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 A B S T R A C T

The design of damage-tolerant aeronautical composite structures often involves thin-walled components that 
are susceptible to in-plane mixed-mode fracture. Unlike with metals, this process is complicated by the 
composites anisotropy and the lack of standardized procedures for predicting failure in notched, holed or 
cracked composites under mixed-mode loading. This study introduces a novel Modified Arcan Fixture (MAF) 
for testing Compact Tension Shear (CTS) specimens of carbon fibre woven reinforced polymer composite. 
Digital Image Correlation (DIC) was used to capture strain fields and calculate Stress Intensity Factors (SIFs), 
which were then compared to analytical predictions for different mode combinations and notch lengths. R-
curves were generated for specimens exhibiting self-similar crack propagation. The results revealed that failure 
modes were dominated by tensile cracking in Mode I and compressive cracking in Mode II, indicating that a 
single-parameter fracture criterion inadequate for the failure description. A theoretical model that incorporates 
both tensile and compressive cracking is proposed, which can accurately predict the complete mixed-mode 
fracture envelope. Furthermore, Scanning Electron Microscopy (SEM) and X-ray micro-tomography were used 
to elucidate the mechanisms of surface failure and the morphology of internal damage.
1. Introduction

The growing use of composite materials demands accurate pre-
diction of crack propagation to design reliable, lightweight damage 
tolerant structures. Aviation industry has shown that minimizing struc-
tural weight reduces fuel consumption and operational costs in avia-
tion, therefore resulting in thinner structures, where the plane stress 
condition assumption is valid. However, the heterogeneous nature of 
composites requires different approaches to the cracking phenomena 
as cracks can propagate in different materials in different propaga-
tion modes. Cracking in composites is commonly categorized into two 
primary mechanisms: interlaminar cracking, where cracks propagate 
along the matrix interface between plies, and intralaminar cracking, 
where cracks extend through both the matrix and the fibres within a 
single ply. This terminology is adopted throughout this work, consistent 
with [1–4]. However, many authors [5–8] also suggest the translaminar 
fracture nomenclature for through-the-thickness cracking.

Several studies have addressed interlaminar cracking under mixed-
mode, including accurate finite element procedures as in [8–13]. In 
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contrast, a comprehensive understanding of the effects of fibre orienta-
tion, specimen size, and fixture configuration on intralaminar cracking 
under mixed-mode loading is not yet fully established for composite 
materials. Singular stress and strain fields for isotropic materials have 
been extensively studied as in Williams [14] and Erdogan and Sih 
[15], while fracture criteria have been proposed through a combination 
of SIFs such as Maximum Tangential Stress (MTS) and Strain Energy 
Density (SED) [16,17]. A comprehensive review on isotropic criteria is 
presented in Wang et al. [18]. Complex variable solution method pro-
posed by Lekhnitskii [19] followed by [20–23] extended the singular 
stress field description based on SIFs for the anisotropic case.

Experiments on mixed fracture in glass fibre unidirectional com-
posites were performed by Wu [23], resulting in an empirical relation 
between SIF’s to describe fracture. Buczek and Herakovich [21] and 
Gregory and Herakovich [22] proposed a Maximum Normal Stress 
Ratio criterion for composite materials, where the maximum tangen-
tial stress is compared to the material strength in the corresponding 
direction. In this criterion an elliptical tensile strength envelope along 
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material directions was assumed. Carloni and Nobile [24] and Carloni 
and Nobile [25] extended this methodology incorporating the strain 
energy density as a criterion and applications under bi-axial planar 
load cases, respectively. Cahill et al. [26] performed static tests on 
a variety of specimens showing that cracks propagate parallel to the 
fibre direction in unidirectional composites. The author also imple-
mented a through the extended finite element method an elliptical 
toughness envelope to represent the fracture criterion. For unidirec-
tional composites, where a significant strength difference between 
orthogonal directions exists, the criterion provides a simple yet robust 
method for predicting crack growth direction. However, when strength 
values along both orthogonal material directions do not differ signif-
icantly, as in the case of plain weave composites, the validity of the 
aforementioned criteria are unknown.

Experimental procedures for in-plane fracture in composite lami-
nates is also a relevant research subject, as no standard method is yet 
available. One methodology consists of modifications on the loading 
fixture proposed by Arcan et al. [27], where mixed-mode plane stress is 
enforced on specimens, referred to as Modified Arcan Fixtures (MAFs). 
Conversely to the ASTM rail shear test [28], MAFs displays the potential 
of ranging from pure opening to pure sliding fracture modes, using the 
Compact Tension Shear (CTS) and V-notched specimens, for instance. 
MAF applications for composite mixed mode fracture testing are pre-
sented in [29–36]. Laffan et al. [37] introduced a mixed mode compact 
tension specimen for Uni-Directional (UD) IM7/8552 fibre reinforced 
composites, representing a variation on CTS proposed by Richard and 
Benitz [38]. For a cross-ply laminate under opening modes, fibre frac-
ture was the dominant failure characteristic, while matrix cracks and 
delamination was expressive under sliding fracture modes displaying 
increasing R-curves. Boyina et al. [31] performed in-plane mixed-mode 
tests on plain weave glass fibre composites using a CTS specimen 
with loading angles of 0◦, 22.5◦ and 45◦. Load–displacement curves 
showed an increase in non-linearity as the mixed-mode ratio increased. 
Similarly to Laffan et al. [37], a compliance calibration method was 
used to calculate R curves under mixed-mode. Jamali et al. [39] showed 
that for UD E-glass under sliding modes a hackle pattern is formed, in 
which matrix cracks develop along the specimen, increasing the total 
energy dissipation. Using the same material, Gan et al. [33] adapted 
a V-notched specimen configuration from ASTM D7078 [28], so that 
a uniform shear stress could be applied under Mode II and concluded 
that the failure envelope could be determined using Puck’s criterion for 
UD composites. Moreover, Digital Image Correlation Techniques (DIC) 
were employed, allowing for the in-situ evaluation of strain-fields. Hao 
et al. [40] also used DIC and a V-notched specimen to evaluate strains 
on twill reinforced carbon composites. The use of DIC led to the 
conclusion that non-linear in-plane shear behaviour plays an important 
role, as a great extent of distortion occurs and the fibres become 
misaligned. A comparison between E-glass, Kevlar and Carbon woven 
fabrics using a MAF was conducted by Taghibeigi et al. [41]. Fracture 
envelopes were generated using the compliance calibration method, 
obtained through linear elastic analysis using finite elements. This 
methodology was expanded by Zeinedini et al. [42] for cotton/epoxy 
laminates where a fracture envelope was proposed by adjusting the 
criterion parameters to the experimental data. Applications of a MAFs 
are also reported in [42–44] where finite geometry effects on the SIF 
were accounted for.

A systematic review of experimental characterization of mixed 
mode fracture for the intralaminar cracking on composite materials 
is presented in [45] showing that one of the key factors motivat-
ing the use of the Compact Tension Shear (CTS) configuration is 
its ability to minimize deformation originating from regions of the 
specimen unrelated to the crack tip altering its toughness, as addressed 
by [46]. Potential undesired failure mechanisms include longitudinal 
compressive stresses on the face opposite the crack tip, compressive 
stresses on the upper and lower specimen surfaces, in-plane shear 
stresses, compressive stresses at the hole edges, shear stresses between 
2 
the holes and the specimen edges, and specimen buckling, [3,47]. 
To accurately assess these damage modes, digital image correlation 
(DIC) analysis must be supplemented by fractographic examination 
using scanning electron microscopy (SEM) and X-ray microtomography 
(micro-CT), since some internal damage features cannot be detected by 
conventional microscopic techniques [48].

This paper introduces a new MAF design that allows for CTS spec-
imens to be tested under in-plane mixed-mode fracture conditions, 
with dimensions comparable to the ASTM E399 [49] standard for 
Mode I loading. During the tests, different failure mechanisms and 
cracking characteristics were observed. Fractographic characterization 
was conducted through Scanning Electron Microscopy and micro Com-
puter Tomography revealing that for Mode I load cases, tensile failure 
resulted in self-similar crack extension. However, curved crack exten-
sion paths were obtained for specimens under mixed-mode, specially 
when loaded at a 45◦ angle. For sliding fracture modes, compressive 
failure was the dominant cracking mechanism. Strain fields processed 
through the DIC technique during the tests were compared to analytical 
predictions, in terms of first order approximation using SIFs. A novel 
fracture initiation criterion was formulated in terms of the local stress 
evaluation using SIFs (𝐾𝐼  and 𝐾𝐼𝐼 ), describing cracking due to both 
tensile and compressive failures. The proposed formulation was con-
fronted to existing fracture criteria, showing that the complete fracture 
envelope could be modelled through a phenomenological framework. 
Lastly, from the experimental data, the relationship between applied 
load and crack length was established, and R curves generated. This 
study contributes to the understanding of intralaminar crack propaga-
tion in composite materials, showcasing an experimental methodology 
capable of observing strain-fields throughout the tests. Moreover, the 
novel phenomenological fracture criterion based on a theoretical model 
provided valuable insights on the cracking mechanisms aiding the 
analysis and design of damage-tolerant composite structures.

2. Theoretical modelling

2.1. Stress field for plane stress anisotropic bodies

Stress field around an infinite, linear elastic, anisotropic body under 
mixed-mode load cases can be evaluated using Lekhnitskii’s complex 
variable method solutions [19], as presented in [20–22,50]. 
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(1)

Eq. (1) shows the stress components for a global coordinate system 
𝑥𝑦 for a point at distance 𝑟 and direction 𝜃 in relation to the crack tip, 
where: 
𝑧1 = 𝑐𝑜𝑠(𝜃) + 𝜇1𝑠𝑖𝑛(𝜃). (2)

𝑧2 = 𝑐𝑜𝑠(𝜃) + 𝜇2𝑠𝑖𝑛(𝜃). (3)

In Eqs.  (2) and (3), 𝜇𝑖 are the roots of the characteristic polynomial rep-
resenting the differential equation using the complex variable method 
(Eq. (4)). Coefficients 𝑎𝑖𝑗 are the effective elastic compliance tensor 
components evaluated along the crack coordinate system directions as 
shown in Fig.  1. 
𝑎11𝜇

4 − 2𝑎16𝜇3 + (2𝑎12 + 𝑎66)𝜇2 − 2𝑎26𝜇 + 𝑎22 = 0. (4)

Similarly, using the constitutive relation for a linear elastic aniso
tropic material, strain fields can be obtained from Eq. (5). For or-
thotropic materials with material directions aligned with global coordi-
nate system 𝑥𝑦, the shear-extension coupling terms 𝑎  and 𝑎 , become 
16 26
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zero. 
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Magnitudes 𝐾𝐼  and 𝐾𝐼𝐼  in Eq. (1) represent global SIF’s under 
mixed-mode. For a MAF, 𝐾𝐼  and 𝐾𝐼𝐼  are a function of the loading 
angle defined as 𝛽, [29,51–53]. Finite geometry effects are accounted 
for in the functions 𝑓𝐼  and 𝑓𝐼𝐼 . Eqs.  (6) and (7) show the global SIF 
definitions for the MAF where 𝑤, 𝑡, 𝑎 and 𝐹  represent the lamina 
width, thickness, crack length and load, respectively. Finite geometry 
corrections 𝑓𝐼  and 𝑓𝐼𝐼  are also applicable for linear elastic anisotropic 
materials. However, for this approach the functions represent not only 
the finite geometry, but also anisotropy effects on SIF. Therefore, 𝑓𝐼 =
𝑓 (𝑎𝑖𝑗 , 𝑎∕𝑤) and 𝑓𝐼𝐼 = 𝑔(𝑎𝑖𝑗 , 𝑎∕𝑤) with 𝑎∕𝑤 representing the finite 
geometry contribution. 
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Additionally, as derived by Sih et al. [20] and discussed in Azhdari 
and Nemat-Nasser [54], strain energy release rates for each mode (𝐺𝐼
and 𝐺𝐼𝐼 ) can be calculated from the corresponding stress intensity fac-
tors (𝐾𝐼  and 𝐾𝐼𝐼 ) for an anisotropic body with compliance coefficients 
𝑎𝑖𝑗 , as displayed in Eq. (8). Similarly to Eq. (1), linear elasticity under 
plane stress is assumed. 
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However, when dealing with composite material failure, stress com-
ponents are commonly evaluated at the material directions defined by 
the 12 coordinate system. Eqs.  (9) and (10) show stress components 
at material directions, as a function of the ply orientation angle 𝛼 in 
relation to the crack directions (𝑥, 𝑦) as displayed in Fig.  1. Similarly, 
tangential stress components can be evaluated by performing plane 
stress rotations on the global tensor components 𝑥𝑦, for any given 
direction 𝜃, as shown in Eq. (11). 

𝜎11 = cos2(𝛼)𝜎𝑥𝑥 + sin2(𝛼)𝜎𝑦𝑦 + sin(2𝛼)𝜏𝑥𝑦. (9)

𝜎22 = sin2(𝛼)𝜎𝑥𝑥 + cos2(𝛼)𝜎𝑦𝑦 − sin(2𝛼)𝜏𝑥𝑦. (10)

𝜎𝜃𝜃 = sin2(𝜃)𝜎𝑥𝑥 + cos2(𝜃)𝜎𝑦𝑦 − sin(2𝜃)𝜎𝑥𝑦. (11)

2.2. Mixed-mode fracture criterion

In-plane crack extension under mixed-mode can be predicted by 
different criteria through combination of 𝐾𝐼  and 𝐾𝐼𝐼  in a scalar func-
tion that describes failure [55]. In the isotropic case, crack extension 
occurs at the maximum tangential stress [15] or maximum tangential 
strain [56] directions, which are related to the maximum SERR [57]. 
However, for composite laminae, strength and toughness might depend 
on orientation. Buczek and Herakovich [21] evaluated the ratio be-
tween stress and strength at a critical distance 𝑟𝑐 for all 𝜃, thus defining 
the crack extension direction. Similarly, criteria in terms of tangential 
or normal strains can be defined. The following proposed model takes 
into account the following assumptions:

• Tensile failure can lead to slant cracks at mixed-mode conditions;
• Compressive failure occurs along the fibre directions only.
3 
Fig. 1. Stress components at different orientations.

Fracture criterion can be expressed in terms of either material 
directions or tangential directions around the crack tip. Substituting 
Eq. (1) into Eq. (11), the tangential stress becomes as given in Box  I. 

The tensile failure criterion can be expressed in terms of a failure 
index presented in Eq. (15), where unstable propagation occurs at the 
critical angle where 𝑓𝜃 ≥ 1. Interestingly, distance 𝑟 is not required for 
the failure evaluation. For the proposed model the toughness associated 
with tensile failure 𝐾 𝑡

𝑐 (𝜃) is assumed as constant for the plain weave 
carbon fibre composite. 

𝑓𝜃(𝜃) =
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√
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𝑐
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Conversely, compressive failure occurs along one of the material direc-
tions and is related to a micro-buckling that occurs in the reinforcement 
fibres, [58]. Therefore, the associated toughness is constant, for each 
direction 𝜃 and a failure index 𝑓𝑐 is defined as in Eq. (16). 

𝑓𝑐 (𝜃) =
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, if 𝜎22 < 0.
(16)

Critical SIF’s under mixed-mode loading, expressed in Eqs.  (6) and (7) 
can be computed at the corresponding critical loads and loading angle 
𝛽 for a MAF. These SIF components enable a mixed-mode failure en-
velope to be generated and confronted to the predicted failure criteria 
predictions displayed in Eqs.  (15) and (16), where 𝐾 𝑡

𝑐 and 𝐾𝑐
𝑐  are the 

input parameters.

2.3. Finite geometry effects for anisotropic materials

Finite geometry effects can be accounted for using finite element 
contour integral solutions for SIF’s at different crack lengths. An in 
depth description of the SIF extraction procedure within finite elements 
was performed by Shih et al. [59]. In addition, Henshell and Shaw [60] 
and Barsoum [61] showed that the use of quadratic displacement inter-
polation for plane stress elements with mid side nodes positioned at 1/4 
of the elements length is able to reproduce a singularity at the crack 
tip, with a 1∕√𝑟 strain interpolation along the element boundaries. 
The use of quarter length mid-side nodes coupled with contour integral 
evaluation is currently implemented at the commercial finite element 
code Abaqus/Standard. Therefore, this procedure was employed for the 
specimen’s geometry and stacking sequence. By prescribing the load 𝐹
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Similarly, substituting Eq. (1) into Eqs.  (9) and (10), the apparent SIFs along material directions become: 
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√
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)} ] (13)

𝜎22
√
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}
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)} ]. (14)

Box I. 
Fig. 2. Model mesh using plane stress shell elements and rigid bodies.
 
 
 
 
 
 
 
 

 
 

 

 
 
 

 
 
 
 
 
 
 

 
 

 

for the contour integral analysis, 𝑓𝐼  and 𝑓𝐼𝐼  expressions were obtained
directly from Eqs. (6) and Eqs. (7), similarly to the procedure employed
by Rikards et al. [29]. Multiple models were generated for different
crack lengths under both Mode I and Mode II load cases. Fig.  2 shows
the CTS specimen mesh, for a given load case, using 8-node plane stress
shell elements (S8R). The crack is modelled as a region of nodes that
do not share degrees of freedom, represented as a seam crack. For
this analysis, the MAF was not modelled, as it was assumed a rigid
body constraint for the external load, that is applied at an angle 𝛽
in relation to the crack tip, shown in Fig.  2. Under this methodology
finite geometry factors are a function of both geometry and material
properties.

3. Experimental set-up

3.1. Specimen manufacturing

Compact Tension-Shear (CTS) specimens were manufactured by the
Resin Transfer Molding process using a woven, plain weave, carbon
 

4 
fibre fabric (Hexcel® HexForce™ AGP193-P) and Huntsman Araldite®
LY 5052 epoxy resin, mixed with Huntsman Aradur® 5052 hardener.
A [0]16 layup was used with an average laminate thickness of 3.84 mm,
so that the effective compliance of the laminate could be analytically
analysed as a single lamina, given that all plies share the same ori-
entation. Frossard et al. [62] and Furtado et al. [4] showed that for
thin unidirectional laminates the critical SERR increases approximately
linearly with the ply thickness. However, throughout this study, the
effects of different laminate thickness values were not addressed and
all specimens share an average ply thickness of 0.24 mm. Cure cycle
consisted of 24 h at room temperature, followed by a post cure cycle
of 4 h at 100◦𝐶. The same constituents and procedures were used for
the specimens in Fuga and Donadon [63].

Mechanical characterization tests were performed for tensile and in-
plane shear using ViC-Gauge image acquisition system so that strains
could be computed using GOM Correlate DIC software. Tests were
performed under displacement control using a ZwickRoell tensile test-
ing machine EXMACRO-H02 with a 250 kN load cell. Table  1 shows
the lamina material properties obtained from performed tests under
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Fig. 3. CFRP specimen on Arcan device for mixed-mode fracture.
Table 1
Material properties for woven composite lamina.
 𝐸11 [GPa] 𝐸11 [GPa] 𝐺12 [GPa] 𝜈12  
 58.64 58.64 2.57 0.06 

ASTM standards [64,65]. CTS specimen were machined to the geometry 
displayed in Fig.  1. Notches of approximately 0.5 mm thickness were 
made using a circular saw, while the tip of the notch was sharpened 
using a razor blade. Specimens were loaded through three 8 mm holes. 
Two notch sizes were used, where the length 𝑎0 = 30 mm is referred to 
CTS specimen, while the length 𝑎0 = 40 mm is referred to as the CTSL, 
with the L in the acronym standing for the longer notch version. Both 
configurations share the remaining dimensions such as height, width 
and thickness, of 90 mm, 65 mm and 3.84 mm respectively.

3.2. Modified arcan fixture

A MAF was designed to provide in-plane mixed-mode fracture load 
cases, as shown in Fig.  3. The figure shows the CTS specimen loaded 
into 6 load cases, ranging from pure opening fracture at loading angle 
𝛽 = 0◦ to pure sliding at 𝛽 = 90◦. The device was manufactured from 
a quenched 4340 steel alloy and allows for mixed-mode conditions for 
𝛥𝛽 = 15◦ steps. A 100kN capacity MTS hydraulic testing machine was 
used with the standard fracture mechanics clevis grips (Model 640) 
under displacement control.

To evaluate strains and crack position during the tests, the experi-
mental testing set-up shown in Fig.  4(a) was used where a Video Gauge 
data acquisition system (Imetrum) records a video file synchronized 
with load and displacement data from the MTS machine. Video gauge 
system output allows for calculation of displacements, rotations and 
strains using a point-tracking algorithm. Additionally, video file enables 
frames to be exported and analysed using DIC GOM Correlate software, 
so that the strain field can be visualized as field variable. Crack length 
evolution was monitored by visual inspection through triggering of 
a crack marker. Imprinted scales were positioned on the specimen 
as displayed in Fig.  4(a). A DSLR camera connected to a monitor 
provided an enhanced view of the crack length scale for accurate 
crack measurements. Fig.  4(b) shows the load, displacement and crack 
marker outputs for a representative specimen under mode I fracture.
5 
3.3. SEM and micro-CT analysis

Scanning electron microscopy (SEM) analyses were performed to 
characterize the fracture surfaces. To perform this analysis, the char-
acterized failure region in each tested specimen was previously coated 
with a thin layer of gold ions by the sputtering process in a Quorum 
Q150R ES equipment. The observation and interpretation of the physi-
cal aspects resulting from failure via crack propagation were performed 
using a TESCAN scanning electron microscope model VEGA 3 XMU. 
Imaging was conducted using an acceleration voltage of 5–10 keV.

X-ray microtomography (micro-CT) analyses were performed to in-
vestigate/localize internal damage and crack morphology. These analy-
ses were conducted using a Tomography imaging parameters were 0.4x 
objective lens, 160 kV/10 W source settings, 3 μm pixel size ensuring 
a nominal resolution of 9 μm, 3D spatial resolution with a complete 
scan cycle of 1000 projections, exposure time of 2 s, detector resolution 
of 1024 𝑥 1024. The equipment used was the XRADIA (currently 
C. ZEISS), model Xradia Versa XRM - 510, and a micro-computed 
tomography scanner (FINEP process n◦ 01.12. 0150.00).

4. Results

4.1. Finite geometry functions

Finite geometry effects for the proposed layup are displayed in 
Fig.  5 for crack lengths of 30 mm to 55 mm, at 5 mm steps. Results 
showed a similar trend when compared to the isotropic finite geometry 
solutions proposed by [66] for acrylic (plexiglass) specimens. For mode 
I loading, a similar behaviour is expected as the laminate Poisson’s ratio 
approaches zero and 𝐸11 = 𝐸22. However, for mode II the orthotropic 
material displays a reduced shear modulus 𝐺12 when compared to the 
isotropic counterpart, resulting in lower SIFs.

Dashed lines represent the fitted expression for finite geometry 
effects on CTS specimen, for this specific layup configuration, and 
expressed in Eqs.  (17) and (18). 

𝑓𝐼
(

𝑎𝑖𝑗 ,
𝑎
𝑤

)

= 1
1 − 𝑎

𝑤

(

0.4972𝑒0.029𝑎
)

. (17)

𝑓𝐼𝐼
(

𝑎𝑖𝑗 ,
𝑎
𝑤

)

= 1
1 − 𝑎

(

−2.4(10−4)𝑎2 + 6.8(10−3)𝑎 + 0.657
)

. (18)

𝑤
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Fig. 4. Experimental setup and data acquisition.
Fig. 5. Finite geometry and anisotropy effects.
4.2. Load–displacement data

Load–displacement data are shown in Fig.  6 for CTS and CTSL 
specimens with only one of the two specimens for each loading config-
uration displayed. For both notch sizes, fracture followed by complete 
separation occurred for loading angles (𝛽) between 0◦ and 45◦ only, 
while specimens loaded at 60◦ and 90◦ showed multiple cracks and 
distortion. A non-linear behaviour in terms of load and displacements 
was observed as 𝛽 increased. Despite the brittle behaviour of carbon 
epoxy laminates, the dissipation of micro cracks before a critical load 
is pronounced for shear dominated scenarios leading to a progressive 
energy dissipation, as discussed in [31,41,67]. Fig.  6 also shows the 
6 
relation between maximum load for each specimen configuration and 𝛽
as well as the relation between normal and tangential load components.

Crack propagation direction and failure modes are displayed in 
Fig.  7, for both specimen configurations. In the image, laminates are 
painted with a speckle pattern due to the DIC requirements for strain 
processing. Specimens loaded with 𝛽 ≤ 30◦ displayed an approximately 
self-similar extension. For 𝛽 = 45◦ an initial inclination on the crack 
path was observed for both CTS and CTSL. Experimental results sug-
gests that initial crack extension occurs at an angle, until a critical value 
from which crack propagation follows one of the orthotropy directions. 
For loading 𝛽 ≥ 60◦, cracking due to compressive failure was observed, 
as displayed by the green arrows. From the images it is clear that 
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Fig. 6. Maximum load envelopes.
Fig. 7. Failure modes for CTS and CTSL specimens.
compressive failure showed a crack path aligned with the woven fibre 
orientation (vertical).

4.3. Strain fields — DIC

Evolution of normal strains as the crack propagates is displayed in 
Fig.  8, for the CTSL specimen under mode I. DIC plots show that strains 
along material direction 1 are concentrated at the crack tip as the crack 
advances.
7 
Strain field under mixed-mode conditions were also generated. Fig. 
9 shows principal strain for all six load cases, for the CTS specimen. 
Maximum principal strains are displayed, so that the combination of 
all tensor components can be easily visualized in a single variable. 
Due to the in-plane shear compliance, maximum principal strain fields 
are directly dependent to the shear strain magnitudes. The image also 
shows the correlation of experimental DIC strain data with analytical 
solutions, using Eq. (5) and the corresponding SIFs from Eqs.  (6) and (7) 
and that analytical predictions are able to account for the orthotropic 
effects of the laminate. Strain fields are displayed for CTS specimens, 
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Fig. 8. Normal strain field evolution under Mode I – CTSL specimen.
Fig. 9. Principal strain fields at different load angle 𝛽 (𝑎0 = 30 mm).
however a similar profile is obtained for the CTSL configuration, with 
changes in strain magnitudes only.

Normal strain 𝜖11 for points along a line in the original notch 
direction were plotted as a function of distance 𝑟 for 𝛽 = 0◦, 30◦ and 
45◦, at 3kN and 9kN loads, for specimen CTS (Fig.  10). These angles 
are displayed, as the normal strain magnitudes are greater for mode 
I dominated load cases. Under the assumption of linear elasticity and 
at the vicinity of the crack tip (SIF dominated region), the opening 
strain profile predicted by Eq. (5) displays a good correlation to the 
experimental profile, therefore indicating that a SIF based fracture 
criterion could be established.

4.4. R curves

Load cases with 𝛽 ≤ 45◦ were used to generate R curves, as an 
approximately self-similar condition was obtained. Resistance at mixed-
mode was evaluated assuming a combination of SIFs evaluated at the 
load values that crack extension was observed, Eq. (19). The equivalent 
mixed-mode fracture toughness for tensile failure 𝐾 𝑡

𝑐 displayed is only 
valid for conditions where orthotropy directions are aligned with the 
crack path for a self-similar crack extension. This is a direct result of 
8 
the evaluation of strain energy release rate from Eq. (8) with 𝐺𝐼𝑐 =
𝐺𝐼 +𝐺𝐼𝐼 . Furthermore, for the toughness 𝐾 𝑡

𝑐 expression to be obtained, 
data on the load, crack length and finite geometry factors are needed. 

𝐾 𝑡
𝑐 (𝑎) =

√

𝐾2
𝐼 (𝐹 , 𝑎) +𝐾2

𝐼𝐼 (𝐹 , 𝑎) (19)

Fig.  11 show that for mode I, crack extends at a critical SIF of 
approximately 𝐾 𝑡

𝑐 = 1050  MPa√𝑚𝑚 for the CTS and 𝐾 𝑡
𝑐 = 1300

MPa
√

𝑚𝑚 for the CTSL. However, as the mixed-mode condition is 
introduced, a rising R-curve is observed. Similarly, Fig.  11 shows the 
resistance in terms of the SERR.

Although a detailed characterization of fracture toughness and R-
curves under mixed-mode loading is not available for the same woven 
carbon fabric material system, the present study reports toughness 
values that are consistent with those found in multiple publications 
from the same research group [63,68,69]. Specifically, the reported 
mode I fracture toughness values (𝐾𝐼𝑐 ) are 1582.4 MPa

√

mm, 1260.4 
MPa

√

mm, and 1331.8 MPa
√

mm, respectively, calculated from the 
critical strain energy release rate using Eq. (8). In addition, a compari-
son between average toughness values for composite materials reported 
on the scientific literature is found at Monticeli et al. [45].
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Fig. 10. Opening strain for a line along the notch direction — CTS.
Fig. 11. R curves for CTS and CTSL specimens with 𝛽 < 45◦.
4.5. Fractographic analysis

Fig.  12 shows a Scanning Electron Microscopy (SEM) image with 
a 35x magnification for specimens loaded at 𝛽 = 0◦, 45◦ and 90◦. 
Fibre breakage is the dominant failure aspect for specimens loaded 
in pure mode I, resulting in self-similar crack propagation. For 𝛽 =
45◦, cracking initial direction is not collinear with the notch, rather 
it develops an alternating pattern of failure along the local material 
directions 1 and 2, resulting in the path displayed in Fig.  7. Arrows 
in yellow represent the predicted crack extension direction using the 
novel fracture criterion, further discussed in Section 4.6. Under mode 
II loading, 𝛽 = 90◦, cracking due to compressive failure was initially 
observed. As the specimen was subjected to further deformation, tensile 
failure cracks were also observed, as indicated in Fig.  12.

Fractographic analyses were first carried out on specimens tested 
in the CTS configuration in Mode I (0◦), Mixed Mode (45◦) and Mode 
9 
II (90◦). Fig.  13 shows the three-dimensional reconstruction and corre-
sponding sections of the top view (XY view) and side view (XZ view) of 
the fracture. It can be seen that the crack has passed through all layers 
without any geometric effect. There is a tendency to follow the fibre 
architecture, as can be seen in Fig.  12, where the fracture often occurs 
above or below the plane of propagation for transverse fibre fractures. 
This is due to the vertical fracture at the fibre/weft matrix interface 
(90◦) being blocked by the warp (0◦) and concentrating the tension 
for fibre fracture, causing fibre stretching and subsequent fracture and 
abrupt decay of the force reactions. The broom pattern observed in Figs. 
12 and 13 and in cross-ply laminates is derived from the degree of ply 
splitting that occurs before fibre breakage. For the laminate subjected 
to pure shear (Fig.  13c), the internal regions of the material show 
compression in the vertical direction below the crack and tensile failure 
at 90◦ in the upper part of the crack. A series of delamination layers 
caused by deformation can also be observed in the region in front of 
the crack. There are also delamination layers in the compression region 
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Fig. 12. SEM for CTS specimen with 𝛽 = 0◦ , 45◦, and 90◦.
Fig. 13. Micro-CT of CTS specimen with 𝛽 = 0◦, 45◦, and 90◦.
(opposite the crack tip). In some cases, this damage mechanism was 
very close to both fronts, making it difficult to accurately control the 
influence of compressive stress for more extensive crack lengths.

4.6. Proposed fracture criterion predictions

Fig.  14 shows the predictions for the proposed fracture criterion 
assuming toughness values of 𝐾 𝑡

𝑐 = 1050  MPa√𝑚𝑚 and 𝐾𝑐
𝑐 = 2300

MPa
√

𝑚𝑚 for the CTS specimen and 𝐾 𝑡
𝑐 = 1300  MPa√𝑚𝑚 and 𝐾𝑐

𝑐 =
2300  MPa√𝑚𝑚 for specimen CTSL. In the image, dashed lines represent 
the maximum load until fracture due to tensile failure 𝑓𝜃 = 1, while 
dotted lines show the corresponding results for compressive failure 
𝑓𝑐 (𝜃) = 1. Maximum load for each load case is assumed as the minimum 
load value between the two criteria. Proposed model indicates that for 
specimens loaded with 𝛽 ≤ 50◦, tensile failure is expected for both 
notch sizes, while for 𝛽 > 50◦, compressive failure is the dominant 
failure mechanism, as observed experimentally. Furthermore, crack 
initial propagation direction for tensile failure increases with loading 
angle, until the compressive failure limit, from which point cracks 
propagate at the direction 𝜃 = −90◦. Additionally, the maximum load 
for different mixed-mode conditions displayed a good correlation with 
10 
experimental data using the fracture toughness parameters obtained 
from the R-curves.

Finally, the proposed fracture initiation criteria predictions were 
compared to other methodologies applicable to anisotropic materials. 
Fig.  15 shows the corresponding SIFs combinations under mixed-mode 
that lead to fracture initiation. Experimental data were obtained us-
ing Eqs.  (6) and (7) at the maximum load condition. MTS, SED and 
RIS stand for Maximum Tangential Stress, Strain Energy Density and 
Reinforced Isotropic Solid criteria.

From the image it is clear that the introduction of a constant fracture 
toughness parameter for tensile failure 𝐾 𝑡

𝑐 (𝜃) in Eq. (15) recovers the 
MTS criterion for anisotropic materials. However, it is important to 
express that the MTS criterion shown takes into account material 
anisotropy on the stress field, differently from the MTS criterion applied 
to isotropic materials. Similarly, the RIS model, proposed by Fakoor 
and Khezri [70] and Khaji and Fakoor [71], where stress tensor com-
ponents are scaled according to the level of anisotropy and isotropic 
fracture initiation criteria are employed on the corresponding stress 
fields, is unable to represent compressive failure under mode II. Finally, 
minimum SED criterion for anisotropic materials, was plotted over 
experimental data. With the exception of the proposed criterion, other 
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Fig. 14. Proposed mixed-mode fracture criterion predictions.
Fig. 15. Fracture initiation envelopes.
Fig. 16. Experimental data on ±45◦ laminate under Mode I.
envelopes fail to describe fracture under mode II loading for the tested 
specimen configurations, as different failure mechanisms occur. There-
fore, a single toughness, strain energy density or strain energy release 
rate parameter is not sufficient to describe the complete envelope. 
The proposed criterion allows for different failure mechanisms to be 
accurately predicted, as shown by the correlation with experimental 
data. Moreover, the proposed criterion includes a stress description 
definition, which is commonly used to evaluate failure in composite 
materials in terms of local coordinates. Interestingly, SED criterion 
coupled with anisotropic stress field description provided a better 
correlation with experimental data on scenarios with tensile failure, 
indicating that the proposed methodology can be derived into a SED 
criterion with multiple parameters as well.

4.7. Off-axis laminate

A final validation of the proposed model was used for a mode I load 
case on a CTS specimen with off-axis stacking sequence(±[45◦]). Fig.  16 
shows the load–displacement data for the tested specimen, as well as 
the principal strain field plot for three different stages of propagation.
11 
Assuming the same fracture toughness value for the CTS specimen 
𝐾 𝑡

𝑐 = 1050 MPa
√

𝑚𝑚 coupled with the finite geometry factor for this 
layup 𝑓𝐼 = 2.53, obtained through FE contour integral analysis, a 
critical load of 10.7kN was predicted. With respect to the experimental 
value of 11.5kN, the error is within 7%. In addition, the analytical 
principal strain profile at the maximum load, Fig.  17(b), also correlates 
with experimental strain-field from Fig.  16.

Interestingly, the proposed model predicted a self-similar crack 
extension, as the maximum tangential stress occurs at 𝜃 = 0, as shown 
in Fig.  17(a). SEM showed the alternating pattern between weft and 
warp fibre fracture under mode I for the off-axis laminate, as shown in 
Fig.  18, with a self-similar crack extension on the macro scale.

5. Conclusions

This paper investigated failure mechanisms associated with notched 
woven reinforced composite laminates under in-plane mixed mode 
loading. Firstly, the characterization of the strain field using DIC tech-
niques showed that stress and strain field intensity can be accurately 
represented with a (1∕√𝑟) function at the vicinity of the crack tip. 
Furthermore, using finite element contour integral analysis, the finite 
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Fig. 17. Analytical results for ±45◦ laminate under Mode I.
Fig. 18. SEM for off-axis specimen under Mode I loading.
geometry and corresponding stress intensity factors, provided a good 
correlation between measured and analytical strain fields for mixed-
mode applications. Following the stress and strain-field description, 
loads required for crack extension were evaluated using the testing 
methodology and a novel theoretical fracture initiation criterion. Ex-
perimental results showed that for fracture modes dominated by mode 
I failure, cracks propagated in a quasi self-similar form. Differently, for 
mode II dominated load cases, compressive failure along the fibre direc-
tion was observed, perpendicular to the notch. For some mixed-mode 
conditions (𝛽 = 45◦) specimens showed a curved crack path, displaying 
an alternating pattern of tensile failure along material directions. The 
proposed criterion, coupling tensile and compressive failure, resulted 
in a model that can accurately predict the maximum load capacity and 
describe inclined crack propagation directions at mixed-mode fracture. 
Finally, for specimens where the effect of initial crack direction are 
negligible (𝛽 < 45◦), R-curves were generated under the assumption of 
a self-similar crack evolution. Tensile toughness of 𝐾 𝑡

𝑐 = 1050  MPa√𝑚𝑚
and 𝐾 𝑡

𝑐 = 1300  MPa√𝑚𝑚 were obtained for the specimens. Regarding 
compressive failure, a toughness of 𝐾𝑐

𝑐 = 2300 MPa
√

𝑚𝑚 was used to 
describe failure along the fibre directions in both specimens.

This research allowed for the description of different failure mech-
anisms on woven composites due to the different testing procedures 
employed. The choice of specimen configuration, coupled with the 
designed MAF and the use of DIC techniques led not only to the strain 
field correlation but also R-curves and fracture initiation envelopes to 
be generated. In addition the use of Micro-CT and SEM contributed 
to the physical description of failure mechanisms. From these in-depth 
analysis a novel physically based fracture criterion was proposed. Over-
all, the results of this study improve the understanding of mixed mode 
fracture in plain weave CFRP laminates, with particular relevance to 
the design and assessment of thin-walled composite structures under 
planar stress conditions.
12 
Finally, this paper introduces a novel methodology for the descrip-
tion of fracture in anisotropic materials under mixed-mode, through the 
evaluation of stress fields at different directions. The authors recom-
mend future research to be carried out on the extension of such crite-
rion introducing different physically based failure criteria into a SIF de-
scription for the fracture locus under mixed-mode as in uni-directional 
composites or multi-directional layups for example.
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