relationships corresponding to expressions (2.64) and (2.65) are therefore given 
by 

 * * ,  pp qq
  p L p q L q  , (2.68, 2.69) 

where 

 * * * *
T T

pp qq p p q q  L L L L   . (2.70) 

Substitution of equations (2.68) and (2.69) in equations (2.52) and reorganizing the terms 
results in  

 * * * * * V p T p q , (2.71) 

where T* and V* are given by 

 * *
* * * * ,  q q pp q q pp T L TL V L VL  . (2.72, 2.73) 

Equation (2.71) can be written in partitioned form as: 

 

* * * * * *
11 1 11 12 13 1

* * * * * * *
22 2 21 22 23 2 2

* * * * * * *
33 3 31 32 33 3 3

         
                   
                 

V 0 0 p T T T p 0

0 V 0 p T T T p q

0 0 V p T T T p q





 . (2.74) 

Note that the diagonal structure of matrix V has been maintained in V*. We can also apply the 
partitioning to the state-space representation, in which case we may choose not to partition u 
and y, or to partition them also. We choose to partition them, according to 

 * * ,  
u u y y u L u y L y   , (2.75, 2.76) 

where details of the partitioning are left open for the moment. Substitution of equations 
(2.68), (2.69) and the inverse of equation (2.75) in equations (2.53) and (2.54) results in 

  ,   
    

u q
u L q x p  , (2.77, 2.78) 

where 

  ,      
 

u q u u uq qq p p
L L L L x L x  . (2.79, 2.80) 

The partitioned state-space representation can then be written as 

      x A x B u  ,    y C x  , (2.81, 2.82) 

where 

   1* * *
* *q q pp


 A V T L AL  , (2.83) 

   1*
* *q q uuq u 

 B V L L BL  , (2.84) 
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 * *y y pp
C L CL . (2.85) 

The re-ordering of vector and matrix elements using permutation matrices as described above 
is a formal technique. It results in partitioned vectors and matrices that allow for a structured 
handling of prescribed pressures. However, for a numerical implementation it is not essential 
to actually perform the re-ordering. In the following we will therefore omit the star 
superscripts and simply work with partitioned matrices without the use of permutation 
matrices. 

2.2.4 Well models 

Prescribed bottom-hole pressures and well flow rates 

The standard approach in reservoir simulation to prescribe bottom-hole pressures is through 
the definition of a well model. In that case the flow rate q in the grid block where we want to 
prescribe the pressure is defined as 

  well wellq J p p 
 , (2.86) 

where wellp


 is the prescribed bottom-hole pressure, p is the grid-block pressure and Jwell is 
called the well index or productivity index. The well index is a function of the grid-block 
geometry and reflects the effect of near-well flow which is normally not properly represented 
by the finite-difference discretization because the grid block dimensions are usually much 
larger than the well diameter; see also Sub-section 1.3.6. Note that, in line with our 
convention, a negative flow rate indicates production. Use of equation (2.86) can be 
interpreted as specifying an algebraic relationship between the state variable (i.e. the 
pressure) and the source term (i.e. the flow rate) in the grid block that contains the well. 
Equation (2.86) can be generalized for multiple wells to 

  3 3 3well q J p p


 , (2.87) 

where J3 is a diagonal matrix of well indices Jwell, and wellp


 is a vector of prescribed bottom-
hole pressures. In a similar fashion, we can write 

 2 wellq q


, (2.88) 

where wellq


 are the prescribed well rates. If we combine equations (2.87) and (2.88) with 
equation (2.74), and reorganize terms, we obtain 

 
11 1 11 12 13 1

22 2 21 22 23 2

33 3 31 32 33 3 3 3

well

well

         
                   
                  

V 0 0 p T T T p 0

0 V 0 p T T T p q

0 0 V p T T T J p J p





. (2.89) 

An important aspect of the introduction of the well model is that, compared to matrix T in 
equation (2.52), the transmissibility matrix in equation (2.89) has elements added to its main 
diagonal. We will discuss the consequences of this addition in Chapter 3. 

Free bottom-hole pressures and well flow rates 

The flow rates 3well q q  in the wells where the bottom-hole pressures have been prescribed 
can be obtained directly from equation (2.87) as 

  3 3well well q J p p


. (2.90) 
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To compute the bottom-hole pressures wellp  in the wells where the flow rates have been 
prescribed we need an additional diagonal matrix Jq,2 of well indices Jq. We can then write  

  2 2well well q J p p


 , (2.91) 

from which we obtain 

 1
2 2well well

 p p J q


 . (2.92) 

State-space representation 

If we define the (partitioned) state, input and output vectors 

 
1

2

3

, , ,well well

well well

 
               

p
q p

x p p u y
p q

p


    (2.93, 2.94, 2.95) 

equations (2.89), (2.90) and (2.92) can be rewritten in state-space form as 

  x Ax Bu ,   y Cx Du  , (2.96, 2.97) 

where the matrices are defined as 

 

 

1 1 1
11 11 11 12 11 13

1 1 1 1
22 21 22 22 22 23 22

11 1 1
33 333 31 33 32 33 33 3

, ,

  

   

  

                 

V T V T V T 0 0

A V T V T V T B V 0

0 V JV T V T V T J

 

 
1

2

3 3

, .
  

     

0 I 0 J 0
C D

0 0 J 0 J
   (2.98, 2.99, 2.100, 2.101) 

2.2.5 Example 1 continued – Well model 

In Example 1, discussed in Sub-section 2.2.2, we fixed the flow rates in both wells. Here, we 
fix the bottom-hole pressure of the producer in grid block 6 as: pwell  28.00106 Pa (4061 
psi), while we choose an injection rate in block 1 as q1  0.01 m3/s (864 m3/d, 5434 bpd), 
where we use the convention that positive flow rates indicate injection. Because we only have 
one well with a prescribed pressure and one with a prescribed rate, we have 

 628.00 10well    p


 ,  0.01well q


 . (2.102), (2.103) 

Correspondingly, the matrices J3 and J2 contain only one element each. Using the data for the 
near-well permeabilities as derived in Sub-section 1.3.6 they become 

 9
3 3.72 10   J  ,  8

2 3.72 10   J  . (2.104, 2.105) 

2.2.6 Elimination of prescribed pressures* 

An alternative way to implement a prescribed pressure is through directly prescribing the 
grid-block pressure. This means that one of the state variables is fixed, and may be eliminated 
from the system equations. To illustrate this method, we start again from the partitioned 
system equation (2.74). We indicate prescribed values with a ‘’ above the variable, and free 
values with a ‘’: 
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11 1 11 12 13 1

22 2 21 22 23 2 2

33 3 31 32 33 3 3

         
                   
                 

V 0 0 p T T T p 0

0 V 0 p T T T p q

0 0 V p T T T p q




 
 . (2.106) 

From the first two rows of matrix equation (2.106) we find the system of ODEs 

 1311 1 11 12 1
3

22322 2 21 22 2

prescribed

          
             

          

0TV 0 p T T p
p

qT0 V p T T p

 



 . (2.107) 

Because we eliminated the prescribed pressures, the length of the pressure vector has been 
reduced. From the third row of equation (2.106) it follows that  
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2 prescribed

 
     

 

p
q T T T p V p

p

 
  , (2.108) 

where 3q  represents the free flow rates in the wells where the pressures have been prescribed. 
Apparently the price to pay for the reduced length of the pressure vector is an increase in the 
number of input parameters to compute the free flow rates in case of time-varying prescribed 
pressures. Equations (2.107) and (2.108) can be rewritten in partitioned state-space form, as 
in equations (2.96) and (2.97), through definition of 
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  (2.109, 2.110, 2.111, 2.112, 2.113, 2.114, 2.115) 

As before, we have chosen the output vector y such that it contains the free pressures and 
flow rates in the wells. However the input vector u now not only contains the prescribed flow 
rates and pressures in the wells, but also the time derivatives of the pressures. This technique 
to eliminate the prescribed state variables is mainly of theoretical value, and is not commonly 
used, if at all, in reservoir engineering applications. 

2.2.7 System energy* 

The energy balance  in flow through porous media is governed by three components: 

1) Potential energy in the form of compressed fluids inside compressed rock and in the form 
of elevated fluid mass. 

2) Energy dissipation caused by resistance to fluids flowing through the pore network. 

3) Energy transport through the system boundaries in the form of work done by injecting or 
producing fluids under a pressure differential in the wells. 
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Note that we do not consider kinetic energy, because of the assumption that inertia forces 
may be neglected due to the very low flow velocities inside the pores§. Moreover, we will not 
take into account the effect of elevation on the potential energy because we restrict the theory 
and examples to two-dimensional horizontal reservoirs where gravity forces can be 
neglected.‡ Finally, we maintain our earlier assumption of isothermal conditions, which 
implies that the heat generated by energy dissipation is instantaneously transferred to the 
surroundings (i.e. to outside the reservoir boundaries) such that there is no increase in 
reservoir temperature. 

Potential energy* 

Starting from the assumption of a small, pressure-independent, total compressibility ct, the 
fluid volume ( )V p  in a single grid block with volume V is expressed as† 

    0 01    tV p V c p p , (2.116) 

where p0 is a reference pressure, and 0 the corresponding porosity. The difference in 
potential energy when the fluids in the grid block experience a pressure increase from p0 to p 
can therefore be expressed as 
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If we choose the reference value for Epot as zero at the reference pressure (which we may 
conveniently take to be the initial reservoir pressure pR), we can compute the total potential 
energy in a reservoir model through summation over the grid blocks according to 

    1 2
, 2

1


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
gbn

pot tot i i t i
i

E t V c p t  , (2.118) 

where ngb is the total number of grid blocks, and where Vi, i and pi are the grid-block 
volumes, porosities and pressures respectively, with only the pressures being a function of 
time.  

Dissipation energy* 

The energy dissipated per unit time by resistance to flow through a grid-block boundary can 
be expressed as 

 2    disdE
q p T p

dt
 , (2.119) 

where q  is the volumetric flow rate, p  is the pressure difference between the two grid-
block centers, and T is the grid-block transmissibility as defined in equation (1.30). In 
                                                 
§ I.e. we do not consider kinetic energy at a macroscopic level. We do take into account energy dissipation, 
which is the change of mechanical energy into thermal energy, or heat, and which at an atomic level can be 
interpreted as kinetic energy again. 
‡ Elevation-related potential energy plays an important role in well-bore flow. Most reservoirs have enough 
potential energy, at least initially, to lift the oil to surface naturally in the production wells. This lift effect is in 
most cases caused by the difference in density between oil and water, such that in an oil-filled well that drains a 
hydrostatically-pressured reservoir the oil will be lifted to surface because of elevation-related potential energy. 
† For a detailed derivation of pressure-related potential energy for the case of pressure-dependent rock and fluid 
compressibilities, see Hubbert (1940). 
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addition to dissipation at the grid-block boundaries, a large amount of energy is dissipated in 
the near-well-bore region where large pressure gradients are present. The energy dissipated 
per unit time by resistance to flow in a well grid block can be expressed as 

    2
   dis

well well gb well well gb

dE
q p p J p p

dt
 , (2.120) 

where qwell is the well flow rate (positive for injection), pwell is the flowing bottom-hole 
pressure, pgb is the well-grid-block pressure and Jwell is the well index, as defined in equation 
(1.44). The total amount of energy dissipated per unit time in a reservoir model is therefore 
obtained through summation over all grid-block connectivities and all wells as 
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where ncon is the number of connectivities, nwell is the number of wells, and where the 
transmissibilities, well indices and pressure drops may be functions of time.  

Work done by wells* 

The power (i.e. the work per unit time†) delivered by fluids injected into the reservoir can be 
expressed as  

 well well wellP q p  . (2.122) 

The same equation holds for production wells, where we use the convention that flow rates in 
the producers have negative values. The total power delivered by all injectors and producers 
to the reservoir is therefore given by 

      , , ,
1
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   . (2.123) 

Energy balance* 

The total energy balance for the reservoir over a time interval 2 1t t t    can now be 
expressed as 
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 . (2.124) 

Note that the potential energy accumulation has simply been expressed as the difference 
between the values at the begin and end times which illustrates that potential energy is not 
dependent on the pressure history, i.e. it is path-independent. This is unlike the energy lost by 
dissipation and gained by work, which are both (pressure) path-dependent as indicated by the 
integrals which need to be evaluated over the entire time interval. Alternatively, the energy 
balance per unit time, i.e. the power balance, can be expressed as 

                                                 
† Energy delivered to a system through mechanical or hydraulic action is often referred to as work. Work (or 
energy) per unit time is then called power. In strict SI units time is expressed in s (seconds), energy and work in 
J (Joule) and power in W (Watt), such that 1 W is equal to 1 J/s. 
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or, according to equations (2.118), (2.121) and (2.123), as  
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Expression (2.126) can also be written in matrix-vector notation as 
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where we have used the partitioned vectors and matrices as introduced in Sub-sections 2.2.3 
and 2.2.4. The vector pav represents the time-dependent average reservoir pressure defined as 
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with a number of elements as appropriate to match those of 1p , 2p  and 3p . The equivalence 
of equations (2.126) and (2.127) can be confirmed by inspection of the matrices V , T  and 

3J , and the underlying matrices as defined in equation (1.31). 

Minimum energy interpretation* 

With the aid of relationships (2.90) and (2.91) we can rewrite the power balance (2.127) as 
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from which follows  
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Equation (2.130) is again an expression for the power balance in the system, but now 
expressed solely in terms of the state variables† 1p , 2p  and 3p . It can be written compactly 
as 1 2 3 1 2 3( , , ) ( , , )sys welldE dt Pp p p p p p , where sysE  is the system energy as governed by the 
state variables proper. Equation (2.130) is a single scalar equation in the ngb state variables, 
and therefore does not have a unique solution. However, using thermodynamic arguments it 
can be argued that all natural systems tend to organize themselves in such a way that they 
minimize the amount of energy required to maintain equilibrium between internal and 
external forces. In our particular case of a system comprising flow through a porous medium 
this implies that the values of the state variables 1p , 2p  and 3p  will be such that the power 
flow through the system becomes minimal i.e. that the first derivatives of wellP  with respect to 
the state variables, and therefore also the first derivatives of sysdE dt  with respect to the state 
variables, become zero. Taking derivatives of equation (2.130), setting the results equal to 
zero and combining them in matrix form results in 

                                                 
† In comparison, equation (2.127) was also a function of the well-bore pressures wellp


 and wellp . 
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Here we made use of the fact that  
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where we used the compact notation 1 2 3[( ) ( ) ( ) ]T T T Tp p p p , etc., as introduced in Sub-
section 2.2.3, leaving out the superscripted stars for clarity. Using equation (2.90), we can 
finally rewrite equation (2.131) as 
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Equation (2.133) is completely identical to system equation (2.89) which was derived from 
balance equations for mass and momentum only. The alternative way to derive the system 
equations using the concept of energy, as described for porous-medium flow in this section, is 
frequently used in the fields of theoretical and applied mechanics; see e.g. Langhaar (1962) 
and Lanczos (1970). Closely related are other energy methods also known as variational 
methods, which are used to compute approximate solutions for applied mechanics problems 
in complex-shaped domains. In particular, they often form the basis to derive numerical 
approximations using the finite-element method; see e.g. Zienckiewicz and Taylor (1989). 
Direct use of energy methods in porous-media flow does not seem to have an advantage over 
the conventional direct methods, and has therefore scarcely been described in the literature. 
An exception is the paper by Karney and Seneviratne (1991) who propose to use energy 
concepts for adaptive time step control in numerical simulation. 

2.3 Two-phase flow 

2.3.1 System equations 

Nonlinear equations 

As a next step we consider a simplified description of two-phase flow of oil and water, as 
derived in some detail in Section 1.4. We start from equations (1.129), 
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, (2.134) 

where p and s are vectors of pressures po and water saturations Sw in the grid-block centers, V 
is the accumulation matrix (with entries that are functions of the porosity , and the oil, water 
and rock compressibilities co, cw and cr), T is the transmissibility matrix (with entries that are 
functions of the rock permeabilities k, the oil and water relative permeabilities kro and krw and 
the oil and water viscosities o and w), F is the fractional-flow matrix (with entries that have 
functional dependencies similar to those of T), and qwell,t is a vector of total well flow rates 
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with non-zero values in those elements that correspond to grid blocks penetrated by a well. 
The nonlinearities in equation (2.134) result from various sources; see also Sub-section 
1.4.10. If the oil and water phases have different compressibilities, the accumulation terms 
Vwp(s) and Vop(s) are (weak) functions of the saturations because the liquid compressibility is 
a saturation-weighted average of the oil and water compressibilities. Moreover, the porosity 
and compressibility values in these terms may be weak functions of pressure, but we do not 
take this effect into account in the examples in this text. The transmissibility terms Tw(s) and 
To(s) are much stronger functions of the saturations, because the relative permeabilities for 
oil and water are strongly saturation-dependent. The viscosities may also be weakly pressure-
dependent, but, yet again, the pressure dependency is disregarded in the examples. Finally, 
matrices Fo(s) and Fw(s) contain saturation-dependent terms that relate the oil and water flow 
rates in the wells to the total flow rates. 

Well model 

In practice the source terms are often not the flow rates in the wells but rather the pressures. 
This can be accounted for by rewriting equation (2.134) in partitioned form as 
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Here, the elements of vector 1p  are the pressures in those grid blocks that are not penetrated 
by a well. The elements of 2p  are the pressures in the blocks where the source terms are 
prescribed total well flow rates ,well tq


, and those of 3p  are the pressures in the blocks where 

the source terms are obtained through prescription of the bottom-hole pressures wellp


 with the 
aid of a diagonal matrix of well indices 3J . To compute the oil and water flow rates in the 
wells with prescribed pressures we use the well model 
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To compute the bottom-hole pressures wellp  in the wells with prescribed total flow rates we 
need an additional diagonal matrix ,2qJ  of well indices such that 

  , 2 2well t well q J p p


 , (2.137) 

from which we obtain 
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 1
2 , 2well well t
 p J q p


 . (2.138) 

State-space form 

To bring these equations in state-space form we define the state vector x, input vector u and 
output vector y as 
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    . (2.139, 2.140, 2.141) 

Equations (2.135), (2.136) and (2.138) can then be rewritten in nonlinear state-space form 

  x f u,x  ,   ,y h u x  , (2.142, 2.143) 

where the functions f and h are defined as 

 f Ax Bu  ,  h Cx Du  (2.144, 2.145) 

with state-dependent secant matrices A(x), B(x), C(x) and D(x) given by 
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  (2.146, 2.147, 2.148, 2.149) 

We note that the explicit representations (2.142) and (2.143) are primarily of theoretical 
interest because they allow direct application of concepts from systems-and-control theory. 
For computational purposes it is usually required to express the system equations in fully-
implicit (residual) state-space form 

   ˆˆ ˆ, ,    g u x x Ex Ax Bu 0   , (2.150) 

where ˆ E V  and where Â  and B̂  are have been defined in equations (2.146) and (2.147). 
The computation of the inverse of V as required in the explicit form can be performed 
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efficiently by using the analytical expression for the inverse of a 2 × 2 block matrix with 
diagonal blocks of equal size‡: 
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   , (2.151) 

where 

 wp os ws op V V V V V  . (2.152) 

Because the four sub-matrices of V are diagonal, V  and the four sub-matrices of 1V  are 
also diagonal. Moreover, the inverse 1V  can be obtained simply by taking the reciprocals of 
the diagonal elements. However, we re-emphasize that there is no need to perform the inverse 
operation if the equations serve as a basis for computation, and that the explicit state-space 
form (2.142) is only required for analysis of the system-theoretical properties of the 
equations. 

Extended output vector 

In the formulation discussed so far we considered system outputs in the sense of response 
signals, and we tacitly assumed that all system inputs were known. However, in reality, both 
inputs and outputs have to be measured and we can therefore also define an extended output 
vector that contains all measured signals. E.g. it may be required to know the oil and water 
flow rates in those wells were the total flow rates have been prescribed, which leads to 
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where we have added tildes to indicate that the variables are measurements rather than real 
prescribed variables. Moreover, we may want to include measurements of the prescribed 
pressure wellp


 in the output. The extended output vector then becomes 
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where the elements above and below the dotted line represent measurements related to output 
and input variables respectively†. In this case the matrices C and D can be expressed as 

                                                 
‡ The general expression for the inverse of a 2 × 2 block matrix is given by 

1 1 1 1
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1 1 1
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  , where 1

1 11 12 22 21
 V V V V V  and 1

2 22 21 11 12
 V V V V V  are the 

Schur complements of V11 and V22 respectively; see e.g. Friedland (1986), pp. 479-481. Using the property that 
equally sized diagonal matrices commute, we can derive equation (2.151) from this more general expression. 
† This distinction is not very clear cut. E.g. to compute the oil and water ‘input’ rates, we make use of the 
fractional flows around the wells which are a direct function of the saturations, i.e. of state variables. In this 
sense the rates also contain indirect output information on the saturations around the wells. 
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2.3.2 Well operating constraints 

During the operation of an oil field it often occurs that wells or groups of wells are operated 
on liquid constraints because the surface facilities are not capable of processing more than a 
certain throughput of gas, oil and water. Water injection wells are often operated on pressure 
constraints to avoid or limit fracturing of the formation around the wells. Production wells are 
often constrained to operate at a tubing-head pressure above a certain minimum, as 
determined by the working pressure of the first separator plus some additional pressure to 
displace the fluids through the flow line to that separator. Moreover, during the producing life 
of a field the well operating constraints may change because of changes in reservoir pressure 
and well-bore stream composition. In practice the control of tubing head pressures or phase 
rates is often done indirectly, through adjusting valve settings or changing out chokes and 
monitoring the resulting pressure of flow rate response. Methods for well control vary 
drastically. At the high end we find sophisticated remotely controlled valves with remotely 
observed pressure gauges and multi-phase flow meters. At the low end we have manual 
change out of chokes, and infrequent, say monthly, observations of well head pressures and 
measurements of the well phase rates by temporarily re-routing the well through a test 
separator. In reservoir simulation we can prescribe pressures or flow rates, but, in addition we 
may specify constraints in the form of maximum or minimum values for pressures and flow 
rates in wells or groups of wells. During the simulation the conditions may change such that a 
well changes from being operated at a prescribed rate to being operated at a prescribed 
pressure or vice versa. E.g. if a production well is operated at a prescribed total liquid rate, 
reservoir depletion may cause the bottom-hole pressure required to maintain this flow rate to 
gradually drop until it reaches the minimum pressure required to lift the well-bore fluid to 
surface, i.e. until it reaches its minimum pressure constraint. From that moment on the well 
needs to be operated at a prescribed bottom-hole pressure. Most reservoir simulators 
therefore allow the user to define minimum and maximum constraints for pressures and phase 
rates and automatically determine the most constraining constraint at any moment in time 
during the simulation. Examples of operating constraints as implemented in reservoir 
simulation will be discussed in Chapter 3. 

2.3.3 Computational aspects 

In this section we discuss some general computational aspects of the numerical 
implementation of the two-phase system equations.  

 Most (sub-)matrices considered so far are sparse: the accumulation sub-matrices are 
diagonal, the transmissibility sub-matrices are penta-diagonally banded with two sub 
diagonals, and the fractional-flow and well index sub-matrices are sparse diagonal. Most 
of the matrix elements are therefore equal to zero, and this property may be used to 
significantly reduce computer memory usage.  
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 As mentioned before, the re-ordering of vector and matrix elements with permutation 
matrices as used in Sub-sections 2.2.3 to 2.2.6 is not essential in a numerical 
implementation. There is no computational need to e.g. re-group state or input vector 
elements; it is merely a convenient notation. In a numerical implementation we may 
simply use (sparse) matrices with elements that correspond to the relevant state or input 
variables at the appropriate locations. 

 Computation of an element of a transmissibility sub-matrix corresponding to a specific 
grid block involves computing the transmissibilities for flow to or from the four 
neighboring grid blocks. Therefore, assembling the transmissibility (sub-)matrices 
requires knowledge of the connectivities of the grid blocks. This knowledge is often 
administered with the aid of a connectivity table, an ncon × 2 matrix of which each row 
corresponds to a connectivity between a pair of grid blocks with grid-block numbers 
stored in the first and second column positions. For a rectangular model with nx × ny grid 
blocks, we have  

    1 + 1con x y y xn n n n n    , (2.157) 

and for the 2 × 3 reservoir used in Examples 1 and 2 the 7 × 2 connectivity table Lcon is 
given by (see also Table 1.2) 
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 The elements in the two-phase state vector [ ]x p sT T T  have different physical 
dimensions and strongly varying magnitudes. If we express the pressures in Pa, they are 
in the order of 106 – 107, whereas the saturation values remain, by definition, between 0 
and 1. As a result the elements of the transmissibility matrix T, and therefore of the 
system matrix A, will also have strongly varying magnitude. This may influence the 
accuracy of the result when solving a system of equations A x = b, as will be required in 
Chapter 3 to simulate the response of the system†. The reason for the inaccuracy is in the 
finite precision representation of the matrix elements in any numerical implementation. 
We may avoid this problem by scaling the elements of x such that the difference in 
magnitude between the pressure and saturation values becomes much smaller. This can be 
done by dividing the first ngb columns of A, which multiply the first ngb ‘pressure’ 
elements of x, by a factor 

  maxscalf  p . (2.159) 

                                                 
† Here, b is an arbitrary right-hand side.  



A systems description of flow through porous media, version 1d, April 2013 65 

and multiply the corresponding elements of x with fscal after the equations have been 
solved. In addition, we may also scale the elements of the right-hand side b by dividing 
the first ngb rows of b and the corresponding rows of A by fscal.  

 In an injection well we have qt = qw, and we expect that soon after injection has started 
the fractional flows for water and oil close to the well will approach one and zero 
respectively. However, before injection starts, the initial condition for the saturation is 
usually equal to the connate-water saturation, which means that the fractional flows for 
water and oil are zero and one respectively. In theory, it would then be impossible to ever 
inject water. This paradox is usually circumvented by simply specifying a fractional flow 
equal to one for every injection well. 

2.3.4 Lift tables* 

Until now, we have considered prescribed pressures in the form of flowing bottom-hole 
pressures pwell. In most cases, however, it is not the bottom-hole pressure that is controlled but 
the pressure at the top of the well, which is usually referred to as the flowing tubing-head 
pressure, ptf. The difference in pressure between top and bottom of a well is governed by the 
multi-phase flow behavior of the well-bore fluids. Various techniques have been developed to 
compute well-bore pressure drops, ranging from empirical correlations to complex 
mechanistic models; see e.g. Brill and Mukherjee, 1999. Typically, the tubing-head pressure 
can be computed for given fluid properties, well-bore geometry, oil, gas and water flow rates, 
and bottom-hole pressure. Conversely, the bottom-hole pressure may be computed for a given 
tubing-head pressure. The computation is performed with the aid of a well-bore simulator 
that numerically integrates a one-dimensional averaged version of the multi-phase flow 
equations along the well bore. Especially in the case of complex mechanistic multi-phase 
flow models these computations may be too time consuming to perform every time step of 
the reservoir simulator. An alternative approach is then to perform a large number of well-
bore flow simulations up-front to generate a multi-dimensional table, known as a lift table or 
flow performance table, which can be used as a look-up table by the reservoir simulator. 
Usually the four entries for a lift table are the tubing-head pressure, and the oil, gas and water 
rates, all expressed at standard conditions‡. Typically each of the entries is described with a 
small number of points, say 5 in which case the table has 45 625  points that correspond to 
the same number of bottom-hole pressures. For intermediate values of the entries a linear or 
higher-order interpolation is used to compute the corresponding bottom-hole pressure, which 
is much faster than performing a full well-bore flow simulation. Sometimes a higher number 
of points is needed, at the cost of a longer pre-processing time, e.g. to prevent convergence 
problems during the numerical solution of the reservoir equations. 

2.3.5 Control valves* 

In addition to specifying inputs in the form of prescribed well flow rates or pressures, either 
down hole or at surface, it is also possible to prescribe the opening of control valves. In 
particular the use of interval control valves (ICVs) is becoming increasingly popular. ICVs 

                                                 
‡ Even if the reservoir is above bubble point such that it contains only oil and water and no free gas, the flow in 
the well bore will be three-phase because associated gas will be released from the oil as the well-bore pressure 
decreases at increasing elevations above the reservoir. Alternatively, the lift table entries can be chosen as 
tubing-head pressure, oil rate, gas-oil ratio, and water-cut. Whatever the choice of the table entries, it is assumed 
that the fluid properties at standard conditions and the well-bore geometry do not change during the reservoir 
simulation. 
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are mounted in an inner tube (the tubing) inside an outer tube (the casing) which penetrates 
the reservoir; see Figure 2.2. The role of these valves is to control the inflow from individual 
reservoir compartments, allowing one, e.g., to shut-in a zone that experiences a too-high 
water production. 

 

Figure 2.2: Schematic representation of a smart horizontal well equipped with three ICVs. 
These allow for individual control of the inflow from the reservoir, through the perforations 
and the ICVs, into the tubing. The packers form flow barriers in the annular space between 
the casing and the tubing. 

The usual way to represent the control action of such a valve is to specify a dimensionless 
valve opening 0 1   and modify the well inflow equations (2.86) according to 

  well wellq J p p 
 . (2.160) 

To compute the oil and water flow rates in wells with prescribed valve settings we can 
modify the two-phase well model (2.136). Introducing a subscript 4 to indicate wells 
controlled with ICVs this leads to  
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where  is a vector of valve settings, and J is a modified well index matrix defined as  
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Note that J is a function of both p and s. If we define the input and state vectors, 
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where subscripts 1 and 4 refer to grid blocks without wells and grid blocks containing an ICV 
respectively, and where it has been assumed that all ICVs operate on the same, fixed, well 
pressure pwell, the matrices A and B become (c.f. equations (2.146) and (2.147)): 
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In this form the system equations ( ) ( ) x A x x B x u  are still control-affine*. If we introduce 
the option to control both the bottom-hole pressures and the valve settings, the inputs become 
nonlinear in u and the control-affine property is lost. 

2.3.6 Streamlines* 

As discussed in Chapter 1, the governing equations for flow through porous media consist of 
a mass-balance equation in combination with Darcy’s law which describes the relationship 
between spatial pressure gradients and fluid velocities. After spatial discretization, Darcy’s 
law can be interpreted as an equation relating pressure differences between adjacent grid 
blocks to the Darcy velocities (volumetric fluxes) at the corresponding grid-block boundaries. 
This discrete form of Darcy’s law can be expressed as 

 t  Spv  , (2.167) 

where p is an ngb ´ 1 vector of pressures at the grid-block centers with ngb the number of grid 
blocks, tv  is an ncon ´ 1 vector of total Darcy velocities at the grid-block boundaries with ncon 
the number of connectivities, i.e. the number of grid-block boundaries, and S is an ncon ´ ngb 
matrix of transmissibility coefficients. Expressions for the elements of S are given in detail in 
equation (1.144) in Sub-section 1.4.12. Given the velocity vector tv , we can now simply 
visualize the trajectory of a fluid particle starting from its entrance into the reservoir at an 
injection well, all the way until it leaves again via a producer. These trajectories are known as 
streamlines and they can be computed using a procedure due to Pollock (1988). Consider a 
two-dimensional reservoir model with total Darcy velocities at the grid-block boundaries 
given by the vector tv . The corresponding total interstitial velocities are then given by 

 t
t


 v

v . (2.168) 

Assuming a linear change in velocities in the x and y directions we can define the velocity 
gradients gx and gy for a single grid block as  
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 , (2.169, 2.170) 

where x and y are the grid-block dimensions, where we dropped the subscript t from the 
velocities for clarity, and where we used subscripts x0, y0, x0+x, and y0+y to indicate the 
four relevant elements out of the m elements of tv ; see Figure 2.3.  

                                                 
* See the footnote on page 50. 
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Figure 2.3: Grid block with velocity vectors at the boundaries and a streamline from 
entrance point (xi, yi) to exit point (xe, ye).   

In case of positive velocity components, a fluid particle will enter the grid block either at the 
left or at the top. We indicate the location of the entrance point as (xi, yi), where it should be 
understood that either xi = x0 or yi = y0 (or both, in the special case that the particle enters at 
the corner). The particle will now travel along a curved path until it reaches the exit point 
(xe, ye), and its velocity at an arbitrary point (x, y) inside the grid block has components 
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Note that at the exit point either xe = x0+x or ye = y0+x, except when the particle leaves at 
the corner. Because we have, by definition,  
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it follows that  
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 , (2.174) 

which can be integrated to obtain the time  to travel the distance xexi: 
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from which we obtain 
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The travel time in the y direction will of course be identical and we can therefore also write 
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We do not know in advance whether the particle will exit at the right or at the bottom of the 
grid block, but we do know that it must be one of the two (or both, in case of an exit at the 
corner). To determine the correct exit boundary we should first compute the travel times from 
equations (2.176) and (2.177) using xe  x0 = x and ye  y0 = y respectively, i.e. for the 
maximum possible travel distance: 
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 (2.178, 2.179) 

and the determine the correct grid-block travel time as 

  min ,x y       (2.180) 

In the case that  = y, we have ye = y0+x, and can we solve for xe from equation (2.176) as 

     0 00 0

1
expe x x i x x

x

x x v g x x g v
g

          . (2.181) 

Similarly, if  = x, we can solve from equation (2.177) for ye as 

     0 00 0

1
expe y y i y y

y

y y v g y y g v
g

          . (2.182) 

The exit point then forms the entry point of the next grid block and we can repeat the 
procedure to trace the stream line until it reaches one of the producers. If we sum the travel 
times over all grid blocks we obtain the arrival time for a streamline which indicates the 
moment in time at which a ‘virtual’ particle travelling with speed tv  along the streamline 
would reach the producer (assuming it starts at the injector at time zero). A related quantity is 
the time-of-flight of a virtual particle required to reach a specific point along a streamline, 
which is equal to the summation of grid-block travel times from the injector until that point. 
Figure 2.4 displays a streamline plot computed for Example 1 after steady state conditions 
have been reached. If, for a given total number of streamlines, we choose the fraction starting 
from each injector in proportion to the fraction of total water injected, the distance between 
streamlines becomes an inverse measure for the flow per unit surface area (which is also 
known as the flux). In other words, the closer the streamlines, the higher the flux. Apart from 
providing a powerful means to visualize reservoir flow, streamlines can also be used during 
numerical simulation, as will be briefly discussed in Chapter 3. For a much more in-depth 
treatment of streamline methods we refer to the classic papers of Bratvedt, Gimse and 
Tegnander (1996), Batycky, Blunt and Thiele (1997), King and Datta Gupta (1998) and to the 
text book of Datta-Gupta and King (2007). 
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Figure 2.4: Streamlines for steady state flow in Example 1. Note: The tracing algorithm 
described above computes parabolic trajectories for the streamlines in each grid block. 
However, the streamlines have been plotted more coarsely as straight lines between the entry 
and exit points in the grid blocks.  

2.3.7 System energy* 

In analogy to the single-phase case discussed in Sub-section 2.2.7 we can formulate the 
energy balance per unit time, i.e. the power balance, for the two-phase case. The power 
balance can be expressed in terms of potential energy rate, dissipation rate and work, each 
related to both oil and water flow. Using matrix-vector notation this results in equation 
(2.183) below, where we applied the vector and matrix partitioning as introduced in Sub-
section 2.2.3 to distinguish between gridblocks without wells, gridblocks with wells where 
the flow rates are prescribed, and those with wells were the bottom-hole pressures are 
prescribed. We note that the presence of gravity forces and capillary pressures would make 
the expression for the power balance more complex. Using a similar reasoning as in Sub-
section 2.2.7 we can recover system equations (2.135) by first simplifying equation (2.183) 
such that the well index matrices J2 and J3 are eliminated, then take derivatives with respect 
to the state variables 1p , 2p  and 3p , set the result equal to zero, and finally re-introduce the 
well indices for the prescribed pressures. In Sub-section 3.4.5 we will present a numerical 
example that illustrates the relative importance of the various terms in the power balance. 
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3 System response 

Abstract 

This chapter first treats the analytical solution of linear systems of ordinary-differential 
equations for single-phase flow. Next it moves on to the numerical solution of (nonlinear)  
two-phase flow equations, covering various aspects like implicit, explicit or mixed (IMPES) 
time discretizations and associated stability issues, Newton-Raphson iteration, streamline 
simulation, automatic time-stepping, and other computational aspects. The chapter concludes 
with simple numerical examples to illustrate these and other aspects such as mobility effects, 
well-constraint switching, time-stepping statistics, and system-energy accounting. 

3.1 Free response 

3.1.1 Homogeneous equation 

Consider the linear or linearized time-invariant state-space equations given in equation (2.8) 
or (2.24). The scalar equivalent of these vector differential equations is given by 

      x t ax t bu t  , (3.1) 

where a and b are now time-invariant scalar coefficients†. Because equation (3.1) is first-
order in the dependent variable t, it requires a single initial condition: 

 :t t x x 
 

. (3.2) 

If we set u = 0 in equation (3.1), we obtain the homogeneous equation 

    x t ax t , (3.3) 

which describes the free response (also called the transient response) of the system starting 
from a non-zero initial condition 

    a t tx t e x
 

. (3.4) 

For values of the coefficient a smaller than zero, the response x(t) for the limit of t 
approaching infinity becomes zero, i.e. the response is truly transient. For values of a larger 
than zero, the response grows to infinity, while for a = 0, the response remains equal to the 
initial condition 


x . Just as for scalar ODEs, if we set u = 0, in equation (3.1) we obtain the 

homogeneous equation 

    t tx Ax , (3.5) 

with a corresponding initial condition 

 :t t x x
 

. (3.6) 

3.1.2 Diagonalization 

A solution to equation (3.5) can be obtained through diagonalization of matrix A. If A is 
diagonalizable there exists a non-singular matrix M of eigenvectors m of A such that 

 -1A MΛM ’ (3.7) 
                                                 
† For an engineering-oriented overview of the theory of first-order scalar and vector ODEs see e.g. the review in 
Luenberger (1979) or, somewhat more extensively, Boyce and Di Prima (2005). An enormous amount of other 
textbooks is available covering similar material. 
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where  = diag (1, …, n) is the diagonal matrix of eigenvalues of A. Using this 
decomposition of A, equation (3.5) can be written as 

    1t tx MΛM x  , (3.8) 

or equivalently, after pre-multiplying (3.8) by 1M , as 

    1 1t t M x ΛM x  . (3.9) 

Defining a transformed state variable z as 

    1t tz M x  , (3.10) 

and substituting it into (3.9) yields the decoupled system of homogeneous equations 

    t tz Λz . (3.11) 

It is called decoupled since each of the elements zi of the transformed state z is given by 

    i i iz t z t  , (3.12) 

thus without being influenced by any of the other elements of z. The solution of (3.12) is 
given by (c.f. equation (3.4)) 

    i t t
i iz t e z 

   , (3.13) 

and, equivalently, the solution of the ‘full’ transformed state variable z can be written as 

    t tt e  Λz z
 

. (3.14) 

An interpretation of the matrix exponential e can be obtained by considering the Taylor 
expansion around zero for the exponential function, 

 
2 3

1
2! 3!

e        , (3.15) 

of which the matrix equivalent can be written as† 

 
2 3

2! 3!
e     Λ Λ Λ

I Λ   . (3.16) 

To recover the solution in terms of the original state variable x, first substitute relationship 
(3.10) in equation (3.14) and multiply with M to obtain 

     1t tt e   Λx M M x
 

. (3.17) 

Using equations (3.7) and (3.16) we can then write 

                                                 
† In practice, the computation of a matrix exponential should not be performed using this expression; see Moler 
and Van Loan (1978) for an overview of various possible methods. 
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  (3.18) 

and substitution of this relationship in equation (3.17) finally gives the solution of 
homogeneous equation (3.5) as  

    t tt e  Ax x
 

. (3.19) 

Equation (3.19) is the matrix equivalent to scalar equation (3.4) and represents the transient 
behavior of the LTI system with system matrix A. The diagonalization of A in equation (3.7) 
is an example of a similarity transformation because the dynamic system characterized by the 
transformed system matrix Λ  has the same dynamic properties as the one represented by the 
original system matrix A, since both matrices have the same eigenvalues. 

3.1.3 Stability 

If all eigenvalues i of matrix A are smaller than zero, it follows that the response x(t) of 
homogeneous equation (3.5) for the limit of t approaching infinity becomes zero, i.e. the 
response is truly transient‡. This property of a dynamic system is known as asymptotic 
stability. If any of the eigenvalues is larger than zero, the response grows to infinity (that is, 
in the linear theory), i.e. the system is unstable. If at least one of the eigenvalues is equal to 
zero, whereas the others are smaller than zero, the response for large values of t may 
approach a non-zero steady-state value, a situation known as marginal stability. Physical 
instability requires an internal source of energy in the system. In the case of flow through 
porous media such a source normally does not exist, and to the contrary, the system is 
continuously loosing energy through friction of the fluid in the pores as described by Darcy’s 
law. Unlike in classic control engineering, physical instability in time is therefore normally 
not an issue†. An exception is the behavior of coupled well-bore-reservoir systems where 

                                                 
‡ More precisely, the condition for asymptotic stability requires that all real parts of the eigenvalues are smaller 
than zero, a condition that is also referred to as the system matrix being Hurwitz. This condition is only of 
relevance if the eigenvalues are complex numbers, which implies that the system displays oscillatory behavior. 
However, because we don’t take inertia into account in the description of porous-media flow, the system cannot 
store kinetic energy and the pressures will only display exponentially decaying behavior. Correspondingly, the 
eigenvalues are real numbers and it suffices to require them to be negative-valued to guarantee asymptotic 
stability. 
† However, instabilities in space do play a role in reservoir engineering, at least in theory. A well-known case is 
reservoir flooding with an unfavorable mobility ratio, i.e. with the mobility of the displacing fluid being lower 
than the mobility of the displaced fluid. In that case, a displacement front may become unstable such that 
viscous fingering takes place of the displacing fluid in the displaced fluid. Similar instabilities may occur when a 
heavy fluid is injected on top of a lighter one, which may lead to fingering caused by buoyancy-driven 
convection. In practice, geological heterogeneities often completely mask the fingering process. 
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occasionally unstable behavior of the well-bore flow may lead to large pressure and flow 
oscillations in the well-bore and the near-well-bore area. In that case, the source of the 
instability is in the multiphase flow behavior in the well bore, and not in the reservoir. 
Analysis of this type of coupled problems requires a dynamic well-bore simulator that is 
capable of computing the well-bore dynamics at a time scale of seconds to hours. We will not 
consider such short-term phenomena, and will restrict our attention to reservoir flow at time 
scales from days to decades where well-bore flow instabilities play no role. A completely 
different, artificial, source of instability is related to the numerical simulation of reservoir 
flow. As will be illustrated in the next section, incorrect time discretization of the system 
equations may lead to numerical instabilities which may completely ruin the simulation, or 
worse, produce output that at first sight looks in order but contains fluctuations that are 
unphysical. 

3.1.4 Singular system matrix 

In Sub-section (2.2.3) it was discussed that the elements of an input vector u may consist of 
prescribed flow rates or prescribed bottom-hole pressures (or a relation between flow rates 
and pressures). In Sub-section (2.2.4) it was shown that the use of a well model to prescribe 
the bottom-hole pressures results in the addition of a term pJ  to the main block diagonal of 
the transmissibility matrix T, and here we will have a look at an important consequence of 
that addition. The transmissibility matrix T of a reservoir model with only prescribed flow 
rates, and therefore no prescribed bottom-hole pressures, is singular. This can be understood 
by considering that T defines the transmissibilities between the grid blocks, which directly 
correspond to the steady-state pressure differences between the grid blocks. However, 
knowing only the pressure differences does not give us enough information to compute the 
absolute pressures in the grid blocks. This implies that the transmissibility matrix is singular 
with rank deficiency one. Another way to understand this is by considering the structure of T: 
the sum of every row adds up to exactly zero because of the way the transmissibilities enter 
the matrix; see equation (1.31). Therefore the sum of all columns has to be equal to the zero 
vector which implies that nontrivial solutions of the homogeneous equation 

 Tp 0 , (3.20) 

are given by 

  pp 1 , (3.21) 

where p is an arbitrary constant pressure. In other words, the null space of T consists of all 
vectors p with arbitrary, equal values p in each grid block. To restore regularity of T we need 
to fix at least one of the pressures. Because the well index matrix 3J  is diagonal, addition of 

3J  to the main block diagonal of T results in the addition of non-zero elements to the main 
diagonal of T which indeed restores the regularity. It will be shown in Section 3.2 below that 
singularity of T, and thus of A, makes it impossible to directly compute the long-term steady-
state pressure distribution in the system, or the behavior in the limit of incompressible flow. It 
will be shown below that it may still be possible to compute the pressures dynamically 
through numerical integration of the system equations in time, as long as it concerns 
compressible flow. However, in that case the singularity of A could still lead to numerical 
problems, in particular for long integration times and small compressibilities.  
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3.1.5 Example 1 continued – Free response 

The eigenvalues and eigenvectors of the system matrix A can be computed as 

 5

0.4163 0 0 0 0 0

0 0.1723 0 0 0 0

0 0 0.0660 0 0 0
10

0 0 0 0.0285 0 0

0 0 0 0 0.0059 0

0 0 0 0 0 0.0000



 
  
 

   
 
 

 

Λ , (3.22) 

         

0.4108 0.6716 0.3437 0.2351 0.2001 0.4082

0.7867 0.0760 0.3832 0.1631 0.1875 0.4082

0.0052 0.0006 0.0107 0.0737 0.9098 0.4082

0.0571 0.0108 0.8093 0.3551 0.2211 0.4082

0.4562 0.7269 0.2409 0.0581 0.1881 0.4082

0.02


  

   


  
 



M

84 0.1210 0.1479 0.8850 0.1130 0.4082

 
 
 
 
 
 
 
 

   

. (3.23) 

Note that one of the eigenvalues (the sixth) is zero, in line with the rank-1 deficiency of A. 
Figure 3.1 displays the eigenvectors by plotting their elements on the corresponding grid 
blocks. It can be seen that the eigenvector belonging to the zero-eigenvalue has an (arbitrary) 
constant value‡. The other five eigenvectors form basis functions in the form of spatial 
patterns of grid-block pressures. 

 
Figure 3.1: Eigenvectors of the system matrix A of Example 1. 

Next, we perform an analytical integration of the state equations of Example 1 according to 
equation (3.17). Starting from an unbalanced initial condition† 

                                                 
‡ Eigenvectors are defined up to an arbitrary constant. 
† I.e. an initial condition where not all grid-block pressures have identical values. The initial condition in 
equation (3.24) consists of spatial fluctuations around the initial reservoir pressure 630 10 

Rp  specified in 
Table 1.1. 
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   6

0.700 21.000

0.900 27.000

1.100 33.000
0 10 Pa ,

0.900 27.000

1.100 33.000

1.300 39.000

Rp

   
   
   
   

     
   
   
   
   

x
  (3.24) 

we can compute the response for various values of time t. The initial condition in terms of the 
coefficient vector z can be computed as (see equation (3.10)) 

    0 0Mz x  , (3.25) 

which leads to  

   6

0.037

6.943

2.455
0 10 .

11.240

4.175

73.485

 
  
 

   
 
 
 

z  (3.26) 

Note that the coefficients z are dimensionless which implies that the elements of the 
eigenvectors m must have a dimension of pressure (Pa). Figure 3.2 displays the values of the 
6 coefficients (i.e. the 6 elements of z) on a logarithmic scale in time, and after one year they 
have the values 

   6

one year in seconds

0.000

0.000

0.000
365 24 3600 10 .

0.000

0.651

73.485

 
  
 

     
 
 
 

z  (3.27) 

Clearly the importance of the eigenvectors corresponding to the eigenvalues with the largest 
absolute values reduces the fastest. The physical interpretation is that those ‘modes’ are the 
most heavily damped, and the straight lines in the semi-logarithmic plot illustrate the rapid, 
exponential nature of the decay. Only the value of the sixth coefficient, multiplying the 
pattern corresponding to the zero-eigenvalue, does not change its value at all. The product of 
this coefficient with its corresponding pattern represents the average pressure in all grid 
blocks after the effect of the initial conditions has been dampened out completely†: 

                                                 
† Here we use the notation ( )x to indicate  lim

t
t


x . 
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Figure 3.2: Coefficients z1 to z6 as a function of time on a logarithmic scale. 

     6 6
6 6
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73.485 10 10 Pa.

0.4082 30.00

0.4082 30.00

0.4082 30.00

   
      
   

             
   
   
   

zx m  (3.28) 

The pressure vector x for the entire period can be recovered as 

    t tx Mz  , (3.29) 

and Figure 3.3 displays the results for the pressures in grid blocks 1, 2, 5 and 6 for a period of 
one year, which in the end all reach the average value of 630 10 Pa . 

 

Figure 3.3: Pressures in grid blocks 1, 2, 5 and 6 as a function of time obtained by analytical 
integration of the state equations for Example 1. 

0 100 200 300

-10
5

-10
0

Time  t , days

C
o

e
ffi

ci
e

n
ts

 z
 ,

 -

 

 

z
1

z
2

z
3

z
4

z
5

z
6

0 100 200 300
2

2.5

3

3.5

4
x 10

7

Time  t , days

P
re

ss
u

re
 p

 , 
P

a

 

 

x
1

x
2

x
5

x
6



A systems description of flow through porous media, version 1d, April 2013 80 

3.2 Forced response 

3.2.1 Nonhomogeneous equation 

We return to the scalar LTI nonhomogeneous equation (3.1). Following the standard theory 
of linear differential equations, we can write the general solution of equation (3.1) as the sum 
of the free response, given by equation (3.4), and the forced response which depends on the 
input term (also known as forcing term)  bu t  and which is often referred to as the particular 
solution 

      
t

a t

t

x t e bu d    . (3.30) 

We can interpret the integral in expression (3.30) as the limit for 0   of a summation of 
transient responses to inputs  u  , multiplied with b, over small time intervals   during 
the period t t 


. Although mathematically there is no problem in considering cases where 

time runs backwards, we usually restrict the analysis to cases where the underlying physics 
forces causality, which implies that the states and the outputs are only influenced by past 
inputs†. The general solution of equation (3.1) is now obtained as the sum of the 
homogeneous solution and the particular solution; i.e. the general response is the sum of the 
transient response and the forced response: 

             




 t
a t t a t

t

x t e x e bu d . (3.31) 

In analogy to these scalar results, the forced response of the nonhomogeneous LTI vector 
differential equation  

      t t t x Ax Bu , (3.32) 

is given by 

      
t

t

t

t e d    Ax Bu


, (3.33) 

such that the general solution is obtained as the sum of solutions (3.19) and (3.33): 

        
t

t t t

t

t e e d     A Ax x Bu





. (3.34) 

3.2.2 Diagonalization and modal analysis 

Just like in the homogeneous case, the inhomogeneous equations may be decoupled through 
diagonalization of the system equations. Substitution of equation (3.7) in equation (3.32) 
results in 

      -1t t t x MΛM x Bu , (3.35) 

which, after pre-multiplication with M-1 can be written as  

      -1t t t z Λz M Bu , (3.36) 

                                                 
† A system where the states are influenced by future inputs is therefore referred to as non-causal. 
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where z is a transformed state variable as defined before in equation (3.10). The eigenvectors 
m, i.e. the columns of M, are also known as the modes of the dynamic system, and equation 
(3.36) is therefore referred to as a modal representation of the system equations. The general 
solution, equation (3.34), can be rewritten in modal form as 

        1
t

t t t

t

t e e d      Λ Λz z M Bu





. (3.37) 

In case of physical systems where inertia plays a role, such as e.g. mechanical (mass-spring) 
systems or electrical (inductance-capacitance) networks, the modes correspond to spatial 
patterns of oscillations for the undamped homogeneous system. In particular for mechanical 
systems there exists an extensive branch of modal analysis techniques to obtain the modes 
(eigenvectors) and the associated frequencies (eigenvalues) of a system from experiments. In 
the case of flow through porous media, inertia is usually neglected, which means that the free 
response of the system is non-oscillatory and just consists of decaying exponential functions 
(see equation (3.19)), such that the modes have much less physical significance. Note that 
although the homogeneous equations were fully decoupled (see equations (3.11) and (3.12)), 
the inhomogeneous equations are in general coupled through the input, because except for the 
special case that -1M B  is a unit matrix, the elements of the input vector u will influence more 
than just a single mode. 

3.2.3 Singular system matrix 

Steady-state response 

Consider the LTI inhomogeneous equation (3.32) with a regular system matrix A. In the 
special case that the input vector ( )tu  becomes a constant ( )u  for t , the steady-state 
solution can be obtained by putting x 0 , resulting in the linear system of equations 

       Ax Bu , (3.38) 

which could then be solved for x(). Formally this can be written as  

    1   x A Bu , (3.39) 

although in practice it is computationally more efficient to solve the system of equations 
(3.38). Note, however, that for a singular matrix A we cannot solve equation (3.38). As 
discussed in Sub-section 3.1.4 above, T, and therefore A, are singular if we prescribe only the 
flow rates in the wells. If we fix at least one of the pressures with the aid of a well model the 
resulting modified transmissibility matrix * *( )pT J  is regular, and therefore also the system 
matrix A , and we can compute the steady-state vectors ( ) x  and ( ) y  from 

          A x B u  ,               y C x D u .  (3.40, 3.41) 

Incompressible flow 

A similar situation occurs in the limit of incompressible flow. As discussed in Section 1.3, in 
that case the accumulation matrix V vanishes, such that differential equation (2.8) is replaced 
by an algebraic equation  

     t tAx Bu 0 , (3.42) 

with 
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 ,     quA T B L  . (3.43, 3.44) 

The solution can be obtained by solving the system of equations 

     t tAx Bu , (3.45) 

where the dynamic response x(t) is now assumed to occur instantaneously. Just as in the 
steady-state case, A needs to be regular, i.e. we need to fix at least one of the pressures in the 
wells. 

3.3 Numerical simulation 

Until now we have considered the response of simple linear reservoir systems for which it 
was possible to obtain analytical solutions. For more realistic, nonlinear, reservoir systems 
we need to simulate the response numerically. 

3.3.1 Explicit Euler discretization 

To numerically simulate the dynamic system behavior it is required to discretize not only the 
spatial variables but also the time variable. In other words, we need to discretize the 
continuous-time system of ODEs and derive a discrete-time system of ODEs. Starting from 
the general form of the system equations (2.6), the most simple approach is to discretize the 
equation by replacing the difference dx/dt by differential x/t : 

     ,





t t
t

x
f u x  . (3.46) 

This gives us an algorithm to compute an approximate new value xk at tk from a known value 
xk-1 at tk-1:

† 

  1 1 1 1,        k k k k k tx x x x f u x  , (3.47) 

where t = tk – tk-1. The counter k is generally referred to as the discrete time. More formally, 
the same result is obtained by using a forward Taylor expansion for x at tk-1: 

 
     

1 1

2
2

1 2

1

2
k k

k k

t t t t

d t d t
t t

dt dt
 



 

  
       

   

x x
x x   . (3.48) 

Substitution of equation (2.5) into equation (3.48) and disregarding all terms higher than first-
order leads indeed to equation (3.47). As an illustration we apply the simple approach to the 
LTI state and output equations (2.8) and (2.11), 

            ,c c c ct t t t t t   x A x B u y C x D u  , (3.49, 3.50) 

where we have now added subscripts c to matrices A, B, C and D to indicate that they are 
related to a continuous-time representation. Following equation (3.47) we obtain 

  1 1 1k k c k c k t     x x A x B u  . (3.51) 

Defining 

  d ct  A I A , d ct B B , d cC C  and d cD D , (3.52, 3.53, 3.54, 3.55) 

                                                 
† We use the shortcut notation kx  to indicate ( )ktx , i.e. the value of x at  kt t . 
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allows us to write the general state-space system in discrete-time form:  

 1 1 ,k d k d k k d k d k    x A x B u y C x D u  . (3.56, 3.57) 

Equation (3.56) is a difference equation or discrete-time differential equation. It represents 
one particular discrete-time equivalent of the continuous-time differential equations (2.8). 
Many other time discretizations are possible and we will discuss some of them later on in this 
chapter. Similarly, discrete-time equivalents can be obtained for the LTV and nonlinear 
continuous-time state equations. For the general case of nonlinear systems with time-varying 
parameters, the discrete-time equivalent to equations (2.6) and (2.10) can be expressed as 

    1 1, , ,  k k k k k k k kx f u x y h u x  . (3.58, 3.59) 

Comparison with equation (3.47) shows that this implies that 

 1 , 1k k c k t   f x f  and ,k c kh h , (3.60, 3.61) 

where we used subscripts c,k1 and c,k to indicate continuous-time functions evaluated at 
discrete times k1 and k respectively. 

3.3.2 Implicit Euler discretization 

Equation (3.47) is known as an explicit Euler scheme, where the term explicit refers to the 
fact that xk+1 can be obtained as an explicit formula in terms of xk. This is possible because 
we chose to evaluate the function f in equation (3.46) at the ‘old’ time tk-1. If, alternatively, 
we choose to evaluate f at the ‘new’ time tk and apply the result to the LTI equation (2.8) we 
obtain 

  1k k c k c k t   x x A x B u  , (3.62) 

As before, a more formal derivation of this result can be obtained by using a Taylor 
expansion; this time a backward one for x at tk: 

 
     

2
2

1 2

1

2
k k

k k

t t t t

d t d t
t t

dt dt

 

  
       

   

x x
x x   . (3.63) 

Re-ordering the terms leads to: 

 
     

2
2

1 2

1

2
k k

k k

t t t t

d t d t
t t

dt dt

 

  
       

   

x x
x x   , (3.64) 

which is identical to expression (3.48) except for the time at which the derivatives are 
evaluated. Substitution of equation (2.8) in equation (3.64), and disregarding the terms higher 
than first order, leads to equation (3.62) again. This equation is known as an implicit Euler 
scheme, because xk appears both at the left-hand and the right-hand side of the equation. It 
can be rewritten as 

   1c k k c kt t    I A x x B u , (3.65) 

whereafter it can formally be solved for xk as  

    1

1k c k c kt t


    x I A x B u  , (3.66) 
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although in a numerical implementation it is, as always, more efficient to solve the linear 
system of equations (3.65) than to compute the inverse as in equation (3.66). Expression 
(3.66) can be rewritten in a form similar to equation (3.56) if we redefine Ad and Bd as  

   1

d ct
  A I A ,   1

d c ct t
   B I A B ,  (3.67, 3.68) 

leading to the discrete state-space form 

 1k d k d k x A x B u .  (3.69) 

Note that although equation (3.69) appears to be explicit in time again, the underlying 
implicit discretization scheme results in the need to solve a system of equations at each time 
step. An implicit Euler discretization of the nonlinear system of equations (2.6) can also be 
obtained by substitution in equation (3.64). Disregarding higher-order terms, this leads to 

  1 ,  k k c k ktx x f u x  , (3.70) 

or, with 1 ,k k c k t  f x f , to 

  1, ,k k k k kx f u x x  . (3.71) 

3.3.3 Picard and Newton-Raphson iteration 

It is, in general, not possible to invert the nonlinear function fk and therefore we need an 
iterative procedure to solve equation (3.71) at every time step. The most simple procedure is 
Picard iteration, also known as subsequent substitution or simple iteration, in which we start 
by solving the equation with an initial guess 0

kx  at the right-hand-side to obtain an improved 
estimate 1

kx  at the left-hand side. The usual choice for 0
kx  is simply the value xk-1 computed 

during the previous time step. Subsequent iteration steps can then be expressed as 

  1
1, , 
i i

k k k k kx f u x x  , (3.72) 

where the superscript i is the iteration counter. The iteration is terminated when a predefined 
convergence criterion is met. A typical criterion is given in terms of the two-norm 

 2

2
1

n
i
k i

i

r 


r   , (3.73) 

where 1i i i
k k k

 r x x  is the residual of the iteration, n is the number of elements in r, and  is a 
small number†. Another popular norm to specify convergence criteria is the infinity norm 

  max , 1, ,i
k i

i
r i n


r    . (3.74) 

Expressions (3.73) and (3.74) are known as an absolute convergence criteria. An example of 
a relative criterion is 

                                                 
† The small number  itself is often also called the convergence criterion. The state vector x may contain groups 
of elements with different physical dimensions (e.g. pressures and saturations), in which case the dimensions of 
 are ill-defined. Moreover, the magnitudes of the pressures are usually much larger than those of the saturations 
(typically 106 - 107 versus 0 - 1) and therefore the pressure values determine whether or not the convergence 
criterion is met whereas the saturations have almost no influence. For multi-phase flow it is therefore required to 
specify separate convergence criteria for the pressures and the saturations, or to scale the variables such that 
they become dimensionless and of the same order of magnitude. 
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 2

2

i
k

i
k


r

x
 . (3.75) 

In practice, it is often required that several convergence criteria are met simultaneously 
before an iteration may be terminated. An alternative to Picard iteration is Newton-Raphson 
iteration. The vectorial form of this iteration scheme can be expressed as the two-step 
procedure: 

 

   1
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
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






 

g u x x
r g u x x

x

x x r

  (3.76, 3.77) 

where 

    1 1, , , ,  k k k k k k k k kg u x x x f u x x 0   (3.78) 

is the implicit form of the system equations (3.71), and where  
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x
 , (3.79) 

is known as a Jacobian matrix. Equation (3.76) implies that we have to solve a system of 
linear equations to find i

kr  during each iteration step. Just as for Picard iteration, the 
convergence criterion for Newton-Raphson iteration can be specified in terms of the residual 

i
kr  in various ways. Newton-Raphson iteration generally converges faster than Picard 

iteration, especially in the close neighborhood of the root to which it converges. However, 
both methods may occasionally fail to converge in a reasonable number of iteration steps. 
Various ad-hoc measures to guide the iteration process, or to restart the process after failure, 
are therefore usually applied in numerical implementations. 

For a reservoir-specific example consider the continuous-time state-space representation for 
two-phase flow with or without well model as given in equations (2.142) and (2.144): 

      c cx A x x B x u  . (3.80) 

Here we have, as before, added subscripts c to indicate that the secant matrices Ac and Bc 
represent a continuous- time formulation. Applying implicit Euler discretization results in 

    1k k c k k c k kt t    x x A x x B x u  , (3.81) 

or, formally, 

    1k d k k d k k x A x x B x u  , (3.82) 

where 
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          1 1
,d k c k d k c k c kt t t

 
           A x I A x B x I A x B x  . (3.83) 

If we want to solve equation (3.82) using Newton-Raphson iteration, we could, formally, 
specify the implicit version of equation (3.82) in the form of a function gk as 

      1 1, ,k k k k k d k k d k k   g u x x x A x x B x u  , (3.84) 

and work out the Jacobian k k g x . In practice, it will be more convenient to start from the 
version with continuous-time matrices, as given in equation (3.81), such that gk is expressed 
as: 

       1 1, ,k k k k c k k k c k kt t    g u x x I A x x x B x u  . (3.85) 

Moreover, it is usually computationally more efficient to use the generalized state-space 
formulation, which leads to 

           1 1
ˆˆ ˆ ˆ, ,     k k k k c k c k k c k k c k kt tg u x x E x A x x E x x B x u  . (3.86) 

3.3.4 Numerical stability 

In Sub-section 3.1.3 we addressed the stability of a continuous-time dynamical system, and 
we found that asymptotic stability requires that all eigenvalues of the system matrix A are 
smaller than zero. We also discussed, in Sub-section 3.1.2, how a coupled system of n 
equations ( ) ( )t tx Ax  can be transformed to a system of n uncoupled equations ( ) ( )t tz Λz , 
where 1( ) ( )t tz M x  and where  = diag (1, …, n) is the diagonal matrix of eigenvalues 
of A with 1 ≤ 2 ≤ … ≤ n. The stability of the system is therefore governed by the stability 
of the individual differential equations of the uncoupled system: 

    i i iz t z t  . (3.87) 

In particular, if n < 0, the system is asymptotically stable. If n = 0, the system is marginally 
stable. To establish the stability properties of a time-discretized system of equations we will 
therefore consider the discretized version of equation (3.87). E.g. for the explicit Euler case, 
we can write: 

  , , 11i k i i kz t z    . (3.88) 

This recursive equation will asymptotically approach zero for large values of k if  

  1 1 1it     . (3.89) 

This is equivalent to  

 
2

0
i

t


  


. (3.90) 

If we restrict our attention to integration forward in time, i.e. to t  > 0, inequalities (3.90) 
imply that the discretized system is only stable if 

1. the underlying continuous-time system is stable, i.e. if i < 0 for all i, otherwise t cannot 
fulfill both inequalities, and 
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2. the time step t is in between the bounds given by inequalities (3.90). This requirement is 
known as the Courant-Friedrichs-Lewy (CFL) stability condition, and the explicitly 
discretized system is therefore conditionally stable†. 

In case of explicit Euler discretization the stability is therefore governed by the negative 
eigenvalue with the largest absolute value, 1. In case of implicit Euler discretization we have 

   1

, , 11i k i i kz t z 
   , (3.91) 

which will be asymptotically stable if  

 1 1 it   . (3.92) 

If the underlying system is asymptotically stable, and if we take t positive, we find that this 
condition is always fulfilled. In other words, the implicitly discretized system is 
unconditionally stable. For nonlinear systems we may apply these concepts to the linearized 
equations (2.24), i.e. to the tangent-linear system, although the results are then only valid for 
a local neighborhood around each point along the state trajectory. The combined linearized 
pressure and saturation equations for porous-media flow form a stiff system of equations, i.e. 
the ratio between the largest and smallest eigenvalues is very big. In particular, the absolute 
values of the eigenvalues corresponding to the pressure equations are much larger than those 
corresponding to the saturation equations. As a consequence the time step for explicit 
integration of the pressure equations becomes so small that for all practical purposes this is 
not an option. Through analysis of the linearized time-discretized saturation equations it can 
be shown that the stability limit for explicit integration is governed by grid blocks with the 
highest throughput, i.e. total flow rate per time step; see e.g. Aziz and Settari (1979) or Datta-
Gupta and King (2007). In particular, for the case of one-dimensional incompressible two-
phase flow without capillary forces the maximum time step for explicit Euler integration of 
the corresponding Buckley-Leverett equation is governed by the throughput condition: 

 
 

*

1 or wc

t D

x S S
t

v v

  
   , (3.93) 

where *
Dv  is the dimensionless shock front velocity as defined in equation (1.91). Similar 

expressions can be obtained for more complicated cases. For all cases, higher total fluid 
velocities and smaller spatial grid-block dimensions imply a smaller time step to maintain 
stability. 

3.3.5 IMPES 

Although the implicit formulation allows arbitrarily large time steps as far as stability is 
concerned, there is usually a time step restriction based on accuracy requirements. In 
particular, it is often required to restrict the saturation changes per time step such that they 
stay considerably below one. In that case the time step size is typically below the stability 
limit for the saturation equations, but above the limit for the pressure equations. A popular 
alternative for the time integration of equations for multiphase flow through porous media is 
therefore the IMplicit Pressure  Explicit Saturation (IMPES) scheme. In the IMPES scheme 
the equations are reorganized such that it is possible to solve for pressures and saturations 
separately, which allows for an implicit update of the pressures, and a stable explicit update 

                                                 
† The upper bound 12t     is also known as the CFL limit. 
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of the saturations, using the same time step size. Since explicit updates do not involve the 
solving of equations, they are much faster than implicit updates, and therefore the IMPES 
scheme is computationally attractive. Alternatively, it is possible to use a large time step for 
the implicit pressure update (with a size above the stability limit for the explicit saturation 
updates), and use a smaller step size to perform multiple explicit saturation updates in-
between the pressure updates. To obtain the IMPES formulation, consider again the general 
continuous-time state-space representation for two-phase flow with or without well model  

      c cx A x x B x u  . (3.94) 

Recalling that the state vector x consists of the pressures p and the saturations s, we may 
partition equation (3.94) as 

 
 
 
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 

p p

s s

      
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      

A s 0 B sp p
u

A s 0 B ss s




 , (3.95) 

which can also be written as two separate systems of equations: 

 
   
   

,

.

p p

s s

 

 

p A s p B s u

s A s p B s u




  (3.96, 3.97) 

Equation (3.96) is a linear differential equation for p that can be solved implicitly as†: 

    1

1 1 1



            k p k k p k kt tp I A s p B s u  , (3.98) 

or, computationally more efficiently, as 

    1 1 1p k k k p k kt t        I A s p p B s u  . (3.99) 

Equation (3.97) is a nonlinear equation for s, which can be solved explicitly as 

    1 1 1k k s k k s k kt t      s s A s p B s u  . (3.100) 

Note that it is possible to use the input at time k in equations (3.99) and (3.100) and the 
pressure at time k in equation (3.100), but that we have to use the saturation at time k-1 in 
equation (3.99). Of course it is possible to repeat the implicit pressure computation (3.99) 
with the new saturation vector sk as obtained from equation (3.100) and repeat this process 
until convergence. Moreover, also the saturation update may be performed implicitly, in 
which case we obtain a scheme known as the sequential solution method. For an alternative, 
more traditional, derivation of the IMPES scheme, and for a detailed analysis of properties 
such as mass conservation, stability, and accuracy, consult Aziz and Settari (1979) or Chen 
et. al (2006). In the special case that the fluid and rock compressibilities can be taken as zero, 
i.e. in the case of incompressible flow, the IMPES equation (3.99) for the pressures reduces to 
an algebraic equation 

    1 1p k k p k k A s p B s u   , (3.101) 

where 

                                                 
† In the more general case that pA  is a continuous function of p, an iterative implicit solution using Picard or 
Newton iteration will be required. 
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      1 1 1p k w k o k   A s T s T s  ,       1 1 1p k w k o k qu     B s F s F s L  , (3.102, 3.103) 

as has been derived using the material from Sub-section 1.4.11. The incompressible IMPES 
equation for saturations still has the form of equation (3.100), but with modified system and 
input matrices†: 

    1
1 1s k ws w k


 A s V T s  ,     1

1 1s k ws w k qu


 B s V F s L  . (3.104, 3.105) 

3.3.6 Computational aspects 

 In most simulators the wells are represented using a well model, and the user can specify 
either the bottom-hole pressure (BHP) or the total flow rate for each well. In addition it is 
possible to prescribe a maximum BHP for an injector with a prescribed rate, or a 
minimum BHP for a producer with a prescribed rate. Similarly, the user can prescribe 
maximum or minimum rates for wells with prescribed BHPs. Every time step the 
integration algorithm checks for violation of the constraints, and if so, recomputes the 
time step with a new prescribed well condition. This implies that a well that is controlled 
on BHP may become a rate-controlled well or vice versa. In fact the prescription of a rate 
or BHP can be considered a constraint itself, and the program simply checks that at any 
moment in time the most constraining constraint is active. 

 For explicit integration the time step size is limited to maintain stability, as was discussed 
in Sub-section 3.3.4. For implicit integration, which is mostly used in reservoir 
simulation, the time step limitation is governed by accuracy requirements for which there 
exist no hard rules. Most simulators employ a variable step size algorithm. An example of 
such an algorithm is given in Aziz and Settari (1979). It aims at maintaining pressure and 
saturation changes at or below prescribed levels  targetp  and w,targetS  for each time step by 
adjusting the new time step based on the converged results from the previous time step 
according to: 

 min ,
    

           

target w,target
new old old

w

p S
t t t

p S
 . (3.106) 

Because this involves extrapolation from the previous time step, the actual pressure and 
saturation changes will sometimes somewhat overshoot the target values. Therefore 
optional maximum allowed changes may be specified which, if exceeded, will trigger 
repetition of the integration step with a reduced step size. Moreover, the step size may be 
limited to stay below a maximum allowed value. 

 Solution of the linear system of equations within each Newton-Raphson iteration can be 
performed with a direct solution method, or, for large systems, with an iterative solution 
method in conjunction with a pre-conditioner. A treatment of these numerical 
mathematics aspects is outside the scope of this text, and we refer to e.g. Chen et al. 
(2006) for a detailed discussion.  

 The implicit simulation using Newton-Raphson iterations can often be accelerated by 
restricting the update of the Jacobian at each iteration to those elements that correspond to 

                                                 
† Here we have chosen, arbitrarily, to base the incompressible IMPES saturation equation on equation (1.131) 
which is expressed in terms of wsV , wT  and wF . We could just as well have used equation (1.132), which would 
have resulted in an expression in terms of osV , oT  and oF . 
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grid blocks where a certain minimum saturation change has occurred. Other numerical 
‘tuning’ parameters, which may be either hard-coded or user defined are, for example, a 
maximum allowable number of iterations and corresponding shrinkage and growth factors 
for the time step size which are applied depending on whether or not the maximum is 
reached. Often, the values of such parameters are problem-dependent, and some trial and 
error is required to find their optimal values. 

3.3.7 Control aspects* 

As mentioned before, the porous-media equations are usually control-affine, i.e. the controls 
uk enter the equations linearly. An exception is the case when the inputs consist of a nonlinear 
combination of ICV settings and bottom-hole pressures; see Sub-section 2.3.5. 

However, from a control perspective there is a difference between single-phase and two-
phase flow. In the single-phase case, the dynamic response of the autonomous equations (i.e. 
without inputs uk) to a small disturbance (in the form of an initial condition x0) from an 
equilibrium situation (constant pressures in two horizontal dimensions, or hydrostatic 
pressures in three dimensions) results in a return to the equilibrium situation. However, in the 
two-phase case the saturations are driven by convection (which is governed by the spatial 
distribution of the pressures), and a small disturbance (in the pressures and/or the saturations) 
from an equilibrium situation will result in a permanent small change in the saturations. 
Correspondingly, the eigenvalues of a continuous-time linear (or linearized) single-phase 
system have real negative values, whereas only half of the eigenvalues of a linearized two-
phase system are real and negative (for the pressures states) while the other half are equal to 
zero (for the saturation states). The two-phase response is therefore still bounded and non-
oscillatory. In other words, the single-phase system equations are asymptotically stable, 
whereas the linearized two-phase equations are Lyapunov stable. 

Another difference between single-phase and two-phase flow is in the steady-state behavior 
of the system. In the single-phase case, steady-state flow may occur after dampening out of 
the pressure transients. However, the effect of the convective behavior of the saturations is 
that there does not exist any non-trivial two-phase steady-state solution for inputs that result 
in flow (i.e. that produce a non-hydrostatic pressure gradient). This is because flow produces 
(very slow) saturation changes as long as there are two mobile phases present. (The trivial 
solution occurs when all mobile oil has been flushed out of the reservoir which effectively 
makes the reservoir single-phase.) The typical time scale for pressure changes (e.g. defined as 
the half time for dampening out of an impulsive pressure disturbance in a well) is very small 
(typically in the order of hours to days) compared to the time for saturation changes to 
propagate through the entire reservoir (typically in the order of years to decades). Therefore it 
is usually justified to consider the saturation field to be very slowly time-varying. The 
pressure response is then governed by linear equations with (very slowly) time-varying 
coefficients, and, after dampening out of pressure transients resulting from initial conditions, 
may be considered to be in near-steady state. 

3.3.8 Stream line simulation* 

The key element of the IMPES and sequential simulation schemes is the separate solution of 
two sets of equations, one for pressures and one for saturations, which are only mildly 
coupled through the coefficients. A further step can be made by redefining the saturation 
equations such that they can be expressed as a system of decoupled equations that can be 
solved independently from each other. The basis for this redefinition is the insight that the 
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saturation equations are mainly convective, or, in other words, that the saturation changes in 
the reservoir are mainly driven by a velocity field‡. Here the velocity field refers to the total 
fluid velocity, i.e. the sum of oil and water velocities. As discussed in Sub-section 2.3.6 the 
velocity field can be ‘traced’ to generate streamlines, i.e. trajectories of ‘virtual’ particles 
traveling through the reservoir. Assuming incompressible flow and a situation where the flow 
is entirely driven by injection and production wells, the streamlines all start at an injector and 
end at a producer. The time it takes a particle to travel from the injector to a certain point ŝ  
along its streamline is known as the time-of-flight  which can be expressed as 

 
ˆ

0

s

t

ds
v

    , (3.107) 

where t tv  v  is the magnitude of the total Darcy velocity,  is porosity and s is a coordinate 
along the streamline starting at the injector. Equation (3.107) can be differentiated with 
respect to s resulting in the relationship 

 
t

d

ds v

 
  , (3.108) 

which can be used to convert expressions in terms of streamline coordinate s to equivalent 
expressions in terms of time-of-flight . In particular, consider the one-dimensional Buckley-
Leverett equation (1.73) expressed in streamline coordinate s: 

 0w w w
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f S S
v

S s t
  

 
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 . (3.109) 

With the aid of equation (3.108) we can express the Buckley-Leverett equation (3.109) in 
terms of time-of-flight coordinate  as 

 0w w w

w

f S S

S t
  

 
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 . (3.110) 

In analogy to the analytical solution for the Buckley-Leverett equation derived in Sub-section 
1.4.5, see equation (1.93), we can express the solution of equation (3.110) as 

  
*

* *

, 1
,

,

w
w w or

ww

D wc w w

df
t S S S

dSS t

v t S S S


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 , (3.111) 

where the dimensionless shock velocity *
Dv  is given by equation (1.91). Note that the time-of-

flight, although expressed in units of time, has taken the role of the spatial coordinate. 
Expression (3.111) allows us to determine the saturation at a point along a streamline if the 
corresponding time-of-flight is known. This is a powerful relationship because it is easy to 
compute the time-of-flight along a streamline once the velocity field has been computed. 
This, in turn, is a simple step once the pressure field has been computed, as was discussed in 
Sub-section 1.4.12; see equation (1.143). The streamlines can then be traced using the 
expressions given in Sub-section 2.3.6, which include the computation of the grid-block 

                                                 
‡ In our case, where we neglected the diffusive effect of capillary pressures, the continuous form of the 
saturation equation is in fact completely convective. The spatial discretization brings back some numerical 
diffusion again.  
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travel times , see equation (2.180), which can be summed to obtain the time-of-flight. In 
practice, equation (3.110) is usually solved with the aid of finite differences, especially when 
complicating effects such as compressibility and gravity have to be accounted for. A major 
advantage of computing the saturations using finite differences along streamlines instead of 
using finite differences on a conventional spatial grid is an improved stability criterion for 
explicit time stepping. As discussed in Sub-section 3.3.4, the stability condition for explicit 
Euler integration of the saturation equations is governed by grid blocks with the highest 
throughput, i.e. those with the smallest spatial dimensions and the highest total velocities. In 
the numerical simulation of saturations along streamlines it is possible to select the ‘grid’ 
size, in terms of time-of-flight increments, independently from the underlying spatial grid, 
such that much larger time steps can be accommodated. In addition, the stability condition 
can be determined independently for each streamline, such that for streamlines with low 
velocities a much larger time step can be chosen than for those with high velocities. Because 
of this reason, streamline simulation is popular for the fast computation of saturation fields. 
Streamline simulation becomes particularly attractive in situations where only infrequent 
updating of the pressure field is required, and therefore also only infrequent repetition of the 
stream line tracing procedure is needed. The most popular applications involve water 
flooding with small (or no) compressibility, no or modestly nonlinear relative permeabilities, 
and fixed wells settings. However the application area is becoming much wider and we refer 
to Bratvedt, Gimse and Tegnander (1996), Batycky, Blunt and Thiele (1997), King and Datta 
Gupta (1998) and to the text book of Datta-Gupta and King (2007) for further reading. 

3.4 Examples 

3.4.1 Example 1 continued – Stability 

Stability limit 

We perform a numerical integration of the state equations for Example 1 as defined in Sub-
section 2.2.2. We choose the input vector as uT = [0.01 0.01], which implies that the wells in 
grid blocks 1 and 6 inject and produce at a rate of 0.01 m3/s (864 m3/d, or 5434 bpd). Note 
that a negative flow rate implies production. If we integrate with an explicit Euler scheme 
from t = 0 until t = 365  24  3600 s (i.e. for one year) with a time step of 1 day we obtain 
the output depicted in Figure 3.4. The pressure increase at the injector is smaller than the 
pressure decrease at the producer because of the different permeabilities in the corresponding 
grid blocks. If we use a time step of 5.8 days we obtain the spurious result as depicted in 
Figure 3.5, because we exceeded the stability limit (the CFL condition) for explicit Euler 
integration. 
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Figure 3.4: Numerical integration of Example 1 using explicit Euler integration with a time 
step of 1 day. 

 

Figure 3.5: Numerical integration of Example 1 using explicit Euler integration with a time 
step of 5.8 days, displaying numerically unstable behavior. 

Singular system matrix 

Earlier we computed the eigenvalues of A, see equation (3.22), and we found a zero 
eigenvalue reflecting that A is singular with a rank deficiency of 1. In Sub-section 3.2.3 it 
was shown that this implies the impossibility to compute the steady state solution. Here we 
mention another, numerical, effect. In our case the zero eigenvalue is equal to zero up to 14 
significant digits. However, because of the finite precision of the numerical computations, a 
‘zero’ eigenvalue may sometimes have a small positive or negative value. Because a positive 
eigenvalue corresponds to an exponentially growing response, this may introduce a solution 
that slowly drifts away from its correct steady-state value if the integration is pursued long 
enough. For our example the effect is not an issue, but, in general, time integration with a 
singular system matrix may cause problems for long integration periods. 
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Regular system matrix 

We again integrate the system equations for Example 1. However, in this case the bottom-
hole pressure of the production well in grid block 6 has been prescribed as pwell,6  26.00106 
Pa (3771 psi), while the injection rate in block 1 remains fixed at q1  0.01 m3/s 
(864 m3/d, 5434 bpd). Figures 3.6 and 3.7 give plots of the output variables versus time. 

 

Figure 3.6: Numerical integration of Example 1 with a prescribed pressure in grid block 6. 
The figure shows the bottom-hole pressure in the injection well in grid block 1. The dot 
represents the steady-state result. 

 

Figure 3.7: Numerical integration of Example 1 with a prescribed pressure in grid block 6. 
The figure shows the absolute value of the flow rate in the production well in grid block 6. 
The dot represents the steady-state result. 

The solid dots represent the steady-state results computed with the aid of equations (3.40) and 
(3.41). Note that we needed to integrate for a period of around 3000 days before the pressure 
in the injection well approached the steady state result closely (3.06668 MPa after 10 years 
vs. 3.06655 MPa fully steady-state). 
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3.4.2 Example 2 continued – Mobility effects 

For two-phase flow we present examples obtained with a simple in-house simulator. We start 
with the forward simulation of Example 2, i.e. the same six-block model that was used to 
illustrate single-phase flow behavior, but with additional reservoir and fluid properties as 
given earlier in Sub-section 1.4.4. We choose the operating conditions such that water is 
injected at a constant rate of 0.01 m3/s in grid block 1, while liquid is produced at a constant 
well-bore pressure of 20 MPa in grid block 6. Because of the very small size of the model we 
can use explicit Euler integration, and Figure 3.8 depicts the output for a simulation time of 
10000 days (approximately 27 years). The total injected water volume is 8.64106 m3 which 
amounts to 2.4 times the total volume of moveable oil†. In the top-right figure it can be seen 
that water breakthrough in the producer occurs after about 3000 days. 

 
Figure 3.8: Results for numerical integration of Example 2 with a prescribed water injection 
flow rate in grid block 1 and a prescribed pressure in grid block 6. The solid and dotted lines 
in the top right figure represent the oil and water production rates in grid block 6; the dashed 
line represents the injection water rate in grid block 1. In the other three figures the dashed 
and solid lines refer to results for the injection and production wells in grid blocks 1 and 6 
respectively. 

                                                 
† The moveable oil volume is equal to the pore volume times (1 – Swc – Sor). 
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The bottom right figure displays the water saturations in the well grid blocks. Starting from 
connate-water saturation (0.2) they approach a value of one minus residual-oil saturation 
(0.8) more or less gradually. The relatively large grid blocks, compared to the total domain, 
cause a large amount of numerical diffusion. The two figures at the left illustrate that the 
well-bore pressure in the injector, and the grid-block pressure in both well grid blocks behave 
non-monotonously. Initially they drop because the prescribed pressure in the producer (20 
MPa) is considerably below the initial reservoir pressure (30 MPa). However, when the oil-
water front approaches the producer the total relative mobility in the producer grid block 
decreases because of the nonlinear saturation dependency of the relative permeabilities (see 
the dotted line in Figure 1.4) and because of the viscosity difference between oil and water 
(0.510-3 versus 1.010-3 Pa s respectively). The resulting increased pressure drop over the 
near well-bore area of the producer, as represented in the well model, results in an increase in 
pressure in the entire reservoir. Note that if the injector had been operated at a prescribed 
pressure instead of at a prescribed rate, this mobility effect would have resulted in a drop in 
total production rate instead of an increase in reservoir pressure. 

3.4.3 Example 3 continued – Well constraints 

Next we consider the forward simulation of Example 3 which was described in Sub-section 
1.4.9. The initial operating constraint for the injector is specified as a prescribed rate of 0.002 
m3/s (1087 bbl/d) with a maximum bottom-hole pressure constraint equal to 35 MPa (5076 
psi) which is 5 MPa (725 psi) above the initial reservoir pressure. The initial operating 
constraint for the producers is a prescribed pressure of 25 MPa (3626 psi), i.e. 5 MPa (725 
psi) below the initial reservoir pressure, with a maximum flow rate per well equal to 0.001 
m3/s ( bbl/d). The initial water saturation is equal to the connate-water saturation (0.2), 
and the total moveable oil volume is 16700 m3 (1.05×106 bbl). We use implicit Euler 
integration with Newton-Raphson iteration, and a variable time step with maximum allowed 
pressure and saturation changes of 1×106 Pa and 0.2 respectively, target changes equal to 
90% of these values, and a maximum time step of 30 days. Because of the relatively small 
problem size (882 states) the linear system of equations within each Newton-Raphson 
iteration is solved with the aid of a direct solver. Figure 3.9 displays the output for a 
simulation time of 1500 days (approximately 4.1 years). In the top left figure it can be seen 
that the bottom-hole pressure in the producers stays at its prescribed pressure of 25 MPa 
(3626 psi) during the entire period and in the top right figure it can be verified that the 
production rates in the producers never exceed the maximum allowed flow rate of 0.001 
m3/s ( bbl/d). The injector, however runs against its pressure constraint after 
approximately 700 days: the top left figure shows that until that time the pressure stays below 
the constraint of 35 MPa (5076 psi) and, correspondingly, the top right figure shows a steady 
injection rate of 0.002 m3/s (1087 bbl/d). After reaching the constraint the injector is 
effectively operating at a prescribed bottom-hole pressure of 35 MPa (5076 psi) with a 
maximum rate constraint equal to 0.002 m3/s (1087 bbl/d). This new constraint is not reached 
anymore in the remaining time, so no further constraint switches occur. The bottom right 
figure displays the water saturations in the well grid blocks and it can clearly be seen that 
there is a considerable difference in arrival time of the water front in the four producers. The 
same effect can be observed in the oil and water well flow rates depicted in the top right 
figure.  
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Figure 3.9: Well production data for Example 3. The solid and dotted lines in the top right 
figure represent the oil and water production rates in the producers; the dashed line 
represents the injection water rate. In the other three figures the four solid lines refer to the 
four producers, and the dashed line to the injector. The letters NE refer to the North-East 
(top right) producer, the letters SW to the South-West (bottom left producer), and so on. 

The bottom left figure displays the grid-block pressures, and, just as in Example 2, displays a 
clear mobility effect when the water front reaches the producers. The effect is an increase in 
pressure which rapidly spreads through the entire reservoir and which therefore results in the 
injector reaching its maximum bottom-hole constraint as was described above. The 
corresponding injection and production field rates, i.e. the sums of the well rates, have been 
depicted in Figure 3.10. They show a typical oil production plateau followed by a rapid 
decline and a simultaneous increase in water production. The decline in oil production is not 
only caused by the increase in water cut in the producers but also by the inability of the 
injector to maintain its maximum rate because it has run into its pressure constraint. 
Figure 3.11 depicts 8 snapshots of the water saturation at different moments in time. The 
effect of the high permeable streak can clearly be seen: water breakthrough occurs in the 
North-East corner first, followed by the South-West, North-West and South-East corners, a 
sequence that is in line with the saturation curves in Figure 3.9 (bottom right).  
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Figure 3.10: Field-production data for Example 3. The solid and dashed lines represent oil 
and water rates respectively. 

 

Figure 3.11: Snapshots of the water saturation field at time intervals of approximately 214 
days (7 months) on a scale from connate-water saturation (0.2, black) to one minus residual-
oil saturation (0.8, white). Initially (top left) the field is entirely at connate-water saturation. 
After 1500 days (bottom right) the field is approaching residual-oil saturation. 
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3.4.4 Example 3 continued – Time-stepping statistics 

Figures 3.12 displays several numerical parameters that give an indication of the functioning 
of the implicit variable-time step integration process. The top left graph displays the number 
of Newton iterations per time step, and it can be observed that around time steps 3 and 17 the 
convergence became somewhat problematic. As can be seen from the top right graph the 
early iteration problems are related to a high number of constraint violations per time step. 

 

 

Figure 3.12: Numerical parameters. Total number of Newton-Raphson iterations per time 
step (top left), total number of constraint violations of bottom-hole pressure or total well rate 
per time step (top right), maximum grid-block pressure change per time step (middle left), 
maximum grid-block saturation change per time step (middle right), time step size (bottom 
left), and mass-balance error (bottom right). 
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In response, the time-stepping algorithm repeats the Newton-Raphson iterations with a 
progressively reduced time step size until convergence without constraint violation is 
reached. The targets for grid-block pressure and saturation changes were specified as 90% of 
1×106 Pa and 0.2 respectively, with a maximum growth factor of 0.7 per time step, and a 
maximum time step size of 30 days. It can be seen from the two graphs in the middle row of 
Figure 3.12 that the target values were never met. This is because initially the time step size 
was occasionally reduced to obtain convergence, and as of time step 48 because the 
maximum allowed time step size was reached; see also the bottom left graph of Figure 3.12 
which displays the size of each time step. The bottom-right graph of Figure 3.12 displays the 
mass-balance error m during each time step k defined as 

 1, 2, 3, 4, 5,0
,

0 1,0 3,0

1k k k k kk
m k

m m m m mm m

m m m


   
 


  , (3.112) 

where m1 is the mass of oil in all grid blocks, m2 the cumulative mass of produced oil, m3 the 
mass of water in all grid blocks, m4 the cumulative mass of produced water, and m5 the  
cumulative mass of injected water. A small mass-balance error develops during the 
simulation because we do not use a fully mass-conservative formulation, but the maximum 
error never exceeds 1.5% in this example, while at the end of the simulation it is less 
than 0.4%. 

3.4.5 Example 3 continued – System energy* 

Figure 3.13 illustrates the power balance for Example 3, where the various contributions have 
been computed with the aid of equation (2.183) of Sub-section 2.3.7. The top left figure 
illustrates that during a brief initial period potential energy is released from the reservoir 
through oil flow, but that rapidly an equilibrium is established during which the total amount 
of potential energy stored stays nearly constant and close to zero. The top-right graph in 
Figure 3.13 displays the energy dissipation caused by oil and water flow through the grid-
block boundaries and in the near-well-bore area. Note that the ratio between near-well-bore 
and grid-block losses would become progressively smaller with decreasing grid size. Not 
surprisingly, the dissipation caused by oil flow reduces with time while the dissipation caused 
by water flow increases, corresponding to the increasing water-oil ratio of the produced 
reservoir fluids. The effects of relative permeabilities are visible in the small increase halfway 
the producing reservoir life when the water front reaches the producers. The bottom-left 
graph displays the power flow in the wells. It can be seen that there is an influx of energy 
through the injector and an outflow through the producers, resulting in a near-constant net 
influx of approximately 17 kW with a small peak to just above 20 kW.  
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Figure 3.13: Power balance for Example 3. The solid, dotted and dash-dotted lines in the top 
left figure represent the oil, water and total potential energy storage rates respectively. The 
solid, dotted and dash-dotted lines in the top right figure represent the oil, water and total 
dissipation rates respectively, where the black solid and dotted lines refer to dissipation 
through the grid-block boundaries, and the light gray solid and dotted lines to dissipation in 
the near-well-bore area. In the bottom-left figure the four solid lines refer to the power flow 
in four producers, the dashed line to the power flow in the injector, and the dash-dotted line 
to the total power flow in the wells. The bottom-right figure illustrates that the total power 
flow in the wells (dash-dotted line) equals the sum of the total potential energy storage rate 
(dark gray area; hardly visible) and the total dissipation rate (light gray area). 

Note that these values do not take into account the effect of elevation-related potential 
energy, which would change the situation. E.g. if we would assume that the reservoir were 
located at a depth of d = 3000 meter, and were initially hydrostatically pressured with oil and 
water densities 3850 kg/mw   and 31000 kg/mw  , and an acceleration of gravity 

29.81 m/sg  , then the elevation-related energy in a totally oil-filled well would be equal to 

    1000 850 9.81 3000 4,414,500 Jlift w oE gd         . (3.113) 

Assuming a well-bore radius 0.114 mwellr  , the total well volume would be 

 2 2 33.14 0.114 3000 122.4 mwell wellV r d      , (3.114) 

such that with an average production rate of 0.5oq   m3/s the well-bore contents would be 
emptied in 

0 500 1000 1500
-1.5

-1

-0.5

0

0.5

1
x 10

5

Time  t , days

S
to

ra
ge

 d
E

/d
t po

t ,
 W

 

 

oil

water

total

0 500 1000 1500
0

0.5

1

1.5

2

2.5
x 10

4

Time  t , days

D
is

si
pa

tio
n 

dE
/d

t di
s
 ,

 W

 

 

0 500 1000 1500
-4

-2

0

2

4

6

8
x 10

4

Time  t , days

P
ow

er
 P

w
el

l ,
 W

 

 

0 500 1000 1500
-6

-4

-2

0

2

4
x 10

4

Time  t , days

 d
E

/d
t,

 P
 ,

 W

 

 

 dE/dt
pot

 dE/dt
dis

 P
well



A systems description of flow through porous media, version 1d, April 2013 102 

 
122.4

245 s
0.5

well
lift

o

V
t

q
    . (3.115) 

The elevation-related lifting power of a completely oil-filled well would then be 

 
4,414,500

18018 W
245

lift
lift

lift

E
P

t
    . (3.116) 

This simple analysis does not even take into account the additional lift effect of gas escaping 
from oil in the well bore. However, it should be noted that if we would not inject water, a 
very rapid reduction in reservoir pressure would occur and soon after start of production the 
wells would stop flowing.  

3.5 References for Chapter 3 

Aziz, K. and Settari, A., 1979: Petroleum reservoir simulation, Applied Science Publishers, 
London. 

Batycky, R.P., Blunt, M.J. and Thiele, M.R. 1997: A 3D field-scale streamline-based 
reservoir simulator. SPE Reservoir Engineering 12 (4) 246-254. DOI: 10.2118/36726-PA. 

Boyce, W. and Di Prima, R.C., 2005: Elementary differential equations and boundary value 
problems, 8th ed., Wiley, New York. 

Bratvedt, F., Gimse, T. and Tegnander, C. (1996), Streamline computations for porous media 
flow including gravity. Transport in Porous Media 25 (1) 63-78. DOI: 10.1007/BF00141262. 

Chen, Z., Huan, G. and Ma, Y., 2006: Computational methods for multiphase flows in porous 
media, SIAM, Philadelphia. 

Datta-Gupta, A. and King, M.J., 2007: Streamline simulation: Theory and practice, SPE 
Textbook Series, 11, SPE, Richardson. 

King, M.J. and Datta-Gupta, A., 1998: Streamline simulation: a current perspective. In Situ 
22 (1), 91-140. 

Luenberger, D.G., 1979: Introduction to dynamic systems, Wiley, New York. 

Moler, C. and Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix. 
SIAM Review 20 (4), 801-836. 

 



 

A systems description of flow through porous media, version 1d, April 2013 103 

Nomenclature 

Notes: 

 Several symbols occur more than once because they have a different meaning 
in different parts of the text. 

 The dimensions of vectors and matrices have only been indicated when all 
elements have the same dimensions. 

Symbol Description Dimensions SI units 
a coefficient - - 
A area L2 m2 
A system matrix - - 
A  Jacobian matrix - - 
b coefficient - - 
B oil formation volume factor - - 
B input matrix - - 
c compressibility t2m-1L-1 1/Pa 
C integration constant L-3m kg/m3 
C output matrix - - 
d depth L m 
D diffusion constant L2t-1 m2/s 
D direct-throughput matrix - - 
E energy L2mt-2 J 
E accumulation matrix - - 
e nonlinear function - - 
e nonlinear vector-valued function - - 
f nonlinear function - - 
f fractional flow - - 
f nonlinear vector-valued function - - 
F fractional-flow matrix - - 
g acceleration of gravity Lt-2 m/s2 
g velocity gradient t-1 1/s 
g nonlinear vector-valued function - - 
h reservoir height L m 
h nonlinear vector-valued output function - - 
i counter - - 
i unit vector - - 
j counter - - 
j nonlinear vector-valued output function - - 
I identity matrix - - 
J well index, productivity index L2m-1 m3/(Pa s) 
J well index matrix L2m-1 m3/(Pa s) 
k permeability L2 m2 
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k counter - - 
k discrete time - - 
K total number of time steps - - 
K  permeability tensor L2 m2 
L length m m 
L spatial differential operator - - 
L location matrix (selection matrix) - - 
m number of elements in input vector u - - 
m eigenvector - - 
M matrix of eigenvectors - - 
n number of elements in state vector x  - - 
n Corey exponent - - 
n unit vector normal to boundary  - - 
p number of elements in output vector y - - 
p pressure L-1mt-2 Pa 
p pressure vector L-1mt-2 Pa 
p  vector of pressure differences - - 
P power L2mt-3 W 
q flow rate (source term) L3t-1 m3/s 
q  flow rate over a grid-block boundary L3t-1 m3/s 

q   flow rate per unit area (source term) Lt-1 m/s 
q   flow rate per unit volume (source term) t-1 1/s 
q vector of flow rates (source terms) L3t-1 m3/s 
Q scaled flow rate L-1mt-3 Pa/s 
r radius L m 
r residual - - 
r residual vector - - 
s coordinate along a curve - - 
s saturation vector - - 
S saturation - - 
S matrix to compute v  from p L2M-1t m/(Pa s) 
t time t s 
T temperature T K 
T transmissibility L2M-1t m3/(Pa s) 
T transmissibility matrix L2M-1t m3/(Pa s) 
u input variable - - 
u input vector - - 
v superficial velocity Lt-1 m/s 
v  interstitial velocity Lt-1 m/s 

v  superficial velocity vector in physical space Lt-1 m/s 
v superficial velocity vector Lt-1 m/s 
v  Darcy velocity vector at grid-block boundaries  Lt-1 m/s 
v  interstitial velocity vector at grid bl. boundaries Lt-1 m/s 
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V volume L3 m3 
V accumulation matrix - - 
x spatial coordinate L m 
x (state) variable - - 

x  coordinate vector in physical space L m 
x state vector - - 
y spatial coordinate L m 
y output variable - - 
y output vector - - 
z spatial coordinate L m 
z transformed (state) variable - - 
z transformed state vector - - 
 geometric factor  -, L, L2

 -, m, m2 
 valve opening - - 
 vector of valve openings - - 
γ  vector of geometric factors L-1 1/m 
 boundary L2 m2 
 nonlinear function - - 
 convergence criterion - - 
 error - - 
 vector of model errors - - 
 vector of measurement errors - - 
 diffusion constant L2t-1 m2/s 
 mobility LM-1t m2/(Pa s) 
 eigenvalue - - 
  vector of mobilities at grid-block boundaries LM-1t m2/(Pa s) 
 diagonal matrix of eigenvalues - - 
 dynamic viscosity L-1mt-1 Pa s 
 dummy variable - - 
 density L-3m kg/m3 
 grid-block travel time along a stream line t s 
 time-of-flight along a streamline t s 
 porosity - - 
 potential L-1mt-2 Pa 
 nonlinear function - - 
 source term - - 
 vector of averaged grid-block porosities - - 
 domain L3 m3 

Subscripts 
av average 

c capillary 

c continuous 

con connectivity 
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d discrete 

dis dissipation 

D dimensionless 

e exit 

eq equivalent 

gb grid-block 

i initial 

k discrete time 

l liquid 

m mass 

o oil 

op oil, pressure 

or oil, residual 

os oil, saturation 

p pore 

p pressure 

pot potential 

q flow rate 

ro relative, oil 

rw relative, water 

r rock 

R reservoir 

s saturation 

sc standard conditions 

scal scaling 

t total 

tf flowing tubing-head 

w water 

wc water, connate 

wp water, pressure 

ws water, saturation 

x x-direction 

y y-direction 

 mobility 

Superscripts 
0 end-point saturation 

0 linearization point 

i iteration counter 

T transpose 
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