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ARTICLE INFO ABSTRACT
Keywords: The design of damage-tolerant aeronautical composite structures often involves thin-walled components that
FrflCture mechanics are susceptible to in-plane mixed-mode fracture. Unlike with metals, this process is complicated by the
Mixed-mode fracture composites anisotropy and the lack of standardized procedures for predicting failure in notched, holed or

Intralaminar damage

Composite materials

Contour integral analysis
Phenomenological fracture criterion

cracked composites under mixed-mode loading. This study introduces a novel Modified Arcan Fixture (MAF)
for testing Compact Tension Shear (CTS) specimens of carbon fibre woven reinforced polymer composite.
Digital Image Correlation (DIC) was used to capture strain fields and calculate Stress Intensity Factors (SIFs),
which were then compared to analytical predictions for different mode combinations and notch lengths. R-
curves were generated for specimens exhibiting self-similar crack propagation. The results revealed that failure
modes were dominated by tensile cracking in Mode I and compressive cracking in Mode II, indicating that a
single-parameter fracture criterion inadequate for the failure description. A theoretical model that incorporates
both tensile and compressive cracking is proposed, which can accurately predict the complete mixed-mode
fracture envelope. Furthermore, Scanning Electron Microscopy (SEM) and X-ray micro-tomography were used
to elucidate the mechanisms of surface failure and the morphology of internal damage.

1. Introduction contrast, a comprehensive understanding of the effects of fibre orienta-
tion, specimen size, and fixture configuration on intralaminar cracking

The growing use of composite materials demands accurate pre- under mixed-mode loading is not yet fully established for composite
diction of crack propagation to design reliable, lightweight damage materials. Singular stress and strain fields for isotropic materials have
tolerant structures. Aviation industry has shown that minimizing struc- been extensively studied as in Williams [14] and Erdogan and Sih
tural weight reduces fuel consumption and operational costs in avia- [15], while fracture criteria have been proposed through a combination
tion, therefore resulting in thinner structures, where the plane stress of SIFs such as Maximum Tangential Stress (MTS) and Strain Energy
condition assumption is valid. However, the heterogeneous nature of Density (SED) [16,17]. A comprehensive review on isotropic criteria is
composites requires different approaches to the cracking phenomena presented in Wang et al. [18]. Complex variable solution method pro-
as cracks can propagate in different materials in different propaga- posed by Lekhnitskii [19] followed by [20-23] extended the singular

tion modes. Cracking in composites is commonly categorized into two
primary mechanisms: interlaminar cracking, where cracks propagate
along the matrix interface between plies, and intralaminar cracking,
where cracks extend through both the matrix and the fibres within a
single ply. This terminology is adopted throughout this work, consistent
with [1-4]. However, many authors [5-8] also suggest the translaminar
fracture nomenclature for through-the-thickness cracking.

Several studies have addressed interlaminar cracking under mixed-
mode, including accurate finite element procedures as in [8-13]. In

stress field description based on SIFs for the anisotropic case.
Experiments on mixed fracture in glass fibre unidirectional com-
posites were performed by Wu [23], resulting in an empirical relation
between SIF’s to describe fracture. Buczek and Herakovich [21] and
Gregory and Herakovich [22] proposed a Maximum Normal Stress
Ratio criterion for composite materials, where the maximum tangen-
tial stress is compared to the material strength in the corresponding
direction. In this criterion an elliptical tensile strength envelope along
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material directions was assumed. Carloni and Nobile [24] and Carloni
and Nobile [25] extended this methodology incorporating the strain
energy density as a criterion and applications under bi-axial planar
load cases, respectively. Cahill et al. [26] performed static tests on
a variety of specimens showing that cracks propagate parallel to the
fibre direction in unidirectional composites. The author also imple-
mented a through the extended finite element method an elliptical
toughness envelope to represent the fracture criterion. For unidirec-
tional composites, where a significant strength difference between
orthogonal directions exists, the criterion provides a simple yet robust
method for predicting crack growth direction. However, when strength
values along both orthogonal material directions do not differ signif-
icantly, as in the case of plain weave composites, the validity of the
aforementioned criteria are unknown.

Experimental procedures for in-plane fracture in composite lami-
nates is also a relevant research subject, as no standard method is yet
available. One methodology consists of modifications on the loading
fixture proposed by Arcan et al. [27], where mixed-mode plane stress is
enforced on specimens, referred to as Modified Arcan Fixtures (MAFs).
Conversely to the ASTM rail shear test [28], MAFs displays the potential
of ranging from pure opening to pure sliding fracture modes, using the
Compact Tension Shear (CTS) and V-notched specimens, for instance.
MAF applications for composite mixed mode fracture testing are pre-
sented in [29-36]. Laffan et al. [37] introduced a mixed mode compact
tension specimen for Uni-Directional (UD) IM7/8552 fibre reinforced
composites, representing a variation on CTS proposed by Richard and
Benitz [38]. For a cross-ply laminate under opening modes, fibre frac-
ture was the dominant failure characteristic, while matrix cracks and
delamination was expressive under sliding fracture modes displaying
increasing R-curves. Boyina et al. [31] performed in-plane mixed-mode
tests on plain weave glass fibre composites using a CTS specimen
with loading angles of 0°, 22.5° and 45°. Load-displacement curves
showed an increase in non-linearity as the mixed-mode ratio increased.
Similarly to Laffan et al. [37], a compliance calibration method was
used to calculate R curves under mixed-mode. Jamali et al. [39] showed
that for UD E-glass under sliding modes a hackle pattern is formed, in
which matrix cracks develop along the specimen, increasing the total
energy dissipation. Using the same material, Gan et al. [33] adapted
a V-notched specimen configuration from ASTM D7078 [28], so that
a uniform shear stress could be applied under Mode II and concluded
that the failure envelope could be determined using Puck’s criterion for
UD composites. Moreover, Digital Image Correlation Techniques (DIC)
were employed, allowing for the in-situ evaluation of strain-fields. Hao
et al. [40] also used DIC and a V-notched specimen to evaluate strains
on twill reinforced carbon composites. The use of DIC led to the
conclusion that non-linear in-plane shear behaviour plays an important
role, as a great extent of distortion occurs and the fibres become
misaligned. A comparison between E-glass, Kevlar and Carbon woven
fabrics using a MAF was conducted by Taghibeigi et al. [41]. Fracture
envelopes were generated using the compliance calibration method,
obtained through linear elastic analysis using finite elements. This
methodology was expanded by Zeinedini et al. [42] for cotton/epoxy
laminates where a fracture envelope was proposed by adjusting the
criterion parameters to the experimental data. Applications of a MAFs
are also reported in [42-44] where finite geometry effects on the SIF
were accounted for.

A systematic review of experimental characterization of mixed
mode fracture for the intralaminar cracking on composite materials
is presented in [45] showing that one of the key factors motivat-
ing the use of the Compact Tension Shear (CTS) configuration is
its ability to minimize deformation originating from regions of the
specimen unrelated to the crack tip altering its toughness, as addressed
by [46]. Potential undesired failure mechanisms include longitudinal
compressive stresses on the face opposite the crack tip, compressive
stresses on the upper and lower specimen surfaces, in-plane shear
stresses, compressive stresses at the hole edges, shear stresses between
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the holes and the specimen edges, and specimen buckling, [3,47].
To accurately assess these damage modes, digital image correlation
(DIC) analysis must be supplemented by fractographic examination
using scanning electron microscopy (SEM) and X-ray microtomography
(micro-CT), since some internal damage features cannot be detected by
conventional microscopic techniques [48].

This paper introduces a new MAF design that allows for CTS spec-
imens to be tested under in-plane mixed-mode fracture conditions,
with dimensions comparable to the ASTM E399 [49] standard for
Mode I loading. During the tests, different failure mechanisms and
cracking characteristics were observed. Fractographic characterization
was conducted through Scanning Electron Microscopy and micro Com-
puter Tomography revealing that for Mode I load cases, tensile failure
resulted in self-similar crack extension. However, curved crack exten-
sion paths were obtained for specimens under mixed-mode, specially
when loaded at a 45° angle. For sliding fracture modes, compressive
failure was the dominant cracking mechanism. Strain fields processed
through the DIC technique during the tests were compared to analytical
predictions, in terms of first order approximation using SIFs. A novel
fracture initiation criterion was formulated in terms of the local stress
evaluation using SIFs (K; and K;;), describing cracking due to both
tensile and compressive failures. The proposed formulation was con-
fronted to existing fracture criteria, showing that the complete fracture
envelope could be modelled through a phenomenological framework.
Lastly, from the experimental data, the relationship between applied
load and crack length was established, and R curves generated. This
study contributes to the understanding of intralaminar crack propaga-
tion in composite materials, showcasing an experimental methodology
capable of observing strain-fields throughout the tests. Moreover, the
novel phenomenological fracture criterion based on a theoretical model
provided valuable insights on the cracking mechanisms aiding the
analysis and design of damage-tolerant composite structures.

2. Theoretical modelling
2.1. Stress field for plane stress anisotropic bodies
Stress field around an infinite, linear elastic, anisotropic body under

mixed-mode load cases can be evaluated using Lekhnitskii’s complex
variable method solutions [19], as presented in [20-22,50].
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Eq. (1) shows the stress components for a global coordinate system
xy for a point at distance r and direction 0 in relation to the crack tip,
where:

z; = cos(0) + pysin(0). 2

2y = c0s(0) + pysin(0). 3

In Egs. (2) and (3), y; are the roots of the characteristic polynomial rep-
resenting the differential equation using the complex variable method
(Eq. (4)). Coefficients a;; are the effective elastic compliance tensor
components evaluated along the crack coordinate system directions as
shown in Fig. 1.

ap it = 2a1644° + (2ay, + age)u* — 2ap64 + ayy = 0. 4)

Similarly, using the constitutive relation for a linear elastic aniso
tropic material, strain fields can be obtained from Eq. (5). For or-
thotropic materials with material directions aligned with global coordi-
nate system xy, the shear-extension coupling terms a4 and a,4, become
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Magnitudes K; and K;; in Eq. (1) represent global SIF’s under
mixed-mode. For a MAF, K; and K;; are a function of the loading
angle defined as g, [29,51-53]. Finite geometry effects are accounted
for in the functions f; and f;;. Egs. (6) and (7) show the global SIF
definitions for the MAF where w, #, a and F represent the lamina
width, thickness, crack length and load, respectively. Finite geometry
corrections f; and f,,; are also applicable for linear elastic anisotropic
materials. However, for this approach the functions represent not only
the finite geometry, but also anisotropy effects on SIF. Therefore, f; =
f(a;j,a/w) and f;; = gla;;,a/w) with a/w representing the finite
geometry contribution.

o - Feos(f)y/maf;

1 wt 6
Fsin(p)\/maf
= # )

Additionally, as derived by Sih et al. [20] and discussed in Azhdari
and Nemat-Nasser [54], strain energy release rates for each mode (G,
and G;;) can be calculated from the corresponding stress intensity fac-
tors (K; and K;;) for an anisotropic body with compliance coefficients
a;;, as displayed in Eq. (8). Similarly to Eq. (1), linear elasticity under
plane stress is assumed.

-K, \/7;‘1221’" [K1(M1+M2)+Ku]

{ Gl } — I‘IHZ\/; (8)
G Ko Voo I | Kirbats ek
1175411 Vr

However, when dealing with composite material failure, stress com-
ponents are commonly evaluated at the material directions defined by
the 12 coordinate system. Egs. (9) and (10) show stress components
at material directions, as a function of the ply orientation angle a in
relation to the crack directions (x, y) as displayed in Fig. 1. Similarly,
tangential stress components can be evaluated by performing plane
stress rotations on the global tensor components xy, for any given
direction 0, as shown in Eq. (11).

o = cosz(a)axx + sinz(a)ayy + sin(2a)zy,y,. 9
0y = sinz(a)trxx + COSZ(a)O'yy = sinQa)z,,,. (10)
gy = sin%(0)o,, + cos?(0)a,, — sin(20)c,,. @an

2.2. Mixed-mode fracture criterion

In-plane crack extension under mixed-mode can be predicted by
different criteria through combination of K; and K;; in a scalar func-
tion that describes failure [55]. In the isotropic case, crack extension
occurs at the maximum tangential stress [15] or maximum tangential
strain [56] directions, which are related to the maximum SERR [57].
However, for composite laminae, strength and toughness might depend
on orientation. Buczek and Herakovich [21] evaluated the ratio be-
tween stress and strength at a critical distance r, for all 6, thus defining
the crack extension direction. Similarly, criteria in terms of tangential
or normal strains can be defined. The following proposed model takes
into account the following assumptions:

« Tensile failure can lead to slant cracks at mixed-mode conditions;
» Compressive failure occurs along the fibre directions only.
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Fig. 1. Stress components at different orientations.

Fracture criterion can be expressed in terms of either material
directions or tangential directions around the crack tip. Substituting
Eq. (1) into Eq. (11), the tangential stress becomes as given in Box I.

The tensile failure criterion can be expressed in terms of a failure
index presented in Eq. (15), where unstable propagation occurs at the
critical angle where f, > 1. Interestingly, distance r is not required for
the failure evaluation. For the proposed model the toughness associated
with tensile failure K;(B) is assumed as constant for the plain weave
carbon fibre composite.

if 64y > 0. 15)

Conversely, compressive failure occurs along one of the material direc-
tions and is related to a micro-buckling that occurs in the reinforcement
fibres, [58]. Therefore, the associated toughness is constant, for each
direction 6 and a failure index f, is defined as in Eq. (16).

—oy \V2ar

v, ifo;; <0
noy={ X " ae)

—6221(—02’", if 055 < 0.

Critical SIF’s under mixed-mode loading, expressed in Egs. (6) and (7)
can be computed at the corresponding critical loads and loading angle
p for a MAF. These SIF components enable a mixed-mode failure en-
velope to be generated and confronted to the predicted failure criteria
predictions displayed in Egs. (15) and (16), where K; and K¢ are the
input parameters.

2.3. Finite geometry effects for anisotropic materials

Finite geometry effects can be accounted for using finite element
contour integral solutions for SIF’s at different crack lengths. An in
depth description of the SIF extraction procedure within finite elements
was performed by Shih et al. [59]. In addition, Henshell and Shaw [60]
and Barsoum [61] showed that the use of quadratic displacement inter-
polation for plane stress elements with mid side nodes positioned at 1/4
of the elements length is able to reproduce a singularity at the crack
tip, with a 1/ \/; strain interpolation along the element boundaries.
The use of quarter length mid-side nodes coupled with contour integral
evaluation is currently implemented at the commercial finite element
code Abaqus/Standard. Therefore, this procedure was employed for the
specimen’s geometry and stacking sequence. By prescribing the load F
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Similarly, substituting Eq. (1) into Egs. (9) and (10), the apparent SIFs along material directions become:
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Fig. 2. Model mesh using plane stress shell elements and rigid bodies.

for the contour integral analysis, f; and f;; expressions were obtained
directly from Egs. (6) and Egs. (7), similarly to the procedure employed
by Rikards et al. [29]. Multiple models were generated for different
crack lengths under both Mode I and Mode II load cases. Fig. 2 shows
the CTS specimen mesh, for a given load case, using 8-node plane stress
shell elements (S8R). The crack is modelled as a region of nodes that
do not share degrees of freedom, represented as a seam crack. For
this analysis, the MAF was not modelled, as it was assumed a rigid
body constraint for the external load, that is applied at an angle p
in relation to the crack tip, shown in Fig. 2. Under this methodology
finite geometry factors are a function of both geometry and material
properties.

3. Experimental set-up
3.1. Specimen manufacturing

Compact Tension-Shear (CTS) specimens were manufactured by the
Resin Transfer Molding process using a woven, plain weave, carbon

fibre fabric (Hexcel® HexForce™ AGP193-P) and Huntsman Araldite®
LY 5052 epoxy resin, mixed with Huntsman Aradur® 5052 hardener.
A [0],¢ layup was used with an average laminate thickness of 3.84 mm,
so that the effective compliance of the laminate could be analytically
analysed as a single lamina, given that all plies share the same ori-
entation. Frossard et al. [62] and Furtado et al. [4] showed that for
thin unidirectional laminates the critical SERR increases approximately
linearly with the ply thickness. However, throughout this study, the
effects of different laminate thickness values were not addressed and
all specimens share an average ply thickness of 0.24 mm. Cure cycle
consisted of 24 h at room temperature, followed by a post cure cycle
of 4 h at 100°C. The same constituents and procedures were used for
the specimens in Fuga and Donadon [63].

Mechanical characterization tests were performed for tensile and in-
plane shear using ViC-Gauge image acquisition system so that strains
could be computed using GOM Correlate DIC software. Tests were
performed under displacement control using a ZwickRoell tensile test-
ing machine EXMACRO-H02 with a 250 kN load cell. Table 1 shows
the lamina material properties obtained from performed tests under
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Fig. 3. CFRP specimen on Arcan device for mixed-mode fracture.

Table 1

Material properties for woven composite lamina.
E,, [GPa] E,, [GPa] G,, [GPa] Via
58.64 58.64 2.57 0.06

ASTM standards [64,65]. CTS specimen were machined to the geometry
displayed in Fig. 1. Notches of approximately 0.5 mm thickness were
made using a circular saw, while the tip of the notch was sharpened
using a razor blade. Specimens were loaded through three 8 mm holes.
Two notch sizes were used, where the length g, = 30 mm is referred to
CTS specimen, while the length g, = 40 mm is referred to as the CTSL,
with the L in the acronym standing for the longer notch version. Both
configurations share the remaining dimensions such as height, width
and thickness, of 90 mm, 65 mm and 3.84 mm respectively.

3.2. Modified arcan fixture

A MAF was designed to provide in-plane mixed-mode fracture load
cases, as shown in Fig. 3. The figure shows the CTS specimen loaded
into 6 load cases, ranging from pure opening fracture at loading angle
f# = 0° to pure sliding at § = 90°. The device was manufactured from
a quenched 4340 steel alloy and allows for mixed-mode conditions for
AP = 15° steps. A 100kN capacity MTS hydraulic testing machine was
used with the standard fracture mechanics clevis grips (Model 640)
under displacement control.

To evaluate strains and crack position during the tests, the experi-
mental testing set-up shown in Fig. 4(a) was used where a Video Gauge
data acquisition system (Imetrum) records a video file synchronized
with load and displacement data from the MTS machine. Video gauge
system output allows for calculation of displacements, rotations and
strains using a point-tracking algorithm. Additionally, video file enables
frames to be exported and analysed using DIC GOM Correlate software,
so that the strain field can be visualized as field variable. Crack length
evolution was monitored by visual inspection through triggering of
a crack marker. Imprinted scales were positioned on the specimen
as displayed in Fig. 4(a). A DSLR camera connected to a monitor
provided an enhanced view of the crack length scale for accurate
crack measurements. Fig. 4(b) shows the load, displacement and crack
marker outputs for a representative specimen under mode I fracture.

3.3. SEM and micro-CT analysis

Scanning electron microscopy (SEM) analyses were performed to
characterize the fracture surfaces. To perform this analysis, the char-
acterized failure region in each tested specimen was previously coated
with a thin layer of gold ions by the sputtering process in a Quorum
Q150R ES equipment. The observation and interpretation of the physi-
cal aspects resulting from failure via crack propagation were performed
using a TESCAN scanning electron microscope model VEGA 3 XMU.
Imaging was conducted using an acceleration voltage of 5-10 keV.

X-ray microtomography (micro-CT) analyses were performed to in-
vestigate/localize internal damage and crack morphology. These analy-
ses were conducted using a Tomography imaging parameters were 0.4x
objective lens, 160 kV/10 W source settings, 3 pm pixel size ensuring
a nominal resolution of 9 pm, 3D spatial resolution with a complete
scan cycle of 1000 projections, exposure time of 2 s, detector resolution
of 1024 x 1024. The equipment used was the XRADIA (currently
C. ZEISS), model Xradia Versa XRM - 510, and a micro-computed
tomography scanner (FINEP process n° 01.12. 0150.00).

4. Results

4.1. Finite geometry functions

Finite geometry effects for the proposed layup are displayed in
Fig. 5 for crack lengths of 30 mm to 55 mm, at 5 mm steps. Results
showed a similar trend when compared to the isotropic finite geometry
solutions proposed by [66] for acrylic (plexiglass) specimens. For mode
I loading, a similar behaviour is expected as the laminate Poisson’s ratio
approaches zero and E;; = E,,. However, for mode II the orthotropic
material displays a reduced shear modulus G|, when compared to the
isotropic counterpart, resulting in lower SIFs.

Dashed lines represent the fitted expression for finite geometry
effects on CTS specimen, for this specific layup configuration, and
expressed in Egs. (17) and (18).

fi(ay %) = 1 L (0.4972¢0029) a7
Tw

fir (a,-j, 2) = ! — (-2.4(107)a” + 6.8(107%)a + 0.657) . 18)
w - =

w
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(a) Experimental set-up

1 Video gauge system camera
2 DSLR Camera

3 Hydraulic control system
4

5
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Fig. 5. Finite geometry and anisotropy effects.

4.2. Load-displacement data

Load-displacement data are shown in Fig. 6 for CTS and CTSL
specimens with only one of the two specimens for each loading config-
uration displayed. For both notch sizes, fracture followed by complete
separation occurred for loading angles (f) between 0° and 45° only,
while specimens loaded at 60° and 90° showed multiple cracks and
distortion. A non-linear behaviour in terms of load and displacements
was observed as f increased. Despite the brittle behaviour of carbon
epoxy laminates, the dissipation of micro cracks before a critical load
is pronounced for shear dominated scenarios leading to a progressive
energy dissipation, as discussed in [31,41,67]. Fig. 6 also shows the

relation between maximum load for each specimen configuration and g
as well as the relation between normal and tangential load components.

Crack propagation direction and failure modes are displayed in
Fig. 7, for both specimen configurations. In the image, laminates are
painted with a speckle pattern due to the DIC requirements for strain
processing. Specimens loaded with g < 30° displayed an approximately
self-similar extension. For § = 45° an initial inclination on the crack
path was observed for both CTS and CTSL. Experimental results sug-
gests that initial crack extension occurs at an angle, until a critical value
from which crack propagation follows one of the orthotropy directions.
For loading # > 60°, cracking due to compressive failure was observed,
as displayed by the green arrows. From the images it is clear that
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Fig. 7. Failure modes for CTS and CTSL specimens.

compressive failure showed a crack path aligned with the woven fibre
orientation (vertical).

4.3. Strain fields — DIC

Evolution of normal strains as the crack propagates is displayed in
Fig. 8, for the CTSL specimen under mode I. DIC plots show that strains
along material direction 1 are concentrated at the crack tip as the crack
advances.

Strain field under mixed-mode conditions were also generated. Fig.
9 shows principal strain for all six load cases, for the CTS specimen.
Maximum principal strains are displayed, so that the combination of
all tensor components can be easily visualized in a single variable.
Due to the in-plane shear compliance, maximum principal strain fields
are directly dependent to the shear strain magnitudes. The image also
shows the correlation of experimental DIC strain data with analytical
solutions, using Eq. (5) and the corresponding SIFs from Egs. (6) and (7)
and that analytical predictions are able to account for the orthotropic
effects of the laminate. Strain fields are displayed for CTS specimens,
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however a similar profile is obtained for the CTSL configuration, with
changes in strain magnitudes only.

Normal strain ¢;; for points along a line in the original notch
direction were plotted as a function of distance r for f = 0°, 30° and
45°, at 3kN and 9kN loads, for specimen CTS (Fig. 10). These angles
are displayed, as the normal strain magnitudes are greater for mode
I dominated load cases. Under the assumption of linear elasticity and
at the vicinity of the crack tip (SIF dominated region), the opening
strain profile predicted by Eq. (5) displays a good correlation to the
experimental profile, therefore indicating that a SIF based fracture
criterion could be established.

4.4. R curves

Load cases with f < 45° were used to generate R curves, as an
approximately self-similar condition was obtained. Resistance at mixed-
mode was evaluated assuming a combination of SIFs evaluated at the
load values that crack extension was observed, Eq. (19). The equivalent
mixed-mode fracture toughness for tensile failure K! displayed is only
valid for conditions where orthotropy directions are aligned with the
crack path for a self-similar crack extension. This is a direct result of

the evaluation of strain energy release rate from Eq. (8) with G;, =
G+ G ;. Furthermore, for the toughness K! expression to be obtained,
data on the load, crack length and finite geometry factors are needed.

K!(a) = \/K3(F,a) + K2 (F.a) 19)

Fig. 11 show that for mode I, crack extends at a critical SIF of
approximately K! = 1050 MPay/mm for the CTS and K! = 1300
MPay/mm for the CTSL. However, as the mixed-mode condition is
introduced, a rising R-curve is observed. Similarly, Fig. 11 shows the
resistance in terms of the SERR.

Although a detailed characterization of fracture toughness and R-
curves under mixed-mode loading is not available for the same woven
carbon fabric material system, the present study reports toughness
values that are consistent with those found in multiple publications
from the same research group [63,68,69]. Specifically, the reported
mode I fracture toughness values (K; ) are 1582.4 MPay/mm, 1260.4
MPa+/mm, and 1331.8 MPa\/nH, respectively, calculated from the
critical strain energy release rate using Eq. (8). In addition, a compari-
son between average toughness values for composite materials reported
on the scientific literature is found at Monticeli et al. [45].
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4.5. Fractographic analysis

Fig. 12 shows a Scanning Electron Microscopy (SEM) image with
a 35x magnification for specimens loaded at § = 0°, 45° and 90°.
Fibre breakage is the dominant failure aspect for specimens loaded
in pure mode I, resulting in self-similar crack propagation. For g =
45°, cracking initial direction is not collinear with the notch, rather
it develops an alternating pattern of failure along the local material
directions 1 and 2, resulting in the path displayed in Fig. 7. Arrows
in yellow represent the predicted crack extension direction using the
novel fracture criterion, further discussed in Section 4.6. Under mode
II loading, p = 90°, cracking due to compressive failure was initially
observed. As the specimen was subjected to further deformation, tensile
failure cracks were also observed, as indicated in Fig. 12.

Fractographic analyses were first carried out on specimens tested
in the CTS configuration in Mode I (0°), Mixed Mode (45°) and Mode

II (90°). Fig. 13 shows the three-dimensional reconstruction and corre-
sponding sections of the top view (XY view) and side view (XZ view) of
the fracture. It can be seen that the crack has passed through all layers
without any geometric effect. There is a tendency to follow the fibre
architecture, as can be seen in Fig. 12, where the fracture often occurs
above or below the plane of propagation for transverse fibre fractures.
This is due to the vertical fracture at the fibre/weft matrix interface
(90°) being blocked by the warp (0°) and concentrating the tension
for fibre fracture, causing fibre stretching and subsequent fracture and
abrupt decay of the force reactions. The broom pattern observed in Figs.
12 and 13 and in cross-ply laminates is derived from the degree of ply
splitting that occurs before fibre breakage. For the laminate subjected
to pure shear (Fig. 13c), the internal regions of the material show
compression in the vertical direction below the crack and tensile failure
at 90° in the upper part of the crack. A series of delamination layers
caused by deformation can also be observed in the region in front of
the crack. There are also delamination layers in the compression region
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(opposite the crack tip). In some cases, this damage mechanism was
very close to both fronts, making it difficult to accurately control the
influence of compressive stress for more extensive crack lengths.

4.6. Proposed fracture criterion predictions

Fig. 14 shows the predictions for the proposed fracture criterion
assuming toughness values of K! = 1050 MPay/mm and K¢ = 2300
MPa+/mm for the CTS specimen and K! = 1300 MPay/mm and K¢ =
2300 MPaW for specimen CTSL. In the image, dashed lines represent
the maximum load until fracture due to tensile failure f, = 1, while
dotted lines show the corresponding results for compressive failure
f.(0) = 1. Maximum load for each load case is assumed as the minimum
load value between the two criteria. Proposed model indicates that for
specimens loaded with g < 50°, tensile failure is expected for both
notch sizes, while for f > 50°, compressive failure is the dominant
failure mechanism, as observed experimentally. Furthermore, crack
initial propagation direction for tensile failure increases with loading
angle, until the compressive failure limit, from which point cracks
propagate at the direction § = —90°. Additionally, the maximum load
for different mixed-mode conditions displayed a good correlation with
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experimental data using the fracture toughness parameters obtained
from the R-curves.

Finally, the proposed fracture initiation criteria predictions were
compared to other methodologies applicable to anisotropic materials.
Fig. 15 shows the corresponding SIFs combinations under mixed-mode
that lead to fracture initiation. Experimental data were obtained us-
ing Egs. (6) and (7) at the maximum load condition. MTS, SED and
RIS stand for Maximum Tangential Stress, Strain Energy Density and
Reinforced Isotropic Solid criteria.

From the image it is clear that the introduction of a constant fracture
toughness parameter for tensile failure K!(#) in Eq. (15) recovers the
MTS criterion for anisotropic materials. However, it is important to
express that the MTS criterion shown takes into account material
anisotropy on the stress field, differently from the MTS criterion applied
to isotropic materials. Similarly, the RIS model, proposed by Fakoor
and Khezri [70] and Khaji and Fakoor [71], where stress tensor com-
ponents are scaled according to the level of anisotropy and isotropic
fracture initiation criteria are employed on the corresponding stress
fields, is unable to represent compressive failure under mode II. Finally,
minimum SED criterion for anisotropic materials, was plotted over
experimental data. With the exception of the proposed criterion, other
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envelopes fail to describe fracture under mode II loading for the tested
specimen configurations, as different failure mechanisms occur. There-
fore, a single toughness, strain energy density or strain energy release
rate parameter is not sufficient to describe the complete envelope.
The proposed criterion allows for different failure mechanisms to be
accurately predicted, as shown by the correlation with experimental
data. Moreover, the proposed criterion includes a stress description
definition, which is commonly used to evaluate failure in composite
materials in terms of local coordinates. Interestingly, SED criterion
coupled with anisotropic stress field description provided a better
correlation with experimental data on scenarios with tensile failure,
indicating that the proposed methodology can be derived into a SED
criterion with multiple parameters as well.

4.7. Off-axis laminate

A final validation of the proposed model was used for a mode I load
case on a CTS specimen with off-axis stacking sequence(+[45°]). Fig. 16
shows the load—-displacement data for the tested specimen, as well as
the principal strain field plot for three different stages of propagation.
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Assuming the same fracture toughness value for the CTS specimen
K! = 1050 MPa /mm coupled with the finite geometry factor for this
layup f; 2.53, obtained through FE contour integral analysis, a
critical load of 10.7kN was predicted. With respect to the experimental
value of 11.5kN, the error is within 7%. In addition, the analytical
principal strain profile at the maximum load, Fig. 17(b), also correlates
with experimental strain-field from Fig. 16.

Interestingly, the proposed model predicted a self-similar crack
extension, as the maximum tangential stress occurs at § = 0, as shown
in Fig. 17(a). SEM showed the alternating pattern between weft and
warp fibre fracture under mode I for the off-axis laminate, as shown in
Fig. 18, with a self-similar crack extension on the macro scale.

5. Conclusions

This paper investigated failure mechanisms associated with notched
woven reinforced composite laminates under in-plane mixed mode
loading. Firstly, the characterization of the strain field using DIC tech-
niques showed that stress and strain field intensity can be accurately
represented with a (1/ \/;) function at the vicinity of the crack tip.
Furthermore, using finite element contour integral analysis, the finite
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geometry and corresponding stress intensity factors, provided a good
correlation between measured and analytical strain fields for mixed-
mode applications. Following the stress and strain-field description,
loads required for crack extension were evaluated using the testing
methodology and a novel theoretical fracture initiation criterion. Ex-
perimental results showed that for fracture modes dominated by mode
I failure, cracks propagated in a quasi self-similar form. Differently, for
mode II dominated load cases, compressive failure along the fibre direc-
tion was observed, perpendicular to the notch. For some mixed-mode
conditions (f = 45°) specimens showed a curved crack path, displaying
an alternating pattern of tensile failure along material directions. The
proposed criterion, coupling tensile and compressive failure, resulted
in a model that can accurately predict the maximum load capacity and
describe inclined crack propagation directions at mixed-mode fracture.
Finally, for specimens where the effect of initial crack direction are
negligible (f < 45°), R-curves were generated under the assumption of
a self-similar crack evolution. Tensile toughness of K! = 1050 MPa\/ﬁ
and K! = 1300 MPa/mm were obtained for the specimens. Regarding
compressive failure, a toughness of K¢ = 2300 MPay/mm was used to
describe failure along the fibre directions in both specimens.

This research allowed for the description of different failure mech-
anisms on woven composites due to the different testing procedures
employed. The choice of specimen configuration, coupled with the
designed MAF and the use of DIC techniques led not only to the strain
field correlation but also R-curves and fracture initiation envelopes to
be generated. In addition the use of Micro-CT and SEM contributed
to the physical description of failure mechanisms. From these in-depth
analysis a novel physically based fracture criterion was proposed. Over-
all, the results of this study improve the understanding of mixed mode
fracture in plain weave CFRP laminates, with particular relevance to
the design and assessment of thin-walled composite structures under
planar stress conditions.
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Finally, this paper introduces a novel methodology for the descrip-
tion of fracture in anisotropic materials under mixed-mode, through the
evaluation of stress fields at different directions. The authors recom-
mend future research to be carried out on the extension of such crite-
rion introducing different physically based failure criteria into a SIF de-
scription for the fracture locus under mixed-mode as in uni-directional
composites or multi-directional layups for example.
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