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Prof. dr. R. Babuška, Technische Universiteit Del�
Prof. dr. A. A. Stoorvogel, Universiteit Twente
Prof. dr. H. Nijmeijer, Technische Universiteit Eindhoven
Prof. dr.-ing. habil. B. Karpuschewski, Otto-von-Guericke-Universität Magdenburg
Prof. dr. ir. J. Schoukens, Vrije Universiteit Brussel
Prof. dr. ir. J. Hellendoorn, Technische Universiteit Del�,reservelid

�e research reported in this thesis is part of the research program of the Dutch
Institute of Systems and Control (DISC). �e author has successfully completed
the educational program of the Graduate School DISC.

�is researchwas �nancially supported byMicroNed and theDel�Center ofMecha-
tronics and Microsystems.

ISBN: 978-94-91104-07-7

Copyright © 2011 by R.S Blom.
All rights reserved. No part of the material protected by this copyright notice may be re-
produced or utilized in any form or by any means, electronic or mechanical, including pho-
tocopying, recording or by any information storage and retrieval system, without written
permission from the copyright owner.

Printed in the Netherlands.



i
i

“main” — 2011/4/11 — 8:51 — page v — #5 i
i

i
i

i
i

Acknowledgments

�ose close to me will knowme that the decision to pursue a Ph.D. has been a very
conscious one. Over the past years, although having experienced both high and low
points, the enthusiasm for doing Ph.D. research has never jaded.�is had not been
possible without the people around me, who contributed in di�erent ways.
First of all, I am indebted to professors Paul Van den Hof and Rob Munnig

Schmidt as my promotors. �eir guidance and sharp insights have allowed me to
develop as a person and to improve my work. I am also grateful to professor Bern-
hard Karpuschewski for accepting me as a Ph.D. candidate. On day-to-day basis, I
have received the supervision of Hans Langen, André Hoogstrate andMarcel Acht-
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Chapter 1

Introduction and research goal

1.1 Introduction

�e advances in miniaturization have had an undeniable impact on our modern
existence. It is hard to imagine our current daily lives without the e�ects of minia-
turization on how we work and communicate, how we travel, how we treat the
sick, and the way we live and relax. For a large part, this is owing to the enor-
mous progress in the lithographic technologies. �ese enabled the fabrication of
complex microelectronic systems, micro-electromechanical systems (MEMS), and
micro-optoelectromechanical systems (MOEMS), resulting in a plethora of appli-
cations in many disciplines and industries. Still, the lithographic technologies have
some principle shortcomings, limiting the types of miniaturized components that
can be fabricated. �e limitations are found in the inability of these techniques to
produce components with arbitrary 3D features, the small range of materials that
can be processed, and the ine�ciency for smaller batch sizes. On the other hand,
there is a still growing demand for even smaller and increasingly complex devices,
requiring several mechanical, �uidic, electronic and/or chemical functions inte-
grated together. Examples of such miniature products can be found in many areas:

Medical �e body has limited place for ‘extra’ hardware, so implants like pain relief
devices, drug delivery systems, hearing aid devices and various intelligent in
vivo health monitoring or diagnostic devices are preferably as small as possi-
ble;

Aerospace In particular micro sensors, �ow control devices, micro-turbines, and
microscale fuel cells have been mentioned as applications [103];

Automotive In this area, small components are required for convenience, safety
and entertainment. Popular examples are micro-parts for airbags, fuel injec-
tion nozzles and various actuators (ABS, headlight / mirror adjustment);

1
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1. Introduction and research goal

Electronics & Communications In general, interest exists in miniaturized con-
sumer products, such as digital cameras and mobile phones, combining sev-
eral functions energy-e�ciently. Other driving applications are found in �bre
optic components.

�is trend emphasizes the need of a wide range of reliable precision manufacturing
techniques in the micro-domain. Recognition of this need has led to the devel-
opment of several micro-fabrication techniques, including laser beam machining
(LBM),micro-electric dischargemachining (EDM),micro-electrochemicalmachin-
ing (ECM) and micro-milling, together with replication techniques for serial man-
ufacture, such as micro-injection moulding, and hot-embossing.
In the past years, there has been a considerable amount of research progress

in the development and improvement of these techniques. Multiple authors have
reviewed and classi�ed the broad range of micro-manufacturing techniques, in-
dicating the distinct advantages and disadvantages of the various techniques over
the others for given applications. A comprehensive comparative analysis of micro-
manufacturing techniques is given by Masuzawa [111], while Alting et al. in [8]
analyze the �eld of micro-engineering in general.

�e focus in this thesis is on micro-milling.�is micro-manufacturing process
is particularly attractive because of its relatively large material removal rates com-
pared to e.g. EDM and LBM, and its �exibility in producing di�erent component
sizes, shapes, features, and the ability to machine a variety of materials, including
most metals and plastics. It is suitable for machining complex 3D micro-structures
with high aspect ratios, and is mentioned speci�cally for its applicability for the
fabrication of moulds for micro-forming processes [27].

�is thesis reports on research into new directions for model-based process
monitoring and control of the process ofmicro-milling, performedwith setups hav-
ing a spindle with active magnetic bearings (AMBs). �e intent of this chapter is
to introduce the reader to this research. In Section 1.2, we will brie�y review the
process of micro-milling.�e key challenges encountered inmicro-milling are dis-
cussed, as well as the main trends in the development of micro-milling machinery.
Subsequently, in Section 1.3 a concise overview is given of the vast amount of results
available for process monitoring and control in conventional manufacturing. From
there, the implications of scaling for process monitoring and control are discussed.
�e state of the art of AMB spindle technology is covered in Section 1.4. �e ac-
tive magnetic bearing technology itself will be introduced, accompanied with an
overview of available results in which the active nature is employed for monitoring
or control purposes. Section 1.5 is the pivotal part of this chapter. In this section,
the central research question is speci�ed in more detail and the goal of this thesis is
laid out.�e concluding Section 1.6 is added as a guide to the reader and provides
an overview of the content of the subsequent chapters.

2
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Micro-Milling: scaling of the cutting process to the micro-domain

(a) (b)

Figure 1.1: Examples of small milling tools. Fig (a): A line up of various tools, from le� to
right: ∅ 0.5 mm and ∅ 0.3 mm tools with CrCN coating (for cutting of copper),
and∅ 0.2 mm,∅ 0.3 mm, and∅ 1.0 mm tools with TiAlN coating (for cutting of
steel). Fig (b): A zoomed-in comparison of the tooltip of a micro-mill with∅ 0.2
mm (le�) and that of a mill with ∅ 1.0 mm (right).

1.2 Micro-Milling: scaling of the cutting process to the
micro-domain

Milling is the manufacturing process that involves the cutting and shaping of ma-
terials into products (workpieces) using rotating tools with de�ned cutting edges
(milling tools). Material removal happens through the formation of chips at the
cutting edge of the tool, while the tip of the rotating milling tool traces a contour
along the workpiece (tool path). A machine tool capable to perform a milling job
(milling machine) uses a spindle to provide rotation of themilling tool. It has several
axes of motion to provide the relative movement of the milling tool and workpiece.
�e technology referred to as micro-milling is simply scaled down milling, which
means that themilling process is performed using tools with rather small diameters
(see Figure 1.1). �ere is no strict de�nition, but common understanding is that a
micro-milling tool has a radius smaller than 1 mm [112].

�e start ofmicro-milling research can be traced back to themid 1990s. To date,
it is still a very active area of research with many open questions. In this section,
we will not give a full overview of the current state of research, for this the reader
is referred to excellent surveys by Chae [31], Liu [104] and Li [98]. Instead, we will
highlight the main challenges and issues with the micro-milling process. Indeed,
reducing the tool diameter into the range below 1 mm results in a number of issues
that makemicro-milling fundamentally di�erent from conventional machining. In
Section 1.2.1 we discuss the most prevalent of these. In response to these issues,
some trends can be observed in the development of machinery for micro-milling,
which will be covered in Section 1.2.2.

3
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1. Introduction and research goal

1.2.1 Main issues in micro-milling

Compared to conventional — macro-scale — milling, the material removal mech-
anism of micro-milling is similar, i.e. material is removed through the formation
of chips at the de�ned cutting edges of the rotating milling tool. However, there
are some essential di�erences, which arise due to the e�ects of scaling. As a result,
the chip formation process is di�erent with scaled-down milling tools, while also
several other factors start to play a more dominant role at these reduced tool diam-
eters. In this section we will review some of the main issues which concern the chip
formation, the required high rotational speeds, tool life, precision, and workpiece
quality.

Chip formation

�e �rst e�ect of scaling of themilling process to themicro-domain that wewill dis-
cuss, is the impact of the limitations on the achievable sharpness of cutting tools.
�is limit depends on the properties of the tool material, where hard metal (tung-
sten carbide) tools aremost commonly used tomill metallic materials. With careful
grinding, edge radii of 2–3µm can be reached with ultra-�ne grain tungsten car-
bide tools. Lower values are unlikely, with its grains being nearly 1µm in diameter
[142]. Although such tools can be considered very sharp at the macro-scale, at the
micro-scale where chip thicknesses are in the orders of micrometers, the cutting
process appears to take place with a rather blunt tool1, see Figure 1.2.�e implica-
tion of this, is that the chip formation process at the micro-scale is fundamentally
di�erent compared to milling at the macro-scale. In recent years, several studies
have been carried out to gain better understanding of the chip formation process
in micro-milling and the characteristics of the cutting forces during micro-milling
[88, 18, 171, 185, 96, 25].
An important phenomenom thatwas noted inmicro-chip formation is theMin-

imum Chip�ickness (MCT) e�ect [75, 179, 142, 87, 172]. In essence this e�ect can
be described as follows. If the uncut chip thickness is smaller than some critical
value (the MCT), no chip is formed, but instead the workpiece material is forced
under the tool and deformed. When this happens, the cutting process can become
intermittant, i.e. with each tool pass the uncut chip thickness accumulates, the ma-
chining forces increase, and high tool wear is incurred [50]. �is happens for a
number of passes, until the uncut chip thickness exceeds the MCT. Only then a
chip is formed.�e large forces and high tool wear experienced in this cuttingmode
clearly indicate that cutting with chip loads below the MCT should be avoided.
Studies show that the sharpness of the cutting tool predominantly determines

the MCT, while the value also depends on the properties of the workpiece material
[179, 172].�e reported ratio of the MCT to the cutting edge ratio is in the range of
10 − 40% [87, 172].

1In literature this is referred to as the e�ective negative rake angle e�ect, see e.g. [104, 44].
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uncut chip
thickness

workpiece

tool

(a)

uncut chip thickness

tool

workpiece

r

(b)

Figure 1.2: Tool-workpiece interaction in macro-scale cutting (a) and in micro-scale cutting
(b). In micro-scale cutting the edge radius r is large compared to the uncut chip
thickness.

ap
ae

vc

n

v f

Parameter Unit Symbol
Number of teeth - N
Tool diameter mm d
Rotational speed rpm n
Feed speed mm/min v f
Depth of cut mm ap
Width of cut mm ae
Feed per tooth µm fz = v f

n⋅N ⋅ 103
Cutting speed mm/min vc = 1

2n ⋅ d
Figure 1.3: De�nitions of common cutting parameters.

High rotational speeds

Micro-milling is mostly carried out at very high rotational speeds, o�en at several
tenthousands revolutions per minute (rpm) [134, 96, 114, 103], or even at speeds of
over 120, 000 rpm [50, 143, 21]. �e �rst reason behind this is of an economical
nature. When the tool diameter is reduced, the material removal rate drops corre-
spondingly. Increasing the rotational speeds allows for compensating for this loss.
�e second reason is more fundamental. Many decades of research and experience
in conventional machining have led to recommendations for cutting parameter se-
lection for high speed milling, including recommendations for the cutting speed
for machining di�erent materials (the cutting speed is de�ned as the surface ve-
locity of the cutting edge of the milling tool, see Figure 1.3). �ese guidelines are
assumed to be applicable also for themicro-milling process. However, when reduc-
ing the diameter of cutters, obviously the rotational speed needs to be increased to
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Tool diameter Spindle speed (rpm)
Tool steel Aluminum

20 mm 3, 000 − 7, 500 7, 500 − 30, 000
2 mm 30, 000 − 75, 000 75, 000 − 300, 000
0.5 mm 120, 000 − 200, 000 200, 000 − 800, 000
0.1 mm 600, 000 − 1, 000, 000 1, 000, 000 − 4, 000, 000

Table 1.1: Optimal rotational speeds for decreased cutter diameters.�e given numbers are
based on recommended cutting speeds for high speed cutting of tool steel (200 −
500m/min) and aluminium (500−2, 000m/min).�ese ranges are indicative and
vary with tool geometry, cutting conditions and hardness of workpiece material.

maintain the same cutting speed. Table 1.1 shows a simple calculation, illustrating
that to maintain optimal cutting speeds with tools with diameters of less than 0.5
mm when cutting materials like tool steel and to an even greater extent aluminum,
rotational speeds far above 200, 000 rpm are needed. Such speeds exceed the limits
o�ered by state-of-the-art spindle technology. It is for this reason, that numerous
attempts have been done to �nd new solutions for extremely high speed rotation.
High rotational speeds also imply that the feedrate should be high enough.�is is to
keep the uncut chip thickness per tooth above the MCT.�erefore, micro-milling
machine tools also require high velocities and accelerations of the feed axes [179].

Tool life

�e wear and breaking mechanism of micro-milling is very di�erent compared to
macro-scale tools [157]. During usage, macro-scale tools loose their form by wear2,
and cutting edges may chip o�, generally one by one, and only partially. As a result,
the performance of the milling process deteriorates gradually. �e end of tool life
is met when the performance no longer meets some de�ned quality standard.
In micro-milling however, premature catastro�c breakage of the sha� is one of

the major factors limiting the tool life [157, 134]. �e unpredictable tool wear and
premature tool failure are serious issues in micro-milling. In an early case study by
Li [98], a micro-mould was milled, which involved the removal of only ±4 mm3 of
material. Nonetheless, it was reported that while executing this micro-milling task,
12 milling tools broke. O�en when a tool breaks, the process needs to be restarted,
since accurately realigning workpiece and tool is hardly feasible and the incurred
loss of precision is generally unacceptable.
Hence, understanding of underlying causes of tool breakage in micro-milling

is needed to maintain an e�cient process. Rahman et al. [134] attribute premature
tool failure to non-uniform tool wear, leading to a sudden increase of the cutting

2In conventionalmilling several wearmechanism are known. See [9] for a comprehensive overview.

6



i
i

“main” — 2011/4/11 — 8:51 — page 7 — #17 i
i

i
i

i
i
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forces. Tansel et al.[157] mention several causes for tool breakage, including fatigue
related breakage, clogging of the cutting edge, and excessive stress related breakage.

Precision

Miniaturization puts a strong requirement on the precision of manufacturing pro-
cesses. Indeed, in general when components are scaled-down, the demands on the
relative tolerance level (i.e. the tolerance to feature size ratio) will remain the same.
In this regard, micro-manufacturing is tightly connected to precision manufactur-
ing. In precision manufacturing macro-scale components (e.g. mirrors and lenses
for optical applications) are machined with extremely high relative tolerance levels
of 10−7 or smaller. On the other hand, in micro-manufacturing components with
dimensions of several millimeters and feature sizes in the micrometer range are
machined with relative tolerance levels of 10−3 to 10−5, requiring absolute precision
levels in the same range as with precision manufacturing.
However, as a result of the reduced dimensions of the milling tool, the suscepti-

bility of themicro-milling process for various error sources increases. Hence, while
the process is scaled-down, it becomes increasingly more di�cult to maintain the
absolute precision of the process, let alone to satisfy the relative tolerance speci�ca-
tion. In the remainder of this section we will illustrate this by discussing the three
main sources of error: tool runout, tool de�ection, and machine vibrations.

Tool Runout Tool runout occurs when a milling tool rotates around another axis
than its main symmetry axis.�ere are two main causes for runout to occur.
�e �rst is related to the dynamics of the milling machine and is caused by
the dynamic response of the machine to a mass unbalance in the rotor. �e
second is related to alignment errors of the tool, the toolholder and the rotor.
While the e�ect of runout in conventional milling is small, with the reduced
uncut chip thicknesses inmicro-milling, the e�ect of runout increases. When
cutting with milling tools with two cutting edges, it is reported that due to
run-out, the cutting process can become rather unbalanced with only one
cutting edge performing most of the cutting, while the other edge hardly
touches the workpiece [19, 45, 99]. Apart from a loss of dimensional pre-
cision, high runout is therefore detrimental to the micro-milling process. It
leads to accelerated and non-uniform tool wear, as well as large cutting force
variations, and — as a result — a serious reduction of the tool life.

Tool de�ection Reduction of the tool diameter causes the tool to become increas-
ingly more compliant.�is scaling e�ect is quite strong. Applying cantilever
beam theory, it can be noted that the sti�ness of a tool is approximately pro-
portional to the fourth power of its diameter (see e.g. [138]). With tool di-
ameters of less than 1 mm, the loss of tool sti�ness becomes very signi�cant.
Indeed, as shown by Uriarte et al. [163], in micro-milling up to 90% of the
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total compliance at the tool tip can be attributed to the compliance of the
tool itself. Reported sti�ness values for 0.5 mm diameters tools are as low as
0.3−0.7 N/µm [98]. Although cutting forces in micro-milling may only be a
few Newtons, having such a limited sti�ness, the micro-cutting tools will de-
�ect by several microns.�e loss of dimensional precision is therefore quite
signi�cant.

Machine vibrations Milling machine tools are complex dynamic systems and in
general exhibit several vibration modes. When these vibration modes are
excited — depending on the corresponding mode shape — they may cause
the tool tip to deviate from the programmed contour, leading to a loss of
precision. In micro-milling this is no di�erent than in precisionmanufactur-
ing. However, vibrations can have a similar e�ect as runout inmicro-milling:
even small vibration amplitudes at the tooltip can cause a deteriorated cutting
process, as they may cause large variations of the uncut chip thickness.
�e vibrations that arise during milling can be divided in three types: free
vibration, forced vibration, and self-excitated vibration. Free vibration is the
vibration of the machine tool under any kind of external disturbance. Forced
vibration is the response of the machine to the periodic forces that arise dur-
ing the cutting process. In particular situations, these vibrations may be self-
excitating. A vibrating tool edge leaves a wavy pattern in the workpiece a�er
removing a chip. �e spatial frequency of this wave pattern will be related
to the frequency of the vibration and the rotational speed of the tool. �e
varying uncut chip thickness experienced at the passing of the next cutting
edge, causes the cutting forces to vary with a similar frequency as the vi-
bration experienced at the previous cut, and this force in turn excites the
machine tool. Under speci�c conditions this mechanism of self-exciting vi-
brations can cause highly resonant behavior, which is generally referred to
as chatter. Chatter is a very much unwanted process phenomenon, for caus-
ing severe surface quality deterioration, tool damage and possibly machine
damage. For the micro-milling process chatter also constitutes a signi�cant
problem [30].�e excessive vibrations that arise due to chatter not only a�ect
the workpiece surface quality, but can lead to catastrophic failure.
Recently some studies on vibrations in micro-milling have been published.
An experimental study of chatter in micro-milling has been performed by
Baschin et al. [21]. Jun et al. have developed a dynamic model to predict cut-
ting forces and micro-mill vibrations, and performed an experimental study
to verify this model [81, 80].

Workpiece quality

�e quality of a machined workpiece depends on various factors, which apart from
the dimensional precision, include the surface �nish (roughness), surface integrity,
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and burr size. Several experimental studies have been carried out to �nd a relation
between cutting parameters, tool characteristics and workpiece material properties
on one hand, and the workpiece quality on the other hand (see e.g. [50, 114]).
It is noted that in particular burr formation is a dominant factor limiting work-

piece quality inmicro-milling. Inmanufacturing, burrs are the rough edges or small
pieces of material remaining attached to the workpiece a�er a cutting operation.
�e problem of burr formation in micro-milling is twofold. First, in comparison
to the uncut chip thickness, burrs arising in micro-milling are usually larger than
in conventional cutting [97, 50]. �is appears to be due to the edge radius e�ect
[97]. Secondly, burrs resulting from micro-milling are hard to remove, as removal
of burrs by secondary operations may introduce dimensional errors and residual
stresses in the component [141, 97].
A few studies have been carried out on micro-burr formation. Lee et al. [97]

studied the relationship between cutting conditions, tool life and burr size in cut-
ting of stainless steel. In a machinability study of pure copper, Filiz et al. [50] re-
port that burr formation increases considerably as the wear progresses, while lowest
burr formation occurs at low cutting speeds and high feedrates. Aramcharoen et al.
[15] have observed a relationship between burr formation and the ratio of uncut
chip thickness to cutting edge radius in micro-milling of tool steel.�ey note that
micro-milling with an uncut chip thickness equal to the edge radius gives the best
result in terms of surface �nish and burr size.�is has been con�rmed by the study
performed by Mian et al. [114].

1.2.2 Trends in micro-milling machine tool technology

To perform an accurate, reliable, and e�cient micro-milling process, special equip-
ment is necessary. In this section, we will discuss the main trends in the develop-
ments of micro-milling machine tool technology.
Following from the discussion in the previous section, it can be stated in gen-

eral that micro-machine tools need to have a submicron positioning accuracy, low
spindle runout (< 1µm), and good vibration isolation. In that sense, the similar-
ities between micro-milling machine tools and ultra-precision machine tools are
high. Indeed, it is noted that several experimental micro-milling studies are car-
ried out using precision or ultra-precisionmachine tools [168, 134, 21, 98], although
it is also seen that research groups build their own machine to meet requirements
on precision, sti�ness, damping and �exibility needed for micro-milling research
[179, 134, 142, 172, 17, 96]
A nice overview of the latest developments in micro-millingmachine tool tech-

nology is given by Uriarte et al. in Chapter 11 of [106]. Here, a discussion is given of
the main components of the micro-milling machine, like the drives, guides, mea-
suring systems, and spindle, accompanied with the most recent advances in these
components. It is noted that severalmanufacturers of ultra-precisionmachine tools
now also o�er special models for micro-milling (e.g. Kern, Sodick, Moore, Fanuc,
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Kugler, and Makino). �ese models are built to manufacture smaller components
and thus have smallerworking areas, and are equippedwith faster spindles to achieve
the required cutting speeds with small diameter tools.
An important trend in machine tool development for micro-milling concerns

the attempts to increase rotational speed capabilities of micro-milling spindles. In-
deed, as indicated in the previous section, in order to maintain acceptable cutting
speeds, the rotational speed requirements grow rapidly with reduced tool diameter.
State of the art spindle technology is able to reach rotational speeds of up to 200, 000
rpm. High precision ball bearings are most common, but air bearings are also ap-
plied [106]. Research initiatives are seen to attain even higher rotational speeds. In
[57], a rotational speed of up to 450,000 rpm is achieved by using the tool shank
itself as the spindle sha�. A friction drive with drive ratio of 9:1 is used to trans-
mit the torque from a commercially available high speed (90,000 rpm) spindle to
achieve these speeds. Other concepts that have been explored for ultra-fast rotation
are air turbine spindles [47], and AMB spindles [89].
Another noteworthy trend is the Microfactory concept [119], also referred to

as Micro/Meso Mechanical Manufacturing (M4) [48]. �e main philosophy here
is that the manufacturing of miniature components is technically better realized
by machines many orders of magnitude smaller than those used for conventional
manufacturing. �e claimed advantages of miniaturizing the equipment for the
performance and accuracy of micro-manufacturing processes are that miniature
machines are

• faster: they can accelerate faster due to lower inertia, and can rotate faster
due to lower centrifugal forces; and

• more accurate: due to higher natural frequencies, smaller vibration ampli-
tudes, and smaller thermal deformations.

Besides these technical advantages of using miniaturized machinery for micro-
manufacturing processes, also several economical advantages arementioned. Smal-
ler machines are expected to decrease �oor space requirements, reduce energy con-
sumption, improve material resource utilization, and provide higher manufactur-
ing �exibility (e.g. recon�gurability of the production lay-out). Moreover, the Mi-
crofactory concept is believed to enable on-site production of customizedminiature
products, which is expected to give a large impetus to miniaturization [119, 162].
Following this concept, numerous research e�orts are directed towards minia-

turization ofmicro-manufacturing equipment, typically combining severalmachin-
ing, inspection and assembly processes. Okazaki et al. review the concept, history
and developments of the Microfactory in [119]. �e WTEC report [48] contains a
comprehensive overview of the worldwide research activities in this area.
One of the key challenges encountered with the reduced dimensions of minia-

ture machines, is their relatively low structural rigidity, which forms an obstacle
in achieving the high demanded precision and surface �nish levels. In the Mi-
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crofactory cluster of the MicroNed program [2], this issue is addressed through
mechatronic design of miniaturized machinery and by applying modern control
approaches for disturbance suppression [95].�e MASMICRO project [1] seeks to
�nd a trade-o� between the large, but accurate conventional ultra-precision ma-
chines and the small, but fast miniaturized machines. In this project a compact,
energy-e�cient bench-top �ve axis ultra-precision micro-milling machine was de-
veloped and realized — the UltraMill [73, 74].

1.2.3 Concluding remarks

It is recognized that the process of micro-milling is a promising technology for the
fabrication of micro-parts in a wide range of materials and with arbitrary 3D fea-
tures. However, some technological hurdles need to be taken to make this technol-
ogy economically viable. More research is required to better understand the chip
formation process at the micro-scale, in order to de�ne cutting strategies and opti-
mal combination of cutting parameters. Furthermore, improved micro-tool design
is needed, targeted at extending the tool life and increasing the sti�ness. In parallel
to such studies, further improvement of micro-milling equipment will result in an
e�cient and reliable cutting process, yieldingmicro-parts with demanded precision
and surface quality.

1.3 Monitoring and control of micro-milling

It is widely accepted that sensor based manufacturing is vital to achieve low down-
time levels of manufacturing systems in conjuction with high quality levels of the
manufactured components [28]. With advanced sensors and adequate signal pro-
cessing, information about the process condition is obtained, allowing for process
optimization and control.
When scaling down the process of milling, the importance of monitoring and

control increases. Signs of problems are almost unnoticeable without the use of
special equipment.�is stresses the need for reliable systems that are able to detect
—and possibly even predict — anomalies in the process. Systems are needed that
online monitor the condition of the cutting process and the condition of the micro-
milling tool. Besides, in order to reach the desired accuracies and to obtain an
e�cient milling process, control of cutting forces, and tool de�ection is required.
�e purpose of this section is to discuss the implications of scaling down themilling
process to the micro-scale for process monitoring and control.
Monitoring and control has been a topic of research for decades in conventional

machining. Hence, in Section 1.3.1 we will start with a classi�cation of the various
types of monitoring and control in this area. Subsequently in Section 1.3.2, we will
set out the reasonswhy additional research onmonitoring and control is still needed
for the micro-milling process. �is will be accompanied with a discussion of the
progress that has been made in this area.
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MachineContour control
(servo control)

Cutting processmonitoring

Supervisory Product

and control

control

Process

Figure 1.4: A simpli�ed diagram illustrating the control hierarchy in manufacturing pro-
cesses. At the lowest level, contour control is used to let the machine trace a
prede�ned trajectory. At the level of process monitoring and control, process
variables are monitored and controlled to ensure an optimal material removal
process. Supervisory control maintains the e�ectivity and e�ciency of the ma-
chining task.

1.3.1 Monitoring and control in conventional manufacturing

Inmanymanufacturing processes a hierarchical control structure can be identi�ed.
�is is illustrated in Figure 1.4 (a re�nement of the structure proposed by Ulsoy in
[173]). Wewill clarify this structure in particular for themilling process. At the low-
est control level, the primary control objective is to let the tool trace a prede�ned
contour along the workpiece.�is is realized by coordinate motion of the multiple
motion axes of the machine tool. A trajectory is planned along the contour, and
translated to reference trajectories for the individual motion axes of the machine.
Using measurements of its actual position, each of these axes is controlled through
servo control.�e precision of a machine tool is heavily dependent on the perfor-
mance of the servo control loops, as well as on the mechanical properties of the
construction responsible for translating the motion of individual actuators to the
displacement of the tooltip. At the level of contour control, precision is improved
by performing compensation for mechanical errors, thermal deformations, defor-
mation due to tool bending, etc.
As soon as the rotating cutting tool hits theworkpiecematerial, a cutting process

starts. Control of this process forms the second level in Figure 1.4, where process
variables such as cutting forces and cutting temperature are controlled to maintain
an e�cient material removal process, yielding good quality parts. Process moni-
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toring is used to obtain relevant information about the process variables. Process
control is achieved through adaptation of the cutting parameters (like cutting depth,
cutting speed, feed per tooth).�is may be realized directly through spindle speed
variation, or indirectly through the servo control bymeans of adaptation of the con-
tour or trajectory planning along the contour (this is indicated in Figure 1.4 by the
dashed arrow from ‘process monitoring and control’ to ‘contour control’).

�e highest level of control is supervisory control. At this level, the e�ectiv-
ity and e�ciency of the machining task is controlled. Product related variables are
measured, such as precision, and surface roughness. �rough adaptation of the
cutting parameters (indicated by the dashed arrow via the ‘process monitoring and
control’ block), the objective of supervisory control is to maintain product quality
and productivity. Supervisory control also ensures correct operation and monitors
for faults and failures in either the process or machine.�is may include monitor-
ing of the tool condition, and detection of force overloads, collisions and machine
chatter [153]. In order to do this, supervisory control receives input information on
variables of the machine, the cutting process and/or information from the process
monitoring and control task (see Figure 1.4).
We will direct our attention primarily to the process and supervisory control

levels. At these levels, the degree of automated controlmay vary. Traditionally, hu-
man machine operators perform non-automated control: they use their sensory
systems to obtain information about the cutting process and machine condition,
and perform process control and supervisory control through direct intervention.
In optimizing the manufacturing process through automated monitoring and con-
trol, in general three strategies can be de�ned, with increased level of automation
(following Tönsho� in [153] and [159]):

Open-loop monitoring �e system measures one or more physical quantities. By
means of appropriate signal processing, a process variable or condition of the
machine tool is derived from these measurements. It may prompt for human
intervention in case of anomalities or faults;

Open-loop diagnostic systems �e system attempts to determine a functional or
causal relationship between a machine failure and its cause;

Closed-loop control �e systemuses sensory information according to some con-
trol law to control themachine’s actuators and/or cutting parameters, in order
to adapt the machine to changes in the process environment.

�e remainder of this section is divided into two parts, which elaborate on the
aspects of measurement and closed-loop control. Indeed, in either of the three
above mentioned strategies, obtaining appropriate measurements is of crucial im-
portance. We will further elaborate on this aspect in the �rst part. It would lead
too far to give a review here of the plethora of signal processing, fault detection
and fault diagnosis techniques that have been applied for monitoring and control
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of manufacturing processes. We will comment on results on closed-loop process
control though in the second part.

Measurement

Monitoring and control starts with the measurement of physical quantities in the
machine setup. Most commonly used in literature are direct measurement of cut-
ting forces [36] and acoustic emission[160, 46, 101], but also servo control signals,
spindle current or power signals ([161, 100, 35]), accelerations and displacements
of di�erent machine components [67, 182], and temperature signals. For more de-
tailed overviews see Karpuschewski [85], Byrne et al. [28] and Prickett and Johns
[132]. Of the mentioned sensor systems, most applied in commercial machine tools
are spindle current sensors, servo control current sensors and acoustic emission
sensors, which is related to the low cost of these sensor systems and the ease of
integration with the machine setup.
It is well accepted that information on the forces that arise during cutting pro-

cesses gives the most direct knowledge on the cutting process itself. Machine tools
in laboratory settings are therefore o�en equipped with force measurement plat-
forms, that provide direct measurements of these forces. Good and reliable mea-
surement results can be achieved with such equipment, and these are useful for
research on process characteristics and for studying optimal choices of cutting con-
ditions. However, when force signals are to be used for monitoring the process in a
production environment, there are a number of drawbacks to use such force mea-
surement platforms:

• force measurement setups are expensive (some tens of thousands of euros,
depending on the speci�cations);

• the force measurement platforms are mounted between the workpiece and
machine table, taking up space and changing the machine dynamics;

• the systems are fragile and very sensitive to overload.

�ese considerations have led researchers to �nd ways to obtain cutting force data
from other sources, such as displacement or acceleration measurements from else-
where in the machine, measurements of the spindle power, and workpiece stage
controller signals. Results on indirect force signal estimation with both model-free
and model-based estimation approaches are available. Model-free approaches are
given by Kang et al. [84], who add a piezo force sensor in the drive system of the
table, and Li et al. [102] who estimate the force signal from measurements from
a current sensor installed on the servo motor of a turning center. In the model-
based approaches, commonly the cutting force in each direction is modeled as the
state of a random walk process, which is then estimated using a state observer. A
sensorless approach has been proposed by Shinno et al. [151], who estimate the cut-
ting forces from the compensation signals of the XY stage controller. A Kalman
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�lter approach to design a state observer for the cutting forces is followed by Park
and Altintas ([10, 122]). In their research, a spindle of a vertical machining center
is �tted with three pairs of piezo-electric sensors. As an alternative to using force
sensors integrated in the spindle, Albrecht et al. [7] pursued a solution using ca-
pacitive displacement sensors, which increased the measurement bandwidth from
350 to 1000 Hz. Chae and Park [30] used the Kalman �lter approach to compen-
sate for the dynamics of a dynamometer setup, and increased the bandwidth of this
approach by adding acceleration measurements. It is observed that in all of these
Kalman �lter approaches, the state and noise covariance matrices are simply used
to tune the solution. No modeling of the force signal or noise is performed.

Control

�e objective of process control is to vary process variables (such as feed, cutting
speed, depth of cut), in order to obtain and maintain an optimal cutting process.
�is is daily practice in any machining environment and happens both o�ine and
online. O�ine process control takes place at the planning of amachining task. Pro-
cess variables are chosen to ensure a favorable cutting process, yielding parts with
good surface �nish, low burr formation, etc., at low cost.�is choice is o�en based
on expert knowledge and machining handbooks, listing recommended cutting pa-
rameters for di�erent machining tasks. Online process control is performed by an
operator during the execution of the task. Process variables such as spindle speed
and feed are changed, e.g. to avoid chatter and excessive cutting forces.
Besides this kind of non-automated process control, in the manufacturing liter-

ature also automated process control techniques have been proposed. In this com-
munity these solutions are commonly referred to as ‘adaptive control’ techniques,
although they are o�en not adaptive in the sense as used in the systems and control
community. In themanufacturing literature, process control techniques are broadly
classi�ed into two types: adaptive control with optimization (ACO) and adaptive
control of constraints (ACC) [135, 153, 173]. ACC systems are essentially feedback
systems inwhich the control objective is to regulate the cutting force, spindle power,
or some other process quantity at a preset value, by varying cutting parameters like
the feed rate and velocity. �e control objective in ACO systems is to optimize a
prede�ned performance index, e.g. the material removal rate or the tool wear rate,
and adjust in the cutting parameters to achieve that goal.

1.3.2 Monitoring and control of milling in the micro-domain

As stated in the introduction of this section, process monitoring and control be-
comes of increasing importance when reducing the tool diameter. We will further
support this statement by analyzing inmore detail how particular process monitor-
ing and control tasks address the e�ects of scaling:
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Vibration monitoring In Section 1.2.1 it was discussed how several factors (e.g.
the MCT e�ect, excessive run-out, and chatter) can cause an intermittant or
even unstable cutting process. When such a cutting condition arises, the con-
sequence can be severe reduction of the workpiece quality, and possibly even
catastrophic breakage of the tool. In conventional machining, such condi-
tions are o�en well observable by a human operator. At reduced diameters
this is no longer the case. By online monitoring such vibrations, it becomes
possible to interfere when excessive vibrations are detected, and the men-
tioned e�ects can be mitigated.

Tool wear monitoring As mentioned in Section 1.2.1, the life of a micro-milling
tool frequently ends abrubtly due to catastrophic breakage. Tool breakage
may cause damage to the workpiece and should be avoided. As one of the
main reasons for breakage is progressed wear, monitoring of tool wear al-
lows for replacing tools before they break. Additionally, workpiece quality
can be maintained, as worn tools cause lower surface quality and larger burr
formation.

Force control When the cutting forces are regulated during a micro-milling task,
the workpiece quality can be enhanced and the tool-life can be prolonged.
Workpiece precision is improved, since regulating of the cutting forces en-
sures limited tool bending. Since excessive stress is avoided and fatigue is
reduced, tool life is extended.

Vibration monitoring, tool wear monitoring, and force control have been studied
extensively in literature for improving conventionalmachining processes. However,
due to the e�ects of the scaling, these results cannot be applied directly to themicro-
milling process. New techniques are needed that are tailored to the challenges and
consequences of the reduced tool dimensions.�ese are summarized as follows:

A. Mission-critical Monitoring techniques intend to replace human ears and eyes,
hence the techniques need to be very reliable and robust for changing cutting
conditions.

B. High bandwidth When the rotational frequency of themilling spindle increases,
the bandwidth of any signal related to the cutting process increases corre-
spondingly. Consequently, the required measurement bandwidth of sensors
used to measure these signals increases likewise. For cutting force measure-
ments in micro-milling, this constitutes a serious challenge. For example,
with a rotational frequency of 120,000 rpm and a tool with two teeth, the
tooth pass frequency will be 4 kHz.�e cutting force signal will contain sev-
eral harmonics of this frequency. However, commercially available state-of-
the-art force measurement systems have measurement bandwidths limited
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to ±2kHz3. Development of new sensors, fusion of various sensor signals
and indirect force estimation methods are therefore needed to acquire cut-
ting force information with su�ciently high bandwidth for micro-milling.

C. Reduced signal quality Due to the reduced scale, signalmagnitudes are smaller,
resulting in deteriorated signal-to-noise ratio (SNR). Moreover, as a result of
the increased complexity of the milling process at smaller scales, the inter-
pretation of measured signals is more di�cult [154].

D. Fast processing Whenever an anomaly is about to happen, quick action is need-
ed to avoid catastrophic failure.�is implies that the monitoring techniques
need to be e�cient, and that prompt action can be taken at a small time scale.

A few results for monitoring and control of micro-milling are available, which are
predominantly tool condition monitoring solutions. Each of them are tailored to
the micro-milling process by addressing one or more of the above issues. In the
remaining part of this section we provide an overview of these results.
Tansel and coworkers are among the �rst authors who have studied process

monitoring of micro-milling. In [157] they have analyzed the relation between the
static part of the force in the feed direction and the tool condition inmicro-milling,
and used this to develop tool breakage detectionmethods using segmental averages
and wavelet transformations.�is approach is able to predict tool breakage, and in
a subsequent paper [156], the authors presented a Smart Workpiece Holder able to
perform a quick move in the opposite direction of the feed force once breakage was
likely to occur in the next few tool rotations. �is increased the tool life by more
than 30%. To circumvent the low SNR of the cutting force measurements, tool wear
estimation and tool breakage detection methods based on acoustic emission sig-
nals are presented in [158]. In [154] tool wear estimation has been performed using
force signal features and a neural network. It is noted that this method works well,
provided the cutting conditions are identical to the training set.�is is quite a lim-
itation. �e authors have presented an interesting solution for this in [155]. Here
the wear status is inspected during a machining task by regularly pausing the task
and cutting a slot in a reference material (aluminum in this case), while measuring
the forces.�ese measurements are used with a trained neural network to estimate
the wear status of the tool. Since in this approach the cutting conditions during the
wear inspection epochs are identical and independent of the part being machined,
the reliability of the wear monitoring could be increased.
A model-based approach to tool wear estimation has been given by Bao and

Tansel in [20]. In this method, experimental cutting force data has been used to
determine the parameters of a wear model in conjuction with a micro-cutting force

3Typically such platforms have a natural frequency in the range of 500 Hz - 5 kHz, and the recom-
mended measurement bandwidth is 13 of the natural frequency.
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model. Genetic algorithms were used to �nd the parameter values that minimize
the average absolute error between measured and modeled cutting forces.
Malekian et al. [109] propose an approach for tool wear monitoring for micro-

milling using a fuzzy-neuro approach. In this approach, the necessary high band-
width and higher reliability of the monitoring system is achieved by fusion of sev-
eral sensor signals, i.e. force, acceleration and acoustic emission. Input of the fuzzy-
neural network are the RMS values of these signals. Using a training epoch inwhich
the wear status of the tool is measured using a microscope, the network is trained
to predict the wear status using the sensor signals.
Zhu et al. [186, 187] provide a solution to deal with the low SNR of sensor sig-

nals by training continuous Hidden Markov Models. �e problem solved in this
approach is to determine the most likely (hidden) wear state of the tool from the
observed features in the cutting force (including statistics like mean, standard de-
viation, and temporal features like Daubechies wavelet coe�cients).
Jemielniak et al. [76, 77] address the poor SNR of sensory information inmicro-

milling by proposing a multi-sensory approach. In this research a tool condition
monitoring was developed that combines a large number of signal features from
cutting force and acoustic emission measurements using a two-stage algorithm.
To the best knowledge of the author, no results have been published as of yet

in which closed-loop process control has been implemented for the micro-milling
process.

1.3.3 Conclusion

Sensor based machining has given an impetus to conventional machining by im-
proving the reliability and e�ciency of machining centers. However, due to the
e�ects of scaling, new approaches to monitoring and control are needed for the
micro-milling process. Sensor information is needed with su�ciently high band-
width and SNR. Monitoring techniques need to be robust for changing conditions
and should be fast. Some progress has been made in this area, although process
control for micro-milling is still uncovered by the current state of research.

1.4 Active Magnetic Bearing Spindles

A key component of a milling machine is the spindle, which provides the rotation
of the milling tool. �e characteristic elements of a spindle are the rotor sha� to
which end the milling tool is connected via a tool interface, a driving system (i.e.
the motor), a bearing system, and a cooling system. Currently, a wide variety of
spindle designs is available on the market, having di�erent properties regarding
sti�ness, torque, power, speed, and thermal behavior. In this thesis we focus on the
application of the particular class of spindles that have Active Magnetic Bearings
(AMBs). As will become clear, the properties of such spindlesmake themparticular
attractive for application to micro-milling.
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Displacement sensor

Current through 
le� coil

Current through 
right coil

ir = ibi as − i

il = ibi as + i

Figure 1.5: Schematic illustrating the basic working principle of an active magnetic bearing
with two electromagnetic coils operating in di�erential driving mode.

�emain function of the bearing system is to keep the rotating sha� in position,
while minimizing the friction with the support. Active magnetic bearings achieve
this by carrying the rotor in a controlled magnetic �eld. �e basic principle of an
AMB can be described as follows (see Figure 1.5). Electromagnets are positioned at
opposite sides of a body. Most commonly these are operated in what is known as
the di�erential drive mode. In this con�guration, the same bias current ibias �ows
through the coils of both electromagnets, causing an equal bias �ux in the air gaps at
each side. Additionally, a control current i is added to both coils, but with opposite
sign. �is implies that a nonzero control current will increase the �ux in the air
gaps of one coil by the same amount as it is reduced in the other, resulting in a net
force on the body.�is e�ect is used to control the position of the body. To do this,
the actual position of the rotor is measured by a displacement sensor, and taken as
input by a controller that controls the current levels in the coils, with the objective
to keep the body at the reference position.

�e most common con�guration of a spindle using this principle of magnetic
bearing to control the position of the rotor sha�, is depicted in Figure 1.6. At the
top side of the rotor two magnetic bearings control the position in the X and Y
plane; similarly two magnetic bearings control the X and Y position of the rotor at
the bottom side. An axial bearing (not shown in Figure 1.6) is added to control the
position of the rotor in the Z direction.
Amain limitation of the applicability of AMB spindles for conventional milling

is that the maximum sustainable bearing forces are relatively small compared to
rolling element bearings [90]. However, this limitation will be less of a problem
when applying AMB spindles for micro-milling, as the cutting forces in micro-
milling are small. Moreover, active magnetic bearing spindles combine a number
of favorable features that make them in fact particularly attractive for application
to the micro-milling process:
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Top bearing

Bottom bearing

Y

X

Z

displacement sensor

magnetic actuator

Figure 1.6: Standard con�guration of a spindle with Active Magnetic Bearings: radial mag-
netic bearings are provided in x and y direction at the top and bottom. Addition-
ally an axial magnetic bearing is added to constrain themotion in the z-direction
(not shown).
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1. �emaximumachievable surface speed ofmagnetic bearings ismuch greater
than of rolling element bearings. Rotational speeds up to the limit of material
strength are possible.�ere is virtually no wear and no need for lubrication.

2. Because they are non-contacting, magnetic bearings are less prone to thermal
problems as conventional bearings at high speeds.

3. �e active nature opens a range of monitoring and control possibilities, a
feature that is unique for magnetic bearings.

It is the last feature that forms the point of departure for this thesis. Hence, in
Section 1.4.1 wewill elaborate on this concept and discuss the potential applications.
Subsequently in Section 1.4.2, we will discuss the available results in the literature
in which the active character of AMB setups is used for monitoring and control.

1.4.1 Process monitoring and control of micro-milling with AMB
spindles

�e active nature of the AMB spindles can be exploited to improve the milling pro-
cess. �e advantage of this is that no additional sensors need to be added to the
machine, but instead usage can be made of signals that are already available. Im-
provements are possible both on the level of contour control as well as the level of
process monitoring and control.�e underlying mechanisms at both levels can be
described as follows:

Contour control by positioning of rotor sha� Aunique feature ofmagnetic bear-
ings is that there is some freedom in the positioning of the rotor sha� inside
the air gaps. Typically AMB spindle controllers are designed by setting a �xed
reference position for the rotor sha� at the location of each bearing.�is ref-
erence position is mostly in the center of the air gap. Deviations from this are
possible, which can be exploited to improve the contouring control:

Runout compensation Referring to the description of runout in Section 1.2.1,
runout can be considered a periodic displacement of the tool tip. Com-
pensation of such positioning errors is in principle possible by gener-
ating periodic forces, leading to a displacement of the rotor in opposite
direction to the runout errors.

Tool bending compensation �e rotor sha� can be displaced inside the air-
gaps to compensate for errors due to bending of the tool under cutting
forces. �is can be translated to the control objective to minimize the
displacement of the tool tip under disturbance forces acting on the tool
tip (as opposed to the abovementioned standard objective to minimize
the displacement of the rotor sha� at the bearings).
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Dual actuator As explained in Section 1.2.1, a consequence of the high ro-
tational speeds is that milling machines also need to be fast. Higher
control bandwidths of the relative positioning of the tool and work-
piece can be achieved by combining the control of the main machine
axes and the magnetic bearings in a dual actuator concept. �e main
idea here is that the positioning error of the slower machine axis (with
a large stroke) is compensated by the positioning of the faster magnetic
bearing (with a small stroke).

Process monitoring/control through interaction with the cutting process From
the perspective of the AMB spindle, the interaction between tool and work-
piece causes disturbance forces acting on the AMB spindle system. Ideally,
the AMB controller is designed such that the response of the AMB spindle
system to these disturbances is small. From this, it follows that the current
and position signals contain �ltered versions of the disturbance forces, where
the �lters are determined by the dynamics of theAMB spindle system and the
AMB controller. �is concept can be exploited for estimation of the cutting
forces. Furthermore, fault monitoring (e.g. breakage detection and collision
detection) is possible by monitoring the disturbance for abnormal changes.
Morever, when it is known how the disturbance varies with changing pro-
cess conditions such as progressing tool wear, conditionmonitoring becomes
possible as well.

�emain emphasis in this thesis is on the secondmechanism, as our focus is on pro-
cess monitoring and control of micro-milling. Nevertheless, the aforementioned
opportunities for improvement of the micro-milling process at the level of contour
control are worthwile to explore further (see recommendations for further research
in Chapter 8).

1.4.2 Review of results of process monitoring and control with active
magnetic bearings

�e idea that the active nature of a magnetic bearing setup provides a suitable start-
ing point for developing the monitoring and control techniques, was recognized
more than 20 years ago [13, 26]. Some results are available, which will be discussed
in this section. To give a comprehensive overview, the scope is widened to any
kind of rotating machinery having magnetic bearings, which apart from spindles
includes pumps and �ywheel systems.
In his thesis, Müller [116] explored the application of a high-speed AMBmilling

spindle for various monitoring techniques. A static approach to cutting force esti-
mation approach was formulated that essentially ignores all transient e�ects as well
as the e�ect of measurement noise. Cutting forces are estimated by �rst calculating
the bearing forces from the current signals using a simpli�ed analyticalmodel of the
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magnetic actuator, and subsequently using the lever law to translate these bearing
forces to the forces acting on the tool tip (essentially a static model of the rotor-tool
dynamics). Performance of this approach is poor, which Müller attributes to non-
linear e�ects, thermal e�ects and the dependency of the currents on the angular
position of the rotor. Furthermore, tool breakage detection and collision detection
was proposed.�e proposedmethods are notmodel-based, but are based ondetect-
ing abnormal changes in the bearing signals, for which linear �lters are designed. A
model-free approach to tool wear monitoring was explored by looking for features
in the estimated force signals that are independent of the cutting conditions, but
this approach was reported unsuccessful.
A recent example of cutting force estimation using AMB spindles has been pre-

sented byAuchet and coworkers [16]. In this approach, a non-parametric frequency
response of the transfer from the cutting force on the tooltip to the command volt-
age levels of the current ampli�er4 is estimated through impact testing. �e cut-
ting force estimation problem is solved in the frequency domain by computing the
pseudo-inverse of the estimated frequency response and multiplying this with the
Fourier transform of the measured command voltage levels. By windowing and
inverse transformation, estimates of the cutting force in the time-domain are ob-
tained. We observe that in this approach no noisemodeling is performed, nor is the
information in the displacement signal used. Still, the results are in good agreement
with forcemeasurements from a dynamometer platform for low frequencies. More-
over, the presented method allowed cutting force measurements with a bandwidth
that exceeded that of the dynamometer by more than 20 times.
A failure detection system for a AMB spindle has been reported by Chevrier et

al. [34]. Position signals and bearing forces (presumably derived from the current
signals) in the bearings are constantly monitored. If any value is beyond a design
threshold, an alarm signal is given to machine controller, causing the the machine
and spindle to be stopped immediately.
Aenis [4] performs conditionmonitoring of a pump systemusingAMBs. Model-

based diagnosis is proposed where the closed-loop frequency reponse function of
the AMBs is modeled with and without faults. Fault diagnosis is done by compar-
ing these modeled frequency responses with experimentally identi�ed frequency
responses of the system.
We conclude this overview with some results in which the active character of

AMB spindles is employed to suppress chatter. As discussed in Section 1.2.1, chatter
is the result of self-exciting vibrations between the tool and the workpiece. Kyung
and Lee [93] formulate guidelines for selecting parameters of a PID controller to
obtain chatter free cutting. Chen and Knospe [32] have studied the possibility to
actively suppress machining chatter via AMB control design for the case of turn-
ing. A robust control strategy is followed to design controllers that guarantee that

4Note that in many AMB setups, the type of ampli�er that is used is a transconductance ampli�er,
i.e. an voltage-controlled current source with a �xed gain.
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regenerative vibrations cannot arise for three di�erent cases, i.e. (i) at any rotational
speed, (ii) at a given rotational speed, (iii) at any speed in a given rotational speed
interval. As part of the control design, the maximum cutting depth is established
such, that the control objective in each of the three cases is satis�ed. In his thesis,
van Dijk [166] gives two chatter control strategies using AMB control design. �e
�rst ensures robust chatter-free milling by automatic adaptation of spindle speed
and feed. �e objective of the second strategy is similar to the approach by Chen
and Knospe, but then for the more complicated milling process.

1.4.3 Conclusion

Spindles with Active Magnetic Bearings are particularly interesting for the micro-
milling process, not only for the achievable spindle speeds, but also because of the
opportunities they o�er to develop online process monitoring and control tech-
niques. �ese include force monitoring, tool condition and breakage monitoring,
and chatter control. However, even in conventional manufacturing literature, the
available results implementing these techniques are quite limited. Model-based ap-
proaches are even scarser and to the best of the author’s knowledge, no results are
available that are tailored to the challenges of micro-milling.

1.5 Research goal and approach

At this point we are ready to formulate the research goal of this thesis. Indeed,
in the previous sections we have highlighted the main challenges of micro-milling
and have pointed out that process monitoring and control becomes of increasing
importance when the tool diameter is reduced. It has been discussed that AMB
spindles are an attractive technology for the micro-milling process, given the high
attainable rotational speeds. We have reviewed prior research, demonstrating that
the active nature of AMB setups can be utilized for process monitoring and control.
However, it has been concluded that literature currently lacks results onmonitoring
and control using AMB spindles that are particularly focussed on the process of
micro-milling. Given the above, the main goal of the thesis is:

Research goal

Investigate the opportunities for model-based process monitoring and control
to improve the micro-milling process using the intrinsic properties of AMB
spindles.

We will elaborate further on two aspects of this research goal. First and fore-
most, the model-based approach plays a central theme in this thesis. In this ap-
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proach, prior knowledge of the dynamics of theAMB spindle setup, the cutting pro-
cess, as well as of the disturbances in the system, are formulated as explicit dynamic
models, which are used for synthesis of observers and controllers that accomplish
the processmonitoring and control objectives. Including such prior knowledge will
allow for obtaining high reliability and performance of the resulting solutions.�is
is of high importance to themicro-milling process, as was reviewed in Section 1.3.2,
and provides the justi�cation for such approach.
Second, the objective to investigate the opportunities lies in the fact that it is

not a priori evident that AMB spindles can be used successfully for development of
process monitoring techniques for the micro-milling process. Given the low am-
plitude and high signal bandwidth of cutting forces in micro-milling, one can ask
if monitoring based on the AMB signals is feasibile in the �rst place. Similarly, the
question can be raised if any of the potential control applications as reviewed in
Section 1.4.1 will have su�cient performance, given the limitations imposed by the
physics of the AMB setup.

�e approach towards this goal is summarized as follows:

A. Provide an approach tomodel-based cutting force estimation inmicro-milling
using the signals of the AMBs;

B. Provide amethod for system identi�cation of a high speedAMBmicro-milling
spindle;

C. Provide a compensation approach for the almost periodic disturbances in the
bearing signals resulting from unbalance forces and roundness errors.

�ese steps are clari�ed as follows:

A. Bymodeling the dynamics of the closed-loopAMB system in amicro-milling
con�guration, a framework can be drawn that allows to formulate AMB-
based process monitoring and control objectives as model-based observer
or controller synthesis problems. In this thesis, we limit our attention to one
of these problems in particular, i.e. the problem to estimate the cutting forces
from the bearing signals. Indeed, as discussed in the preceding sections, the
cutting forces are among the key physical quantities for development of pro-
cessmonitoring and control techniques.�is is true inmacro-scale, as well as
inmicro-scale cutting. Wewill take the position that the feasibility of process
monitoring and control using AMB spindles depends on the ability to esti-
mate cutting forces from the bearing signals with su�cient bandwidth and
accuracy. AMB spindle based process monitoring, like tool condition mon-
itoring, as well as process control, such as force control, can be considered
an extention of cutting force estimation using AMB spindles. For this rea-
son, the main emphasis in this thesis is on estimation of the cutting forces,
and not on further application of the cutting force signal for more advanced
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monitoring and control tasks. Reviewing the available results on (cutting)
force estimation with AMB spindles, we conclude that some attempts have
been made, but that no comprehensive model-based procedure is available,
which solves the cutting force estimation problem while dealing with

• the dynamics of the AMB spindle, including its multivariable charac-
ter and the increased coupling due to gyroscopy at higher rotational
speeds;

• the closed-loop nature of the setup; and
• information on the spectral content of the cutting force signal and the
noise disturbance on the bearing signals.

To solve this problem, an approach is developed for model-based optimal
estimation of unknown inputs to multivariable closed-loop systems.

B. Obviously, the performance of any model-based cutting force estimator de-
pends on the accuracy of the model of the dynamics of the AMB spindle
system. Such model of the AMB spindle could be derived from �rst prin-
ciples. However, given the complexity of the system and required accuracy
of the model, the modeling e�orts will rapidly increase. Considering this,
while in addition several physical phenomena can at best be modeled in ap-
proximation (such as material dampling and eddy current e�ects), an attrac-
tive alternative approach is to perform modeling of the AMB spindle system
from measured data sequences. Although a number of results are available
on AMB spindle identi�cation, literature is currently lacking an approach in
which:

• careful experiment design is done, considering the intrinsic nonlinear
nature of the AMB spindle system;

• black-box models are estimated of the dynamics of the full high-order
multivariable AMB system operating at high rotational speeds, includ-
ing both its rigid body, as well as its �exible body behavior.

• the transfer function from the force on the tip of a micro-mill to the
displacement of the rotor at the bearings is also modeled.

In this thesis, a system identi�cation approach is formulated that comprises
these aspects.

C. �e third and last step pertains to a practical obstacle to implementing any
monitoring approach: the e�ects of mass unbalance and roundness errors
of the rotor. �ese result in disturbances in the current and position mea-
surements which are (almost) periodic. Proper compensation for these dis-
turbance in the measured signals, prior to using them for monitoring tasks,
is necessary to avoid making monitoring errors. In this thesis, we give an
e�cient approach to this.
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1.6 Outline of the thesis

In this thesis, the results are presented of the research to the main problem given
in the previous section. Apart from the introduction and the conclusion, this thesis
comprises six main chapters:

Chapter 2 �is chapter provides the foundation for the rest of the thesis. It will
be discussed how modeling of the AMB spindle setup, as well as the cutting
process, results in con�guration with two closed-loops, i.e. the AMB control
loop and the cutting process loop. From analysis of both closed-loops, as well
the various disturbance sources, conclusions will be drawn on the feasibility
of performing monitoring and control tasks within this setup. �e cutting
force estimation problem is studied in more detail and it is discussed how
this problem can be treated as an input estimation problem.

Chapter 3 In this chapter, an approach will be given to solve the cutting force es-
timation problem by optimal estimation of unknown inputs to discrete-time
multivariable systems from closed-loop data. A particular challenge in this
problem is that controller knowledge might not be available. An approach
is formulated by imposing an extra constraint to the optimal estimator, en-
suring equal performance of it for any controller. Using Wiener �lter theory
and spectral factorization, solutions are formulated, where particular atten-
tion is given to the instablity of the plant dynamics. Smoothed estimators are
derived allowing to obtain smaller estimation errors when a delay is tolerable.

Chapters 4, 5 and 6 deal with the problem of identifying the AMB dynamics from
measured data sequences. In Chapter 4 we �rst give an algorithm for estimation
of multi-input multi-outout (MIMO) Output Error (OE) models in matrix fraction
description from frequency domain data. Subsequently, we treat the identi�cation
of the AMB spindle in two steps. In Chapter 5, identi�cation of the bearing dynam-
ics is covered, in which the results of Chapter 4 are applied. Identi�cation of the
tooltip dynamics is covered in Chapter 6. In more detail, the content of these three
chapters is as follows:

Chapter 4 �is chapter presents an iterative linear regression algorithm for identi-
fcation of MIMO output error models from frequency domain data. A well-
known method to approach the output error minimum by iterative linear
regression steps has been formulated by Sanathanan and Koerner. A dis-
advantage of this approach is that in general convergence of the iterations
only implies optimality under restrictive conditions. In literature, an alter-
native iterative linear regression procedure is available, which ensures opti-
mality upon convergence, also in case of undermodeling. �is algorithm is
known for time-domain identi�cation as the Simpli�edRe�ned Instrumental
Variable method (SRIV), and was recently formulated for frequency domain
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identi�cation of SISO output error models. Here we generalize this formula-
tion to MIMO identi�cation of models in matrix fraction description.

Chapter 5 In this chapter we consider the problem of obtaining accurate models
of the bearing dynamics of the AMB spindle in the frequency range relevant
for process monitoring and control.�e complexity of this problem is found
in the instability of the dynamics, its high order and multivariable character,
and the parametrically dependency of the dynamics on the rotational speed,
as well as in the presence of nonlinearities in the system. A frequency domain
approach is taken, consisting of two stages. In the �rst stage, accurate esti-
mates of the multivariable frequency response function (FRF) of the bearing
dynamics are made by excitation of the closed-loop with orthogonal random
phase multisine signals. A method to detection of nonlinear distortions in
the multivariabele FRF estimate is discussed, which enhances the variance
analysis for detection of nonlinearities of Pintelon et al. in [131]. In the sec-
ond stage, a parametric model of the AMB spindle is estimated using the
estimated FRF and its covariance. A Schur-weighted Output Error criterion
is formulated, and minimization of the criterion function is achieved by ap-
plication of the IV-based iterative linear regression method of Chapter 4.

Chapter 6 In this chapter, identi�cation of the tooltip dynamics is addressed.�e
main challenge in this identi�cation problem is to apply a known excita-
tion force to the tooltip. �e route followed in this chapter is to identify the
tooltip dynamics using data obtained during a milling experiment in which
the cutting forces are measured. �e amount of data that can be generated
in this way is limited, as is the control over the spectral properties of the in-
put. Hence, in order to reduce the complexity of the identi�cation, usage is
made of the observability and controllability properties of the system as de-
rived in Chapter 2.�is results in a particular closed-loop parameterization
of the model-set and a known, but non-minimum phase noise model. For
this particular identi�cation problem, solutions are discussed.

�e last chapter covers the �nal subgoal:

Chapter 7 �is chapter considers model-based correction of runout disturbances
in measurements of the positions and currents of AMB spindle. Such dis-
turbances are synchronous with the rotation of the spindle and hence almost
periodic. A parametrized truncated Fourier series expansion model for the
runout disturbance as a function of the angular position is used, allowing to
formulate runout identi�cation as a parameter estimation problem. In cor-
recting for the runout disturbances, the main issue is how to deal with the
uncertainty in the angular position measurements, or the total lack of such
measurements. Solutions are given that compensate for the errors introduced
by this uncertainty, or estimate the the angular position from the available
data using an Extended Kalman �lter approach.

28



i
i

“main” — 2011/4/11 — 8:51 — page 29 — #39 i
i

i
i

i
i

Chapter 2

A modeling framework for
monitoring and control with AMB

spindles

2.1 Introduction

In this thesis a model-based approach to process monitoring and control of micro-
milling using spindles with Active Magnetic Bearings is pursued. �e objective of
this chapter is to lay down the foundation by providing a modeling framework, and
by deriving and analyzing the necessary models. To this end, we will �rst discuss
the default con�guration of an AMB spindle in a micro-milling setup as consid-
ered in this thesis (Section 2.2). From this, a �rst principles model of the system is
given, where we will restrict attention to a description of the dynamics of the sys-
tem in radial direction, as these dynamics are the most relevant for our problem1.
�is model is obtained by �rst modeling the AMB spindle dynamics in Section 2.3,
and subsequently modeling the cutting dynamics in Section 2.4.�ese submodels
are integrated in Section 2.5.�e resulting modeling framework enables us to ana-
lyze the feasibility of monitoring and control of micro-milling in greater detail and
formulate monitoring and control objectives as model-based observer and control
synthesis problems. As laid out in Chapter 1, the cutting force estimation problem
is given emphasis in this thesis, and this problem is further analyzed in Section 2.6.
A di�culty in solving this problem is that it requires knowledge of both the AMB
spindle submodel and the cutting dynamics submodel. As will become clear in Sec-
tion 2.4, obtaining accurate models of the latter is particularly di�cult. Hence, the
approach taken in Section 2.6 is to make a reasonable simpli�cation that allows to

1Particularly when milling with square end-mills, the radial cutting forces dominate over the axial
force.
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reduce the force estimation problem to an input estimation problem. In the input
estimation problem, the cutting forces are an unknown input to the closed-loop
AMB spindle system, and in solving this problem, no model knowledge of the cut-
ting dynamics is required.�e analysis in Sections 2.2 to 2.6 is done in continuous
time. However, in practice we will deal with discrete-time data. Hence, in the �-
nal section of this chapter, Section 2.7, equivalent discrete-time models are given.
From the physics of the AMB system, properties concerning the observability and
controllability of the resulting discrete-time models are derived, which will prove
to be useful in later chapters when addressing the input estimation problem and the
problem of identifying the dynamics of the setup from measured data sequences.

2.2 Con�guration of the AMB spindle setup

�e default con�guration of amicro-milling setupwith anAMB spindle considered
in this thesis, is depicted in Figure 2.1. In this section we will discuss the main
components of this setup. We start in Section 2.2.1 with a discussion of the AMB
spindle hardware, consisting of the rotorwith toolholder and tool, and themagnetic
bearings. Subsequently in Section 2.2.2, some key properties of the AMB controller
and the power ampli�er are reviewed. Finally, in Section 2.2.3 we will comment
on the feed drives needed to create the relative motion between the tooltip and the
workpiece.

2.2.1 AMB spindle hardware

�e results in this thesis apply to AMB spindles having a standard con�guration
as is described in this section. Such AMB spindles have a design with four radial
bearings and one axial bearing. By convention, the Z-axis of the AMB spindle co-
ordinate frame is aligned with the rotor axis in the direction of the milling tool, and
the X- and Y-axis coincide with the directions of the radial bearings. Each of the
bearings consists of twomagnetic actuators positioned at opposite side of the rotor,
which are con�gured in di�erential driving mode.�e key principle of this opera-
tion mode is that the net force exerted by the set of the two magnetic actuators on
the rotor can be controlled by varying a single control current, causing the mag-
netic �ux to be simultanously increased in one actuator and decreased in the other.
�e exact properties of the magnetic actuators depend on their structural design,
where eight-pole and homopolar con�gurations are the most common types [148].
�e displacement sensor of each radial bearing measures the position of the rotor
at, or close to, the force actuation point of the magnetic actuator.

�e micro-milling tool is attached to the rotor of the AMB spindle, by means
of an appropriate interface and a high-speed motor provides the rotation of the
rotor/tool combination.
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Con�guration of the AMB spindle setup

X

Z

displacement sensor
magnetic actuator

micro-milling tool

workpiece

stage

Y

power
ampli�er

controller

control current 
top X bearing

displacement
top X bearing

Figure 2.1: Schematic of the default con�guration of an AMB spindle used formicro-milling
(only the bearings inXdirection are shown).�e considered con�guration shows
the closed-loop AMB setup consisting of magnetic actuators, displacement sen-
sors, controller and power ampli�er. �e micro-milling tool is attached to the
rotor. Micro-milling is performedby relative displacement of the tool and awork-
piece in X, Y and Z direction.
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2.2.2 AMB controller and power ampli�er

A magnetic bearing setup is unstable in general. Stable positioning of the rotor is
obtained by closed-loop control. In the setting of this research we will restrict at-
tention to setups with linear controllers operating in current control, meaning that
the output of the controller de�nes the level of the control current2. Con�gurations
with analog and digital controllers are considered.

�e current through the actuators is supplied by power ampli�ers. For this pur-
pose, the coil current is measured and compared to the value commanded by the
AMB controller. A controller adjusts the output voltage to obtain the desired coil
current. Limitations on the output voltage, as well as other internal dynamics, im-
ply that power ampli�ers cannot be considered a static gain, but have dynamical
behavior and a certain bandwidth, which is also determined by the reluctance and
resistance of the windings of the coils.

2.2.3 Feed drives

In order to perform a micro-milling task, the workpiece and the tooltip need to
perform a relative motion. For this, the micro-milling machine is equiped with
feed drives, which operate under servo control to achieve the required coordinated
motion of the axes. Although the dynamics of the cutting process and the dynamics
of the controlled servos are directly coupled, in the context of this research we will
not include this coupling, and consequently neither consider the design, nor the
dynamics of the feed drive systems. We will justify this in more detail in Section 2.4
when discussing the milling dynamics.

2.3 Modeling of AMB spindle systems

In the literature dealing with the problem of designing controllers for AMB spin-
dles, the topic of �rst principlesmodeling ofAMB spindles has receivedmuch atten-
tion. In this context, models are o�en derived under some simplifying assumptions.
�e following assumptions are frequently made in the literature [148, 149]:

• the rotor of theAMB system is a fully rigid body, meaning that bendingmode
vibrations of the system are considered to be outside the operating range, and
are hence ignored (o�en robustness against these resonances can simply be
provided by adding high frequency roll-o� to the controller);

• there is no coupling between the lateral motions of the rotor, meaning that
the gyroscopic e�ects are ignored and that the dynamics inX andYdirections
are treated as decoupled systems;

2We remark that the methods in thesis are easily adapted for AMB setups that are operated with
voltage control.
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Modeling of AMB spindle systems

P

AMB spindle
v2(t) + vr(t)

v1(t)+ +

++u1,0(t)

K

Controller + ampli�er

u2,0(t)
y1(t)

y2,0(t)

u1(t)

y1,0(t)

Figure 2.2: Block diagram of the AMB spindle system, with P representing the dynamics
of the AMB spindle, and K the controller and ampli�er. System P has as in-
puts the control currents through the bearings u1,0 and the cutting forces u2,0
(with dim(u1,0) = 4 and dim(u2,0) = 2). �e outputs are the displacement of
the rotor sha� at the bearings y1,0 and the displacement of the tooltip y2,0 (with
dim(y1,0) = 4 and dim(y2,0) = 2).

• the actuator force depends linearly on the rotor position and the control cur-
rent, while this relationship is intrinsically nonlinear. MostAMBapplications
use a linearization of this relationship in the operating point.

In this thesis we will not adopt the �rst two assumptions, i.e. in modeling the AMB
spindle system, the e�ects of high speed rotation are taken into account, as is the
�exibility of the rotor sha�. In micro-milling in general high rotational speeds are
used, implying that the e�ects of gyroscopy are not negligible. Furthermore, partic-
ularly when considering monitoring applications, the frequency range of interest is
wider than the frequency range that is relevant for control design alone, implying
that the bending behavior of the system cannot be ignored. We will however make
the third assumption, although the e�ect of the nonlinearities in the system is ana-
lyzed in Chapter 5 when dealing with the problem of identifying the AMB spindle
system.

�is section contains a method for �rst principles modeling of an AMB spindle
system of the default con�guration described in the previous section, resulting in
a linear model incorporating the abovementioned phenomena. A key di�erence in
this approach compared to the AMB literature, is that this approach does not only
cover the AMB bearing dynamics, but also the tooltip dynamics, see Figure 2.2.
�is means that the model of the AMB spindle system P has as inputs the control
currents through the bearings u1,0, as well as the cutting force acting on the tool tip
u2,0. �e outputs are the displacement of the sha� at the radial bearings y1,0, and
the displacement of the tooltip y2,0. �e AMB spindle model P can be obtained
from two submodels, i.e. a model of the rotordynamics of the rotor with tool, and
a model of the electromagnetic actuators. In the following two sections we will
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Figure 2.3: Finite Element model of the rotor system using cylinder elements. (a)�e dy-
namics of the cylinders can be expressed using a set of eight coordinates describ-
ing the position and orientation of the top and bottomplane; (b)�e rotor system
is model as a series of cylinder elements with varying diameter.

cover how these submodels can be obtained, and subsequently in Section 2.3.3 we
treat how these models can be combined to obtain a model of the AMB spindle. In
Section 2.3.4 we discuss the disturbance sources in AMB setups. Finally, in Section
2.3.5 the modeling procedure is illustrated by showing the resulting model for the
AMB spindle setup that was built for this research.

2.3.1 Dynamical model of the rotor and tool

�e rotor, toolholder and tool can jointly be considered as a �exible beam system
that rotates along its symmetry axis and exhibits bending vibrations. Flexible sys-
tems are in principal in�nite dimensional, so that in practice �nite element approx-
imations are made to model the dynamics. For the rotor, a common approach to
do this is by modeling the entire beam as a series of rigidly or �exibly connected
Timoshenko cylinder elements (see Figure 2.3)[91, 94]. �e material properties of
such cylinder elements are de�ned by the Elasticity modulus, Mass density and the
Poisson ratio. With this, the dynamics of the elements are described by a set of co-
ordinates, representing the position and orientation of the top and bottom plane of
the cylinder. Let x represent the vector that is obtained by stacking the coordinates
of all cylinders, and Ω the rotational speed of the rotor, which is assumed to be
known and constant. As is shown in Appendix A.1, the equation of motion of the
rotor is then given by

Mẍ + (D +ΩG)ẋ + Kx = F . (2.1)
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Modeling of AMB spindle systems

�e dimension of x depends on the number of cylinder elements that are used in
the �nite element approximation. Let this number be the denoted by Nbeam.�en
nx ∶= dim(x) = 4Nbeam + 4 (see Appendix A.1). MatricesM, D, G, K are all square
with dimension nx . In particularM = MT represents the mass matrix, D = DT the
damping matrix, K = KT the sti�ness matrix, and G = −GT the skew-symmetrical
gyroscopic matrix. Matrix D represents the material damping, which is di�cult to
model from �rst principles. It is common to apply Rayleigh damping, or modal
damping [91]. Rayleigh damping involves setting D = αM + βK, where α and β are
estimated constants. To apply modal damping �rst a modal decomposition of the
undamped system (for Ω = 0) is determined.�en for each mode a damping value
is selected. With this, matrix D can be computed.�e vector F ∈ Rnx is the vector
of generalized external forces associated with the coordinates of the rotor.

2.3.2 Model of the electromagnetic actuators

Each of the electromagnetic actuators exerts a force on the rotor. �e second step
in modeling the AMB spindle dynamics is to obtain the relation between this force,
the control current through the coil, and the position of the rotor at the location
of the bearing. In general this relation is nonlinear, where the exact form depends
on the structural design of the actuator. However, o�en this relationship reduces to
a linear form when the actuator is con�gured in di�erential driving mode and the
rotor is exactly at its center position. Hence, it is quite common to approximate the
behavior of the actuator by a �rst order linearization. As is shown in Appendix A.2,
this yields

Famb, j = kx , jxamb, j + k i , j i j (2.2)

where j indicates the bearing (i.e. j = 1 correspondes to the bottom X bearing, j = 2
to bottom Y, j = 3 to top X, and j = 4 to top Y), xamb, j the j-th bearing coordinate
(i.e. the di�erence of the air gap length of bearing j compared to its nominal value),
and i j the control current of bearing j.�e constant kx , j is referred to as the negative
sti�ness of the bearing, and the constant k i , j as the actuator gain. Both constants
depend on the structural design of the bearings, and relevant properties are the
number of windings and pole surface area of the coils, the bias current, and the
nominal gap length (see Appendix A.2). Stacking the forces of all bearings in the
vector Famb = col(Famb,1 , Famb,2 , Famb,3 , Famb,4) we obtain

Famb = Kxxamb + K iu1,0 (2.3)

with

u1,0 = col(i1 , i2 , i3 , i4) Kx = diag(kx ,1 , kx ,2 , kx ,3 , kx ,4)
xamb = col(xamb,1 , xamb,2 , xamb,3 , xamb,4) K i = diag(k i ,1 , k i ,2 , k i ,3 , k i ,4).
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Observe that the bearing coordinates are linearly related to the position of the rotor.
Hence, let B ∈ Rnx×4 be a linear coordinate mapping such that xamb = BTx. �en
we obtain

Famb = KxBTx + K iu1,0 , (2.4)

which is the sought relationship between the actuator force, rotor position and con-
trol currents. Note that the obtained model is a static relation.

2.3.3 Combining the submodels

In order to obtain a model of the spindle, let us de�ne C1 ∈ R4×nx such that C1x
describes the displacement of the rotor at the location of the displacement sensors,
C2 ∈ R2×nx such that C2x describes the displacement of the tool tip, and B2 ∈ Rnx×2
amatrix thatmaps tool tip coordinates to the rotor coordinates (note that B2 = CT2 ).
�en combining (2.1) and (2.4) yields the set of equations

Mẍ + (D +ΩG)ẋ + (K − BKxBT)x = BK iu1,0 + B2u2,0 (2.5a)
y1,0 = C1x (2.5b)
y2,0 = C2x (2.5c)

where u2,0 is the 2 × 1 vector containing the cutting forces in X- and Y- direction.
�is model can be reformulated in a state space representation as follows:

ξ̇ = Aξ + B1u1,0 + B2u2,0 (2.6a)
y1,0 = C1ξ (2.6b)
y2,0 = C2ξ (2.6c)

with ξ = col(xT , ẋT)T and
A = [ 0 I−M−1(K − BKxBTx) −M−1(D +ΩG) ]
B1 = [ 0

M−1BK i
] , B2 = [ 0

M−1B2
]

C1 = [ C1 0 ] , C2 = [ C2 0 ]
Depending on the number of elements that are used to model the rotor system,

this typically leads to high order systems. Appropriate model reduction can yield
lower order models that include only the relevant modes of the rotor. We have now
obtained a linear model of the setup, of which we can express the transfer function
P as:

( y1,0
y2,0

) = [ P11(s) P12(s)
P21(s) P22(s) ]( u1,0u2,0 ) (2.7)

We discuss some key characteristics of the dynamics of AMB spindles:
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Modeling of AMB spindle systems

Pole locations and rotational speed dependency Note that if the rotor is at stand-
still, i.e. Ω = 0, the dynamics of the plant in X- and Y-direction are decoupled
and two separate systems describing the dynamics in each of these planes can
be derived. Typically the dynamics in each plane then combine a set of real
poles (both stable and unstable) related to the rigid body modes, and a set of
stable poles close to the imaginary axis pertaining to the �exiblemodes of the
rotor. When the rotational speed increases, two phenomena can be observed
due to the e�ects of gyroscopy [94, 91]:

• A coupling between the dynamics inX- andY-direction increasingwith
the rotational speed.�e real modes become complex.

• Flexiblemode resonances splitting into two frequencies, centered around
the mode frequency at stand-still. �e frequency separation increases
with increasing rotational speed.

Non-linear e�ects In the previous section it was mentioned already that the re-
lationship between actuator force, control currents and displacements of the
rotor is nonlinear by nature. In reality, this is not the only nonlinearity. Other
nonlinear e�ects include Eddy-current losses and the nonlinear permeability
of ferromagnetic materials used for the cores. Moreover, the permeability of
these materials also depends on the history of the material’s magnetization,
which leads to the well known-magnetic hysteresis e�ect [149]. �e impli-
cation of this is that the linear model that we use is valid only in the chosen
operating point and for small signals. We will return to the consequences of
this when addressing the problem of identifying a linear model of the AMB
spindle from measured data (Chapter 5).

2.3.4 Disturbance sources

�ere are several sources of disturbances in the AMB spindle system. �ese in-
clude noise-like disturbances in the mechanical and electrical parts of the system,
as well as measurement disturbances. It is assumed in this context that all these dis-
turbances can be modeled as additive stochastic noise processes, where we denote
v1 the noise on the measurements of the control currents and v2 the noise on the
displacement measurements (see Figure 2.2).
In an AMB spindle system in general a speci�c non-stochastic disturbance is

also experienced, which is caused by runout. �e phenomenon of runout can be
described as follows.�e displacement of the rotating sha� is measured at �xed lo-
cations in the spindle housing. Consequently, any roundness errors or eccentricity
of the sha� will appear as varying displacements when the sha� is rotating. Ob-
viously these variations will be periodic in nature with a fundamental frequency

37



i
i

“main” — 2011/4/11 — 8:51 — page 38 — #48 i
i

i
i

i
i

2. A modeling framework for monitoring and control with AMB
spindles

equal to the rotational frequency of the spindle3. Zooming in on the causes of these
roundness errors and eccentricity we note the following:

Roundness errors Due to limitations in the fabrication process, rotor sha�s will
generally have a cross section that deviates from a perfect circular pro�le.
Such deviations are referred to as roundness errors. Evidently when the sha�
is rotated, these deviations will appear in the displacement signal and the
resulting pattern will be periodic with the rotation of the sha�.

Eccentricity It is easily veri�ed that a varying displacement signal will be obtained
when the sha� is not rotating around its geometrical center, but some other
axis. �is can simply be caused by misalignment, but another important
cause of eccentricity in rotor systems is mass unbalance, which like round-
ness errors, is caused by limitations in the fabrication process.
Mass unbalance occurs when the center of mass deviates from the geometri-
cal center, or, in terms of the 3D sha�, when the geometrical center line does
not coincide with one of the principal axes of rotation. As a result of such
mass unbalance, the rotor will experience a centrifugal force, of which the
amplitude is proportional to the square of the rotational frequency [91]. As a
result of this rotational frequency dependency, also the response of the AMB
spindle system to this mass unbalance forces depends on the rotational fre-
quency. At low rotational speeds these forces are small, and they will not lead
to a signi�cant eccentricity, meaning that the rotor will rotate around its ge-
ometrical center. When increasing the rotational speed, it may pass through
the eigenfrequencies of the rotor-bearing system (known as the the critical
frequencies).�emass unbalance forces will excite thesemodes and depend-
ing on the damping of the modes, high eccentricities may be observed. At
high rotational speeds, the centrifugal forces will cause the rotor to rotate
around its center of mass, again resulting in an eccentric motion.
Another possible source of eccentriticy arises when the motor has a negative
sti�ness that varies with the angular position of the rotor, which is also re-
ferred to as magnetic unbalance. As a result the rotor experiences a varying
force while rotating, resulting in a periodic displacement synchronous with
the rotation of the rotor.

For our purposes, runout is modeled as an additive disturbance source on the posi-
tionmeasurements4, here denoted as vr (see also Figure 2.2).�e reasoning behind

3As these displacement variations are periodic with the rotation of the sha�, they are referred to as
repeatable runout or synchronous runout.

4Note that we have focused on how runout results in periodic variations in the displacement signals
of the magnetic bearings. We add that another e�ect of runout is that the bearing forces of the actuators
will also be a�ected as a result of the resulting variations of the gap length of the bearings. However, as
in general these variations are small in comparison to the gap length, the e�ect on the bearing forces can
be neglected.
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Modeling of AMB spindle systems

Figure 2.4: Realized experimental micro-milling setup. �e setup is built around a high-
speed micro-milling AMB spindle from EAAT with maximum rotational speed
of 120 krpm. A three axis milling machine is constructed, with linear motors for
horizontal displacement of the workpiece and a vertical stage for displacement
of the spindle.

this is that we consider y1 the position of the axis of rotation of the rotor, of which
the measurement is disturbed by the periodic distortion vr .

2.3.5 Example

For the research described in this thesis, a micro-milling setup has been realized
with a high speed AMB spindle, see Figure 2.4. A three axis milling machine was
created using a horizontal XY stage to position theworkpiece and a verticallymoun-
ted Z-stage for translation of the spindle. Together these stages are mounted on a
granite table with a bridge for the Z-axis. All stages are manufactured by Aerotech.
�e horizontal drives have linear motors, with a positioning accuracy of < 0.3µm
and a repeatability of < 0.12µm. �e vertical drive has a lead screw and has a
positioning accuracy of < 0.75µm and a repeatability of < 0.1µm. �e selected
AMB spindle is from EAAT GmbH Chemnitz (Elektrische Automatiserungs- und
Antriebstechniek).�is is a medium-sized spindle with a relatively high maximum
rotational speed of 120,000 rpm.�e rotor length is 250 mm and the rotor mass is
1.1 kg. �e displacement sensors used in the bearings have a resolution of 0.1 µm.
�e airgap length of the radial bearings is 400 µm. �e AMB controller hardware
also provides measurements of the currents through the coils.�e controller itself
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rotor tool

Elasticity modulus [MPa] 225 690
Mass density [kg/m3] 7850 15700
Poisson ratio [⋅] 0.30 0.24

Table 2.1:Material properties used for modeling the rotor (tool steel) and the tool (tungsten
carbide) in the EAAT AMB spindle model.

Bottom X and Y Top X and Y

N (Number of windings) [⋅] 42 42
A Pole surface [m2] 3.9⋅10−4 2.6⋅10−4
ibias (bias current) [A] 4.4 4.4
g (nominal gap length) [m] 0.4⋅10−3 0.4⋅10−3
Table 2.2: Properties of the magnetic bearings in the EAAT spindle.

Bottom X and Y Top X and Y

k i [N/A] 23.8 15.8
kx [N/m] 2.62⋅105 1.74⋅105

Table 2.3: Parameter values of the actuatormodel derived for theAMBs of the EAAT spindle.

is an analog PID with additional digitally implemented notch �ltering to suppress
the response at the bending mode frequencies.
Following the procedure set out in the previous sections, a model for this spin-

dle was derived using Matlab/Simulink. For this, the rotor and tool geometry were
together modeled with a set of 91 cylinder elements. For the rotor, made of tool
steel, and the tool, made of tungsten carbide, di�erent material properties were se-
lected, as summarized in table 2.1.�e properties of the bearings are listed in table
2.2. With these, and using the modeling procedure in Appendix A, the constants
of the linear AMB actuator model as listed in table 2.3 were derived. �e ampli-
tude frequency response of this model a�er balanced truncation [118], resulting in
a state space model with 24 states, is depicted in Figure 2.5. In this �gure, a plot is
made of the frequency response for low and high rotational speed. Here the typical
dynamics of an AMB spindle can be observed:

• On the diagonal, second order dynamics with cut-o� frequency in the lower
frequency range, pertaining to the rigid body modes of the rotor;
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• Lightly damped modes in the high frequency range, related to the bending
modes of the rotor. �ese modes are present in all elements of the transfer
function matrix;

• �e dynamics in the sameplane are coupled (see e.g. element (1, 3): the trans-
fer function from current top X to displacement bottom X).�is coupling is
not subject to gyroscopic e�ects and hence does not vary signi�cantly with
the rotational speed;

• �e dynamics between the X and Y directions are increasingly coupled with
higher rotational speeds (see e.g. element (1, 2): the transfer function from
current bottom Y to displacement bottom X).�is coupling is indeed caused
by the e�ects of gyroscopy.

To illustrate the mode-splitting e�ect at high rotational speeds as described in Sec-
tion 2.3.3, a zoomed-in plot of element (1, 1) of P11 in Figure 2.5 is made, see Figure
2.6.�is plot clearly shows that at high rotational speeds, �exible mode resonances
split into two frequencies.

2.4 Model of the cutting dynamics

�e second building block of the modeling framework in this chapter, is the model
of the micro-milling dynamics. Modeling of manufacturing processes has been a
topic of research in manufacturing for several decades. It is widely acknowledged
that modeling the process of formation of chips using a rotating cutter is di�cult,
and evenmore so formillingwithminiaturized tools. Forwhat follows in this thesis,
we do not need a detailed model of the milling dynamics (in fact, we will give an
approach to cutting force estimation for which modeling of the milling dynamics is
not needed at all). Wewill therefore not present a fullmodel here, but limit attention
to the following more high-level model, which will prove su�cient to understand
the complexity of the modeling e�orts.
When modeling the cutting dynamics, the objective is to describe the relation

between the position of the tooltip y2,0 and the forces u2,0 that are generated as a
result of the cutting process and that act on the tip of the tool, see Figure 2.7. A
common approach in literature to model this relationship consists of three steps
(see e.g. [11, 9, 49]):

1. Consider a tool with N teeth. For each tooth of the tool i = 1 . . .N , the uncut
chip thickness h i(t) is computed in a coordinate frame attached to the rotat-
ing tool. Mechanical modeling of the milling process involves computation
of the trochoidal paths traced by the milling teeth, given the rotational mo-
tion of the tool and the linear motion of the workpiece towards the tool (the
feed). Using knowledge of the milling operation (side milling, slot milling,
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Figure 2.5: Amplitude frequency response of a model of the high-speedmicro-milling AMB
spindle from EAAT at low and high rotational speed (blue: Ω = 10 krpm, red
Ω = 120 krpm). �e plot shows the rigid body behavior in the low frequency
range, and the resonant behavior of the bending modes in the high frequency
range. Coupling of the dynamics between the various directions is present, where
the cross terms related to dynamic coupling between the X- and Y-axis increase
with rotational speed.

etc), the periodically varying uncut chip thickness can be computed. Exten-
sion to dynamic modeling of the milling process is obtained by observing
that the feed is not a constant, but a varying quantity that depends on the po-
sitioning error of the stages and the position of the tool y2,0, as well as their
values at the previous tooth pass5 (i.e. y2,0(t − τ), with τ = 1

nΩ , where n is

5To see this, note that the path traced by a particular cutting tooth determines the material that is
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Figure 2.6: Zoomed-in amplitude frequency response of element (1, 1) of P11 in Figure 2.5
(Blue: Ω = 10krpm, red Ω = 120 krpm): an e�ect of high speed rotation is that
bending modes split.

u2,0(t) y2,0(t)
M

Cutting dynamics

t, feed, cutting conditions, material properties, tool condition

Figure 2.7: Block diagram representing the milling dynamics M, having as input the dis-
placement of the tooltip y2,0 (dim(y2,0) = 2), and as output u2,0 , the cutting
forces (dim(u2,0) = 2). Exogenous inputs of the milling dynamics include t (to
indicate the time-dependency of the dynamics), the feed, the material properties
and tool condition.

the number of teeth).

2. �e cutting forces on each tooth in tangential and radial direction (see Figure
2.8) are modeled as a static nonlinear function of the uncut chip thickness,
where a common form is F(t) = apKch i(t)γ + apKe , with ap the cutting

removed, and consequently de�nes the uncut chip thickness experienced by the next tooth.
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Workpiece
Tool

Y

X

Figure 2.8: Schematic illustrating the modeling of the milling process: at each time instant
the uncut chip thickness h is calculated, fromwhich the force in tangential direc-
tion Ft and radial direction Fr are derived. By coordinate transformation these
forces are mapped in the XY plane. Doing this for all engaged teeth yields the
cutting forces in the X and Y direction.

depth (see Chapter 1), and Kc , Ke and γ are parameters that are material de-
pendent and vary with cutting parameters and the condition of the tool [9].

3. A coordinate transformation is performed to obtain the cutting forces in the
machine coordinate system.�is is done for all teeth, the results of which are
summed, resulting in the cutting forces u2,0.

From this description, it follows that even a rather simpli�ed modeling of the cut-
ting dynamics between y2,0 and u2,0 results in a complicated model: it is nonlinear,
time dependent and includes a delay term.
In this context, we remark that the cutting dynamics and the dynamics of the

positioning servos are coupled (in Figure 2.7 this means that there exists a dynamic
feedback of the cutting force u2,0 to the feed input of M). Indeed, the forces that
arise duringmilling, are disturbances to the servos. Depending on the performance
of the servos, these will lead to positioning errors, and consequently to variations
in the uncut chip thickness. In the context of this research we will not further study
this coupling, butwill simplify the situation by considering the feed as an exogenous
input of the system. Observe that this does not mean that the dynamics of the
positioning stages are entirely ignored, which would imply that a constant value for
the feed is a assumed. Instead, variations of the feed are allowed, but the causes of
these variations are assumed to lie outside our system boundary.

2.5 Framework for monitoring and control of micro-milling

A model of the AMB spindle in a milling con�guration can be obtained by inter-
connection of the AMB spindle model of Section 2.3 and the model of the milling
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P

AMB spindle
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K

Controller + ampli�er

u2,0(t)
y1(t)

y2,0(t)

u1(t)

y1,0(t)

M

Cutting dynamics

t, feed, cutting conditions, material properties, tool condition

Figure 2.9: Generic model of the AMB spindle in a micro-milling con�guration

dynamics of Section 2.4, resulting in the model that is depicted in Figure 2.9. �e
model of Figure 2.9 exhibits a structure with two coupled closed loops:

i. �e control loop of the AMB system, consisting of P and K,

ii. �e nonlinear feedback loop caused by the cutting process, consisting of P
andM.

For the sake of clarity, we remark that the measured signals in this setup are u1 and
y1, representing the bearing currents and displacements respectively. �e cutting
forces u2,0 and tooltip displacement vector y2,0 cannot be observed without addi-
tional hardware.
Within the general framework of this �gure, process monitoring and control of

micro-milling with AMB spindles can be formulated as model-based observer and
control design problems, as follows:

Force estimation: Estimation of the cutting force can be formulated as the objec-
tive to design an observer that with measurements of the signals in the �rst
closed-loop — i.e. control currents u1 and displacements y1 — estimates the
signal u2,0 in the second closed-loop.

Tool monitoring: Implementation of tool monitoring in this framework can be
formulated as the objective to design a �lter F that with u1 and y1 as inputs,
classi�es if the tool is broken or not, or estimates particular parameters of the
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cutting dynamics, e.g. a parameter indicating the tool wear status. In both
cases, the �lter F is used to obtain information about one or more parame-
ters of the dynamics M, using signals of the �rst closed-loop. In case of tool
breakage detection, F is a fault detection �lter, in the case of wear monitor-
ing, F is an online parameter estimator. Hence, crucial in the development
of such techniques is to derive simpli�ed models of the cutting dynamicsM,
which explicitly depend on the parameters that need to be estimated.

Force control: �e problem of force control can be formulated as the objective
to control the cutting parameters (one or more of the exogenous inputs of
M), based on some measure of the cutting forces u2. Generally in force con-
trol, the objective is to regulate only the low frequent behavior of the cutting
forces. �is means that the cutting forces are low-pass �ltered, and subse-
quently the di�erence with a reference value is used as input for a control
algorithm to adapt the cutting parameters.

Chatter control: As reviewed in Chapter 1, chatter is the phenomenon of regener-
ative vibrations in machining operations. In the context of Figure 2.9, the
occurence of chatter can be described as instability of the second closed-
loop. Chatter stability research has very much concentrated on predicting
for which combinations of cutting conditions this loop is stable, where the
dynamics of the machine play an important role (see e.g. [11] and the refer-
ences therein). With an AMB spindle, this problem can be turned around:
chatter control can be formulated as the problem to design a controller K, so
that the double closed loop system is stable for a particular choice of cutting
parameters.

As argued in Chapter 1, in contributing to the development of model-based mon-
itoring and control for micro-milling using AMB spindles, we will put the main
emphasis on the cutting force estimation problem. In the next section we will fur-
ther specify this problem.

2.6 Force estimation as unknown input estimation

�e cutting force estimation problemas formulated in the previous section, involves
estimation of the unknown force signal u2,0 from the measured bearing signals u1
and y1. �e complexity and nonlinearity of the milling dynamics is a highly com-
plicating factor in solving this problem. In order to avoid this, the approach that we
take is to make a simpli�cation to the framework of Figure 2.9. �e simpli�cation
involves that we ignore the existence of the closed loop from y2,0 to u2,0, and treat
the cutting forces u2,0 as an external disturbance to the AMB spindle system. �e
obvious advantage of this simpli�cation is that we avoid the complications of mod-
eling of the cutting dynamics for the cutting force estimation problem. Essentially

46



i
i

“main” — 2011/4/11 — 8:51 — page 47 — #57 i
i

i
i

i
i

Force estimation as unknown input estimation
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Figure 2.10: Simpli�ed of model of the AMB spindle in a micro-milling con�guration for
the purpose of cutting force estimation

this simpli�cation means that we ignore the correlation between the noise v2 and
the forces u2,0, and instead treat these signals as independent.
For brevity, we will continue with the following change of notation. As the sec-

ond output of P is no longer relevant, it is omitted and the subscript 1 is dropped of
the �rst output.

�e resulting model is the block scheme of Figure 2.10. In this �gure another
simpli�cation ismade regarding the runout disturbance vr . Based on the superposi-
tion principle, disturbance vr has been replaced by two equivalent noise sourses vr y
and vru outside of the closed-loop, where vr y is the periodic disturbance present in
the displacement signal (and is equal to the vr �ltered by the sensitivity of the AMB
closed loop), and vru is the periodic disturbance present in the current signals (and
is equal to vr �ltered by the input sensitivity of the AMB closed loop). Observe that
the consequence of this operation is that the signals in the closed loop are rede�ned
and no longer include the e�ect of the runout disturbance. �is we will we use to
our advantage, as will become clear.
Figure 2.10 is the point of departure for the cutting force estimation approach

in this thesis. We treat the cutting forces as an unknown input to the closed-loop
AMB spindle setup, and estimate this input frommeasurements of the bearing sig-
nals. In Chapter 3 we will de�ne this unknown input estimation problem more
precisely and provide solutions to synthesize optimal input estimation �lters. By
moving the runout disturbance ‘out of the closed-loop’, we can treat the e�ect of
runout as a measurement disturbance in the measurements of the control current
and displacement signals. Correction of this disturbance can be achieved by using
the property that it is periodic with the rotational frequency of the rotor. Hence, the
objective of the runout correction procedure is to estimate a correction v̂r y(t) and
v̂ru(t) such that vr y(t)− v̂r y(t) and vru(t)− v̂ru(t) are small. It is the main subject
of Chapter 7 to develop such run-out correction. Consequently, we can separately
consider the force estimation problem and the runout correction problem, which
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P(z) y

u1

v2

v1 + +
++K(z)

u2,0

u1,0

Figure 2.11: Block diagram of the discrete-time equivalent model of the AMB spindle setup.

means that we develop the force estimator under the assumption that no runout dis-
tortion is present (which is equivalent to the assumption that perfect correction can
be achieved). Hence, for simplicity, we will therefore omit vru and vr y henceforth,
and postpone the correction for these measurement disturbances until Chapter 7.

2.7 Discrete-time equivalent models

Since in practice we will work with sampled data of the control current inputs of the
AMB spindle, as well as of the displacement sensor outputs, we will concentrate on
discrete-timemethods in this thesis. In order to develop these, discrete-time equiv-
alent models of the AMB spindle are needed. Naturally, such equivalent models
include a discrete-time representation of the continuous-time cutting force signal.
�is requires us to make an additional assumption on the intersample behavior,
i.e. on how the continuous-time cutting force signal varies between the samples of
the discrete-time representation. By making the assumption that the cutting force
signal is Band-Limited (BL), equivalent discrete-time models of the AMB spindle
system can be obtained.�is will be done for two con�gurations:

I. Directmeasurement: In this con�guration the bearing signals are measured
directly bymeans of sampling of the analog control current and displacement
sensor signals (a�er appropriate anti-aliasing �ltering). �is con�guration
would typically be used when the AMB spindle setup is designed either with
an analog controller, or with a digital controller, of which the internal data is
inaccessable. We remark that this is the con�guration of the EAAT spindle
described in Section 2.3.5.

II. Integration with digital control: In this con�guration, the discrete-time
bearing signals are obtained from a digital control environment.

In Appendix A.3 equivalent discrete-time models for both con�gurations are de-
rived, based on some reasonable assumptions concerning the sampled signals and
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properties of the continuous-time cutting force signal. As follows from the analysis
in the appendix, the discrete-time equivalent model of both con�gurations can be
represented by the block diagram in Figure 2.11, yet there are some key di�erences.
In the integrated con�guration, the equivalent discrete-time model P(z) includes
the dynamics of the D/A conversion and current ampli�er, while in the direct mea-
surement con�guration these dynamics are included in K(z) (meaning that the
frequency response of P(z) and P(s) are the same up to the Nyquist frequency6).
Furthermore, in the integrated con�guration, measurement noise v1 is nil.

�is model will be used as the basis for the development of the force estimator
(Chapter 3) and the identi�cation approach of P (Chapter 5 and 6). In order to
do so, we will make the following assumptions on P, which are justi�ed from the
physics of the systems.

�e �rst assumption is that system P is a strictly proper real rational transfer
function matrix with input dimension m = dim(u) = 6 (m = m1 + m2 with m1 =
dim(u1) = 4 and m2 = dim(u1) = 2) and output dimension p = dim(y) = 4, and
which is unstable. Strictly properness of P follows from the fact that the control
currents have no direct feedthrough to the output of the system, see equation (2.6).
In line with this, it is assumed that aminimal state-space representation for P exists,
given by7

x(t + 1) = Ax(t) + B1u1,0(t) + B2u2,0(t) (2.8a)
y0(t) = Cx(t) (2.8b)

with A ∈ Rn×n , B1 ∈ Rn×4, B2 ∈ Rn×2, and C ∈ R4×n .
�e second assumption is the property that in the discrete-timemodel, allmodes

of the system are controllable through the control current input of the system u1,0.
�is assumption is equivalent to (A, B1 ,C) is being minimal in the above state
space representation. We will utilize this property in Chapter 6 when identifying
the tooltip dynamics. For an AMB spindle with given properties, this assumption
can be veri�ed by following themodeling procedure in this chapter, and computing
the controllability and observability matrices of the resulting the model. However,
this property can also be justi�ed from physical insights directly. In practice, the
magnetic bearing spindle system has many modes, of which several are in fact un-
controllable from the magnetic actuators. We will argue that these modes will not
be observable in the output of the discrete-time model. Indeed, these modes are
typically the vibration modes where the rotor sha� does not move, but only the far
end of the cutting tool performs an oscillationmotion. However, thesemodes are in
general well above the frequency range of interest, viz. the Nyquist frequency (see
also Figure 2.12). �is implies that these modes are unobservable in the sampled

6�e relevance of this property becomes clear in Chapter 5, where we will use this for validation of
the identi�cation result.

7With a slight abuse of notation, but in order to follow common convention, we reintroduce symbol
t here. While it was previously used to denote the continuous time, here it is used for the discrete time.
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First mode
(2.6 kHz)

Second mode
(5.4 kHz)

�ird mode
(7.2 kHz)

Eleventh mode
(45 kHz)

top 
sensor

bottom 
sensor

Figure 2.12:Mode shapes of the EAATAMBspindle system.�is �gure illustrates the typical
mode shapes of the AMB rotor with tool.�e slender tool attached to the larger
rotor results in mode shapes with large deviations at the tip. Nevertheless, even
for high bending modes, the displacement of the rotor sha� is still measurable
at the sensor locations. Bending modes for which this is no longer the case have
frequencies that well exceeds the frequency range of interest.

output (taking into account that before sampling adequate anti-aliasing �ltering is
applied)8. Observe that this property does not rule out the possibility that some of
the modes of P are uncontrollable from u2,0. We will make no further statements
on this.
.

8For the sake of completeness: we remark that we tacitly assume that all modeswithin the frequency
region of interest are both observable and controllable. �is means that the AMB spindle is designed
such that the knots of the corresponding bendingmodes shapes do not exactly coincide with the location
of the displacement sensors or the actuation point of the bearings, which is a reasonable assumption.
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2.8 Conclusions

In this chapter, a generic model of an AMB spindle in a micro-milling con�gura-
tion was given, comprising a model of the AMB spindle dynamics and a model of
the cutting dynamics. �e interconnection of these models results in a con�gu-
ration with two closed-loops, which enables to formulate monitoring and control
of micro-milling as model-based observer and control design problems. With a
reasonable simpli�cation of this con�guration, the force estimation problem is re-
duced to an input estimation problem, where the cutting forces are an unknown
input to the closed-loop AMB spindle system. Using measured data of the control
current and displacement signal and knowledge of the dynamics of the closed-loop,
the objective of the cutting force estimator is to estimate this unknown input. It is
shown that runout disturbances can be treated as measurement disturbances in the
bearing signals, for which compensation is attainable by using their periodic nature.
Finally it was discussed that by making a band-limited assumption on the cutting
force signal, equivalent discrete-time models can be obtained, facilitating the use
of sampled data of the bearing signals. Based on the physics on the setup, assump-
tions concerning the controllability and observability of the resulting discrete-time
models are given and justi�ed.
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Chapter 3

Unknown input estimation from
closed-loop data

3.1 Introduction

In the previous chapter we have described how the problem of estimating the cut-
ting forces from the signals of an AMB spindle can be translated to the problem of
estimating unknown inputs to a closed-loop system. �is chapter deals with this
problem and formulates solutions for optimal linear input estimation �lters.

�e problem of reconstructing inputs of dynamic systems from measurements
of the output has been extensively studied in literature. As our main focus is on
model-based approaches, we concentrate on liturature performing input recon-
struction for systems for whichmodels of the dynamics are available. It is worthwile
to notice that input reconstruction is closely related to the problem of state estima-
tion of systems with unknown inputs. In literature, estimation of the unknown in-
put is frequently performed hand-in-hand with estimation of the state.�e meth-
ods can be broadly categorized according to the assumptions that are made con-
cerning the unknown input, as well as the assumption on the noise disturbances
on the output measurements, see table 3.1. �e �rst category consists of input es-
timators that assume no prior knowledge on the unknown input, and which are
designed in a deterministic setting (category A in table 3.1). �is kind of input es-
timator is known as the Unknown Input Observer (UIO), which is predominantly
considered for continuous-time systems [92, 70, 174, 24, 61, 69, 181, 40]. In struc-
ture the UIO is either a reduced-order observer (i.e. of the Luenberger-type) or a
full-order observer, having as special property that the unknown input is decoupled
from the state estimate. With this, the unknown input can be estimated using the
state estimate, and the known inputs and outputs.�e UIO is also reported to be of
use when dealing with fault detection and isolation [61]. Particularly noteworthy in
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Deterministic Stochastic

No prior
information on
unknown input
assumed

Category A:
Unknown Input
Observers (UIO)

Category B:
Two-stage Kalman
Filter (TSKF),
Minimum Variance
Unbiased (MVU)
approaches

Prior information on
unknown input used

Category C:
Waveform-structured
input observers

Category D: Least
mean squared error
(MSE) observers,
Wiener/Kalman
�ltering

Table 3.1: Approaches to the estimation of unknown inputs to linear systems can be catego-
rized according to the usage of prior information on the unknown inputs, as well
as the use of statistical information on the measurement noise

this context are the contributions of Corless and Tu [37] and Park and Stein [124],
both which apply UIO designs to cutting force estimation problems in machining.
�e second category (category B in table 3.1) concerns approaches that also use no
prior knowledge on the unknown inputs, but are designed on the basis of noisy
output measurements [71, 38, 39, 72, 58, 59].�is category includes approaches that
achieve optimal estimates building upon UIO design, as well approaches extending
the two-stage Kalman �lter approach due to Friedland [52]. �e third and fourth
category of input observers are characterized by the use of prior knowledge on the
input. In category C this is done in a deterministic setting [78, 79, 68, 113]. A key
step in these methods is the development of an autonomous state space model that
generates the input according to the input model, which is then augmented to the
plant model. Input estimation is performed by state estimation of the augmented
plant, by design of a (deterministic) state observer.
Category D involves approaches in which the input is modeled as a noise-like

signal, i.e. it is considered a realization of a stationary stochastic process of which
spectral information is available, and inwhich the outputmeasurement is disturbed
with noise, of which the statistical properties are also known. �ese approaches
have a long history. Indeed, the �ltering problem inwhich the objective is to achieve
minimum mean squared error (MSE) is due to Wiener [180], and the literature on
this kind of input estimation problem is vast (see [14, 83, 66] and the references
therein). Applications are found in several contexts, such as channel equalization
in communications, seismology, acoustics, and speech coding. We remark that in
addition, various results in literature are available that minimize a H∞ criterion
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instead of minimizing the MSE (being equivalent to H2 optimization), see [117, 60,
65]. �e key idea is that the resulting estimators are more robust with respect to
model uncertainties and lack of statistical knowledge of the unknown input.
In this thesis, we have chosen to perform cutting force estimation by input esti-

mation from the closed-loop AMB spindle data within the framework of category
D.�e main argument is that some a priori information regarding the input signal
is available, given the knowledge of the cutting dynamics. From this it is known
that cutting forces consist of a slowly varying o�set related to the cutting depth,
with in addition a signal that is periodic in nature due to the rotation of the milling
tool. In pursuit of an observer that includes this prior information, we note that the
noise on the measurements, as well as stochastic character of variations in the cut-
ting process — and consequently also the stochastic character of the cutting force
signal —make a category D input observer a more logical choice than a category C
observer.
In literature, MSE estimation is generally performed in an open-loop setting.

In contrast, in this chapter estimation of unknown inputs is addressed from data
obtained from a MIMO closed-loop con�guration. Here the main issues are the
following:

• If full knowledge on the closed-loop is available, classical Wiener �lter the-
ory can be applied to perform input estimation. However, this requires the
spectrum of the observations to be positive de�nite. It will be studied what
conditions the plant and controller need to satisfy to ensure this.

• In some cases, no knowledge on the controller is available. An approach to
deal with this is formulated, which ensures equal performance of the input
estimator for all possible controllers.�is is achieved by deriving a constraint
optimal �lter design problem, to which solutions are given.

• Depending on the application of the cutting force estimates, it is of more or
less importance to have the estimates available instantly. In various applica-
tions small processing delays can be tolerated. In the approach of this chapter,
such a delay is therefore included explicitly as a design parameter, turning the
estimation problem into a �xed-lag smoothing problem. For the closed-loop
con�guration, both with and without controller knowledge, this problem is
addressed.

In addressing these issues, we follow a polynomial matrix approach, allowing us to
derive the general structure of the input estimators in a compact formand to analyze
their properties. Following causalWiener �lter theory, the solutions rely on spectral
factorization and derivation of causal parts. For the open-loop estimation problem
it is well established that these operations can be carried out explicitly when a state
space realization of the plant is available [83]. With some modi�cations, this is also
the case for the closed-loop con�guration, as will become clear in this chapter.
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�is chapter is organized as follows. We start in Section 3.2 by introducing some
notation, relevant mathemetical concepts and main results regarding MSE estima-
tion. Subsequently in Section 3.3 the closed-loop con�guration is discussed and
the input estimation problem is de�ned precisely. In Section 3.4, we give general
solutions to the input estimation problem in polynomial matrix form, both for the
case full knowledge is available on the controller, as well as for the case that no such
information can be used. In Section 3.5 explicit solutions for the causal input esti-
mators are formulated via a state space realization. In Section 3.6 several measures
are introduced that can be used to assess the performance of the resulting estima-
tors. We conclude this chapter with simulation results obtained by applying the
methods in this chapter for cutting force estimation from simulated AMB spindle
measurements, Section 3.7.

3.2 Preliminaries

We start by introducing some notation and relevant mathematics. �e analysis in
this chapter is performed for linear time-invariant MIMO discrete-time systems
that can be described by the mapping of the input u ∈ Rm to y ∈ Rp , where R
denotes the �eld of real numbers, according to y(t) = ∑∞j=−∞ Tt− ju( j) where Ti
is a sequence of matrices that belong to Rp×m .�e transfer function matrix of this
mapping is given by the bilateral z-transform T(z) = ∑∞i=−∞ Tiz−i for those regions
of the complex plane C for which the in�nite summation converges. �e regions
C−,CO , andC+ represent the open unit disc, the unit circle, and the area outside the
unit disc respectively.�e function T(z) as de�ned above will be a rational matrix
in z. �e set of all rational transfer functions is denoted as RH. �e subset of RH
containing all stable transfer functions, i.e. all rational transfer functions T(z) that
are analytical for all z ∉ C−, is denoted as RH∞. �e hermitian transpose of a
transfer function is denoted as TH(z) = TT(1/z). Transfer function T(z) will be
causal if and only if Ti = 0 for i < 0 or equivalently, if and only if T(z) is analytic in
the exterior of some annulus, ∣z∣ > α > 0. Similarly, T(z) is anti-causal if Ti = 0 for
i > 0, or equivalently, if and only if T(z) is analytic in the interior of some annulus,∣z∣ < α < ∞. Moreover, T(z) is strictly causal (strictly anti-causal) if and only if it
is causal (anticausal) and T(∞) = 0 (T(0) = 0). �e causality and anti-causality
operators are denoted by {⋅}+ and {⋅}− respectively and are de�ned as follows:

{T(z)}+ = ∞∑
i=0
Tiz−i {T(z)}− = −1∑

i=−∞
Tiz−i .

�e class of signals considered in this chapter consists of realizations of stationary
random processes. We will use the following notions. Let x(t) and y(t) denote two
random processes. �e autocorrelation function of x(t) and the cross correlation
function between x(t) and y(t) are respectively given by

Rx(τ) = Ex(t)x(t − τ)T Ryx(τ) = Ey(t)x(t − τ)T
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�e z-spectrum (or brie�y, spectrum) of x(t) and the cross z-spectrum (or brie�y,
cross spectrum) between y(t) and x(t) are de�ned by the bilateral z-transform of
Rx(τ) and Ryx(τ),

Φx(z) = ∞∑
τ=−∞

Rx(τ)z−τ Φyx(z) = ∞∑
τ=−∞

Ryx(τ)z−τ .

�e power spectral density of x(t) is found by evaluating Φx(z) on the unit cir-
cle, i.e. Φx(e jω). Similarly, the cross spectral density of x(t) and y(t) is given by
Φyx(e jω).�e power of process x(t) is given by

σ 2x = trRx(0) = 1
2π
tr∫ 2π

0
Φ(e jω)dω.

�is expression shows that process x(t)will have �nite power if and only if Φx(z) is
bounded on the unit circle. A su�cient (but stronger than necessary) condition for
this is that Rx(τ) is exponentially bounded, i.e., that there exists a positive de�nite
constant matrix T > 0 and a positive scalar α < 1, such that Rx(τ) < Tα∣τ∣ for −∞ <
τ <∞, which ensures absolute convergence of Φx(z) on an annulus containing the
unit circle α < ∣z∣ < α−1 [83].
As indicated in the introduction, minimumMSE input estimation strongly re-

lies on the notion of spectral factorization, which is de�ned in the following theo-
rem.

Proposition 3.2.1 (Spectral Factorization [14, 83, 140, 66]) Consider Φ(z) ∈ RH
with the following properties:

• Φ(z) has full rank for almost every z ∈ C

• Φ(z) = ΦH(z)
• Φ(z) is analytic on ∣z∣ = 1, and Φ(z) > 0 for all ∣z∣ = 1.

�ere exist a factorization of Φ(z), given by Φ(z) = M(z)MH(z) where
• M(z) ∈ RH is analytic for ∣z∣ > α, α > 0 (i.e. M(z) is causal),
• M(z) has constant rank in C+, or equivalently, M−1(z) is analytic for ∣z∣ ≥ 1
(M−1(z) is causal and stable)

M(z) is called a causally invertible spectral factor of Φ(z).
We remark that o�en in the literature on spectral factorization, the formulation of
the above theorem is somewhat more restrictive in the sense thatM(z) is not only
causally invertible, but also stable.�e relaxed formulation of proposition 3.2.1 will
prove to be useful for our purposes, as will become clear later.
With the above, we can now formulate the following two classic results con-

cerning MSE estimation of random processes.
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Proposition 3.2.2 (�e Wiener Smoother) Consider two zeromean jointly station-
ary random processes u(t) and y(t) with known spectra Φu(z) ∈ RH, Φy(z) ∈ RH
and known cross spectrum Φuy(z) ∈ RH. Assume that Φy(z) > 0 for all ∣z∣ = 1. Let
u be estimated by a linear �lter on y, i.e. û(t) = F(z)y(t), with F(z) ∈ F, where F is
de�ned as the set of all (causal and non-causal) �lters that yield a bounded estimate
for all y:

F ∶= {F ∈ RH∣F(z) is analytic on the unit circle}.
De�ne the estimation error є(t) = u(t)− û(t).�en the solution to the MSE estima-
tion problem F0 = argminF Eє(t)Tє(t) is given by

F0(z) = ΦHuy(z)Φ−1y (z). (3.1)

�e corresponding minimumMSE is given by

Eє(t)Tє(t) = 1
2π
tr∫ 2π

0
Φє(e jω)dω (3.2)

with estimation error spectrum

Φє(z) = Φu(z) −Φuy(z)Φ−1y (z)ΦHuy(z). (3.3)

Proof See e.g. [83]

Proposition 3.2.3 (�e N-causal Wiener �lter) Consider two zeromean jointly sta-
tionary random processes u(t) and y(t) with known spectra Φu(z) ∈ RH, Φy(z) ∈
RH and known cross spectrum Φuy(z) ∈ RH. Assume that Φy(z) > 0 for all ∣z∣ = 1.
Let u be estimated by a linear �lter on y, i.e. û(t) = F(z)y(t), with F(z) ∈ Fcaus,N ,
where Fcaus,N is de�ned as the set of all �lters that are causal and stable when delayed
by N time steps:

Fcaus,N ∶= {F ∈ RH∣z−NF(z) is analytic on and outside the unit circle}
De�ne the estimation error є(t) = u(t)− û(t).�en the solution to the MSE estima-
tion problem F0,N = argminFcaus,N Eє(t)Tє(t) is given by

z−NF0,N(z) = {z−NΦHuy(z)M−H(z)}+M−1(z). (3.4)

where M(z) is found from the spectral factorization of Φy(z) = M(z)MH(z) ac-
cording to proposition 3.2.1.�e corresponding minimumMSE is given by

Eє(t)Tє(t) = 1
2π
tr∫ 2π

0
Φє(e jω)dω (3.5)

with estimation error spectrum

Φє(z) = Φu(z) −Φuy(z)Φ−1y (z)ΦHuy(z)++ ({z−NΦHuy(z)M−H(z)}−)({z−NΦHuy(z)M−H(z)}−)H . (3.6)
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Proof See e.g. [83].

�e set Fcaus,N is the subset of F, of which the elements themselves are not nec-
essarily causal, but which are causal when delayed by N timesteps. It is worthwhile
to elaborate on the properties of the �lters in Fcaus,N . For this, let us expand an ar-
bitrary element FN(z) ∈ Fcaus,N as FN(z) = ∑∞i=−N Fiz−i . With this, the expression
for the estimate û can be written as

û(t) = −1∑
i=−N

Fi y(t − i) + ∞∑
i=0
Fi y(t − i).

�is expression shows that û(t) is calculated using the full past of y(t) plus future
observations up to a �xed horizon.�e causal input estimator withN = 0 calculates
û(t) using present and past observations of y(t) only. Now consider the relation
between u and y is given by the mapping y = Pu + v, with v a stationary zero mean
random process, uncorrelated with u. If P is strictly proper, implying that y(t) is a
not function of the input u(t) (but only its past), then the estimate û(t) obtained
with this estimator will neither be a function of the true input u(t). Instead, it is a
prediction based on the known cross-correlation function of u and y. Depending
on this cross-correlation, as well as on the properties of v, the obtained prediction
may be poor.
In contrast, for N ≥ k+ 1, with k the number of delays in P, one ore more obser-

vations correlatedwith u(t) are used tomake the estimate û(t). Indeed, the estima-
tion error obtained with F0,N decreases monotonely with increasing delay N and it
is bound from below by the error obtained with F0. To see this, let єN denote the es-
timation error obtained with F0,N and є denote the estimation error obtained with
F0. Observe that for any N1 > N2, Fcaus,N2 ⊂ Fcaus,N1 ⊂ F. Consequently EєTN2єN2 >
EєTN1єN1 > EєTє. When implementing these �lters in practice, the price to be paid
for the lower error with increasingN is that a larger delay will be incurred in getting
the estimate available. Indeed, since z−NFN is causal, it is easy to see that practical
implementation of the N-causal input estimator causes a delay of N time steps:
û(t − N) = z−NFN y(t). A �lter with such structure is generally referred to as a
�xed lag smoother [83].
In the following sections we will apply the Wiener smoother and �lter to a

closed-loop con�guration, and perform the analysis using polynomial equations.
Hence, we conclude this section with some properties of polynomial matrices (for
a more detailed discussion of these, see [82]). A p ×m polynomial matrix is a ma-
trix of the form A(ξ) = A0 + A1ξ + ⋅ ⋅ ⋅ + An ξn with ξ an indeterminate variable
taking values in the complex plane, and A i ∈ Rp×m , i = 0 . . . n constant matrices.
A polynomial matrix A(ξ) has full column (row) normal rank if it has full column
(row) rank everywhere in the complex plane, except at a �nite number of points.
A polynomial matrix is le� (right) prime if it has full row (column) rank every-
where in the complex plane. A square matrix U(ξ) is unimodular if its determi-
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Figure 3.1: Con�guration of the input estimation problem for closed-loop data. Filter F es-
timates unknown input u2 from the closed-loop data u1 and y.

nant det(U(ξ)) is a nonzero constant. �e inverse of U(ξ) is then again a poly-
nomial matrix. Polynomial matrices A1(ξ) and A2(ξ) with equal row dimension
are le� coprime if [A1(ξ) A2(ξ)] is le� prime. �is is equivalent to saying that the
greatest le� common divisor of A1(ξ) and A2(ξ) is unimodular. Similarly, poly-
nomial matrices B1(ξ) and B2(ξ) with equal column dimension are right coprime
if col(B1(ξ), B2(ξ)) is right prime. �is is equivalent to saying that the greatest
right common divisor of B1(ξ) and B2(ξ) is unimodular.�e zeros of A(ξ) are the
points in the complex plane where A(ξ) loses rank. A le� matrix fraction descrip-
tion (MFD) T(z) = D−1L (z−1)NL(z−1) is called irreducible if DL(ξ) and NL(ξ) are
le� coprime. Similarly, a right MFD T(z) = NR(z−1)D−1R (z−1) is called irreducible
if NR(ξ) and DR(ξ) are right coprime.
3.3 Con�guration and problem statement

Weconsider the closed-loop systemdepicted in Figure 3.1, consisting of plant P(z) =[P1(z) P2(z)] of dimensions p × (m1 + m2) and controller K(z) of dimensions
m1 × p. Plant P(z) and controller K(z) are both linear time invariant, real-rational
causal transfer functions, where in addition P(z) is strictly proper, and controller
K(z) is proper. Input u2 ∈ Rm2 is an unknown input to plant P. Output u1 ∈ Rm1
is the measurement of control input u1,0, corrupted by additive noise v1. Output
y ∈ Rp is the output of plant P, corrupted by additive noise v2. Let T(z) be the
transfer function of col(u2 , v1 , v2) to col(u1 , y):

( u1y ) = [ Tu1u2(z) Tu1v1(z) Tu1v2(z)
Tyu2(z) Tyv1(z) Tyv2(z) ]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

T(z)

⎛⎜⎝
u2
v1
v2

⎞⎟⎠ (3.7)
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where

Tu1u2(z) = K(z)S(z)P2(z) Tu1v1(z) = I Tu1v2(z) = K(z)S(z)
Tyu2(z) = S(z)P2(z) Tyv1(z) = 0 Tyv2(z) = S(z)

and S(z) = (I − P1(z)K(z))−1. Is is assumed that the closed-loop is stable. Con-
cerning the external input signals u2, v1 and v2 the following assumption is made.

Assumption 3.3.1 It is assumed that

1. Unknown input u2, and noise processes v1 and v2 are exponentially bounded
stationary random processes. �e power spectral density functions of u2(t),
v1(t), and v2(t) are known, rational and strictly positive:
Φu(e jω) > 0, Φv1(e jω) > 0, and Φv2(e jω) > 0, ∀ω ∈ [0, 2π).

2. Inputs u2(t), v1(t) and v2(t) are mutually uncorrelated.
Furthermore, it is assumed that the spectrum of col(u1 , y) is positive de�nite:
Assumption 3.3.2 Let Σ(z) be the spectrum of col(u1 , y). It is assumed that Σ(z) >
0 for all ∣z∣ = 1.
Our goal is to design a linear transfer function F(z) = [F1(z) F2(z)] that optimally
estimates the unknown input sequence u2 using the observations u1 and y. �e
estimate is denoted as û2, which can be expressed as û2 = F1(z)u1 + F2(z)y. Let
the estimation error є be denoted as є(t) = u2(t) − û2(t). We can now de�ne the
optimal non-causal and N-causal input estimation problems as follows.

De�nition 3.3.3 (Optimal non-causal input estimator) �e optimal input estima-
tor F0 is de�ned as:

F0 = argmin
F

Eє(t)Tє(t) (3.8)

where F is de�ned as the set of (causal and non-causal) �lters that yield bounded
estimation error:

F ∶= {F ∈ RH∣F(z) is analytic on the unit circle}
De�nition 3.3.4 (Optimal N-causal input estimator) �e N-causal optimal input
estimator F0,N is de�ned as:

F0,N = arg min
Fcaus,N

Eє(t)Tє(t) (3.9)

where Fcaus,N is de�ned as the set of �lters that are causal and stable when delayed by
N time steps:

Fcaus,N ∶= {F ∈ F∣z−NF(z) is analytic on and outside the unit circle}
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3.4 Polynomial solutions of the input estimation problem from
closed-loop data

In the following sections we will give the solutions to the input estimation problems
de�ned in the previous section. First in Section 3.4.1 we will do this for the case
we have full knowledge on controller K(z). For this case, we can directly apply
the Wiener �lter results from literature as formulated in Section 3.2. In addition,
we will give conditions on the closed-loop that are necessary in order to apply the
Wiener �lter results. Section 3.4.2 extends the results for the case no information
on K(z) is available. An approach is formulated by imposing an extra constraint to
the optimal estimator, ensuring equal performance of it for any controller. In the
last Section 3.4.3 we investigate under which conditions the input can be observed
from the output measurements.

3.4.1 Full controller knowledge

We will �rst consider the situation that full information on the controller K(z) is
available, in which case we can directly apply theWiener �lter results in Section 3.2.
�e result of that for the optimal non-causal input estimator is summarized in the
following proposition:

Proposition 3.4.1 Under assumptions 3.3.1 and 3.3.2, the optimal non-causal input
estimator exists and is given by

F0(z) = [ 0 Φu(z)PH2 (z)Ψ−1(z)S(z)−1 ] (3.10)

with Ψ(z) = P2(z)Φu(z)PH2 (z) + Φv2(z). �e spectrum of the estimation error
Φє ,0(z) obtained with F0(z) is given by

Φє ,0(z) = Φu(z) −Φu(z)PH2 Ψ−1(z)P2(z)Φu(z) (3.11)

Proof Since by assumption Σ(z) > 0 for ∣z∣ = 1, it follows from proposition 3.2.3
that the Wiener smoother for u2 from col(u1 , y) is given by

F0(z) = Φu(z)( Tu1u2(z)Tyu2(z) )H Σ−1(z). (3.12)

Now note that we can express for Σ(z)
Σ(z) = ( I KS

0 S )[ Φv1 0
0 Ψ ]( I KS

0 S )H (3.13)

with Ψ(z) = P2ΦuPH2 +Φv2 . From this, we �nd that
Σ−1(z) = [ I 0−KH S−H ] [ Φv1 0

0 Ψ ]−1 [ I −K
0 S−1 ] . (3.14)
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Substituting in (3.12) the expressions for Tu1u2 and Tyu2 from equation (3.7), and
expression (3.32), yields

F0 = [ 0 ΦuPH2 Ψ−1S−1 ] (3.15)

�e expression for the estimation error spectrum is derived similarly from expres-
sion 3.3.

Observe that the �rst element of F0(z) is zero.�is is logical in the case we have
full information on the controller. Indeed, output u1 is a corruptedmeasurement of
u1,0, which is the result of the mapping u1,0 = K(z)y. Knowing y and having exact
information on K(z), we have exact information on the sequence u1,0 1. Hence, no
increased performance can be expected by using sequence u1.
Furthermore, observe that under the given conditions the second element of

F0(z) is the Wiener smoother for u2 from observations y. Indeed, ignoring obser-
vations u1, we can simplify the estimation problem to the problem of estimating u2
from observations y = Tyu2(z)u2+S(z)v2. Assumption 3.3.2 implies Φy(z) > 0 for∣z∣ = 1. Hence, the Wiener smoother for input u2 is given by

Fw = Φu2 yΦ−1y (3.16)= ΦuTHyu2(Tyu2ΦuTHyu2 + SΦv1SH)−1 , (3.17)

which with the de�nitions of Tyu2 and S is identical to the second element of F0(z).
In the above proposition, usage was made of the assumption that Σ(z) > 0 for∣z∣ = 1 (assumption 3.3.2). We will analyze the implications of this assumption for

the closed-loop structure. With equation (3.7), we can express for Σ(z)
Σ(z) = T(z) ⎡⎢⎢⎢⎢⎢⎣

Φu(z) 0 0
0 Φv1(z) 0
0 0 Φv2(z)

⎤⎥⎥⎥⎥⎥⎦TH(z). (3.18)

By assumption 3.3.1, the center matrix in this product is positive de�nite for all ∣z∣ =
1. Hence Σ(z) > 0 for ∣z∣ = 1 i� T(z) has full row rank for all ∣z∣ = 1. We will derive
what conditions P and K must satisfy for T(z) to have this property. For that, let
us introduce MFDs for P and K. Let

P(z) = D−1P (z−1) [ NP ,1(z−1) NP ,2(z−1) ] (3.19)

be an irreducible le� MFD of P(z), i.e. DP(ξ) and [ NP ,1(ξ) NP ,2(ξ) ] are le�
coprime. Furthermore, letNK(z−1)D−1K (z−1) be an irreducible rightMFD for K(z).
By assumption the closed-loop is stable, which implies that any common factor
of DP(ξ) and NP ,1(ξ) is stable. We will however make the stronger assumption

1Of course this statement holds for the case the system has reached its steady state.
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that DP(ξ) and NP ,1(ξ) are le� coprime, implying that all modes of the system
are controllable from input u1. Note that not all modes of P are necessarily con-
trollable from input u2. Stated otherwise, DP(ξ) and NP ,2(ξ) are not necessarily
le�-coprime. We de�ne W(ξ) as the largest common le� divisor of DP(ξ) and
NP ,2(ξ), i.e.W(ξ) satis�es

DP(ξ) =W(ξ)D̄P(ξ)
NP ,2(ξ) =W(ξ)N̄P ,2(ξ)

such that D̄P(ξ) and N̄P ,2(ξ) are le� coprime. Using this notation, we can express
S(z) as

S(z) = (I − D−1P NP ,1NKD−1K )−1 (3.21)= DK(DPDK − NP ,1NK)−1DP (3.22)

where we note that γ ∶= DPDK − NP ,1NK is stable by the assumption of stability of
the closed-loop. With this, we obtain

T(z) = [ NKγ−1WÑP ,2 I NKγ−1WD̃P
DKγ−1WÑP ,2 0 DKγ−1WD̃P

] . (3.23)

From this, it is immediate that T(z) has full row rank for all ∣z∣ = 1 i�W(z−1) > 0
and DK(z−1) > 0 for all ∣z∣ = 1.�is condition is equivalent to saying that
1. None of the modes of P(z) that are uncontrollable from input u2 are on the
unit circle, and

2. K(z) has no poles on the unit circle.
Wewill now proceed to the solution for theN-causal input estimator, which is given
in the following proposition:

Proposition 3.4.2 Under assumptions 3.3.1 and 3.3.2, the N-causal optimal input es-
timator exists and is given by

z−NF0,N(z) = [ 0 {z−NΦu(z)PH2 (z)SH(z)M−H
S (z)}+M−1

S (z) ] (3.24)

where MS(z) is a causally invertible spectral factor of
ΨS(z) = S(z)(P2(z)Φu(z)PH2 (z) +Φv2(z))SH(z). (3.25)

�e spectrum of the estimation error obtained with F0,N is denoted as Φє ,0,N and is
given by

Φє ,0,N(z) = Φu(z) −Φu(z)PH2 (z)Ψ−1S (z)P2Φu(z)++ ({z−NΦu(z)PH2 (z)SHM−H
S (z)}−) ({z−NΦu(z)PH2 (z)SHM−H

S (z)}−)H .
(3.26)
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If in addition K(z) is stable, then the N-causal optimal input estimator is given by
z−NF0,N(z) = [ 0 {z−NΦu(z)PH2 (z)M−H(z)}+M−1(z)S(z)−1 ] (3.27)

where M(z) is a causally invertible spectral factor of
Ψ(z) = P2(z)Φu(z)PH2 (z) +Φv1(z). (3.28)

�e corresponding estimation error spectrum is

Φє ,0,N = Φu −Φu(z)PH2 Ψ−1P2Φu++ ({z−NΦu(z)PH2 (z)M−H(z)}−) ({z−NΦu(z)PH2 (z)M−H(z)}−)H (3.29)

Proof Since by assumption Σ(z) > 0 for ∣z∣ = 1, it follows from proposition 3.2.2
that the N-causal Wiener �lter for u2 from col(u1 , y) is given by

F0(z) = {z−NΦu(z)( Tu1u2(z)Tyu2(z) )HM−H
Σ (z)}+M−1

Σ (z) (3.30)

where Σ(z) = MΣ(z)MH
Σ (z) is a spectral factorization according to proposition

3.2.1. Now note that we can express Σ(z) as
Σ(z) = ( S−1 K

0 I )[ SΦv1SH 0
0 ΨS

]( S−1 K
0 I )H (3.31)

with ΨS(z) = S(z)(P2(z)Φu(z)PH2 (z) +Φv2(z))S(z). From this, we �nd that
Σ−1(z) = [ SH 0−(SK)H I ] [ SΦv1S 0

0 ΨS
]−1 [ S −SK

0 I ] . (3.32)

Note that the le� and rightmatrix in this product are stable. As by de�nitionMΣ(z)
is a causally invertible spectral factor, M−1

Σ (z) is stable, from which it follows that
we can write

M−1
Σ (z) = [ S 0−(SK)H I ] [ ∗ 0

0 M−1
S (z) ] . (3.33)

where it is used thatMS(z) is a causally invertible spectral factor of ΨS(z). Substi-
tuting in (3.30) the expressions for Tu1u2 and Tyu2 from equation (3.7), and expres-
sion (3.33), yields the optimal �lter F0,N . �e expression for the estimation error
spectrum is derived similarly from expression (3.6).
If in addition K(z) is stable, we can write MS(z) = S(z)M(z). �is can be

observed as follows. First note that using the MFD for P introduced in equation
(3.19), we can write

Ψ = D−1P [W(ÑP ,2Φu ÑHP ,2 + D̃PΦv2DHP )WH]D−HP (3.34)
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3. Unknown input estimation from closed-loop data

from which we see that D−1P is a le� divisor ofM(z). Also, from equation (3.21) we
know that DP is a right divisor of S(z). Hence, we can write

ΦS(z) = SΨSH (3.35)= DKγ−1 [W(ÑP ,2Φu ÑHP ,2 + D̃PΦv2DHP )WH] γ−HDHK . (3.36)

If K(z) is stable, we conclude that DKγ−1 is a le� divisor ofMS(z), and hence S(z)
is a le� divisor of MS(z). Substituting MS(z) = S(z)M(z) in equation (3.24) and
(3.26), yields equation (3.27) and (3.29) respectively.

3.4.2 No controller knowledge

�e optimal solution in the previous section was obtained by using full knowledge
of the controller. �is information is not always available. One way to deal with
this is by formulating the input estimator design problem in a robust estimation
framework. �is would involve usage of nominal knowledge of K combined with
an uncertainty description to include the variations of controller K.�e goal then
is to design F so, as to minimize the variations of Φe in some to be de�ned norm
for all K in the uncertainty set. We will not further analyze this problem here.
Instead, we take the following somewhat more conservative approach. We de-

�ne the optimal �lter for the case K is unknown as the �lter that gives minimum
estimation error for all K stabilizing P. �e optimal �lter according to this de�ni-
tion will be independent of K and therefore also independent of the performance
of the closed-loop. �e practical advantage is that controller and estimator can be
designed independently. In this section, the solution to this �lter design problem is
given. In addition we will analyze the conservatism in requiring equal performance
of the input estimator for all stabilizingK, and draw conclusions on the applicability
of this approach.
Equal performance of F can be obtained for all possible controllers, when F

satis�es an extra constraint, as expressed by the following proposition.

Proposition 3.4.3 Consider the stable closed-loop with controller K and the input
estimator F, according to the con�guration detailed in Section 3.3. If a �lter F satis�es
F1 = −F2P1, then Φe is independent of K.
Proof Observe that we can express u1,0 as

u1,0 = Tu1u2(z)u2 + Tu1v2(z)v2 . (3.37)

�en

( u1y ) = [ I 0 I 0
P1(z) P2(z) 0 I ]⎛⎜⎜⎜⎝

u1,0
u2
v1
v2

⎞⎟⎟⎟⎠ . (3.38)
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With this, the error spectrum can be expressed as

Φє(z) = [ −(F1 + F2P1) (I − F2P2) −F1 −F2 ] ⋅
⋅ ⎛⎜⎜⎝

Tu1u2ΦuTHu1u2 + Tu1v2Φv2T
H
u1v2 Tu1u2Φu 0 Tu1v2Φv2

ΦuTHu1u2 Φu 0 0
0 0 Φv1 0

Φv2THu1v2 0 0 Φv2

⎞⎟⎟⎠
⎡⎢⎢⎢⎢⎢⎣
−(F1 + F2P1)H
(I − F2P2)H

−FH1
−FH2

⎤⎥⎥⎥⎥⎥⎦ .
(3.39)

In the expression forΦє the only terms that varywithK are Tu1u2 and Tu1v2 . Without
loss of generality, let us assume that F1 = −F2P1−A, where A is a real rational matrix
with appropriate dimensions. With this, we can write equation (3.39) as

Φє(z) = [ A (I − F2P2) F2P1 + A −F2 ] ⋅
⋅ ⎛⎜⎜⎝

Tu1u2ΦuTHu1u2 + Tu1v2Φv2T
H
u1v2 Tu1u2Φu 0 Tu1v2Φv2

ΦuTHu1u2 Φu 0 0
0 0 Φv1 0

Φv2THu1v2 0 0 Φv2

⎞⎟⎟⎠
⎡⎢⎢⎢⎢⎢⎣

AH
(I − F2P2)H
(F2P1 + A)H

−FH2

⎤⎥⎥⎥⎥⎥⎦= [ A (I − F2P2) −F2 ] ⋅
⋅ ⎛⎝ Tu1u2ΦuTHu1u2 + Tu1v2Φv2T

H
u1v2 Tu1u2Φu Tu1v2Φv2

ΦuTHu1u2 0 0
Φv2THu1v2 0 0

⎞⎠
⎡⎢⎢⎢⎢⎣

AH
(I − F2P2)H

−FH2

⎤⎥⎥⎥⎥⎦+
+ [ (I − F2P2) F2P1 + A −F2 ] ⎛⎝ Φu 0 0

0 Φv1 0
0 0 Φv2

⎞⎠
⎡⎢⎢⎢⎢⎣
(I − F2P2)H
(F2P1 + A)H

−FH2

⎤⎥⎥⎥⎥⎦
Observe that in the last expression for the error spectrum Φє(z), we have obtained
two terms, the �rst termdepends onTu1u2 andTu1v2 , the second term is independent
of Tu1u2 and Tu1v2 . When A = 0, the �rst term is zero, which proves the proposi-
tion.

Note that in proposition 3.4.3 only su�ciency of the contraint F1 = −F2P1 is proven.
Derivation of necessary conditions for the �lter F to be independent of K will re-
sult in detailed geometrical conditions following from the structure of P, which is
beyond the scope of this work.
Having obtained this result, we can proceed as follows. Finding the optimal

estimator that yields equal performance for all K stabilizing P, implies minimizing
estimation error under the constraint F1 = −F2P1. Here, the superscript K is used
to denote K-independence.

De�nition 3.4.4 (Optimal K-independent non-causal input estimator) �e opti-
mal input estimator FK0 , yielding equal performance for all K stabilizing P, is de�ned
as:

FK0 = argmin
F

Eє(t)Tє(t) subject to F1 = −F2P1 . (3.40)
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De�nition 3.4.5 (Optimal K-independent N-causal input estimator) �e
N-causal optimal input estimator FKcaus,N , yielding equal performance for all K stabi-
lizing P, is de�ned as:

FKcaus,N = arg min
Fcaus,N

Eє(t)Tє(t) subject to F1 = −F2P1 . (3.41)

�e solution to these input estimation problems is given by the following twopropo-
sitions.

Proposition 3.4.6 Under assumption 3.3.1, the K-independent non-causal optimal
input estimator exists and is given by

FK0 = Φu(z)PH2 (z)Ψ̄−1(z) [ −P1(z) I ] (3.42)

with Ψ̄(z) = P2(z)Φu(z)PH2 (z)+P1(z)Φv1(z)PH1 (z)+Φv2(z).�e estimation error
spectrum obtained with F0 is denoted as Φє ,0 and is given by

ΦKє ,0 = Φu −Φu(z)PH2 Ψ̄−1P2Φu . (3.43)

Proof From the proof of proposition 3.4.3 we know that if F1 = −F2P1, the error
spectrum is given by

Φє = [ (I − F2P2) F2P1 −F2 ]⎛⎜⎝
Φu 0 0
0 Φv1 0
0 0 Φv2

⎞⎟⎠
⎡⎢⎢⎢⎢⎢⎣

(I − F2P2)H(F2P1)H−FH2
⎤⎥⎥⎥⎥⎥⎦ (3.44)

= ( F2 I ) [ Ψ̄ −P2Φu−ΦuPH2 Φu
] ( F2 I )H (3.45)

with Ψ̄(z) = P2(z)Φu(z)PH2 (z) + P1(z)Φv1(z)PH1 (z) + Φv2(z). Observe that we
can express

Ψ̄ = [ P2 P1 I ] ⎡⎢⎢⎢⎢⎢⎣
Φu 0 0
0 Φv1 0
0 0 Φv2

⎤⎥⎥⎥⎥⎥⎦ [ P2 P1 I ]H . (3.46)

Noting that the center matrix in this product is positive de�nite on the unit circle
by assumption 3.3.1, and [ P2(z) P1(z) I ] has full row rank for all z ∈ C, we
infer Ψ̄(z) > 0 for all ∣z∣ = 1. Completion of the squares yields
Φє = (F2 −ΦuPH2 Ψ̄−1) Ψ̄ (F2 −ΦuPH2 Ψ̄−1)H +Φu −ΦuPH2 Ψ̄−1P2Φu . (3.47)

�is expression essentially dividesΦє into twoparts, the �rst nonnegative andquad-
ratic in F2, the other part independent of F2. It is thus obvious that the optimal FK0;2
is the one that makes the �rst term equal to zero:

FK0;2(z) = ΦuPH2 Ψ̄−1 (3.48)
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Hence,

FK0 (z) = ΦuPH2 Ψ̄−1 [ −P1 I ] . (3.49)

To see that FK0 (z) is analytic on the unit circle note that we can express
Ψ̄ = D−1P (NP ,2ΦuNP ,2 + NP ,1Φv1NP ,1 +Φv1)D−HP (3.50)= D−1P ψD−HP (3.51)

where we denote ψ = NP ,2ΦuNP ,2 + NP ,1Φv1NP ,1 + Φv1 . Note that ψ is positive
de�nite on the unit circle. With this we can express FK0 as

F0(z) = ΦuNHP ,2ψ−1 [ −NP ,1 DP ] (3.52)

fromwhich the analyticity on the unit circle is immediate.�e resulting estimation
error spectrum follows directly from (3.47) for F2 = FK0;2:

ΦKє ,0(z) = Φu(z) −Φu(z)PH2 (z)Ψ̄−1(z)P2(z)Φu(z). (3.53)

It is noteworthy to remark that when P is stable, we could have arrived at expres-
sion (3.48) by observing that FK0;2 is the Wiener smoother for u2 from the signal
ζ = [ −P1(z) I ] col(u1 , y), where Ψ̄(z) has the interpretation of being the spec-
trum of ζ . In the case P has unstable poles, the result in this proposition tells us
that the expression of the optimal non-causal input estimator remains the same,
although Ψ̄(z) then no longer has the interpretation of being the spectrum of a
physical signal.
Additionally, note that in this proposition positive de�niteness of Σ(z) on the

unit circle is not required, meaning that it also holds in case K has poles on the unit
circle, or when P has modes on the unit circle that are uncontrollable from input
u2. We will comment on this property at the end of this section.

�e solution for the K-independent N-causal input estimator is given in the
following proposition:

Proposition 3.4.7 Under assumption 3.3.1, the K-independent N-causal optimal in-
put estimator, under the constraint that F1 = −F2P1, exists and is given by

z−NFK0,N = {z−NΦu(z)PH2 (z)M̄−H(z)}+M̄−1(z) [ −P1(z) I ] (3.54)

where M̄(z) is a causally invertible spectral factor of
Ψ̄(z) = P2(z)Φu(z)PH2 (z) + P1(z)Φv1(z)PH1 (z) +Φv2(z). (3.55)

�e estimation error spectrum is

ΦKє ,0,N = Φu −ΦuPH2 Ψ̄−1P2Φu++ ({z−NΦuPH2 M̄−H}−) ({z−NΦuPH2 M̄−H}−)H . (3.56)
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Proof In the proof of proposition 3.4.6, a quadratic form for the error spectrum
was derived in equation (3.47), which we will repeat here for convenience:

Φє = (F2 −ΦuPH2 Ψ̄−1) Ψ̄ (F2 −ΦuPH2 Ψ̄−1)H +Φu −ΦuPH2 Ψ̄−1P2Φu . (3.57)

Positive de�niteness of Ψ̄(z) on the unit circle ensures that it is possible to factor
Ψ̄(z) as Ψ̄(z) = M̄(z)M̄H(z) where M̄(z) is causal and M̄−1(z) is analytic on and
outside the unit circle. To �nd the �lter F0,N thatminimizes Φє under the constraint
that z−NF2 is causal, we rewrite Φє(z) as

Φє = (z−NF2M̄ − z−NΦuPH2 M̄−H) (z−NF2M̄ − z−NΦuPH2 M̄−H)H ++Φu −ΦuPH2 Ψ̄−1P2Φu (3.58)= (z−NF2M̄ − {z−NΦuPH2 M̄−H}+ − {z−NΦuPH2 M̄−H}−) ⋅⋅ (z−NF2M̄ − {z−NΦuPH2 M̄−H}+ − {z−NΦuPH2 M̄−H}−)H+Φu −ΦuPH2 Ψ̄−1P2Φu . (3.59)

From this expression it is clear that the optimal causal z−NF0;2M̄ is:

z−NF0;2M̄ = {z−NΦuPH2 M̄−H}+ (3.60)

and thus

z−NFK0,N = {z−NΦuPH2 M̄−H}+M̄−1 [ −P1 I ] . (3.61)

To see that z−NFK0,N is stable, �rst note that DP is a le� divisor of M̄ (see equation
(3.50)), hence we can express M̄ = D−1P M̆, with M̆ stable invertible. From this

z−NFK0,N = {z−NΦuNHP ,2M̆−H}+M̆−1 [ −NP ,1 DP ] (3.62)

which is clearly stable. Substituting the optimal solution in equation (3.58), imme-
diately yields the optimal estimation error spectrum:

ΦKє ,0,N = Φu −ΦuPH2 Ψ̄−1P2Φu + ({z−NΦuPH2 M̄−H}−) ({z−NΦuPH2 M̄−H}−)H .
(3.63)

As indicated in the beginning of this section, there is a degree of conservatism in
de�ning the optimal estimator for the case no controller knowledge is available,
as the one that yields minimum estimation error for all possible controllers. More-
over, in our approach we have used a su�cient condition ensuring K-independence
of the input estimator, constraining the solutions possibly more than strictly nec-
essary, thereby increasing the conservatism. It is therefore worthwile to exam-
ine the applicability of the result. For that we compare the error obtained with

70



i
i

“main” — 2011/4/11 — 8:51 — page 71 — #81 i
i

i
i

i
i

Polynomial solutions of the input estimation problem from closed-loop data

the input estimator using full controller knowledge in equation (3.11), and the er-
ror spectrum obtained with the non-causal K-independent optimal input estima-
tor in (3.43). From this comparison, we conclude that when the noise spectrum
Φv1(e jω) is small enough so that spectral density of P1(e jω)Φv1(e jω)PH1 (e jω) is
negligible compared to Φv2(e jω) for all ω ∈ [0, 2π), the loss of performance of the
K-independent estimator is small compared to the situation exact knowledge of K
is available. In many practical applications, the assumption that Φv1(e jω) is small
will be legitimate, for v1 represents measurement noise of the control input only.
In some cases, exact knowledge will be available on u1, e.g. when K and F are

implemented in the same digital control environment. In these cases Φv1 = 0, from
which we conclude that the input estimation error obtained when designing the �l-
ter using knowledge ofK will be equal to the input estimation error when designing
it under the constraint F1 = −F2P1 and using u1. However, the estimator that results
from the constraint design has a number of advantages. It results in a lower order
estimator and controller adaptation will not imply estimator adaptation. Moreover,
it can also be used when K has poles on the unit circle, which is obviously the case
when K has integral control.�is can be understood by noting that Wiener �lters
are designed without knowledge of the initial condition of the system, meaning that
they give optimal performance when the system has reached steady state. When K
has poles on the unit circle, it will never reach this state. However, in the output
of K also the response of it to the initial state is present.�e K-independent input
estimator uses this output signal of K as opposed to using knowledge of K alone.

3.4.3 Observability

�e propositions in the previous sections formulate solutions to the optimal �lter
design problems for the causal andnon-causal �lter problem, bothwith andwithout
controller knowledge. �e performance of these estimators can be poor if one or
more of the poles of Φu(z) are cancelled by the zeros of P2(z). When this is this
case, the e�ect is that part of the dynamics of input process does not appear in the
measured output. �is is equivalent to saying that part of the states of the input
process are unobservable in the measured output. Hence, having no information
on these states in our measurements, this may lead to large errors in the estimates
of these states.
In this section we will analyze the e�ects of this in somemore detail. We will do

this for the non-causal �lter design problem with controller knowledge, and when
K(z) is stable. �e analysis can be extended for the other problems. For conve-
nience, we repeat the solution of the optimal non-causal �lter with full controller
knowledge, equation (3.10):

F0(z) = [ 0 Φu(z)PH2 (z)Ψ−1(z)S(z)−1 ] (3.64)

with Ψ(z) = P2(z)Φu(z)PH2 (z) +Φv2(z). To analyze possible pole-zero cancella-
tions between Φu and P2, let us de�ne the spectral factorization Φu = MuMH

u , and
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letMu(z) = Du(z−1)−1Nu(z−1) be an irreducable le�MFD ofMu(z). With this we
can write for the �rst factor of F0;2

ΦuPH2 = D−1u NuNHu D−Hu ⋅ N̄HP ,2D̄−HP .
�e aforementioned pole-zero cancellation is equivalent to Du and N̄P ,2 having a
common factor, that is, there exists a non-unimodular polynomial matrix Wu(ξ)
satisfying Du(ξ) = D̆u(ξ)Wu(ξ) and N̄P ,2(ξ) = N̆P ,2(ξ)Wu(ξ) such that X̆u and
N̆P ,2 are right-coprime. Substituting these identities in the optimal �lter solution
(3.64), it follows that this common factorWu is a le� divisor of the optimal �lter:

F0;2 =W−1
u F̆0;2 (3.65)

where F̆0;2 is de�ned as

F̆0;2 = M̆uM̆H
u P̆H2 (z)Ψ̆−1(z)S(z)−1

with M̆u = D̆−1u Nu , P̆2 = D̄−1P N̆P ,2, and Ψ̆ = P̆2M̆uM̆H
u P̆H2 +Φv2 . Let us interpret this

result. For this, de�ne ŭ2(t) = M̆u(z)w(t), wherew(t) is awhite noise processwith
unit covariance, so that u2(t) =W−1

u (z)ŭ(t). Due to the pole-zero cancellation, the
states ofW−1

u (z) are unobservable from y, making estimation of u2(t) directly from
y impossible.�e interpretation of equation (3.65) is that in such cases the optimal
�lter (3.64) obtains the optimal estimate of ˆ̆u2(t), and subsequently �lters this by the
inverse of the unobservable part of the input process, i.e.W−1

u (z).�e result can be
quite undesirable. Since at all frequencies both the signal and noise components of
ˆ̆u2(t) are multiplied by the same gain, the e�ect can lead to unwanted ampli�cation
of the noise in the estimate.
To avoid the abovementioned pole-zero cancellation, the following additional

assumption is made henceforth.

Assumption 3.4.8 It is assumed that N̄P ,2(z) is right prime, i.e. it has full column
rank for all z ∈ C.

Assumption 3.4.8 implies right-coprimeness of Du and N̄P ,2 for any possible input
spectrum, meaning that no pole-zero cancellations between the input process and
the dynamics of P2 can happen. Observe that for certain given input spectrum
Φu(z), this assumption is conservative. Necessary and su�cient for the states of
Mu(z) to be observable in col(u1 , y) is that N̄P ,2 and Du are right-coprime. Also
observe that assumption 3.4.8 implies that p ≥ m2, the number of outputs of p
should be larger than or equal to the number of unknown inputs.
By a similar argument we will assume no pole-zero cancellations will happen in

the product P1Φv1PH1 that appears in the solution of the optimal �lters for the case
no controller knowledge case is used, see equation (3.42) and (3.95). Su�cient for
this is that the following assumption holds:
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Assumption 3.4.9 It is assumed NP ,1(z) is right prime, i.e. it has full column rank
for all z ∈ C.

Similarly, this assumption implies that for any noise process v1, no pole-zero can-
cellations between between noise process v1 and the dynamics of P1 will happen.

3.5 State-space solutions to the causal input estimation
problems

In the preceding sections, general solutions for the N-causal optimal input estima-
tors was formulated for the case full information on K is available, as well for the
case that no explicit knowledge of K is at hand. Central in these solutions is the
computation of a spectral factorization. �e problem of spectral factorization has
received considerable attention in the past 40 years. An overview of the resulting
techniques is given in [140]. Most of the techniques are rather involved for themul-
tivariable case that we consider. However, when the transfer matrices have a state-
space structure, it is well known that the factorization can be computed e�ciently
by solving a Discrete-time Algebraic Ricatti Equation (DARE). In Section 3.5.1 we
will recall this result and subsequently apply this to formulate explicit solutions of
the N-causal optimal input �lters in Sections 3.5.2 (controler knowledge available)
and 3.5.3 (K-independent estimator).

3.5.1 Spectral factorization using state space structure

In this section we will give two relevant propositions, which allow us to construct
the spectral factorization for systems in state-space form.

Proposition 3.5.1 Consider a spectrum Φ(z) of the form
Φy(z) = [ C(zI − A)−1 I ] [ BQBT BS

STBT Rv
] [ (z−1I − AT)−1CT

I ] (3.66)

with (C ,A) detectable,
[ BQBT BS
STBT Rv

] ≥ 0 and Rv > 0. (3.67)

De�ne

As = A− BSR−1v C and Q s = Q − SR−1v ST . (3.68)

�en Φ(e jω) > 0 for all ω ∈ [0, 2π) if, and only if the matrix pair (As , B(Q s)1/2) is
unit circle controllable, i.e [ λI − As B(Q s)1/2 ] has full rank for all ∣λ∣ = 1.
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Proof See [83].

Proposition 3.5.2 Consider a spectrum Φ(z) of the form
Φ(z) = [ C(zI − A)−1 I ] [ BQBT BS

STBT Rv
] [ (z−1I − AT)−1CT

I ] (3.69)

with {A, B,C ,Q , Rv , S} satisfying the conditions as stated in proposition 3.5.1. �en
a spectral factorization can be obtained as

Φy(z) = M(z)RM∗(z), M(∞) = I, R > 0 (3.70)

where

M(z) = I + C(zI − A)−1L (3.71)
M−1(z) = I − C(zI − A+ LC)−1L (3.72)

L = (AΠCT + BS)R−1 (3.73)
R = Rv + CΠCT (3.74)

and Π is the unique positive semi de�nite solution to the discrete algebraic Ricatti
equation (DARE)

Π = AΠAT + BQBT − LRLT (3.75)

such that A − LC is stable, which will guarantee that M(z) is minimum phase, i.e.
M−1(z) is analytic for z ∉ C−.

Proof See [83].

If in addition (As , B(QS)1/2) is stabilizable, then Π is also the unique positive
semi-de�nite solution of the DARE. Furthermore, if (As , B(QS)1/2) is controllable,
then Π is the unique positive de�nite solution of the DARE [83].
Observe that stability of A is not required in this theorem. If all conditions are

met, butA is unstable, then the spectral factorM will also be unstable. Nevertheless,
M−1 is stable and causal. In deriving the solutions for inthe input estimator, we have
not used stability of the spectral factor. Hence, the above method for calculating a
causally invertible spectral factor can be applied even in the case the matrix A is
unstable. �is is the case when dealing with the AMB spindle dynamics, as will
become clear in the next section.

3.5.2 Solution of the N-causal input estimators in state space form, K
known

In this section, an explicit solution for the N-causal input estimator as derived in
proposition 3.4.2 will be given, using state space formulations for the transfer func-
tion matrices. We will do this for the case K(z) is stable, in which case the optimal
74



i
i

“main” — 2011/4/11 — 8:51 — page 75 — #85 i
i

i
i

i
i

State-space solutions to the causal input estimation problems

�lter has the form in equation (3.27), which we repeat here for convenience:

z−NF0,N(z) = [ 0 {z−NΦu(z)PH2 (z)M−H(z)}+M−1(z)S(z)−1 ] (3.76)

where M(z) is a causally invertible spectral factor of Ψ(z) = P2(z)Φu(z)PH2 (z) +
Φv1(z).�e derivation will be performed in three main steps:
1. We will introduce state space realizations for the plant P, and for modeling
�lters for the input u2 and the noise processes v1 and v2. �is allows us to
give an expression for Ψ(z) using a state representation;

2. Using this state representation of Ψ(z) and the factorization theorem inpropo-
sition 3.5.2, an explicit expression forM−1(z) is derived;

3. �e causal part in equation (3.76) is calculated, yielding the desired result.

We start with step 1. Let us assume P admits the following state space realization

x(t + 1) = APx(t) + BP ,1u1,0(t) + BP ,2u2(t)
y0(t) = CPx(t) (3.77)

where x ∈ Rn is the state vector. Matrices AP , BP ,1, BP ,2 and CP are knownmatrices
with appropriate dimensions. Matrix AP is unstable, due the instrinsic instability of
the AMB dynamics. Without loss of generality it is assumed that rank(BP ,2) = m2
and rank(CP) = p. Furthermore, it is assumed that (AP ,CP) is observable and(AP , BP ,1) is controllable2. �e pair (AP , BP ,2) is not necessarily controllable. It
will be assumed however that (AP , BP ,2) is controllable on the unit circle, i.e.

rank [ AP − λI BP ,2 ] = n ∀∣λ∣ = 1. (3.78)

From this it follows that there exists a similarity transformation such that we can
equivalently express the state space system in equation (3.79) as

x(t + 1) = [ A11P A12P
0 A22P

] x(t) + [ B1P ,1B2P ,2
]u1,0(t) + [ B1P ,20 ]u2(t)

y0(t) = [ C1P C2P ] x(t) (3.79)

with (A11P , B1P ,2) controllable and A22P no eigenvalues on the unit circle. Further-
more, it is assumed the triplets (A11P , B1P ,2 ,C1P) and (AP , BP ,1 ,CP) have no invariant
zeros, i.e.

rank [ A11P − λI B1P ,2
C1P 0 ] = n1 +m2 ∀λ ∈ C (3.80)

2Observe that requiring (AP ,CP) is detectable and (AP , BP ,1) is stabilizable would su�ce. How-
ever, this would allow the realization to have stable unobservable and/or uncontrollable modes. Includ-
ing the possiblity of such modes in the treatment would not add any added value, but would certainly
complicate the analysis.
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3. Unknown input estimation from closed-loop data

with n1 the dimension of A11P , and

rank [ AP − λI BP ,1
CP 0 ] = n +m1 ∀λ ∈ C. (3.81)

Observe that (3.78) ensures that in equation (3.23) the common factorW(z−1) > 0
for ∣z∣ = 1, while equations (3.80) and (3.81) are equivalent to assumptions 3.4.8 and
3.4.9 respectively.
Given assumption 3.3.1, we can obtain the spectral factorization of Φu(z) by a

stable, minimal and strictly proper3 LTI system Pu with state space realization given
by

ξ(t + 1) = Au ξ(t) + Buw(t)
u2(t) = Cu ξ(t) (3.82)

with state vector ξ ∈ Rnu , and with w(t) a white noise process with covariance
Ru > 0, such that

Φu(z) = Pu(z)RuPHu (z). (3.83)

Here Bu has full column rank, and Cu has full row rank. Similarly, for i = 1, 2, there
exists a stable, minimal LTI system Pv i with state space realization given by

ζ i(t + 1) = Av i ζ i(t) + Bv i e i(t)
v i(t) = Cv i ζ i(t) + e i(t) (3.84)

with state vector ζ i ∈ Rnvi , and e i(t) a white noise process with covariance Rv i > 0,
such that

Φv i (z) = Pv i (z)Rv iPHv i (z) (3.85)

is the canonical spectral factorization of Φv i . Here Bv i has full column rank, and
Cv i has full row rank.
In order to write Ψ(z) as de�ned in proposition 3.4.2 in the form of proposition

3.5.2, let z = col(ξ, x , ζ1). Combining equation (3.79) with (3.82) and (3.84) yields
the cascaded system Pc , that admits the state-space representation

z(t + 1) = Acz(t) + Bc ,1u1(t) + Bc ,2 ( w(t)e2(t) )
y(t) = Ccz(t) + Dc ,2 ( w(t)e2(t) ) (3.86)

3We remark that it is more common to model the dynamics of a random process by a monic proper
system driven by a white noise process. However, without any loss of generality it is always possible to
obtain a model with a strictly proper system instead. �e advantage of such a choice is that the output
depends on the states of the systemonly andnot on the drivingwhite noise process.�is choice simpli�es
the estimator.
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State-space solutions to the causal input estimation problems

with

Ac = ⎡⎢⎢⎢⎢⎢⎣
Au 0 0

BP ,2Cu AP 0
0 0 Av2

⎤⎥⎥⎥⎥⎥⎦ , Bc ,1 = ⎡⎢⎢⎢⎢⎢⎣
0
BP ,1
0

⎤⎥⎥⎥⎥⎥⎦ , Bc ,2 = ⎡⎢⎢⎢⎢⎢⎣
Bu 0
0 0
0 Bv2

⎤⎥⎥⎥⎥⎥⎦
Cc = [ 0 CP Cv2 ] , Dc ,2 = [ 0 I ] .

De�ne Pc ,2(z) = Cc(zI − Ac)−1Bc ,2 + Dc ,2, and let
Q = [ Ru 0

0 Rv2
] . (3.87)

Observe that Ψ(z) = Pc ,2(z)QPHc ,2(z).
�is brings us to step 2. With the obtained state space representation of Pc ,2 we

can compute a causally invertible spectral factor of Ψ, as expressed in the following
proposition.

Proposition 3.5.3 Given Āc , Bc ,2, Cc andQ as de�ned in (3.86) and (3.87). Let M(z)
satisfy

M−1(z) = I − Cc(zI − Āc)−1L, where (3.88)
L = (AcΠCTc + Bc ,2S)R−1 (3.89)
R = Rv2 + CcΠCTc (3.90)

and Π is the unique positive semi-de�nite solution to the discrete algebraic Ricatti
equation (DARE)

Π = AcΠATc + Bc ,2QBTc ,2 − LRLT (3.91)

such that Āc = Ac − LCc is stable.�en Ψ = MRMH .

Proof See appendix B.1.1.

Observe that for convenience we use the normalized factorization Ψ = MRMH

with M(∞) = I. With this, the solution of the N-causal input estimation problem
can be expressed as

z−NF0,N = [ 0 {z−NΦu(z)PH2 (z)M−H(z)}+R−1M−1(z)S−1(z) ] . (3.92)

�e last step is to evaluate the causality operator in (3.92). �e result, a�er some
algebraic manipulation to simplify the result, is summarized the following propo-
sition.
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3. Unknown input estimation from closed-loop data

Proposition 3.5.4 Given the state space representation of plant P in (3.79), the input
model realization in (3.82), and the noise modeling �lter realization of v2 in (3.84).
With this, let Bc ,1 and Cc be de�ned as in (3.86), and let Āc , R,Π and L follow from the
spectral factorization in proposition 3.5.3.�en the N-causal optimal input estimator
is given by

z−NF0,N(z) = [ 0 F0,N ;2a(z) + F0,N ;2b(z) ] (3.93)

with

F0,N ;2a(z) = z−N [ Cu 0 0 ] (zI − Āc)−1(L + Bc ,1K(z))
and

F0,N ;2b(z) = [ Cu 0 0 ]Π N+1∑
m=1
zm−N−1(ĀTc )m−1CTc R−1⋅

⋅ (I − Cc(zI − Āc)−1(L + BP ,1K(z)).
Proof See appendix B.1.2.

Observe that this �lter has the structure of a smoothed state estimator of the aug-
mented system Pc under feedback of K, where the input estimate (i.e. the output of
the �lter) is constructed from the estimated states of the input process.

3.5.3 Solution of the K-independent N-causal input estimator in state
space form

Similar to the previous section, in this section an explicit solution for theK-indepen-
dent N-causal input estimator as derived in proposition 3.4.7 will be given using
state space formulations for the transfer functionmatrices. Again, for convenience,
we repeat the optimal estimator for this case:

z−NFK0,N = {z−NΦu(z)PH2 (z)M̄−H(z)}+M̄−1(z) [ −P1(z) I ] (3.94)

where M̄(z) is a causally invertible spectral factor of
Ψ̄(z) = P2(z)Φu(z)PH2 (z) + P1(z)Φv1(z)PH1 (z) +Φv2(z). (3.95)

�e approach follows the same three steps as in the previous section. We begin
with step 1., in which we express Ψ̄(z) using a state space realization. For that we
introduce the compound system Pc , with realization given by

z(t + 1) = Acz(t) + Bc ,1u1(t) + Bc ,2 ⎛⎜⎝
w(t)
e1(t)
e2(t)

⎞⎟⎠
ȳ(t) = Ccz(t) + Dc ,2 ⎛⎜⎝

w(t)
e1(t)
e2(t)

⎞⎟⎠
(3.96)
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where

Ac =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Au 0 0 0
BP ,2Cu AP BP ,1Cv1 0
0 0 Av1 0
0 0 0 Av2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

Bc ,1 =
⎡⎢⎢⎢⎢⎢⎢⎢⎣
0
BP ,1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Bc ,2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Bu 0 0
0 BP ,1 0
0 Bv1 0
0 0 Bv2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

Cc = [ 0 CP 0 Cv2 ] , Dc ,2 = [ 0 0 I ] .
In this expression the realizations (Au , Bu ,Cu), (Av i , Bv i ,Cv i ), i = 1, 2 and(AP , [BP ,1BB ,2],CP) are as de�ned in the previous section. Observe that Pc models
the output of P when instead of the true input u1,0, the noise disturbed measure-
ment u1 is used. De�ne Pc ,2(z) = Cc(zI − Ac)−1Bc ,2 + Dc ,2, and let

Q = ⎡⎢⎢⎢⎢⎢⎣
Ru 0 0
0 Rv1 0
0 0 Rv2

⎤⎥⎥⎥⎥⎥⎦ , S = [ 0 0 Rv2 ]T . (3.97)

With this we can express Ψ̄(z) = Pc ,2(z)QPHc ,2(z).
Proceeding to step 2, we compute a causally invertible spectral factor of Ψ̄, using

the obtained state space representation of Pc ,2:

Proposition 3.5.5 Given {Ac , Bc ,2 ,Cc ,Q , Rv2 , S} as de�ned in equations (3.85), (3.96),
and (3.97). Let M̄(z) satisfy

M̄−1(z) = I − Cc(zI − Āc)−1L, where (3.98)
L = (AcΠCTc + Bc ,2S)R̄−1 (3.99)
R̄ = Rv2 + CcΠCTc (3.100)

and Π is the unique positive semi-de�nite solution to the discrete algebraic Ricatti
equation (DARE)

Π = AcΠATc + Bc ,2QBTc ,2 − LR̄LT (3.101)

such that Āc = Ac − LCc is stable.�en Ψ̄ = M̄R̄M̄H .

Proof See appendix B.1.3.

�e last step again involves computation of the causal part in equation (3.94),
and the result of that is given the following proposition.
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3. Unknown input estimation from closed-loop data

Proposition 3.5.6 Given the state space representation of plant P in (3.79), the input
model realization in (3.82), and the noise modeling �lter realizations of v1 and v2 in
(3.84). With this, let Bc ,1 and Cc be de�ned as in (3.96), and let Āc , R̄, Π and L follow
from the spectral factorization in proposition 3.5.5.�en the K-independent N-causal
optimal input estimator is given by

z−NFK0,N(z) = [ 0 FK0,N ;2a(z) + FK0,N ;2b(z) ] . (3.102)

with

FK0,N ;2a(z) = z−N [ Cu 0 0 0 ] (zI − Āc)−1 [ Bc ,1 L ]
and

FK0,N ;2b(z) = [ Cu 0 0 0 ]Π⋅
⋅ N+1∑
m=1
zm−N−1(ĀTc )m−1CTc R̄−1 ([ 0 I ] − Cc(zI − Āc)−1 [ Bc ,1 L ]) .

Proof See appendix B.1.4.

Observe that if v1 = 0, then u1,0 = Ky. Using this in proposition 3.5.4 would imme-
diately give the above result (observe that in this case dim(ζ1) = 0).
3.6 Performance measures

In the previous sections we have derived explicit expressions for the input estimator
F(z). In this section we will discuss di�erent measures that can be used to evaluate
the performance of the estimators.
In line with Seron et al. [150], we will de�ne the following sensitivities:

SF ∶ u2 → є �ltering sensitivity (3.103)
TF ∶ u2 → û2 �ltering complementary sensitivity (3.104)
SV ∶ v → є noise sensitivity (3.105)

with v = col(v1 , v2). With this, we can express
є(t) = SFu2(t)´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

∶=єu(t)

+ SVv(t)´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
∶=єv(t)

. (3.106)

�e �ltering sensitivity represents the relative e�ect of the unknown input on the
estimation error. On the other hand, the complementary sensitivity represents the
relative e�ect of the unknown input on the estimate.�e noise sensitivity function
describes the relative e�ect of the noise disturbances on the estimate.
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Simulation example

�e amplitude response of the �ltering complementary sensitivity TF measures
the transfer function from u2 to its estimate û2. Hence, it is desired to achieve∣TF(e jω)∣ close to identity in the frequency ranges where the spectral density of u2 is
large. In general (but depending on the spectral density of u2) the �ltering comple-
mentary sensitivity will have a low-pass characteristic, implying that the unknown
input can only be estimated up to a certain frequency limit.
Studying the phase response of the �ltering complementary sensitivity, particu-

larly in the areas where it is close to the identity, will provide information regarding
the phase distortion in the estimate. For that purpose it is common to calculate the
group delay, being de�ned as the negative �rst order derivative of the argument of
TF(e jω) with respect to the frequency ω [120],

τF(ω) ∶= − d
dω
arg(TF(e jω)) (3.107)

with τF(ω) in radians. When TF has constant group delay in its pass band, this
indicates a linear phase response, which in turn implies that TF in this frequency
range acts as a pure delay. By dividing τF by the sample time, a value for this delay
as a (fractional) multiple of the sample time can be obtained.

3.7 Simulation example

�e input estimation approachhas been tested in simulation usingMatlab/Simulink.
A simulationmodel has been developed based on the properties of the EAATAMB
spindle setup discussed in Chapter 2. System P resulted from the therein described
�nite element modeling approach, which a�er balanced truncation [118] and dis-
cretization with T = 50µs yielded a model with n = 24, m1 = 4 (current inputs),
m2 = 2 (cutting force inputs in X and Y direction) and p = 4 (displacement
outputs). Current measurement noise v1 was assumed negligible, position mea-
surement noise v2 was modeled as a white noise with diagonal covariance matrix
Rv = σ 2v I, with σv = 10−7m. In the simulation, a PID controller was applied to sta-
bilize each of the four magnetic bearings. �e input estimators discussed in this
section however, do not use the information on the controller, but were designed as
described in Section 3.5.3. For the cutting forces, a waveform was chosen in accor-
dancewith amodel describing the cutting forceswhenmillingwith amicro-endmill
with two teeth [45].
We will discuss the simulation results for two cases. First, for a simple model

for the input force, we will compare the results obtained with an estimator with and
without delay. As the rotational speeds increase, estimation results improve if the
spectral information on the cutting forces is used when designing estimators.�is
will be investigated in the second test.
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3. Unknown input estimation from closed-loop data
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Figure 3.2: Input estimation results for the cutting force for N = 0 and N = 20, in X and
Y direction. Black: true input u2 , red: estimated input û2 . �e estimator with
N = 0 shows a delay. �e estimator N = 20 has no (additional) delay, and gives
smaller estimation error.
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Figure 3.3: Amplitude frequency response of element (1, 1) of the �ltering complementary
sensitivity (a), �ltering sensitivity (b), and the noise sensitivity (c) for N = 0 and
N = 20.�e delayed estimator performs better in the sense that the relative e�ect
of the unknown input on the estimation error is smaller (b), while the relative
e�ect of the noise disturbance on the estimate is also smaller (c). �e �ltering
complementary sensitivities (a) of both estimators are very similar, although the
delayed �lter falls o� at a slightly lower frequency.

3.7.1 Test 1: Input observers with N = 0 and with N > 0
In this test for the input a simple model is chosen, i.e. a random walk-like model
given by

ξ(t + 1) = 0.9999ξ(t) +w(t), u2(t) = ξ(t) (3.108)
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3. Unknown input estimation from closed-loop data

so that Au = 0.9999 ⋅ I, Bu = Cu = I. We note that such models are o�en used in in-
put estimation and all of the indirect cutting force estimation techniques referenced
inChapter 1 use this rather limitedmodel. An estimator has been implementedwith
no delay (N = 0) and one with a delay of N = 20 time steps.�e result of both esti-
mators is depicted in Figure 3.2, where the result of the delayed estimator has been
shi�ed by 20 time steps in order to compare it with the input signal.
We observe a number of things. A �rst di�erence is that the result of the esti-

mator for N = 0 is more noisy than that of N = 20.�is can be explained by Figure
3.3. For both N = 0 and N = 20, in this �gure the amplitude frequency response
of element (1,1) of the complementary �ltering sensitivity TF , the �ltering sensitiv-
ity SF and the noise sensitivity SV are shown. �ese �gures show that the delayed
estimator performs better in the sense that the relative e�ect of the unknown input
on the estimation error is smaller, while the relative e�ect of the noise disturbance
on the estimate is also smaller. A more striking di�erence is that the estimator for
N = 0 has a delay of around 9 time steps, whereas the estimator for N = 20 has no
extra delay. It is well known that a �lter representing a pure delay has a linear phase
characteristic, and hence has constant group delay. In Figure 3.4 we have depicted
the group delay of TF(1,1) for N = 0 for di�erent levels of the position measurement
noise disturbance. In this �gure it appears that the group delay is close to constant
over the frequency range in which TF(1,1) is close to 1, supporting the observation
that there is a delay present in the input estimates. For σv = 10−7, τF = 8.6 time
steps at low frequencies, which also corresponds with the observed delay in Figure
3.2.
It is remarkable that the �lter that was designed not to have a lag (i.e. N = 0)

still produces delayed estimates. In this perspective the method discussed in this
chapter has the favorable property that a �lter can be designedwith a lag close to this
delay, resulting in better estimates.�is can be observed from Figure 3.5. In Figure
3.5(a) a plot is made of σє = √

Eє2 for increasing lag N , again for di�erent levels
of the noise disturbance on the position measurements. As expected, σє descreases
monotonely withN .�e value of σє atN = 8 is clearlymuch lower than atN = 0. To
demonstrate that this decrease is not just the result of a smaller delay in the estimate
(resulting in σu to be smaller), but also that a reduction of the noise in the estimate
is reduced, plots of σєu = √

Eє2u and σєv = √
Eє2v are provided in Figures 3.5(b) and

3.5(c) respectively. From 3.5(c) we observe that σєv = 0.24 N at N = 0, σєv = 0.19 N
(= −19%) at N = 8. Increasing N further results in an even lower noise disturbance
in the estimate, i.e. σєv = 0.11 N (= −54%) at N = 20.
In summary, from this simulation we conclude that with the method in this

chapter a �lter designed without delay, still has a delay. Designing a �lter with the
same delay results in better estimates. A �lter with a delay that is slightly higher
yields signi�cant reduction of the estimation error.
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Summary and conclusions
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Figure 3.4: Group delay of TF(1,1) for N = 0 for di�erent levels of the position measure-
ment disturbance v2 . In the low frequency range the group delay is constant,
supporting the observation that there is delay present in the transfer function
from u2 → û2 .

3.7.2 Test 2: Improved stochastic model for the input

�e simulation described in the previous section is performed at a relatively low
rotational speed. At higher rotational speeds, i.e. at 50, 000 rpm, it is observed that
estimation errors made by estimator with N = 0 are quite large. Obviously increas-
ing the rotational frequency of theAMB spindle results in cutting forces with higher
frequencies. As with any mechanical system, the response of the AMB system de-
creases as the exciting frequencies increase, resulting in a decreased signal to noise
ratio. Hence, we can improve the estimation result if we use the a priori information
on the spectral content of the cutting force signal. To verify this, a spectral model
for the input has been chosen that has high power in the low frequencies regions
and incorporates peaks at the �rst three harmonics of the cutting force signal (i.e. at
1.7kHz, 3.3kHz and 5kHz).�e resulting power spectral density is depicted in Fig-
ure 3.6. In Figure 3.7 the results obtained with an estimator with N = 0 and N = 240
are compared. As can be observed from these �gures, good estimation results are
obtained at these high speeds. Again, the estimation results obtained by the delayed
estimator have a smaller error at the cost of time delay.

3.8 Summary and conclusions

For the application of micro-milling with an AMB spindle, minimummean square
error input estimators have been developed to estimate the cutting forces. As these
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Figure 3.5: Estimation error as function of the lag N for di�erent levels of the position mea-
surment disturbance v2 .

estimators use data already available in the closed-loop AMB system, no additional
sensors are needed. Based on Wiener �lter theory, conditions on the plant and
controller are formulated, and estimators are developed to perform input estima-
tion from closed-loop data. �e estimators have an adjustable delay allowing to
trade o� the estimation error against the lag in the estimation results. Solutions are
formulated for the case exact knowledge on the controller is available, and the case
this knowledge is not available or cannot be used.
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Figure 3.6: Spectral model for the cutting forces in simulation Section 3.7.2. High spectral
density ismodeled at the �rst three harmonics of the tooth pass frequency (1.7⋅2π
krad/s).

For the case that no knowledge on the controller is available, an approach has
been formulated that ensures equal performance for all possible controllers, mak-
ing the estimator independent of the controller. �is is achieved by a constraint
optimal �lter design problem, to which solutions are formulated.�e conservatism
to ensure equal performance for all possible controllers has been assessed, and will
be small if the measurement noise on the control input of the plant is small. More-
over, if this measurement noise is zero, then it is shown that controller knowledge
is equivalent to having full information on the controller output (provided the con-
troller has no poles on the unit circle).�e advantages of designing input estimators
that use no controller knowledge are (1) a lower estimator order and (2) controller
adaptation will not imply estimator adaptation.
Simulation results obtainedwith a realisticmodel of the EAAT spindle described

in Chapter 2 were used to demonstrate the applicability of the given method. With
the commonly used random walk model of the unknown input, an estimator de-
signed without delay (N = 0) still produces delayed estimates. Designing an es-
timator with the same delay results in signi�cantly better estimates. A �lter with
just a few time steps extra delay results, yields a reduction of error due to the mea-
surement noise of up to 60%. Estimation results can be improved by using a priori
information on the spectral content of the cutting forces to obtain a better model
of the unknown input process.
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Figure 3.7: Cutting force estimation results (�rst element of û2 : X-direction only) at 50,000
rpm obtained with the improved input force model.�e delayed estimator again
outperforms the estimator for N = 0 (black: true input u2 , red: estimated û2)
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Chapter 4

Multivariable Frequency Domain
Identification using IV-based

Linear Regression

4.1 Introduction

In Chapter 3 an approach was given to estimate the micro-milling cutting forces
from the signals of the AMBs. �e success of this technique relies on the avail-
ability of an accurate model of the dynamics of the AMB spindle. In Chapter 2,
it was discussed how such a model can be derived from �rst principles. However,
the resulting models may still prove insu�ciently accurate due to limited detailed
knowledge on the system, or simpli�cations that need to be made in the model-
ing process. Under these conditions, identifying the system from measured data
sequences can be a more e�cacious alternative.
Chapter 4, 5 and 6 deal with the problem of identi�cation of the dynamics of the

AMB spindle.�e content of these chapters is divided as follows. Identi�cation of
the AMB spindle can be separated into two identi�cation problems.�e �rst is the
identi�cation of the dynamics from the current input to the displacement of the ro-
tor sha� at the bearings, which we refer to as the bearing dynamics. In Figure 2.11 in
Chapter 2, the bearing dynamics are represented in the transfer function from u1,0
to y.�e second problem is the identi�cation of the tooltip dynamics, which are the
dynamics between the force on the tooltip and the displacement of the rotor sha�
at the bearings. In Figure 2.11 in Chapter 2, the tooltip dynamics are represented
in the transfer function from u2 to y. In this thesis both identi�cation problems
are considered separately.�is reason for this choice is as follows. It is straightfor-
ward to design experiments in which only the bearing dynamics are excited, while
the tooltip dynamics are not. In such experiments, the AMB spindle will be run-
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ning in free air, so that cutting forces are absent (i.e. u2 = 0.). From the measured
closed-loop data, the bearing dynamics can be identi�ed.�is is the main topic of
Chapter 5. In contrast, designing experiments to excite the the tooltip dynamics
are much more di�cult, as will be further discussed in Chapter 6. As argued and
shown in this chapter, solving the problem of identi�cation of the tooltip dynamics
can be simpli�ed, if the bearing dynamics are known (viz. they have been iden-
ti�ed already). Hence the choice to �rst consider the problem of identi�cation of
the bearing dynamics (Chapter 5), and then subsequently the problem of identi�ca-
tion of the tooltip dynamics, with the assumption the bearing dynamics are known
(Chapter 6).
In Chapter 5, system identi�cation of the bearing dynamics will be approached

by �rst making a non-parametric estimate of the multivariable frequency response
function (FRF). Using this FRF estimate, a multivariable parametric model is esti-
mated. Here, the main emphasis is on identi�cation of a parametric model of the
plant dynamics, leading to the choice of minimization of an output error OE crite-
rion.
Minimizing a quadratic OE criterion with a model set in a fractional repre-

sentation with a parametrized numerator, in general results in a nonconvex op-
timization problem. Gradient-based optimization can be employed to solve such
problems, however the computational complexity has stimulated many authors to
look for simpler alternatives. One approach is to replace the nonconvex optimiza-
tion by a sequence of linear regression steps. A classical method to achieve this
when estimating SISO models from frequency response function data is due to
Sanathanan and Koerner [139]. �is method forms the basis for several MIMO
identi�cation methods [23, 41, 54, 170], which di�er in the model structure that
is used to parametrize the multivariable system and the ability to incorporate fre-
quency dependent weighting to improve the estimate. An important and well-
known limitation of the algorithm proposed by Sanathanan and Koerner is that
in general convergence of the iterations does not imply that the resulting parameter
estimate minimizes the output error cost criterion, inevitably leading to a bias in
the estimated model.
In literature, an alternative iterative linear regression procedure is available for

time-domain data, based on an Instrumental Variable (IV) approach. �is algo-
rithm is known for time-domain identi�cation of output error models as the Sim-
pli�ed Re�ned Instrumental Variable method (SRIV) [183, 184], and was recently
formulated for frequency domain identi�cation of SISO output error models [165].
�is method has the property that upon convergence of the iterations a stationary
point of the cost function is reached, also in the case the system is not in the model
set.

�is brings us to themain topic of this chapter, in which we generalize IV-based
iterative linear regression to MIMO frequency domain identi�cation of discrete-
time and continuous-time models in matrix fraction description. Algorithms are
derived for the case pre and post, or element-wise multivariable frequency weight-
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ing of the output error is applied.
A�er introducing the identi�cation setting in Section 4.2 and discussing the

model sets in Section 4.3, these IV-based iterative linear regression algorithms are
derived for identi�cation of output error models in matrix fraction description
(Section 4.4).

4.2 Identi�cation setting

�e central objective in this chapter is to �nd an LTImodel P of amultivariable sys-
tem with m inputs and p outputs using measured data. For this, the set of N noisy
multivariable frequency response function observations {G(ωk) ∈ Cp×m}k=1. . .N is
available. Here the model P is parametrized by either a le� or right polynomial
MFD, depending on the real valued parameter vector θ. Further details on the
parametrization are discussed in the next section. To describe the discrepancy be-
tween the data and the model P(θ), we use the output error

E(ωk , θ) = G(ωk) − P(ξ(ωk), θ). (4.1)

Here ξ(ωk) is used to denote the frequency dependency of P, where ξ(ωk) = iωk or
ξ(ωk) = e iωk when P represents a continuous-time or discrete-time system respec-
tively. With this, the aim is to solve the identi�cation problem θ̂ = argminθ V(θ)
with cost function

V(θ) = N∑
k=1

∥E(ωk , θ)∥2F . (4.2)

Application of frequency dependent weighting of the output error can be used to
obtain estimateswith smaller variancewhen the frequency response data have vary-
ing covariance, or to estimate e.g. control-relevant models. Cost functions with
weighted errors can be obtained by substituting for E(ωk , θ) in (4.2) either the in-
put/output weighted OE

E i/o(ωk , θ) =Wo(ωk)[G(ωk) − P(ξ(ωk), θ)]Wi(ωk), (4.3)

withWo(ωk) ∈ Rp×p andWi(ωk) ∈ Rm×m , or the Schur-weighted OE
Es(ωk , θ) =Ws(ωk). ∗ [G(ωk) − P(ξ(ωk), θ)], (4.4)

withWs(ωk) ∈ Rp×m , and where .∗ is used to denote the Schur matrix product (i.e.
element-wise multiplication).

4.3 Model structure

�e MIMOmodel is represented in a le� or right matrix fraction description:

P(ξ, θ) = B(ξ, θ)A−1(ξ, θ) (R-MFD)
P(ξ, θ) = A−1(ξ, θ)B(ξ, θ) (L-MFD)
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with B(ξ, θ) = Bnb ξnb+Bnb−1ξnb−1+⋅ ⋅ ⋅+B0 andA(ξ, θ) = ξna+Ana−1ξna−1+⋅ ⋅ ⋅+A0,
where B i ∈ Rp×m , i = 0 . . . nb and A i ∈ Rm×m (for models in R-MFD), or A i ∈ Rp×p
(for models in L-MFD), for i = 0 . . . na − 1.�e parameter vector θ is constructed
by accumulating all elements of the matrices A i , i = 0 . . . na − 1 and B i , i = 0 . . . nb .
As will become clear in the sequel, it is convenient to choose an ordering of these
elements that depends on the choice for a le� or right matrix fraction description
of the model set. To avoid unnecessary notational complexity, it is assumed here
that the order of the polynomials of all elements of A are na and those of B are all
nb . However, the approach presented in this chapter is equally suited for model sets
where the matrix fractions have elements with varying polynomial orders. We will
return to this in Section 4.4.6.

4.4 An IV-based iterative method to solve a multivariable OE
identi�cation problem

�e identi�cation problem that was posed in Section 4.2, generally results in a non-
convex optimization problem. In this section we give an iterative linear regression
algorithm to solve this optimization problem for both selected model sets, having
the property that convergence implies (local) optimality.�is algorithm is aMIMO
extension of the frequency domain formulation of the SRIVmethod as given byVan
den Hof and Douma in [165]. We �rst give the result for the unweighted OE cost
function. To that end, �rst in Section 4.4.1, a criterion for optimality is derived. Us-
ing this, in Sections 4.4.2 and 4.4.3 the algorithms are derived for models in L-MFD
and R-MFD respectively. In Section 4.4.4 we will extend these algorithms for the
weighted OE cost functions.

4.4.1 A criterion for optimality

Similar as with the SRIV method, the starting notion is that for all θ̂ that locally
minimize V(θ), it holds that ∂

∂θV(θ)∣θ=θ̂ = 0. From the de�nition of V(θ) in
(4.2), it follows that

∂
∂θ
V(θ) = ∂

∂θ

N∑
k=1
vec [E(ωk , θ)]H vec [E(ωk , θ)]

= N∑
k=1

−2Re {vec [E(ωk , θ)]HMk(θ)}
where (⋅)H denotes the complex conjugate transpose, vec(⋅) the vectorization op-
erator, and Mk(θ) = ∂

∂θ vec[P(ξ(ωk), θ)]. Hence, for all θ̂ for which ∂
∂θV(θ̂) = 0,
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the following equality holds:

N∑
k=1
Re {MH

k (θ̂)vec[E(ωk , θ̂)]} = 0. (4.5)

4.4.2 Iterative procedure for models in L-MFD

In this section, we will use equation (4.5) to arrive at an iterative linear regression
algorithm to estimate θ̂ for models in L-MFD. For that, we will rewrite equation
(4.5) in a regression format. Let us therefore introduce the notation

Θ = [ Ana−1 . . . A0 Bnb . . . B0 ] , θ = vec(Θ). (4.6)

We give the following two propositions:

Proposition 4.4.1 With E(ξ(ωk), θ) as de�ned in equation (4.1), where the model
is represented in L-MFD, and with θ as de�ned in (4.6), the following identity holds

vec [E(ωk , θ)] = Yk(θ) − Xk(θ)θ (4.7)

with

Yk(θ) = [I ⊗ A−1(ξ(ωk), θ)] vec[ξ(ωk)naG(ωk)]
Xk(θ) = [ΩT(ωk)⊗ A−1(ξ(ωk), θ)]

where ⊗ is the Kronecker product, and
Ω(ωk) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ξ(ωk)na−1G(ωk)⋮−ξ(ωk)0G(ωk)
ξ(ωk)nb Im×m⋮
ξ(ωk)0Im×m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Proof For the givenmodel parametrization, andusing the given de�nition ofΩ(ωk),
observe that we can express E(ξ(ωk), θ) as

E(ξ(ωk), θ) = G(ωk) − A−1(ξ(ωk), θ)B(ξ(ωk), θ)= A−1(ξ(ωk), θ) [A(ξ(ωk), θ)G(ωk) − B(ξ(ωk), θ)]= A−1(ξ(ωk), θ) [ξ(ωk)naG(ωk) −ΘΩ(ωk)] .
To proceed, we need the following two identities:

vec(AB) = (I ⊗ A)vec(B) = (BT ⊗ I)vec(A) (4.8a)(A⊗ B)(C ⊗ D) = AB ⊗ DB. (4.8b)
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Using (4.8a) we can write

vec [E(ωk , θ)] = [I ⊗ A−1(ξ(ωk), θ)] vec [ξ(ωk)naG(ωk) −ΘΩ(ωk)]
which by applying (4.8a) and subsequently (4.8b), we can rewrite to

vec [E(ωk , θ)] = [I ⊗ A−1(ξ(ωk), θ)] ⋅⋅ (vec[ξ(ωk)naG(ωk)] − (ΩT(ωk)⊗ I)vec(Θ))= [I ⊗ A−1(ξ(ωk), θ)] vec[ξ(ωk)naG(ωk)]+− [ΩT(ωk)⊗ A−1(ξ(ωk), θ)] θ

which is the claimed result.

Proposition 4.4.2 For models parametrized in L-MFD,

Mk(θ) = Φk(θ)T ⊗ A−1(ξ(ωk), θ) (4.9)

with

Φk(θ) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ξ(ωk)na−1P(ξ(ωk), θ)⋮−ξ(ωk)0P(ξ(ωk), θ)
ξ(ωk)nb Im×m⋮
ξ(ωk)0Im×m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Proof See appendix B.2.1.

With the results in equations (4.7) and (4.9), we can recast (4.5) into

N∑
k=1
Re {MH

k (θ̂)(Yk(θ̂) − Xk(θ̂)θ̂)} = 0 (4.10)

or equivalently

N∑
k=1

[ Re{MT
k (θ̂)} Im{MT

k (θ̂)} ] ⋅
⋅ ([ Re{Yk(θ̂)}

Im{Yk(θ̂)} ] − [ Re{Xk(θ̂)}
Im{Xk(θ̂)} ] θ̂) = 0.

With the notation

MT(θ) ∶= [ Re{MT
1 (θ)} Im{MT

1 (θ)} . . .
. . . Re{MT

N(θ)} Im{MT
N(θ)} ]
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X(θ) ∶=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Re{X1(θ)}
Im{X1(θ)}⋮
Re{XN(θ)}
Im{XN(θ)}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Y(θ) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Re{Y1(θ)}
Im{Y1(θ)}⋮
Re{YN(θ)}
Im{YN(θ)}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
it follows that the solution of (4.5) is characterized by

MT(θ̂)(Y(θ̂) −X(θ̂)θ̂) = 0. (4.11)

From this, a natural iterative identi�cation algorithm follows:

solθ̂ j+1 {MT(θ̂ j)(Y(θ̂ j) −X(θ̂ j)θ̂ j+1) = 0} (4.12)

with solution

θ̂ j+1 = [MT(θ̂ j)X(θ̂ j)]−1MT(θ̂ j)Y(θ̂ j). (4.13)

When this algorithm converges, necessarily V ′(θ̂) = 0, ensuring that θ̂ is a sta-
tionary point of the cost function. Observe that (4.13) has the structure of an IV
estimator. Also, note that replacing M by X would give the Sanathanan-Koerner
iteration for the given problem.

4.4.3 Iterative procedure for models in R-MFD

Analogous to the analysis in the previous section, we will now use equation (4.5) to
derive an iterative linear regression algorithm for systems in R-MFD . To that end,
we introduce a di�erent notation for Θ, i.e.

ΘT = [ ATna−1 . . . AT0 BTnb . . . BT0 ]
θ = vec(Θ). (4.14)

With this, we give the following two propositions.

Proposition 4.4.3 With E(ξ(ωk), θ) as de�ned in (4.1), where the model is repre-
sented in R-MFD, and with θ as in de�ned (4.14), the following identity holds

vec [E(ωk , θ)] = Yk(θ) − Xk(θ)θ (4.15)

with

Yk(θ) = [A−T(ξ(ωk), θ)⊗ I] vec (ξ(ωk)naG(ωk))
Xk(θ) = [A−T(ξ(ωk), θ)⊗Ω(ωk)]

where

Ω(ωk) = [ −ξ(ωk)na−1G(ωk) . . . −ξ(ωk)0G(ωk)
ξ(ωk)nb Ip×p . . . ξ(ωk)0Ip×p ] .
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Proof For the given model parameterization, and using the above de�nition of
Ω(ωk), observe that

E(ξ(ωk), θ) = G( jωk) − B(ξ(ωk), θ)A−1(ξ(ωk), θ)= [G( jωk)A(ξ(ωk), θ) − B(ξ(ωk), θ)]A−1(ξ(ωk), θ)= [ξ(ωk)naG( jωk) −Ω(ωk)Θ]A−1(ξ(ωk), θ).
Applying (4.8a) and (4.8b) yields

vec [E(ξ(ωk), θ)] = [A−T(ξ(ωk), θ)⊗ I] vec (ξ(ωk)naG( jωk))+− [A−T(ξ(ωk), θ)⊗Ω(ωk)] θ ,

which proves the claim.

Proposition 4.4.4 For models parametrized in R-MFD,

Mk(θ) = A−T(ξ(ωk), θ)⊗Φk(θ) (4.16)

with

Φk(θ) = [ −ξ(ωk)na−1P(ξ(ωk), θ) . . . −ξ(ωk)0P(ξ(ωk), θ)
ξ(ωk)nb Ip×p . . . ξ(ωk)0Ip×p ] .

Proof See appendix B.2.2.

With the results in (4.15) and (4.16), we can rewrite (4.5) also for models in R-MFD
to (4.10), albeit with di�erent de�nitions of the matrices Yk , Xk and Mk . Hence,
by applying these de�nitions, a similar iterative identi�cation algorithm can be fol-
lowed as the one derived for systems in L-MFD in the previous section.

4.4.4 Minimization of weighted OE cost criteria

�e algorithms in the previous sections were derived for the cost function based on
the unweighted error. Here we will show how these results can be generalized for
the case input/output weighting or Schur weighting is applied.

Input-output weighting

Observe that with the input/output weighted error E i/o(ωk , θ) as de�ned in (4.3),
setting the �rst derivative of the cost function to zero yields the equality

N∑
k=1
Re {MH

i/o ,k(θ̂)vec [Wo(ωk)E(ω̂k , θ)Wi(ω)]} = 0 (4.17)
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where M i/o ,k(θ) = ∂
∂θ vec[Wo(ωk)P(ξ(ωk), θ)Wi(ωk)]. Using the identity

vec(ABC) = (CT ⊗ A)vec(B), we derive that
vec[Wo(ωk)E(ωk , θ)Wi(ωk)] = [WT

i (ωk)⊗Wo(ωk)]vec[E(ωk , θ)]
and

M i/o ,k(θ) = ∂
∂θ

[WT
i (ωk)⊗Wo(ωk)]vec[P(ξ(ωk), θ)]= [WT

i (ωk)⊗Wo(ωk)]Mk(θ).
By substituting these identities in (4.17), and using the expressions derived for
vec[E(ωk , θ)] and Mk(ωk , θ), iterative algorithms to minimize the input/output
weighted cost can be obtained in the same fashion as derived in the previous sec-
tions.

Schur weighting

In a similar fashion as for input/outputweighting, note thatwith the Schur-weighted
error Es(ωk , θ) as de�ned in (4.4), ∂

∂θV(θ) = 0 implies
N∑
k=1
Re {MH

s ,k(θ̂)vec [Ws(ωk). ∗ E(ωk , θ̂)]} = 0 (4.18)

whereMs ,k(θ) = ∂
∂θ vec[Ws(ωk). ∗ P(ξ(ωk), θ)]. We derive that

vec[Ws(ωk). ∗ E(ωk , θ)] = vec[Ws(ωk)]. ∗ vec[E(ωk , θ)]
and

Ms ,k(θ) = ∂
∂θ
vec[Ws(ωk)]. ∗ vec[P(ξ(ωk), θ)]= vec[Ws(ωk)]. ∗Mk(θ).

Again, substitution of these identities in (4.17), in conjuction with the derived ex-
pressions for vec[E(ωk , θ)] and Mk(ωk , θ), allows to derive iterative algorithms
that minimize the Schur weighted cost upon convergence.

4.4.5 Estimation of common denominator models

�e algorithm that is described in this chapter ensures that converging iterations
imply that an optimal estimate of the parameters in amatrix fraction representation
is obtained. Here we will demonstrate that this property can also be obtained for
model representations with a common denominator.
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For this, let the model set be de�ned by P(ξ, θ) = B(ξ, θ)A−1(ξ, θ), where
B(ξ, θ) is as de�ned before, and A(ξ, θ) = I ⋅ a(ξ, θ) with a(ξ, θ) a scalar poly-
nomial. Estimation of the parameters in this represention can be reformulated to
estimation of the parameters in a representation thatmatches the fully parametrized
matrix fraction representation of Section 4.31. Indeed, there existsGv(ωk), Bv(ξ, θ)
and Av(ξ, θ), with Bv(ξ, θ) and Av(ξ, θ) fully parametrized, such that

∥E(ωk , θ)∥2F = ∥Ev(ωk , θ)∥2F (4.19)

where Ev(ωk , θ) = Gv(ωk)−Bv(ξ(ωk), θ)A−1v (ξ(ωk), θ). To see this, note that for
models with a common denominator, we can write

∥E(ωk , θ)∥2F = ∣vec[G(ωk)] − vec[B(ξ(ωk), θ)] ⋅ a−1(ξ(ωk), θ)∣2 .
With this it follows that if Gv(ωk) = vec[G(ωk)], Bv(ξ, θ) = Bv ,nb ξnb + ⋅ ⋅ ⋅ + Bv ,0,
where Bv , i ∈ Rp⋅m×1, i = 0 . . . nb and Bv , i = vec(B i), and Av(ξ, θ) = a(ξ, θ), iden-
tity (4.19) will hold. Once having obtained estimates B̂v , i , we can directly construct
estimates B̂ i using the identity Bv , i = vec(B i).
4.4.6 Extension for model sets with non-full parametrization

Until now, it was assumed that polynomial matrices A(ξ, θ) and B(ξ, θ) are fully
parametrized. However, it is straightforward to deal with model descriptions for
non-full parametrizations. Observe that following the approach in the previous
sections for a non-full parameterization would result in a parameter vector θ with
one ormore zero elements. Removal of these elements from θ, as well as deletion of
the corresponding columns from the matricesMk and Xk , yields the desired result.

4.5 Conclusions

Iterative linear regression algorithms are given for estimation of output error mod-
els in le� or right matrix fraction description from frequency response data.�ese
algorithms are extensions of the SISO IV-based linear regression algorithm, which
has the property that convergence implies a stationary point of the cost function is
reached. �is property, in combination with the freedom in the de�nition of the
model set and the possibility to incorporate pre, post or element-wise multivari-
able frequency weighting, make this an attractive approach for MIMO frequency
domain identi�cation of output error models. It is not claimed that the method
discussed here can outperform gradient-based optimization methods. However, it
appears to be a favorable alternative for the classically applied SK-iterations.

1A polynomial matrix A(ξ, θ) = ξna + Ana−1 ξna−1 + ⋅ ⋅ ⋅ + A0 is said to be fully parametrized
none of the coe�cient matrices A i , i = 0 . . . na − 1 contains zeros., and all elements are independently
parametrized
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Chapter 5

System identification of the AMB
spindle, part I: Bearing dynamics

5.1 Introduction

As indicated in the introduction of the previous chapter, identi�cation of the AMB
spindle can be split into two identi�cation problems, i.e. identi�cation of the bearing
dynamics and the identi�cation of the tooltip dynamics.�is chapter deals with the
�rst.
For a number of reasons, identi�cation of the bearing dynamics is a complex

problem. First, the dynamics are intrinsically unstable, which implies that iden-
ti�cation needs to be performed in a stabilizing closed-loop. �e second reason
pertains to the multivariable character of the dynamics, where due to gyroscopic
e�ects the coupling between the various channels increases with rising rotational
frequency. A third reason is the high order of the system. As discussed in Chap-
ter 2, an AMBmilling spindle typically exhibits high-frequent and very ill-damped
resonances, which originate from the �exural modes of the spindle rotor. �e last
reason is that the electromagnetic actuators of AMBs are nonlinear by nature, im-
plying that only small excitation signals can be used if nonlinear distortions are
to be avoided. Hence the signal-to-noise ratio (SNR) of the measurement data is
limited, requiring careful experiment design.
System identi�cation of AMB spindles has been studied for many years, mostly

for the purpose of control design.�emajority of this work is approached using fre-
quency domain techniques. Non-parametric estimates of the frequency response
function (FRF) are made, to which grey-box or black-box parametric models are
�t. Grey-box models are estimated in the approaches of [53], [5], [107], and [56].
�e approach by Gähler et al. [53] is based on a modal decomposition of an ana-
lytical model and involves identi�cation of the modal frequencies. �is approach
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was extended by Lösch [107] to include estimation of the gyroscopic coupling at
high rotational speeds. �e approach by Ghersin et al. [56] uses a model class
described by state space systems with a prescribed structure, which follows from
analytical modeling of the setup at stand-still. In the approach of Aeschlimann [5],
the predicted frequency response from an analytic model is �t to the measured fre-
quency response by variation of the uncertain parameters in the model. Black-box
approaches have also been reported, among them the subspace approach byMohd-
mokhtar et al. [115], and the approach by Ahn et al. [6] in which low-order control-
relevant models in matrix fractional description are �t to the estimated FRF.
Common in many of these approaches is that the above described complexity

of the identi�cation problem is reduced in various ways. A frequently made simpli-
�cation is to perform grey-box identi�cation, which imposes a model structure on
the system with reduced complexity. Another simpli�cation involves ignoring the
gyroscopic coupling, which reduces the dimensions of the problem. Although the
resulting models might be appropriate for (robust) control design objectives, the
obtained accuracy is insu�cient when pursuing more demanding applications like
process monitoring and control of the micro-milling process.
Furthermore, all of these approaches have in common that linearity of the AMB

spindle system is assumed, while it is in fact known to be intrinsically nonlinear.
Still, in many applications, a linear model is desired and may also be su�cient to
meet the performance speci�cations. However, presence of nonlinear distortions
requires a careful experiment design to make a good trade-o� between keeping
the excitation small to minimize nonlinear distortion and maintaining appropriate
SNR to obtain su�ciently low variance error in the FRF estimate.

�e objective of this chapter is to identify a linear parametric model of the bear-
ing dynamics that is suitable for application to cutting force estimation.�is appli-
cation has a number implications for the identi�cation problem, making it more
involved than the identi�cation of the bearing dynamics for the application of con-
trol design.�ese implications can be summarized as follows:

• �e resulting model must be accurate in the frequency range in which the
cutting forces are estimated, which is in general larger than the frequency
range of interest for control design of the bearings. �e larger frequency
range of interest implies that not only rigid body dynamics, but also �exi-
ble body dynamics come into play. For example, for the EAAT AMB spindle
this range of interest is 0 to 5 kHz (see Chapter 3).�is range includes the �rst
and second bendingmode frequency of the rotor. A further complication lies
in the fact that at the high rotational speeds used inmicro-milling, the e�ects
of gyroscopy become relevant (see Chapter 2).�is means that the dynamics
of motion in the radial direction become increasingly more coupled, while
in addition the bending moments are split. In summary, the aforementioned
simpli�cations cannot be justi�ed, and instead high order models are needed
in order to describe the bearing dynamics. At present, literature is lacking an
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AMB identi�cation procedure able to deal with this complexity.

• �e application for estimation sets tight constraints on the accuracy of the
identi�ed model.�e obvious reason is that any errors in the model dynam-
ics of the AMB spindle will result in errors in the cutting force estimate. Both
measurement noise, as well as nonlinear distortions give rise to errors in the
estimated model, where evidently the choice of the excitation signal plays
an important role. Large excitation yields a good signal to noise ratio, but
also large nonlinear distortions. On the other hand, a small excitation might
avoid distortions from nonlinearities, but still yield poor results due to an
inferior signal to noise ratio.�e problem of designing identi�cation exper-
iments allowing to make a good trade-o� between the errors from these two
sources, has not received much attention in the literature on AMB spindle
identi�cation.

In order to deal with these complications and tomeet the aforementioned objective
to identify a model of the bearing dynamics suitable for application to cutting force
estimation, an approach has been selected consisting of two stages:

1. Stage one involves estimation of themultivariable Frequency Response Func-
tion (FRF) of the bearing dynamics. In contrast to many of the contributions
in the literature on AMB identi�cation, careful attention is given tominimiz-
ing both bias and variance of the FRF estimate. To that end, an experiment
design is given that incorporates recent results regarding estimation of the
FRF of MIMO systems from closed-loop data.
Furthermore, a procedure is given to detect the level of nonlinear distor-
tion in the FRF estimate of the AMB spindle.�is approach is based on the
variance analysis method for detection of nonlinearities in FRF estimates as
available in literature, and is extended to detection of nonlinear distortion
in MIMO FRF estimates obtained using an instrumental variables approach.
Being able to detect the level of nonlinear distortion, the problem is addressed
how the experimental conditions can be modi�ed so, as to reduce the e�ect
of the nonlinear distorions in the FRF estimate, particularly when dealing
with closed-loop experiments.
�e last aspect of stage one involves non-parametric identi�cation of the
noise disturbances in the closed-loop, which is addressed as well by a vari-
ance analysis using the periodic nature of the excitation.

2. In stage two, the objective is to identify amodel for theMIMOplant inmatrix
fraction description (MFD), using the estimated FRF from stage one. Here,
the main emphasis is on identi�cation of a parametric model of the bearing
dynamics, and not so much on obtaining a parametric model of the mea-
surement noise. �is leads to the choice of minimization of an output error
criterion. In order to reduce the variance error of the estimated parameters,
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a Schur-weighted OE cost criterion is formulated, where an estimate of the
variance of the FRF is used for the weighting. �e resulting identi�cation
problem �ts the framework of Chapter 4, and the IV-based iterative linear
regression approach is used to solve this.

A complication of the large dynamic range is that the IV-based iterative lin-
ear regression algorithm su�ers from poor numerical conditioning (similar
to the Sanathanan and Koerner algorithm).�e multi-band technique of Ba-
yard [22] is adopted to deal with this. �e key idea here is to divide the fre-
quency range of interest into smaller subbands and estimate submodels that
describe the system on each band. When combined, these submodels pro-
duce a model for the entire system.

�e choice for a frequency-domain approach for the problem of identifying the
bearing dynamics is justi�ed as follows:

• Data/noise reduction: in stage one, large amounts of data in the time-domain
can be aggregated to compute a reduced-size data set in the frequency do-
main with improved SNR.

• Closed-loop e�ects:�e closed-loop issues are dealt with in stage one, where
the FRFof the bearing dynamics are estimated from the closed-loop data.�e
parametric modeling in stage two is then simply an open-loop problem.

• Instability of the bearing dynamics:�e parametric modeling step in stage
two is performed in the frequency domain. In this domain instability of the
bearing dynamics imposes no limitations on themodel set (contrary to time-
domain prediction error identi�cation of unstable systems).

�is chapter is structured as follows. A�er discussing the con�guration in Section
5.2, we will address the approach to estimation of the FRF of the bearing dynamics
in Section 5.3. Subsequently in Section 5.4 we discuss how nonlinear distortion in
the estimate of the FRF can be detected, and reduced. From the experimental data,
non-parametric estimates of the noise disturbances in the system can be obtained
as well. An approach to do this is given in Section 5.5. Estimation of a parametric
model using the estimated FRF (and its covariance) is discussed in Section 5.6.

5.2 Con�guration and identi�cation problem

In relation to Figure 2.11 of Chapter 2, identi�cation of the bearing dynamics in-
volves identi�cation of P1 alone, while u2 = 0 (the cutting forces are zero during
identi�cation of the bearing dynamics). For reasons of notational e�ciency, in this
chapter we will therefore ignore existence of P2 and simply write P instead of P1 and
u instead of u1. With this, we obtain the modi�ed block diagram of Figure 5.1.
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P(z) y

u

v2

v1 + + ++
K(z)r

Figure 5.1: Block diagram of the AMB spindle for the purpose of identifying the bearing
dynamics.

�e reference of the controller r is available to excite the system, and measure-
ments of the input and output of P are taken. �e general objective of the iden-
ti�cation procedure is to use the obtained data to �nd a parametric model of the
unstable plant P(z). In this procedurewewill assume that the noise disturbances on
the measurements of the currents v1 are negligible (we will justify this assumption
for the EAAT spindle in Section 5.5).�e rotational speed of the spindle is assumed
to be constant. For the identi�cation, the runout disturbances in the system are not
treated separately and are included in v1 and v2.

5.3 Multivariable FRF Estimation of the AMB spindle

In this section, estimation of the multivariable FRF of the AMB spindle system is
performed. We will focus on obtaining a non-parametric FRF estimate from the
closed-loop data with low bias and variance for given excitation levels. First, the
topic of experiment design is discussed in Section 5.3.1, a�er which we address the
issue of non-parametric FRF estimation of multivariable systems in closed-loop
(Section 5.3.2). Estimation of the covariance of the FRF estimate is dealt with in
Section 5.3.3.

5.3.1 Experiment design

With the purpose of estimating the FRF of the bearing dynamics, the following
experiment design is chosen. Excitation signals are applied to the reference input r.
To avoid leakage e�ects when calculating the Discrete Fourier Transform (DFT), r
is assumed to be NK-periodic: r(t + NKTs) = r(t) with Ts the sample time. When
the system has reached its steady state, K periods of u(t) and y(t) are collected,
resulting in N = KNK samples per experiment. �e DFTs of the reference r, the
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input u and the output y, averaged over the K periods, are given by

R(ωk) = 1
K
√
N

N∑
t=1
r(tTs)e− jωk tTs (5.1a)

U(ωk) = 1
K
√
N

N∑
t=1
u(tTs)e− jωk tTs (5.1b)

Y(ωk) = 1
K
√
N

N∑
t=1
y(tTs)e− jωk tTs (5.1c)

where only the frequencies ωk = k 2π
NKTs , k = 1 . . .NK are considered. In order

to estimate P(ωk) from data, at least m experiments with independent excitation
signals are needed. Let M represent the number of experiments and let R(ωk) be
the matrix that is formed by collecting the DFTs of the reference r (each column
corresponding to one experiment):

R(ωk) = [ R1(ωk) R2(ωk) . . . RM(ωk) ] ∈ Cm×M (5.2)

where the superscript is used to indicate the experiment number. Matrices U(ωk)
and Y(ωk) are formed accordingly from the DFTs of u and y respectively. To fa-
cilitate the analysis, it is assumed that the total set of experiments M is an integer
multiple of the number of inputs m, i.e. M = MB ⋅m. In what follows, we will con-
sider one experiment block to consist ofm experiments, and soMB is the number of
experiment blocks. Following from this, the matrix R(ωk) is partitioned into MB
blocks of size m ×m as

R(ωk) = [ R[1](ωk) . . . R[MB](ωk) ] (5.3)

where we use the superscripted index in square brackets to denote the experiment
block number. Partionings formatricesU(ωk) andY(ωk) are de�ned conformably.
For the excitation, orthogonal random phase multi-sine signals are selected.

For given excitation power, these excitation signals are known to yield the least
variance of the FRF estimate compared to other common excitation signals [43].
�e orthogonal random phase multisine signal is de�ned as follows. �e blocks
R[i], i = 1 . . .MB satisfy

R[i](ωk) = R[i]
diag(ωk)W (5.4)

with R[i]
diag(ωk) = diag{R[i]

l (ωk)}ml=1 a diagonal matrix, where each entry on the
diagonal is the DFT of a random phase multisine signal, i.e.

r l(t) = NK/2∑
k=1
Ak , l cos(ωk t + ϕk , l), l = 1 . . .m (5.5)
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with amplitudes Ak , l , frequencies ωk ∈ { 2π l
NKTs , l = 1, . . . , NK2 − 1} (for NK even),

and random phases ϕk , l uniformly distributed on the interval [0, 2π). �e matrix
W is an arbitrary, deterministic unitary (or orthogonal) matrix, satisfyingWHW =
WWH = mIm . For arbitrary input dimension, a possible choice forW is given by
the DFT matrix:

Wpq = e j2π
m (p−1)(q−1) (5.6)

However, since m = 4 in the case of the AMB spindle, a much simpler choice is the
4 × 4 Hadamard matrix, given by

W =
⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (5.7)

With this, the resulting procedure for one experiment block becomes as follows:

• Experiment 1: for all four channels of the reference a multisine signal is gen-
erated, each with a di�erent realization of the random phases, resulting in
the signal r. �e system is excited with this signal and KNK samples of the
steady state response of u and y are measured.

• Experiment 2: experiment 1 is repeated, but now with channel 2 and 4 mul-
tiplied with −1.

• Experiment 3: experiment 1 is repeated, but now with channel 3 and 4 multi-
plied with −1.

• Experiment 4: experiment 1 is repeated, but now with channel 2 and 3 mul-
tiplied with −1.

5.3.2 Estimation of the multivariable FRF

Non-parametric estimation of the FRF of dynamical systems has been studied ex-
tensively in literature [175, 133, 63, 105, 128, 127]. Originally, most of these methods
were developed for SISO systems, but extensions are available for MIMO systems
[64, 169, 62].
Here a closed-loop identi�cation problem is considered. As reviewed by Van

den Hof in [164], in time-domain identi�cation two main approaches can be fol-
lowed to deal with the closed-loop e�ects: (1) direct identi�cation, and (2) indirect
identi�cation. In direct identi�cation, standard (open-loop) identi�cation tech-
niques are applied, without taking into account the presence of a feedback con-
troller. �e main di�erence of indirect methods compared to direct methods is
that a measurable external excitation signal is available. Indirect methods vary in
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the way that the plantmodel is parametrized and the way they deal with (removing)
the noise contribution at the input of the plant.
For non-parametric frequency-domain closed-loop identi�cation of multivari-

able systems that we consider, several estimators have been proposed in literature
[176]. We will �rst introduce three main approaches and then comment on their
bias and variance properties.

• �e H1 estimator. �is estimator uses the direct approach [105]: it is based
on the data of u and y only, and presence of the feedback is ignored.

P̂H1(ωk) = Y(ωk)UH(ωk)(U(ωk)UH(ωk))−1 (5.8)

• �e arithmetic mean estimator (ARI). Like the H1 estimator, the ARI es-
timator is based on a direct approach. �e main idea behind this estimator
is that FRF estimates obtained with each block of excitations R[i](ωk) are
averaged:

P̂ARI(ωk) = 1
MB

MB∑
i=1

Y[i](ωk)(U[i](ωk))−1 . (5.9)

• �e joint input-output (JIO) estimator. When the reference signal is also
recorded, a joint input-output approach [105] can be followed. In this indirect
method, the input and output of the plant are modeled using the external
excitation and noise signal. Derived from this, the JIO estimator is given by:

P̂JIO(ωk) = Y(ωk)RH(ωk)(U(ωk)RH(ωk))−1 . (5.10)

�e JIO estimator can also be thought of the combination of two H1 estima-
tors

T̂H1ur (ωk) = U(ωk)RH(ωk)(R(ωk)RH(ωk))−1 (5.11)
T̂H1yr (ωk) = Y(ωk)RH(ωk)(R(ωk)RH(ωk))−1 (5.12)

where T̂H1ur is an estimate of the transfer function of the reference r to the
plant input u and T̂H1yr is the estimate of the transfer function of the reference
r to the plant input y. With this,

P̂JIO(ωk) = T̂H1yr (ωk)(T̂H1ur (ωk))−1 . (5.13)

As equation (5.10) also has the structure of an instrumental variable estimator
with R the instrumental variable, the JIO estimator is also referred to as such
in literature (see e.g. [169]).
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In [176], Wernholt and Gunnarsson analyze the properties of the aforementioned
estimators when using orthogonal random phase multisine excitation signals, by
means of both analysis and simulation. It is shown that in general the H1 and ARI
estimators are asymptotically biased. For the H1 estimator an asymptotic relative
bias expression is given, showing that this bias is approximately proportional to the
signal-to-noise ratio. In contrast, the JIO estimator is shown to be asymptotically
unbiased (i.e. for MB → ∞). Furthermore, all estimators give approximately the
same variance for su�ciently large SNR. Based on these characteristics, the JIO
estimator is considered the estimator of preference for our application.

5.3.3 Estimation of the covariance of JIO estimator

Under speci�c conditions, including explicit knowledge of the noise disturbance
dynamics and the controller, the covariance of the JIO estimator can be computed,
as was shown by Wernholt et al. in [176]. Frequently this information is not avail-
able. An extensive treatment of the problem of estimating the covariance matrix
of FRF estimates of open loop MIMO systems from experimental data under dif-
ferent experimental conditions is given by Pintelon et al. in [129, 130]. Literature
however lacks results to estimate the covariance of the FRF obtained using the JIO
estimator. In this section we give an approach to this for the case that orthogonal
random phase multisine excitation is used. We will �rst show that under orthogo-
nal excitation the JIO estimator can be reformulated using sample arithmetic mean
estimate expressions of Tur and Tyr . Next, by computing the sample covariance
of Tur and Tyr , which is done in a similar way as performed by Pintelon, an esti-
mate of the covariance in the JIO estimate of P is obtained by means of a �rst order
approximation.

An alternative expression for the JIO estimator

As was noted in Section 5.3.2, the JIO estimator can be interpreted as the right di-
vision of the H1 FRF estimator of Tyr by the H1 FRF estimate of Tur . However,
under speci�c conditions on the excitation as expressed in the following theorem,
the JIO estimator can also be interpreted as the right matrix division of the arith-
metic mean estimate of the FRF of Tyr by the arithmetic mean estimate of the FRF
of Tur , where both arithmetic mean estimates are taken over a sample set ofMB ×K
FRF estimates. For this, �rst note from equation (5.1) that U[i](ωk) and Y[i](ωk)
are averaged over multiple periods of the multisine. Hence we can express

U[i](ωk) = 1K K∑
j=1

U[i , j](ωk) (5.14)

Y[i](ωk) = 1K K∑
j=1

Y[i , j](ωk) (5.15)
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whereU[i , j] andY[i , j] are used to denote the DFT of the jth period of the ith exper-
iment block of the input and output of P respectively. Let T̂[i , j]

ur and T̂[i , j]
yr denote

the H1 estimate of Tur and Tyr fromU[i , j] and Y[i , j] respectively. With this we give
the following proposition.

Proposition 5.3.1 Let the estimates T̂ur(ωk) and T̂yr(ωk) be obtained by averaging
T̂[i , j]
ur and T̂[i , j]

yr for all periods K and all experiment blocks MB :

T̂ur(ωk) = 1
MBK

MB∑
i=1

K∑
j=1
T̂[i , j]
ur (ωk) (5.16)

T̂yr(ωk) = 1
MBK

MB∑
i=1

K∑
j=1
T̂[i , j]
yr (ωk). (5.17)

�en if the excitation satis�es

R[i](ωk) = R[i]
diag(ωk)W, withWWH = mI, for all i = 1 . . .MB (5.18a)(R[i]

diag(ωk))(R[i]
diag(ωk))H =∶ A(ωk), for all i = 1 . . .MB (5.18b)

with R[i]
diag de�ned as in (5.4) andA an invertible real diagonal matrix, then

P̂JIO(ωk) = T̂yr(ωk)T̂−1ur (ωk) (5.19)

Proof We show that under the given conditions, the estimate T̂ur(ωk) in equation
(5.16) is equivalent to the H1 estimator of Tur :

T̂ur(ωk) = 1
MBK

MB∑
i=1

K∑
j=1
T̂[i , j]
ur (ωk) (5.20)

= 1
MBK

MB∑
i=1

K∑
j=1

U[i , j](ωk)(R[i](ωk))H(R[i](ωk)(R[i](ωk))H)−1 (5.21)
= 1
mMBK

MB∑
i=1

K∑
j=1

U[i , j](ωk)(R[i](ωk))HA−1(ωk) (5.22)

= 1
mMB

MB∑
i=1

U[i](ωk)(R[i](ωk))HA−1(ωk) (5.23)

= U(ωk)RH(ωk)(R(ωk)RH(ωk))−1 (5.24)= T̂H1ur (ωk). (5.25)

Analogously, it follows that T̂yr(ωk) in equation (5.17) is equivalent to the H1 esti-
mator of Tyr .�en from equation (5.13), equation (5.19) is immediate.
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Multivariable FRF Estimation of the AMB spindle

Observe that equation (5.18) implies that the excitation is orthogonal with constant
excitation amplitude in all experiment blocks. We remark that although this propo-
sition is formulated for the case orthogonal excitation is used, orthogonality is not
necessary. As long as R[i](ωk)(R[i](ωk))H is the same in every experiment block,
the same result is obtained.

�is result can be used to estimate to covariance of P̂JIO. Indeed, since the es-
timators T̂ur and T̂yr are sample average type expressions, their covariances can be
estimated easily using sample covariance expressions, as will be discussed in the
next subsection. Subsequently, it will be shown how these sample covariances can
be used to obtain an estimate of the covariance of P̂JIO.

Sample covariance of T̂ur and T̂yr

To estimate the joint covariance of T̂ur(ωk) and T̂yr(ωk), we introduce the fol-
lowing notation. Let A and B be complex stochastic matrix variables of arbitrary
dimensions. We denote the mean and covariance of these matrices as

Ā ∶= EA, B̄ ∶= EB

[ COV{A} COV{A, B}
COV{B,A} COV{B} ] ∶= E( vec[A− Ā]vec[B − B̄] )( vec[A− Ā]vec[B − B̄] )H .

With this we de�ne the joint covariance matrix of T̂ur(ωk) and T̂yr(ωk) as follows:
De�nition 5.3.2 �e joint covariance matrix of estimates T̂ur(ωk) and T̂yr(ωk) is
de�ned as

CT(ωk) ∶= [ COV{T̂ur} COV{T̂ur , T̂yr}
COV{T̂yr , T̂ur} COV{T̂yr} ] (5.26)

For each experiment block, the matrix CT(ωk) can be estimated using a sample co-
variance expression over all periods. Omitting the frequency argument for brevity,
this expression is

Ĉ[i]
T = 1

MBK(K − 1) K∑
j=1

( vec[T̂[i , j]
ur − T̂[i]

ur ]
vec[T̂[i , j]

yr − T̂[i]
yr ] )( vec[T̂[i , j]

ur − T̂[i]
ur ]

vec[T̂[i , j]
yr − T̂[i]

yr ] )H (5.27)

where

T̂[i]
ur = 1

K

K∑
j=1
T̂[i , j]
ur T̂[i]

yr = 1
K

K∑
j=1
T̂[i , j]
yr . (5.28)
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Averaging over all experiment blocks yields

ĈT = 1
MB

MB∑
i=1
C[i]
T (5.29)

= 1
M2BK(K − 1)

MB∑
i=1

K∑
j=1

( vec[T̂[i , j]
ur − T̂[i]

ur ]
vec[T̂[i , j]

yr − T̂[i]
yr ] )( vec[T̂[i , j]

ur − T̂[i]
ur ]

vec[T̂[i , j]
yr − T̂[i]

yr ] )H (5.30)

An expression for the covariance of the JIO estimator

Starting from expression (5.19), the purpose of this section is to derive an expres-
sion for the covariance matrix of the JIO estimate of P. Since P̂JIO is a nonlinear
function of T̂ur and T̂yr , it is in general unfeasible to calculate the covariance ma-
trix of P̂JIO from the joint covariance of T̂ur and T̂yr . An approximation can be
calculated through a �rst order linearization of the expression of the JIO estimator.
To formulate that, we �rst need the following lemma.

Lemma 5.3.3 Let A and B be two correlated complex stochastic matrices and let the
variation of A and B be small in comparison to the mean value Ā and B̄. Given is
the map C = f (A, B), which is analytical in the point A = Ā, B = B̄. �en an
approximation of COV{C} through �rst order linearization of f (A, B) around Ā
and B̄ is given by

COV{C} ≈ [ ∂vec[ f (A,B)]
∂vec[A] ∣

A=Ā
∂vec[ f (A,B)]

∂vec[B] ∣
B=B̄

] ⋅
⋅ [ COV{A} COV{A, B}
COV{B,A} COV{B} ] ⎡⎢⎢⎢⎢⎢⎣

( ∂vec[ f (A,B)]
∂vec[A] ∣

A=Ā
)H( ∂vec[ f (A,B)]

∂vec[B] ∣
B=B̄

)H
⎤⎥⎥⎥⎥⎥⎦ (5.31)

Proof A proof for the case A and B are real random variables is given in [86], Sec-
tion 10.6, for the case A and B are real random vectors in [133], Section 2.13.1, and
for the case A and B are complex vectors in [128], Section 14.2. �is lemma is the
generalization for the case A and B are complex matrices and is proved similarly as
in the aforementioned references.

We can now formulate the following proposition:

Proposition 5.3.4 �rough �rst order linearization of the expression of the JIO esti-
mator, an approximation of the covariance of the JIO estimate of P is given by

CP(ωk) ∶= COV{P̂JIO(ωk)}≈ MP(ωk)CT(ωk)MH
P (ωk) (5.32)

with

MP(ωk) = [ −T̂−Tur ⊗ P̂JIO(ωk) T̂−Tur (ωk)⊗ I ] (5.33)
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Multivariable FRF Estimation of the AMB spindle

Proof First de�ne

h1(ωk) = vec[Tur(ωk)] h2(ωk) = vec[Tyr(ωk)]
h(ωk) = col(h1(ωk), h2(ωk)).

Application of lemma 5.3.3 immediately yields (5.32), whereMP(ωk) is given by
MP(ωk) ∶= ∂

∂ĥ
vec[P̂JIO(ωk)]

= [ ∂
∂ ĥ1
vec[P̂JIO(ωk)] ∂

∂ ĥ2
vec[P̂JIO(ωk)] ] . (5.34)

Using equation (5.19) and the identities vec(AB) = (I ⊗ A)vecB = (BT ⊗ I)vecA,
we obtain

vec[P̂JIO(ωk)] = [T̂−Tur (ωk)⊗ I]ĥ2(ωk) (5.35a)= [I ⊗ T̂yr(ωk)]vec[T̂−1ur (ωk)]. (5.35b)

�e �rst element ofMP in equation (5.34) can be derived using equation (5.35b) and
lemma B.2.1, resulting in

∂
∂ĥ1
vec[P̂JIO(ωk)] = [I ⊗ T̂yr(ωk)] ∂

∂h1
vec[T̂−1ur (ωk)]

= [I ⊗ T̂yr(ωk)][−T̂−Tur (ωk)⊗ T̂−1ur (ωk)]= [−T̂−Tur (ωk)⊗ P̂JIO(ωk)].
�e second element of MP in equation (5.34) directly follows taking the derivative
of equation (5.35a) to ĥ2, yielding

∂
∂ĥ2
vec[P̂JIO(ωk)] = [T̂−Tur (ωk)⊗ I],

which completes the proof.

We summarize the obtained results so far. In the previous Section 5.3.2 an ap-
proach to estimation of themultivariable FRF of the AMB spindle from closed-loop
data was described.�is approach has the attractive properties of being asymptot-
ically unbiased and yielding low covariance. �e above results allow to estimate
the covariance in this FRF estimate. Having this covariance estimates available will
prove valuable in stage 2, when a parametric model is estimated using the estimated
FRF. As will become clear in Section 5.6, the estimate of the covariance of the FRF
can be used as a weighting function to reduce the variance error of the model pa-
rameter estimates.
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5. System identification of the AMB spindle, part I: Bearing dynamics

5.4 Reduction of nonlinear distortion in the FRF estimate

We recall that the key problem of this chapter is to estimate a parametric linear
model of P from sequences of measured data. However, as was discussed in Chap-
ter 2, plant P has several sources of nonlinearities. Still, as a linear model of P in
its operating point would su�ce, a more precise formulation of the objective is to
estimate a model of the �rst order linearization of the AMB spindle system in its
operating point. In order to achieve this goal, in Section 5.4.1 an approach is given
that allows to detect the level of nonlinear distortion in the estimate of the FRF of
the �rst order linearization. �e given approach is based on the variance analysis
method of Pintelon et al. [131, 145], which detects nonlinear distortions in direct
FRF estimates. �e approach in this section extends the variance analysis method
for detection of the level of nonlinear distortions in a JIO estimate of the FRF of
a multivariable plant. Being able to quantify the level of nonlinear distortion, the
next step is to improve the experimental conditions, so that the e�ect of the nonlin-
earities on the FRF estimates is small. We will discuss in particular what steps can
be taken when dealing with closed-loop experiments (Section 5.4.2).

5.4.1 Detection of the level of nonlinearity in the JIO estimate

In literature, numerous approaches are available to detect distortions orginating
from nonlinearities in a system (for an overview, see [167]). When estimating the
FRF using periodic excitation signals, two basic strategies are available.�e �rst ap-
proach is to use a special multisine signal, so that selected even and odd frequences
are not excited. At these frequencies the nonlinearities can be detected by mea-
suring the output levels (see [145] for more details). �e second approach is the
variance analysis approach of Pintelon et al. [131]. In this approach for detection of
nonlinear distortions in a SISO system, a random phase multisine excitation signal
is generated and multiple periods of this signal are applied to the system. For each
period of the multisine, an estimate of the FRF is calculated.�is procedure is then
repeated for di�erent realizations of the multisine. Detection of nonlinear distor-
tions is achieved by comparing the variations of the estimated FRF for di�erent pe-
riods of the same realization of the multisine to the variations of the estimated FRF
for di�erent realizations of the random phases of the excitation. �e former vari-
ations only depend on the measurement noise, whereas the latter depend on both
measurement noise and distortions, due to nonlinearities. Hence, if both variances
are the same, no signi�cant nonlinearities are present. However, if the latter vari-
ance level is signi�cantly larger, this indicates the presence of nonlinear distortions
in the FRF estimate. Wernholt [177] extended this method for detection of non-
linearities of MIMO systems in closed loop. In this work, the ARI estimator was
used (which essentially ignores the closed-loop e�ects), and variance calculations
were performed for each element of the FRF matrix estimate individually. Here we
further extend the approach to estimating the level of nonlinear distortion in the
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Reduction of nonlinear distortion in the FRF estimate

JIO estimate of P. Instead of element-wise variance calculation, we perform vari-
ance analysis by estimating the full covariance matrix of P̂JIO, using the results of
the previous section.
Pintelon and Schoukens [128, 145] showed that when a nonlinear SISO system

satisfying some formal, but rather unrestrictive conditions1 is excitedwith a random
phase multisine excitation signal, the nonlinearity appears in the DFT of the output
as a systematic bias, and as a noise-like contribution that varies with the realization
of the randomphases of the sinusoids of the excitation. Dobrowiecki et al. extended
this in [42] to nonlinearMIMOsystems.�ey showed that the output of a nonlinear
system G satisfying similar conditions as in the SISO case, excited with a random
phase multisine signal, can be expressed as

Y(ωk) = (G0(ωk) +GB(ωk))U(ωk) + YS(ωk) + NG(ωk) (5.36)

where G0 is the �rst order linearization of G in the selected operating point, GB
represents the bias due to the nonlinear distortions, YS is the noise-like nonlin-
ear contribution, and NG is a noise term due to measurement noise. As shown by
Dobrowiecki et al., GB depends on the spectrum of the input only, while the non-
linear contribution YS(ωk) has the character of a noise source: it has zero mean
(EϕYS(ωk) = 0 — where Eϕ is used to denote the expectation operator over the
realizations of random phases of the multisine), for every frequency ωk it is uncor-
related with the input (EϕYS(ωk)UH(ωk) = 0), and it has random phase.
We will apply this result to the closed-loop con�guration of the AMB spindle.

Nonlinearity of P implies nonlinearity of the mappings from r → u and r → y. In
the JIO estimator, the FRF of the �rst order linearization of these mappings is esti-
mated and combined according to equation (5.19) tomake an estimate of the FRF of
P. Hence, errors in the estimates of Tur and Tur due to nonlinear distortion, prop-
agate in the JIO estimate of the FRF of P. In what follows, we will give a measure of
the nonlinear distortion in T̂ur and T̂yr , and use this to detect the level of nonlinear
distortion in the JIO estimate of the FRF of P.
As shown in the previous section, the FRF estimates T̂ur and T̂yr are obtained

by averaging over the sample sets T̂[i , j]
ur (ωk), T̂[i , j]

yr (ωk), with i = 1 . . .MB and
j = 1 . . .K. Applying the result in equation (5.36), we can express for T̂[i , j]

ur (ωk) and
T̂[i , j]
yr (ωk)

T̂[i , j]
ur (ωk) = Tur ,0(ωk) + Tur ,B(ωk) + T[i]

ur ,S(ωk) + N[i , j]
Tur (ωk) (5.37a)

T̂[i , j]
yr (ωk) = Tyr ,0(ωk) + Tyr ,B(ωk) + T[i]

yr ,S(ωk) + N[i , j]
Tyr (ωk) (5.37b)

1�e analysis by Pintelon and Schoukens in [128, 145] is performed for systems for which there exists
a Volterra series representation that converges to the output in the mean square sense with probability 1
for all excitations in the class of allowable inputs.�is class of input signals is de�ned as the set of signals
with a Gaussian amplitude distribution and a user-de�ned power spectrum, which includes the sets of
Gaussian noise, periodic noise and random phase multisine signals.
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where Tur ,0 is the �rst order linearization of Tur , Tur ,B is the nonlinear bias, T[i]
ur ,S

is the nonlinear disturbance term (which only depends on the realization of the
random phase, hence the superscript [i]), and N[i , j]

Tur is the error term due to mea-
surement noise (which varies with each period and experiment block, hence the
superscript [i , j]).�e terms Tyr ,0, Tyr ,B , T[i]

yr ,S , and N
[i , j]
Tyr are de�ned similarly.

�e variance analysis approach of Pintelon et al. in [131] entails the following.
From (5.37a), we see that T̂[i , j]

ur (ωk) has two disturbance sources, where T[i]
ur ,S(ωk)

is independent over i, but equal over j, and N[i , j]
Tur (ωk) is independent over both i

and j.�e same holds for T̂[i , j]
ur (ωk).�is implies that under presence of T[i]

ur ,S and
T[i]
yr ,S , the covariance of Tur and Tyr taken over themultiple periods of the excitation
only, will di�er from the covariance taken over both the periods of the excitation
and the realizations of the random phases of the excitation.�is can be quanti�ed
as follows. For convenience, we repeat the sample joint covariance expression of
T̂ur and T̂yr as de�ned in equation (5.29) in the previous section:

ĈT ,I = 1
M2BK(K − 1)

MB∑
i=1

K∑
j=1

( vec[T̂[i , j]
ur − T̂[i]

ur ]
vec[T̂[i , j]

yr − T̂[i]
yr ] )( vec[T̂[i , j]

ur − T̂[i]
ur ]

vec[T̂[i , j]
yr − T̂[i]

yr ] )H .
(5.38)

As this covariance expression incorporates only variations over the periods, ob-
serve that it will not depend on T[i]

ur ,S and T
[i]
yr ,S . In contrast to this, the covariance

computed over all experiment blocks and periods, i.e.

ĈT ,II = 1
MBK(MBK − 1) MB∑

i=1

K∑
j=1

( vec[T̂[i , j]
ur − T̂ur]

vec[T̂[i , j]
yr − T̂yr] )( vec[T̂[i , j]

ur − T̂ur]
vec[T̂[i , j]

yr − T̂yr] )H
(5.39)

will depend on T[i]
ur ,S and T

[i]
yr ,S . Hence nonlinear distortion in T̂ur and T̂yr can be

detected by verifying if the elements of ĈT ,II are signi�cantly larger than those of
ĈT ,I .
Now, using the estimates CT ,I and CT ,II and applying proposition 5.3.4, we can

also estimate the covariance of P̂JIO over periods of the same realization of the ex-
citation (denoted as ĈP ,I), as well as the covariance over di�erent realizations of the
excitation (denoted as ĈP ,II):

ĈP ,I(ωk) = MP(ωk)ĈT ,I(ωk)MH
P (ωk) (5.40)

ĈP ,II(ωk) = MP(ωk)ĈT ,II(ωk)MH
P (ωk). (5.41)

Again, if both variances are the same, we can conclude that no signi�cant nonlinear
distortion is present in the estimate PJIO. However, if the elements of ĈP ,II are
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signi�cantly larger than those of ĈP ,I , this indicates the presence of a nonlinear
distortion in the FRF estimate P̂JIO.
For the sake of completeness, we remark that strictly speaking, a statistical test

is necessary to determine if ĈP ,II is indeed signi�cantly larger than ĈP ,I . How-
ever, in practice we will be interested to detect when the nonlinear distortion dom-
inates over themeasurement noise, inwhich cases ĈP ,II is larger than ĈP ,I by several
times.�en carrying out such a statistical test will be super�uous.
We conclude by recalling from equation (5.36) that nonlinearities in a system,

excited by a random-phase multisine, arise in the DFT of its output in two ways,
i.e. in the form of a nonlinear bias (GB) and a noise-like nonlinear contribution
(YS). �e approach in this section focuses only on detecting the level of the latter.
Additional research is needed to perform detection of the nonlinear bias. Literature
is scarse on approaches to achieve this.

5.4.2 Approach to minimizing the level of nonlinear distortion in the
FRF estimate

In literature several recommendations are available to minimize the level of non-
linear distortions on the FRF estimate (see e.g. [128, 145]).�ese recommendations
are summarized as follows:

A. Reduce the level of the nonlinear distortion itself. �is can be achieved by
choosing a multisine excitation signal with odd frequencies only, so that only
distortions from the odd nonlinearities aremeasured (even nonlinearities cause
the nonlinear distortions of odd excitation frequencies to appear at even fre-
quencies only, at which the FRF is not measured [128]). �e use of orthogonal
multisine excitation has also been shown to reduce the level of nonlinear dis-
tortion [42]. In general, reduction of the crest factor of the input signal is also
recommended, although for closed-loop experiments it is not straightforward
to design excitation signals that minimize the crest factor of the input of the
plant.

B. Use the fact that YS has zero mean (with expectation taken over experiments):
perform experiment repetition with di�erent realizations of the random phases
of the multisine.

Here we add a third approach to reduce the level of nonlinear distortions on the
FRF, particular when dealing with closed-loop identi�cation:

C. Improve the signal to nonlinear noise ratio. Observe that in equation (5.37a)
T[i]
ur ,S and T

[i]
yr ,S are obtained by

T[i]
ur ,S = U[i]

S (R[i])−1 (5.42)

T[i]
yr ,S = Y[i]

S (R[i])−1 (5.43)
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where U[i]
S and Y

[i]
S represent the stochastic nonlinear noise in the DFT of u

and y respectively in experiment block i. From this we infer that reduction of
the level of nonlinear distortions in the estimated FRF of Tur and Tyr , and con-
sequently also of P, can be achieved by choosing the experimental conditions
such, that the above quotients are reduced.�is is in particular a feasible strat-
egy in the frequency regions where Tur is small and Tyr is close to the identity.
�is is as seen as follows. In the region where Tyr is close to the identity, the
level of nonlinear distortion is predominantly related to the amplitude of the
input signal u, as any nonlinear behavior at the output is corrected for by the
controller. As Tur is small, increasing the amplitude of the excitation in these
frequency ranges will not result in a signi�cant increase of the nonlinear noise
terms U[i]

S and Y
[i]
S . However, T

[i]
ur ,S and T

[i]
yr ,S are reduced due to the increased

size of R[i], yielding the reduced nonlinear distortion in the FRF estimates.

We remark that in some cases better estimates can be obtained by choosing a
di�erent FRF estimator. As was pointed out by Wernholt et al. in [178], when deal-
ing with nonlinearities in the loop, the JIO estimator might not necessarily yield
the smallest bias and variance. As it relies on estimates of closed-loop transfer
functions, additional errors might be introduced, in particular when dealing with
a setup with nonlinearities in the controller. As shown by Wernholt et al., in such
cases the ARI estimator or variants with nonlinear averaging might give better re-
sults.

5.4.3 Results

�e procedure that was described in the previous sections has been applied to the
AMB spindle from EAAT that was discussed in Chapter 2. For the experiments the
following settings were selected:

• Number of experiment blocksMB = 20, i.e. the total number of experiments
is 80;

• Number of periods per experiment K = 12;
• Period length: NK = 16384;
• Sampling frequency: 20 kHz, hence Ts = 50µs;
• �e frequency range of interest is 0 to 5 kHz. With odd excitation, this implies
that amplitudes of themultisine Ak (we will omit the subscript l for the input
number from hereon) are nonzero only for k = 1, 3, . . . NK4 ;

• �e rotational speed in these experiments was 0 rpm2.
2�ese experiments were carried out at standstill to eliminate any runout distortions. In later sec-

tions we will show results obtained at other rotational speeds.
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�e �rst set of three tests involved excitation with a �at spectrum, with increased
amplitude level for subsequent tests: Ak = {0.025, 0.100, 0.200} for all k = 1, 3, . . . Nk4 .
To detect the level of the nonlinear behavior of the AMB spindle in the FRF ob-
tained with each of these datasets, CP ,I and CP ,II were estimated. For reasons of
space — the dimensions of these covariance matrices are 16 × 16 — we only com-
pare the square root of the (1, 1) element in Figure 5.2. �ese plots con�rm that
for increased excitation amplitude, the covariance at higher frequencies decreases.
Indeed, noting that CP ,I(1,1) only depends on the signal to measurement noise ra-
tio, it is logical that CP ,I(1,1) decreases for increased excitation amplitude. At high
frequencies, no signi�cant di�erences between CP ,I(1,1) and CP ,II(1,1) are observed
either (except in the frequency ranges around the resonance modes of the spindle).
In contrast, at lower frequencies it is observed that CP ,II(1,1) is larger than CP ,I(1,1),
where the di�erence increases for increased excitation amplitude. It is seen that also
at low frequencies CP ,I(1,1) decreases due to the improved signal to measurement
noise ratio, but in contrast CP ,II(1,1) remains on the same level (in fact, closer in-
spection shows a slight increase).�is is explained with a nonlinear distortion that
grows proportionally with the excitation amplitude.
From these results, we conclude that the error in P̂ JIO in the lower frequency

range is dominated by the nonlinearities. Hence, as indicated in Section 5.4.2, ex-
periment repetition with di�erent realizations of the random phases is advisable to
reduce these errors. �is might take a high number of experiment repetitions to
obtain an acceptable error level. Indeed, observe that the error that is depicted in
Figure 5.2 is the result of averaging over 20 experiment blocks (hence 80 experi-
ments were performed, each of which involvedmeasurement of 12 periods of 16384
samples). Even with this large amount of data, the standard deviation of the ele-
ments of P̂ JIO is in the 0-10 dB range for lower frequencies. For the o�-diagonal
elements of P this means that the estimation error is in the same size order as the
magnitude of P (in fact, for some elements of P, the estimation error is even an
order of magnitude larger).
Based on these outcomes, we apply a second test where we change the excitation

spectrum according to approach C. described in Section 5.4.2, to reduce the level of
nonlinear distortion in the FRF estimate in closed-loop identi�cation. �is yields
the excitation spectrum in Figure 5.3(a). Compared to the �at excitation spectrum
with Ak = 0.10, the excitation amplitude at low frequencies is increased up to 25
times.�e other experimental conditions are kept the same.
In Figure 5.3(b)we still observe thatCP ,II(1,1) is signi�cantly larger thanCP ,I(1,1),

again indicating presence of nonlinear disturbances. However, the level of√
CP ,II(1,1) is reduced to around −20 dB. Indeed, as a result of the higher exci-

tation amplitude at low frequencies,
√
CP ,II(1,1) has been reduced by up to 25 dB.

In Figure 5.4, the FRF obtained with the improved excitation spectrum is compared
with the FRF obtained with the data from the experiment with constant excitation
with Ak = 0.1.
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(b) Ak = 0.1 µm for k = 1, 3, 5, . . . , 4095
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(c) Ak = 0.20 µm for k = 1, 3, 5, . . . , 4095

Figure 5.2: Results with excitation with constant amplitude spectrum: comparison of the
square root of element (1,1) of CP ,I(ωk) (grey x), and CP ,II(ωk) (black +) for
di�erent excitation levels.

5.5 Estimation of non-parametric noise models

In the previous section we used the data obtained by periodic excitation of the
closed-loop to make a non-parametric estimate of the FRF of the plant. In this
section we will use the periodic nature of the excitation to obtain non-parametric
estimates of the spectra of v1 and v2 and their cross spectrum.�is is an extension
of the approach for non-parametric estimation of the noise covariance in Pintelon
and Schoukens, Section 2.5.1 [128], for the multivariable closed-loop con�guration
that we consider. For the EAAT spindle, the results of this procedure are used to
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(a) Comparison of the �at excitation spectrum
with Ak = 0.100 for k = 1, 3, . . . 4095 (grey x) and
the improved excitation spectrum with increased
amplitude at the lower frequencies (black +).
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(b) Results with excitation amplitude spectrum
as depicted in Figure 5.3(a): comparison of the
square root of element (1,1) of CP ,I(ωk) (grey x),
and CP ,II(ωk) (black +).

Figure 5.3: Reduction of the nonlinear distortion in the JIO FRF estimate.

justify that measurement noise v1 is negligible, as well as to demonstrate that v1 and
v2 are uncorrelated.

5.5.1 Approach

Let us denote the spectral density of the disturbance on the measured signals u(t)
and y(t) as ΦU and ΦY , and the cross spectral density by ΦUY . From Figure 5.1 it
is straightforward to derive that

( ΦU ΦUY
ΦHUY ΦY

) = [ I KS
0 S ]( Φv1 Φv1v2

ΦHv1v2 Φv2
)[ I KS
0 S ]H (5.44)

where S is the sensitivity function as de�ned in equation (3.7) in Chapter 3, Φv1 ,
Φv2 are the spectral density of v1 and v2 respectively, and Φv1v2 is the cross spectral
density of v1 and v2. From this it is immediate that

( Φv1 Φv1v2
ΦHv1v2 Φv2

) = [ I −K
0 S−1 ]( ΦU ΦUY

ΦHUY ΦY
)[ I −K
0 S−1 ]H . (5.45)

Using this expression, we will estimate Φv1 , Φv2 and Φv1v2 using estimates of the
matrices on the right-hand side. We will start with the center matrix and use the
periodic nature of the data to estimate ΦU , ΦY and ΦUY . Recall from Section 5.3.1
that the excitation signal is periodic and that K periods of u and y are recorded,
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Figure 5.4: Estimated FRF of the EAAT spindle (in [µm/A]) with �at excitation spectrum
(Ak = 0.10: red), and with increased excitation amplitude in the lower frequency
range (black).

which is repeated M times. Let the DFT of u and y in experiment i and period
j be denoted by U i , j(ωk) and Y i , j(ωk) respectively, and let Ū i(ωk) and Ȳ i(ωk)
represent the noise free part of the DFT of u and y in experiment i, i.e.

Ū i(ωk) = (Tur ,0(e jωk) + Tur ,B(e jωk))R i(ωk) +U iS(ωk) (5.46)
Ȳ i(ωk) = (Tyr ,0(e jωk) + Tyr ,B(e jωk))R i(ωk) + Y iS(ωk). (5.47)
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With this, we can express

U i , j(ωk) = Ū i(ωk) + Ŭ i , j(ωk) (5.48)
Y i , j(ωk) = Ȳ i(ωk) + Y̆ i , j(ωk) (5.49)

where Ŭ i , j(ωk) and Y̆ i , j(ωk) denote the DFT of the noise in measurements of u
and y. Observe that the expressions for U(ωk) and Y(ωk) in equation (5.1) are
in fact sample mean estimates of Ū(ωk) and Ȳ(ωk) respectively over all periods.
Similarly, estimates of disturbance spectra ΦU and ΦY at frequencies ωk can be ob-
tained by calculating the sample covariance matrices of U(ωk) and Y(ωk), which
are given by

Φ̂iU(ωk) = 1
K − 1 K∑j=1(U i , j(ωk) −U i(ωk))(U i , j(ωk) −U i(ωk))H (5.50)

Φ̂iY(ωk) = 1
K − 1 K∑j=1(Y i , j(ωk) − Y i(ωk))(Y i , j(ωk) − Y i(ωk))H (5.51)

Φ̂iUY(ωk) = 1
K − 1 K∑j=1(U i , j(ωk) −U i(ωk))(Y i , j(ωk) − Y i(ωk))H (5.52)

Averaging over theM experiment repetitions yields for Φ̂U(ωk)
Φ̂U(ωk) = 1

M(K − 1) M∑
i=1

K∑
j=1

(U i , j(ωk) −U i(ωk))(U i , j(ωk) −U i(ωk))H . (5.53)
Similar expressions for Φ̂Y(ωk) and Φ̂UY(ωk) can be given. By application of the
JIO estimator we can �nd estimates for K(e jωk) and S−1(e jωk), which are given by

Ŝ−1(e jωk) = R(ωk)RH(ωk)[(Y(ωk) +R(ωk))RH(ωk)]−1 (5.54)
K̂(e jωk) = U(ωk)RH(ωk)[(Y(ωk) +R(ωk))RH(ωk)]−1 . (5.55)

Substitution of the estimates Φ̂U(ωk), Φ̂Y(ωk), Φ̂UY(ωk), Ŝ−1(e jωk) and K̂(e jωk)
in equation (5.45) yields the desired estimates of Φv1 , Φv2 and Φv1v2 .

5.5.2 Results

�e procedure in the previous section has been applied to the same data obtained
with the EAAT spindle as described in Section 5.4.3. For reasons of space, we only
show the results for the bottom X-bearing. In Figure 5.5 a comparison is made
between the squared magnitude of the FRF of the current measurement of the X
bearing (i.e. ∣U1(ωk)∣2, the subscript 1 indicating the �rst element of the vector)
and the estimated spectral density of the noise on the current measurements (i.e.
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Figure 5.5: Comparison between the squared magnitude of the FRF of the current measure-
ment of the X bearing (i.e. ∣U1(ωk)∣2[A2]) and the estimated spectral density of
the noise on the current measurements (i.e. Φ̂v1(1,1)(ωk)).�e SNR is well above
40 dB for the almost the entire frequency range.

Φ̂v1(1,1)(ωk)). As can be observed, the SNR is well above 40 dB for almost the en-
tire frequency range. However, around 4.1 krad/s, and multiplies of that frequency,
Φ̂v1(1,1)(ωk) shows a peak. Most likely this is a disturbance frequency of the current
ampli�er, and indicates an imperfection of its design. For reference, remark that a
white noise disturbance with a standard deviation of 5 mA would correspond to a
�at spectral density of -46 dB. From this plot, we may conclude that for the EAAT
spindle the assumption is justi�ed that the noise on the current measurements is
negligible, except at a limited number of frequencies.
Similarly, in Figure 5.6 a comparison is made between the squared magnitude

of the FRFof the positionmeasurement of theXbearing (i.e. ∣Y1(ωk)∣2) and the esti-
mated spectral density of the noise on the positionmeasurements (i.e. Φ̂v2(1,1)(ωk)).
In this plot we see that the spectral density of the noise on the positionmeasurement
is somewhat concentrated at the lower frequencies. Also, peaks can be observed at
50 ⋅2π rad/s, and multiples of this frequency, indicating that the 50 Hz of the mains
is present as a disturbance in the position measurement.

�e spectra of the noise on the current and position measurement of the other
bearings show a similar picture. Furthermore, it was observed that the o�-diagonal
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Figure 5.6: Comparison between the squaredmagnitude of the FRF of the positionmeasure-
ment of the X bearing (i.e. ∣Y1(ωk)∣2 [µm2]) and the estimated spectral density
of the noise on the position measurements (i.e. Φ̂v2(1,1)(ωk)).�e spectral den-
sity of the noise on the position measurement is somewhat concentrated at the
lower frequencies.

elements of Φ̂v1 and Φ̂v2 , as well as by the elements of Φ̂v1v2 are small (except at the
abovementioned disturbance frequencies), justifying the assumption that the noise
in the di�erent measurements is mutually uncorrelated.
We conclude by noting that the estimated spectra can be used to perform para-

metric noise modeling of the noise on the current and position measurements,
which can be used in the cutting force estimation method of Chapter 3. For the
EAAT spindle, the above results demonstrate the limited added value of that. In-
deed, as discussed, the noise on the current measurements can be neglected. Fur-
thermore, ignoring the mains disturbance, Figure 5.6 shows that the noise is not
exactly white, but nonetheless the spectral density only decays slowly with increas-
ing frequency: from 100 rad/s to 10 krad/s the drop is ±10 dB. Hence, it would be
reasonable to model this disturbance as a white noise.�is assumption implies that
parametric noisemodeling can reasonably be avoided in the case of the EAAT spin-
dle. We remark that a white noise disturbance with a standard deviation of 0.1µm
would correspond to a �at spectral density of -20 dB.�e oscillatory distortions in
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5. System identification of the AMB spindle, part I: Bearing dynamics

the measurements can be dealt with separately, e.g. by pre�ltering3.

5.6 Estimation of a parametric model of the bearing dynamics

In summary, the �rst stage of the identi�cation procedure of the bearing dynamics
has resulted in the following:

• A procedure has been described that using closed-loop AMB spindle data,
yields a non-paramaric estimate of the FRF of the bearing dynamics with
low bias and variance. In addition, an estimate of the covariance of the FRF
estimate has been obtained. A method to quantifying the level of non-linear
distortion in the FRF estimate has been given, allowing to tune the experi-
mental conditions to reduce this distortion in the FRF estimate.

• A procedure has been given that with the closed-loop AMB spindle data al-
lows to compute a non-parametric estimate of the noise spectra in the setup.

�e objective of stage two is to estimate a parametric model, using the non-
parametric estimates obtained in stage one. Here, the main emphasis is on identi�-
cation of a parametric model of the plant dynamics, and not so much on obtaining
a parametric model of the noise disturbances.�is leads to the choice of minimiza-
tion of an output error criterion. In Section 5.6.1 the resulting identi�cation problem
is de�ned more precisely. As will be shown, a Schur-weighted OE cost criterion is
formulated, where an estimate of the covariance of the FRF is used for the weight-
ing. �e resulting identi�cation problem �ts the framework of Chapter 4, and the
IV-based iterative linear regression approach is used to solve this. �is algorithm
su�ers from poor numerical conditioning due to the large frequency range, and the
large dynamic range for which the identi�cation of the bearing dynamics is carried
out. An approach to deal with this is is discussed in Section 5.6.2. In Section 5.6.3
the approach is illustrated using experimental results.

5.6.1 Parametric modeling by minimization of an weighted OE
criterion

In this section it is discussed how a parametricmodel of the bearing dynamics of the
AMB spindle can be obtained by a solving a weighted Output Error minimalization
problem. To that end, assume estimates of the FRF {P̂(ωk)}k=1. . .NK are available.
For the parametric modeling of the bearing dynamics, the polynomial matrix

fraction description is adopted. As was discussed in Chapter 4, the MFD has a le�

3Of course a better strategy would be to eliminate them altogether, but this could imply redesign of
the device.
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and a right form given by

P(ξ, θ) = B(ξ, θ)A−1(ξ, θ) (R-MFD)
P(ξ, θ) = A−1(ξ, θ)B(ξ, θ) (L-MFD)

with B(ξ, θ) = Bnb ξnb+Bnb−1ξnb−1+⋅ ⋅ ⋅+B0 andA(ξ, θ) = ξna+Ana−1ξna−1+⋅ ⋅ ⋅+A0,
where B i ∈ Rp×m , i = 0 . . . nb and A i ∈ Rp×m (for models in R-MFD), or A i ∈ Rp×m
(for models in L-MFD), for i = 0 . . . na − 1.�e parameter vector θ is constructed
by accumulating all elements of the matrices A i , i = 0 . . . na − 1 and B i , i = 0 . . . nb .
As the input and output dimension of the bearing dynamics are identical (input
dimensionm = 4 and output dimension p = 4), there is no distinct reason to prefer
one of the representations over the other [6] (see also Chapter 4).

�e procedure to estimate the parameters θ given the data {P̂(ωk)}k=1. . .NK is
as follows. Under the assumptions that the estimation error in the FRF is circular
complex Gaussian distributed with zero mean, and that the estimation error at fre-
quency ωk is independent of the estimation error at frequency ω l for all k ≠ l 4, the
maximum likelihood estimate of the parameters can be formulated as5

θ̂ML = argmin
θ

NK∑
k=1
vec[E(ωk , θ)]C−1P (ωk)vec[E(ωk , θ)]H (5.56)

with

E(ωk , θ) = P̂(ωk) − P(e jωk , θ) (5.57)

andCP the covariancematrix of P̂(ωk). O�en information on the (non-parametric)
covariance matrix CP is not available, and identi�cation schemes in which CP is
replaced by an estimate ĈP have been proposed [147, 128, 146, 108]. With the exper-
iment design described in Section 5.3.1, estimation of the covariance matrix of the
JIO estimate of the FRF of the bearing dynamics can be carried out as described in
Section 5.3.3.�e performance of the estimator where CP is replaced by an estimate
ĈP obtained with multisine excitation has been studied by Mahata et al. in [108].
It was shown that the resulting estimator is consistent when at least p + 1 periods
of the excitation are used to estimate the covariance matrix. Furthermore, expres-
sions of the asymptotic parameter covariance (i.e. for NK → ∞) are derived and
these are shown to be proportional to the covariance of the maximum likelihood
estimate.�e proportionality constant δ depends on the number of periods K used
to estimate the covariance matrix, with δ → 1 for K →∞.

4Note that the characterization of the uncertainty in {P̂(ωk)}k=1. . .NK is here described in the fre-
quency domain. Under mild conditions, these properties can be related to the noise disturbances on the
time data that were used to estimate the FRF, see [128].

5See Ljung [105] for the SISO case, and Mahata et al. [108] for the MIMO case.
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When the covariance matrix CP is diagonal, a simpli�cation of equation (5.56)
can be made as follows. De�neW as

W(i , j)(ωk) = [CP(p(i−1)+ j ,p(i−1)+ j)(ωk)]−1/2 (5.58)

that is, each element inW(ωk) is the inverse of the standard deviation of the cor-
responding element in P̂(ωk). It is easily veri�ed that the estimator

θ̂ = argmin
θ

NK∑
k=1

∥Es(ωk , θ)∥2F . (5.59)

with

Es(ωk , θ) =W(ωk). ∗ [P̂(ωk) − P(e jωk , θ)] (5.60)

is identical to themaximum likelihood estimator when the o�-diagonal elements of
CP are zero. When CP is not diagonal, but the o�-diagonal elements are small, the
loss of statistical e�ciency of the estimator might well trade-o� against the numer-
ical advantages. Indeed, in equation (5.59), inversion of the mp × mp covariance
matrix is eliminated and replaced by mp scalar inversions.
Observe that in equation (5.60) we have obtained a Schur-weighted Output Er-

ror, where an estimate of the variance of the elements of the estimated FRF is used
for the weighting.�e resulting nonlinear optimization problem in equation (5.59)
can be solved using the IV-based linear regression approach that is discussed in
Chapter 4.

�e above described procedure inwhich the estimated variance is used asweight-
ing is quite attractive for AMB spindle modeling. An important reason is that the
variance of the estimated FRF can vary strongly over di�erent frequencies.�is oc-
curs in particular when the identi�cation is performed while the spindle is rotating.
In that case periodic disturbances synchronous with the rotation of the spindle are
experienced, resulting in estimation errors in the FRF estimate around the spindle
frequency and its harmonics.�e choice to weigh the output error with the inverse
of the standard deviation of the FRF, allows to give less emphasis to FRF estimates
that are less accurate and avoids a complicated procedure of making user-de�ned
weighting functions (which would need to be di�erent for each rotational speed
then).

5.6.2 Multiband modeling

It is well known that the Sanathanan and Koerner iterations su�er from poor nu-
merical conditioning when they are applied to high-order lightly damped systems
with a dataset {P̂(ωk)} extending over a large frequency range.�e IV-based linear
regression approach detailed in Chapter 4 appears to exhibit problems with numer-
ical condition in similar situations. �is shortcoming of the Sanathanan and Ko-
erner approach motivated Bayard in [22] to formulate a multi-band approach.�e
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key idea here is to divide the frequency range of interest into smaller subbands and
to estimate submodels that describe the systemwithin each band. When combined,
these submodels produce a model for the entire system.

�e approach for two subbands is as follows (generalization for more subbands
is trivial). De�ne complementary weighting functionsWl andWh by

W l(ωk) = { 1 ωk < ωB
0 else (5.61)

with ωB the frequency separating the two subbands, and letW h(ωk) = 1−W l(ωk).
De�ne low-band andhigh-bandparametricmodels P l(ξ, θ l) and Ph(ξ, θh), param-
etrized by the parameter vectors θ l and θh respectively. With this, the Schurweighted
OE is de�ned as

Es(ωk , θ l , θh) =W(ωk). ∗ [P̂(ωk) − P l(e jωk , θ l) − Ph(e jωk , θh)]. (5.62)

�e estimate of the low-band model is de�ned by

θ̂ l = argmin
ζ

NK∑
k=1

∥W l(ωk)Es(ωk , ζ , θ̂h)∥2F (5.63)

and the estimate of the high-band model by

θ̂h = argmin
ζ

NK∑
k=1

∥W h(ωk)Es(ωk , θ̂ l , ζ)∥2F . (5.64)

�e proposed procedure is to initialize θh = 0, and then iterate between estimat-
ing the low-band model by equation (5.63) and estimating the high-band model by
equation (5.64). Upon convergence, P̂ = P̂ l+P̂h gives the desiredwide-bandmodel.
We remark that for the Sanathanan-Koerer algorithm alternative solutions have

been formulated to circumvent thementioned conditioning problems.�e key idea
is to use an orthogonal polynomial basis for the numerator and denominator of
the fractional model, leading to an (almost) optimal numerical conditioning of the
normal equations in the linear regression steps. Solutions have been formulated
for SISO systems [137, 128], as well as MIMO systems in MFD [126] (using vector
orthogonal polynomials). An extension of such an approach for the IV-based linear
regression method has not been developed yet.

5.6.3 Results

�e approach in the previous sections has been applied for estimation of a paramet-
ric model of the EAAT spindle. �e FRF and its covariance were estimated using
the procedure described in Section 5.3 and 5.4, where the rotational speed is set to
80, 000 rpm.�e FRF data, available on the frequency range from 7.6 rad/s to 27.6
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Figure 5.7: Estimation of a parametric model of the EAAT spindle: comparison of the FRF
data P̂(ωk) (black dots) and the estimated parametric model P̂ = P l(ωk , ω̂ l) +
P l(ωk , ω̂ l) (red line). Weighting W(ωk) is depicted in grey. �e parametric
model P̂ closely �ts the estimated FRF P̂(ωk) in the regions where the weighting
W is large.

krad/s was divided into two subbands, with ωB = 7.7 krad/s6.�e lower band held
250 FRF data points, the higher band 458 data points. Points with a high variance
(and thus very low weighting) were excluded a priori to make the procedure more
e�cient.
Without multi-band modeling, and model orders with na ≥ 4 and nb ≥ 3, the
6Observe that with this separation the low band essentially captures the rigid body behavior, while

the high band model models the �exural behavior of the AMB spindle
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Figure 5.8: Estimation of a parametric model of the EAAT spindle: comparison of element
(1,1) of the FRF data P̂(ωk) (black dots) and element (1,1) of the estimated para-
metric model P̂ = P l(ωk , θ̂ l) + Ph(ωk , θ̂h) (red line). WeightingW(ωk) is de-
picted in grey.

IV-based iterative linear regression diverges due to poor numerical conditioning.
With multi-band modeling, these issues can be avoided. Results are shown for the
case that a model set in R-MFD is selected for both the lower band and higer band
submodel, where for the former the orders are na = 3 and nb = 2 (64 parameters),
and the latter na = 5 and nb = 4 (128 parameters). �e IV-based linear regression
method decribed in Chapter 4 is applied to solve (5.63) and (5.64).�is results in a
nested iteration: the multi-band technique involves iteratively solving an optimiza-
tion problem for the lower and upperband, while each optimization step is solved
iteratively using the IV-based linear regression method. Hence, the following algo-
rithm is obtained:

Initiate: θ̂ l ;0 = 0, θ̂h ;0 = 0;
Step m, lower band Solve (5.63), with θh = θ̂h ;m , use θ̂ l ;m to initiate IV-based iter-

ative linear regression. Upon convergence of iterations, this yields θ̂ l ;m+1;

Step m, higher band Solve (5.64), with θ l = θ̂ l ;m+1, use θ̂h ;m to initiate IV-based
iterative linear regression. Upon convergence of iterations, yields θh ;m+1;

Continue to step m + 1, until convergence.
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5. System identification of the AMB spindle, part I: Bearing dynamics

In step m = 1, convergence of the IV-based iterative linear regression was obtained
a�er 3 (lower band) and 5 steps (higher band). With these �rst estimates of θ̂ l and
θ̂h , the iterations are continued in step m = 2 and m = 3. A�er m = 4, no further
signi�cant reduction of the overall output error was obtained.
A comparison between the FRF data and the estimated parametric model is

depicted in Figure 5.7. �e frequency reponse of the estimated model shows very
high correspondence to the dataset. �e dynamics including the ill-damped reso-
nances are estimated correctly. To see this, a zoomed-in plot of element (1,1) of the
amplitude response function matrix is given in Figure 5.8. As can be seen in this
�gure, the parametric model well captures the bending mode vibrations, which ap-
pear as twin of close resonances due to the gyroscopic e�ects. Moreover, the applied
weighting (also plot in Figures 5.7 and 5.8) e�ectively avoids modeling errors due
to large variance errors in the FRF data. Here such variance errors are particularly
present around the harmonics of the rotational frequency of the spindle (80, 000
rpm = 8.4 krad/s). Similarly, in the frequency range from 800 − 1500 rad/s some
additional modes seem to be present. It was veri�ed that these are related to the �x-
ation of the spindle to the Z-stage in the milling machine 7.�e standard deviation
of the FRF data at these modes is up to 10 times larger than at other frequencies,
and consequently the data is weighted less while estimating a model of the spindle.
As a result, these modes are not included in the estimated model.
To further assess the �t of the estimated model to the FRF data, a comparison

is made between the singular values of the FRF data and the estimated model.�e
result is depicted in Figure 5.9. Also this �gure shows the high correspondence
between the parametric model and the FRF data. Furthermore, to validate that the
estimated model is correctly representing the actual dynamics, is veri�ed that the
estimated model was stabilized by the existing controller.�is is indeed the case.
As a last veri�cation, a comparison of the obtained results with a �rst princi-

ples modeling was made. For this, we recall from Chapter 2 that the EAAT spindle
satis�es the therein described con�guration I with direct measurement of the in-
puts. For this con�guration, under the given conditions, the FRF of P represents the
FRF of the (true) continuous-time AMB system. Hence, an additional identi�ca-
tion was performed with a continuous-time model set having the same properties.
�e resulting estimated model is compared to a model derived from �rst principles
according to the procedure discussed in Chapter 2 (which is also in continuous-
time). In Figure 5.10 the poles of the estimated model are compared to the analytic
model of the EAAT spindle.�is �gure demonstrates that the pole locations of the
estimatedmodel are close to the pole locations of themodel derived from �rst prin-
ciples. �is is a favorable result, as it demonstrates that both from �rst principles,
as well as using the system identi�cation approach in this chapter, essentially the
same dynamical behavior is modeled.

7In another test the spindle was rotated 90 degrees around its Z-axis. As a result the modes shi�ed
from the X-plane to the Y-plane, and vice versa.
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Figure 5.9: Estimation of a parametricmodel of the EAAT spindle: comparison of the sigular
values of the FRF data P̂(ωk) (black dots) and of the the estimated parametric
model P̂ = P l(ωk , ω̂ l) + Ph(ωk , ω̂ l) (red line). �e estimated model captures
well the �exural modes of the spindle at high rotational speeds

5.7 Summary and conclusions

In this chapter we have considered the problem of obtaining accurate models of the
bearing dynamics of the AMB spindle in the frequency range relevant for process
monitoring and control.�e complexity of this problem is found in the instability of
the dynamics, its high order andmultivariable character, the parametrically depen-
dency of the dynamics on the rotational speed, and in the presence of nonlinearities
in the system. Current results in literature reduce the complexity of the problem by
ignoring one or more of these issues. In order to obtain accurate models that can
be used for process monitoring and control, in particular for force estimation, an
approach has been given that addresses the identi�cation problem in full.
A frequency domain approach has been taken, consisting of two stages. In the

�rst stage, accurate estimates of the multivariable FRF of the bearing dynamics are
made by excitation of the closed-loop with orthogonal random phasemultisine sig-
nals and application of the JIO FRF estimator. In addition, an approach has been
given to estimate the covariance in this estimate. Furthermore, a procedure has
been given to detect the level of nonlinear distortion in the FRF estimate of the
AMB spindle. �is approach is based on the variance analysis method for detec-
tion of nonlinearities in FRF estimates as available in literature, and is extended to
detection of nonlinear distortion in MIMO FRF estimates obtained using the JIO
estimator. A strategy has been formulated to reduce the nonlinear distortion in the
JIO FRF estimate, and it has been shown that this results in a reduction of the non-
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Figure 5.10: Estimation of a parametricmodel of the EAAT spindle: comparison of the poles
of the estimated continuous-time model and the poles of an analytic model of
the EAAT spindle at 80,000 rpm.

linear distortion of up to 25 dB.�e key here is to increase the excitation amplitude
in the lower frequency region, causing a better signal to nonlinear disturbance ratio.
Using the same experiment design, non-parametric noisemodeling is performed

by variance analysis, demonstrating for the experimental AMB setup that the dis-
turbance on the current measurement is negligible. In addition, this test revealed
some imperfections of the design of the experimental AMB spindle setup, in the
form of strong oscillations present in the signals.
In the second stage, a parametric model of the AMB spindle is estimated using

the estimated FRF and its covariance. A Schur-weighted Output Error criterion has
been formulated, which has been shown to approximate the maximum likelihood
cost criterion under mild assumptions. Minimization of the criterion function is
achieved by application of the IV-based iterative linear regressionmethod of Chap-
ter 4. Multi-band modeling is performed to avoid the numerical condition prob-
lems experienced with the iterative linear regression method when dealing with a
FRF data set extending of a large frequency range and dynamic range. Experimen-
tal results show the high correspondence of the estimated parametric model to the
estimated FRF data. It is veri�ed that the poles of the identi�ed model and a model
derived from �rst principles are closely together, illustrating the ability of the given
identi�cation approach to capture the dynamics as would be predicted from phys-
ical insights.
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Chapter 6

System identification of the AMB
spindle, part II: Tooltip dynamics

6.1 Introduction

In the previous chapter, identi�cation of the bearing dynamics of the AMB spindle
was covered. In this chapter we will address the problem of identifying the tooltip
dynamics, i.e. the dynamics from the force on the tooltip to the position of the
rotor at the location of the displacement sensors. In Figure 2.11 in Chapter 2, the
tooltip dynamics are represented in the transfer function from u2 to y. A princi-
pal challenge in the identi�cation of the tooltip dynamics is the generation of data.
�is is in great contrast with the bearing dynamics identi�cation problem, where
excitation of the system can easily be realized by adding signals to the closed-loop,
and collection of large amounts of data does not impose signi�cant challenges. An
essential prerequisite to identifying the tooltip dynamics from measured data, is
that the tooltip is excited with a known (c.q. measured) force. �e fragility of the
tooltip of a micro-end mill rules out many standard contact excitation techniques
that make use of shakers or impact hammers, as these methods would unavoidably
result in catastrophic tool breakage. A more cautious approach could be to apply
step relaxation methods, where a static preload is applied to the tooltip which is
released instantaneously. However, the excitation power that can be applied in this
way is very limited, making this approach less attractive. Moreover, such a tech-
nique would only be useful at standstill, where we are interested in identifying the
dynamics at high rotational speeds. Contactless methods using electromagnetic
excitation [3], laser excitation (thermal excitation) [29], or acoustic excitation[12]
have as common drawbacks that the excitation force cannot be measured and that
the excitation level is limited.
In a way to circumvent the problem of exciting small and fragile tools, a sub-
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6. System identification of the AMB spindle, part II: Tooltip dynamics

structure coupling approach known as receptance coupling [136, 144] could be ap-
plied. By de�nition, the receptance of a mechanical system is the transfer function
from force to displacement. Receptance coupling involves the procedure of deter-
mining the receptance of a complex mechanical system from models of its subsys-
tems by appropriate modeling of the joints. �e bene�t of this technique is that
once models of substructures and the joint are obtained, a model of the assembled
structure can be calculated without any further experiments. Park et al. applied this
technique to model the tooltip dynamics for a spindle with conventional bearings
[123, 121]. Here separate models are obtained for the tool and the spindle, where an-
alytic FEmodels for tool are used and the spindle dynamics are identi�ed by adding
a short cylindrical insert and applying excitation forces to that.�e disadvantage of
this approach lies in the di�culty to identify the coupling and the limited accuracy
of the FE models of the tool.
In all of the abovemethods, data generation happens by applying a user-de�ned

excitation to the system. In this thesis, we follow a di�erent route and identify the
tooltip dynamics in-process. �is means that for the purpose of identifying the
tooltip dynamics, we add a force sensor to the machine and during a milling ex-
periment measure the cutting forces, as well as the signals of the AMB. From the
resulting data set, the objective is to estimate the tooltip dynamics. �e clear ad-
vantage of this approach is that the data generation for identi�cation is performed
under conditions very similar to the conditions under which the resulting model is
to be used. However, these experimental conditions also impose two constraints.
First of all, the amount of data that can be obtained in this fashion is limited. Sec-
ond, since themilling process itself is the source of the excitation, we have no direct
in�uence on the spectral content of the excitation signal. In an attempt to deal with
these restrictions, we apply prior knowledge of the system, allowing us to signi�-
cantly reduce the complexity of the identi�cation problem.�is is done as follows.
�e key step is to make use of the assumed property of the system discussed in
Chapter 2, stating that within the frequency range of interest all observable modes
are controllable through the control input of the bearings. For convenience, we re-
peat the consequence of this that a minimal state-space representation for P exists,
given by

x(t + 1) = APx(t) + BP ,1u1(t) + BP ,2u2(t) (6.1a)
y0(t) = CPx(t) (6.1b)

with (AP , BP ,1) controllable, and (CP ,AP) observable. �e bearing dynamics are
described by the matrices AP , BB ,1 and CP , the tooltip dynamics by the matrices
AP , BB ,2 and CP . Hence, once having identi�ed the bearing dynamics, the only re-
maining matrix to identify in the tooltip dynamics is matrix BP ,2. �erefore, the
problem addressed in this chapter is the identi�cation of this matrix from data ob-
tained during a milling experiment, for given AP , BB ,1 and CP .
In Section 6.2 it is discussed how this problem can be formulated as a prediction
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P(z) y

v2

++K(z)
u2

u1

Figure 6.1: Con�guration of the tooltip identi�cation problem

error identi�cation problem with a speci�c model parametrization following from
the closed-loop con�guration, and a �xed noisemodel that is non-minimumphase.
�e solution to this problem can be obtained via linear regression, as is presented
in Section 6.3.�e LS estimator becomes computationally unattractive for growing
data sets, and we will extend it to a recursive estimator in Section 6.4.�e methods
are applied to a realistic simulation model of the the EAAT spindle and results are
given in Section 6.5. Last, we give a brief discussion of the method in Section 6.6.

6.2 Con�guration and identi�cation problem

�e con�guration that we consider is depicted in Figure 6.1.�e stable closed loop
consists of a plant P and controller K. Let plant P assume the state space realization
as given in equation (6.1), where AP ∈ Rn×n , BP ,1 ∈ Rn×m1 , BP ,2 ∈ Rn×m2 and
CP ∈ Rp×n . Plant P is unstable, meaning that AP has unstable poles. Without loss
of generality, we will assume BP ,1 and CP to have full rank. Furthermore, the output
of the plant P is disturbed with noise1 v: y(t) = y0(t) + v(t). It is at �rst assumed
this noise is white, with EvvT = σ 2v I. Finally, let the controller have the minimal
state space realization

xK(t + 1) = AKxK(t) + BK y(t) (6.2a)
u1,0(t) = CKxK(t) + DK y(t) (6.2b)

where AK ∈ RnK×nK , BK ∈ RnK×p , CK ∈ Rm1×nK and DK ∈ Rm1×p . Consider AP ,
BP ,1, CP , AK , BK , CK and DK are known. It is easily veri�ed that the closed loop

1For notational e�ciency we have dropped the subscript ‘2’ and write v instead of v2 in this chapter.
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6. System identification of the AMB spindle, part II: Tooltip dynamics

admits the state space representation

⎛⎜⎝
x(t + 1)
xK(t + 1)
y(t)

⎞⎟⎠ = ⎡⎢⎢⎢⎢⎢⎣
AP + BP ,1DKCP BP ,1CK BP ,2 BP ,1DK

BKCP AK 0 BK
CP 0 0 I

⎤⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎝
x(t)
xK(t)
u2(t)
v(t)

⎞⎟⎟⎟⎠
= [ A B1 B2C D1 D2 ]⎛⎜⎜⎜⎝

x(t)
xK(t)
u2(t)
v(t)

⎞⎟⎟⎟⎠ .
(6.3)

With this, the data-generating system is assumed to obey

y(t) = T0(q)u2(t) + S0(q)v(t) (6.4)

with transfer functions2 T0(q) = C(qI −A)−1B1 and S0(q) = C(qI −A)−1B2 + I.
Observe that S0(q) is known and that T0(q) is linear in the unknown matrix BP ,2.
Identi�cation of this matrix can be formulated in the prediction error identi�cation
framework of Ljung [105] as follows.
First note that S0(q) is non-minimum phase, since AP is unstable. �is is a

well-known result, which is easily veri�ed: for S−10 (q) we can write
S−10 (q) = I − C(qI −A + B2C)−1B2 (6.5)

and

A − B2C = [ AP BP ,1CK
0 AK

] .
From this, we immediately observe that the eigenvalues of S−10 (q) are the union
of the eigenvalues of the plant P and the controller C. In order to de�ne a stable
predictor, we de�ne the factorization

S0(q)S0(q)H = M(q)M(q)H (6.6)

with M(q) minimum phase (and causal). Using the state space representation of
S(q), this factorization can be computed (see proposition 3.5.2 in Chapter 3). �e
data-generating system can now equivalently be represented as

y(t) = T0(q)u2(t) +M(q)vM(t) (6.7)

2Again, note that we dropped the subscript yu2 here and write T instead of Tyu2
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with vM(t) a white noise process with the same variance as v(t). A predictormodel
is composed as the transfer function T(q, θ) andM(q), yielding the one-step pre-
dictor

ŷM(t∣t − 1; θ) = [M−1(q) − I]y(t) −M−1(q)T(q, θ)u2(t) (6.8)

yielding prediction error

єM(t, θ) = M−1(q)[y(t) − T(q, θ)u2(t)]. (6.9)

Speci�c in this problem is the particular parametrization of the model T(q, θ) ac-
cording to the above closed-loop state space structure, with parameter vector θ rep-
resenting the unknown elements of the matrix BP ,2.�is vector is estimated on the
basis of input-output data ZN ∶= {u2(t), y(t)}t=1. . .N , according to a quadratic cost
criterion

VN(θ , ZN) = 1
N

N∑
t=1

єM(t, θ)TєM(t, θ). (6.10)

by

θ̂N = argmin
θ
VN(θ , ZN). (6.11)

Since єM(t, θ) is a�ne in the parameters, this identi�cation problem can be solved
via linear regression, as will be done in the next section.

6.3 Estimation of BP,2 by linear regression

In this section we will derive a solution for the identi�cation problem formulated
previously. First a linear regression approach to this problem is given, followed by a
bias and variance analysis for the resulting estimate B̂P ,2, as well as of the estimated
frequency reponse P̂2(e jω). �e section is concluded by extending the approach
for correlated output measurements. Let us introduce the notation

Y = ⎡⎢⎢⎢⎢⎢⎣
y(1)⋮
y(N)

⎤⎥⎥⎥⎥⎥⎦ , U = ⎡⎢⎢⎢⎢⎢⎣
u2(1)⋮
u2(N)

⎤⎥⎥⎥⎥⎥⎦ , V = ⎡⎢⎢⎢⎢⎢⎣
vM(1)⋮
vM(N)

⎤⎥⎥⎥⎥⎥⎦ . (6.12)

From the state space representation of the closed loop, it can be derived that for the
general case with nonzero initial condition, the data generating system obeys

Y = Ox̄(1) + Γ1U + ΓMV (6.13)
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6. System identification of the AMB spindle, part II: Tooltip dynamics

with x̄ = col(x , xK), and
O =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CCACA2⋮CAN−1
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Γ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1 0 0 ⋯ 0CB1 D1 0 ⋯ 0CAB1 CB1 D1 ⋯ 0⋮ ⋮ ⋱ ⋱ ⋮CAN−2B1 CAN−3B1 ⋯ CB1 D1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.14)

Matrix ΓM is de�ned as follows. Let (AM ,BM , CM ,DM) be a minimal realization
for M(q) 3. Matrix ΓM holds the same structure as Γ1, but then evaluated for this
realization.
Observe that expression (6.13) is linear in the unknown initial state x̄(1) and

unknownmatrix BP ,2. In appendix B.3.1 it is shown that we can express VN(θ , ZN)
as

VN(θ , ZN) = ∣Γ−1M (Y −Ψθ)∣2 (6.15)

with parameter vector θ the vector of all unknowns (including the initial state)

θ = [ x̄(1)
vec(BP ,2) ] (6.16)

and regression matrix Ψ de�ned as

Ψ = [ O U1OP U2OP ⋯ Um2OP ] (6.17)

whereOP are the �rst n columns ofO, i.e.O = [ OP OC ] , (6.18)

and

Ui =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 ⋯ 0
u2, i(1) 0 0 ⋯ 0
u2, i(2) u2, i(1) 0 ⋯ 0⋮ ⋮ ⋱ ⋮

u2, i(N − 1) u2, i(N − 2) ⋯ u2, i(1) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗ I.

Here we have used u2, i(t) to indicate element number i of the input vector u2 at
time instant t. Minimization of (6.15) results in a standard linear regression prob-
lem, having solution

θ̂ = (ΨTΓ ΨΓ)−1ΨTΓ YΓ (6.19)

3Observe that if the spectral factorization approach in Section 6.3 is followed, a realization forM(q)
will be obtained satisfyingAM = A, BM = LR1/2 , CM = C, andDM = R1/2 , with L and R as de�ned in
Proposition 3.5.2.
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with ΨΓ = Γ−1M Ψ and YΓ = Γ−1M Y . Observe that that in equation (6.19), regression
matrix ΨΓ consists of values of the input signal �ltered with a known �lter, like in a
classical FIR model.
In order to study the bias and covariance of the estimator, let us de�ne the es-

timation error θ̃ = θ̂ − θ0, with θ0 representing the true parameter values. �e
estimate of θ in (6.19) is unbiased, i.e. Eθ̃ = 0, following directly from the white-
ness of vM .�e covariance of the estimate is given by

Π = E(θ̂ −E(θ̂))(θ̂ −E(θ̂))T (6.20)= Eθ̃ θ̃T (6.21)= (ΨTΓ ΨΓ)−1σ 2v . (6.22)

With these expressions for the bias and covariance of θ̂, we can also compute the
bias and covariance of P2(e jω). For that purpose de�ne

P̃2(e jω) = P̂2(e jω) − P2(e jω)= CP(e jωI − AP)−1(B̂P ,2 − BP ,2).
From the unbiasedness of θ̂ it immediately follows that EP̃2(e jω) = 0. In order to
express the covariance of P̂2(e jω), partition covariance matrix Π according to the
dimensions of x(1) and vec(BB ,2):

Π = [ Π11 Π12
Π21 Π22

]
�en the covariance of P̂2(e jω) can be expressed as
COV(P̂2(e jω)) = Evec(P̃2(e jω))vec(P̃2(e jω))H (6.23)= [I ⊗ CP(e jωI − AP)−1]Π11[I ⊗ CP(e jωI − AP)−1]H (6.24)

where it is used that vec(P̃2(e jω)) = [I ⊗ CP(e jωI − AP)−1]vec(B̂P ,2 − BP ,2).
Consider now the case that the output measurements are not white. In that case

the data-generating system is assumed to obey

y(t) = T0(q)u2(t) + S0(q)v(t) (6.25)

with v(t) = H0(q)e(t)withH0(q) a known propermonic transfer function, which
as usual is assumed stable andminimum phase, and e(t) a white noise process with
covariance EeeT = σ 2e I. Using the same notation as in equation (6.12), we can now
express

Y = Ox̄(1) + Γ1U + ΓMHV (6.26)
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6. System identification of the AMB spindle, part II: Tooltip dynamics

with H the lower block Toeplitz matrix with Markov parameters of H(q). With
this, the identi�cation procedure is solved analogously the case with white noise
output measurement disturbance, yielding LS estimate

θ̂ = (ΨTΓ ΨΓ)−1ΨTΓ YΓ (6.27)

with ΨΓ = (ΓMH)−1Ψ and YΓ = (ΓMH)−1Y .
6.4 Formulation of a recursive estimation scheme

For larger data sets, good algorithms are needed to limit the computation time. Here
an e�cient recursive estimation approach is given. Let us introduce the following
notation:

Y(k) = ⎡⎢⎢⎢⎢⎢⎣
y(1 + kN)⋮
y(N + kN)

⎤⎥⎥⎥⎥⎥⎦ , V(k) = ⎡⎢⎢⎢⎢⎢⎣
vM(1 + kN)⋮
vM(N + kN)

⎤⎥⎥⎥⎥⎥⎦ , θ(k) = [ x̄(1 + kN)
vec(BP ,2) ]

(6.28)

Using the state space representation of (6.3) we can derive that

θ(k + 1) = ϕ(k)θ(k) + ΓBV(k) (6.29)
Y(k) = Ψ(k)θ(k) + ΓMV(k) (6.30)

with

ϕ(k) = [ AN H(k)
0 I ]

H(k) = [uT(1 + kN)⊗AN−1 ( I0 )] + [uT(2 + kN)⊗AN−2 ( I0 )] + ⋅ ⋅ ⋅ +
+ [uT(N + kN)⊗ I ( I0 )]

ΓB = [ AN−1B2 AN−2B2 . . . B2 ]
Ψ(k) = [ O U1(k)OP U2(k)OP ⋯ Um2(k)OP ]
Ui(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 ⋯ 0
u2, i(1 + kN) 0 0 ⋯ 0
u2, i(2 + kN) u2, i(1 + kN) 0 ⋯ 0⋮ ⋮ ⋱ ⋮

u2, i(N − 1 + kN) u2, i(N − 2 + kN) ⋯ u2, i(1 + kN) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗ I

and O, OP and Γ2 as de�ned before. Observe that V(k) appears in both the state
update and measurement equation. We can eliminate this correlation in the state
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Formulation of a recursive estimation scheme

and measurement noise, and bring the system in the standard form

θ(k + 1) = ϕs(k)θ(k) + ΓBYΓ(k) (6.31)
YΓ(k) = ΨΓ(k)θ(k) + V(k) (6.32)

with ϕs(k) = ϕ(k) − ΓBΨΓ(k), YΓ(k) = Γ−1M Y(k), and ΨΓ(k) = Γ−1M Ψ(k). We
use the well-known measurement and time update equations for the time-variant
Kalman �lter to obtain a recursive estimator for BP ,2 [83]:

• k = 0: Here we write the measurement update in information form
Π(0∣0) = (Π(0∣ − 1)−1 + 1

σ 2v
ΨΓ(0)ΨTΓ (0))−1 (6.33)

K(0) = Π(0∣0) 1
σ 2v
ΨTΓ (0) (6.34)

θ̂(0∣0) = θ(0∣ − 1) + K(0) [Y(0) −Ψ(0)θ̂(0∣ − 1)] (6.35)

so that when θ̂(0∣ − 1) = 0, Π(0∣ − 1)→∞, these equations reduce to
K(0) = (ΨΓ(0)ΨTΓ (0))−1 ΨTΓ (0) (6.36)

θ̂(0∣0) = K(0)YΓ(k) (6.37)

Π(0∣0) = σ 2v (ΨΓ(0)ΨTΓ (0))−1 (6.38)

in which we recognize the estimator of the previous section.

• k = 0:�e time update is given by
θ̂(1∣0) = ϕs(0)θ(0∣0) + ΓBYΓ(0) (6.39)
Π(1∣0) = ϕs(0)Π(0∣0)ϕTs (0) (6.40)

• k > 0: Here we write the measurement update in innovation form
K(k) = Π(k∣k − 1)ΨTΓ (k) [ΨΓ(k)Π(k∣k − 1)ΨTΓ (k) + σ 2v I]−1 (6.41)

θ̂(k∣k) = θ̂(k∣k − 1) + K(k) [YΓ(k) −ΨΓ(k)θ̂(k∣k − 1)] (6.42)
Π(k∣k) = [I − K(k)ΨΓ(k)]Π(k∣k − 1) (6.43)

• k > 0�e time update is given by
θ̂(k + 1∣k) = ϕs(k)θ(k∣k) + ΓBYΓ(k) (6.44)
Π(k + 1∣k) = ϕs(k)Π(k∣k)ϕTs (k) (6.45)

With this recursion an computational e�cient algorithm for identi�cation of BP ,2
has been obtained.
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6. System identification of the AMB spindle, part II: Tooltip dynamics

6.5 Results

By lack of an experimental setup able to produce reliable data, validation of the
method in this chapter using experimental data was not possible. Instead, the ap-
proach has been tested in simulation in Matlab/Simulink, and applied to a realistic
model of the EAAT spindle described in Chapter 2. Using the described FEmodel-
ing approach, followed by balanced truncation [118] and discretization, a state space
model of the spindle has been obtained with n = 16, meaning that the model cap-
tured the rigid body behavior, as well as the �rst two �exural modes. �e AMB
spindle was stabilized by four decentralized PID controllers.�e noise disturbance
on the position measurements was white with σv = 0.1µm. As in Chapter 3, the in-
put consisted of a simulated cutting force signal, based on a cutting force model in
the literature for amicro-endmill with two teeth [45]. A rotational speed of 30 krpm
was selected. With this cutting force signal and the resulting model of the spindle,
a cutting experiment with the AMB spindle (i.e. the data-generating system) has
been simulated.
With this simulation data the identi�cation procedure was tested. Using the

simulated cutting force signal u2 and the simulated displacement signal y, matrix
BP ,2 has been estimated according to the procedure set out in this chapter. �is
procedure requires knowledge of the bearing dynamics and the controller, forwhich
the true dynamics were used (i.e. the dynamics that were used to simulate the data-
generating system).
Using the recursive estimator, a total set of 10, 000 samples were used to estimate

BP ,2, in blocks of N = 100 samples.�e result obtained with the Kalman recursion
of Section 6.4 is given in Figure 6.2, showing the small resulting estimation error of
P̂2.

6.6 Discussion

�e simulations show that favorable results can be obtained with the described re-
sults. Concerning the method we make the following closing remarks:

• In the given approach, knowledge on the bearing dynamics, including the
noise on the position measurements, is assumed to be known. In the con-
text of this thesis, this information is obtained in prior identi�cation experi-
ments. One could argue that the identi�cation of the bearing dynamics and
the tooltip dynamics can be done simultaneously. A�er all, in the data of
used in the identi�cation of the tooltip dynamics, information is also present
on the bearing dynamics and the noise dynamics on the position measure-
ments. Nevertheless, the added value from combining the two identi�cation
problems is limited.�e amount of data used in the identi�cation of the bear-
ing dynamics by and large exceeds the data used in the identi�cation of the
tooltip dynamics. Hence, the decrease of the variance of the estimated pa-
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Figure 6.2: Identi�cation of the tooltip dynamics with the recursive estimator using a total
data set of 10, 000 samples. Solid black: true plant P2(e jω), solid red: estimated
plant P̂2(e jω), dotted: estimation error P2(e jω) − P̂2(e jω).

rameters of the model of the bearing dynamics by using also the data used
for identi�cation of the tooltip dynamics, will be limited.

• As we are dealing with experiments in this method in which the input is de-
termined by themilling process, and not user-de�ned, onemay end up in the
situation that the input is not su�ciently exciting. �e possible remedies in
this case are straightforward, and would involve changing the cutting condi-
tions in order to get a cutting process that is more exciting (e.g. by applying
varying cutting depth and width), or by reduction of the model complexity.
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6. System identification of the AMB spindle, part II: Tooltip dynamics

6.7 Summary and conclusions

In this chapter, identi�cation of the tooltip dynamics was addressed. �e main
challenge in this identi�cation problem is to apply a known excitation force to the
tooltip. Having reviewed several alternatives, the route followed in this chapter is
to identify the tooltip dynamics using data obtained during amilling experiment in
which the cutting forces are measured.�e amount of data that can be generated in
this way is limited, as is the control over the spectral properties of the input. Hence,
in order to reduce the complexity of the identi�cation, usage is made of the prop-
erty of the AMB system that all modes of the AMB spindle in the relevant frequency
range are observable in the bearing dynamics. �e bearing dynamics of the AMB
spindle, including the noise dynamics, are assumed known, for example from prior
identi�cation experiments.
It is shown that under these conditions, identi�cation of the tooltip dynam-

ics can be expressed as a prediction error identi�cation problem, with a particu-
lar closed-loop model parametrization that is linear in the parameters, and a �xed
noise model that is non-minimum phase. Computation of a causally invertible
spectral factorization of the noise spectrum, allows to formulate a stable predic-
tor model for the resulting system. Since the prediction error is a�ne in the pa-
rameters results, the identi�cation problem can be solved using a linear regression
approach. An extension of the resulting LS estimator to recursive estimation was
made by application of the Kalman state estimator, allowing to process also longer
measurements e�ciently.
A simulation study based on the properties of the EAATAMB spindle was used

to demonstrate the favorable properties of the given method.
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Chapter 7

Compensation of runout
disturbances in AMB signals

7.1 Introduction

In order to obtain useful estimates of the cutting forces from the signals of the AMB
spindle, it is mandatory that the disturbances present in these signals due to runout
are corrected for. In fact, this issue is dealt with in several of the indirect force esti-
mation procedures that we reviewed in Section 1.3.1, see [122, 7, 30].�e procedure
in these contributions is as follows. �e key idea is that the runout disturbance is
a function of the angular position. A measurement of this function is obtained by
adding a rotary encoder to the spindle and measuring the runout disturbance for
one or more rotations of the spindle, while no cutting is performed. During cut-
ting, thismeasured runout disturbance is then substracted from themeasurements,
using the encoder information for synchronization.

�is procedure has two main disadvantages. �e �rst is that with the above
method, only measurements of the runout disturbance are obtained at a discrete
angular position grid (which is not necessarily equidistant). Consequently, inter-
polation is needed to compensate for runout at angular positions not included in
the measurement grid. Besides, in this method, noise in the measurements is not
taken into account explicitly.

�e second disadvantage is that this procedure relies on the availability of a
rotary encoder. Frequently spindles are not equippedwith such a sensor. Since even
very small variations of the rotational speed would result in loss of synchronization
between the runout signal and its correction, this method cannot be applied when
no angular position information is available.
To deal with these issues, a model-based runout compensation strategy will be

presented in this chapter. In this method, the runout disturbance is modeled by
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7. Compensation of runout disturbances in AMB signals

a parametrized truncated Fourier series expansion, of which the parameters are
estimated prior to a cutting job. For this, several rotations of the spindle can be used
to obtain parameter estimates with small variance. Using the estimated parameters,
the model directly predicts the runout for a given angular position during cutting,
which can be used to correct the runout disturbance.
Amain issue in this chapter is how to deal with distortions in the information on

the angular position. We will arrive at solutions from two di�erent angles. Consid-
ering �rst the case that perfect information on the angular position is available, re-
sulting in a standard linear regression scheme, we derive a solution for the case that
noisy angular position measurements are available.�e solution follows a strategy
to eliminate the bias that would be incurred by naive application of the estimator,
derived from the assumption that the angular position information is noiseless.�e
other route starts with the assumption that no information on the angular position
is available. In this approach, the angular position is estimated from the observa-
tions using an Extended Kalman Filter. To this end, the prior knowledge on the
almost linear increase of the angular position of the rotor as function of time is in-
cluded in themodel of the observations. In the case that noisy angular positions are
available, these can be employed to improve the performance of the estimator.�e
performance of the resulting runout identi�cation and correction schemes varies,
depending on the level of disturbances in the observations, and are analyzed in this
chapter.

�is chapter is structured as follows. In Section 7.2 we will �rst de�ne the prob-
lems of runout identi�cation and runout compensation. Subsequently in Section
7.3, solutions are formulated for the case that exact angular position information is
available, the results of which are used to analyze the situation that noisy angular
position measurements are at hand (Section 7.4). For the case no information on
the angular position is available we will use an Extended Kalman Filter in Section
7.5 to solve the runout identi�cation and compensation problems. In the same sec-
tion this approach is extended for the case that noisy angular positions are available.
In Section 7.6 the approaches are compared by simulation and results obtained by
application to real data are shown.

7.2 Problem description

In this section, the problems of runout iden�cation and compensation are formu-
lated. In order to do so, consider the measurement setup depicted in Figure 7.1.
Here y0(t) is a signal that is to be measured, which is disturbed by zero mean
measurement noise v, as well as a disturbance w which has the property that it
is almost periodic. To make this explicit, we model w as the continuous mapping
ϕ → w(ϕ), with ϕ the phase angle.�is mapping is periodic, i.e. it has the property
that w(ϕ + 2π) = w(ϕ). With this, we can write w(t) = w(ϕ(t)), where ϕ(t) is
used to denote the phase angle at time instant t. Observe that in the application of
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w(ϕ(t))
++ y

v

++ y̆

ŵ(ϕ(t))
+−y0

Figure 7.1:Measurement model for identi�cation and correction of almost periodic distur-
bances. �e quasi-periodic disturbance w(ϕ(t)) is corrected for by estimating
the parameters of a model ofw(ϕ(t)), and then substracting the model from the
measurements y.

runout estimation in theAMB spindle signal, ϕ has the interpretation of the angular
position of the rotor. Concerning w(ϕ(t)) the following assumptions are made:
1. De�ne the increments of the phase angle as ∆ϕ(t) = ϕ(t) − ϕ(t − 1). It is
assumed that ∆ϕ(t) = ∆ϕ0 + δϕ(t) with δϕ(t) small compared to ∆ϕ0.

2. w(ϕ) is a static function of ϕ. �e average value of w(ϕ) is zero for ϕ =
0 . . . 2π.1; the function may be di�erent for di�erent values of ∆ϕ0.

3. w(ϕ) is independent of y0.
4. Let W(ω) be the (continuous) Fourier transform of w(ϕ). �ere exists a
frequency B such thatW(ω) = 0 for all ω > B and B < π

max(∆ϕ(t)) .

Evaluating these assumptions in the context of runout estimation in the signals of
AMB spindles, we note that the �rst assumption implies that the rotational speed
is nearly constant. As discussed in Chapter 2, runout disturbances are rotational
speed dependent, meaning thatw(ϕ)will be di�erent for di�erent rotational speed
settings. Assumption 2 entails that the variations of the rotational speed around a
given setpoint are small enough to have no signi�cant e�ect on the pro�le of the
runout disturbance. �e third assumption implies that the runout disturbance is
independent of the position and/or current signals of the bearings, which is in line
with themodel of Chapter 2.�e fourth assumptionmeans that the rotational speed
is small enough so that no aliasing arises when taking measurements of w(ϕ) at
angular positions ϕ(t).
Under these assumptions, we can model w(ϕ) by a truncated Fourier series

expansion, given by

w(ϕ) = M∑
m=1
am cos(mϕ) + bm sin(mϕ) (7.1)

1�e assumption of zero average is merelymade for convenience. A situation wherew has non-zero
average can simply be dealt with by determining the average separately.�is is straightforward.

147



i
i

“main” — 2011/4/11 — 8:51 — page 148 — #158 i
i

i
i

i
i

7. Compensation of runout disturbances in AMB signals

which we may also write as w(ϕ) = HT(ϕ)θo with

HT(ϕ) = [ cos(ϕ) . . . cos(Mϕ) sin(ϕ) . . . sin(Mϕ) ]
θT0 = [ a1 . . . aM b1 b2 . . . bM ] .

With this, the obtained model is

y(t) = y0(t) +H(ϕ(t))θ0 + v(t). (7.2)

We de�ne the following two problems:

1. Runout estimation:With a set of measurement data {y(t)}t=1. . .N , for which
y0 = 0, estimate θ0.

2. Runout compensation: Using estimate θ̂, estimate the disturbancew(ϕ(t)),
denoted by ŵ(ϕ(t)), and with that perform the runout compensation

y̆(t) = y(t) − ŵ(ϕ(t)). (7.3)

In the following sections we will address these two problems. We will �rst consider
the ideal situation where phase angle ϕ(t) is known exactly (Section 7.3), result-
ing in an ordinary linear Least Squares (LS) problem. Subsequently in Section 7.4
we treat the case that noisy measurements of ϕ(t) are available. �is results in an
errors in variables problem. In solving this problem, we will avoid the complexity
of striving for statistical e�ciency and use the results of Section 7.3 to formulate a
Bias Compensated Least Squares (BCLS) approach. Section 7.5 deals with the case
that no phase information is available. Using the prior knowledge that the phase
increases almost linearly, we can formulate a state space model of the observations
and then formulate a state estimator to estimate both the parameters and and the
phase angle, where state estimation is performed using an Extended Kalman Filter
(EKF). For the case that noisy phase angle measurements are available, these can
easily be added as extra observations, allowing to reduce the variance of the state
estimates.

7.3 Exact information on the phase angle

In this section, a runout estimator and compensator is given for the case that exact
information is available on phase angle ϕ(t). For this, de�ne output estimate ŷ(t) =
H(ϕ(t))θ̂, then we can de�ne the optimal parameter estimate by

θ̂ = argmin
θ

N∑
t=1

(y(t) − ŷ(t))2 . (7.4)
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Employing the notation

Y =
⎡⎢⎢⎢⎢⎢⎢⎢⎣
y(1)
y(2)⋮
y(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, H =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
HT(ϕ(1))
HT(ϕ(2))⋮
HT(ϕ(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, V =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
v(1)
v(2)⋮
v(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(7.5)

it follows that we can reformulate equation (7.4) as

θ̂ = argmin
θ

∣Y −Hθ∣2 (7.6)

showing that we have obtained a standard linear regression problem, with solution
[83]:

θ̂ = KY , where (7.7)
K = (HTH)−1HT . (7.8)

We summarize themain properties of the estimator.�e estimate θ̂ is unbiased, and
if the covariance of V , denoted by ΠV , is available, minimum variance is obtained
by the estimator

K = (HTΠ−1V H)−1HTΠ−1V . (7.9)

In that case the covariance of θ̂ is

Πθ̆ = E(θ̂ − θ0)(θ̂ − θ0)T (7.10)= (HTΠ−1V H)−1 . (7.11)

To allow for online implementation of the estimator, we also give a recursive algo-
rithm. Consider the situation we have a prior estimate of θ0, which will be denoted
by θk−1, and let Πk−1 be its covariance matrix. Assume θk−1 is uncorrelated with Y .
�en the optimal estimate is given by

θ̂k = θk−1 + argmin
dθ

∣Y −H(θk−1 + dθ)∣2 (7.12)

= θk−1 + K(Y −Hθk−1), where (7.13)
K = (HTΠ−1V H +Π−1k−1)−1HTΠ−1V . (7.14)

In this case, the covariance Πk is given by

Πk = (HTΠ−1V H +Π−1k−1)−1 . (7.15)

Runout compensation for t > N in the case that exact phase information is available
is performed by evaluating equation (7.3).
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7. Compensation of runout disturbances in AMB signals

7.4 Noisy measurements of the phase angle

In the previous section, the estimator has been derived based on perfect knowledge
of the phase angle. In this section we will investigate the situation when only noisy
measurements of the phase angle are available.
Letψ(t) = ϕ(t)+vϕ(t) represent themeasurement of the phase anglewith noise

vϕ(t). It will be assumed that this noise is a zero mean white Gaussian disturbance
with variance σ 2ϕ that is uncorrelated with v(t). At every time instant we now have
two measurements:

y(t) = H(ϕ(t))θ0 + v(t) (7.16a)
ψ(t) = ϕ(t) + vϕ(t). (7.16b)

With this, estimation of θ0 becomes an errors-in-variables (EIV) problem, which
is intricate due to the nonlinearity of H(ϕ). �is makes formulation of a maxi-
mum likelihood estimator complicated. An alternative solution is to pursue a Bias
Compensated Least Squares (BCLS) approach. �e idea behind this is as follows
(see [152]). In general, naive application of an LS estimator to EIV problems yields
biased estimates. In the BCLS approach the estimator is modi�ed in such a way
that this bias is eliminated. We will follow this approach and use the results of the
previous section.
First observe that direct application of a LS estimator of indeed results in asymp-

totically biased estimates. �is is seen as follows. For in�nite length data, linear
regression of y(t) on H(ψ(t)) satis�es [83]

EHT(ψ(t))H(ψ(t))θ̂LS = EH(ψ(t))T y(t). (7.17)

Note that from the de�nition of H(⋅), it is immediate that
HT(ψ)H(ψ) = 1 for all ψ. (7.18)

Furtheremore,

EH(ψ(t))T y(t) = EH(ψ(t))T[H(ϕ(t))θ0 + v(t)] (7.19)= EH(ψ(t))TH(ϕ(t))θ0 +EH(ψ(t))Tv(t) (7.20)

Note since v(t) and ψ(t) are uncorrelated, the second term is zero. Using equation
(7.16b), it follows for the �rst term that

EH(ψ(t))TH(ϕ(t))θ0 = E{H(ϕ(t) + vϕ(t))T}H(ϕ(t))θ0 (7.21)

where it is used that H(ϕ(t))θ0 is deterministic. In appendix B.4.1 it is shown that
for vϕ Gaussian distributed

EH(ϕ(t) + vϕ(t)) = Q−1H(ϕ(t)), (7.22)
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with

Q = diag(eσ 2ϕ/2 , e(2σϕ)2/2 , . . . , e(Mσϕ)2/2 , eσ 2ϕ/2 , e(2σϕ)2/2 , . . . , e(Mσϕ)2/2) (7.23)

Using equations (7.18) and (7.22) in equation (7.17), we obtain that for in�nite length
data (i.e. N →∞)

θ̂LS = Q−1θ0 . (7.24)

Clearly, the LS estimator results in asymptotically biased estimates. Bias elimination
can be achieved by de�ning

θ̂BCLS = Qθ̂LS . (7.25)

For �nite length data, this results in the following estimator. Let H̄ be de�ned
by

H̄ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣
HT(ψ(1))
HT(ψ(2))⋮
HT(ψ(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(7.26)

With this the BCLS estimator is de�ned as

KBCLS = Q(H̄TΠ−1V H̄)−1H̄TΠ−1V . (7.27)

Recursive implementation of this estimator can be done similarly as the previ-
ous section, with

K = Q(H̄TΠ−1V H̄ +Π−1k−1)−1H̄TΠ−1V (7.28)

and where the covariance Πk is now estimated as

Πk = Q(H̄TΠ−1V H̄ +Π−1k−1)−1Q. (7.29)

Again, runout compensation is straightforward by estimating the runout dis-
turbance according to

ŵ(ϕ(t)) = H(ψ(t))θ̂BCLS , for t > N (7.30)

which uses the measured phase angle ψ(t) to compute the estimate of the quasi-
periodic signal.
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7. Compensation of runout disturbances in AMB signals

7.5 No information on the phase angle

In this section we will consider the situation that no information on the phase angle
is available, in which case the phase angle must be estimated from the data as well.
�e solution for runout estimation in this section is taken from the EKF solution
for frequency tracking of nonsinusoidal periodic signals, presented by Parker and
Anderson [125]. First this solution is given. Subsequently, a solution is given for
runout correction, following a similar EKF approach, but with a reduced model
complexity. Based on these runout estimation and correction approaches, we will
give extensions that allows to improve the estimate of the phase angle in case noisy
phase angle measurements are available.
Recall from Section 7.2, that the observations are modeled as y(t) = y0(t) +

w(ϕ(t))+ v(t), with the quasi-periodic signal denoted asw(ϕ(t)), y0(t) = 0 dur-
ing runout estimation, and v(t) additive noise.�e starting point for the EKF ap-
proach is to model the mapping w(ϕ(t)) using a state space model, given by

x(t + 1) = Ax(t) + n(t) (7.31a)
y(t) = w(x(t)) + v(t) (7.31b)

where

x(t) = [ θ0 Ω(t) ϕ(t) ] (7.32)

with θ0 and ϕ as de�ned before, and where Ω is the angular frequency. Further-
more,

A = ⎡⎢⎢⎢⎢⎢⎣
I2M×2M 0

0 1 0
Ts 1

⎤⎥⎥⎥⎥⎥⎦ , and
w(x(t)) = M∑

m=1
am cos(mϕ(t)) + bm sin(mϕ(t))

and n is a white noise process that is uncorrelated with v, and that has zero mean
and variance Q. In this model, v is modeled as a white noise process. We remark
that this no limitation. When it is known a priori that the measurement noise can
be represented by v(t) = H(q)e(t) with e(t) a white noise process and H(q) a
known transfer function, the state space model in (7.31) can easily be extended to
include the states of H(q).
Aswemodel θ0 to be static parameters, typically covariancematrixQ is nonzero

only at element (2M + 1, 2M + 1), meaning that angular frequency Ω(t) is mod-
eled as a random walk with a given variance. From the structure of the state space
model, it follows that the model dictates the angular phase to evolve as

ϕ(t) = ϕ0 + t∑
τ=1
Ω(τ)Ts . (7.33)

152



i
i

“main” — 2011/4/11 — 8:51 — page 153 — #163 i
i

i
i

i
i

No information on the phase angle

with ϕ0 the initial value. Using the above state space model of the observations,
estimation of θ0 and the unknown ϕ(t) can now be treated as a state estimation
problem. Due to the nonlinearity of the model, the EKF is applied [83, 125]. �is
�lter is given by the following recursion:

• Measurement update:

x̂(t∣t) = x̂(t∣t − 1) + K(t)[y(t) −w(x̂(t∣t − 1))] (7.34)
K(t) = Π(t∣t − 1)W(t)[W(t)Π(t∣t − 1)WT(t) + R]−1 (7.35)
Π(t∣t) = [I − K(t)W(t)]Π(t∣t − 1) (7.36)

with K(t) the Kalman gain, R = σ 2v , and Π(t∣t) the error covariance.
• Time update:

x̂(t + 1∣t) = Ax̂(t∣t) (7.37)
Π(t + 1∣1) = AΠ(t∣t)AT + Q (7.38)

whereW(t) is the Jacobian of w(x(t)) at x̂(t∣t − 1), i.e.

W(t) = ∂
∂x
w(x(t))∣x(t)=x̂(t∣t−1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(ϕ̂(t∣t − 1))⋮
cos(Mϕ̂(t∣t − 1))
sin(ϕ̂(t∣t − 1))⋮
sin(Mϕ̂(t∣t − 1))

0
γ(t∣t − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(7.39)

where

γ(t∣t − 1) = M∑
m=1

−âm(t∣t − 1)m sin(mϕ̂(t∣t − 1)) + b̂m(t∣t − 1)m cos(mϕ̂(t∣t − 1)).
(7.40)

�e procedure for runout correction is similar, the main di�erence is that the pa-
rameters θ are now assumed to be known. Hence, when switching from runout
estimation to runout correction at time t = N + 1, we reduce the order of the model
and continue the state estimation with the model

x(t + 1) = Ax(t) + n(t) (7.41a)
y(t) = w(x(t)) + v(t) (7.41b)
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where x(t) = [ Ω(t) ϕ(t) ],
A = [ 1 0

Ts 1 ] ,
andw(x(t)) as de�ne before, now parametrized with θ̂ = θ̂(N ∣N).�e EKF equa-
tions are similar, with

H(t) = [ 0
γ(t∣t − 1) ]

and

γ(t∣t − 1) = M∑
m=1

−âmm sin(mϕ̂(t∣t − 1)) + b̂mm cos(mϕ̂(t∣t − 1)). (7.42)

�e runout correction recursion is initiated by the last state estimates of the runout
identi�cation recursion and the corresponding covariance.
In the runout correction stage, we no longer require y0 to be zero. In the model

of equation (7.41), presence of y0 is not explicitly modeled. Instead, nonzero y0 is
considered to be included in the noise process v. Hence in switching from runout
identi�cation to runout correction, it may be necessary to adjust to modeled vari-
ance of v.
In [125], Parker and Anderson also give a theoretical analysis of the above EKF

approach. �is analysis shows that there is a measure of decoupling in the esti-
mator, i.e. the Fourier coe�cients are estimated as if the phase angle and angular
frequency estimates are correct, and the phases and frequencies are estimated as if
the amplitude estimates are correct. It is demonstrated that the EKF can be inter-
preted as a set of interconnected phase-locked loops, able to track the frequency
variations in the observations.
Although this property is an attractive feature of the EKF approach, there are

also some related pitfalls.�e �rst is that the estimator needs to lock onto the right
fundamental frequency, while it has a tendency to lock onto fractions ormultiples of
the true fundamental frequency. Such behavior can be avoided by providing good
initial estimates of the fundamental frequency. Also, providing a smaller value of
the variance related to this initial estimate can slow down and tamper the initial
transient behavior, increasing the probability of a successful lock on. �e second
pitfall is to maintain good frequency tracking, without loosing the frequency lock.
�e rate of variation is mainly determined by the matrix Q. Larger values of Q
result in a faster (and also noisier) response, but also increase the risk of loosing
the frequency lock. Hence, practical implementation of the EKF approach requires
careful selection of the initial settings and model matrices.
While the EKF approach is introduced for the case that no phase information

is available, it is quite simply adapted for the situation we do have noisy phase mea-
surements. �is is an attractive extension, since adding such additional informa-
tion to the EKF is expected to improve the performance. In fact, we may not only
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�nd improved estimates of the Fourier coe�cients, but also improved performance
regarding frequency locking and tracking. Depending on the noise level vϕ , the
resulting EKF can also have attractive features compared to the BCLS estimator.
Although the latter may be unbiased, for larger values of noise level vϕ we can ex-
pect the variances to deteriorate2. Moreover, at the runout correction stage, no
compensation is performed for the errors in ψ, and hence for larger vϕ the bias in
the runout corrections can be large. In contrast, the EKF that is provided with the
phase measurements, also uses the phase information that is present in the obser-
vations y. As a result, both in the runout identi�cation and the runout correction
stage, phase estimates are used with a smaller variance than ψ, resulting in a better
performance.�is comes at a price of amore complex identi�cation and correction
�lter.
With measurement of the phase available the EKF can be adapted as follows.

�e state space model of (7.31) now satis�es

x(t + 1) = Ax(t) + n(t) (7.43a)

z(t) = [ y(t)ψ(t) ] = [ w(x(t))ϕ(t) ] + [ v(t)
vϕ(t) ] . (7.43b)

Replacing in the EKF recursion equations

x̂(t∣t) = x̂(t∣t − 1) + K(t)[z(t) − ẑ(t∣t − 1)] (7.44)

and lettingW(t) and R satisfy

W(t) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(ϕ̂(t∣t − 1)) 0⋮ ⋮
cos(Mϕ̂(t∣t − 1)) 0
sin(ϕ̂(t∣t − 1)) 0⋮ ⋮
sin(Mϕ̂(t∣t − 1)) 0

0 0
γ(t∣t − 1) 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

, R = [ σ 2v 0
0 σ 2ϕ

] (7.45)

we obtain an EKF that uses the observations ψ to improve the estimate of ϕ (and
the other parameters).�is procedure can be performed similarly for the EKF used
for runout correction.
We conclude this section by noting that the EKF approach is easily extended to

the multivariable case. In the case of runout identi�cation and correction in AMB
signals, the development of the angular position as a function of time is identical for

2�is is easily seen from equations (7.27). For growing values of vϕ , the elements ofQ corresponding
to the highest order Fourier terms grow rapidly. As a result, the variance of the parameters belonging to
these terms grows accordingly.
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7. Compensation of runout disturbances in AMB signals

all observations. Hence, instead of estimating it from each observation separately,
it is straightforward to formulate a state space model that includes all observations,
allowing a more accurate estimation of the angular position. �e computational
e�ort for such multivariable approach is signi�cantly higher though.�is is partic-
ularly seen from the expression for the Kalman gain in equation (7.35), where the
dimension of the matrix that is inverted equal is to the dimension of the vector of
observations.

7.6 Results

In this section we will demonstrate the performance of the estimators described in
the previous sections. Wewill �rst give a comparative simulation study of the di�er-
ent approaches in this chapter by means of Monte Carlo study (Section 7.6.1).�en
in Section 7.6.2 we apply the EKF approach in a realistic simulation enviroment to
assess its performance. Results obtained a�er application to real measurement data
are discussed in Section 7.6.3.

7.6.1 Monte carlo simulations

To study the properties of the estimators discussed in the previous section, a sim-
ulation study has been performed. Observations y(t) were generated according to
equation (7.2), with y0 = 0,M = 5 and

a1 = 1.000 b1 = 0.6000
a2 = 0.030 b2 = 0.1300
a3 = 0.110 b3 = 0.0500
a4 = 0.005 b4 = −0.1200
a5 = 0.040 b5 = 0.0400.

�e runout disturbance was modeled to have a fundamental frequency of ω0 =
1000π rad/s, with variations of up to±2.0 rad/s3.�e sampling time Ts satis�es Ts =
50µs.�e observations were disturbed with zero mean white noise v, with variance
set such that the signal-to-noise ratio, de�ned as SNR = 10 log10(∑5m=1 a2m +b2m)/σ 2v
was 46.5 dB, 30.5 dB, or 14.5 dB, depending on the trial. Furthermore, in each trial
a measurement of the phase ψ(t)was generated, according to equation (7.16). Here
vϕ is a zeromeanwhite Gaussian noise with variance σ 2ϕ = {( 2π

1000 )2 , ( 2π
100 )2 , ( 2π

10 )2}.
For each SNR level and noise level of vϕ , 200 Monte Carlo simulations were run,
where in each simulation a di�erent realization of v and vϕ was generated, while
w(ϕ(t)) was identical for all simulations. Each simulation was run over over N f =

3Note that although these variations are small in comparison to the base frequency, modeling the
disturbance to have a constant frequency would quickly lead to very signi�cicant phase errors.
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4000 samples; the samples for t = 1..N , with N = 2000 were used for runout identi-
�cation, and the samples for t = N + 1..N f for runout correction. On each data set,
four runout identi�cation and correction schemes discussed in this chapter were
applied, i.e.

1. LS: runout identi�cation with the LS estimator; runout correction by predic-
tion via (7.3), both performed using the noise free ϕ(t). In this scheme the
phase measurement is not used, so evaluation of the results for di�erent lev-
els of σϕ is unnessary. Hence, the simulations are only run over the data sets
corresponding one single value of σϕ , in this case σϕ = 2π

1000 .

2. BCLS: runout identi�cation with the BCLS estimator; runout correction by
prediction via (7.30), both using the noisy phase measurements ψ(t).

3. EKF: Runout identi�cation and correction with the EKF without phase in-
formation (as with the LS scheme, this scheme is only run over the datasets
corresponding to σϕ = 2π

1000 ).

4. EKF+: Runout identi�cation and correction with the EKF using the noisy
phase measurements ψ(t).

Both EKF solutions were initiated with â1(0∣− 1) = b̂1(0∣− 1) = ( 1
2N ∑Nt=1 y(t)2)1/2,

Ω̂(0∣ − 1) = 3110 rad/s, and ϕ̂(0∣ − 1) = 0 rad. All other values of x̂(0∣ − 1) were set
to zero. Furthermore, Π(0∣− 1) = diag(ρ, ρ/4, ρ/4, ρ/4, ρ/4, ρ, ρ/4, ρ/4, ρ/4, ρ/4),
where ρ = â1(0∣− 1)2/4. Covariance matrix Q had all zeros, except Q(2M+ 1, 2M+
1) = (0.02)2.
From the estimates θ̂ obtained over all 200 Monte Carlo simulations the bias

and standard deviation are estimated.�e results are listed in table 7.1 and 7.2, where
only the statistics for the parameters am , m = 1 . . .M are given, those for bm give a
similar picture. From these tables, we observe the following:

• As expected, the LS estimator with perfect phase information has the lowest
bias and variance for all values of the SNR and σϕ .

• For σϕ = 0.006 and σϕ = 0.063, the performance of the BCLS estimator is
close to that of the LS estimator. Here we see that in particular if the SNR is
low, the variance error in the estimates is mostly determined by themeasure-
ment noise v, and the loss of performance due to disturbance vϕ is small.�e
results seem to corroborate the unbiasedness of the BCLS estimator, as in all
simulations the average error is signi�cantly smaller than the standard de-
viation. However, for σϕ = 0.628, the performance of the BCLS estimator is
very poor. While coe�cient a1 is still estimated with reasonable accuracy, the
variance of the higher order Fourier coe�cients is increasingly worse. �is
e�ect can directly be understood from the structure of matrix Q in equa-
tion (7.26): for growing values of vϕ , the elements ofQ corresponding to the

157



i
i

“main” — 2011/4/11 — 8:51 — page 158 — #168 i
i

i
i

i
i

7. Compensation of runout disturbances in AMB signals

highest order Fourier terms grow very quickly. As a result, the variance of
the parameters that belong to these terms increase rapidly as well.

• Comparing the standard deviations of the estimates obtained with the EKF
to those of the LS estimator using perfect phase information, we see the EKF
only performs slightly worse for smaller SNR.�e logical explanation is that
at small SNR the variance is mostly determined by v, and to a smaller extent
by errors in the phase estimate. For larger SNR, these errors become more
dominant, as can be observed from the table. �e estimates obtained with
the EKF also seem to have a bias.�is should not be given too much empha-
sis, as in fact the model used in the EKF is overparametrized (both ϕ and b1
represent a phase shi� in the fundamental term of the expansion). Closer in-
spection shows that also the estimates of ϕ are slightly biased, compensating
the bias in the Fourier coe�cients.

• As expected, the EKF+ outperforms both the EKF and the BCLS estimator.
Compared to the BCLS, the improvement is small when σϕ = 0.006. How-
ever, for σϕ = 0.063 the standard deviations of the estimates are reduced
signi�cantly, particularly for SNR = 46.5. �e improvement for σϕ = 0.628
clearly shows that the BCLS is useless for this noise level: although the esti-
mate produced by this estimator is unbiased, its variance is so large that no
meaningful results are obtained. On the other hand, the EKF gives useful re-
sults.�e improved locking and tracking of the EKF+ compared to the EKF
has also been observed. Figure 7.2 illustrates this, where the estimates Ω̂(t)
obtained with both approaches are compared to the true values (for one of
the Monte Carlo simulations with SNR = 30.5 dB, σϕ = 0.006). In this �gure
it is clear that in the initial stage the EKF+ converges to the true frequency
faster, and also tracks the frequency variations better. It is also observed that
the successful initial lock on is achieved for a much larger range of initial
estimates.

Summarizing, we can conclude from these simulations that if no phase informa-
tion is present, we can still obtain estimates with the EKF that have variance errors
approaching the levels that would be attainable with perfect phase information. If
we have phase information, then the EKF+ that includes this information yields
the smallest variance and would be the estimator of choice. However, when σϕ is
very small, the cost for getting the best performance may not balance against the
increased complexity. In such cases the BCLS might be a more attractive option.
To evaluate the performance of the runout correction for each scheme, we in-

troduce the runout correction error de�ned as

σe = ⎡⎢⎢⎢⎢⎣ 1
N f − N

N f∑
τ=N+1

(y(t) − ŵ(ϕ(t))2⎤⎥⎥⎥⎥⎦
1/2

. (7.46)
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Figure 7.2: Comparison of the estimate of rotational speed Ω̂(t) obtainedwith the EKFwith-
out phase information (green), and the EKFwith phase information (SNR = 30.5,
σϕ = 0.006) (red). True Ω(t) is depicted in blue.

�e value of σe obtained with any of the four runout identi�cation and correction
scheme and averaged over the 200 Monte Carlo simulations, is listed in table 7.3
for each SNR level and noise level of vϕ .�is table leads to the same conclusion as
with runout identi�cation: with no phase information present, runout correction
can be achieved with the EKF yielding error levels that approach the error levels
achieved with perfect phase information (in the LS scheme). With phase informa-
tion present, the best choice is the EFK+ approach that uses this information, albeit
the increase for small values of σϕ might not trade-o� against higher complexity of
the �lter.

7.6.2 Application to AMB spindle setup, simulation

As a second test, a simulation experiment was performed in which a realistic sim-
ulation of a micro-milling experiment was made. For this, the simulation model
of the EAAT AMB spindle described in Chapter 2 was used. Here the AMB spin-
dle model was extended to also include runout disturbances. As the EAAT spindle
has no angular encoder, the EKF approach for runout detection and correction was
selected.

�e simulation settings were as follows. �e AMB spindle was set to rotate at
30 krpm, where the rotational speed was varied with ±7 rpm. Sample time Ts was
50µs. From t = 0 to t = 0.5 the cutting forces were nil, a�er that the milling was
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AVG runout correction error [⋅10−3]
σϕ SNR LS BCLS EKF EKF+

46.5 5.6 8.3 5.8 5.7
0.006 30.5 35.5 36.0 35.7 35.0

14.5 223.6 223.7 224.1 223.6

46.5 61.1 5.8
0.063 30.5 70.5 36.0

14.5 231.9 223.8

46.5 1995 5.8
0.628 30.5 2057 36.0

14.5 2313 224.4
LS: using perfect phase measurements
BCLS: using noisy phase measurements
EKF: no phase phase measurements
EKF+: using noisy phase measurements

Table 7.3: Comparison of the average runout correction error obtained in the Monte Carlo
simulation study with the four schemes in Section 7.6.1.�e AVG runout correc-
tion error obtained with the BCLS compared is acceptable for small σϕ (and small
SNR). However, for large σϕ , the EKF+ clearly outperforms the BCLS approach.

simulated to start.�e resulting position signal of the bottom X bearing is depicted
in the top plot of Figure 7.3.

�e EKF with order M = 5 was applied, where the initial settings were chosen
in a similar fashion as in the simulation study in the previous section. Here the
�rst 4000 samples were used for runout indenti�cation, and from t = 0.2s onwards
runout correction was applied using the estimated Fourier coe�cients. �e result
of the EKF a�er runout correction is depicted in the middle plot of Figure 7.3.�e
corrected signal is compared to the signal that was obtained by simulating the AMB
spindle setup without the runout disturbance, the resulting error is shown in the
bottom plot of Figure 7.3.
From these plots we observe the success of the runout correction, the runout

correction error is small in comparison to the response of the AMB spindle to the
noise and cutting force signal. Noteworthy to point out, is that the noise in this
position measurements is not white (as it is �ltered by the sensitivity of the closed-
loop), and neither is the response to the cutting force in the measurement data.
Nevertheless, the EKF performs well in tracking the frequency variations, also a�er
t = 0.5 when the milling has started. �is can also be observed in Figure 7.4, in
which the estimated angular frequency is compared to the true angular frequency.
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Figure 7.3: Application of the EKF for runout identi�cation and correction on a simulated
micro-milling experiment. Cutting starts a�er t = 0.5s. Runout identi�cation
is performed up to t = 0.2s, correction from t = 0.2s onwards. �e top �gure
shows the displacement signal, the middle the result a�er runout correction, and
the bottom �gure the runout correction error. �e runout correction error is
small compared to the position measurement without runout distortion.
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Figure 7.4: EKF applied to runout identi�cation and correction in an simulated AMB spinde
signal: comparison of the estimate of rotational speed Ω̂(t) to the true Ω(t).

7.6.3 Application to AMB spindle setup, measured data

To conclude the test, the EKFwas also applied to real measurement data of amicro-
milling cutting experiment performed with the EAAT spindle4.�e spindle was set
to a rotational speed of 40 krpm and the signals of the bearings were recorded at
a sampling frequency of 20 kHz. �e top plot of Figure 7.5 depicts the displace-
ment signal of the bottom X bearing. As can be observed from this plot, the cutting
process started at t = 0.28s. �e data from t = 0 to t = 0.2 was used to perform
runout identi�cation, a�er that runout correction was performed. For this the EKF
�lter was applied with similar settings as the EKF used in the simulated milling ex-
periment of the previous section. �e result a�er runout correction is depicted in
the bottom plot of Figure 7.5. To show that the runout is accurately identi�ed, a
zoomed in plot of the measured position signal and the estimated runout distur-
bance is shown in Figure 7.6. �is �gure shows a high correspondence between a
quasi-periodic component in the measured signal and the estimated runout with
the EKF.
In order to verify the frequency tracking, the EKF is applied to both the signals

from the bottom X and Y bearing independently.�e estimated angular frequency
from both signals is depicted in Figure 7.7 for t = 0 . . . 3s. From this plot, it is con-
cluded that the EKF is able to track the frequency variations in the AMB spindle
signals very accurately (note that the angular frequency estimate obtained from the

4Experiment settings: up-milling, fz = 0.005, d = 1.0mm, ae = 50µm, ap = 0.15mm.
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Figure 7.5: Application of the EKF for runout identi�cation and correction on a real micro-
milling experiment. Cutting starts a�er t = 0.28s. Runout identi�cation is per-
formed up to t = 0.2s, correction from t = 0.2s onwards. �e top �gure shows
the displacement signal, the bottom the result a�er runout correction.

position measurement in the X-direction responds clearly more to the start of the
cutting process than the angular frequency estimate obtained from the measure-
ment in the Y-direction. Still, the di�erence in this transient period is still very
small, only a few rpm).

7.7 Summary and conclusions

Model-based correction of runout disturbances in measurements of the positions
and currents of AMB spindle has been considered. Such disturbances are syn-
chronouswith the rotation of the spindle andhence almost periodic. Aparametrized
truncated Fourier series expansion model for the runout disturbance as a function
of the angular position is used, allowing to formulate runout identi�cation as a pa-
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Figure 7.6: Application of the EKF for runout identi�cation and correction on a real micro-
milling experiment: zoom in on themeasured displacement signal y (black), and
the identi�ed runout disturbance in the signal ŵ (red).�e EKF appears to have
succesfully identi�ed the runout disturbance.

rameter estimation problem.
In correcting for the runout disturbances, the main issue is dealing with the

uncertainty in the angular position measurements, or the total lack of such mea-
surements. In this chapter, this issue is attacked from two angles. Considering �rst
the case we have perfect information on the angular position, resulting in a standard
linear regression scheme, we applied the Bias Compensated Least Squares (BCLS)
solution for the case noisy angular position measurement are available. From this
angle, the solution follows a strategy to eliminate the bias that would be incurred by
naive application of the estimator derived from the assumption the angular position
information is noiseless. �e other route starts with the assumption that no infor-
mation on the angular position is available. In this solution, the angular position is
estimated from the observations using an Extended Kalman Filter (EKF), that for
this purpose includes a model of dynamics of angular position. In the case noisy
angular positions are available, these can be employed to improve the performance
of the angular position estimates, which resulted in the EFK+ approach.
A Monte Carlo simulation study was performed to compare the di�erent ap-

proaches for di�erent levels of the SNR in the observations, as well as di�erent levels
of the noise in the angular position measurements. �is study demonstrated that
if no phase information is present, we can still obtain estimates with the EKF that
have variance errors that approach the levels that would be attainable with perfect
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Figure 7.7: Application of the EKF for runout identi�cation and correction on a real micro-
milling experiment. Shown are the estimate of rotational speed Ω̂(t) obtained
from the bottom X and bottom Y displacement measurement. �e true Ω(t) is
unknown, but the EKF of both directions give almost the same estimate.�e start
of the milling process at t = 0.28s causes a transient e�ect in the estimation of
the rotational speed.

phase information. If we have angular position information, then the EKF+ that
includes this information yields the least variance and would be the estimator of
choice.�is is understood from the additional a priori information on the dynam-
ics of the angular position, included in this approach. However, when variance of
the noise on the angular position measurements is very small, the cost for getting
the best performancemay not balance out against the increased complexity. In such
cases the BCLS might be a more attractive option.

�e EKF approach was further demonstrated by applying it to a realistic sim-
ulation of an AMB spindle performing a milling experiment, as well as to actual
measurement data. In both cases, runout was accurately identi�ed and corrected,
and the frequency variations in the signal very closely tracked.
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Chapter 8

Conclusions and recommendations

8.1 Conclusions

�e research reported in this thesis was aimed at investigating the opportunities
for model-based process monitoring and control, in order to improve the micro-
milling process using the intrinsic properties of AMB spindles. In the �rst chapter,
it was set out that the approach to this objective was threefold:

1. Provide an approach tomodel-based cutting force estimation inmicro-milling,
using the signals of the AMBs;

2. Provide a method for system identi�cation of an high speed AMB micro-
milling spindle;

3. Provide a compensation approach for the almost periodic disturbances in the
bearing signals, resulting from unbalance forces and roundness errors.

�e main conclusions will be given with regard to each of these three aspects, fol-
lowed by the overall conclusion of the thesis.

Main conclusion A

An approach is developed for optimal model-based estimation of the micro-milling
cutting forces from the signals of the AMBs, dealing with the following items:

• the dynamics of the AMB spindle, including its instable andmultivariable char-
acter, as well as the increased coupling due to gyroscopy at higher rotational
speeds;

• the closed-loop con�guration of the setup, where knowledge of the controller
might not be available;
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• information on the spectral content of the cutting force signal and the noise
disturbance on the bearing signals.

Main conclusion A follows from chapters 2 and 3, in which it was concluded that:

A.1 �e AMB spindle in a micro-milling con�guration can be represented using
a model of the AMB spindle dynamics and a model of the cutting dynamics,
resulting in a con�guration with two closed-loops. With a reasonable sim-
pli�cation of this con�guration, the cutting force estimation problem can be
expressed as an input estimation problem, where the cutting forces are an
unknown input to the closed-loop AMB spindle system (chapter 2).

A.2 A minimum mean square error input estimator has been developed to es-
timate the cutting forces from the signals of the AMBs. When controller
knowledge is not available, an additional constraint can be imposed to the op-
timal estimator, ensuring equal performance of estimator for any controller.
Smoothed estimators are derived, allowing to obtain smaller estimation er-
rors when a delay in the estimation result is tolerable (chapter 3).

A.3 �e approach was tested in simulation with a realistic model of an experi-
mental setup, showing favorable results. With the commonly used random
walk model of the unknown input, an estimator designed without delay still
produces delayed estimates. Designing an estimator with the same delay re-
sults in signi�cantly better estimates. A �lter with just a few time steps extra
delay results yields a reduction of error due to the measurement noise of up
to 60%. Estimation results can be improved by using the a priori information
on the spectral content of the cutting forces (chapter 3).

Main conclusion B

An approach to identifying a linear parametric model of a high-speed AMB micro-
milling spindle from measured data sequencies is given, in which:

• the e�ect of nonlinear distortions on the estimate is quanti�ed, and careful ex-
periment design is performed to obtain small variance errors, as well as small
errors from nonlinearities;

• accurate black-box models are estimated of the dynamics of the full high-order
multivariable AMB system operating at high rotational speeds, including both
its rigid body, as well as its �exible body behavior;

• both the bearing dynamics (the transfer function from the bearing currents to
the displacement of the rotor at the bearings), as well as the tooltip dynamics
(the transfer function from the force on the tip of a micro-mill to the displace-
ment of the rotor at the bearings) are modeled.
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Main conclusion B follows from the material in chapters 4, 5 and 6, from which the
main conclusions are:

B.1 Iterative linear regression algorithms are given for estimation of output error
models in le� or right matrix fraction descriptions from frequency response
data. �ese algorithms are extensions of the SISO IV-based linear regres-
sion algorithm, which has the property that convergence of the algorithm
implies that a stationary point of the cost function is reached.�is property,
in combination with the freedom in the de�nition of the model set and the
possibility to incorporate pre, post or element-wise multivariable frequency
weighting, make this an attractive approach for MIMO frequency domain
identi�cation of output error models (chapter 4).

B.2 A frequency domain approach is taken to identify the bearing dynamics of
the AMB spindle in the frequency range relevant for process monitoring and
control.�is approach consists of two stages:

– In the �rst stage, accurate estimates of themultivariable FRFof the bear-
ing dynamics aremade by excitation of the closed-loopwith orthogonal
random phase multisine signals. A method to detect nonlinear distor-
tions in the joint input/output (JIO) estimate of the FRF of a MIMO
system is given, which is based on the variance analysis for detection of
nonlinearities of Pintelon et al. in [131]. With this approach, nonlinear
distortion in the FRF estimate of an experimental AMB spindle setup
have been detected particularly at the lower frequencies. A strategy is
formulated to reduce the nonlinear distortion in the JIO FRF estimate,
and it has been shown that this resulted in a reduction of the nonlinear
distortion of up to 25 dB in the experimental results.

– In the second stage, a parametric model of the AMB spindle is deter-
mined using the estimated FRF and its covariance. A Schur-weighted
Output Error criterion is formulated, which has been shown to approx-
imate the maximum likelihood cost criterion under mild assumptions.
Minimization of the criterion function is achieved by application of the
IV-based iterative linear regression method of chapter 4. Multi-band
modeling is performed to deal with the large dynamic range. Experi-
mental results show the high correspondence of the estimated paramet-
ric model to the estimated FRF data. �e resulting estimated models
have been veri�ed to hold a structure as predicted from the physics of
the AMB spindle.

(chapter 5)

B.3 �e main challenge in identifying the tooltip dynamics is applying a known
excitation force to the tooltip. An approach has been formulated that uses
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data obtained during a milling experiment in which the cutting forces are
measured. �e amount of data that can be generated in this way is limited,
as is the control over the spectral properties of the input. Hence, in order to
reduce the complexity of the identi�cation, usage is made of the property of
the AMB system that all modes of the AMB spindle in the relevant frequency
range are observable in the bearing dynamics. �is results in an identi�ca-
tion problem with a model set with a particular closed-loop parametrization
that is linear in the parameters and a known, but non-minimum phase noise
model, forwhich an approach has been formulated. A simulation study based
on the properties of the EAAT AMB spindle has been used to demonstrate
the favorable properties of the given method (chapter 6).

Main conclusion C

E�ective model-based compensation approaches have been given for almost periodic
disturbances in the bearing signals, resulting from unbalance forces and roundness
errors.

�is conclusion follows from chapter 7:

C.1 A Model-based correction of runout disturbances in measurements of the
positions and currents of an AMB spindle has been considered, using a para-
metrized truncated Fourier series expansion model for the runout distur-
bance as a function of the angular position.�e main issue in this approach
is how to deal with the uncertainty in the angular position measurements, or
the total lack of such measurements.�is issue is attacked from two angles:

– In case perfect information on the angular position is available, a stan-
dard linear regression scheme is obtained. From this, a bias compensa-
tion approach has been formulated for the case noisy angular position
measurement are available.

– When no information on the angular position is available, the angular
position is estimated from the observations using an Extended Kalman
Filter (EKF), that for this purpose includes a model of dynamics of an-
gular position. In the case noisy angular positions are available, these
can be employed to improve the performance of the angular position
estimates, resulting in the EFK+ approach.

C.2 �e properties of both estimators have been investigated using aMonte Carlo
simulation study, demonstrating that in the case of noisy angular position
measurements, the EFK+ estimation performs best. �e EKF approach has
been further demonstrated by applying it both to data obtained through sim-
ulation of an AMB spindle performing a milling experiment, as well as to
measurement data from actual experiments. In both cases, runout has been
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accurately identi�ed and corrected, and the frequency variations in the signal
are very closely tracked.

Overall conclusion

�e objective of the research in this thesis is to investigate the possibilities for per-
forming process monitoring and control of micro-milling using AMBs. In Chapter
1, it was argued that it is an essential step to investigate the feasibility of obtaining
cutting forces from the bearing signals. As re�ected in conclusions A, B, and C, this
thesis provides new methods to accomplish cutting force estimation using AMB
spindles, where the following model-based steps are applied:

A. Amodel-based approach to cutting force estimation from the bearing signals
is given;

B. An approach is given to obtain highly accurate models of the AMB spindle
dynamics from measured data, needed for such an estimator;

C. A model-based approach is given to compensate for almost periodic distur-
bances present in the measurements of the bearing signals, which are the
input for the force estimator.

With thismethodology, cutting force estimation ofmicro-milling forces fromAMB
signals can be performed, opening up several other process monitoring and control
applications. Concluding, the research goal of this thesis has been achieved.

8.2 Recommendations for future research

Based on the conclusions, some improvements and recommendations for further
research can be formulated.

• �e methods in this thesis have been validated individually, some only in
simulation by lack of an experimental setup able to produce reliable data.
It is recommended that end-to-end testing of the approach is performed to
validate it.

• In Chapter 1, it was discussed that several opportunities exist to improve the
micro-milling process by developing process monitoring and control using
the active character of AMB spindles. In this thesis a �rst step has been
taken. It is recommended to performmore research to develop model-based
technogies that exploit the mentioned opportunities, including tool wear es-
timation, breaking detection, force control, and chatter control. In contrast
to the cutting force estimation problem, for these applications models of the
cutting dynamics will be needed. Research is required to estabish what mod-
els will be appropriate in these cases.
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• Adding to the previous recommendation, Chapter 1 also identi�ed several
opportunites to improve the cutting processwithAMBspindles by improving
the contour control. Particularly interesting is the opportunity to perform
bending compensation. �e objective of reducing the bending of a �exible
micro-milling tool can be formulated as to design a controller such, that the
transfer function from cutting force on the tooltip (u2) to displacement of
the tooltip (y2) is made small (in some appropriate measure). Such a control
objective can be very well formulated in an H∞ control design framework.
�e e�ect of such a control strategy is that the controller compensates the
high compliance at the tooltip by controlling the orientation and position of
the rotor. �e attractiveness of such technique is that the e�ective sti�ness,
as experienced by the process, is increased. In conventional manufacturing,
some results are available on this method, showing favorable results for the
cutting process (see [90, 51]).

• �e input estimation approach in chapter 3 has some limitations. In this
approach perfect model knowledge is assumed, as well as linearity of the
plant. When these assumptions cannot be justi�ed, the approach is to be
extended to incorporate model uncertainty and/or nonlinearity in order to
obtain smaller errors.�is requires further research.

• More work is needed to establish the relation between the physical properties
of an AMB spindle and the limits of performance of an input estimator used
to estimate the cutting forces. �is knowledge will be very valuable in the
design process of an AMB spindle, when it is speci�cally targeted at a micro-
milling con�guration.

• Concerning the IV-based iterative linear regression approach to frequency
domain identi�cation of MIMO system, the following recommendations are
made. It has been shown that convergence of the iterations implies optimal-
ity, however, more work is needed to establish the convergence properties of
the algorithm. Furthermore, the algorithm su�ers from poor numerical con-
ditioning for high-order models, particularly if the data extends over a large
dynamic range and a large frequency range. For the iterative linear regres-
sion method by Sanathanan and Koerner, improved numerical conditioning
has been achieved by computing an alternative basis for the model (with or-
thogonal polynomials, see e.g. [137]). It is suggested to extend this work to
the IV-based iterative linear regression approach.

• Regarding the identi�cation approach of the AMB spindle in Chapter 5, the
following problems are still open:

– Parametric modeling of the plant dynamics has been performed, but
only non-parametric noisemodeling was done. In order to improve the
accuracy of the cutting force estimator inChapter 3, which incorporates
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both a plant and noisemodel, it is suggested to extend the identi�cation
method to also perform parametric noise modeling.

– Linear models are obtained for a �xed rotational speed of the spindle.
�is is a limitation, as it implies that for every rotational speed setting
the identi�cation procedure needs to be repeated. It is therefore recom-
mended to enhance the method to identi�cation of the AMB spindle
for a range of spindle speeds. �is leads to a closed-loop MIMO LPV
identi�cation problem.

– An approach has been given to identify the level of nonlinear distur-
bance in the multivariable frequency response function of the AMB
spindle. For particular spindle designs, this might lead to the conclu-
sion that this level is too high to justify approximation of the dynamics
with a linear model. For such cases, extensions are needed to identify
the nonlinearities as part of the model.

• �e approach to identify the tooltip dynamics assumes that direct cutting
force measurements are available. In practice, these measurements are ob-
tained with devices that exhibit dynamical behavior: dynamometers have
strong resonances. �e e�ect of these dynamic properties is that only a �l-
tered version of the cutting force signal is available. Further research is re-
quired to establish the consequences of this phenomenon.

• �e runout compensation approaches are described for scalar signals. In the
Extended Kalman �lter approach, the angular position of the rotor is esti-
mated from the measurement. In an AMB spindle application however, the
angular position is the same for all measured signals. Hence, instead of es-
timating it from each measurement separately, a natural extension is to per-
form runout compensation for vector-valued signals, allowing for a more ac-
curate estimation of the angular position.
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Appendix A

Modeling of an AMB spindle

�is appendix shows the in-depth analysis of a number of modeling steps in chapter 2. It
starts with �rst principles modeling of the dynamics of the rotor and the electromagnetic
actuator. Both have been extensively studied in the literature (e.g. see [149, 148, 91, 94, 110]
and the references therein). Based on these works, we give a summary of the modeling pro-
cedure that was adopted for this thesis. In section A.1 modeling of the �exible rotor will be
discussed, followed by modeling of a simple con�guration of the electromagnetic actuator
in section A.2. Section A.3 discusses how discrete-time models from the continuous-time
models can be obtained.�is is done for the two measurement con�gurations discussed in
chapter 2, i.e. the direct measurement con�guration and the integrated con�guration.

A.1 Flexible rotor model

In this context we consider the rotor and the cutting tool that is attached to the rotor as one
rotating body. Given the extended frequency region of interest, we can not allow treating this
as a rigid body and need to model this as a �exible system. Flexible systems are in principle
in�nite dimensional systems. Practical solutions to model this are generally found by ap-
proximating the dynamics with a limited number of dimensions, leading to a �nite element
approach. Here we will also pursue such approach by modeling the rotor and tool as a chain
of �exible beam elements.�ese beam elements have a given length and diameter, for which
the equations of motion are derived in section A.1.1. Using the beam elements as building
blocks, the procedure to construct the equations of motion for the full rotor will be discussed
in section A.1.2. We conclude by discussing how distributed damping can be added to the
model in section A.1.3.

A.1.1 �e beam element
�e beam element is modeled as a �exible body with a constant circular cross-section and
length L (see �gure A.1). It has two nodes, with four degrees of freedom each (displacement
in x and y direction and rotations along these axes, denoted by ϕ and θ respectively). Hence
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Figure A.1:�e beam element with de�nitions of directions and coordinates

we obtain the vector of generalized coordinates

wb = [ x1 y1 ϕ1 θ1 x2 y2 ϕ2 θ2 ]T

�e corresponding vector of external generalized forces is

Fext = [ Fx1 Fy1 Mϕ1 Mθ1 Fx2 Fy2 Mϕ2 Mθ2 ]

�e rotational speed of the beam element around its z-axis is assumed to be constant. Wewill
denote the rotation angle with ψ and the rotational speed by Ω = ϕ̇. �e angles ϕ, θ and ψ
are de�ned as Euler angles, meaning that the transformation from world coordinate system
to body coordinate system is obtained by �rst performing a rotation of ϕ radians around the
x-axis, then θ radians around the y axis and �nally ϕ radians around the z axis.�e material
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Flexible rotor model

properties are described by mass density ρ, modulus of elasticy E, shear modulus G, which
is related to E by G = E/[2(1 + ν)] where ν is Poisson’s ratio.
We will use an energy method to derive the equation of motion for such beam element.

�is implies thatwe take an in�nitesimal cross section, and calculate the potential and kinetic
energies in this section.�en a shape interpolation function based on the nodal coordinates
wb is determined and this is used to integrate the energies along the beam. Subsequently, the
theorem of Lagrange is applied to �nd the equations of motion of the beam in terms of the
above coordinates and forces.
We will start with deriving the di�erential equations for a small cross section. Applying

the de�nitions in �gure A.1, from Newton’s laws, it follows that

dQx = µ
d2

dt2
wxdz dMy + Qxdz = µ̆

d2

dt2
θdz

dQy = µ
d2

dt2
wydz dMx − Qydz = µ̆

d2

dt2
ϕdz

with µ the mass per unit length and µ̆ the rotatory mass per unit length. Now de�ning
ux = − sin θx ≈ −θx and uy = sin ϕx ≈ ϕx, we can calculate the axial strains

єx =
∂ux
∂z

= −θ′x єy =
∂uy
∂z

= ϕ′y.

Assuming σ = Eє and noting that

My = −∫ σxxdA

we obtain

My = ∫ Eθ′x2dA = EIxθ′ .

Similarly, we �nd that

Mx = ∫ σy ydA = ∫ Eϕ′y2dA = EIyϕ′ .

For the average shear strain we can write

γx =
∂ux
∂x

+ ∂wx
∂z

= −θ +w′x γy =
∂uy
∂y

+
∂wy
∂z

= ϕ +w′y .

With shear relation τ = Gγ we obtain that

Qx = −∫ τxdA = GA(θ −w′x) Qy = −∫ τydA = GA(−ϕ −w′y).

However, as was shown by Timoshenko [55], this relation is not quite accurate, which can
be corrected by introducing the e�ective shear area As which for a circular cross section is
0.89A. Since the cross section is circular, we can write I = Ix = Iy , and obtain the following
set of equations

−Q′x = µẅx Qx −M′
y = µ̆θ̈

−Q′y = µẅy −Qy −M′
x = µ̆ϕ̈

Qx = GAs(θ −w′x) My = EIθ′

Qy = GAs(−ϕ −w′y) Mx = EIϕ′ .
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A. Modeling of an AMB spindle

To proceed, we need to �nd a relationship between the nodal coordinates wb and the coor-
dinateswx ,wy , ϕ and θ along the beam element. Instead of solving the di�erential equations
directly, in general a polynomial shape function of the beam is chosen that is uniquely de-
termined by wb . If we ignore the shear strain and the rotory intertia in the directions θ and
ϕ, there would exist a relationship between wx and θ (i.e. θ = w′x ) and likewise wy and
ϕ (i.e. ϕ = −w′y)1 . In this case we obtain a fourth order bending problem in both x and
y direction, while wb has four degrees of freedom in both x and y direction, hence the in-
terpolation problem can be solved. However, when the shear strain and the rotory intertia
cannot be ignored, a di�culty we encounter is that wx and θ, and likewise wy and ϕ are in
fact kinematically independent of one another. �is results in a fourth order bending and
a second order shear interpolation in both directions, so that too few boundary conditions
are available to uniquely solve the interpolation problem. A number of solutions have been
formulated[110]:
Second order polynomials In this approach the variables are indeed treated completely

separately and independent polynomials are chosen for wx , wy , ϕ and θ. �e result
of solving the equations is that bending deformation is represented as a linear func-
tion, and shear as a second order. �is result is quite non-satisfactory, particularly
concerning the representation of the bending deformation.

Splitting assumption Higher order polyniomals are obtained in this approach by increasing
the number of boundary conditions. It is assumed that the bending deformation can
be ’split o� ’ from the shear deformation by writing wx = wx1 +wx2 with w′x1 = θ and
w′x2 = γx and similarly for the other direction wy = wy1 + wy2 with w′y1 = −ϕ and
w′y2 = γy . With this assumption, the following set of equations is obtained

−Q′x = µ(ẅx1 + ẅx2) Qx −M′
y = µ̆ẅ′x1

−Q′y = µ(ẅy1 + ẅy2) −Qy −M′
x = −µ̆ẅ′y1

Qx = −GAsw′x2 My = EIw′′x1
Qy = −GAsw′y2 Mx = EIw′′y1

Eliminating the forces and moments from these equations, we get

GAsw′′x2 − µ(ẅx1 + ẅx2) = 0
GAsw′′y2 − µ(ẅy1 + ẅy2) = 0

EIw′′′′x1 + µ̆ẅ′′x1 + µ(ẅx1 + ẅx2) = 0
EIw′′′′y1 − µ̆ẅ′′y1 − µ(ẅy1 + ẅy2) = 0

�ese equations show two fourth-order equations and two second order equations
with a coupled mass term. As shown by Marguerre and Wölfel [110], by separately
parameterizing wx1 and wx2 , the �rst with a cubic polynomial, the second with a sec-
ond order polynomial (and similarly for the y direction), equations of motion can
be obtained. �e corresponding boundary vectors for displacement and force will
have twelve elements each, instead of eight.�is approach is useful particularly when
dealing with simple chain structure that have no interaction with external structures.
Hence most useful for our application will be the third option:

1�is is would result in a Bernoulli beam analysis.
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Flexible rotor model

Mixed assumption Like with the Bernoulli beam, in this case it will be assumed that there
exists a relationship with wx and θ and wy , and wy and ϕ. However, this relationship
is derived from the beam equations. If for the purpose of deriving this relationship,
we ignore the rotory inertia2 , i.e. we assume ψ̈ = θ̈ = 0, we obtain that

w′x = θ − EI
GAs

θ′′ w′y = −ϕ −
EI
GAs

ϕ′′

With this assumption, we can proceed to derive the equations of motion for the the
beam element.

If we de�ne coordinate vector w(z, t) = [ wx wy ϕ θ ]T (z, t) and boundary
coordinate vector wb(t) = [ w(0, t) w(L, t) ], then as shown by Marguerre and Wölfel
[110], we may write

wx(z, t) = Hx(z)wb(t) ϕ(z, t) = Hϕ(z)wb(t) (A.1)
wy(z, t) = Hy(z)wb(t) θ(z, t) = Hθ(z)wb(t) (A.2)

with

Hx(z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1+κ (2(z/L)

3 − 3(z/L)2 − κ(z/L) + (1 + κ))
0
0

L
1+κ ((z/L)

3 − (2 + κ/2)(z/L)2 + (1 + κ/2)(z/L))
1
1+κ (−2(z/L)

3 + 3(z/L)2 + κ(z/L))
0
0

L
1+κ ((z/L)

3 − (1 − κ/2)(z/L)2 + (κ/2)(z/L))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

and

Hθ(z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6/L
1+κ ((z/L)

2 − (z/L))
0
0

1
1+κ (3(z/L)

2 − (4 + κ)(z/L) + (1 + κ))
6/L
1+κ (−(z/L)

2 + (z/L))
0
0

1
1+κ (3(z/L)

2 − (2 − κ)(z/L))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

with κ = 12EI/(L2GAs). Similar expressions for Hy , Hθ can be derived.
For the strain energy (i.e. the potential energy) we can write:

dV = 1
2
( ∗ )T

⎡⎢⎢⎢⎢⎢⎢⎢⎣

EI
EI

GAs
GAs

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜
⎝

θ′
ϕ′

(θ −w′x)
(−ϕ −w′y)

⎞
⎟⎟⎟
⎠
dz

2�is approximation explains why approach is called themixed assumption, since for the derivation
of the dynamics, an approximation is made based on the static behavior.
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A. Modeling of an AMB spindle

which we can also write as

dV = 1
2
wTb TT

⎡⎢⎢⎢⎢⎢⎢⎢⎣

EI
EI

GAs
GAs

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Twbdz, where T =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

H′
θ
H′

ϕ
−H′

x + Hθ
−H′

y − Hϕ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

or, for brevity, dV = 1
2w

T
bUwb with

U = TT
⎡⎢⎢⎢⎢⎢⎢⎢⎣

EI
EI

GAs
GAs

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T .

To proceed with deriving the kinetic energy, let us de�ne x = [ x y z p q r ]
the vector of coordinates and angular displacements in the body reference frame (i.e. the
reference frame attached to the disc). �e kinetic energy of the disc with width dz we can
express as

dT = 1
2
ẋT [ M 0

0 I ] ẋdz

For a circular disc with radius r, mass density ρ and with its normal aligned with the z-axis,
we can write

M = diag ( µ µ µ ) I = diag ( µ̆ µ̆ 2µ̆ )

with µ = ρπr2 and µ̆ = 1
4 ρπr4 , where we have used that for this geometry the area moments

of inertia Ix = Iy = 1
4 r
4 and Iz = 2Iy .

Let R be the matrix that maps the Euler angles [ ϕ θ ψ ]T in the frame attached to
the rotor.�enwriting the vector ofworld coordinates aswa = [ wx wy wz ϕ θ ψ ]
we can derive the coordinate transformation

x = [ I 0
0 R ]wa

�is transformation we can use to express the kinetic energy in terms of world coordinates
wa

dT = 1
2
ẇTa [

M 0
0 RTIR ] ẇadz

As can easily be veri�ed, R is given by

R =
⎡⎢⎢⎢⎢⎢⎣

cos θ cosψ − sinψ 0
cos θ sinψ cosψ 0
sin θ 0 1

⎤⎥⎥⎥⎥⎥⎦
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With this we obtain

RTIR =
⎡⎢⎢⎢⎢⎢⎣

µ̆(1 + sin2 θ) 0 2µ sin θ
0 µ̆ 0

2µ sin θ 0 2µ

⎤⎥⎥⎥⎥⎥⎦
which for small θ reduces to

RT IR =
⎡⎢⎢⎢⎢⎢⎣

µ̆ 0 2µθ
0 µ̆ 0
2µθ 0 2µ̆

⎤⎥⎥⎥⎥⎥⎦
Now observe that

ẇTa [
M 0
0 RTIR ] ẇa = ẇTa [

M 0
0 I ] ẇa + 4µ̆ϕθ̇ψ̇.

Noting that we do not consider translation in the z-direction (hence ẇz = 0) and the rota-
tional speed is constant (hence ψ̇ = Ω), we can derive that

wa(z, t) = H(z)wb(t) + col(0, 0,wz , 0, 0,ψ)

with H(z) = col(Hx ,Hy , 0,Hϕ ,Hθ , 0), and consequently

ẇa(z, t) = H(z)ẇb(t) + col(0, 0, 0, 0, 0, Ω).

Using this, we obtain

ẇTa [
M 0
0 RTIR ] ẇa = ẇTb HT [

M 0
0 I ]Hẇb + 4µ̆ΩwTb HTϕHθ ẇb + 2µ̆Ω2

Integrating the potential and kinetic energy over the length of the beam,we can construct
the Lagrangian and obtain

L = T − V = ẇTb {
1
2 ∫

L

0
HT [ M 0

0 I ]Hdz} ẇb(t) +wTb {2µ̆Ω∫
L

0
HTϕHθdz} ẇTb (t)+

−wb(t)T {
1
2 ∫

L

0
Udz}wb(t) + 2µ̆Ω2

Now applying Lagrange’s theorem:

d
dt

( ∂T
∂ẇb

) − ∂T
∂wb

= Mẅb +Gẇb + Kwb = Fex t

where from the symmetry properties of the integrands it follows that

M = ∫
L

0
HT [ M 0

0 I ]Hdz

K = ∫
L

0
Udz

and furthermore

G = 2µ̆Ω∫
L

0
HTϕHθ − HTθ Hϕdz.
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A. Modeling of an AMB spindle

A.1.2 Connection of beam elements
A �nite element model of the rotor can be obtained by modeling it as a �nite series of con-
nected beam elements. Assuming rigid connection between the elements, the connection of
two elements can be modeled as follows. Consider beam element A of which its top node is
rigidly connnected to the bottom node of beam element B. Letwi = [ x i y i ϕ i θ i ]T ,
with i = 1, 2 denote the generalized coordinates of the top and bottom coordinate of a beam
element respectively .�en the rigid connection of beam element A and B can be expressed
mathematically as wA2 = wB1 . We use the following notation, indication the partioning of the
element matrices with respect to the top and bottom nodal coordinates:

MA = [ M
A
11 MA

12
MA
21 MA

22
] , GA = [ G

A
11 GA12
GA21 GA22

] , KA = [ K
A
11 KA12
KA21 KA22

] , (A.3)

MB = [ M
B
11 MB

12
MB
21 MB

22
] , GB = [ G

B
11 GB12
GB21 GB22

] , KB = [ K
B
11 KB12
KB21 KB22

] . (A.4)

De�ning the extended coordinate vector

w =
⎡⎢⎢⎢⎢⎢⎣

wA1
wA2 = wB1

wB2

⎤⎥⎥⎥⎥⎥⎦

it can easily be veri�ed that the connected system can be described as

Mẅ +Gẇ +Kw = Fext

with

M =
⎡⎢⎢⎢⎢⎢⎣

MA
11 MA

12 0
MA
21 MA

22 +MB
11 MB

12
0 MB

21 MB
22

⎤⎥⎥⎥⎥⎥⎦
, G =

⎡⎢⎢⎢⎢⎢⎣

GA11 GA12 0
GA21 GA22 +GB11 GB12
0 GB21 GB22

⎤⎥⎥⎥⎥⎥⎦
,

K =
⎡⎢⎢⎢⎢⎢⎣

KA11 KA12 0
KA21 KA22 + KB11 KB12
0 KB21 KB22

⎤⎥⎥⎥⎥⎥⎦

and Fext the vector of external forces and moments corresponding to each of the degrees of
freedom.�e above procedure can be extended for longer connections of beam elements.
If the joint between elements is not rigid (as might be the case in the coupling between

milling tool and rotor), radially sti� joints or �exible joints with sti�ness and damping can
be included as described by Krämer[91].

A.1.3 Adding damping
Viscous damping can be added to themodel by adding amatrixD to the equations ofmotion,
yielding

Mẅ + (D +G)ẇ +Kw = Fext .
It is particularly di�cult to model distributed (c.q. material) damping from �rst principles.
Hence, in the literature, frequently approximations are made, where Rayleigh damping and

184



i
i

“main” — 2011/4/11 — 8:51 — page 185 — #195 i
i

i
i

i
i

�e electromagnetic actuator

Figure A.2: Con�guration of the electromagnetic actuator

modal damping are most common (see e.g.[91]). Rayleigh involves setting the damping ma-
trix as a linear combination of the mass and sti�ness matrix, i.e. D = αM + βK, where α
and β are chosen such that damping of the twomost important modes is appropriately mod-
eled. Alternatively, modal damping can be applied, which involves computation of a modal
decomposition of the system (for Ω = 0). �en for each mode a damping value is selected.
With this, matrix D can be computed.

A.2 �e electromagnetic actuator

In this section, amodel will be derived for the electromagnetic actuator. For this, wewill con-
sider the most common con�guration of a magnetic bearing, the di�erential driving mode,
which consists of two electromagnetic actuators that are positioned at opposite sides of the
rotor. Furthermore, in order to keep the derivation simple, we will consider a design of ac-
tuator with independent �ux paths of both actuators.
In section A.2.1 a model for a single actuator will be derived.�is model will be used in

section A.2.2 to derive the equations for a magenetic bearing in di�erential driving mode.

A.2.1 �e electromagnetic actuator

Consider the actuator depicted in �gure A.2, showing a rotor, with on opposite sides an elec-
tromagnetic coil.�e purpose of this section is to derive the electrical and electromechanical
properties of one coil.

Laws of electromagnetism

In order to analyze the actuator, we will start by brie�y reviewingMaxwell’s equations, where
we will use the integral form [33]:

• Maxwell’s �rst law

∮
C
H ⋅ dl = ∫

S
J ⋅ dA + d

dt ∫S
D ⋅ dA
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A. Modeling of an AMB spindle

• Maxwell’s second law or Faraday’s law of induction

∮
C
E ⋅ dl = − d

dt ∫S
B ⋅ dA

• Gauss’ law for magnetism

∮
S
D ⋅ dA = ∫

V
ρdV

• Gauss’ law

∮
S
B ⋅ dA = 0.

Here E is the electric �eld [V/m], H is the magnetic �eld [A/m], D is the electric displace-
ment �eld (also known as electric �ux density) [C/m2], B is the magnetic �ux density [T],
J is the free current density [A/m2], and ρ is the free electric charge density [C/m3]. �e
magnetic �ux Φ through surface S is de�ned as

Φ = ∫
S
B ⋅ dA

In the analysis that follows we will use two common and reasonable simpli�cations:
• Linear materials: the relation between magnetic �eld and magnetic �ux density is
assumed to be known and linear, i.e. B = µH = µ0µrH, with µ the (absolute) perme-
ability, µ0 the permability of vaccuum and µr the relative permeability.

• Quasi-static �eld approximation: relative to the propagation speed of electromag-
netic �elds (the speed of light), the distances and translation speeds in the systems
are small, hence changes of electric displacement �eld can be neglected as source for
the magnetic �eld. With this, Maxwell’s �rst equation reduces to

∮
C
H ⋅ dl = ∫

S
J ⋅ dA. (A.5)

Magnetic circuit

Considering a current carrying wire wound N times around a ferromagnetic core, it follows
from equation (A.5):

∮
C
H ⋅ dl = ∫

S
J ⋅ dA = Ni

Contour C is built up in four segments (stator part, rotor part and two air gaps). Assuming
the resulting magnetic �eld density is constant and always tangential to the coil core, wemay
simplify this to Hs ls +Hr lr + 2Hg g = Ni. Assuming the permeability of the core material is
su�ciently high, the �eld will concentrate in themagnetic circuits, and Φmay be considered
constant.�is implies no spread of �eld in air gap and no leakage �ux induced in air around
coil. From this it follows that Br = Φ

Ar
, Bs = Φ

As
, Bg = Φ

Ag
. With B = µH and assuming that

the relative permeability of the air gap is 1 we obtain

Ni = Φ( lr
µ0µrrAr

+ ls
µ0µrsAs

+ 2 g
µ0Ag

)
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and thus

Φ = N
( lr
µ0 µrr Ar

+ ls
µ0 µrs As

+ 2 g
µ0Ag

)
i . (A.6)

Electrical properties

To apply Faraday’s law of induction, �rst note that electrical current I is de�ned as �owing
from A to B. Hence the contour integral of electric �eld can be expanded as

∮
C
E ⋅ dl = ∫

B

A
E ⋅ dl + ∫

A

B
E ⋅ dl

= ∫
B

A
ρJ ⋅ dl − u

= ∫
B

A
ρ i
Aw

⋅ dl − u

= Ri − u

with R = ρ lw
Aw
, and ρ the electrical resistivity, Aw the cross section of the wire and lw the length

of the wire. Noting that

− d
dt ∫S

B ⋅ dA = − d
dt

ψ

with ψ the �ux coupled with contour C. Combining the above results we obtain

− d
dt

ψ = Ri − u.

Note that coupled �ux is given by ψ = NΦ and using equation A.6 we obtain ψ = Li with

L = N 2

( lr
µ0 µrr Ar

+ ls
µ0 µsAs

+ 2 g
µ0Ag

)

Since both i and g are both functions of time, also is L. Hence we can write

d
dt

ψ = ∂L
∂g
dg
dt
i + L di

dt

= −L2 2
N 2µ0Ag

dg
dt
i + L d

dt
i

Note that if µrr >> 1 and µrs >> 1 that L2 2
N2 µ0Ag

≈ L
g . It can then easily be veri�ed that even

if g varies with high frequencies, the �rst term is several orders in magnitude smaller than
the �rst. Hence, we can safely ignore the voltage induced by rotor movement and write

u = Ri + L d
dt
i
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Mechanical properties

�ere is a number of ways to derive the electromechanical force that is exerted on the rotor.
Here we will apply the principle of virtual work. Assume an in�nitesimal displacement ∂g
as a result of the force (which stays constant along this small displacement). �en by the
principle of energy conservation, the work done by this force must be equal to the change
of the electromagnetic energy in both air gaps. Mathematically we can express this as ∂W =
F∂g. Noting that the energy density of a magnetic �eld is given by

w = 1
2µ0

B ⋅ B

we �nd that the electromagnetic energy is given by

W = 1
2µ0 ∫V

B ⋅ BdV = 1
2
2gAgB2

µ0
= gΦ2

µ0Ag

Hence we obtain

F = ∂W
∂g

= Φ2

µ0Ag

= (Ni)2

µ0Ag ( lr
µ0 µrr Ar

+ ls
µ0 µsAs

+ 2 g
µ0Ag

)
2 .

If we ignore the magnetoresistance of the stator and rotor and hence assume that µrr >> 1
and µrs >> 1, we can simplify this equation to

F =
N 2µ0Ag
4

i2

g2
= λ i

2

g2

with λ = 1
4N

2µ0Ag .

A.2.2 Active magnetic bearings in di�erential driving mode
As mentioned in the introduction of this section, we consider electromagnetic actuators in
di�erential drivingmode. In this con�guration twomagnetic coils are setup opposite to each
other, together enabling the control of the position of an object in one dimension. Using the
result of the previous section we can write

Fleft = λleft (
ileft
g0 + x

)
2

Fright = λright (
iright
g0 − x

)
2

where ileft and iright are the currents through the le� and right coil respectively, g0 is the
nominal gap length beteen the object and the coil, and x is the displacement of the object
from its center position. In the di�erential driving mode con�guration, the current of two
coils is chosen such, that both have an equal bias value, augmented with a control current
with opposite sign:

ileft = ibias − i iright = ibias + i
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If we assume that the electromagnetic coils have the same properties, i.e. λ = λleft = λright ,
we can then the express the net force that is exerted on the object as

F = Fright − Fleft

= λ
⎧⎪⎪⎨⎪⎪⎩
( ibias + i
g0 − x

)
2

− ( ibias − i
g0 + x

)
2⎫⎪⎪⎬⎪⎪⎭
.

Note that due to this particular con�guration, the resulting magnetic force becomes a linear
function of the control current i when the rotor is at its nominal position (i.e. x = 0):

F(i)∣x=0 =
4λibias
g20

⋅ i .

Since the rotor will generally be operating closely around this nominal position, it makes
sense to approximate expression A.7a with a linear model. A �rst order Taylor expansion
around i = 0 and x = 0 yields

F ≈ ∂F
∂x
x + ∂F

∂i
i

yielding the well-known and frequently-used relation for the AMB

Famb = kxx + k i i

with

k i =
4λibias
g20

=
N 2µ0Ag ibias

g20

kx =
4λi2bias
g30

=
N 2µ0Ag i2bias

g30
.

A.3 Discrete-time modeling

In this part, we analyze how a discrete-timemodel of the AMB spindle system can be derived
for both con�gurations disucssed in the section 2.7.

A.3.1 Direct measurement of the bearing signals
�e con�guration in which the bearing signals are obtained by direct measurement is illus-
trated in �gure A.3. As indicated in this �gure, the output y(t) is low-pass �ltered by �lter
L(s) to avoid aliasing, yielding signal yL(t), which is then sampled at intervals Ts yielding
the discrete time sequence yL(nTs). Similarly the control currents are measured, yielding
the discrete time sequence u1,L(nTs). It is assumed that both anti-aliasing �lters L(s) are
identical. Let sample frequency ωs be de�ned as ωs = 2π

Ts
. �e discrete-time representation

of the cutting force signal u2,L(nTs) is de�ned as the sequence that is obtained by �ltering
the continuous-time cutting force signal u2,0(t) by L(s) and then sampling the result at fre-
quency ωs .
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A. Modeling of an AMB spindle

P(s) L(s)

L(s)

AMB spindle

low-pass �lter

low-pass �lter

A/D conv.
y(t) yL(nTs)

u2(t)

u1,L(t) u1,L(nTs)

yL(t)
v2(t)

v1(t)

A/D conv.

Ts

Ts

+ +

++u1(t)

L(s)
low-pass �lter A/D conv.

u2,L(nTs)u2,L(t)
Ts

K(s)
Controller + ampli�er

Figure A.3: Block diagram illustrating the con�guration of an AMB spindle where the sig-
nals of the bearings are available through a digital control environment

In order to obtain an equivalent discrete-time model of the AMB spindle, we will derive
the relation between the Discrete-Time Fourier Transform (DTFT) of u1,L(nTs), u2,L(nTs)
and y1,L(nTs), here denoted as U1,L(e jωTs ), U2,L(e jωTs ) and Y1,L(e jωTs ) respectively. For
this we will consider the noiseless case. First note that we can express

U1,L(e jωTs ) =
1
Ts

∞
∑
k=−∞

U1,L( jω − kωs) (A.7a)

U2,L(e jωTs ) =
1
Ts

∞
∑
k=−∞

U2,L( jω − kωs) (A.7b)

Y1,L(e jωTs ) =
1
Ts

∞
∑
k=−∞

Y1,L( jω − kωs). (A.7c)

whereweuse the notation X( jω) to denote theContinuous-TimeFourier Transform (CTFT)
of a signal x(t). For the analysis, we make the following assumptions concerning the low-
pass �lter L(s)
1. Each channel is identically low-pass �ltered, i.e. L(s) has the following structure:

L(s) = I4×4 ⋅ l(s) (A.8)

2. �e low-pass �lter l(s) satis�es l( jω) = 0, for ω > ωs
2
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Discrete-time modeling

PD(z)
AMB spindle

yL

u1,L

v2,D

v1,D + +
++KD(z)

Controller + ampli�er

u2,L

Figure A.4: Block diagram of equivalent discrete-time model of the direct measurement
con�guration

From these assumptions it immediately follows that for ∣ω∣ < ωs
2 ,

U1,L(e jωTs ) =
1
Ts
L( jω)U1( jω) (A.9a)

U2,L(e jωTs ) =
1
Ts
L( jω)U2( jω) (A.9b)

Y1,L(e jωTs ) =
1
Ts
L( jω) [P1( jω)U1( jω) + P2( jω)U2( jω))] (A.9c)

which when combined results in

Y1,L(e jωTs ) = P1( jω)U1,L(e jωTs ) + P2( jω)U2,L(e jωTs ). (A.10)

Hence an equivalent discrete-time representation PD(z) of P(s) satis�es

PD(e jωTs ) = P( jω), ∣ω∣ < ωs/2, (A.11)

An approximation of PD(z) can be obtained using e.g. Tustin transformation of P(s). With
equivalent discrete-time representation of the noises in the setup, the equivalent discrete-
time model for this con�guration is depicted in �gure A.4. Observe that this representation
also contains a discrete-time equivalent representation of the combined controller and am-
pli�er, denoted as KD(z). In this con�guration we will not make any further assumptions
on KD(z) other than that the closed-loop is stable.

A.3.2 Integration with a digital control environment
When the force estimator can be integrated with the digital controller of the AMB spindle,
the con�guration that is obtained is as depicted in �gure A.5. �e output y(t) is low-pass
�ltered by �lter L(s) yielding signal yL(t), which is then sampled at intervals Ts yielding
the discrete time sequence yL(nTs).�is discrete signal is the input for the digital controller
K(z), which yields the discrete control sequence u1,D(nTs). �is signal is reconstructed
through zero-order hold, and the reconstructed signal forms the input of the current ampli-
�er that generates the currents through the coils of the bearings. �e discrete-time equiva-
lent force signal u2,L(nTs) is de�ned as in the previous section, and �lter L(s) satis�es the
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A. Modeling of an AMB spindle

P(s) L(s)
AMB spindle dynamics low-pass �lter A/D conv.

y(t)
yL(nTs)

u2(t)

u1,D(nTs)

yL(t)
v2(t)

Ts

++u1(t)

L(s)
low-pass �lter A/D conv.

u2,L(nTs)u2,L(t)
Ts

A(s)
Current ampli�er

LZOH(s)
D/A conv.

K(z)

Figure A.5: Block diagram illustrating the con�guration of a AMB spindle where the signals
of the bearings are obtained through direct measurement

PD(z)
AMB spindle

yL
u1,D

v2,D

++K(z)
Controller

u2,L

(inc ampli�er)

Figure A.6: Block diagram of equivalent discrete-timemodel of the integrated con�guration

same assumptions. Following the same reasoning as the previous section, we derive that for
∣ω∣ < ωs/2

YL(e jωTs ) = L( jω)P1( jω)A( jω)LZOH( jω)U1,d(e jωTs ) + P2( jω)U2,L(e jωTs ), (A.12)

implying that for ∣ω∣ < ωs/2 the equivalent discrete-time model PD(z) satis�es

PD ,1(e jωTs ) = L( jω)P1( jω)A( jω)LZOH( jω) (A.13a)

PD ,2(e jωTs ) = P2( jω). (A.13b)

�is shows that PD ,1(z) can be obtained by computing the ZOH equivalent of the cascade
of the current ampli�er, AMB spindle dynamics and the anti-aliasing �lter, while PD ,2(z)
can be approximated by e.g. a Tustin transformation. With the discrete-time equivalent
representation of the measurement noise v2,D , the resulting discrete-time model is depicted
in �gure A.6.

192



i
i

“main” — 2011/4/11 — 8:51 — page 193 — #203 i
i

i
i

i
i

Appendix B

Proofs

B.1 Proofs of chapter 3

B.1.1 Proof of proposition 3.5.3
In this section we prove proposition 3.5.3. First note that with some algebraic manipulations,
Psi(z) can be brought in the standard form of equation (3.5.1)

Ψ(z) = [ Cc(zI − Ac)−1 I ] [ Bc ,2QB
T
c ,2 Bc ,2S

STBTc ,2 Rv2
] [ (z−1I − ATc )−1CTc

I ] (B.1)

where

S = [ 0 Rv2 ]T (B.2)

We �rst verify that the system satis�es the conditions of proposition 3.5.2.

Lemma B.1.1 With {Ac , Bc ,2 ,Cc ,Q , Rv2 , S} as de�ned in equations (3.85), (3.86), (3.87), and
(B.2), de�ne

As = Ac − Bc ,2SR−1v2Cc and Q
s = Q − SR−1v2 S

T . (B.3)

�en we have the following facts:

1. [ Bc ,2QB
T
c ,2 Bc ,2S

STBTc ,2 Rv2
] ≥ 0.

2. (Cc , Ac) is observable.
3. (As , Bc ,2(Q s)1/2) is unit-circle controllable.

Proof We provide proof of each of the facts:
1. Observe that

[ Bc ,2QB
T
c ,2 Bc ,2S

STBTc ,2 Rv2
] = [ Bc ,2Dc ,2

]Q [ BTc ,2 DTc ,2 ] (B.4)

Positive semi de�niteness follows from Q > 0.
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2. We establish observability of (Cc , Ac) using the BPH test, i.e. (Cc , Ac) is controllable
if (and only if) rank Z(λ) = n + nu + nv2∀λ ∈ C, with

Z(λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λI − Au 0 0
BP ,2Cu λI − A 0
0 0 λI − Av2
0 C Cv2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (B.5)

Assume (Cc , Ac) is not observable.�en there exists a vector z = col(x , ξ, ζ) ≠ 0 and
a λ ∈ C such that Z(λ)z = 0. We examine the system for the cases that λ ∉ σ(Au)
and λ ∈ σ(Au):

• Assume λ ∈ {σ(A)∪σ(Av2)} and λ ∉ σ(Au).�en Z(λ) has full rank based on
observability of (CP , AP) and the minimality of the realization (Av2 , Bv2 ,Cv2).
Consequently ∀λ ∈ C, Z(λ)z = 0 implies z = 0. Hence we arrive at a contra-
diction.

• Assume λ ∈ σ(Au) (and possibly also λ ∈ σ(A)∪ σ(Av2)).�en by minimality
of the realization (Au , Bu ,Cu), (λI − Au)ξ = 0 for ξ ≠ 0 implies Cu ξ ≠ 0. Let
ξ′ = Cu ξ.�en Z(λ)z = 0 implies

⎡⎢⎢⎢⎢⎢⎣

BP ,2 λI − AP 0
0 0 λI − Av2
0 CP Cv2

⎤⎥⎥⎥⎥⎥⎦

⎛
⎜
⎝

ξ′
x
ζ

⎞
⎟
⎠
= 0 (B.6)

or equivalently

⎡⎢⎢⎢⎢⎢⎢⎢⎣

B1P ,2 λI − A11P −A12P 0
0 0 λI − A22P 0
0 0 0 λI − Av2
0 C1P C2P Cv2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜
⎝

ξ1′
ξ2′
x
ζ

⎞
⎟⎟⎟
⎠
= 0 (B.7)

From observability of (CP , AP), equation (3.80) and the minimality of the re-
alization (Av2 , Bv2 ,Cv2) we conclude that the matrix in the above equality has
full column rank, from which it follows col(ξ′ , x , ζ) = 0. Again, we arrive at a
contradiction.

In both cases we arrive at a contradiction, which proves the observability of (Cc , Ac).
Observe that (3.80) is su�cient for (Cc , Ac) to be observable, although it is not neces-
sary. From the above, it can be derived easily that a necessary requirement is that the
triplet (A11P , B1P ,2 ,C1P) has no invariant zeros that coincide with the eigenvalues of Au .
�e more conservative condition (3.80) ensures observability for any input spectrum
Φu (see also the remark under assumption 3.4.8).

3. Unit-circle controllability of (As , Bc ,2(Q s)1/2) is equivalent to

rank [ λI − As Bc ,2(Q s)1/2 ] = nu + n + nv2 for all ∣λ∣ = 1 (B.8)

with nu = dim(Au) and nv2 = dim(Av2). It is easily veri�ed that

[ λI − As Bc ,2(Q s)1/2 ] =
⎡⎢⎢⎢⎢⎣

λI − Au 0 0 BuR1/2u
BP ,2 λI − AP 0 0
0 Bv2CP λI − Av2 + Bv2Cv2 0

⎤⎥⎥⎥⎥⎦
.
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Fromminimality of the realizations (Au , Bu ,Cu), (Av2 , Bv2 ,Cv2) and equation (3.78),
identity (B.8) is immediate.

Using proposition 3.5.2 and lemma B.1.1, we can now obtain an explicit expression forM(z),
i.e.

M−1(z) = I − Cc(zI − Āc)−1L, where (B.9)

L = (AcΠCTc + Bc ,2S)R−1 (B.10)

R = Rv2 + CcΠC
T
c (B.11)

and Π is the unique positive semi-de�nite solution to the discrete algebraic Ricatti equation
(DARE)

Π = AcΠATc + Bc ,2QBTc ,2 − LRLT (B.12)

such that Āc = Ac − LCc is stable.

B.1.2 Proof of proposition 3.5.4

To complete the expression for F0,N(z) we need to evaluate the causality operator in (3.92).
Observe that F(z) can also be brought in the form

F(z) = [ Cu(zI − Au)−1 I ] [ Bu [ Ru 0 ]BTc ,2 0
0 0 ] [ (z−1I − Āc)−1CTc

I ] (B.13)

Observe that due to the stability of Au the �rst factor of (B.13) is strictly causal, while the
stability of Āc implies that the third factor is strictly anti-causal. Hence, by transforming
expression (B.13) in a form in which the right-upper block of the center matrix is zero, we
can separate the causal and anti-causal part of F(z). To achieve this, we use the following
lemma:

Lemma B.1.2 Any z-cross spectrum of the form

S12(z) = [ C1(zI − A1)−1 I ] [ K L
M N ] [ (z−1I − AT2 )−1CT2 ] (B.14)

is invariant under transformation

[ K L
M N ]→ [ K − Q + A1QA

T
2 L + A2QCT2

M + C1QAT2 N + C1QCT2
] (B.15)

for any matrix Q with appropriate dimensions.

Proof A proof for the case A1 = A2 and C1 = C2 in given in [83].�e more general formu-
lation in this lemma is proven similarly.
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Now, note that we can express for the le�-upper block of the center matrix of F(z)

Bu [ Ru 0 ]BTc ,2 = [ I 0 0 ]Bc ,2QBTc ,2 .

From equation (B.12) we infer that

Bc ,2QBTc ,2 = Π − AcΠĀTc + Bc ,2SLT .

Furthermore, partition Π according to the partitioning of Ac as

Π =
⎡⎢⎢⎢⎢⎢⎣

Π11 Π12 Π13
Π21 Π22 Π23
Π31 Π32 Π33

⎤⎥⎥⎥⎥⎥⎦

and let Z = [ Π11 Π12 Π13 ]. With this, we obtain

Bu [ Ru 0 ]BTc ,2 = [ I 0 0 ] (Π − AcΠĀTc + Bc ,2SLT)

= Z − AuZĀTc

where it used that [ I 0 0 ]Bc ,2S = 0. Applying lemma B.1.2 with Q = Z yields

F(z) = [ Cu(zI − Au)−1 I ] [ Z − AuZĀ
T
c 0

0 0 ] [ (z−1I − ĀTc )−1CTc
I ]

= [ Cu(zI − Au)−1 I ] [ 0 AuZCTc
CuZĀTc CuZCTc

] [ (z−1I − ĀTc )−1CTc
I ]

or equivalently

F(z) = Cu(zI − Au)−1AuZCTc
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=F1(z)

+CuZCTc + CuZĀTc (z−1I − ĀTc )−1CTc
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=F2(z)

(B.16)

where we observe that F1(z) is strictly causal and F2(z) is anti-causal. From this, we can
directly identify the causal part of z−NF(z):

{z−NF(z)}+ = z
−NF1(z) + {z−NF2(z)}+ . (B.17)

To evaluate the second term, observe that we can write

F2(z) = CuZ(I + ĀTc (z−1I − ĀTc )−1)CTc (B.18)

= CuZ
∞
∑
m=1
zm−1(ĀTc )m−1CTc (B.19)

from which it follows that

{z−NF2(z)}+ = CuZ
N+1
∑
m=1
zm−N−1(ĀTc )m−1CTc (B.20)

196



i
i

“main” — 2011/4/11 — 8:51 — page 197 — #207 i
i

i
i

i
i

Proofs of chapter 3

Using (B.17) we can express the optimal �lter solution (3.92) as

z−NF0,N =
⎡⎢⎢⎢⎢⎣

0 z−NF1(z)R−1M−1(z)S(z)−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=F0,N ;2a(z)

+{z−NF2(z)}+R−1M−1(z)S(z)−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=F0,N ;2b(z)

⎤⎥⎥⎥⎥⎦
.

(B.21)

We will simplify both terms F0,N ;2a(z) and F0,N ;2b(z). First note that we can express

M−1(z)S−1(z) = (I − Cc(zI − Āc)−1L)(I − P1(z)K(z)) (B.22)

= (I − Cc(zI − Āc)−1L)(I − CP(zI − AP)−1BP ,1K(z)) (B.23)

= (I − Cc(zI − Āc)−1L)(I − Cc(zI − Ac)−1Bc ,1K(z)) (B.24)

= I − Cc(zI − Āc)−1(L + Bc ,1K(z) (B.25)

To simplify F0,N ;2a(z), partition L = col(L1 , L2 , L3) according the partitioning of Ac . From
equation (B.30) it follows that L1 = AuZCTc R−1 . With this it can easily be veri�ed that
F1(z)R−1 = [ Cu 0 0 ] (zI − Ac)−1L, so that

F0,N ;2a(z) = z−N [ Cu 0 0 ] (zI − Ac)−1L(I − Cc(zI − Āc)−1(L + Bc ,1K(z))

= z−N [ Cu 0 0 ] (zI − Āc)−1(L + Bc ,1K(z))

Using equation (B.25), we can obtain for F0,N ;2b(z):

F0,N ;2b(z) = [ Cu 0 0 ]Π
N+1
∑
m=1
zm−N−1(ĀTc )m−1CTc R−1 ⋅

⋅ (I − Cc(zI − Āc)−1(L + BP ,1K(z)).

B.1.3 Proof of proposition 3.5.5
In this appendix, the proof of proposition 3.5.5 is given. First, observe that we can express for
Ψ̄

Ψ̄(z) = Pc ,2(z)QPHc ,2(z) (B.26)

= [ Cc(zI − Ac)−1 I ] [ Bc ,2QB
T
c ,2 Bc ,2S

STBTc ,2 Rv2
] [ (z−1I − ATc )−1CTc

I ] (B.27)

which has the form of the spectrum de�ned in proposition 3.5.1. As in the proof of propo-
sition 3.5.3, we �rst verify that this realization ensures that Ψ̄(z) > 0, for ∣z∣ = 1, i.e. if the
conditions of proposition 3.5.2 are satis�ed.

Lemma B.1.3 With {Ac , Bc ,2 ,Cc ,Q , Rv2 , S} as de�ned in equations (3.85), (3.96), and (3.97),
de�ne

As = Ac − Bc ,2SR−1v2Cc and Q
s = Q − SR−1v2 S

T . (B.28)

�en we have the following facts:
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1. [ Bc ,2QB
T
c ,2 Bc ,2S

STBTc ,2 Rv2
] ≥ 0.

2. (Cc , Ac) is observable.
3. (As , Bc ,2(Q s)1/2) is unit-circle controllable.

Proof �e proof of this lemma goes along the same lines as the proof of lemma B.1.1. Hence
we only give the main arguments.

1. Follows from Q > 0.
2. Follows fromminimality of the realizations (Au , Bu ,Cu), (Av i , Bv i ,Cv i ), i = 1, 2, and
identities (3.80) and (3.81).

3. Follows fromminimality of the realizations (Au , Bu ,Cu), (Av i , Bv i ,Cv i ), i = 1, 2 and
identity (3.78).

Having established that Ψ̄(z) > 0, for ∣z∣ = 1, we again use proposition 3.5.2 to obtain an
explicit expression for M̄−1(z), i.e.

M̄−1(z) = I − Cc(zI − Āc)−1L, where (B.29)

L = (AcΠCTc + Bc ,2S)R̄−1 (B.30)

R̄ = Rv2 + CcΠC
T
c (B.31)

and Π is the unique positive semi-de�nite solution to the discrete algebraic Ricatti equation
(DARE)

Π = AcΠATc + Bc ,2QBTc ,2 − LR̄LT (B.32)

such that Āc = Ac − LCc is stable.

B.1.4 Proof of proposition 3.5.6
Recall from proposition 3.4.7 that the solution of the N-causal input estimation problem
without controller knowledge is given by1

z−NF0,N = {z−N Φu(z)PH2 (z)M̄−H(z)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

F(z)

}+R̄−1M̄−1(z) [ −P1(z) I ] (B.33)

where M̄(z) and R̄ > 0 are found from the spectral factorization of

Ψ̄(z) = P2(z)Φu(z)PH2 (z) + P1(z)Φv1(z)P
H
1 (z) +Φv2(z). (B.34)

Following a similar procedure as in the proof of proposition (3.5.4), it can be veri�ed we can
also express (B.33) as

z−NF0,N = (z−NF1(z) + {z−NF2(z)}+)R̄−1 [ −M̄−1(z)P1(z) M̄−1(z) ] (B.35)

1Again, we use the normalized factorization Ψ̄ = M̄R̄M̄H with M̄(∞) = I
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whereF1(z) andF2(z) are as de�ned in equation (B.16), but then evaluated for the extended
realization de�ned here in this section. We will perform some simpli�cations. First note that

M̄−1(z)P1(z) = (I − Cc(zI − Āc)−1L)Cp(zI − AP)−1BP ,1 (B.36)

= (I − Cc(zI − Āc)−1L)Cc(zI − Ac)−1Bc ,1 (B.37)

= Cc(zI − Āc)−1Bc ,1 (B.38)

so that

[ −M̄−1(z)P1(z) M̄−1(z) ] = [ 0 I ] − Cc(zI − Āc)−1 [ Bc ,1 L ] (B.39)

With some algebraic manipulations, it follows that

z−NF1(z)R̄−1 [ −M̄−1(z)P1 M̄−1(z) ] =

z−N [ Cu 0 0 0 ] (zI − Āc)−1 [ Bc ,1 L ] (B.40)

and

{z−NF2(z)}+R−1 [ −M̄−1(z)P1 M̄−1(z) ] = [ Cu 0 0 0 ]Π⋅

⋅
N+1
∑
m=1
zm−N−1(ĀTc )m−1CTc R̄−1 ([ 0 I ] − Cc(zI − Āc)−1 [ Bc ,1 L ]) (B.41)

B.2 Proofs of chapter 4

In this appendix we give the proof of propositions 4.4.2 and 4.4.4. We will �rst give the
following lemma.

Lemma B.2.1 Suppose A(θ) is a complex square matrix, depending on the complex vector θ,
which takes values in an open subset V ⊆ Cl . Furthermore, suppose that A(θ) is invertible and
analytical for all θ ∈ V.�en for θ ∈ V

d
dθ
vec[A−1(θ)] = [−A−T(θ)⊗ A−1(θ)] d

dθ
vec[A(θ)]. (B.42)

Proof Let θ i be the i th element of θ. Using the product rule for matrix di�erentation, we
derive that

∂
∂θ i

(A(θ) ⋅ A−1(θ)) = ∂A(θ)
∂θ i

A−1(θ) + A(θ) ∂A
−1(θ)
∂θ i

= 0

from which immediately follows that

∂A−1(θ)
∂θ i

= −A−1(θ) ∂A(θ)
∂θ i

A−1(θ).

Using the identity vec(ABC) = (CT ⊗ A)vec(B), we infer

∂
∂θ i
vec[A−1(θ)] = −[A−T(θ)⊗ A−1(θ)]vec[ ∂A(θ)

∂θ i
],
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implying

d
dθ
vec[A−1(θ)] = −[A−T(θ)⊗ A−1(θ)] d

dθ
vec[A(θ)].

�is proofs the claim.

B.2.1 Proof of proposition 4.4.2
We will �rst introduce the notation θT = [ θTA θTB ] where θA only contains the param-
eters used to de�ne A(ξ, θ) and θB those to de�ne B(ξ, θ). For brevity, we will drop the
dependency of P, B and A on ξ(ωk) from here on. Observe that with this, we can write

Mk(θ) = [ ∂
∂θA
vec[P(θ)] ∂

∂θB
vec[P(θ)] ]

Using the identities (4.8a) and (4.8b), we rewrite this to

Mk(θ) = [[BT(θ)⊗ I] ∂
∂θA

vec[A−1(θ)] [I ⊗ A−1(θ)] ∂
∂θB
vec[B(θ)]] . (B.43)

We will derive expressions for ∂
∂θA
vec[A−1(θ)] and ∂

∂θB
vec[B(θ)]. Application of lemma

B.2.1 yields

∂
∂θA

vec[A−1(θ)] = [−A−T(θ)⊗ A−1(θ)] ∂
∂θA

vec[A(θ)]

= [−A−T(θ)⊗ A−1(θ)] ⋅ [ Ipp×pp ξ(ωk)na−1 . . . Ipp×pp ξ(ωk)0 ]

= [−A−T(θ)⊗ A−1(θ)] ⋅ ([ Ip×p ξ(ωk)na−1 . . . Ip×p ξ(ωk)0 ]⊗ Ip×p) .

Furthermore, we derive that
∂
∂θB
vec[B(θ] = [ Imp×mp ξ(ωk)nb . . . Imp×mp ξ(ωk)0 ]

= [ Im×m ξ(ωk)nb . . . Im×m ξ(ωk)0 ]⊗ Ip×p .

With this, we express the �rst element ofMk(θ) in (B.43) as

[−BT(θ)⊗ I] [−A−T(θ)⊗ A−1(θ)] ⋅

⋅ ([ Ip×p(ξ(ωk)na−1 . . . Ip×p ξ(ωk)0 ]⊗ Ip×p)

= [−PT(θ)⊗ A−1(θ)] ⋅ ([ Ip×p ξ(ωk)na−1 . . . Ip×p ξ(ωk)0 ]⊗ Ip×p)

= [ −PT(θ)ξ(ωk)na−1 . . . −PT(θ)ξ(ωk)0 ]⊗ A−1(θ),

and the second element ofMk(θ) in (B.43) as

[I ⊗ A−1(θ)] ⋅ ([ Im×m ξ(ωk)nb . . . Im×m ξ(ωk)0 ]⊗ Ip×p)

= [ Im×m ξ(ωk)nb . . . Im×m ξ(ωk)0 ]⊗ A−1(θ).

Combining these results, and using the identity [ A1 ⊗ B A2 ⊗ B ] = [ A1 A2 ] ⊗ B,
we infer

Mk(θ) = Φk(θ)T ⊗ A−1(θ), (B.44)

which proves the claim.
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B.2.2 Proof of proposition 4.4.4
To facilitate the proof, we will use the following notation. Let parameter matrix Θ be parti-
tioned as ΘT = [ ΘTA ΘTB ]where ΘA is comprised the parameters used to de�ne A(ξ, θ),
and ΘB is comprised of those to de�ne B(ξ, θ). We will denote the i th column of Θ as θ i ,
the i th column of ΘA as θA, i and i th column of ΘB as θB , i . Observe that with this notation
we can express

∂
∂θ
vec[P(θ)] = [ ∂

∂θA,1
vec[P(θ)] ∂

∂θB ,1
vec[P(θ)]

. . . ∂
∂θA,m

vec[P(θ)] ∂
∂θB ,m

vec[P(θ)] ] . (B.45)

Using the identities of (4.8a), we can write

∂
∂θA, i

vec[P(θ)] = [I ⊗ B(θ)] ∂
∂θA, i

vec[A−1(θ)] (B.46)

∂
∂θB , i

vec[P(θ)] = [A−T(θ)⊗ I] ∂
∂θA, i

vec[B(θ)] (B.47)

for i = 1 . . .m. Following lemma B.2.1, we note that

∂
∂θA, i

vec[A−1(θ)] = [−A−T(θ)⊗ A−1(θ)] ∂
∂θA, i

vec[A(θ)]

= [−A−T(θ)⊗ A−1(θ)]
⎡⎢⎢⎢⎢⎢⎣

0(i−1)⋅m×(na ⋅m)
ΛA(ωk)

0(m−i)⋅m×(na ⋅m)

⎤⎥⎥⎥⎥⎥⎦

with

ΛA(ωk) = [ Im×m ξ(ωk)na−1 . . . Im×m ξ(ωk)0 ] .

Substituting this in equation (B.46) yields

∂
∂θA, i

vec[P(θ)] = [I ⊗ B(θ)][−A−T(θ)⊗ A−1(θ)]
⎡⎢⎢⎢⎢⎢⎣

0(i−1)⋅m×(na ⋅m)
ΛA(ωk)

0(m−i)⋅m×(na ⋅m)

⎤⎥⎥⎥⎥⎥⎦

= [−A−T(θ)⊗ I][I ⊗ P(θ)]
⎡⎢⎢⎢⎢⎢⎣

0(i−1)⋅m×(na ⋅m)
ΛA(ωk)

0(m−i)⋅m×(na ⋅m)

⎤⎥⎥⎥⎥⎥⎦

= [A−T(θ)⊗ I]
⎡⎢⎢⎢⎢⎢⎣

0(i−1)⋅p×(na ⋅m)
−P(θ)ΛA(ωk)
0(m−i)⋅p×(na ⋅m)

⎤⎥⎥⎥⎥⎥⎦
. (B.48)

Similarly, we can write

∂
∂θB , i

vec[B(θ)] =
⎡⎢⎢⎢⎢⎢⎣

0(i−1)⋅p×((nb+1)⋅m)
ΛB(ωk)

0(m−i)⋅p×((nb+1)⋅m)

⎤⎥⎥⎥⎥⎥⎦
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with

ΛB(ωk) = [ Ip×p ξ(ωk)nb . . . Ip×p ξ(ωk)0 ] ,

which when substituted in equation (B.47) yields

∂
∂θB , i

vec[P(θ)] = [A−T(θ)⊗ I]
⎡⎢⎢⎢⎢⎢⎣

0(i−1)⋅p×((nb+1)⋅m)
ΛB(ωk)

0(m−i)⋅p×((nb+1)⋅m)

⎤⎥⎥⎥⎥⎥⎦
. (B.49)

Combining equations (B.48) and (B.49) gives

∂
∂θ i
vec[P(θ)] = [A−T(θ)⊗ I]

⎡⎢⎢⎢⎢⎢⎣

0(i−1)⋅p×(na ⋅m) 0(i−1)⋅p×((nb+1)⋅m)
−P(θ)ΛA(ωk) ΛB(ωk)
0(m−i)⋅p×(na ⋅m) 0(m−i)⋅p×((nb+1)⋅m)

⎤⎥⎥⎥⎥⎥⎦
.

From this, it is easily seen that we can write

∂
∂θ
vec[P(θ)] = [A−T(θ)⊗ I][I ⊗Φk(θ)]

= [A−T(θ)⊗Φk(θ)] (B.50)

with Φk(θ) = [ −P(θ)ΛA( jωk) ΛB( jωk) ], which completes the proof.

B.3 Proofs of chapter 6

B.3.1 Proof of equation (6.15)
First note that we can express

T(q, θ)u(t) = CAt−1 x̄(1) +
t−1
∑
k=1
CAk ( I

0 )BP ,2u2(t − k)

= CAt−1 x̄(1) +
t−1
∑
k=1

[uT(t − k)⊗ CAk ( I
0 )] vec(BP ,2)

= CAt−1 x̄(1)+

+
t−1
∑
k=1

[ u2,1(t − k)CAk (
I
0 ) . . . u2,m2(t − k)CAk (

I
0 ) ] vec(BP ,2)

= CAt−1 x̄(1)+

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

{[ u2,1(t − 1) . . . u2,1(1) ]⊗ I}

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C
CA
⋮

CAt−2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

( I
0 )

. . .

{[ u2,m2(t − 1) . . . u2,m2(1) ]⊗ I}

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C
CA
⋮

CAt−2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

( I
0 )

⎤⎥⎥⎥⎥⎥⎥⎥⎦

vec(BP ,2)
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Here we have used u2, i(t) to indicate element number i of the input vector u2 at time instant
t. Now let E(θ) represent the vector of all errors, i.e.

E(θ) =
⎡⎢⎢⎢⎢⎢⎣

є(1)
⋮

є(N)

⎤⎥⎥⎥⎥⎥⎦
(B.51)

With this, it can immediately be derived that

E(θ) = Γ−1M (Y − Ψθ) (B.52)

with

θ = [ x̄(1)
vec(BP ,2)

] (B.53)

and

Ψ = [ O U1OP U2OP ⋯ Um2OP ] (B.54)

whereOP are the �rst n columns ofO, i.e.

O = [ OP OC ] , (B.55)

and

Ui =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 ⋯ 0
u2, i(1) 0 0 ⋯ 0
u2, i(2) u2, i(1) 0 ⋯ 0

⋮ ⋮ ⋱ ⋮
u2, i(N − 1) u2, i(N − 2) ⋯ u2, i(1) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊗ I.

Noting that the squared norm of the vector E(θ) is identical toVN(θ , ZN), we have obtained
the desired result.

B.4 Proofs of chapter 7

B.4.1 Proof of equation (7.22)
To proof equation (7.22), observe that for vϕ Gaussian distributed

E cos(m(ϕ − vϕ)) = e−(mσϕ)2/2 cos(mϕ) (B.56)

E sin(m(ϕ − vϕ)) = e−(mσϕ)2/2 sin(mϕ) (B.57)

We will prove the �rst of these identities, the second can be proven similarly. Note that

E cos(m(ϕ − vϕ)) = cos(mϕ)E cos(mvϕ) − sin(mϕ)E sin(mvϕ) (B.58)
= cos(mϕ)E cos(mvϕ) (B.59)
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where it has been used that sin(mvϕ) has zero mean (this follows directly from the fact that
sin(⋅) is an odd function and vϕ is Gaussian distributed). Now,

E cos(mvϕ) = ∫
∞

−∞
cos(mξ)p(ξ)dξ (B.60)

with

p(ξ) = 1√
2π σϕ

e−x
2/(2σ2ϕ) (B.61)

the Gaussian probability density function for a process with zero mean and standard devia-
tion σϕ . Evaluating the integral in (B.60), while using the identity

∫
∞

−∞
e−ξ2 cos(aξ)dξ =

√
π e−a

2/4 (B.62)

yields

E cos(mvϕ) = e−(mσϕ)2/2 . (B.63)

From equations (B.56) and (B.57) it immediately follows that

EH(ϕ(t) + vϕ(t)) = Q−1H(ϕ(t)), (B.64)

with

Q = diag(eσ2ϕ/2 , e(2σϕ)2/2 , . . . , e(Mσϕ)2/2 , eσ2ϕ/2 , e(2σϕ)2/2 , . . . , e(Mσϕ)2/2) (B.65)

which is the claimed result.
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Summary

Model-based Process Monitoring and Control of Micro-milling
using Active Magnetic Bearings

Rogier S. Blom

�e process ofmicro-milling is a promising technology for the fabrication ofmicro-
parts with arbitrary 3D features in a wide range of materials. However, as a result
of the reduced dimensions, the susceptibility of the process for machine tool er-
rors and vibrations is higher, having adverse e�ects on accuracy and surface quality
of the resulting workpieces. Furthermore, the production time and the e�ciency
of the process su�er from low material removal rates and excessive tool wear and
breakage. To improve the micro-milling process, online process monitoring and
control becomes of high importance. Signs of problems are almost unnoticeable
without the use of special equipment. Techniques are needed to detect and possibly
even predict anomalies in the process and to online monitor the condition of the
cutting process.
SpindleswithActiveMagnetic Bearings are particularly interesting for themicro-

milling process, not only for the achievable spindle speeds, but also because of the
opportunities they o�er to develop online process monitoring and control tech-
niques. �ese include force monitoring, tool condition and breakage monitoring,
and chatter control. However, literature thus far lacks results implementing these
techniques for the micro-milling process.

�e aim of this thesis is to investigate the opportunities formodel-based process
monitoring and control to improve the micro-milling process using the intrinsic
properties of AMB spindles. �is objective is narrowed down to the goal of esti-
mating the cutting forces from the bearing signals.�e approach towards this goal
consists of three steps.
First an approach to model-based cutting force estimation in micro-milling us-
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ing the signals of the AMBs is developed. �e cutting force estimation problem is
expressed as an input estimation problem, where the cutting forces are an unknown
input to the closed-loop AMB spindle system. To solve this problem, a method
is given for model-based optimal estimation of unknown inputs to multivariable
closed-loop systems, based on Wiener �lter theory. For cases in which controller
knowledge is not available, an approach is formulated in which equal performance
of the estimator is ensured for any controller. Smoothed estimators are derived,
resulting in smaller estimation errors when a delay in the estimation result is toler-
able.
Second, a method is presented for system identi�cation of a high speed AMB

micro-milling spindle in the frequency range relevant for force estimation. �is
problem is separated into two subproblems.�e �rst is the identi�cation of the dy-
namics from the current input to the displacement of the rotor sha� at the bearings,
the bearing dynamics.�e second problem is the identi�cation of the tooltip dynam-
ics, which are the dynamics between the force on the tooltip and the displacement
of the rotor sha� at the bearings.
System identi�cation of the bearing dynamics is approached by �rst making a

non-parametric estimate of the multivariable frequency response function (FRF).
An experiment design is given targeted at yielding small bias and variance of the
FRF, as well as small error due to nonlinear distortions. Using the FRF estimate, a
multivariable parametric model is estimated. Here, the main emphasis is on identi-
�cation of a parametric model of the plant dynamics, leading to the choice of min-
imization of an output error (OE) criterion. An IV-based algorithm is given for
estimation of multi-input multi-outout (MIMO) Output Error models in matrix
fraction description from frequency domain data.�is algorithm has the property
that convergence of the iterations implies that an optimal solutions has been found.

�emain challenge in identifying the tooltip dynamics is to apply a known exci-
tation force to the tooltip.�e route followed in this thesis is to identify the tooltip
dynamics using data obtained during a milling experiment in which the cutting
forces are measured. �e amount of data that can be generated in this way is lim-
ited, as is the control over the spectral properties of the input. Hence, in order to
reduce the complexity of the identi�cation, usage is made of assumed observability
and controllability properties of the system.�is results in a particular closed-loop
parameterization of the model-set and a known, but non-minimum phase noise
model. For this particular identi�cation problem, solutions are formulated.

�e third and last step to the goal of this thesis pertains to model-based correc-
tion of runout disturbances in measurements of the positions and currents of AMB
spindle. Such disturbances are synchronous with the rotation of the spindle and
hence almost periodic. A parametrized truncated Fourier series expansion model
for the runout disturbance as a function of the angular position is used, allowing to
formulate runout identi�cation as a parameter estimation problem. In correcting
for the runout disturbances, the main issue is how to deal with the uncertainty in
the angular position measurements, or the total lack of such measurements. So-
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lutions are given that compensate for the errors introduced by this uncertainty, or
estimate the angular position from the available data using an Extended Kalman
�lter approach.
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Samenvatting

Model-gebaseerde procesmonitoring en -regeling van microfrezen
met actieve magneetlagering

Rogier S. Blom

Het proces van micro-frezen is een veelbelovende technologie voor het fabriceren
van micro-componenten met willekeurige 3D aspecten in een breed scala van ma-
terialen. Als gevolg van de gereduceerde dimensies is het proces gevoeliger voor
fouten en trillingen in de bewerkingsmachine, met alle nadelige consequenties voor
de nauwkeurigheid en de oppervlaktekwaliteit van de werkstukken vandien. Daar-
naast hebben een laag verspaningsvolume per tijdseenheid en overmatige gereed-
schapsslijtage en freesbreuk een nadelig e�ect op de productietijd en de e�ciëntie
van het proces. Online procesmonitoring en -regeling is van wezenlijk belang om
het micro-freesproces te verbeteren. Indicatoren van problemen zijn nagenoeg on-
mogelijk waar te nemen zonder speciale instrumentatie. Er zijn technieken nodig
om afwijkingen in het proces op te merken en waar mogelijk zelfs te voorspellen,
en om de conditie van het freesproces online te monitoren.
Spillenmet actievemagneetlagering (‘ActiveMagnetic Bearings’—AMBs) heb-

ben eigenschappen die hen bijzonder interessant maken voor toepassing voor het
micro-freesproces. Dit is niet alleen vanwege de hoge rotatiesnelheden die gerea-
liseerd kunnen worden, maar ook vanwege de mogelijkheden voor het verrichten
van online procesmonitoring en -regeling. Hierbij kan gedacht worden aan kracht-
schatting, monitoring van gereedschapsslijtage en freesbreuk, en regeling van chat-
ter. Echter, de literatuur biedt op dit moment nog geen resultaten die deze moge-
lijkheden toepassen op het micro-frees proces.
Het doel vandit proefschri� is omdemogelijkheden te onderzoeken voormodel-

gebaseerde procesmonitoring en -regeling van het micro-freesproces, gebruikma-
kend van de intrinsieke eigenschappen van spillen met actieve magneetlagering.
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Deze doelstelling is ingeperkt tot het doel om de freeskrachten te schatten uit de
lagersignalen. Er is gekozen voor een aanpak bestaande uit drie stappen.
Als eerste is eenmethode ontwikkeld voormodel-gebaseerde schatting van frees-

krachten in micro-frezen, gebruikmakend van de signalen van de AMBs. Hiertoe
is het krachtschattingsprobleem geformuleerd als een probleem van het schatten
van een onbekende ingang, waarbij de freeskrachten voorgesteld worden als een
onbekende ingang op het gesloten-lus AMB spilsysteem. Om dit probleem op te
lossen, is eenmodel-gebaseerde optimale ingangsschattingstechniek gepresenteerd
die gebaseerd is op de Wiener �lter theorie. Voor de situatie waarin geen kennis
van de regelaar beschikbaar is, wordt een oplossing gegeven waarbij gelijke presta-
tie van de schatter wordt gegarandeerd voor elke willekeurige regelaar. Oplossingen
voor vertraagde schatters worden gegeven, die resulteren in lagere schattingsfouten
wanneer het toelaatbaar is dat resultaten later beschikbaar komen.
De tweede stap is een techniek voor het identi�ceren van een hoge snelheids

AMB spil in het frequentiegebied relevant voor freeskrachtschatting. Dit probleem
is verdeeld in twee deelproblemen. Het eerste omvat identi�catie van de dynamica
van de stroomingang naar de verplaatsing van de rotoras ter plaatse van de lagers:
de lagerdynamica (‘bearing dynamics’). Het tweede deelprobleem is het identi�ce-
ren van de dynamica van de krachten op de freespunt naar de verplaatsing van de
rotoras ter plaatse van de lagers: de freespuntdynamica (‘tooltip dynamics’).
De gekozen aanpak voor systeemidenti�catie vande lagerdynamica is door eerst

een niet-parametrische schatting temaken van demultivariabele frequentierespon-
sie. Een experimentontwerp is geformuleerd met als doel om zowel systematische
als toevallige fouten in de schatting teminimaleren, alsmede fouten ten gevolge van
niet-lineariteiten. Gebruikmakend van de geschatte frequentieresponsie wordt ver-
volgens een parametrisch model geschat. Hier ligt de nadruk op het schatten van
een parametrisch model van de systeemdynamica (en niet op de ruisdynamica),
hetgeen resulteert in de keuze voor het minimaliseren van een Output Error (OE)
criterium. Een instrumenteel variable (IV) gebaseerd algoritmewordt gegeven voor
het schatten van multi-input multi-output (MIMO) OEmodellen in matrixfractie-
beschrijving. Dit algoritme hee� de eigenschap dat convergentie impliceert dat een
optimale oplossing verkregen is.
De voornaamste uitdaging bij het identi�ceren van de freespuntdynamica is

om een bekende excitatiekracht aan te brengen. De route die gevolgd is in dit
proefschri� is om de freespuntdynamica te identi�ceren uit data verkregen in een
freesexperiment waarin de freeskrachten direct gemeten zijn. De hoeveelheid da-
ta die op deze wijze gegenereerd kan worden is gelimiteerd. Daarnaast kan men
ook beperkt invloed uitoefenen op de spectrale eigenschappen van het excitatie-
signaal. Rekening houdend hiermee, wordt gebruik gemaakt van veronderstel-
de observeerbaarheids- en regelbaarheidseigenschappen van het systeem, teneinde
de complexiteit van het identi�catievraagstuk te reduceren. Dit resulteert in een
speci�eke gesloten-lus parametrisatie van de model-set en een bekend, maar niet-
minimum fase ruismodel. Voor dit identi�catieprobleem is een oplossing geformu-
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leerd.
De derde en laatste stap naar de doelstelling van het proefschri� hee� betrek-

king op model-gebaseerde correctie van runoutverstoringen in de metingen van
de stroom- en positiesignalen van de AMB spil. Dergelijke verstoringen zijn syn-
chroon met de rotatie van de spil en dus quasi-periodiek. Een geparametriseerd
eindige-Fourier-reeks-model wordt gebruikt om de runoutverstoring als functie
van de hoekpositie te modeleren. Hiermee kan runoutidenti�catie geformuleerd
worden als een parameterschattingsprobleem. Een centraal vraagstuk in het runout-
correctieprobleem is hoe om te gaan met de onzekerheid in de metingen van de
hoekpositie, of zelfs de afwezigheid van zulkemetingen. Oplossingsrichtingenwor-
den geformuleerd die enerzijds de fouten ten gevolge van deze onzekerheden com-
penseren, en die anderzijds de hoekpositie schatten uit de beschikbare data, hierbij
gebruikmakend van een Extended Kalman Filter.
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Lists of symbols and abbreviations

General notation

⊗ Kronecker matrix product

C− ,CO ,C+ Open unit disc, unit circle, area outside unit disc in complex plane

COV{A} Covariance of matrix A

COV{A, B} Cross-covariance of matrix A and B

E Expectation operator

∥ ⋅ ∥F Frobenius norm

F Set of all �lters that yield a bounded estimate

Fcaus,N Set of all �lters that are causal and stable if delayed by N time steps

vec Vectorization operator

x̂ Estimate of x

Roman symbols

ae Width of cut [mm]

ap Depth of cut [mm]

A Pole surface of AMB [m2]

A, B,C ,D State space realization matrices

Ac , Bc ,Cc ,Dc State space realization of cascaded or compound system

AK , BK ,CK ,DK State space realization of AMB controller

AP , [BP ,1 BP ,2],CP , 0 State space realization of AMB spindle dynamics
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Au , Bu ,Cu , 0 State space realization of input process

Av , Bv ,Cv , 0 State space realization of noise process

Ak Amplitude of sinusoid k

d Tool diameter [mm]

fz Feed per tooth [µm]

F Vector of generalized forces

Ft Cutting force in tangential direction [N]

Fr Cutting force in radial direction [N]

Famb Vector of AMB forces [N]

F0 Optimal input estimator

Fcaus,N Optimal N-causal input estimator

FK0 Optimal controller independent input estimator

FKcaus,N Optimal controller independent N-causal input estimator

g Nominal gap length [m]

G(ξ, θ) Transfer function model parametrized in θ

h i Uncut chip thickness of tooth with index i [µm]

ibias Bias current [A]

K(s),K(z) Controller transfer function matrix

K Number of periods

Kx Negative sti�ness matrix of AMB spindle [N/m]

K i Actuator gain matrix of AMB spindle [N/A]

m i Dimension of input with index i

M ,D,G ,K Mass, damping, gyroscopy and sti�ness matrix

M Number of experiment repetitions

M Cutting dynamics

n used for: Rotational speed [rpm], state dimension of plant

na Order of denominator polynomial

nb Order of numerator polynomial

nK State dimension of controller

N Number of {teeth, windings, delay steps, samples}

NK Period length of excitation signal

p Output dimension

P(s), P(z) AMB plant transfer function matrix
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P̂H1(ωk) H1 estimate of the FRF of P

P̂ARI(ωk) Arithmetic mean estimate of the FRF of P

P̂JIO(ωk) Joint input-output estimate of the FRF of P

r Reference input of closed-loop

Rx(τ) Auto-correlation function of x(t)

Ryx(τ) Cross-correlation function between y(t) and x(t)

RH Set of all rational transfer functions

RH∞ Set of all stable rational transfer functions

R(ωk) Matrix of DFTs of r (experiments collected column-wise)

R[i](ωk) Block i of R(ωk)

S Sensitivity function

SF Filtering sensitivity

SV Noise sensitivity

T Complementary sensitivity function

TF Filtering complementary sensitivity

Tyu Transfer function from u to y

Ts Sample time

u1,0 Vector of control currents [A]

u1 Noisy measurement of u1,0
u2,0 Vector of cutting forces [N]

u2 Noisy measurement of u2,0
U(ωk) Matrix of DFTs of u (experiments collected column-wise)

U[i](ωk) Block i of U(ωk)

v Measurement noise

vc Cutting speed [mm/min]

v f Feed speed [mm/min]

vr Runout disturbance

V(θ) Cost criterion function

x State signal

xamb Vector of bearing coordinates [mm]

y1,0 Vector of displacements of rotor sha� at AMBs [mm]

y1 Noisy measurement of y1,0
y2,0 Tool tip displacement vector [mm]

229



i
i

“main” — 2011/4/11 — 8:51 — page 230 — #240 i
i

i
i

i
i

Bibliography

Y(ωk) Matrix of DFTs of y (experiments collected column-wise)

Y[i](ωk) Block i of Y(ωk)

ZN Set of input-output data

Greek symbols

є(t) Estimation error

θ Parameter vector

θ̃ Parameter vector estimation error

σx Standard deviation of x(t)

τF(ω) Group delay at frequency ω

ϕ Phase angle

ϕk , l Random phase of sinusoid k in signal l

Φx(z) z-spectrum of x(t)

Φyx(z) Cross z-spectrum between y(t) and x(t)

Ω Rotational speed [s−1]

List of Abbreviations

ACC Adaptive Control of Constraints
ACO Adaptive Control with Optimization
AMB Active Magnetic Bearing
ARI Arithmetic Mean
BCLS Bias Compensated Least Squares
BL Band Limited
CTFT Continuous-Time Fourier Transform
DARE Discrete-Time Algebraic Ricatti Equation
DFT Discrete-Time Fourier Transform
DTFT Discrete-Time Fourier Transform
ECM Micro-electrochemical Machining
EDM Micro-Electric Discharge Machining
EKF Extended Kalman Filter
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EIV Errors-In-Variables
FFT Fast Fourier Transform
FRF Frequency Response Function
IV Instrumental Variable
JIO Joint Input-Output
LBM Laser BeamMachining
LS Least Squares
MCT Minimum Chip�ickness
MEMS Micro-Electro-Mechanical Systems
MFD Matrix Fraction Description
MIMO Multiple Input Multiple Output
MOEMS Micro-Opto-Electro-Mechanical Systems
MSE Minimum Squared Error
OE Output Error
SISO Single Input Single Output
SNR Signal-to-Noise Ratio
SRIV Simpli�ed Re�ned Instrumental Variable
SVD Singular Value Decomposition
UIO Unknown Input Observer

231



i
i

“main” — 2011/4/11 — 8:51 — page 232 — #242 i
i

i
i

i
i



i
i

“main” — 2011/4/11 — 8:51 — page 233 — #243 i
i

i
i

i
i

About the author

Rogier S. Blom was born on September 30th, 1975 in Haarlem, the Netherlands.
A�er having completed secondary eduction, he studied Electrical Engineering at
the University of Twente and obtained the M.Sc. degree in 2000 cum laude. From
1998-1999 he was Guest Researcher at the National Institute of Standards and Tech-
nology (USA), where he developed a trajectory planner for the Enhanced Machine
Controller, an open architecture CNC.�e topic of the M.Sc. project was Digital
Elevation Model estimation using sequences of airborne video images.
From 2000-2005 he was employed by Royal Dutch KPN in its management de-

velopment program and stationed at Xantic, a joint venture of KPN and Telstra (the
Australian incumbent telecom operator). Here he had several positions, including
those of ProgramManager and Company Secretary.
In 2005 he started in a Ph.D. research project at the Del� University of Tech-

nology under the supervision of professors Paul Van den Hof and Rob Munnig
Schmidt.�e results of this research are described in this thesis.
In September 2010 he joined General Electric Global Research inMunich, Ger-

many as a Research Engineer with main focus on Controls.

Publications

Refereed conference proceedings
• R.S. Blom, P.M.J. Van den Hof, Multivariable Frequency Domain Identi�cation using
IV-based Linear Regression, Proc. 49th CDC, Atlanta, 2010.

• R.S. Blom, P.M.J. Van den Hof, H.H. Langen, R.H. Munnig Schmidt, Multivariable
Frequency Response Function Estimation of a Micro-Milling Spindle with Active
Magnetic Bearings, Proc. Euspen conf., Del�, 31 May - 3 June, 2010.

• H.H. Langen, M.H. Kimman, R.S. Blom, P. Li, E.S. Buice, R.H. Munnig Schmidt, To-
wards Micro (Hard)Milling using Miniature Active Magnetic Bearings, Proc. 6th In-
ternational Workshop on Microfactories, Evanston, IL, October 5-7, 2008.

233



i
i

“main” — 2011/4/11 — 8:51 — page 234 — #244 i
i

i
i

i
i

Bibliography

• R.S. Blom, P.M.J. Van den Hof, Estimating Cutting Forces in Micromilling by Input
Estimation from Closed-loop Data, Proc. 17th IFACWorld Congress, July 6-11, 2008,
Seoul, 468-473.

• R.S. Blom, M.H. Kimman, H.H. Langen, P.M.J. Van den Hof, R.H. Munnig Schmidt,
E�ect ofminiaturization ofMagnetic Bearing Spindles formicro-milling on actuation
and sensing bandwidths, Proc. Euspen conf, Zürich, May 18-22, 2008, 155-159.
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