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Abstract

This work introduces a novel training strategy for Gaussian Process (GP) models aimed at
improving their predictive accuracy and uncertainty quantification capabilities over extended
prediction horizons. This improvement is highly relevant for applications in model predictive
control (MPC) in the autonomous driving domain. Learning-based MPC strategies typically
rely on standard physics-based models augmented with GP models to account for residual
nonlinearities and uncertainties not captured by the former. Nonetheless, these conventional
approaches often struggle with long-term prediction accuracy, especially when faced with
out-of-distribution scenarios, a phenomenon where the model encounters data points that
are significantly divergent from the training set. To address these challenges, a multi-step
Gaussian process training framework is proposed. This framework yields a GP model capable
of making accurate long-term predictions, i.e. a multi-step Gaussian Process (MSGP) model.
It achieves this by integrating the simulation of future dynamics into the training process,
allowing for the model’s kernel parameters to be tuned toward long-term dynamics. As a
result, the MSGP model not only demonstrated the ability to make more stable and accurate
long-term dynamic predictions but also with greater confidence. The efficacy of the multi-
step training framework is shown by the significant improvements in long-horizon dynamics
predictions by the MSGP model, achieving an average 19% reduction in mean error and
a 90% reduction in variance compared to the standard GP model. Moreover, the efficacy
of the MSGP model is further confirmed through its application in a Multi-Step Gaussian
Process-based Model Predictive Contouring Controller (MSGP-MPCC), which outperforms
a traditional GP-based MPCC (GP-MPCC) baseline controller in lap time and reliability,
achieving a 100% success rate in completing laps across ten consecutive simulations without
crashing.
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Chapter 1

Introduction

1-1 Background

The World Health Organization (WHO) reports that annually, road traffic crashes lead to
1.3 million deaths, over half of which involve vulnerable road users (VRUs), and result in
disabilities for 20 to 50 million people in non-fatal accidents [16]. Human error was the
primary cause of the accident in 93% of the cases [1]. In recent years, advanced driver
assistance systems (ADAS) and automated driving (AD) functions have shown an increasing
potential to prevent on-road accidents and improve on-road safety [21]. To accelerate this,
both academia and industry have been actively involved in the development of autonomous
vehicles (AVs) that can navigate in various environmental contexts by taking humans out of
the loop altogether [8]. This thesis focuses on the modeling and control domain of autonomous
vehicles to tackle the prevalent issues of road safety and accident prevention. By researching
and identifying state-of-the-art advancements in these areas, the aim is to bridge existing
gaps in the literature.

1-2 Related Literature

1-2-1 Model Predictive Control

Model Predictive Control (MPC) has increasingly gained more popularity as a control tech-
nique for autonomous driving because of its ability to handle nonlinear vehicle dynamics while
respecting state and actuator constraints [4], [15]. The MPC control task is formulated as an
online, open-loop, finite horizon optimization problem, that considers system dynamics and
constraints, and is solved in a receding horizon manner [9]. The MPC predicts the dynamics
of the system over a prediction horizon Np, initialized from state measurements obtained at
time t. An optimization problem is then solved to find an input sequence that minimizes
the predicted cost according to a predefined performance index, which typically involves the
error between a system’s predicted state or output sequence and a reference sequence [11].
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2 Introduction

Feedback is incorporated by applying the first control input from the optimized sequence
to the system [9]. Subsequently, the time window is shifted by one sample and new plant
measurements become available, triggering the repetition of the entire prediction and opti-
mization procedure. The above-described process is repeated continuously, which allows for
the MPC to adapt to the changing system dynamics and constraints in real-time, thereby
ensuring optimal control performance [17].

In order to make predictions of the system dynamics, a dynamic model of the system is
required, which is described by a set of differential equations subjected to a set of input and
state constraints [18]

żt = fc(zt, ut), z(0) = z0

zt ∈ Z ⊆ Rn, ∀t ≥ 0
ut ∈ U ⊆ Rm, ∀t ≥ 0

(1-1)

in which zt and ut are the state and input vectors, constrained by box constraints Z and U
as follows [9],

Z := {z ∈ Rn | zmin ≤ z ≤ zmax}
U := {u ∈ Rm | umin ≤ u ≤ umax} .

(1-2)

Discretizing the continuous system dynamics with sampling time Ts yields the following dis-
crete description of the system dynamics [18],

zk+1 = fd(zk, uk) . (1-3)

Now, the MPC optimization problem can be formulated as

min
u

∑Np−1
k=0 J(zt+k, ut+k)

s.t. zt = zinit

zt+k+1 = fd (zt+k, ut+k) ∀k = [0, Np − 1]
zt+k ∈ Zfree ∀k = [0, Np − 1]
ut+k ∈ U ∀k = [0, Np − 1] .

(1-4)

As mentioned previously, this optimization problem is solved in a receding horizon fash-
ion. A measurement of the system’s state z is obtained at time t, based on which a finite-
horizon prediction of the system’s future behavior and an optimal control input sequence
[u]k=t+Np−1

k=t = {ut, . . . , ut+Np−1} are computed. Feedback is incorporated by applying the
first control input ut from the optimized sequence to the system [9]. Finally, when a new
state measurement becomes available, the whole process repeats.

1-2-2 Gaussian Process-based Prediction Model

To maximize the predictive power of the MPC, its underlying prediction model must accu-
rately represent the dynamics, whilst being sufficiently simple for real-time optimization. In
the context of the research area of autonomous vehicles, traditional efforts focused on devel-
oping models tailored to various operating ranges such as the kinematic or the (non)linear dy-
namic bicycle model, of which the latter is suitable for complex maneuvers by considering tire-
road interactions. However, these physics-based approaches are costly and time-consuming
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1-2 Related Literature 3

to derive as they require expert knowledge [15]. Furthermore, they lack the flexibility to
accurately enclose the full range of operating conditions encountered by vehicles, including
variations in dynamics due to factors such as weather or road conditions [12], [15].

In recent years, approaches from machine learning have gained traction as a means to address
the limitations of classical physics-based models and develop nonlinear models from real-world
data. Gaussian Processes (GPs), in particular, have gained popularity in modeling vehicle
dynamics for their ability to learn complex nonlinear functions governing the dynamics while
providing uncertainty estimates alongside these functions, even in data-scarce environments
[13]. Section II-B of the paper enclosed in Chapter 2 provides a comprehensive mathematical
outline of Gaussian Processes. This introductory section will provide a more concise overview,
focusing on conveying the main concept without delving into extensive detail yet.

Figure 1-1: A Gaussian Process model fitted to observations marked by blue dots. The red line
represents the predicted mean function, which aims to approximate the underlying real function
suggested by these blue dots. The shaded area around the mean function illustrates the uncertainty
estimate provided by the GP. Notably, the uncertainty increases in regions lacking data and
decreases in areas densely populated with data points. [20].

A Gaussian Process (GP) is characterized by a mean function and a covariance function,

f(x) ∼ GP(m(x), κ(xi, xj)) , (1-5)

in which m(x) denotes the mean function and κ(xi, xj) the kernel function evaluated for
each data point pair (xi, xj) [19], [10]. A GP extends the concept of the Multivariate Normal
Distribution (MVN) over functions instead of fixed vectors, making a MVN a specific instance
of a GP [15]. A sample f of such a MVN is given by a mean vector m and covariance matrix
Σ, [10]

f = N (m, Σ) . (1-6)

To work efficiently with GPs within the constraints of finite computational time, a GP is
converted into a finite-dimensional MVN distribution. In this process, the kernel function
is crucial as it constructs the covariance matrix, addressing the discrete characteristic of the
data that compose the MVN [10].
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4 Introduction

The key component influencing the behavior of a GP model is its kernel function, which
defines how input data points relate to each other. A widely used kernel to characterize the
covariance is the squared exponential kernel, which ensures strong correlation and similarity
for nearby inputs and weakens for distant ones [19],

κ(xi, xj) = σ2
f exp

(
−1

2

nd∑
d=1

(xi,d − xj,d)2

ℓ2
d

)
. (1-7)

Here, xi,d − xj,d is the distance between the d-th feature of an input data pair and ℓd is the
lengthscale for this feature. The kernel’s hyperparameters, such as the signal variance σ2

f and
the lengthscale ℓd, govern the behavior of the GP; a larger lengthscale, for example, indicates
a smoother function by increasing correlation across distant inputs, as shown in Fig 1-2.

(a) small lengthscale ℓ (b) large lengthscale ℓ

Figure 1-2: GP model’s smoothness affected by the kernel lengthscale parameter ℓ [22]

Training a GP model focuses on optimizing these hyperparameters to enhance the model’s
ability to generalize from training data to unseen scenarios [3], [7]. Once the model has been
trained and the GP has learned its dynamics of the system, the model can then be used to
make predictions at new data points.

1-3 Challenges in Gaussian Process-based MPC

In learning-based MPC for autonomous vehicles, GPs have frequently served to refine physics-
based nominal models by capturing the residual errors between these models and the actual
system dynamics [12], [13], [2], [14]. However, challenges emerge when GP models are ex-
trapolated at points beyond their training data, leading to inaccuracies in the prediction of
the dynamics, particularly in multi-step prediction scenarios. Findings from [2] have high-
lighted instances where the MPC’s open-loop predictions, based on GP augmented models,
deviate more rapidly from the actual trajectories compared to those based solely on the nom-
inal model. This discrepancy arises when GP models encounter an “out-of-distribution” data
point [15], which is a point in the state/action space that is not sufficiently correlated with
the training data, resulting in erroneous predictions of the dynamics and a large uncertainty
as a by-product.

To our knowledge, the literature has not explicitly addressed out-of-distribution behavior in
the context of GP-based control. Nonetheless, there exists research focused on managing the
substantial uncertainties that partly result from unstable predicted dynamics. These studies,
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1-4 Thesis Objectives and Contributions 5

treat these uncertainties as an isolated problem and propose distinct methods to tackle them
in the control phase. The methods often merge the uncertainty stemming from GP evalu-
ations with the uncertainty arising from state evolution. The latter is usually obtained by
employing a first-order Taylor approximation to successively linearize around the predicted
mean state during each phase of the MPC’s open-loop prediction [13], [12]. To address the
large uncertainties, the authors of [13] hypothesized integrating a linear ancillary state feed-
back controller within the MPC’s open-loop prediction horizon. However, they acknowledge
the challenges this method might face with highly nonlinear systems, and they do not fur-
ther address the computational demands of incorporating an additional controller into the
optimization process. In a different study [12] from the same authors, a renewed framework
was proposed for active GP model learning during the operation of an autonomous race car,
incorporating a data management system for online learning of GP error models. To work
around computational restrictions, the variance dynamics were precomputed based on the so-
lution trajectory from the MPC’s previous time steps and kept constant for five control loops,
assuming the solution trajectories do not differ too much. To further prevent computational
overload and feasibility issues, the uncertainty propagation was limited to only five steps and
kept constant for the remainder of the horizon. The existing literature primarily addresses
uncertainty management as an isolated problem within the control phase, assuming that the
uncertainty as determined by evaluating the GP at the specific state/control input point is
directly suitable for use. However, this approach may not be viable when the GP model
operates outside its distribution range, as the resulting uncertainties can become excessively
large and difficult to handle effectively.
This thesis proposes a shift toward a modeling-centric approach that specifically addresses the
inherent instability in long-term predictions made by GPs. The focus on these improvements
during the modeling phase is motivated by the opportunity it presents to decrease the compu-
tational burdens associated with managing uncertainty during MPC operation. This approach
would lead to enhanced resource allocation for optimization and GP evaluation. Recognizing
that instability typically occurs when the GP deviates from regions well-represented by the
training data, this thesis focuses on developing a strategy to prevent the GP from ventur-
ing into poorly correlated areas during its long-term dynamic predictions, thus mitigating
“out-of-distribution” scenarios. By aiming to reduce the discrepancy between the predicted
dynamics and the actual dynamics, the uncertainty associated with the GP’s predictions will
also be reduced. The goal is to yield a GP with enhanced predictive capability for long-term
dynamics, tailored for better integration with MPC’s predictive nature.

1-4 Thesis Objectives and Contributions

To address the challenges mentioned in the previous section, this thesis seeks to develop a
method for learning GP models with improved long-term predictive capabilities. The research
question is formulated as follows:
How can the mean state and variance prediction of the long-term dynamics be
stabilized to maximize Gaussian Process-based MPC performance?
The hypothesis is that refining the parameters of the GP kernel function could improve the
model’s capacity to capture extended dynamics and provide accurate predictions of associated
uncertainties.
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6 Introduction

The main contribution of this thesis is a multi-step training framework for learning Gaussian
Process models capable of making accurate and stable long-term predictions of the dynamics
while reducing uncertainties. The enhanced model’s superior ability to accurately describe
long-term dynamics has been demonstrated through a Model Predictive Contouring Control
(MPCC) example and compared to the standard GP-MPCC-based controller in a racetrack
navigation context for a small car-like robot.

1-5 Thesis Outline

The thesis is outlined as follows:

• Introduction: This section summarizes the advancements in GP applications for pre-
dictive control of autonomous ground vehicles as found in the literature and identifies
the research gaps.

• Scientific Paper: The main body of the thesis, formatted as a paper that presents the
proposed multi-step Gaussian Process training framework, is presented in Chapter 2.

• Supporting Information Methods: Chapter 3 provides a detailed exposition of the
Gaussian process training framework developed, accompanied by an analysis delineating
the precise effects resulting from its application.

• Supporting Information Results: Modeling: Chapter 4 provides additional infor-
mation and supporting data on the obtained modeling results.

• Supporting Information on Results: Controller: Chapter 5 provides additional
information and supporting data on the outcomes obtained from the controller when
using GP models in MPCC.

• Discussion: Chapter 6 critically examines the results, explains limitations encountered,
and proposes potential directions for future research.

L. Yin Master of Science Thesis



Chapter 2

Scientific Paper

The thesis is formatted in paper form, with the following document serving as its primary
component.
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Abstract—This work introduces a novel training strategy
for Gaussian Process (GP) models aimed at improving their
predictive accuracy and uncertainty quantification capabilities
over extended prediction horizons. This improvement is highly
relevant for applications in model predictive control (MPC) in
the autonomous driving domain. Learning-based MPC strategies
typically rely on standard physics-based models augmented with
GP models to account for residual nonlinearities and uncertain-
ties not captured by the former. Nonetheless, these conventional
approaches often struggle with long-term prediction accuracy,
especially when faced with out-of-distribution scenarios, a phe-
nomenon where the model encounters data points that are
significantly divergent from the training set. To address these
challenges, a multi-step Gaussian process training framework
is proposed. This framework yields a GP model capable of
making accurate long-term predictions, i.e. a multi-step Gaussian
Process (MSGP) model. It achieves this by integrating the
simulation of future dynamics into the training process, allowing
for the model’s kernel parameters to be tuned toward long-term
dynamics. As a result, the MSGP model not only demonstrated
the ability to make more stable and accurate long-term dynamic
predictions but also with greater confidence. The efficacy of the
multi-step training framework is shown by the significant im-
provements in long-horizon dynamics predictions by the MSGP
model, achieving an average 19% reduction in mean error and a
90% reduction in variance compared to the standard GP model.
Moreover, the efficacy of the MSGP model is further confirmed
through its application in a Multi-Step Gaussian Process-based
Model Predictive Contouring Controller (MSGP-MPCC), which
outperforms a traditional GP-based MPCC (GP-MPCC) baseline
controller in lap time and reliability, achieving a 100% success
rate in completing laps across ten consecutive simulations without
crashing.

Index Terms—Gaussian process (GP), long-horizon prediction,
data-driven optimal control, model predictive control (MPC),
autonomous driving.

I. INTRODUCTION

Studies from the World Health Organization (WHO) re-
ported that each year 1.3 million lives are lost in road traffic
crashes, with human error being the leading cause in 93%
of these incidents [1]. As a response to this, in recent years,
there has been a surge in interest in autonomous vehicles, with
academia and industry actively developing automated driving
(AD) functionalities to improve road safety and remove the
need for human control [2], [3].

Model predictive control (MPC) has increasingly gained
more popularity as a control technique for autonomous driving

Fig. 1: Overview of the control architecture with the various
possible prediction models: a Gaussian process (GP) model
or the multi-step Gaussian process (MSGP) model trained
using the proposed serially cascaded Gaussian process training
framework.

because of its ability to handle nonlinear vehicle dynamics
while respecting state and actuator constraints [4], [5]. The
MPC control task is formulated as an online, open-loop,
finite horizon optimization problem, that considers system
dynamics and constraints, and is solved in a receding horizon
manner [6]. The MPC predicts the system’s dynamic behavior
over a fixed horizon based on current states and solves an
optimization problem according to a certain cost. Feedback
is incorporated by applying the first control input from the
optimized sequence to the system [6]. Finally, when a new
state measurement becomes available, the whole process re-
peats. To maximize the predictive power of the MPC, its
underlying prediction model must accurately represent the
vehicle dynamics, whilst being sufficiently simple for real-time
optimization. Traditional efforts focused on developing models
tailored to various operating ranges such as the simple kine-
matic or the nonlinear dynamic bicycle model, of which the
latter is suitable for complex maneuvers by considering tire-
road interactions. However, these physics-based approaches
are costly and time-consuming to derive as they require
expert knowledge [5]. Furthermore, they lack the flexibility



to accurately enclose the full range of operating conditions
encountered by vehicles, including variations in dynamics due
to factors such as weather or road conditions [5], [8]. In recent
years, approaches from machine learning have gained traction
as a means to address the limitations of classical physics-based
models and develop nonlinear models from real-world data.
Gaussian process regression (GPR), in particular, has gained
popularity in modeling vehicle dynamics for its ability to learn
complex nonlinear functions governing the dynamics while
providing uncertainty estimates alongside these functions, even
in data-scarce environments [10]. A Gaussian process (GP)
is characterized by a mean function and a covariance, of
which the latter indicates the uncertainty of the mean function
prediction [9]. Subsequently, the learned model can be used
to make predictions at new unseen data points.

A. Related Works

In learning-based MPC for autonomous vehicles, GPs have
frequently served to refine physics-based nominal models by
capturing the residual errors between these models and the ac-
tual system dynamics [8], [10], [11], [12]. However, challenges
emerge when GP models are extrapolated at points beyond
their training data, leading to inaccuracies in the prediction of
the dynamics, particularly in multi-step prediction scenarios.
Findings from [11] have highlighted instances where the
MPC’s open-loop predictions, based on GP augmented mod-
els, deviate more rapidly from the actual trajectories compared
to those based solely on the nominal model. This discrepancy
arises when GP models encounter an “out-of-distribution” data
point [5], which is a point in the state/action space that is
not sufficiently correlated with the training data, resulting in
erroneous predictions of the dynamics and a large uncertainty
as a by-product.

To our knowledge, the literature has not explicitly addressed
out-of-distribution behavior in the context of GP-based control.
Nonetheless, there exists research focused on managing the
substantial uncertainties that partly result from unstable pre-
dicted dynamics. These studies, treat those uncertainties as an
isolated problem and propose distinct methods to tackle them
in the control phase. The methods often merge the uncertainty
stemming from GP evaluations with the uncertainty arising
from state evolution. The latter is usually obtained by employ-
ing a first-order Taylor approximation to successively linearize
around the predicted mean state during each phase of the
MPC’s open-loop prediction [10], [8]. To address the large un-
certainties, the authors of [10] hypothesized integrating a linear
ancillary state feedback controller within the MPC’s open-loop
prediction horizon. However, they acknowledge the challenges
this method might face with highly nonlinear systems, and they
do not further address the computational demands of incorpo-
rating an additional controller into the optimization process.
In a different study [8] from the same authors, a renewed
framework was proposed for active GP model learning during
the operation of an autonomous race car, incorporating a data
management system for online learning of GP error models. To
work around computational restrictions, the variance dynamics

were precomputed based on the solution trajectory from the
MPC’s previous time steps and kept constant for five control
loops, assuming the solution trajectories in consecutive control
loops do not differ too much. To further prevent computational
overload and feasibility issues, the uncertainty propagation was
limited to only five steps and kept constant for the remainder
of the horizon. The existing literature primarily addresses
uncertainty management as an isolated problem within the
control phase, assuming that the uncertainty as determined by
evaluating the GP at the specific state/control input point is
directly suitable for use. However, this approach may not be
viable when the GP model operates outside its distribution
range, as the resulting uncertainties can become excessively
large and difficult to handle effectively.

Our work proposes a shift toward a modeling-centric ap-
proach that specifically addresses the inherent instability in
long-term predictions made by GPs. The focus on these
improvements during the modeling phase is motivated by the
opportunity it presents to decrease the computational burdens
associated with managing uncertainty during MPC operation.
This approach would lead to enhanced resource allocation for
optimization and GP evaluation. Recognizing that instability
typically occurs when the GP deviates from regions well-
represented by the training data, we focus on developing
a strategy to prevent the GP from venturing into poorly
correlated areas during its long-term dynamic predictions,
thus mitigating “out-of-distribution” scenarios. By aiming to
reduce the discrepancy between the predicted dynamics and
the actual dynamics, the uncertainty associated with the GP’s
predictions will also be reduced. The goal is to yield a GP
with enhanced predictive capability for long-term dynamics,
tailored for better integration with MPC’s predictive nature.

In this paper, we present a novel training framework that
encourages Gaussian Process models to learn how to make
accurate and stable long-term predictions of the dynamics
with calibrated uncertainties. The framework was evaluated
using a training and validation dataset and showcased in an
application where Gaussian processes model the full vehicle
dynamics of a 1:10 scale car-like robot. The new model’s
superior ability to accurately describe long-term predictions
has been demonstrated on an MPCC example and compared
to the standard GP-MPCC-based controller.

II. PRELIMINARIES

A. Notation

• A vector is denoted with a bold lower case letter: x ∈ Rn

• A matrix is denoted with a bold upper case letter: X ∈
Rn×m

• A discrete time step is denoted with Latin letter: k
• A kernel function is denoted with Greek letter: κ
• A multivariate Gaussian distribution with mean µ and

covariance Σ: N (µ,Σ)
• Predicted quantities at time step k are denoted with a

subscript: e.g. xk

• Predicted quantities by a GP model during training are
denoted with a circumflex: v̂k



• Covariance matrices during training are denoted as K.
• The posterior covariance is denoted as Σ.
• A matrix K that is updated with matrix K̃: K ← K̃
• The sum of quantities over a prediction horizon is indi-

cated with a non-bold Σ.
• Mean quantities predicted quantities by a GP are denoted

with a bar: a
• The j-th element of a vector: [v]j
• The j-th column of matrix: X is [X

k
]·,j

• A vector without its last element: [v]\−1

• A matrix without the j-th row and column: [X]\j,\j .

B. Gaussian Process Regression

A Gaussian Process (GP) is an infinite collection of random
variables with a Gaussian joint distribution [9], extending
the multivariate Gaussian distribution to infinite dimensions
to facilitate modeling distributions over functions rather than
vectors [5]. A GP is dictated by a mean function m(x)
and a kernel function κ(xi,xj) that describes the covariance
between all possible input data pairs (xi,xj) [7]. With these
two components, a GP can describe a nonlinear real-world
process f(x) as

f(x) ∼ GP(m(x), κ(xi,xj)) . (1)

Consider a collection of n input and output data pairs
(xi, yi) forming the data set D,

D =
{
y = [y0; . . . ; yn−1] ∈ Rn,

X =
[
xT
0 ; . . . ;x

T
n−1

]
∈ Rn×nd

} (2)

that represents a yet to be identified nonlinear function f :
x→ y with input x ∈ Rnd (nd number of input features) and
target values y ∈ R,

y = f(x) + ε , (3)

in which f : Rnx → R is the underlying nonlinear function
to be modeled by the GP and ε ∼ N (0, σ2

n) is an inde-
pendent identically distributed (i.i.d.) Gaussian measurement
noise with zero mean and variance σ2

n on the observed data
(likelihood noise).

Specifying a GP prior with a prior mean and kernel function
results in a normal distribution of the observed data

y = N (m(X),K(X,X) + σ2
nI) , (4)

in which X and y are the observed input-output data points,
µ = [m(x0), . . . ,m(xn−1)] is the mean function, and
K(X,X) is the kernel matrix with each element obtained
by evaluating the kernel function for each possible data
pair [K(X,X)]ij = κ(xi,xj). The behavior of the GP is
primarily governed by the selection of the kernel function and
its parameters, which is typically determined by optimizing
the likelihood of the observed data [10]. Further details on
this will be elaborated in section II-C. To perform regressions
using a GP model, i.e. make predictions f∗ at a number of
n∗ test points (unseen data points) X∗ =

[
xT
0∗; . . . ;x

T
n−1∗

]
∈

Rn∗×nd given the target values, we make use of the fact that

the joint distribution of the target observations y and latent
function values f∗, p(y, f∗|X,X∗), is Gaussian [9], [16]:

[
y
f∗

]
∼ N

([
m(X)
m(X∗)

]
,

[
K(X,X) + σ2

nI K (X,X∗)
K (X∗,X) K (X∗,X∗)

])
.

(5)
K(X,X) ∈ Rn×n is the kernel matrix evaluated at all pairs
of training points according to the kernel function in , i.e.
[K(X,X)]ij = κ(xi,xj). Similarly, K(X∗,X∗) ∈ Rn∗×n∗

between all test point pairs, K(X,X∗) ∈ Rn×n∗ between all
training and test point pairs, and K(X∗,X) = K(X,X∗)T .[
m(X),m(X∗)

]
= 0 as no prior information is available

about the system or the data has been demeaned. To obtain
the posterior distribution of the latent function values f∗ that
only contains functions from the prior distribution consistent
with the training data, it is conditioned on the observations y,
training inputs X , and test points X∗, yielding the predictive
equations for GP regression,

p
(
f∗ |X,y,X∗

)
∼ N (µ∗,Σ∗) , in which

µ∗ = K (X∗,X)
[
K(X,X) + σ2

nI
]−1

y

Σ∗ = K (X∗,X∗)

−K (X∗,X)
[
K(X,X) + σ2

nI
]−1

K (X,X∗) ,

(6)
in which µ∗ is the posterior mean and Σ∗ the posterior
covariance [9]. The derivation of the conditional from the joint
distribution is done according to Theorem I in Appendix A.
In case there is only one test point x∗, X∗ is interchanged
with a single vector x∗ to obtain a univariate Gaussian with
mean µ∗ and variance V∗ [9],

p
(
f∗ |X,y,x∗

)
∼ N (µ∗,V∗) , in which

µ∗ = k (x∗,X)
[
K(X,X) + σ2

nI
]−1

y

V∗ = κ (x∗,x∗)

− k (x∗,X)
[
K(X,X) + σ2

nI
]−1

k (X,x∗) .

(7)

K(X,X) ∈ Rn×n, κ(x∗,x∗) ∈ R, k(x∗,X) ∈ Rn, and
k(X,x∗) = (k(x∗,X))T ∈ Rn, in which all elements are
evaluated using the squared exponential kernel function in
(8). To provide some interpretation into how the posterior
variance is composed: the first term is the variance at the
test point, from which a (positive) term is subtracted, which
tells us how much the training data X has explained [24].
This enables comprehension of the concept of the GP model
going “out-of-distribution”, signifying that the test points do
not share a sufficient correlation with the training data set,
i.e. k(x∗,X) ≈ 0 and k(X,x∗) = k(x∗,X)T ≈ 0. As
a consequence, the predictive mean approaches zero and the
uncertainty fails to be revised based on insights from the
training data, therefore remaining large. Furthermore, it can
be seen that the variance only depends on the inputs X and
X∗ (via the kernel function) and not on the target values y,
which is a property of the Gaussian distribution [16].



C. GP Model Training

As mentioned in section II-B, the behavior of a GP model
is dictated by a kernel function that describes the relationship
between input data points. A commonly employed kernel func-
tion to characterize the covariance is the squared exponential
kernel function. This function indicates strong correlation and
similarity for nearby inputs and weakens for distant ones [9]:

κ(xi,xj) = σ2
f exp

(
−1

2

nd∑

d=1

(xi,d − xj,d)
2

ℓ2d

)
(8)

xi,d − xj,d is the distance between the d-th feature of an
input data pair and ℓd is the lengthscale regarding this input
feature. The kernel hyperparameters that govern the GP’s
behavior are the signal variance σ2

f , which determines the
vertical span of the function and the lengthscale ℓd which
regulates the correlation pace between input points: the larger
the lengthscale, the higher the correlation between distant
input data points (smoother functions) [16]. The core of GP
model training lies in identifying the best hyperparameters,
which is crucial for the model’s generalization capability [14]
[15]. This training process involves iterative adjustment of the
kernel hyperparameters to ensure that the GP model accurately
represents the underlying real-world system. Mathematically,
this task involves maximizing the log marginal likelihood (or
evidence), which is the probability of observing the target
values y, given the input data points X , and optimization
parameters θ = [σn, σf , ℓ

T ] [9]:

log p(y|θ,X) = −1

2
yT
[
Kθ + σ2

nI
]−1

y

− 1

2
log |Kθ + σ2

nI| −
n

2
log 2π .

(9)

As can be seen, the optimization of the kernel parameters
happens through the matrix Kθ = K(X,X), whose elements
are all obtained using the kernel function (8).

To solve the optimization problem, the maximization of the
log marginal likelihood is recast as a non-convex and nonlinear
minimization of the negative log marginal likelihood,

θ̂ = argmin
θ
− log p(y|θ,X) , (10)

which can be solved using gradient descent algorithms. This
optimization is repeated for several epochs (training cycles),
over which the GP model gradually learns to recognize the
inherent patterns and relationships within the training data
until the model has achieved the desired model fit.

D. Stochastic Variational Gaussian Process Regression

To enhance the efficiency of GP training and evaluations,
we employ a Stochastic Variational Gaussian Process (SVGP)
model [23], which approximates the exact GP model with
a set of inducing points and their respective outputs to ef-
fectively “summarize” the data. By utilizing a number of
inducing points and labels m < n, this approach decreases
the computational burden of kernel matrix inversion from
O(n3) to O(mn2) [9], vastly speeding up the training process

and evaluation. In practice, it means that during training, the
inducing points and target values are optimized alongside the
kernel and likelihood parameters. Moreover, the optimization
process takes place over several data batches within each
epoch, meaning that for every epoch, parameter optimizations
are carried out as many times as there are data batches. Even
though we use SVGP models, they will simply be referred to
as GPs for ease.

III. GAUSSIAN PROCESS MODEL LEARNING

This section presents the Gaussian process models that
dictate the full vehicle dynamics of the 1:10-scale car-like
robot. It contrasts the conventional training approach with
the multi-step training framework, illustrating the effectiveness
of the proposed training framework in enhancing long-term
predictive capabilities.

A. Gaussian Process-based Vehicle Model Formulation

In this study, the vehicle dynamics are fully described by
three GP models that describe the longitudinal acceleration
ax, lateral acceleration ay , and angular acceleration aω , re-
spectively. The input features of the GP model are the control
inputs and velocity states,

x = [τ, δ, vx, vy, ω]
T , (11)

in which τ is the throttle input, δ is the steering input. vx, vy ,
and ω are the longitudinal, lateral, and angular velocity states
respectively.

To learn three GPs that describe the accelerations, a data set
D with n input and output points (xi, axi

, ayi
, aωi

) collected
by driving the robot around with a joystick from [5] was used:

D =
{
ax = [ax0 ; . . . ; axn ] ∈ Rn,
ay = [ay0 ; . . . ; ayn ] ∈ Rn,
aω = [aω0 ; . . . ; aωn ] ∈ Rn,

X =
[
xT
0 ; . . . ;x

T
n

]
∈ Rn×nd

}
.

(12)

Treating each acceleration dimension separately, the GP mod-
els are trained as described in II-C. Once the GP models
are trained, the accelerations that govern the robot vehicle
dynamics can be represented by the following system of GP
approximations,





ax = N (µax(X),Σax(X))

ay = N (µay (X),Σay (X))

aω = N (µaω (X),Σaω (X))

. (13)

Subsequently, new predictions at n∗ test points stored in X∗
can be made according to

µa = Ka (X∗,X)
[
Ka(X,X) + σ2

nI
]−1

y

Σa = Ka (X∗,X∗)

−Ka (X∗,X)
[
Ka(X,X) + σ2

nI
]−1

Ka (X,X∗)

∀ a ∈ {ax, ay, aω}.
(14)



Fig. 2: Two training frameworks visualized as block diagrams. Bottom: In the conventional Gaussian Process (GP) training
framework, the predicted covariance matrix K is directly passed to the optimization function to optimize the kernel parameters
and inducing points. Top: In the proposed Multi-Step Gaussian Process (MSGP) training framework, the predicted mean outputs
are used to simulate kpred steps ahead accelerations and covariance matrix. The kpred steps ahead covariance matrix is then
passed into the optimization function to optimize the kernel parameters and inducing points.

with Ka(X,X) ∈ Rn×n, Ka(X∗,X∗) ∈ Rn∗×n∗ ,
Ka(X,X∗) ∈ Rn×n∗ , Ka(X∗,X) = Ka(X,X∗)T . Note
that there is now a distinct set of GP predictive equations
for each acceleration dimension, each based on its own cus-
tomized kernel function.

The GP models were trained using Python’s GPyTorch
library with 3200 data points, which corresponds to 320
seconds of recorded training data, divided into an 80/20%
percent ratio for training and validation, respectively. To speed
up training, the exact GP is approximated using 200 inducing
points.

B. Standard Gaussian Process Model Training

Fig. 2 (bottom) shows the conventional GP training frame-
work. The GP models are evaluated at the training inputs
X , and the resulting covariance matrices are utilized in the
optimization function as specified in (9) to update the kernel
hyperparameters and inducing points and labels. This process
is repeated for each minibatch of data within each epoch,
resulting in # minibatches×epochs of parameter optimizations.

Algorithm 1 outlines the conventional training approach in
pseudocode. The model fitting results can be found in Table I.
The capability of the GP models trained under this framework
to make long-term predictions was assessed by initializing
30-step ahead (which is the MPC horizon length Npred)
predictions at various points along the training dataset and
checking how well they match with actual recorded data (Fig.
3a). The plots depict recorded longitudinal, lateral, and angular
velocity data from the robot car. The gray lines illustrate
the long-term mean predictions of the velocity states and
the surrounding shaded gray regions indicate the uncertainties
provided by the GP. The velocity predictions often go out of
distribution, as evidenced by the cases where predictions shoot
away from where they were initialized and eventually flatten
out. This behavior reflects the intrinsic workings of the GP
model, highlighting its limitations when faced with unfamiliar
data points. For clarity, only a brief data excerpt is displayed;
readers seeking comprehensive outcomes on longer data sets
including validation sets are directed to the cover report.



Algorithm 1 Standard Gaussian Process Training

1: Input: ax,ay,aω,X, batchsize N,
2: initial inducing points and labels
3: Output: mean, covariance, log p(y|X,θ) for all GPs
4: for i = 0 to epoch_max do
5: for j = 0 to batch_iter_max do
6: ▷ Update data batch
7: axj

← [ax]jN :(j+1)N−1

8: Xj ← [X]jN :(j+1)N−1,.

9: Dxj ← {axj ,Xj}
10: ▷ Obtain mean and covariance
11: axj

,Kax

j
= SVGP_model_ax(X

j
)

12: ▷ Update optimization parameters
13: θxj+1

← argminθ Lj(axj
,Kax

j
,θxj

)
14: end for
15: for j = 0 to batch_iter_max do
16: ayj

← [ay]jN :(j+1)N−1

17: X
j
← [X]jN :(j+1)N−1,.

18: Dyj
← {ayj

,X
j
}

19: ayj
,Kay

j
= SVGP_model_ay(X

j
)

20: θyj+1
← argminθ Lj(ayj

,Kay

j
,θyj

)
21: end for
22: for j = 0 to batch_iter_max do
23: aωj

← [aω]jN :(j+1)N−1

24: X
j
← [X]jN :(j+1)N−1,.

25: Dωj
← {aωj

,X
j
}

26: aωj
,Kaω

j
= SVGP_model_aw(X

j
)

27: θωj+1 ← argminθ Lj(aωj ,K
aω

j
,θωj )

28: end for
29: end for

C. Proposed Multi-Step Gaussian Process Model Training

Fig. 2 (top) shows the proposed Multi-Step Gaussian Pro-
cess (MSGP) training framework. This framework leverages
the application of in-training simulation of future dynamics for
a short horizon kpred < Npred based on the GP’s current level
of understanding (i.e. obtained at the current epoch) to predict
future dynamics. In essence, with this process, we effectively
give feedback to the GP regarding its ability to make long-
term predictions. Thereby, we encourage the GP models to be
optimized not only for immediate prediction accuracy but also
in the long term. The method can be explained as follows. The
GP models as in (13) are evaluated at the training inputs Xk

to obtain the mean and covariance matrix of the acceleration
states,

axk
= N (axk

,Kax

k
)

ayk
= N (ayk

,Kay

k
)

aωk
= N (aωk

,Kaω

k
)

. (15)

Using the mean accelerations, the one-step ahead velocity
states v̂k+1 can be predicted by multiplying the predicted
mean acceleration with time step ∆t and adding it to the

current velocity,

v̂xk+1
= v̂xk

+ axk
·∆t

v̂yk+1
= v̂yk

+ ayk
·∆t

ω̂
k+1

= ω̂
k
+ aωk

·∆t .
(16)

The one-step-ahead simulated velocity states partially form
the new inputs for the next GP evaluation. The throttle τ and
steering δ input vectors are also advanced from k to k + 1
discarding their first values to align them with the updated
velocity states

τ
k+1

= [τ
k
]\0

δ
k+1

= [δ
k
]\0 .

(17)

Because the control input vectors are now reduced by one
element and we lack control input data for indices beyond the
existing data set or data batch size, it is necessary to omit
the last elements of the simulated velocities to ensure that the
dimensions of the input data matrix remain consistent

v̂xk+1
= [v̂xk+1

]\−1

v̂yk+1
= [v̂yk+1

]\−1

ω̂
k+1

= [ω̂
k+1

]\−1 .
(18)

Now that the velocity states and control inputs have been
advanced from k to k + 1 and have been sized properly, the
updated input data matrix X

k+1
for the next GP evaluation

can be reconstructed

X
k+1
←
[
τ

k+1
, δ

k+1
, v̂xk+1

, v̂yk+1
, ω̂

k+1

]
. (19)

Note that the velocity state variables are simulated future
velocities, derived from the acceleration outputs provided
by the Gaussian Process (GP). In this way, we employ the
GP at its current level of understanding (referred to as the
current epoch) to predict future dynamics during training.
This simulation process is repeated several cycles until a
desired kpred horizon is reached. At this point, the covariance
matrix Kpred−1, detailing the correlations between data point
pairs at kpred−1, can be passed into the optimization function
as specified in (9). However, instead of using this matrix
as it is within the optimization process, it is updated to
incorporate previous uncertainties as well. For computational
efficiency and to ensure the matrix remains positive definite
(solver requirement), the covariance matrix from consecutive
time steps k − 1 and k were treated to be independent and
summed to each other. This simplification was made under
the assumptions that:

1) The horizon for simulating future dynamics is consider-
ably short, with kpred << Npred.

2) The changes in data points between successive time
instants k and k−1 are so small, resulting in negligible
differences in the structure of their covariance matrix.
This leads to an intensified correlation among data points
already correlated (whether positively or negatively),
and an increase in variances, which remain positive by
nature.



The covariance matrix for each GP model is updated ac-
cording to (20). To maintain correct dimensionality with the
training input data matrix X

k
, the first row and column of the

updated covariance are discarded.

K̃ax

k
←
[
K̃ax

k−1

]
\0,\0

+Kax

k

K̃ay

k
←
[
K̃ay

k−1

]
\0,\0

+Kay

k

K̃aω

k
←
[
K̃aω

k−1

]
\0,\0

+Kaω

k
,

(20)

in which Ka{x,y,ω}
k

= Ka{x,y,ω}
k

(X
k
,X

k
) is the covariance

matrix given upon GP evaluation at the current time step and
K̃a{x,y,ω}

k−1
= K̃a{x,y,ω}

k−1
(X

k−1
,X

k−1
) is the covariance matrix

given by the GP at the previous time step.
This process described in (15)-(20) repeats until the dy-

namics and covariance matrix have been propagated a desired
kpred steps ahead into the future. Then the kstep−1 covariance
matrices will be fed into the optimization function along with
the target values advanced the same number of k-steps ahead

ax = [ax]\(0:kpred−1)

ay = [ay]\(0:kpred−1)

aω = [aω]\(0:kpred−1) ,
(21)

to optimize the kernel hyperparameters, inducing points and
labels. This process is repeated for each minibatch of data
within each epoch, resulting in # minibatches × epochs of
parameter optimizations. Algorithm 2 outlines the multi-step
ahead framework through pseudocode in detail.

D. Results

Fig. 3b shows how the predicted velocity trajectories by
the MSGP models closely align with the actual velocity data.
To get an understanding of the model’s capability for reliable
long-term predictinos, it is essential to examine the internal
modifications of the model, particularly the adjustments in the
kernel hyperparameters.

1) Recalibrated sensitivity: Upon looking at the kernel
lengthscales, the general trend is that all kernel lengthscales
have increased, meaning that the acceleration mean functions
have smoothened out. For the lateral acceleration MSGP
model, increased lengthscales for steering ℓδ , and angular
velocity ℓω input features reduce the model’s sensitivity to
these variables (Fig. 4b). The initial GP model was overly
sensitive, reacting rigorously to minimal input changes as
evident from the rapid predicted lateral velocity changes at
t = 12 s for example Fig. 3a. It can be seen that at the same
time in Fig. 3b, this behavior is eliminated. The lengthscales
for the longitudinal (Fig. 4a) and the angular acceleration (Fig.
4c) GP model have also increased, calibrating the models to
be slightly less sensitivity to the input features, aligning its
responses more closely with realistic vehicle dynamics.

2) Rectified coupling: However, upon looking closely, there
are specific lengthscales that have changed more than others.
For the longitudinal dynamics, the lengthscales for throttle ℓτ
and longitudinal velocity ℓvx have decreased, meaning that

Algorithm 2 Multi-Step Gaussian Process Training (Proposed)

1: Input: ax,ay,aω,X, N, kpred,
2: initial inducing points and labels
3: Output: mean, covariance, log p(y|X,θ) for all GPs
4: for i = 0 to epoch_max do
5: for j = 0 to batch_iter_max do
6: ▷ Initialize data batches
7: X

k
← [X]jN :(j+1)N−1,·

8: axj
← [ax]jN :(j+1)N−1

9: ayj ← [ay]jN :(j+1)N−1

10: aωj ← [aω]jN :(j+1)N−1

11: Dxj
← {axj

,X
k
}

12: Dyj
← {ayj

,X
k
}

13: Dωj
← {aωj

,X
k
}

14: ▷ Initialize in-training simulated cov. matrices
15: K̃ax

k−1
, K̃ay

k−1
, K̃aω

k−1
← 0N×N

16: ▷ Initialize velocity estimates
17: v̂xk

, v̂yk
, ω̂

k
← [Xk]·,2, [Xk]·,3, [Xk]·,4

18: ▷ Simulate future predictions
19: for k = 0 to k_preds do
20: ▷ Obtain mean and covariance
21: axk

,Kax

k = SVGP_model_ax(X
k
)

22: ayk
,K

ay

k = SVGP_model_ay(X
k
)

23: aωk
,Kaω

k = SVGP_model_aw(X
k
)

24: ▷ Compound covariance by summation
25: if k == 0 then
26: K̂ax

k
← K̃ax

k−1
+ K̃ax

k

27: Kay

k
← K̃ay

k−1
+Kay

k

28: K̃aω

k
← K̃aω

k−1
+Kaω

k

29: else
30: K̃ax

k
←
[
K̃ax

k−1

]
\0,\0

+Kax

k

31: K̃ay

k
←
[
K̃ay

k−1

]
\0,\0

+Kay

y

32: K̃aω

k
←
[
K̃aω

k−1

]
\0,\0

+Kaω

ω

33: end if
34: ▷ Update velocity state estimates
35: v̂xk+1

← [v̂xk
+ axk

·∆t]\−1

36: v̂yk+1
← [v̂yk

+ ayk
·∆t]\−1

37: ω̂
k+1
← [ω̂

k
+ aωk

·∆t]\−1

38: ▷ Update input data matrix
39: τ

k+1
, δ

k+1
← [X

k
]\0,0 , [Xk

]\0,1
40: X

k+1
←
[
τ

k+1
, δ

k+1
, v̂xk+1

, v̂yk+1
, ω̂

k+1

]

41: end for
42: ▷ Shift target values k_preds−1 steps forward
43: ax ← [axj

]\(0:kpred−1)

44: ay ← [ayj
]\(0:kpred−1)

45: aω ← [aωj
]\(0:kpred−1)

46: ▷ Update optimization parameters
47: θxj+1 ← argminθ Lj(ax, K̃

ax

preds−1
,θxj )

48: θyj+1
← argminθ Lj(ay, K̃

ay

preds−1
,θyj

)

49: θωj+1
← argminθ Lj(aω, K̃

aω

preds−1
,θωj

)
50: end for
51: end for



(a) Velocity trajectory predictions GP model (b) Velocity trajectory predictions by MSGP model

Fig. 3: This figure contrasts standard Gaussian process (GP) model (a) with the Multi-Step Gaussian process (MSGP) (b) for
long-term velocity prediction, over a prediction horizon Npred = 30. The velocity trajectory predictions are made using the
accelerations predicted by the GP/MSGP models and integrated using forward Euler method. Colored lines denote experimental
velocity data recorded over time: longitudinal velocity (blue), lateral velocity (orange), and angular velocity (purple). Gray
lines illustrate the mean velocity predictions, initialized at various points along the recorded data. The velocity trajectories
based on this GP model often go out-of-distribution, denoted by cases where the predictions rapidly diverge from where they
were initialized and eventually flatten out. On the other hand, velocity predictions based on the MSGP model closely mirror
actual data, demonstrating stable long-term predictions with reduced uncertainty. Note that even though time is indicated on
the x-axis, it is important to stress that the learned dynamics do not depend on time, as it is not an input feature. The inputs
are strictly the velocity states and control inputs.

(a) ax kernel parameter changes (b) ay kernel parameter changes (c) aw kernel parameter changes

Fig. 4: The changes in kernel hyperparameters of the MSGP model relative to the standard GP models. The kernel parameters
are length scale for the throttle input ℓτ , steering input ℓδ , longitudinal velocity ℓvx , lateral velocity ℓvy , angular velocity ℓω ,
and output scale σf . The parameters influence the sensitivity, coupling of the dynamics, and the uncertainty of the predictions.

the longitudinal acceleration dynamics have become more
responsive to these input features. Whereas the lengthscales
for steering ℓδ , lateral velocity ℓvy and angular velocity ℓω
have increased, meaning that the longitudinal acceleration
has become less sensitive to the lateral dynamics input fea-
tures. These lengthscale adaptations mitigate the longitudinal
model’s overreaction to lateral dynamics, as seen at t = 12,
t = 38, and t = 62 s in Fig. 3a, where severely overestimated

lateral accelerations led to exaggerated longitudinal velocities
and thereby instability. We can see that with the recalibrated
lengthscales, the predictions at the same time-steps in Fig.
3b remain stable. The same phenomenon can be observed in
lateral acceleration dynamics (Fig. 4b), which have become
less responsive to the throttle input feature. This recalibration
of the kernel parameters ensures that the longitudinal and
lateral dynamics have become more decoupled, ensuring that



TABLE I: Assessment of long-term predictions of the longitu-
dinal vx, lateral vy and angular ω velocities by the Gaussian
Process (GP) model trained under the standard framework.

Metric vx vy ω
RMSE 0.1733 0.1022 0.4499
MAE 0.1083 0.0534 0.2183
Average variance 0.6796e-3 0.3465e-3 2.334e-3
Training time [min] 1:12
Epochs, optimization steps 400, 1600
Metrics used are root mean square error (RMSE), mean absolute error
(MAE), average variance (Avg Var).

TABLE II: Assessment of long-term predictions of the longitu-
dinal vx, lateral vy and angular ω velocities by the Multi-Step
Gaussian Process (MSGP) model

Metric vx vy ω
RMSE 0.1244 0.0293 0.2519
MAE 0.0880 0.0165 0.1656
Avg. Var 4.0740e-5 1.1995e-5 4.6023e-4
∆% RMSE* [%] −28 −71 −44
∆% MAE* [%] −11 −36 −12
∆% Average Variance* [%] −94 −97 −80
Training time [min] 3:57
Epochs, optimization steps 250, 1000
Metrics used are root mean square error (RMSE), mean absolute error
(MAE), average variance (Avg Var).
∗The percentual change ∆% is computed w.r.t. the standard GP training
method.

while both acceleration dimensions do influence each other,
they do not disproportionately affect each other, aligning the
model more closely with physical vehicle dynamics principles.

3) Reduced uncertainty: Now that the long-term predic-
tions are stable and the predicted future dynamics consistently
correlate with the training data, the uncertainty reduction term
in the GP’s predictive equations for the covariance (7) is
activated, leading to a decrease in variance associated with
the mean predictions. The MSGP model’s predictions for long-
term velocity trajectories have shown a significant reduction
in variance, with reductions of 94%, 97%, and 80% for longi-
tudinal, lateral, and angular velocity, respectively, compared to
the uncertainties associated with the standard GP model (Table
II). Furthermore, to prevent overfitting and ensure the models
generalize well, the GP/MSGP models have also been tested
on a validation data set, as detailed in the cover report.

The computational load during training primarily stems
from inverting the matrix K(X,X) (time complexity O(n3)).
This inversion inevitably needs to be carried out in each
optimization cycle to facilitate the simulation of long-term
predictions. Fortunately, this matrix inversion only needs to be
done once per optimization cycle and can be reused for each
consecutive future prediction within that cycle, since it only
depends on the training data. Consequently, to minimize the
computational burden, it is essential to maintain a small value
for kpred (kpred << Npred). This approach limits the number
of matrix multiplications, which have a time complexity of
O(n2), thereby keeping the computational load manageable.
To our advantage, choosing kpred = 2 is proven to be ade-

(a) Kernel matrices GP model

(b) Kernel matrices MSGP model

Fig. 5: Heatmaps of posterior kernel matrices for each ac-
celeration dimension ax, ay , and aω . Kernel matrices of the
standard GP model method show sparse correlations other than
the data points with itself (the diagonal). The kernel matrix of
the MSGP model, however, reveals distinct correlated clusters,
demonstrating its effectiveness in uncovering vehicle dynamics
patterns.

quate for achieving reliable long-term predictions in practice.
Although training time has lengthened, there’s a noticeable
improvement in the accuracy of long-term predictions, as
evidenced by reductions in root mean square error (RMSE),
mean absolute error (MAE), and average variance (Table I
II). Moreover, fewer training cycles are required to learn the
dynamics — 400 for the Gaussian Process (GP) and 250 for
the Multi-Step Gaussian Process (MSGP). Given that both
training methodologies use an identical dataset, it is apparent
that the MSGP framework is more efficient at learning insights
and understanding the underlying vehicle dynamics compared
to the standard GP training approach.

Another way to get deeper insights into the effects of kernel
tuning is shown by looking at the kernel matrices. Fig. 5
shows the posterior kernel matrices of a data batch arranged in
chronological order rather than in input space (so that is why
the kernel heatmaps do not show the traditional patterns of a
squared exponential kernel) to demonstrate the effects between
the two training methods. Upon analyzing the posterior kernel
matrices of the GP models, two primary insights were noted.
The kernel matrix obtained from the conventional training
approach exhibits pronounced values along its diagonal, as
expected, yet it displays a sparse and unstructured correlation
pattern among different data points, indicating a lack of dis-
cernible relationships beyond direct similarities (as illustrated
in Fig. 5a). Conversely, the kernel matrix from the multi-step
ahead training approach shows a contrasting scenario (Fig. 5b).
Beyond showcasing diagonal variances, it also unveils clear
covariance clusters. These clusters imply that certain data point
groups share stronger correlations and that particular input



sequences have heightened predictability concerning vehicle
acceleration. This exemplifies the efficacy of the training
framework’s adeptness at uncovering meaningful relations and
input patterns from vehicle dynamics data.

IV. MULTI-STEP GAUSSIAN PROCESS-BASED
CONTROLLER

This section showcases the effectiveness of the MSGP
model by applying it to an MPCC controller (MSGP-MPCC).
It begins with an overview of the control formulation and the
setup for simulation. Finally, the performance of the MSGP-
MPCC is benchmarked against a baseline controller using the
standard GP model (GP-MPCC). The GP-based controller and
simulation setup used is based on the works of [5].

A. Controller formulation

This study employs a Model Predictive Contouring Control
(MPCC) strategy that decouples state references from a time
schedule [4], [19], [20], enhancing flexibility in computing
control actions as opposed to traditional MPC. The application
of this controller is demonstrated in simulation on a 1:10 scale
car-like robot. Predictions within the MPCC framework, rely
on either the GP model or the MSGP model. Fig. 1 shows
a schematic of the control architecture. The dynamics of the
(MS)GP-MPCC are described as,

v̇x = ax∗

v̇y = ay∗

ω̇ = aω∗

θ̇ = ω

ẋ = vx cos(θ)− vy sin(θ)

ẏ = vy sin(θ) + vx cos(θ) ,

(22)

in which the accelerations are the mean values given by
evaluating the GP models at the input-state combination at
hand (i.e. the test point) x∗ =

[
τ, δ, vx, vy, ω

]
, according to

the GP mean predictive equations in (14). Given the prediction
model, the control problem can then be formulated as [21],

min
ut+k∈U

N−1∑
k=0

q1 · (ṡt+k − ṡref )
2 + q2 · (ect+k)

2

+ uT
t+kRuut+k + p1 · ε2

s.t. x0 = x(0)
s0 = s(0)
xt+k+1 = f(xt+k,ut+k)
st+k+1 = f(st+k)
ut+k ∈ U
0 ≤ st+k ≤ L

−(1 + ε) ≤ ect+k
lwidth

2

≤ 1 + ε

∀k ∈ [0, N − 1] .
(23)

In this MPCC formulation, s is the path along which the robot
progresses, ṡ is the robot’s velocity along this path, and ṡref
is the reference velocity in m/s. U is the set that forms the
constraints on the control inputs. Lane boundaries are defined
as soft constraints on the normalized contouring error ec using

a slack variable ε. q1, q2 are weights on the velocity and
contouring error, respectively. Ru = diag(r1, r2) is a diagonal
weighting matrix on the control inputs. p1 is the weight on
the slack variable ε.

B. Controller implementation

The cost function is adaptable to different control objectives,
with varying priorities based on predefined weights. This
flexibility allows for tuning specific dynamic behaviors, such
as precise velocity tracking and minimizing lateral error for
conservative driving, as well as more aggressive maneuvers
where the same objectives would be less prioritized. This
study aims to evaluate the models’ performance under highly
aggressive conditions. To achieve this objective, an emphasis
is placed on promoting high speeds. This is accomplished
by intentionally keeping the weight assigned to the throttle
input low. This strategy encourages the controller to seek
its limits and observe the response of each model in such
demanding situations. The controller settings are specified in
Table III. The prediction horizon of the MPCCs is set to
Npred = 30. The sampling rate is set to Ts = 0.1s, enabling
the controller to predict three seconds ahead. ForcesPro [22]
is employed for solving the nonlinear optimization problem.
Control commands are transmitted at a frequency of 10 Hz via
a Robot Operating System (ROS) network to control the robot
within an RViz simulation environment from [5]. The robot
odometry data is returned through the same ROS network.

TABLE III: MPCC controller settings

Weights Input constraints Other
q1 q2 r1 r2 p1

¯
δ, δ̄

¯
τ, τ̄ Npred ṡref

1 1.2 1 0.1 1000 [-1, 1] [0, 0.6] 30 1.0

C. Results

The multi-step Gaussian Process training framework has
proven its efficacy within an MPCC applied to racetrack
navigation, showcasing superior performance compared to the
baseline GP-MPCC. Through simulations of the control task,
significant performance differences among the models were
observed when looking at key performance indices such as
lap time, velocity, and acceleration. The GP-MPCC (Fig.
6a) exhibits indications of “irregular” driving behavior, as
evidenced by the wiggly path. This is attributed to its limited
long-term predictive capabilities inherent to the method by
which it was trained. In contrast, the MSGP model (Fig. 7a)
which has learned to accurately predict long-term dynamics,
showcased higher adeptness at navigating track curves effi-
ciently, evident from its smooth path and tight corner cutting.
The lap times support these observations: the MSGP-MPCC
clocked a lap time of 15.23 s, outpacing the GP-MPCC
that took 17.14 s to complete a lap (Table IV). Reliability
tests provide additional insights. Upon conducting repeated
simulations (10 per controller) to evaluate their reliability, it
becomes apparent that the GP-MPCC struggles to navigate
the robot through sharp corners and crashes most of the time



(a) 1 lap (b) 10 laps (c) GG-diagram

Fig. 6: GP-MPCC (baseline controller): (a) 1 lap tracking results (a lucky try), (b) 10 lap tracking results, and (c) GG-diagram
of the accelerations achieved by the robot car. Acceleration values are presented in m/s2 for clarity, without conversions to Gs.
The grey center line represents the path reference. The inner and outer lines denote the track boundaries. The color gradient
illustrates the velocity magnitude at each recorded vehicle position.

(a) 1 lap (b) 10 laps (c) GG-diagram

Fig. 7: MSGP-MPCC (proposed controller): (a) 1 lap tracking results, (b) 10 lap tracking results, and (c) GG-diagram of the
accelerations achieved by the robot car.

(Fig. 6b), achieving a control success rate of only 20%. This
lack of effectiveness in lateral control can be attributed to the
training outcomes of the standard GP model (Figure 3a), where
it is evident that the lateral and angular GP models frequently
exhibit instability, leading to rapid changes in acceleration
and pushing the robot into velocity states that are out of
distribution. In contrast, the MSGP-MPCC demonstrates the
capability to maneuver confidently through sharp turns safely
seeking its limits without crashing (Fig. 7b), achieving a
control success rate of 100%. The GG diagrams, depicting the
achieved accelerations during the runs, provide further clarity
on this matter. In the case of the GP-MPCC, a wide range
of accelerations is observed across the entire acceleration
plane. However, these accelerations are erratic and unsafe, as
evidenced by the frequent crashes experienced by the GP-
MPCC. Conversely, the GG diagram of the MSGP-MPCC
portrays coupled accelerations of the same order of magnitude
and at higher velocities, depicted by the color gradient, (Figure
6c, 7c), following the circular contours typical of GG dia-
grams. Furthermore, the velocity profiles (Fig. 8) show that the
MSGP-MPCC safely maintains higher velocities, leveraging
learned acceleration capabilities from the dataset. In contrast,
the GP-MPCC displays more pronounced velocity variations,
stemming from an erratic model that is overly sensitive.

TABLE IV: Simulation results control performance of a model
predictive contouring controller based on a Gaussian pro-
cess (GP) model (baseline) vs. Multi-Step Gaussian process
(MSGP) model

Metric GP-MPCC MSGP-MPCC
Average velocity v [m/s] 0.98 1.07
Lap time 1st round t1 [s] 17.21 15.95
Average time remainder laps t2−10[s] - 15.23
Control success rate* 20% 100%
*safe lap completion without crashing

V. CONCLUSION AND FUTURE WORK

This study introduced a new framework that incorporates in-
training simulation of future dynamics and uncertainty, effec-
tively enabling the Gaussian Process models to gain predictive
foresight and uncertainty quantification capabilities, tailored
for better integration with MPC. This approach significantly
improves the models’ predictive accuracy by adjusting kernel
parameters to recalibrate the vehicle dynamics’ sensitivity to
various state and input variables. Our results demonstrate
a notable improvement in the model’s long-term predictive
capabilities, evidenced by a 19% average reduction in mean
error and a 90% decrease in prediction variance for the full
dynamics. Such recalibration allows the extraction of deeper



Fig. 8: Velocity profiles of a successful lap of the two
controllers along the path’s center line parametrized by the
path progress parameter s.

insights into vehicle dynamics from the same dataset and
learning more complex data-driven vehicle dynamics models,
with zero added complexity at controller run-time. Its efficacy
has been further demonstrated in an MPCC application. The
MSGP-MPCC not only performed better by reducing lap
times but also achieved a 100% control success rate. From a
modeling point of view, future research could explore the pos-
sibilities of using physics-based and Gaussian process-based
models jointly and using the proposed training framework
to learn stable error dynamics. From a control perspective,
potential directions include integrating variance dynamics into
the MSGP-MPCC to leverage the calibrated uncertainties to
introduce specific cautious behaviors, such as lane boundary
tightening or collision avoidance applications.
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APPENDIX

A. Theorem I

This theorem from [16] shows how to derive the conditional
distribution of a multivariate normal distribution. Suppose
X = (xa, xb) is jointly Gaussian distributed with the mean,
covariance, and inverse of the covariance defined as follows:

µ =

[
µa

µb

]
,

Σ =

[
Σaa Σab

Σba Σbb

]
,

Λ = Σ−1 =

[
Λaa Λab

Λba Λbb

]
.

Then the posterior conditional can be derived according to
the following:

p (xa | xb) = N
(
xa | µa|b,Σa|b

)

µa|b = µa +ΣabΣ
−1
bb (xb − µb)

= µa − Λ−1
aaΛab (xb − µb)

= Σa|b (Λaaµa − Λab (xb − µb))

Σa|b = Σaa − ΣabΣ
−1
bb Σba



B. Proof I

This proof from [18] shows that the sum of two positive
definite matrices is also positive definite. Let us first specify
a positive definite matrix: A matrix A is positive definite if,
for any non-zero column vector x, the condition xTAx > 0
holds.

Let A and B be two positive definite matrices.
The matrix C = A+B is positive definite.
By definition, since A and B are positive definite, for any

non-zero vector x, we have: xTAx > 0 xTBx > 0
Consider the matrix C = A+B. We need to show that for

any non-zero vector x, xTCx > 0.

xTCx = xT (A+B)x = xTAx+ xTBx

Since both xTAx and xTBx are greater than zero (from
step 1), their sum is also greater than zero:

xTAx+ xTBx > 0

Therefore, for any non-zero vector x, xTCx > 0, which
means C = A+B is positive definite.



Chapter 3

Supporting Information on Methods

This chapter expands on the methodologies employed throughout this thesis. Section 3-1
outlines the conventional framework for training Gaussian Process (GP)s. Following this,
Section 3-2 delves into the development of the Multi-Step Gaussian Process (MSGP) training
framework, illustrated through comparisons across different concepts using a straightforward
1D example. Finally, Section 3-2-2 offers a comprehensive mathematical explanation of the
proposed MSGP learning framework and the code implementation.

Figure 3-1: The 1:10 scale car-like robot targeted for control.

3-1 Standard Gaussian Process Model Training

This section elaborates on the standard GP training framework for training the three GP
models that govern the total vehicle dynamics, which is conducted over multiple epochs.
Leveraging Stochastic Variational Gaussian Process (SVGP) to reduce computational load,
the algorithm operates over multiple data batches within each epoch.

Master of Science Thesis L. Yin
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Consider a selection of N input-output data pairs forming the data set,

D =
{

ax =
[
ax0 ; . . . ; axN−1

]
∈ RN ,

ay =
[
ay0 ; . . . ; ayN−1

]
∈ RN ,

aω =
[
aω0 ; . . . ; aωN−1

]
∈ RN ,

X =
[
xT

0 ; . . . ; xT
N−1

]
∈ RN×nd

}
,

(3-1)

with input data batch X in which x =
[
τ, δ, vx, vy, ω

]T
. And ax, ay and aω are vectors

containing the longitudinal, lateral, and yaw acceleration target values, respectively. Then
for each batch iteration within one epoch a mini-batch of data of size Nb < N is initialized,

Dbatch =
{

ax = ax0:(Nb−1) ,

ay = ay0:(Nb−1) ,

aω = aω0:(Nb−1) ,

X =
[
τ 0:(Nb−1) , δ0:(Nb−1) , vx0:(Nb−1) , vy0:(Nb−1) , ω0:(Nb−1)

]
Nb×nd

}
,

(3-2)

with ax ∈ RNb the mini-batch of longitudinal acceleration target values, ay ∈ RNb the mini-
batch of lateral acceleration target values, aω ∈ RNb the mini-batch of angular acceleration
target values, and X ∈ RNb×nd the mini-batch of input training data.

Followingly, the algorithm uses the mini-batch of input training data to evaluate the GP
models, from which it derives the mean and covariance matrix for each acceleration dimension.
The covariance is then used in the optimization function L (the loss function defined as the
log marginal likelihood), to optimize the kernel parameters and inducing points and labels.

For the longitudinal acceleration,

ax = N (ax, Kax) with

ax =


ax0

ax1
...

axNb−1

 ∈ RNb , Kax =


σax

0,0 σax
0,1 . . . σax

0,(Nb−1)

σax
1,0 σax

1,1 . . . σax
1,(Nb−1)

...
... . . . ...

σax
(Nb−1),0

σax
(Nb−1),1

. . . σax
(Nb−1),(Nb−1)

 ∈ RNb×Nb ,
(3-3)

θ+
x ← argminθ L(ax, Kax , θx) (3-4)

For the lateral acceleration,

ay = N (ay, Kay ) with

ay =


ay0

ay1
...

ayNb−1

 ∈ RNb , Kay =


σay

0,0 σay
0,1 . . . σay

0,(Nb−1)

σay
1,0 σay

1,1 . . . σay
1,(Nb−1)

...
... . . . ...

σay
(Nb−1),0

σay
(Nb−1),1

. . . σay
(Nb−1),(Nb−1)

 ∈ RNb×Nb ,
(3-5)
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θ+
y ← argminθ L(ay, Kay , θy) (3-6)

For the angular acceleration,

aω = N (aω, Kaω ) with

aω =


aω0

ax1
...

aωNb−1

 ∈ RNb , Kaω =


σaω

0,0 σaω
0,1 . . . σaω

0,(Nb−1)

σaω
1,0 σaω

1,1 . . . σaω
1,(Nb−1)

...
... . . . ...

σaω
(Nb−1),0

σaω
(Nb−1),1

. . . σaω
(Nb−1),(Nb−1)

 ∈ RNb×Nb ,
(3-7)

θ+
ω ← argminθ L(aω, Kaω , θω) (3-8)

Equations (3-2)-(3-8) are executed for data batches. Upon processing all mini-batches of
input data, the algorithm progresses to the subsequent epoch, repeating the whole procedure
again, etc.

3-2 Multi-Step Gaussian Process Model Training

Before applying the multi-step training framework to the full model, the hypothesis was
initially tested on a simple one-dimensional system with one input and one output variable.
This initial test was conducted to understand the effects and potential benefits of employing a
multi-step training approach. This section explores how adjusting the training methodology
could enhance the predictive capabilities of Gaussian Processes (GPs). For clarity, a GP that
is trained under a multi-step training framework was referred to as a MSGP.

The evaluation of the method focused on several key metrics: accuracy of long-term pre-
dictions, variance reduction, training duration, and robustness. Additionally, the changes in
the internal model, specifically the kernel function, were analyzed under different training
frameworks. By testing the proposed method on a simple example first, the study aimed to
identify the enhancements brought about by the multi-step training framework.

3-2-1 A one-dimensional Gaussian Process model

The simple dynamic system for testing the different training strategies is the robot from Fig.
3-1 rolling out from an initial velocity to a standstill due to friction. Its velocity is described
by

v(k + 1) = v(k) + ∆v(k) , (3-9)

where ∆v(k) is the decrease in velocity at each time interval, v(k) is the velocity at the current
time step and v(k + 1) is the velocity at the next time step.
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Figure 3-2: Experimental data illustrating the nonlinear velocity decay of a 1:10 scale car-like
robot when it is decelerating from an initial velocity to a stand-still, showcasing faster velocity
reduction in the initial stages followed by a slower decrease towards the end.

Data preparation

The goal was to learn a GP model capable of predicting the decrease in velocity for a given
velocity. Data from the robot decelerating from various initial velocities to a standstill solely
through rolling out due to friction (i.e. without the use of brakes), was used for training (Fig.
3-2). To generate the target values y, representing velocity decrements for each time step,
the original velocity vector was shifted forward by one step, and then subtracting the original
velocity vector from the shifted version. The resulting vector, which represents the velocity
decrement for each time step, along with the original velocity data vector, together form the
dataset D

D =
{

y = [∆v0; . . . ; ∆vN−1] ∈ RN ,
X = [v0; . . . ; vN−1] ∈ RN} , (3-10)

in which X denotes the input data and y the target values. Note that X is not a matrix
but a vector of input training data, but a capital letter is used to remain consistent with the
rest of the report. The dataset was used to train a GP that models the relationship between
velocity and velocity change f : v → ∆v with input velocity v ∈ R and target values velocity
change ∆v ∈ R:

∆v = N (m(X), Σ(X)) . (3-11)

This GP model serves as a baseline comparison for the proposed MSGP training framework.

To assess the GP model’s predictive capability over future time steps later on, vectors for
two-step ∆v2 and ten-step ahead velocity decrements ∆v10 were constructed. This involved
shifting the initial velocity data forward by two and ten steps and subtracting the original
velocity data from it to create velocity decrement vectors. Due to shifting the velocity vectors
forward, the empty vector elements at the end are filled with zeros, denoting that the robot
car has come to a standstill. Note that the final values of the velocity decrement vectors,
especially in the ten-step ahead case (∆v10), often reach zero prematurely. This leads to
a large part of the ∆v10 vector being filled with zeros, reflecting that no further velocity
reduction occurs once the robot car stops. Therefore, this limitation prevents the model from
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providing meaningful ten-step velocity decrements for low initial velocities. As a result, the
data visualizations in Fig. 3-3 and 3-4 only include mappings from initial velocities of 1 m/s
or greater.

Sequential GP evaluation for future velocity prediction

To make future predictions using the trained GP model, the GP is evaluated at input ve-
locities X0 = [v0, v1, . . . , vN−1]T to obtain the change in velocity at time step k: ∆v0 =
[∆v0, ∆v1, . . . , ∆vN−1]T . These velocity changes are then added to the current velocities v0
to obtain the velocities at the next time step X1 = [v1, v2, . . . , vN ]T . This process enables sub-
sequent predictions of velocity decreases and can be repeated until predictions for velocities
up to a desired number of steps ahead are made:

v
k+1 = v

k
+ ∆vkv

k+1
...

v
N+k

 =

 v
k

...
v

N+k−1

+

 ∆v
k

...
∆v

N+k−1

 ∀k ∈ [0, . . . , kend)
(3-12)

After preparing the data and defining how the trained GP models can be used to make
sequential future predictions of future velocities, the next step is examining how different
training methodologies can affect the predictive capabilities of the GP models.

Standard GP model training

To obtain a baseline GP model, it is trained using the standard framework (which is the
framework as described in Section 3-1 but only for one input feature and one output dimen-
sion). The training algorithm uses the input training data to evaluate the GP at these data
points, from which it derives the mean and covariance matrix:

∆v = N
(
∆v, K

)
. (3-13)

The covariance is then used in the optimization function L (log marginal likelihood) to opti-
mize the kernel parameters and inducing points and labels, which are represented by param-
eter vector θ

θ+ ← argminθ L(∆v, K, θ) . (3-14)

This procedure is repeated across a predetermined number of training cycles until the model
adequately fits the data.

GP models trained using the standard framework are typically optimized for predicting short-
term dynamics. This is evidenced in Fig. 3-3, which demonstrates that while the GP model
accurately predicts immediate velocity reductions (∆v1 and ∆v2), it tends to overestimate
decreases over longer time steps (∆v10). Additionally, the overestimation is visually depicted
by the predicted mean velocities (gray line) ending before the actual data (blue line), indicat-
ing a more rapid velocity reduction than what occurs in reality. The experimental data (Fig.
3-2) show that the robot car’s velocity decreases in a slightly nonlinear manner, characterized
by a quicker initial decrease and a slower reduction towards the end. This pattern often
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results from nonlinear factors such as uneven ground contact, air resistance, and nonlinear
friction between the gears and electric motor, which have a more pronounced effect at higher
speeds. The tendency of the GP to overpredict velocity decrease can be traced back to its
training approach in which it has only learned to map current velocities to immediate velocity
changes, thereby not learning the diminished rate of decrease at further (here: lower) veloci-
ties. Consequently, using a standard GP model to predict long-term future dynamics results
in inaccurate long-term predictions. Using a standard GP model for making predictions of
long-term future dynamics will therefore lead to erroneous long-term predictions, as evident
from Fig. 3-3. This limitation highlights the challenges of using standard GP models for long-
term predictions in applications such as Model Predictive Control (MPC), which depend on
accurate predictions of future dynamics. Such challenges emphasize the need for developing
new training methods designed to improve the GP’s multi-step predictive accuracy and meet
the MPC demands more effectively.

Figure 3-3: Predicted velocity reductions over 1 time step ∆v1 (first column), 2 time steps ∆v2
(second column), and 10 time steps ∆v10 (third column), predicted by the GP model trained
under the standard training framework. While short-term forecasts align closely with the actual
data, far future predictions display overconfident velocity reductions.

Multi-Step GP model training

The multi-step ahead training method improves on the standard one-step ahead training
framework by using the GP to predict multiple future steps, effectively performing “in-
training” simulations of future velocities. This approach involves using the GP to generate
simulated future velocities based on its currently learned predictive capabilities. These pre-
dictions are then compared with the actual future observations based on which adjustments
are made to the kernel hyperparameters and inducing points. This iterative process is carried
out across epochs, with each set of simulated future predictions based on the increasingly
refined model from previous iterations until an adequate model fit has been reached. The
outline of this training strategy is as follows. In each training cycle, the future velocity is
simulated by advancing the mean velocity kpred steps (here kpred = 2) through sequential
“imaginary” GP evaluations. The training algorithm uses the input training data to evaluate
the GP at these data points, from which it derives the mean and covariance matrix:

∆vk = N
(
∆vk, Kk

)
. (3-15)

By summing the predicted mean velocity decrements to the current velocity, the velocity at
the next time step can be obtained as

v̂k+1 = v̂k + ∆vk ∀k ∈ {0, . . . , kpred − 1} . (3-16)
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This process of sequentially evaluating the Gaussian Process (GP) and updating velocity
continues until the simulated velocity reduction reaches the predetermined horizon, denoted
as k = kpred. Concurrently, the covariance matrix is also advanced. Rather than using the
covariance matrix directly as predicted by the GP at step k, it is revised to incorporate prior
uncertainties. To keep computations efficient and to ensure the covariance matrices remain
positive definite — a prerequisite for the solver — it is assumed that the matrices from
consecutive steps k−1 and k are independent, such that they can be summed up:

Kk = K(Xk, Xk)←K(Xk−1, Xk−1) + K(Xk, Xk) ∀k ∈ {0, . . . , kpred − 1} . (3-17)

Given the short forward simulation horizon (kpred = 2), this simplification is expected to
introduce only a minor error. Moreover, this method is guaranteed to function, as it is
supported by the properties of matrix operations. Specifically, the sum of two symmetric
positive definite matrices always yields another positive definite matrix. This result holds
as the squared exponential kernel function (used here to construct the covariance matrix),
always produces positive definite matrices [5]. This updated covariance is then used in the
optimization function L (log marginal likelihood), along with the forward shifted target values
[∆v]\0:kpred

to optimize the kernel parameters and inducing points and labels, which are
represented by parameter vector θ

θ+ ← argminθ L([∆v]\0:kpred
, Kk, θ) . (3-18)

Fig. 3-4 shows that the MSGP model trained under the proposed framework can effectively
predict both near-term (∆v1 and ∆v2) and long-term velocity reductions (∆v10). Table
3-1 further highlights the effectiveness of this newly trained model, which achieves a 44%
decrease in RMSE and a 50% decrease in MAE, along with a 29% reduction in variance. These
improvements can be attributed to key adjustments in the internal model: the kernel function.
An increase in the kernel lengthscale from 1.29 to 1.66 indicates a stronger correlation among
more distant points, contributing to a smoother predictive function. Moreover, the output
scales reduced from 0.32 to 0.25, suggesting a decreased reach of the function, making its
sensitivity to inputs more mild. This recalibration helps prevent overestimations and enhances
the accuracy of predictions over long horizons.

Figure 3-4: Predicted velocity reductions over 1 time step ∆v1 (first column), 2 time steps ∆v2
(second column), and 10 time steps ∆v10 (third column), predicted by the MSGP model. Both
short-term and far-future predictions now align closely with the actual data.

It is observed that the dynamics have stabilized over the long term, and the adjustments to
the kernel parameters have rendered the model less responsive. This change can be linked to
the new behavior observed in the near-term dynamics. Specifically, an analysis of the velocity
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Table 3-1: Comparison of various MSGP training framework benchmarked against the standard
GP training framework (baseline). Metrics include Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), Average variance (Avg Var) (and their relative differences w.r.t the baseline
method), computation time, and the positive definiteness of the covariance matrix.

Metrics GP model MSGP model
RMSE [m/s] 0.4214 0.2372
MAE [m/s] 0.3946 0.1969
Avg Var [(m/s)2] 0.0151 0.0107
∆% RMSE* [%] - −44
∆% MAE* [%] - −50
∆% Avg Var* [%] - −29
kernel length scale ℓ 1.29 1.66
kernel output scale σf 0.32 0.25
Training time [s] 0.17 0.30
Positive definiteness K guaranteed guaranteed
∗The percentual change ∆% is computed w.r.t. the standard GP training method
(baseline).

reduction over one time step ∆v1 in Fig. 3-5 shows that the retuned MSGP model adopts a
slightly more conservative approach in its near-term predictions compared to the previously
overly sensitive GP model, thereby maintaining stability over the long term.

Figure 3-5: A close-up comparison of predicted and actual velocity decreases over 1 time step
∆v1. The blue line and shaded area represent the mean and uncertainty of predictions from the
GP trained under the standard framework. The green line and green shaded area show predictions
from the MSGP model. The blue dots denote the actual velocity reduction over one time step.
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3-2-2 Multi-Step Gaussian Process Model Training Of The Full Dynamics

Section 3-2-1 illustrated using a simple 1D example how standard GP training encountered
issues with long-term prediction accuracy. These issues were effectively mitigated by adopting
a multi-step ahead training strategy, which involves implicitly tuning the kernel hyperparame-
ters to accommodate for long-term dynamics, as hypothesized. The approach is now extended
to model the complete vehicle dynamics, utilizing the multi-step GP framework to refine the
GP acceleration models for the robot. This section provides a detailed mathematical descrip-
tion of the proposed MSGP training framework for the three GP models that govern the full
robot dynamics.

Leveraging SVGP to reduce computational load, the algorithm operates over various data
batches within each epoch. Consider a selection of N input-output data pairs forming the
data set,

D =
{

ax =
[
ax0 ; . . . ; axN−1

]
∈ RN ,

ay =
[
ay0 ; . . . ; ayN−1

]
∈ RN ,

aω =
[
aω0 ; . . . ; aωN−1

]
∈ RN ,

X =
[
xT

0 ; . . . ; xT
N−1

]
∈ RN×nd

}
,

(3-19)

with input data batch X in which x =
[
τ, δ, vx, vy, ω

]T
. And ax, ay and aω are vectors

containing the longitudinal, lateral, and yaw acceleration target values, respectively. Then
for each batch iteration within one epoch a mini-batch of data of size Nb < N is initialized,

Dbatch =
{

axk
= ax0:(Nb−1) ,

ayk
= ay0:(Nb−1) ,

aωk
= aω0:(Nb−1) ,

X
k

=
[
τ 0:(Nb−1) , δ0:(Nb−1) , vx0:(Nb−1) , vy0:(Nb−1) , ω0:(Nb−1)

]
Nb×nd

}
,

(3-20)

with axk
∈ RNb are the longitudinal acceleration target values, ayk

∈ RNb the lateral acceler-
ation target values, aωk

∈ RNb the angular acceleration target values, and Xk ∈ RNb×nd the
input training data.

Followingly, the previous covariance matrix is initialized as a zero matrix,

Kax

k−1 = 0 ∈ RNb×Nb

Kay

k−1 = 0 ∈ RNb×Nb

Kaω

k−1 = 0 ∈ RNb×Nb .
(3-21)

And the velocity estimates are initialized as the velocities given in the training input matrix
Xk,

v̂xk
= [Xk]·,2 ∈ RNb

v̂yk
= [Xk]·,3 ∈ RNb

ω̂
k

= [Xk]·,4 ∈ RNb .
(3-22)
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When the velocity input data vectors and covariance matrix have been initialized, the in-
training simulation can start. Here we iterate through the equations (3-23) till (3-34) for k
from 0 up to a desired future steps ahead kpred. The mini-batch of input training data is used
to evaluate the GP models, from which it derives the main and covariance matrix for each
dimension of acceleration. For the longitudinal acceleration,

axk
= N

(
axk

, Kax

k

)
with

axk
=


axk

axk+1
...

axNb−1

 ∈ RNb−k, Kax

k
=


σax

k,k
σax

k,k+1 . . . σax
k,(Nb−1)

σax
k+1,k

σax
k+1,k+1 . . . σax

k+1,(Nb−1)
...

... . . . ...
σay

(Nb−1),k
σay

(Nb−1),k+1
. . . σay

(Nb−1),(Nb−1)



∣∣∣∣∣∣∣∣∣∣∣
k

∈ R(Nb−k)×(Nb−k)

(3-23)

For the lateral acceleration,

ayk
= N

(
ayk

, Kay

k

)
with

ayk
=


ayk

ayk+1
...

ayNb−1

 ∈ RNb−k, Kay

k
=


σay

k,k
σay

k,k+1 . . . σay
k,(Nb−1)

σay
k+1,k

σay
k+1,k+1 . . . σay

k+1,(Nb−1)
...

... . . . ...
σay

(Nb−1),k
σay

(Nb−1),k+1
. . . σay

(Nb−1),(Nb−1)



∣∣∣∣∣∣∣∣∣∣∣
k

∈ R(Nb−k)×(Nb−k)

(3-24)

For the angular acceleration,

aωk
= N

(
aωk

, Kaω

k

)
with

aωk
=


axk

aωk+1
...

aωNb−1

 ∈ RNb−k, Kaω

k
=


σaω

k,k
σaω

k,k+1 . . . σaω
k,(Nb−1)

σaω
k+1,k

σaω
k+1,k+1 . . . σaω

k+1,(Nb−1)
...

... . . . ...
σaω

(Nb−1),k
σaω

(Nb−1),k+1
. . . σaω

(Nb−1),(Nb−1)



∣∣∣∣∣∣∣∣∣∣∣
k

∈ R(Nb−k)×(Nb−k)

(3-25)

Followingly, the covariance matrices for all acceleration dimensions are compounded by sum-
mation. If k is equal to zero, the covariance matrices will be updated according to (3-26).

Kax

k
∈ RNb×Nb ←Kax

k−1 + Kax

k

Kay

k
∈ RNb×Nb ←Kay

k−1 + Kay

k

Kaω

k
∈ RNb×Nb ←Kaω

k−1 + Kaω

k

(3-26)

If k is larger than 0, the covariance matrix for each GP model is updated according to (3-27).
To maintain correct dimensionality with the training input data matrix X

k
, the first row

and column of the updated covariance are discarded. The covariance matrix update for the
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longitudinal acceleration,

Kax

k
∈ R(Nb−k)×(Nb−k) ←

[
Kax

k−1

]
\0,\0

+ Kax

k
=

σax
k+1,k+1 σax

k+1,k+2 . . . σax
k+1,(Nb−1)

σax
k+2,k+1 σax

k+2,k+2 . . . σax
k+2,(Nb−1)

...
... . . . ...

σax
(Nb−1),k+1

σax
(Nb−1),k+2

. . . σax
(Nb−1),(Nb−1)



∣∣∣∣∣∣∣∣∣∣∣
k−1

+


σax

k+1,k+1 σax
k+1,k+2 . . . σax

k+1,(Nb−1)

σax
k+2,k+1 σax

k+2,k+2 . . . σax
k+1,(Nb−1)

...
... . . . ...

σax
(Nb−1),k+1

σax
(Nb−1),k+2

. . . σax
(Nb−1),(Nb−1)



∣∣∣∣∣∣∣∣∣∣∣
k

(3-27)

The covariance matrix update for the lateral acceleration,

Kay ∈ R(Nb−k)×(Nb−k) ←
[
Kay

k−1

]
\0,\0

+ Kay

k
=

σay
k+1,k+1 σay

k+1,k+2 . . . σay
k+1,(Nb−1)

σay
k+2,k+1 σay

k+2,k+2 . . . σay
k+2,(Nb−1)

...
... . . . ...

σay
(Nb−1),k+1

σay
(Nb−1),k+2

. . . σay
(Nb−1),(Nb−1)



∣∣∣∣∣∣∣∣∣∣∣
k−1

+


σay

k+1,k+1 σay
k+1,k+2 . . . σay

k+1,(Nb−1)

σay
k+2,k+1 σay

k+2,k+2 . . . σay
k+1,(Nb−1)

...
... . . . ...

σay
(Nb−1),k+1

σay
(Nb−1),k+2

. . . σay
(Nb−1),(Nb−1)



∣∣∣∣∣∣∣∣∣∣∣
k

(3-28)

The covariance matrix update for the angular acceleration,

Kaω

k
∈ R(Nb−k)×(Nb−k) ←

[
Kaω

k−1

]
\0,\0

+ Kaω

k
=

σaω
k+1,k+1 σaω

k+1,k+2 . . . σaω
k+1,(Nb−1)

σaω
k+2,k+1 σaω

k+2,k+2 . . . σaω
k+2,(Nb−1)

...
... . . . ...

σaω
(Nb−1),k+1

σaω
(Nb−1),k+2

. . . σaω
(Nb−1),(Nb−1)



∣∣∣∣∣∣∣∣∣∣∣
k−1

+


σaω

k+1,k+1 σaω
k+1,k+2 . . . σaω

k+1,(Nb−1)

σaω
k+2,k+1 σaω

k+2,k+2 . . . σaω
k+1,(Nb−1)

...
... . . . ...

σaω
(Nb−1),k+1

σaω
(Nb−1),k+2

. . . σaω
(Nb−1),(Nb−1)



∣∣∣∣∣∣∣∣∣∣∣
k

(3-29)

Using the mean accelerations, the one-step ahead velocity states v̂k+1 can be predicted by
multiplying the predicted mean acceleration with time step ∆t and adding it to the current
velocity,

v̂xk+1 = v̂xk
+ axk

·∆t
v̂xk+1

...
v̂xNb

 =


v̂xk

...
v̂xNb−1

+


axk

...
axNb−1

 ·∆t ∈ RNb−k
(3-30)

v̂yk+1 = v̂yk
+ ayk

·∆t
v̂yk+1

...
v̂yNb

 =


v̂yk

...
v̂yNb−1

+


ayk

...
ayNb−1

 ·∆t ∈ RNb−k
(3-31)
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ω̂
k+1 = ω̂

k
+ aωk

·∆t
ω̂

k+1
...

ω̂Nb

 =


ω̂

k

...
ω̂Nb−1

+


aωk

...
aωNb−1

 ·∆t ∈ RNb−k
(3-32)

The one-step-ahead simulated velocity states partially form the new inputs for the next GP
evaluation. The throttle τ and steering δ input vectors are also advanced from k to k + 1
by discarding their first values to align them with the updated velocity states. Because
the control input vectors are now reduced by one element and we lack control input data
for indices beyond the existing data set or data batch size, it is necessary to omit the last
elements of the simulated velocities to ensure that the dimensions of the input data matrix
remain consistent.

τ
k+1 ←

[
τ

k+1

]
\0 ∈ RNb−1−k

δ
k+1 ←

[
δ

k+1

]
\0 ∈ RNb−1−k

v̂xk+1 ←
[
vxk+1

]
\−1 ∈ RNb−1−k

v̂yk+1 ←
[
vyk+1

]
\−1 ∈ RNb−1−k

ω̂
k+1 ←

[
ω

k+1

]
\−1 ∈ RNb−1−k

(3-33)

Now that the velocity states and control inputs have been advanced from k to k + 1 and have
been sized properly, the updated input data matrix X

k+1 for the next GP evaluation can be
reconstructed,

X
k+1 =


τ

k+1 δ
k+1 v̂xk+1 v̂yk+1 ω̂

k+1
...

...
...

...
...

τNb−1 δNb−1 v̂xNb−1 v̂yNb−1 ω̂Nb−1

 ∈ R(Nb−1−k)×nd (3-34)

Note that the velocity state variables are simulated future velocities, derived from the accel-
eration outputs provided by the (GPs). In this way, we employ the GP at its current level of
understanding (referred to as the current epoch) to predict future dynamics during training.
This simulation process is repeated several cycles until a desired kpred horizon is reached.
Equations (3-23) till (3-34) are repeated until the mean and covariance have been propagated
the desired number of future steps ahead, i.e. k = kpred − 1.

When the dynamics have been propagated several steps forward, the kstep − 1 covariance
matrices will be fed into the optimization function along with the target values advanced the
same number of k-steps ahead such that they are aligned with the simulated future dynamics

ax ← [ax]\(0:kpred−1)

ay ← [ay]\(0:kpred−1)

aω ← [aω]\(0:kpred−1)

(3-35)
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The kernel hyperparameters and inducing points are then optimized according to

θ+
x ← argminθ L

(
ax, Kax

kpred−1 , θx
)

θ+
y ← argminθ L(ay, Kay

kpred−1 , θy)

θ+
ω ← argminθ L(aω, Kaω

kpred−1 , θω) ,

(3-36)

and the process repeats for the next data batch.
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Chapter 4

Supporting Information on Results:
Modeling

This section provides supplementary information on the outcomes of fitting the Gaussian
Process (GP) model, discussing the specific configurations employed during training and the
criteria used for method validation and evaluation. Section 4-1 presents the training results
under both the standard GP model training framework and the proposed GP model training
framework, using a small dataset first for easy visualization and comparison of the methods.
Meanwhile, Section 4-2 details the training outcomes on the complete dataset, which have
been used for the models in the Model Predictive Contouring Control (MPCC) controller
simulations.

4-1 Small Dataset GP training insights

In this chapter, the data sections are presented to highlight the distinctions among the various
training methods. The plots showcase real recorded data of longitudinal, lateral, and angular
velocities, depicted by colored lines in blue, orange, and purple, respectively. Subsequently,
GP models are employed to predict long-term velocities, initialized from different points
along the recorded data. The GP utilizes the state/action data point at which it is initialized
(longitudinal, lateral, angular velocity, throttle, and steering input) to predict an acceleration.
The predicted acceleration is then multiplied by the time step, ∆t = 0.1 s, to estimate the
subsequent velocity state. This is done for all acceleration dimensions. The models are trained
on 120 seconds of data, which is divided into a 70% training set and a 30% validation set. The
GP posterior is approximated using Stochastic Variational Gaussian Process (SVGP) with
Nind = 50 inducing points. The implementation and training have been done using Python’s
GPyTorch library.

The evaluation of the methods was based on several metrics:

• Root Mean Square Error (RMSE) of the long-term velocity predictions
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• Mean Absolute Error (MAE) of the long-term velocity predictions
• Average variance (Avg Var) of the long-term velocity predictions
• Training time
• Number of training iterations (epochs)

Fig. 4-1a shows the velocity trajectory predictions made using the accelerations predicted
by the GP models trained under the standard framework as described in Section 3-1 and
integrated using forward Euler method. Colored lines denote experimental velocity data
recorded over time: longitudinal velocity (blue), lateral velocity (orange), and angular velocity
(purple). Gray lines illustrate the mean velocity predictions, initialized at various points
along the recorded data. The velocity trajectories based on this GP model often go out-of-
distribution, denoted by cases where the predictions rapidly diverge from where they were
initialized and eventually flatten out. Note that even though time is indicated on the x-axis,
it is important to stress that the learned dynamics do not depend on time, as it is not an
input feature; the inputs are strictly the velocity states and control inputs. To assess the
generalization capabilities of the models, the training methods were first tested on a training
set, comprising of 70% of the data. Additionally, a validation set comprising 30% of the data,
which was not used during the training phase, was used to evaluate the performance of the
trained Gaussian Process (GP) models on new, unseen data points. Fig. 4-1b further confirms
that the GP model trained under the standard training framework is poor at making stable
long-term predictions. Table 4-1 shows the training time, number of training cycles and the
metrics by which the long-term velocity trajectory predictions have been assessed.

(a) Training data set (b) Validation data set

Figure 4-1: Npred = 30 steps ahead long-term predictions of velocity trajectories based on the
GP model that was trained under the standard training framework. 400 epochs.

To demonstrate that the GP trained using the standard framework has inherent limitations
in making stable long-term predictions we also conducted training with fewer epochs, with
the aim to demonstrate that the limitations observed in the previous model were not simply
a result of overfitting or underfitting. As shown in Fig. 4-2a and 4-2b when the training was
limited to 300 epochs, the long-term prediction performance further deteriorated.
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Table 4-1: Assessment of long-term predictions of the longitudinal vx, lateral vy and angular ω
velocities by the Gaussian Process (GP) model trained under the standard framework.

Metrics Longitudinal Lateral Angular
RMSE 0.1733 0.1022 0.4499
MAE 0.1083 0.0534 0.2183
Avg. Var 0.6796e-3 0.3465e-3 2.334e-3
Training time [min] 1:12
Epochs 400

(a) Training data set (b) Test data set

Figure 4-2: Npred = 30 steps ahead long-term predictions of velocity trajectories based on the
GP model that was trained under the standard training framework. 300 epochs.

Figure 4-3a illustrates the velocity trajectories predicted by the MSGP models, as trained
according to the method outlined in Section 3-2-2. Unlike the standard GP models which
tend to deviate from the recorded data, the MSGP model’s predictions closely align with the
actual data, thus demonstrating more stable long-term predictions with significantly reduced
uncertainty. Table 4-2 presents the training duration, number of training cycles, and the met-
rics used to evaluate the long-term velocity trajectory predictions. Both the mean prediction
error and the associated uncertainties have decreased. To verify the efficacy of the proposed
training framework, the MSGP model trained under this framework has not only been tested
on the training data but also on a separate validation set (Fig. 4-3b). In contrast to the
standard GP model, which exhibited failures on both training and test datasets, the MSGP
model has successfully made stable long-term velocity trajectory predictions using unseen
data, indicating effective generalization.

Additionally, the data indicates an increase in computation time, attributable to the multiple
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(a) Training data set (b) Test data set

Figure 4-3: Npred = 30 steps ahead long-term predictions of velocity trajectories based on the
MSGP model. 250 epochs.

GP evaluations required during the training phase. Nevertheless, the number of epochs has
decreased, indicating that fewer optimization steps are necessary to identify the optimal kernel
hyperparameters and inducing points. This suggests that under the proposed framework, the
model can learn more efficiently and effectively from the same amount of data.

Table 4-2: Assessment of long-term predictions of the longitudinal vx, lateral vy and angular ω
velocities by the MSGP model trained under the proposed framework.

Metrics Longitudinal Lateral Angular
RMSE 0.1244 0.0293 0.2519
MAE 0.0880 0.0165 0.1656
Avg Var 4.0740e-5 1.1995e-5 4.6023e-4
∆% RMSE* [%] −28 −71 −44
∆% MAE* [%] −11 −36 −12
∆% Avg Var* [%] −94 −97 −80
Training time [min] 3:57
Epochs 250
Metrics used are root mean square error (RMSE), mean absolute error
(MAE), average variance (Avg Var).
∗The percentual change ∆% is computed w.r.t. the standard GP training
method.
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4-2 GP model training for controller simulations

This section uses the same training approaches as described in the previous section, but
applies it to a larger data set consisting of 360 seconds of data split in a 80% training and
20% validation data set. The GP posterior is approximated using SVGP with Nind = 200
inducing points. These trained models based on larger datasets are used for the controller
simulations, which will be further elaborated on in Chapter 5.

Fig. 4-4 shows the velocity trajectory estimated using the predicted accelerations by the GP
models trained under the standard framework as described in Section 3-1. It can be seen
that the long-term predictions often become unstable and go out of distribution. Table 4-3
specifies the training time, number of training cycles and the metrics by which the long-term
velocity trajectory predictions have been assessed.

Figure 4-4: Long-term velocity trajectory prediction using standard GP model (tested on training
data)

Table 4-3: Assessment of long-term predictions of the longitudinal vx, lateral vy and angular ω
velocities by the Gaussian Process (GP) model trained under the standard framework. Computa-
tions are based on velocity trajectory predictions on the training dataset.

Metrics Longitudinal Lateral Angular
RMSE 0.1613 0.1741 0.8924
MAE 0.0954 0.0833 0.4508
Avg Var 0.0003 0.0013 0.0261
Training time [min] 4:56
Epochs 400
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Fig. 4-5 shows the predictions on new, unseen data points (the validation dataset), further
highlighting that the long-term velocity predictions become unstable and go out of distribu-
tion.

Figure 4-5: Long-term velocity trajectory prediction using standard GP model (tested on valida-
tion data)

Fig. 4-6 illustrates the velocity trajectory estimations derived from the predicted accelerations
by the MSGP models, which were developed under the training framework outlined in Section
3-2-2. In contrast to the standard GP models, which often drift away from the actual data, the
predictions from the MSGP models closely follow the true data, showing a more consistent
prediction of dynamics over time with reduced uncertainty. The generalization ability of
the MSGP models was tested on a validation dataset, confirming that their capability to
predict stable long-term velocity trajectories also applies to unseen data (Fig. 4-7). Table 4-4
highlights the advantages of MSGP models over standard GP models in terms of specified
metrics. Even though, the training time has tripled (an observation consistent with the shorter
data excerpts) the number of training cycles required has lowered from 400 to 250 epochs.
This indicates that the models trained under the proposed framework learn the underlying
dynamics more quickly. It is important to note that despite the increase in training time,
both the GP and MSGP models maintain the same level of complexity, ensuring no additional
complexity at controller runtime.
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Figure 4-6: Long-term velocity trajectory prediction using MSGP model (tested on training data)

Table 4-4: Assessment of long-term predictions of the longitudinal vx, lateral vy and angular ω
velocities by the MSGP model trained under the proposed framework.

Metrics Longitudinal Lateral Angular
RMSE 0.1284 0.0349 0.2724
MAE 0.0903 0.0225 0.1694
Avg Var 4.5820e-5 7.4750e-6 0.0003
∆% RMSE* [%] −20 −79 −69
∆% MAE* [%] −3 −35 −31
∆% Avg Var* [%] −85 −99 −98
Training time [min] 15:39
Epochs 250
Metrics used are root mean square error (RMSE), mean absolute error
(MAE), average variance (Avg Var).
∗The percentual change ∆% is computed w.r.t. the standard GP training
method.
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Figure 4-7: Long-term velocity trajectory prediction using MSGP model (tested on validation
data)

Table 4-5: Assessment of long-term predictions of the longitudinal vx, lateral vy and angular ω
velocities by the MSGP model trained under the standard framework. (test data)

Metrics Longitudinal Lateral Angular
∆% RMSE* [%] −26 −68 −61
∆% MAE* [%] −22 −28 −33
∆% Avg Var* [%] −40 −90 −95
Metrics used are root mean square error (RMSE), mean absolute error
(MAE), average variance (Avg Var).
∗The percentual change ∆% is computed w.r.t. the standard GP training
method.
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Supporting Information on Results:
Control

This chapter explores the capabilities and limitations of the Gaussian Process (GP) and Multi-
Step Gaussian Process (MSGP) model in an Model Predictive Contouring Control (MPCC)
controller.

5-1 Simulation setup

The controller and simulation setup used are based on the works of [15]. The robot in the
simulation environment is represented by a kinematic bicycle model,

v̇x = Fx

m
ẋ = vx cos(θ)
ẏ = vx sin(θ)

θ̇ = vx tan(δ)
L

,

(5-1)

in which the variables (x, y, θ) represent the pose of the robot, m denotes its mass, and Fx

the force exerted by the motor. The term vx corresponds to the robot’s longitudinal velocity,
while δ represents the steering angle of the robot’s front wheels. Lastly, the wheelbase L
denotes the distance between the front and rear axles of the robot. [15].

The MPCC cost function is defined as (5-2). In this MPCC formulation, s is the path along
which the robot progresses, ṡ is the robot’s velocity along this path, and ṡref is the reference
velocity in m/s. U is the set that forms the constraints on the control inputs. Lane boundaries
are defined as soft constraints on the normalized contouring error ec using a slack variable ε.
q1, q2 are weights on the velocity and contouring error, respectively. Ru = diag(r1, r2) is a
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diagonal weighting matrix on the control inputs. p1 is the weight on the slack variable ε.

min
ut+k∈U

N−1∑
k=0

q1 · (ṡt+k − ṡref )2 + q2 · (ec
t+k)2 + uT

t+kRuut+k + p1 · ε2

s.t. x0 = x(0)
s0 = s(0)
xt+k+1 = f(xt+k, ut+k)
st+k+1 = f(st+k)
ut+k ∈ U
0 ≤ st+k ≤ L

−(1 + ε) ≤ ec
t+k

lwidth
2
≤ 1 + ε

∀k ∈ [0, N − 1] .

(5-2)

The cost function is adaptable to different control objectives, with varying priorities based
on predefined weights. This flexibility allows for tuning specific dynamic behaviors, such
as precise velocity tracking and minimizing lateral error for conservative driving, as well as
more aggressive maneuvers where the same objectives would be less prioritized. This study
aims to evaluate the models’ performance under highly aggressive conditions. To achieve
this objective, an emphasis is placed on promoting high speeds. This is accomplished by
intentionally keeping the weight assigned to the throttle input low. This strategy encourages
the controller to explore its limits and observe the response of each model in such demanding
situations. The prediction horizon of the MPCCs is set to Npred = 30. The sampling rate
is set to Ts = 0.1s, enabling the controller to predict three seconds ahead. ForcesPro [6] is
employed for solving the nonlinear optimization problem. Control commands are transmitted
at a frequency of 10 Hz via a Robot Operating System (ROS) network to control the robot
within an RViz simulation environment from [15]. The robot odometry data is returned
through the same ROS network.

To test the simulation setup’s functionality, tests were conducted using a MPCC based on a
kinematic bicycle model. The performance of the controller in velocity tracking and maintain-
ing a close distance to the path’s center was assessed by assigning higher penalties to velocity
tracking errors and deviations from the path. Table 5-1 shows the controller settings. Since
there is no discrepancy between the simulation model and the MPCC prediction model, we
anticipate precise control and tracking.

Table 5-1: Controller settings for reference tracking, target speed 1 m/s

Weights Input constraints Prediction horizon Target velocity
q1 q2 r1 r2 ¯

δ, δ̄
¯
τ, τ̄ Npred ṡref [m/s]

10 5 1 0.1 [-1, 1] [0, 0.6] 30 1.0

5-2 GP vs MSGP target velocity 1 m/s

To assess the model’s behavior under aggressive conditions, a focus is placed on achieving
high speeds by setting the throttle input’s weight low (Table 5-2). This approach pushes the
controller to its limits, allowing the observation of each model’s response in these challenging
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Figure 5-1: 1-lap tracking results (left). The grey center line represents the path reference.
The inner and outer lines denote the track boundaries. The color gradient illustrates the velocity
magnitude at each recorded vehicle position. The accelerations achieved by the MPCC over 1 lap
(right). The acceleration values are presented in m/s2 for clarity, without conversion to Gs.

Figure 5-2: Velocity tracking results of the kinematic bicycle model-based MPCC

scenarios. Fig. 5-3 shows the velocity input map along with the target velocity. This map
illustrates the longitudinal and lateral velocity data points that have been used to train the
models. Here, the target velocity is set at 1 m/s, representing the scenario with the highest
data density.

Table 5-2: GP-MPCC and MSGP-MPCC controller settings, target velocity 1 m/s

Weights Input constraints Prediction horizon Target velocity
q1 q2 r1 r2 ¯

δ, δ̄
¯
τ, τ̄ Npred ṡref [m/s]

1 1.2 1 0.1 [-1, 1] [0, 0.6] 30 1.0

Figure 5-4a demonstrates that in the most data-dense scenario, the Gaussian Process-based
Model Predictive Contouring Controller (GP-MPCC) already exhibits unstable driving be-
havior, illustrated by the wiggly paths. Conversely, Figure 5-4b reveals that the Multi-Step
Gaussian Process-based Model Predictive Contouring Controller (MSGP-MPCC) operates
confidently under identical conditions. This indicates that the model trained using the pro-
posed framework has learned the dynamics better compared to the model trained with the
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!
Figure 5-3: Velocity input map and respective target velocity of 1 m/s

(a) GP-MPCC (b) MSGP-MPCC

Figure 5-4: 1-lap tracking results of the GP-MPCC (left) and the MSGP-MPCC (right). Target
speed 1 m/s.

standard framework.

5-3 MSGP target velocity 1.3 m/s

To evaluate how well the MSGP model has improved in predicting dynamics and to further
explore its limitations, it is tested in an MPCC at progressively increasing target velocities.
This pushes the model into scenarios with less available data to observe its performance.
Only the MSGP model undergoes this testing, as it has been previously observed that the
GP model fails at the target velocity of 1 m/s where the data is least scarce. Since the target
speed has increased, the weights on the tracking errors are increased to ensure stable control.
Table 5-4 shows the remainder of the MSGP-MPCC controller settings.

Table 5-3: MSGP-MPCC controller settings, target velocity 1.3 m/s

Weights Input constraints Prediction horizon Target velocity
q1 q2 r1 r2 ¯

δ, δ̄
¯
τ, τ̄ Npred ṡref [m/s]

10 10 2 0.1 [-1, 1] [0, 0.6] 30 1.0

Despite the limited data available at higher speeds, the MSGP-MPCC model maintains sta-
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bility and avoids venturing into out-of-distribution states during extreme maneuvers. Fig.
5-5a presents the velocity input map with a target velocity of 1.3 m/s, where the available
velocity data is notably less abundant compared to the 1 m/s region. Fig. 5-5b demonstrates
that even as the robot is pushed to its limits in situations with limited training data, the
robot controlled by the MSGP-MPCC is still able to navigate the track safely. Notably,
while the GP-MPCC model already struggled in the most data-rich scenario at 1 m/s, the
MSGP-MPCC model performs effectively not only at this baseline speed but also at the more
challenging speed of 1.3 m/s, where data is scarcer.

(a) Velocity input map and respective target
velocity of 1.3 m/s (b) 1 lap tracking results of MSGP-MPCC at

target 1.3 m/s

Figure 5-5: 1 lap tracking results of the controller based on the MSGP model trained under the
proposed cascaded framework. Target velocity 1.3 m/s.

5-4 MSGP target velocity 1.5 m/s

While the GP-MPCC model exhibited instability at a moderate speed of 1 m/s, the MSGP-
MPCC managed racetrack navigation confidently at speeds of both 1 m/s and 1.3 m/s. It
only began to show erratic behavior when the speed was increased to 1.5 m/s, as depicted in
Figure 5-6b. This illustrates that the MSGP model, developed under the proposed framework,
more effectively utilizes the available data to develop a better understanding of the under-
lying dynamics. Consequently, it surpasses the GP-MPCC in more demanding scenarios by
maintaining stable behavior at higher velocities.

Table 5-4: MSGP-MPCC controller settings, target velocity 1.5 m/s

Weights Input constraints Prediction horizon Target velocity
q1 q2 r1 r2 ¯

δ, δ̄
¯
τ, τ̄ Npred ṡref [m/s]

5 10 2 0.1 [-1, 1] [0, 0.6] 30 1.0

The observation that MSGP-MPCC performance begins to decline at 1.5 m/s emphasizes
that although the proposed MSGP training framework extracts more information from data
(or we can learn the same amount from less data), data availability is still crucial for optimal
model performance, even with an advanced training framework.
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(a) Velocity input map and respective target
velocity of 1.5 m/s (b) 1 lap tracking results of MSGP-MPCC at

target 1.5 m/s

Figure 5-6: 1 lap tracking results of the controller based on the MSGP model trained under the
proposed cascaded framework. Target velocity 1.5 m/s.
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Chapter 6

Discussion

This thesis introduced a novel method for training Gaussian Process (GP) models to ac-
curately predict long-term stable vehicle dynamics, in this study: the dynamics of a 1:10
scale robot car. This chapter discusses the interpretation of the results and limitations, their
relevance to control applications, and suggests potential directions for future research.

6-1 Gaussian Process Modeling

This thesis presented a training approach for GP models, focusing on strategically handling
out-of-distribution scenarios and stabilizing long-term dynamics predictions. The hypothesis
was that refining the parameters of the kernel function would enhance the model’s capability
to capture long-term dynamics and provide accurate predictions of their respective uncer-
tainties. To address this, a Multi-Step Gaussian Process (MSGP) model training framework
was developed. The framework relies on in-training simulation of future dynamics, where
the GP acceleration output is used to derive new velocity state input estimates. These esti-
mates, along with the recorded control inputs, are used to advance the dynamics several steps
ahead, minimizing the discrepancy between the prediction and the actual target values at the
final time step. This methodology equips the GP with predictive foresight and uncertainty
quantification capabilities, making them better suited for integration with Model Predictive
Control (MPC). By employing three distinct Gaussian Processes (GPs) to model the com-
plete dynamics of the vehicle — longitudinal, lateral, and angular accelerations — the MSGP
model achieved an average reduction of 19% in long-term velocity mean prediction error and
a 90% decrease in long-term prediction variance compared to the standard GPs. Notably,
these enhancements were realized using the same dataset that trained the standard Gaussian
Process models, and the models have identical complexity. This indicates that this training
method facilitates a more profound comprehension of the underlying relationships in vehicle
dynamics.

The enhanced performance can be attributed to the retuning of the kernel hyperparameters,
which yielded the following improvements:
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• Recalibrated sensitivity By retuning the kernel parameters, MSGP models have
adapted their sensitivity to specific input features. Longer length scales yielded smoother
functions and a slightly more conservative response for immediate dynamics, ensuring
long-term stability and minimizing the risk of shooting out-of-distribution.

• Rectified coupling The MSGP has acquired an improved understanding of the level
of coupling between longitudinal and lateral dynamics. By elongating the kernel param-
eter of the lateral input features (steering, lateral, and angular velocity states) within
the longitudinal acceleration model, the framework ensures the appropriate considera-
tion of lateral dynamics, without disproportionately affecting longitudinal acceleration
predictions.

• Reduced uncertainty Now that the long-term predictions are stable and the pre-
dicted future dynamics consistently correlate with the training data, the uncertainty
reduction term in the GP’s predictive equations for the covariance is activated, leading
to a decrease in variance associated with the mean predictions.

This work addressed shortcomings in the current literature about the application of GPs in
control systems. Traditional GP applications typically aim to align nominal physics-based
models with actual system behavior by addressing residual errors. However, as identified in
research by [2], these methods may fail to yield stable long-term predictions, particularly
when GPs face out-of-distribution data points. While the literature has not directly tack-
led out-of-distribution behavior in GP-based control, there is research focused on managing
uncertainties that partly arise from unstable GP predictions. These studies often view large
uncertainties as an isolated issue, proposing specific solutions for the control phase, such as
the ancillary controllers mentioned by [13] or the truncated uncertainty propagation in [12].
In contrast, this thesis adopts a fundamentally different approach by concentrating on the
modeling stage to enhance the long-term predictive reliability of GPs through a recalibration
of kernel parameters that prevent GPs from going into data areas poorly correlated with the
training data set. This approach not only aligns predicted dynamics more closely with actual
dynamics but also substantially reduces the uncertainties associated with GP predictions.

6-2 Gaussian Process-based Control

The comparative analysis between the Multi-Step Gaussian Process-based Model Predic-
tive Contouring Controller (MSGP-MPCC) controller and Gaussian Process-based Model
Predictive Contouring Controller (GP-MPCC) highlighted the superior performance of the
MSGP-MPCC. Notably, the MSGP-MPCC excelled in reducing lap times and executing
more aggressive and coupled accelerations, while also demonstrating a high level of reliabil-
ity. Through ten consecutive simulations of the controller, the MSGP-MPCC maintained a
100% control success rate, outperforming the GP-MPCC, which had a 20% success rate due
to failures in navigating sharp turns in 80% of the simulations. Additionally, when tested
at increasingly higher speeds, the MSGP model proved its robustness at higher speeds (1.3
m/s) where the data becomes more scarce. The MSGP model only starts to exhibit erratic
behavior at 1.5 m/s, whereas the GP model staggered already at 1 m/s (where the data is
least scarce).
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6-3 Conclusion and Future Work

In conclusion, the proposed MSGP learning framework demonstrates significant improve-
ments in long-term prediction accuracy and uncertainty quantification, attributed to recali-
brated sensitivity, rebalanced coupling, and reduced uncertainty through tuning of the kernel
parameters.

This research opens up several directions for future studies. Having established a method for
training GP models to deliver accurate long-term predictions, a logical next step would be to
conduct real-life tests using the MSGP model on the actual robot with dedicated hardware to
get practical validation and insights of the proposed methodology. Additionally, the calibrated
variances could be integrated into the Model Predictive Contouring Control (MPCC) long
with the mean as a safety mechanism, such as dynamically adjusting lane boundaries or
modifying obstacle occupancy areas based on the given variance value. Furthermore, future
research could investigate the advantages of combining physics-based models with GPs, using
the proposed framework to enhance stability in error dynamics and potentially leading to
more robust modeling solutions.
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Glossary

List of Acronyms

Avg Var Average variance
GP Gaussian Process
GPs Gaussian Processes
GP-MPCC Gaussian Process-based Model Predictive Contouring Controller
MPC Model Predictive Control
MPCC Model Predictive Contouring Control
MSGP Multi-Step Gaussian Process
MSGP-MPCC Multi-Step Gaussian Process-based Model Predictive Contouring

Controller
MVN Multivariate Normal Distribution
RMSE Root Mean Square Error
MAE Mean Absolute Error
SVGP Stochastic Variational Gaussian Process
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