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Stellingen behorende bij het proefschrift van A.P. van Uiden: 
The spreading and mixing of dense gas clouds in still air. 

1. De meetresultaten van de Thorney Island experimenten verdienen een zorg
vuldige heranalyse. 
(dit proefschrift, III.5.3) 

2. Bij windstil weer mengt een zware gaswolk zich sneller met lucht, dan een 
gaswolk met dezelfde dichtheid als lucht. 

3. Door het turbulentiemodel uit dit proefschrift aan te passen aan de 
stromingskarakteristieken van de stabiele atmosferische grenslaag, kan 
betrekkelijk eenvoudig een geostrofische weerstandswet worden afgeleid. 
(dit proefschrift, III.4; Nleuwstadt, 1985: A model for the stationary 
stable boundary layer) 

4. Tussen de Lorentzkracht en de Magnuskracht bestaat een grote analogie. 

5. Emissie en depositie van ammoniak behoren in een luchtverontreinigings
model niet gescheiden te worden behandeld. 
(Asman, 1987; proefschrift L.U. Wageningen) 

6. Windconvergentie bevordert radioactieve neerslag bij kernrampen op 
tweeërlei wijze. 
(Cats et al., 1987; K.N.M.I. wetenschappelijk rapport 87-1) 

7. In het operationele weermodel van het Europese centrum voor middellange 
termijn weersverwachtingen wordt het mengend vermogen van thermiek 
ontoereikend behandeld. 

8. Windsnelheidswaarnemingen boven land kunnen met locale terreincorrecties 
geschikt worden gemaakt als invoerparameter voor numerieke weermodellen. 
(Wieringa, 1986; Quart. J. Roy. Met. Soc, 112) 

9. Natuurkundige wetten beperken de schaal en de diepte van atmosferische 
depressies. Economen zouden hier lering uit kunnen trekken. 

10. Het storten van alle verontreinigde grond en afval op één plaats in 
Nederland maakt het probleem van de bodemverontreiniging beter beheers
baar en vergroot op termijn de skimogelijkheden in ons land. 

11. Door korte termijn programmering en financiering van het wetenschappelijk 
onderzoek bevordert de overheid het ontstaan van een play-back-show 
cultuur bij onderzoekers. 
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VOORWOORD 

In dit proefschrift wordt onderzoek beschreven dat verband houdt met de 
preventie van rampen door gevaarlijke stoffen. Het onderzoek vindt zijn oor
sprong in de interesse van het Directoraat Generaal van de Arbeid voor het zo 
veilig mogelijk hanteren van gevaarlijke stoffen. In het begin van de jaren 
zeventig werd onderzoek gestart naar de problematiek van chloor. Chloor is een 
giftig gas; het werd in de eerste wereldoorlog gebruikt als strijdgas. Het 
wordt thans in grote hoeveelheden geproduceerd als basisstof voor de chemische 
procesindustrie. Chloor is veel zwaarder dan lucht. Daarom bestond de vrees, 
dat bij een ongeval met chloor, dit zware gas als een deken het aardoppervlak 
zou bedekken en zich weinig met lucht zou mengen. Dit zou aanzienlijke 
risico's voor de bevolking met zich mee kunnen brengen. 

Over deze problematiek werd het KNMI in'1971 benaderd door de Arbeids
inspectie. Als jong onderzoeker werd ik aan dit probleem gezet. Het bleek een 
bijzonder probleem te zijn, zowel vanwege de grote maatschappelijke relevan
tie, als vanwege het vrijwel ontbreken van kwantitatieve beschrijvingen in de 
toenmalige literatuur. In de beginfase van mijn onderzoek heb ik veel steun 
ontvangen van Ger Abraham (Waterloopkundig Laboratorium), die mij wegwijs 
heeft gemaakt in de problematiek van dichtheidsstromingen. Ook heb ik enkele 
verkennende experimenten kunnen doen bij het Waterloopkundig Laboratorium. Op 
basis van deze experimenten, en op basis van in de literatuur aanwezige infor
matie over de spreiding van olie op water, heb ik een eenvoudig model ontwik
keld voor de spreiding van een zware gaswolk op een horizontaal oppervlak. 
Ondermeer met behulp van dit model werden grootschalige experimenten ontworpen 
en uitgevoerd door een twintigtal bedrijven en overheidsinstellingen in 
Nederland. Deze experimenten werden uitgevoerd op de Maasvlakte bij Rozenburg 
in 1973 en 197^ onder de bezielende leiding van de heer E.H. Siccama (Arbeids
inspectie). Ik heb voor het KNMI aan deze experimenten deelgenomen, daarbij 
voortreffelijk ondersteund door Wim Schipper en door de Instrumentele Afdeling 
van het KNMI. Voorts leverde de weerkamer in De Bilt speciale weersverwachtin
gen, die essentieel waren voor het succes en de veiligheid van de experimenten. 

De Nederlandse experimenten leverden zowel direct bruikbare informatie 
op, als ook inspiratie voor verder onderzoek. Eind jaren zeventig kwam dit 
onderzoek internationaal sterk op gang. Dit leidde tot een aantal nieuwe expe
rimenten in het buitenland en tot een toename van de internationale samenwer
king op het gebied van modelontwikkeling. Deze internationale ontwikkelingen 



7 

vormen de voedingsbodem voor het recente onderzoek dat beschreven is in dit 
proefschrift. 

Zo'n 15 jaar zijn voorbijgegaan sinds de start van het onderzoek naar de 
verspreiding van zware gassen. Nil vordert het internationale onderzoek met 
rasse schreden. Bevredigende en praktisch bruikbare modellen liggen thans in 
het verschiet. De boodschap is duidelijk: het bereiken van tastbare resultaten 
met behulp van resultaat gericht onderzoek kan een aanzienlijke tijd vergen. . 
Onderzoeken is vooruitzien. 

Ik ben het KNMI erkentelijk, dat het mij de ruimte gaf: 15 jaar geleden 
voor het opzetten van dit onderzoek en de laatste jaren voor het realiseren 
van dit werkstuk. Voorts gaat mijn dank uit naar de vele personen in binnen-
en buitenland die een rol hebben gespeeld bij het tot stand komen van dit 
proefschrift. In het bijzonder ben ik dank verschuldigd aan Bronno de Haan, 
Theo van Stijn en Roland Stull voor het slechten van numeriek-wiskundige 
barrières en aan Günther Können voor zijn spirituele inbreng. Tenslotte spreek 
ik mijn waardering uit over de grote inzet van Marleen Kaltofen en van de 
tekenkamer en drukkerij van het KNMI bij het feitelijk realiseren van dit 
proefschrift. 
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SAMENVATTING 

In onze industriële samenleving worden vele gassen gebruikt en geprodu
ceerd, die brandbaar, explosief, radioactief of giftig zijn. Dit maakt onge
vallen mogelijk waarbij grote hoeveelheden van een gevaarlijk gas in de atmos
feer kunnen vrijkomen. Zulke ongevallen hebben plaats gevonden en zullen met 
grote waarschijnlijkheid ook in de toekomst plaats vinden. Een speciale klasse 
van ongevallen is die waarbij in korte tijd een wolk zwaar gas vrijkomt. Zo'n 
zware gaswolk stroomt uit over het aardoppervlak onder invloed van de zwaarte
kracht. Dit kan resulteren in hoge gasconcentraties nabij de grond over grote 
oppervlakken, met alle risico's van dien. In het geval van een zeer grote en 
dichte gaswolk en lage windsnelheden zal deze uitstroming weinig worden beïn
vloed door de atmosferische omstandigheden: de gaswolk bepaalt zijn eigen ont
wikkeling en vormt hierbij een zogenaamd quasi-ontkoppeld systeem. 

Dit proefschrift is gericht op de beschrijving van quasl-ontkoppelde 
gaswolken. De opbouw van het proefschrift is als volgt. 

In een korte inleiding worden de belangrijkste vormingsmechanismen van 
zware gaswolken gegeven en het verloop van de verspreiding geschetst. Dit 
wordt geïllustreerd met een aantal foto's. 

Hoofdstuk I beschrijft enkele elementaire modelleringsprincipes. Er 
wordt een aantal eenvoudige "schalingswetten" afgeleid, die ruwe schattingen 
mogelijk maken van de afmetingen van en de concentraties in zware gaswolken. 

In hoofdstuk II wordt de problematiek van twee-dimensionale dichtheids
stromingen geanalyseerd. 'Aandacht wordt besteed aan de structuur van de 
voorste begrenzing van de zware vloeistof (of het zware gas). Zo'n voorste 
begrenzing wordt gekenmerkt door een abrupte sprong in de dichtheid en wordt 
veelal front genoemd. Twee-dimensionale fronten zijn goed bestudeerd in het 
laboratorium. Experimentele informatie uit de literatuur wordt in dit hoofd
stuk gebruikt voor het afleiden van schalingswetten voor de frontstructuur. 
Voorts wordt in dit hoofdstuk een model afgeleid voor de dynamica van de zware 
vloeistof achter het front. Hierbij wordt gebruik gemaakt van ruimtelijk geïn
tegreerde bewegingsvergelijkingen. Een dergelijk model wordt dynamisch 
integraal-model genoemd. 

Hoofdstuk III vormt de kern van dit proefschrift. Hier wordt een drie
dimensionaal dynamisch integraal-model voor een zware gaswolk afgeleid. Het 
inzakken, uitspreiden en opmengen van de wolk wordt beschreven door ruimtelijk 
geïntegreerde bewegingsvergelijkingen. Hierbij wordt rekening gehouden met 



9 

horizontale en verticale versnellingen in en rond de wolk. Voor de cirkelvor
mige rand van de wolk wordt de frontstructuur van hoofdstuk II gebruikt. Het 
opmengen van de wolk wordt beschreven middels een ruimtelijk geïntegreerde 
vergelijking voor de turbulente energie. Met deze vergelijkingen worden de 
straal van de wolk en de gasconcentraties berekend als functie van de tijd. 
Deze worden vergeleken met experimentele gegevens uit de literatuur. Het 
blijkt dat de straal van de wolk en de concentratieprofielen goed worden 
beschreven. Tevens blijkt uit de evaluatie van de meetgegevens dat concentra
ties nabij de grond vele malen hoger zijn dan tot dusverre werd aangenomen 
(III.5.3). 

Het hoofdstuk wordt afgesloten met een uitvoerige evaluatie en gevoelig
heidsanalyse van het model en met een beschouwing over de toepasbaarheid van 
simpele schalingswetten. 

Ter afronding van het proefschrift wordt in hoofdstuk IV gesproken over 
het opzetten van een model, dat naast de quasi-ontkoppelde toestand ook andere 
fasen in het verspreidingsproces kan beschrijven. In zo'n model begint de wolk 
in de quasi-ontkoppelde fase, spreidt zich uit en evolueert uiteindelijk naar 
de zogenaamde passieve eindfase. In het hoofdstuk wordt in het kort beschreven 
welke stadia de wolk hierbij doorloopt en wat de dominerende processen zijn, 
welke beschrijvingen hiervoor reeds voorhanden zijn en welke problemen nog 
moeten worden opgelost. De conclusie is dat het dynamisch integraal-model uit 
hoofdstuk III een geschikt uitgangspunt is voor het construeren van een derge
lijk algemeen model. 
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SUMMARY 

The present work was originally started in the early seventies. In the 
Netherlands the authorities and companies questioned the safety of production, 
transport and processing of large quantities of chlorine. Chlorine is a toxic 
and dense gas. A release of a large amount of chlorine is a considerable 
hazard to the environment. However, the details of the spreading mechanism of 
high density gases in the atmosphere were greatly unknown. In 1973 experiments 
were carried out in the Netherlands to investigate these problems. Pictures, 
of these experiments, shown in the introductory section of this thesis visual
ize the spreading of a dense gas cloud. These pictures show that a dense cloud 
spreads over the ground and takes the form of a large shallow pancake. The 
dominating mechanism is the action of gravity. Indeed, in the life cycle of a 
dense cloud there is a period in which gravity-induced spreading and mixing 
almost fully determines the dispersion of the cloud. So the cloud behaves as 
if it is uncoupled from the atmospheric flow around it. Therefore we call this 
phase the quasi-uncoupled phase. This work focusses on the modeling of quasi-
uncoupled dense clouds. The modeling is described in three steps, subsequently 
given in the chapters I, II and III. 

In chapter I the basic modeling principles are described and some 
scaling laws are derived. These allow a simple first-order estimate of the 
size and mean concentration of the cloud as a function of time. 

In chapter II a detour is made to investigate two-dimensional density 
currents. The frontal structure of the leading edge of such currents has been 
studied relatively well in the laboratory. Laboratory data are used to derive 
a parameterisation of this frontal structure. The bulk dynamics of two-
dimensional density currents is studied by means of a special integral-form of 
the momentum equation that includes the effects of entrainment and allows the 
existence of large density differences between the dense flow and the ambient 
fluid. 

In chapter III a dynamical integral-model for axisymmetric clouds is 
presented. From the fundamental equations of motions, integral-equations are 
derived for the spreading, slumping and mixing of the cloud. These equations 
account for radial and vertical accelerations in and around the cloud and for 
the effect of large density differences between the cloud and the environment. 
Turbulent mixing is described with an entrainment equation, which uses the 
turbulent kinetic energy of the cloud. This turbulent energy is described with 
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a newly developed time-dependent turbulent-energy equation. 
The model is compared with observations on axisymmetric dense clouds 

taken from the literature. First radial gravity spreading is considered 
(III.5.2). Here the agreement between model simulations and experimental data 
is quite satisfactory. The present results on radial spreading are consistent 
with the results of previous studies. However in this study no ad-hoc fitting 
of model coefficients was needed to achieve this. 

Next experimental concentration data are analysed. The present analysis 
shows that near-surface concentrations are likely to be much higher than 
indicated by previous studies of the same experimental data. The reason for 
this is that usually a Gaussian or uniform profile is assumed for the vertical 
distribution of area-averaged cloud concentrations. The present analysis shows 
that such profiles are poor approximations to the observed profiles, especial
ly close to the ground where strong vertical gradients are observed. In this 
study a new ad-hoc similarity profile is proposed. With this profile our model 
gives a satisfactory simulation of observed concentrations (III.5.3). 

The remainder of chapter III is devoted to a sensitivity analysis and to 
a description of model characteristics. 

In chapter IV we put the present work in a wider context. We give our 
views on the possibilities to construct a satisfactory comprehensive dense gas 
model that includes the transport and dispersion by wind and atmospheric 
turbulence. Our conclusions are that such possibilities exist and that our 
dynamic model for still air is a good starting point. 
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INTRODUCTION AND PROBLEM DEFINITION 

In modern society many gases are used and produced which are flammable, 
explosive, radioactive or toxic. Releases of such gases have occurred in the 
past and are likely to occur in the future. A brief review of recent accidents 
has been given by Graziani et al. (1987). It appears that accidental releases 
of hazardous gases are a grave problem. This is especially the case when the 
release leads to the quasi-instantaneous formation of a large cloud. In a 
significant fraction of (potential) accidents, such a cloud will have a 
density that is larger than the atmospheric air density. Such a high density 
may result from the high molecular weight of the gas that is released, or from 
the low temperature at which the gas is released. The latter will occur when 
the gas has a low boiling point and is stored in liquefied form. Three major 
release mechanisms may result in the quasi-instantaneous formation of a dense 
cloud. 

Type 1 
The gas is stored in liquefied form under pressure at ambient tempera

ture. After a failure of the storage tank the pressure drops suddenly and a 
significant fraction of the liquefied gas evaporates spontaneously. In this 
case the heat source for the evaporation is the heat stored in the liquefied 
gas. Spontaneous evaporation leads to a rapidly expanding hemispheric cloud of 
a dense gas. The rapid expansion causes vigorous initial mixing with the 
ambient air. 

Type 2 
The gas i s stored in liquefied form in a container that i s cooled down 

to the boil ing temperature of the gas at ambient pressure. In t h i s case no 
heat is avai lable in the liquid for spontaneous evaporation. After the f a i lu re 
of the tank the l iquid wil l spread over the ground or over a water surface. 
Especially in the l a t t e r case the heat t ransfer from the surface to the 
liquefied gas wi l l lead to rapid formation of a dense gas cloud. 

Type 3 

A dense gas is stored in gaseous form and is released as such (without 
an intermediate boiling process). In the special case in which the gas is 
stored at ambient pressure, expansion and enhanced mixing will not occur 
during the release. 
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These three types of release mechanisms have been simulated in field and 
laboratory experiments. Examples are: 
type 1: Freon experiment at the "Maasvlakte" (Van Uiden, 1971*). 
type 2: Low wind cases of LNG, LPG experiments at "Maplin Sands" (e.g. Colen-

brander and Puttock, 1984). 
type 3: Freon experiments at Porton (Picknett, 1981) and "Thorney Island" 

(e.g. McQuaid, 1984). 
Laboratory experiments with Freon (Havens and Spicer, 1984, 1985). 

These and other experiments have supported and stimulated significant 
modelling efforts during the last 15 years. 

The modelling of the behaviour of large dense clouds is by no means a 
simple task. Apart from the usual problems which arise, when one wants to 
model the dispersion of passive trace contaminants, dense clouds create a few 
problems of their own. The main reason for this is that the force of gravity 
works on dense clouds. This leads to gravity-driven flow phenomena with their 
own specific characteristics. For a review of this subject we refer to Simpson 
(1982). 

A suitable introduction to the problems related to dense cloud modelling 
is a time series of pictures of a dense cloud during and after its release. 
For this purpose we have selected a number of pictures taken during the first 
large scale field experiments on dense cloud dispersion, that have been 
carried out in the Netherlands in 1973. A brief survey of these experiments is 
given in the report "Experiments with Chlorine" (Directorate-General of 
Labour, 1975). The dense gas problems are discussed in Van Ulden (1974). The 
aim of these experiments was to acquire a better insight into the behaviour 
and control of large accidental chlorine spills. To avoid the hazards of a 
large chlorine release, a potential accident was simulated using freon-12 
(CC12F2). This is an invisible, non-toxic and rather inert gas, with a 
molecular weight of 121 and a boiling point of 243 K. 

A quasi-instantaneous source was obtained as follows. A vessel with 
1000 kg of liquid freon at ambient temperature was placed over an open tank 
filled with hot water. At the bottom of the vessel was an outlet which was 
closed by a rupture disc. The disc was forced to break by an increase of the 
pressure on the vessel to about 7 bar. This led to a rapid downward outflow of 
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the liquid freon into the hot water. The water provided sufficient heat for a 
complete evaporation of the freon in about 5 seconds. Moreover it supplied the 
cloud with water vapour, the condensation of which made the cloud visible. 
After its expansion the cloud had a temperature nearly equal to the air 
temperature. Its density was about 20$ higher than that of air. 

The formation of the cloud and its subsequent behaviour is illustrated 
with 6 characteristic pictures on the next pages. The first picture gives the 
cloud after 1 s, the second picture after 5 s when the cloud formation is 
completed. We see that the expansion is more or less hemispheric. The cloud 
edge is very diffuse. This is due to the vigorous turbulent mixing owing to 
the rapid expansion. After its formation the cloud starts to slump. The 
pictures 3~5 show the cloud after 8 s, 15 s and 35 s respectively. We see that 
the cloud acquires a very shallow and wide form. In other pictures, not shown 
here, it is observed that this form is more or less cylindrical. After 35 s 
the diameter of this cylinder is about 100 m. Its depth is then about 0.5 m. 
It is clear that a dense cloud behaves differently from a puff of passive 
contaminant. In passive puff dispersion the vertical and horizontal scales are 
of the same order. 

The very pronounced slumping, which is observed for a dense cloud, is 
caused by the combination of the high cloud density and gravity. This makes 
the cloud negatively buoyant. Therefore dense gases are often called heavy 
gases. The negative buoyancy results in an increased static pressure in the 
cloud, which leads to a radially outward pressure force. This causes the 
outward slumping motion. The process resembles the spreading of a liquid over 
a solid surface. 

The slumping process does not continue indefinitely. In the absence of 
wind and atmospheric turbulence, the slumping will stop when the cloud height 
reduces to the hieght of the roughness elements and irregularities of the 
surface. When there is wind, and turbulence, sooner or later atmospheric 
transport and diffusion will carry the cloud away and dilute it to smaller and 
smaller concentrations until it behaves as a passive contaminant. The start of 
the latter processes is shown in picture 6, which was taken after 70 s. Here 
we see that only remnants of the visible cloud still linger at the surface. 
The bulk of the cloud has become invisible due to mixing with dry air and 
evaporation of the liquid water. 
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These and other observations suggest that the life cycle of the 
spreading and mixing of a dense cloud can be split up in five phases. 

I The formation phase 
This phase comprises the release of the (liquefied) gas and, if appropri
ate, its following evaporation and expansion. The three major types of 
formation mechanisms have been given above (picture 1). 

II The quasi-uncoupled slumping phase 
This phase occurs when the effects of turbulence and momentum of the 
ambient flow can be neglected, as well as the influence of surface fric
tion. In this phase the dynamics and mixing of the cloud are exclusively 
driven by the negative buoyancy of the cloud. A slumping and radially 
spreading cloud is observed with a more or less pronounced raised edge, 
sharp radial boundaries and a diffuse top. Significant mixing occurs, 
resulting from the turbulence which is generated by gravity spreading 
(pictures 2-5). 

III The coupled spreading phase 
In this phase gravity spreading still dominates over horizontal atmos
pheric diffusion. However, the cloud no longer slumps because atmospheric 
turbulence leads to vertical mixing at a similar or greater rate than the 
gravity induced slumping motion. In addition, advection by the mean wind 
occurs and surface friction may affect the gravity spreading (picture 6). 

-IV The mixed phase 
In this phase gravity spreading and horizontal diffusion are of comparable 
importance. The sharp-edged cloud transforms into a diffuse cloud. 
Vertical diffusion is still reduced by cloud density. 

V The passive phase 
In this phase cloud density effects can be neglected. Dispersion by atmos
pheric turbulence and advection by the mean wind are similar to those for 
a passive puff. 

The present work focusses on the second (quasi-uncoupled) phase and in 
particular with the special case of an isothermal dense cloud, i.e. a cloud 
with a uniform temperature equal to the air temperature. 
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Chapter I 

INTRODUCTION TO THE MODELLING OF QUASI-UNCOUPLED DENSE CLOUDS 

1.1 Basic principles 

It appears from observations that a dense cloud in the quasi-uncoupled 
phase has a cylindrical shape. The radial cloud edge is quite distinct (figure 
1.1). This calls for a description of the cloud area involving the distance R 
of the radial cloud edge from the cloud center. The cloud area is given by 

A = TTR2 . (1.1) 

On the other hand the cloud top is quite diffuse and i r regular (figure 1.1). 

Clearly the ve r t i ca l d i s t r ibu t ion of dense material in the cyl indr ical cloud 

is non-uniform. This ca l l s for an in tegra l def ini t ion of cloud height. The 

mean height <z> of dense material in the cloud i s by defini t ion 

<z> = fn ƒ" z Ap(r,z) 2irr dr dz / / R ƒ" Ap(r,z) 2irr dr dz (1.2) 
o o o o 

Here z is the height above the ground, r the rad ia l distance from the cloud 
center and Ap(z,r) the difference between the local cloud density p(z , r ) and 
the ambient a i r density p . The mean height <z> can be used to define a mean 

3 
cloud depth H. Let us consider the special case in which initially the cloud 
is a cylinder with radius RQ, height HQ and a uniform density difference Ap . 
For this special case it can be simply shown that the relation between the 
cloud top HQ and the mean height <z>0 is 

H = 2<z> . (1.3) 
o o 

This suggests that a suitable general definition for the cloud depth is 

H ■ 2<z> . (1.4) 

Adopting this definition we may also define a cloud volume by 

V = TTR2H , (1.5) 
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figure 1.1: Vertical Cross-section through the cloud center showing the sharp 
cloud edge and the diffuse cloud top. 

a mean cloud density difference by 

R m 

Ap = ƒ ƒ A p ( r , z ) 2irr dr dz / V (1 .6 ) 

and a mean cloud density by 

p̂" = p a + Ap" . (1-7) 

These definitions have the important and convenient property that they allow a 
simple and exact representation of the potential energy of the cloud. This 
potential energy PE equals 

P = fR r g Ap(r,z) z 2irr dr dz , (1.8) 
E 0 0 

where g is the acceleration by gravity. The integral in (1.8) can be simply 
evaluated by using (1.2), (1.1), (1.5) and (1.6). The result is 

-PE-.-fc g Ap" V H . (1*9) 

In this equation g Ap V is the total negative buoyancy of the cloud. Thus the 
potential energy equals the negative buoyancy multiplied by the height ^H of 
the center of mass of the cloud. This result can be simplified further for the 
special case of an isothermal cloud. We use the fact that the total mass of 
material should be conserved. This mass equals p V . Moreover the total mass 
of the cloud increases due to turbulent entrainment of air. For an isothermal 
cloud the mass increase at a given ir 
cloud mass at a given instant equals 
cloud the mass increase at a given instant equals p (V-V ). Thus the total 

3. O 

p V = p V + p (V-V ) . (1.10) 
y Ko o Ka o 



21 

From th i s equation i t follows d i rec t ly that 

Ap V = AJT V . (1.11) 
o o 

Thus for an isothermal cloud the difference between the cloud mass and the 
mass of an amount of air with the same volume is a conserved quantity. There
fore the negative buoyancy g Ap V is also a conserved property for an isother
mal dense cloud. Using this we may write for the potential energy 

PE = ^ g ^ V o H ' ( I J 2 ) 

So isothermal clouds have the convenient property that their potential energy 
is fully specified by the initial conditions and by the actual cloud height H. 

We will use this property now to illustrate the cloud dynamics in terms 
of its energy budget. This may help to understand the basic principles of the 
spreading and mixing processes. 

As initial condition we take a still cloud with a potential energy 

P E o = * g ^ V o H o - (I'13) 

The negative buoyancy, which is the basis of this potential energy, also creates 
an increased static pressure in the cloud. This increased static pressure pushes 
the cloud radially outward: it starts a radial acceleration, that is accompanied 
by a downward acceleration for continuity reasons. In terms of energy this 
corresponds with a transformation of potential energy into kinetic energy (Kg). 
Indeed slumping implies a loss of height and a loss of potential energy. 

In the slumping process the outward moving cloud edge feels the resis
tance of the ambient air. Continually, new air is accelerated by the cloud 
edge. Here strong shears in the flow are present that lead to the production of 
turbulent energy (TE) at the cost of kinetic energy. 

The turbulence thus created leads to two new processes. The first process 
is turbulent mixing at the top of the cloud. Ambient air is entrained into the 
cloud volume, which corresponds with a relative thickening of the cloud. This 
is equivalent with a transformation of turbulent energy back into potential 
energy. This process we call buoyant destruction. The second process is viscous 
dissipation. In a turbulent energy cascade energy is transferred to smaller and 
smaller scales. At the smallest scale viscous friction destroys turbulent 
energy, while internal heat (IE) is produced. The flows of energy are summar
ized in the following diagram: 
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G production of Kg 
S production of Tg 

B buoyant destruction of Tg 
D viscous dissipation of Tg 

In the life cycle of the quasi-uncoupled phase the potential energy decreases 
monotonously, while the internal heat increases. The kinetic energy starts at a 
zero value, increases when the cloud accelerates from rest, and decreases later 
on. The turbulent energy lags behind the kinetic energy, but similarly goes 
through a maximum during the quasi-uncoupled phase. 

It will be clear that the gravity spreading of a dense cloud is a very 
unsteady process. A proper description of this process requires the solution of 
time-dependent equations for momentum and energy. This is done in chapter II 
for 2-dimensional gravity currents and in chapter III for axisymmetric clouds. 
Before we start with the detailed modeling problems, we first give a descrip
tion of some simple scaling "laws". This may help the reader to develop some 
quantitative understanding of the spreading and mixing of dense clouds. 

1.2 Simple scaling "laws 

The source for all dense gas motions is the static pressure surplus in 
the cloud due to its negative buoyancy. Thus we start our scaling analysis with 
an evaluation of this pressure surplus. Inside the cloud the static pressure Pc 
varies with height as 

8P /9z' = -gp , (1.14) 

where z* is the local height and p is the local cloud density. To find Pc at a 
given position (r,z), we integrate (1.14) with respect to z' from z to infinity 

P (r,») - P (r,z) = - ƒ gp(r,z')dz' c c z (1.15) 

Outside the cloud the static pressure Pa at the height z is given by 

P (») - P (z) = - ƒ gpo dz' . 
3, 3 Z a. 

(1.16) 
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At an infinite height the pressure is no longer affected by the presence of the 
cloud, thus 

P (r,-) = P (-) . (1.17) 
C a 

The static pressure surplus at a given position in the cloud is then given by 

nQ(r,z) ■ P (r,z) - P (z) = f g Ap (r,z») dz' . (1.18) 
a c ci z 

A mean value n„ of the static pressure surplus may be defined in the same 
manner as we have defined Ap in (1.6). It reads: 

no = J * ^ nQ(r,z) 2irr dr dz / V . (1.19) 

Substituting (1.18) for II- we obtain: 

'Ü = r r g Ap( r . z ' ) 2irr dr dz dz / V . (1.20) 
s o z 

Using (I.2)-(I.6) it can be shown that (1.20) is identical to 

1 = \ g Ap H . (1.21) 
s 

This result is quite general in the sense that no assumptions have been made 
regarding the density distribution in the cloud. However, when we want to 
arrive at simple scaling laws, we have to make such assumptions. 

A scaling law for radial gravity spreading can be derived as follows. The 
radial edge of the cloud has the appearance of a sharp front (see figure 1.1). 
At this front there is a jump in the static pressure. We approximate this 
pressure jump by its mean cloud value (1.21). 
The front moves outward with a velocity 

U ■ dR/dt . (1.22) 

The moving front meets continually undisturbed ambient air which is accelerated 
outward and upward. This creates a dynamic pressure n outside the cloud, which 
scales as 

na " - * C Pa V ( I ' 2 3 ) 
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where c is an empirical drag coefficient. Assuming a balance between the mean 
static pressure inside the cloud and the dynamic pressure outside the cloud 
(i.e. nc = n ) we simply find from (1.21) and (1.23) that 

o ex 

Uf = k (g Ap H / p a)* (1.24) 
where 

k ■ 1 / /c (1.25) 

is a densimetric Froude number. We assume that cloud shape and flow configur
ation only depend on H, R and Uf. Then k is a constant. Experimental data show 
that the simple scaling law (1.24) gives a fair description of the radial 
spreading of a dense cloud and that k is close to unity, except initially when 
the cloud is still accelerating from rest (see chapters II and III). From this 
result we may draw a first and quite important conclusion, that is that the 
radial spreading velocity does not depend on the density surplus Ap alone, but 
on the product of Ap and H! Thus significant gravity spreading may occur for 
small values of Ap provided the cloud depth is great enough. Another point, to 
be noted is, that it is the ratio Ap/p that matters and not Ap/p. The latter 

3. 
r a t i o has been used by several authors ( e .g . Van Ulden, 197*0. A numerical 
example i l l u s t r a t e s the kind of spreading ve loc i t i es which we may expect. 
Taking Ap/p = 0.1 and H = 10 m we find that Uf = 3 m s"1 . For the same cloud 
depth and Ap/p = 1 we find Uf = 10 m s - 1 . 

3. 
From (1.24) we may derive an expression for the cloud radius as a 

function of time. Using (1.5), (1.11) and (1.22), we may rewrite (1.24) as 
y 

dRVdt =-2k-(g-Ap V ■-/ p IT)2 . ----- (1.26) 
o o a 

Integration of t h i s expression with respect to time yie lds 

R2-R 2 = 2k (g Ap V / p T 0 * t . (1.27) 
\J O O 3 

Thus the cloud area is a linear function of time. (1.27) can be written in 
dimensionless form as follows 

where 
(R/R l2 - 2k (t/t ) + 1 (1.28) 

o o 
t m R /U (1.29) 
0 0 0 
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is a time scale and 

Uo = (g Apo Ho / P ƒ * (1.30) 

a velocity scale. 
Thus R0 and U0 are "natural" scaling parameters for radial gravity spreading. 
These scaling parameters can also be used to write the equation (1.24) for the 
front velocity in dimensionless form. The result for large times (t/tQ>>1) is: 

U./U = (kt /2t)^ . (I.3D 
f o o 

We see that the front velocity decreases inversely proportional to the square-
root of time, which means that the cloud is decelerating. 

The spreading "law" (1.31) cannot be valid for early times. Initially the 
cloud is at rest, so there must be a period in which the cloud accelerates. We 
will not deal with this acceleration phase in detail. It is useful however to 
give an estimate for its duration. This estimate is obtained as follows. 
Initially the static pressure force is used to accelerate both the cloud mass 
itself and an amount of "added air mass". We approximate the static pressure 
force which acts on the cloud edge by: 

Fg = 2TTR H Pg (1.32) 

and the inertial force by 

- dUf 
Fi = P V d F - (I'33) 

Assuming a balance between these two forces and using (1.21), we find that for 
time t=0 

dU„ 2g Ap H 2p U r f-i o ° a o ( ni|) Ldt Jt=0 - p R ~ p t * U , i 4 ; 

o o o o 
This suggests that an appropriate time scale ta for the initial acceleration 
phase is 

t -!2_t . »-35) 
a 2pa o 
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Since normally p /2p is of 0(1), t_ / t r t i s of 0(1) . A numerical example i l l u s -o a a v 
t r a t e s the kind of time scales we may expect for the i n i t a l accelerat ion. Let 
us take a cloud with i n i t i a l l y Ap /p = 1, HQ = 10 m, RQ = 10 m, then we find 
UQ = 10 m s , tQ = 1 s and t a = 1 s. Thus the i n i t i a l acceleration phase i s 
very short in t h i s example. A more detai led discussion on th i s subject i s given 
in chapter I I I , section 6.3« 

Next we proceed with the scaling of the mixing process. We have seen 
before that observations show that the cloud edges are very d i s t i n c t . This 
indicates that l i t t l e mixing occurs through the cloud edge. On the other hand 
the cloud top i s quite diffuse, which indicates that s ignif icant mixing may 
occur there . Thus as a f i r s t appriximation we describe the mixing process by 

dV/dt = TTR2 W , (1.36) 
e 

where We is an area-averaged top entrainment velocity to be estimated later. 
Because V = irR2 H and dR/dt = Uf we may write (1.36) as 

dH/dt = - 2(H/R) U + W . (1.37) 
f e 

This shows that the cloud height changes by two processes. The f i r s t term at 
the r igh t hand s ide gives the mean downward f lu id motion caused by the 
spreading and slumping process. The l a s t term shows that the entrainment ve l 
ocity i s equivalent to a mean upward motion of the cloud top r e l a t ive to the 
fluid motion. In section 1.1 we have seen that the potent ia l energy of the 
cloud i s proportional to the cloud height (1.12) . Thus the entrainment re la t ion 
(1.37 )" is "direct ly 'linked with the energy "budget "of the cloud. ""To"'be' more pre
c i s e , the energy budget of the cloud imposes cer ta in r e s t r i c t i o n s on the 
scaling laws of We. Wg should not be modeled in such a way that the potent ia l 
energy increases above i t s i n i t i a l value. On the contrary, we expect that the 
po ten t ia l energy and the cloud height decrease with time because of continuous 
diss ipat ion of energy in to heat . Thus we expect that 

W < 2(H/R) U_ . (1.38) 
e f 

Let us now look at the entrainment process i t s e l f . Entrainment occurs because 
turbulence i s produced by the shear that i s re la ted to the rad ia l gravity 
spreading. The strongest shears are present near the advancing leading edge. 
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Here turbulent eddies are created with an energy density of order \ p U*. 
cl I 

This occurs a t a volume r a t e of order 2TTR H U f . thus the eddy-product ion r a t e 
should s c a l e as irp R H U 3 . This product ion r a t e i s used p a r t l y for the 

3. I 
viscous dissipation of turbulent energy, partly for increasing the potential 
energy. From (1.12) and (1.37) it follows that the latter energy transformation 
occurs at a rate i g Ap V W . We now assume similarity in the sense that a 

o o e 
fixed fraction e of the turbulent energy production is used for increasing the 
potential energy. This leads to 

X g A]T V Q Wg - e ir pa R H Uf
3 . (1.39) 

Using (1.11), (1.22) and (1.21) we easily obtain that 

where 
a ■ e k2 (1.41) 
e 

is an entrainment coefficient. Comparing (I.40) and (1.37) we see that the 
energy constraint is met for a < 1. Further it is interesting to see that in a 
mathematical sense the scaling law (I.40) for top entrainment is identical to 
the edge entrainment proposed e.g. by Van Ulden (1974). A major problem with 
(1.40) is that the value of a is not well established. Values for a ranging 
from 0.4 to 1.0 have been given in the literature. Minor variations in a have 
a significant effect on cloud concentrations for large times. This can be seen, 
when we substitute (1.40) for We in (1.36) and solve for V by using (1.24). The 
result is 

a 
V/V = [2k(t/t ) + 1] e . (1.42) 

o o 
From this result we see that for great times V/VQ becomes very sensitive for 
the value of a . Thus a significant amount of uncertainty exists here. More 
discussion on this subject is given in chapter III. Despite the uncertainties 
in the scaling "laws" (1.28) and (1.42), these laws are useful for providing a 
first educated guess for the spreading and mixing of an isothermal dense cloud. 
We will illustrate this with an example. 

Let us take instantaneous release of a cylindrical cloud with RQ = 10 m, 
H„ = 10 m and Ap /p = 1 . Then U. = 10 m s" ' and t_ = 1 s. Let us assume that o o a ° ° 
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k = 1 and a = 0.5. With these values we find from (1.28) that after 50 s the e 
cloud area has been increased by a factor 100, i.e. R is about 100 m. From 
(I.42) we see that the cloud volume has been increased by a factor 10. Thus 
average cloud concentration c and its relative density difference with air 
Ap/p are decreased to about 10? of their initial values. The cloud height is 
also decreased to about 10% of its initial value, i.e. to H = 1 m. By then, 
according to (1.24), the spreading velocity Uf = 1 m s"1. In atmospheric flow 
conditions with low windspeeds this is a very significant velocity. 

The evaluation after 20 minutes gives R = 500 m, H = 0.2 m, A~p7p = 0.02 
and c = 0.02. Then the spreading velocity has decreased to LL. = 0.2 m s-1, 
which still is a significant spreading velocity. 

From this numerical example we learn that a large dense cloud may spread 
over a very large area and becomes very shallow. At the same time significant 
self-mixing occurs. Also we see that the time scale of all this is quite small. 
From this it is apparent that gravity spreading and self-induced mixing are 
features that should be included in models for the dispersion of large dense 
clouds. 
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Chapte r I I 

A DYNAMICAL INTEGRAL MODEL FOR TWO-DIMENSIONAL GRAVITY CURRENTS 

11.1 Introduction 

The gravity spreading phenomena due to negative buoyancy of dense clouds 
are not unique. Similar phenomena have been observed in other "man-made" flows 
and in a number of geophysical flows. Examples are: 
- exchange flows in locks, which separate salt water and fresh water (e.g. 

Barr, 1967; Simpson and Britter, 1979); 
- the spreading of oil on water (e.g. Abbott, 1961; Fay, 1969; Fanneldp and 

Waldman, 1972); 
- atmospheric cold fronts (e.g. Schmidt, 1911). 
For a recent review on gravity currents we refer to Simpson (1982). 

Since gravity currents and especially two-dimensional gravity currents 
have been studied widely, it is useful to study the 2-D problem first before we 
enter into the details of the axisymmetric spreading problem. In this chapter 
we focus on horizontal bottom currents, which result from an instantaneous 
release of dense fluid. For reasons of simplicity we focus on shallow currents 
in which vertical accelerations can be neglected. We further assume that the 
ambient fluid is at rest and infinitely deep. Viscous forces are neglected. 

The structure of this chapter is as follows. We start in section 2 with a 
review of studies made on "inertia-buoyancy currents" and discuss some general 
features of these currents. In section 3 we describe a new bulk model. This 
models consists of bulk equations for matter and momentum, which are derived 
from the basic equations of motion. In the sections 4 and 5 we present model 
results and an evaluation of these. In section 6 we give our conclusions. 

11.2 History and problem definition 

II.2.1 The leading edge of gravity currents 

Major information on the conditions of the leading edge can be found in Schmidt 
(1911), Benjamin (1968), Simpson (1972) and Simpson and Britter (1979). In 
figure II.1 an arrested leading edge is shown. 
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t t 
figure II.1: The head of a steady gravity current (after Simpson and Britter, 

1979). 

Some characteristic features are: 
1. At the leading edge a head is present with a depth H-̂  which is about twice 

the depth H n of the current behind the head. 
2. An elevated forward stagnation point is present. Below this point an insig

nificant flux Qi of ambient fluid is entrained. 
3. Behind the head a wake region is present in which significant mixing occurs. 
4. In the head a significant internal flow is present. Near the surface denser 

fluid moves towards the head with a velocity Uj|. In the wake region a mixing 
layer moves away from the head. 
S & B found that 

U^.- .0....2..U., (II.2.1) 

where U is the velocity of the current relative to the ambient fluid. 
5. The dimensionless velocity Ch of the leading edge can be written as 

Ch - U / / 8APhHn/Pa . (II.2.2) 

where Ap. is the mean density difference behind the head, p the density of h a 
the ambient fluid and Hn the densimetric mean depth behind the head. A 
formal definition of the product of Ap and Hh is (Fay, 1980): 

H, 
APu H. Kh h ƒ Ap(z) dz . (II.2.3) 
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With th i s def in i t ion the value of Ch may be computed from experimental data . 
From Schmidt (1911), Benjamin's (1968) review, S & B (1979), Fannelefp et a l . 
(1980), Huppert and Simpson (1981) i t follows that 

Ch = 1 .15 ± 0.05, ( I I . 2 . 1 ) 

both for steady and unsteady gravity currents, provided the Reynolds number 
UH^/v > O(10^) and provided the current is deeply submerged. 

II.2.2 Bulk properties of fixed volume releases 

A major contribution to the understanding of the bulk properties of fixed 
volume releases has been given by Fanneldp and Waldman (1971, 1972) and later 
by Hoult (1972). Their aim was to describe the spreading of oil on water. They 
assumed (II.2.2) as a leading edge boundary condition and used the shallow-
water equations to describe the interior of the current. They showed that 
similarity solutions to this set of equations exist for the layer averaged 
velocity u, for the local depth h and for the dimensionless velocity 

C„ ■ U„//gAp"H/pQ , (II.2.5) 
n I a 

where Uf is the front velocity, Ap the mean density difference and H = V/X the 
mean depth of the current. (V is the volume per unit width of current and X the 
length of the current.) Their results cannot be applied as such to the present 
problem, because entrainment and the internal flow were not included in their 
description. Also their solutions are only valid for large times, when the 
current has passed through its initial acceleration phase into the final 
deceleration phase. The problems of entrainment and initial acceleration have 
been dealt with - be it in a crude manner - by Van Ulden (1979). Van ULden 
assumed a rectangular shape with a linear velocity distribution and derived a 
bulk equation for dllf/dt. He included a static pressure force, a drag force and 
an effective stress due to entrainment in this equation. However, objections 
may be raised against the way in which this equation was derived. 

It is the purpose of this paper to improve on this. We will derive bulk 
continuity and momentum equations starting from the basic equations of motion. 
The now existing better understanding of the leading edge conditions will be 
employed in the model. Also some features of the approach by Fanneldp and 



32 

Waldman (1971 , 1972) will be included in the model. Furthermore a parameter
ization for top entrainment will be presented. 

II.3 A new bulk model for fixed volume releases 

II.3.1 Introduction 

In the remainder of this paper we deal with gravity currents which result 
from an instantaneous release of a volume V0 (per unit width) of a fluid with 
density p that is greater than the density p of the ambient fluid by an 

O cl 

amount Ap . The two fluids are assumed incompressible and of equal temperature. 
The release is at the horizontal bottom at the beginning of an infinitely deep 
channel in which the ambient fluid is at rest. The initial volume has a length 
XQ and a mean depth H = V /X . After the release a gravity current develops of 
the type that is shown in figure 2. Such currents develop when surface friction 
and side wall effects are negligible and the current is shallow. These condi
tions are presupposed in this chapter. In the figure it is shown that a typical 
gravity current has a distinct head, followed by a long tail with a diffuse 
upper boundary. The local depth of the gravity current is defined by: 

h(x,t) = 2 ƒ z Ap(x,z,t) dz / ƒ Ap(x,z,t) dz . (II.3.1) 

Thus the local depth is twice the local densimetric mean depth z(x,t). For our 
model we will use an idealised representation of a real gravity current. Our 
idealised gravity current has a uniform density p and all dense material is 
below the local depth h(x,t). The volume per unit width of the current is given 
by 

t 

t t 
figure I I . 2 : The unsteady gravity current. 
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V = o/X h(x,t) dx (II.3.2) 

and the horizontal momentum-integral per unit width is approximated by 

M = o/X pc ü(x,t) h(x,t) dx , (II.3.3) 

where ïï(x,t) is the layer averaged horizontal velocity. Equations for dV/dt and 
dM/dt form the basis of our dynamical integral model. Such equations will be 
derived in the sections II.3.2 and II.3-3. To obtain a full model closure also 
the integrals in (II.3.2) and (II.3.3) have to be evaluated. This is done in 
section II.3.4 for the tail region and in section II.3.5 for the head of the 
current. In these sections the volume and momentum of the tail and the head are 
expressed in terms of the length X of the current, the depth H^ in the origin, 
the depth Hn at the transition from tail to head and the velocity U = dX/dt of 
the leading edge. 

II.3.2 Equations for the volume of the current 

As we have seen in II.2.1 little mixing occurs through the leading edge 
of the gravity current. On the other hand significant mixing occurs at the top 
of the current behind the head. Therefore we parameterize the mixing process 
as: 

dV/dt = W X , (II.3.4) 
e 

where We an effective entrainment velocity an X the area per unit width of the 
current. Thus WeX can be interpreted as the volume flux of ambient fluid into 
the gravity current. 

Next we will derive a parameterisation for the entrainment velocity by 
considering the energy budget of the current. The potential energy of the 
current is given by 

where 
PE = 0/ X

Q/ h ( x , t ) g Apc z dz dx (II.3.5) 

Apc = pc - pa (II.3.6) 

is the average density difference between the current and the ambient fluid. 
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When h(x,t) does not vary too wildly with x the potential energy can be 
approximated by 

PE «..£ g Apc V H , (II.3.7) 
where 

H = V/X (II.3.8) 

is the average cloud depth. 
As we have seen in Chapter I (eqn. (1.11)) the conservation of dense 

material implies that 

Apc V = ApQ VQ . (II.3.9) 

Therefore 

and 
PE - i g Ap V H (II.3.10) 

* o o 
dPE/dt -.\ g Ap V (dH/dt) . (II.3.11) 

o o 
Using (II.3.*») and (II.3.8) and using that 

dX/dt = Uf (II.3.12) 

it is easily shown that 

dH/dt =_^HUf/X + Wg . _ (II.3.13) 

Therefore 

dPE/dt = - \ g Ap V H U./X +.X g Ap^ V W . (II.3-11*) 
• ' o o f ' o o e 

The physical interpretation of this result is that the potential energy 
decreases due to slumping and increases due to entrainment. The latter process 
corresponds with a transformation of turbulent energy into potential energy. 
This transformation process is often called "the buoyant destruction of turbu
lence". From (II.3.1H) we see that the entrainment velocity is known when the 
buoyant destruction is known. To find the buoyant destruction rate we make the 
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closure assumption that buoyant destruction is proportional to the production 
of turbulent kinetic energy. This assumption has led to successful modeling of 
entrainment in the atmosphere and ocean (e.g. Tennekes and Driedonks, 1981). 
The production of turbulent energy in the present case can be derived from the 
analysis by Simpson and Britter (1979). They showed that shear production 
occurs mainly in the head region of the current, while destruction of eddies 
mainly occurs behind the head. Near the head, eddies are created with an energy 
density of order \ pa Uf . This occurs at a volume rate of order HnU. Thus the 
production rate should scale as % p H, uj*. Using this we obtain for the 

a h f 
buoyant destruction rate: 

' X g Apo VQ We = \ e pa Hh Uf
3 , (II.3.15) 

where e is a numerical coefficient. From this result we find with (II.3.'O and 
(II.3.9) for the entrainment rate: 

where 
dV/dt = E H , U./R1 (II.3.16) 

h f 

Ri = gAp H/p U.2 (II.3.17) 
C cl X 

is a bulk Richardson number and where e is an empirical coefficient, this re
sult resembles the traditional scaling of side entrainment (Van Ulden, 197^; 
Fay, 1980) which reads or the two-dimensional case 

dV/dt = a HU„ , (II.3.18) 
e f 

where a is a constant. The physical meaning of our result is, however, 
completely different. In our model only the production of turbulent kinetic 
energy occurs at the leading edge, but the subsequent entrainment occurs at the 
top of the current. Thus turbulent eddies are mainly created near the leading 
edge. While travelling away from the leading edge they lose their kinetic 
energy and increase the potential energy of the current. 

The estimation of our entrainment coefficient e is not easy. No data seem 
to be available for thé 2-dimensional case. As a preliminary value we will use 
e = 0.6. This value lies within the range of entrainment coefficients found for 
the axisymmetric case (see chapter III for a full discussion on this subject). 
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II.3.3 The momentum-integral equation 

In this section we will derive an equation for the horizontal momentum-
integral of the gravity current by considering the momentum budget in a time 
varying control volume, which just encloses the gravity current. This budget 
reads: 

dM/dt = - o/X+
 o/n+ (3P/3x) dx dz . (II.3.19) 

In this equation P is the pressure, while X+ and h+ denote, that the integra
tions are extended to include the outer boundary of the current. In this 
momentum budget it is presupposed that shear-stresses and momentum fluxes 
vanish at the boundaries of the control volume. In this section we will 
evaluate the right hand side of this momentum budget, which represents the 
pressure forces that act on the current. 

It is convenient for this evaluation to introduce the pressure disturb
ance II, which is defined as: 

n(x,z,t) = P(x,z,t) - Pjz) , (II.3.20) 

where P (z) is the pressure of the undisturbed ambient fluid at the height z. 
Since 3P /3x = 0, it follows that 

- ;x+ ;h+ (3P/3X) dx dz = - ;x+ ;h+ on/ax) dx dz . (n .3 .21) 
0 0 0 0 

Since 3h+/3x and II at the upper boundary are small in the bulk of the current 
we may write: 

X+h+ X+ 3 h+ h+(o,t) h+(X+,t) 
-I I (3Il/3x)dxdz = -ƒ — ( ƒ ndz)dx = ƒ n(0,z,t) -ƒ n(X+,z,t)dz 
00 o X o o o (n.3.22) 

Thus the pressure force on the current is determined by the pressure disturb
ances in the origin and at the leading edge. 
Three different processes produce these pressure disturbances: 
- the negative buoyancy of the dense fluid gives rise to an increase II in the 

static pressure in the current and a corresponding static pressure force Fs; 
- the advancing head of the current intrudes into stagnant ambient fluid. This 
produces a dynamical pressure n. in front of the head and a corresponding 
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dynamical drag force Fd; 
- the acceleration of the current applies momentum changes in the ambient 
fluid. This leads to an acceleration reaction pressure n in front of the 
head and a corresponding reaction force Fa. 

In the following we will describe these three pressure forces. 
The static pressure disturbance vanishes in X+, because no dense fluid is 

present at this distance from the origin. Thus the static pressure force is 
given by: 

Fs = o/h+(0,t) n8(o,z,t) dz . (ii.3.23) 

Since n obeys the hydrostatic relation 
S * 

311 /3z = - gAp (II.3.24) s c 

it can be shown that the static pressure force equals: 

Fs =\ gApc Hfc2 , (II.3.25) 

where Hfc = h(o,t) is the current depth in the origin (see fig. II.2). 
The dynamic pressure vanishes in the origin. Thus the dynamic drag force 

is determined by the flow conditions near the leading edge. The dynamic 
2 pressure difference over the leading edge scales as \ p U_ , while the scale 

cL I 

depth for the leading edge is Hh (see fig. II.2). Therefore we parameterize the 
dynamic drag force as: 

Fd = "-* cf pa Uf 2 Hh ' ' (II.3.26) 

where. cf is a drag coefficient of 0(1) which will be estimated in section 
II.3.5. 

The acceleration reaction force is written as: 

Fa = - dMy/dt , (II.3.27) 

where My is the virtual momentum of the ambient fluid (Batchelor, 1967, 6.4). 
To parameterize this virtual momentum we use the resemblance between our 
gravity current and an elliptical cylinder with aspect ratio H/X. For such a 
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2 cylinder the virtual momentum equals p H U (Batchelor, 1967, 6.6). Therefore 
3. X 

we parameterize My as: 

My = a pa H2 Uf , (II.3.28). 

where a is an empirical coefficient of 0(1). The exact value of this 
coefficient is not important for a shallow gravity current, because Mv is small 
in comparison with the total momentum M of the current. In this study we use 
a = 2. 

We are now ready for our momentum-integral equation. Using that 
dM/dt = Fs + Fd + Fa we easily find from (II.3.25), (II.3.26) and (II.3.27) 
that: 

d(M+My)/dt *>.\ gApcHt
2 -X cfPaHhUf

2 . (II.3.29) 

This equation and the continuity equation (II.3.16) are the bulk rate equations 
for the total gravity current. In these equations the volume integral (II.3.2) 
and the momentum integral (II.3-3) still have to be specified. We will do so in 
the following sections. ^ 

II.3.^ The horizontal distributions of layer depth and layer averaged 
velocity in the tail of the current 

It is the purpose of this section to evaluate for the tail of the current 
the volume-integral 

_._.h 
Vt(t) ■ •ƒ h(x,t) dx (II.3.30) 

o 

and the momentum-integral 

X h 
M ( t ) B .ƒ p u (x , t ) h (x , t ) dx ( I I . 3 . 3 D 

o 

In particular we want to express these integrals in terms of the model 
variables H^, Hh, Xn and Un. In order to do so we need approximations to the 
functions h(x,t) and u(x,t). During the early development of the current these 
are difficult to obtain, but quite soon the current becomes shallow enough that 
the shallow layer equations are applicable to the flow in the tail of the 
current. In the present problem the following equations apply: 
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and 
1 Dh 
h Dt " 

DÜ 
Dt = g 

3u 
3x 
Apc 
pc 

w 
h 
3h 
3x " 

paweu 

pch 

( I I .3 .32) 

X 6 ■% • ( I I .3 .33) 

In these equations D/Dt = 3/3t + u 3/3x, we i s the local entrainment velocity 
and X 6 3u /3x a momentum flux gradient term that accounts for the fact that 
the horizontal velocity varies with height. 6 i s an empirical constant to be 
estimated l a t e r . I t should be noted that ( I I .3 .33) i s fully consistent with our 
bulk equation ( I I .3 .29) , provided the current i s shallow. Also in ( I I .3 .29) an 
effect ive s t r e s s gradient term similar to that in ( I I .3 .33) is hidden in the 
dM/dt term. This can be checked by evaluating the time der ivat ive of ( I I . 3 . 2 0 ) . 
The physical meaning of the decelerat ing s t r e s s gradient term i s simply t h i s . 
Entrainment does not affect the t o t a l momentum - since no momentum i s 
entrained - , but i t increase the t o t a l mass of the current . This necessari ly 
causes a decrease in the mean veloci ty . Thus entrainment leads to a decelera
t ion term in the equation for the mean veloci ty . We will now derive approximate 
solutions to (II .3.32) and (II .3 .33) by making two s imi lar i ty assumptions. The 
f i r s t i s that the shape of the current i s quasi-conserved in time i . e . that 

I B . l d H ( I I 3 3H) 
h Dt H dt ' U l . J . J i ; 

virtually independent from x. The second assumption is that the layer averaged 
density difference remains horizontally uniform and equal to Ap . This requires 
that 

w /h = W /H , (II.3.35) 
e e 

v i r tua l ly independent from x (see also section I I . 3 . 1 ) . I t then follows that 

3u/3x = U./X. ( I I .3 .36) 
h h 

and that 
ü = x U./X. ( I I .3 .37) 

h h 
I t also follows from ( I I . 3 . 33 ) - (H .3 .37 ) that 3h/3x i s a l inear function of x 
that vanishes in x = 0. Using the boundary conditions h = Hfc for x = 0 and 
h = Hn for x = Xn, we now easi ly find that 
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h = Ht + (Hh-Hfc) (x/Xh)2 (II.3.38) 

The solutions for ü and h happen to be of the same form as those obtained by 
Fanneldp and Waldman (1971, 1972). However there are two differences. In our 
model Hj. and Hn are independent variables that are determined by the dynamics 
of the gravity current. Further we use (II.3.37) and (II.3.38) only to estimate 
the volume and momentum integrals of the tail. From (II.3.30), (II.3.31) and 
(II.3.37), (II.3.38) we easily obtain 

and 
Vfc = j (2 Ht + Hh) Xh (II.3.39) 

Mt " ï pc (Ht + V Xh Uh (II-3^0) 

This completes our description of the tail. 

II.3.5 The head of the current 

The shallow layer equations are not applicable to the head of the 
current. Instead we use the momentum-integral approach that we applied to the 
total current (II.3.19). The force balance for the head looks as follows. The 
static pressure force follows from the integration of the static pressure 
gradient over the head region and equals: 

2 
s '2 °"Kc "h Fo -X gAp„ H ^ (II.3.41 ) 

The dynamic pressure force is 

Fd " --* cf Pa Hh U / * (II'3'142) 

Furthermore there is a momentum flux into the head due to the internal current 
in the head (figure II.1). Near the surface the inward flow Ujj carries positive 
momentum into the head. The return flow IU carries negative momentum out the 
head. So the net effect of the internal flow is a positive momentum flux into 
the head. Assuming U = U. and h. = \ H we find that this flux is crudely 

<II.3.«3) 
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Using ü. =» 0.2 Uf (II.2.1) we may write this as 

Qh " % ö pa Hh Uf 2 (II.3.44) 
where 

6 - 0.08 . (II.3.45) 

Thus 6 is an empirical coefficient which characterizes the non-uniformity of 
the vertical velocity profile. It has the same meaning as in (II.3.37). 

We neglect the inertial terms in the momentum-integral equation for the 
head. It can be shown that these terms are normally small in comparison with 
the other terms. Thus we assume that the head is in a quasi-steady state. This 
assumption is supported by experiment. We have seen in section II.2.1 that the 
dimensionless leading edge velocity Cn = 1.15 ± 0.05 both for steady and for 
unsteady currents (II.2.4). Our momentum-integral equation now reads: 

0 - \ gApcHh
2 -X cfPaHhUf

2 -X öPaHhUf
2 (II.3. 46) 

It follows from this equation that the dimensionless velocity Cn defined by 
(II.2.2) is given by 

C - 1 / / C.-Ó . (II.3.47) 
n f 

Since Cn and 6 are known, the value of c^ can be estimated from this equation. 
The result-is 

cf = 0.84 + 0.07 (II.3.48) 

With (II.3.44)-(II.3.48) we have specified the important dynamical leading-edge 
boundary conditions. 

We conclude this section with the specification of the volume and momen
tum of the head. We allow the volume of the head to vary in time, but assume 
that its shape remains unchanged. In section II.2 we have seen that the depth 
H-̂  of the head is about twice the depth Hn behind it. We also assume that its 
length scales with Hn. Thus we write 

X - Xn = a Hn . (II.3.49) 
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Experimental data suggest that a = 2. The volume of the head now is written as 

Vh - b Hh
2 , (II.3.50) 

where b = 4. To estimate the momentum of the head we assume that (as in the 
tail) the layer averaged velocity increases linearly with x. It then follows 
that 

Un = UfXn/X . (II.3.51) 

Using ( I I . 3 . 4 9 ) - ( I I . 3 . 5 1 ) we f ind for the momentum of the head. 

2 
'c "f"h v " 'z " "h ' 

M̂  = bp„ U ^ (X - \ a H J / X . ( I I . 3 . 5 2 ) 

This completes our description of the head. Together, the bulk equations 
derived in II.3.2 and II.3.3 and the equations for the tail and the head 
derived in II.3.4 and II.3.5 form a closed set. We will summarize the final set 
of equations in the next section. 

II.3.6 Final model equations 

In the final model equations we use the dimensionless density difference 
A = Ap /p and the velocity integral M = (Mt+Mh+My)/p . The model has 7 
variables, i.e. X, V, M , Uf, Hn, Hfc and A and 7 equations, namely'3 rate 
equations and H diagnostic equations. These follow now. The first rate equation 
results from the definition of Uj. and reads: _ _ 

dX/dt - Uf . (II.3.53) 

The second rate equation follows from (11.3.^) and (II.3.15): 

dV/dt - e H.XU_3/gA* V , (II.3.51») 
n f o o 

where e = 0 . 6 i s an entra inment c o e f f i c i e n t , and A and V a re the i n i t i a l * ° ° 
va lues of A and V. The t h i r d r a t e equat ion follows from ( I I . 3 . 2 9 ) : 

dM*/dt = X gA* Hfc
2 - X c f i y j 2 , ( I I . 3 . 5 5 ) 
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where cf = 0.84 + 0.07. These equations determine the development of X, V and 
M .The.other variables follow from the diagnostic equations. From (II.3.8), 
(II.3.28), (II.3-40), (II.3.49), (II.3.51) and (II.3.52) we find that the 
leading edge velocity is: 

* 
U = Ï ! % ^ P 1 p — (II.3.56) 

(1+A ) ['-(Hj.+iy (X-aHhr + bH^h (X—al^)] + aVVX 

where a = 2, b = 4 and a = 2. The depth of the leading edge follows from 
(II.3.47): 

Hh = (cf-6)Uf2/gA , (II.3.57) 

where 6 = 0.08. The depth at the origin follows from (II.3.39), (II.3.49) and 
(II.3.50): 

H = | (V - bHh2)/(X-aHh) - X Hh . (II.3.58) 

From (II.3.9) we get the relative density difference 

A* = A V /V (II.3.59) 
o o 

This completes our model. The time development of the 8 variables of the model 
is obtained by numerical integration of the three rate equations (II.3.53)-
(II.3.55) with respect to time. This yields X, V and M as a function of time. 
The other variables are obtained from the diagnostic equations (II.3.56)-
(II.3.59). 

II.4 Some general model results 

In this section we describe some model results. We will present our 
computations in dimensionless form. From the momentum equation it follows that 
the appropriate dimensionless time T is 

T = t/t , (II.4.1) 
o 

where 
t ■ X / • gA* H (II.4.2) 
0 0 0 0 
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figure II.3: The dimensionless velocity as a function of dimensionless time. 

is a time scale. The subscripts o denote initial values. In the time scale tQ 
two length scales are involved, i.e. X0 and HQ. Thus our scaling differs from 
that by Fanneldp and Waldman (1972) and by Hoult (1972), who used only one 
length scale L = / V and neglected variations in the initial aspect ratio 
HQ/X0. 

We will present some computations made with the values of the empirical 
constants given in the last section, for a release with HQ/X0 = 2/3. In our 
model this corresponds with initial values for H^/X and Hn/X of 1 and 0 
respectively. In figure II.3 we show the dimensionless velocity 

Cu = U_/(gA*H)^ (II.4.3) 

as a function of the dimensionless time x for A 0.1, 2 and 4. It appears 
that for A =0.1 the velocity approaches rapidly an asymptotic value 
C = 1.1. In terms of Cu the initial acceleration of the current is almost com-
oo n 

pleted when T = 2. Thus tQ is a characteristic time scale which crudely separ
ates the acceleration phase from the deceleration phase (because U decreases 
when CJJ is constant). For high initial values of A , the acceleration phase 
lasts longer, but after it the dimensionless velocity reaches temporarily 
higher values. For very large times CH again approaches the asymptotic value 
C . The latter feature can be attributed to entrainment, that leads to a 

* vanishing A at large times. 
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figure II.1*: The dimensionless current length as a function of dimensionless 
time. 

In figure II.4 we give the dimensionless current length X/XQ. The effect 
of A on X/X is moderate. In figure II.5 we present the dimensionless volume 

0 * concentration V„/V as a function of X/Xrt. Here, too, the effect of A is o o ' o 
moderate. More interesting is that entrainment does not start immediately with 
the spreading of the dense fluid. This is due to the initial delay in the 
creation of turbulence. 

We have also tested the sensitivity of the model to variations in the 
head size coefficients a and b and in the coefficient c for the virtual 
inertia. It appears that the model results are almost invariant for changes in 
a and b even as large as a factor 2. Changes in ot have some effect. E.g. using 
a = 1 instead of a = 2 leads to higher velocities for T < 1 and lower veloc
ities for 1 < T < 10. There is no net effect on X/XQ for T > 10. On the other 
hand there is a notable effect on the concentration even for large times. For 
T > 10 the concentration is about 10% higher with a = 1 than with a = 2. This 
is due to a lower entrainment rate in the period 1 < T < 10. 

The model sensitivity to ĉ ., <5 and E will be discussed in the next 
section. 
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f i g u r e I I . 5 : The d imensionless volume concen t ra t ion as a func t ion of 
d imensionless c u r r e n t l e n g t h . 

I I . 5 The momentum budget f o r g r ea t t imes 

Sooner or l a t e r - t h i s depends on the value of A t h e d imensionless 
v e l o c i t y CH w i l l approach i t s asymptot ic value C^. This occurs when A << 1 and 

H/X << 1. When t h i s i s the case the v e l o c i t y i n t e g r a l M reduces to 

M - tf J U ^ ) VUf ( I I . 5 . 4 ) 

Furthermore when CH i s cons t an t a l s o Hfc/H and Hh/H a r e c o n s t a n t . I t then 
follows tha t 

* H. H. dU. H. H. 
™ , r _ t _h, _ f w _ t _h, dV 
d t U H H } V d t U H H J Uf d t • 

( I I . 5 . 5 ) 

The first term at the right side is the inertial force due to the deceleration 
of the current and the second term the vertical stress gradient due to entrain-
ment. With this result the momentum equation (II.3.55) can be transformed into 
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* 2 an equation with a single unknown i.e. Ĉ . Dividing (II.3.55) b y \ gA H , using 
(II.3.57) and (II.3.58) to eliminate Hh/H and Hfc/H and using (II.1.3) we 
arrived at the following equation: 

- \ [3 + ( o ^ O c . 2 + \ e(ef-6) [3 + (cf-5)C„2]cj 

= | - | (cf-6)Co2 + 1 ( c ^ V * - c ^ c ^ ) ^ . (II.5.6) 

The first term at the left represents the dimensionless inertial force F if the 
second term the stress F s, the first three terms at the right the static 

)t * 
pressure force F and the last term the dynamic force F d. For given values of 2 cf, 6 and e (II.5.6) can be solved for Ĉ  . For cf = 0.84, <5 = 0.08 and e = 0.6 2 the solution is C = 1.2 or C = 1.094. The magnitude of the various terms of 

00 CO ° 

(II.5.6) is F*t 0.58; F*3 = 0.76; F* = 1.09; F*d = -0.91. In addition it 
follows that Hj. = Hh = H. This implies that the static pressure varies little 
over the current and that the static pressure force mainly acts at the leading 
edge, where it is approximately balanced by the dynamical force on the head. In 
the bulk of the current the inertial force is approximately balanced by the 
shear stress due to entrainment. Thus the shear stress has a significant effect 
on the dynamics of the gravity current. 

We may also use the asymptotic equation (II.5.6) to evaluate the sensi
tivity of the model to variations in the empirical constants ĉ., 6 and ~. It 
appears that Ĉ  is most sensitive to variations in the value of ĉ -ó. A 10% 
increase in c-6 corresponds with a 4$ decrease in Ĉ . Further we found that a 
10$ increase in e corresponds with a 1$ decrease in Ĉ . The model is quite 
insensitive to variations in 6. A 100$ increase in 6 (with c -<5 kept at the 
same value) leads to a 1 $ decrease in C . 

00 

II.6 Summary and conclusions 

We have developed a model for the spreading of a dense fluid in an infi
nitely deep channel. The model consists of rate equations for the length, the 
momentum-integral and the volume of the resulting gravity current. Diagnostic 
equations describe the shape of the current and the velocity distribution in 
it. The model is non-hydrostatic. The Boussinesq approximation has not been 
made. This makes the model suited to desribe currents with a density that is 
considerable higher than that of the ambient fluid. A new parameterization of 
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entrainment is proposed, which does not violate the conservation law for poten
tial and kinetic energy. The model contains six empirical coefficients that 
have been estimated as well as possible from literature data. A new dimension-
less representation has been proposed. In this representation the dimensionless 
velocity, length and volume are within moderate limits universal functions of 
the dimensionless time. The model is mathematically rather simple and physi
cally rather complete. A definite test of the model against well-documented 
experimental data still has to be made. From a physical point of view the model 
is a significant advance over the similarity approach by Fanneldp and Waldman 
(1972) and over the crude dynamical approach by Van Ulden (1979). 

One of the interesting results of the present model is that it throws 
light on the effect of entrainment on the spreading dynamics. We have found 
that the vertical stress gradient due to entrainment approximately balances the 
inertial force due to decelerations. This suggests that the current depth is 
relatively uniform (apart from the head near the leading edge). This finding 
also suggests that it is justified to describe the unsteady gravity current by 
means of a box model, provided the proper bulk dynamics are included in the 
model. 
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Chapter I I I 

THE SPREADING AND MIXING OF A DENSE AXISYMMETRIC CLOUD IN STILL AIR 

I I I . 1 I n t r o d u c t i o n 

I I I . 1 .1 Scope 

This chapter deals with isothermal dense gas clouds spreading axisym-
metrically over a smooth horizontal surface in still air. The initial state. Is 
a quiescent cylindrical cloud with volume VQ, radius RQ and height H_. Its 
density p is uniform and greater than the air density p by an amount 
Ap = p ~P_« The cloud temperature is equal to the ambient temperature, so this 
density difference is purely due to the higher mean molecular weight of the 
gas. 

III.1.2 Historical background 

In the first generation integral models (e.g. Van Uiden, 1971» and 
Chapter I) the cloud is represented by a cylinder with radius R, height H and a 
uniform relative density difference A between the cloud and the ambient air. 
The radial spreading is approximated by a simple similarity relation for the 
front velocity: 

Uf ,■ dR/dt = k /gHA , (III.1.1) 

where t is the time, k an empirical constant of order 1 and g the acceleration 
due to gravity. The mixing process is usually described with an equation of the 
form: 

dV/dt = TTR2W + 2irRHU , (III. 1.2) 
e e 

where V is the volume of the cloud and We, Ue entrainment velocities for mixing 
at the top and at the front edge of the cloud. Usually We and Ue are taken to 
be proportional to the front velocity Uj.. 

This simple approach has been fairly successful, especially in describing 
the later stages of radial spreading. The acceleration from rest, however, is 
not described by (III.1.1) and its range of applicability is not clear. Even 
more problems have arisen with the description of the mixing process with 
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(III.1.2). It appears that mixing through the cloud edge is small and cannot 
account for the observed mixing, while a top entrainment with W « U^ leads to 
a violation of the energy budget (Fay, 1980). A more general problem is that 
the physical basis is incomplete for the first generation integral models. 

Therefore attempts have been made to improve on this. E.g. Fanneldp and 
Waldman (1971), Van Ulden (1979), Byggstriyl and Saetran (1983) have proposed 
models that describe the spreading process by momentum equations with suitable 
boundary conditions for the leading edge. In these models, however, vertical 
accelerations in the cloud and the reaction of ambient fluid to accelerations 
of the front edge and of the top of the cloud have been neglected. Therefore 
these models are not capable of describing the early spreading stage, when the 
cloud is not shallow. Moreover, in these models the entrainment is either 
neglected or treated in an ad hoc manner. 

An improvement on this is the model by Van Ulden (198*0 for a two-
dimensional gravity current (see chapter II) and a similar model by Havens and 
Spicer (1985) for an axisymmetric cloud. In these models acceleration reactions 
are included in the momentum budget. Entrainment is modelled by assuming that 
edge production of turbulent energy and buoyant destruction of this energy are 

- 3 3 -proportional. This corresponds with W « u / gHA « U„ /gRA, where u. is a S t - I v 
turbulent velocity scale. With (III.1.1) this led Van Ulden to the conclusion 
that top entrainment scales like edge entrainment, which solves the energy 
problem discussed by Fay (1980) (see section II.3.2). 

In these models vertical accelerations in the cloud are still neglected. 
Additionally the turbulent energy budget is still incomplete and not satisfac
tory, because the destruction of turbulence should lag behind its production. 

Therefore we go two steps further in the present chapter. In the first 
place we will account for vertical accelerations in the cloud. In the"second" 
place we will include in the model a fully time dependent turbulent kinetic 
energy budget and a separate entrainment model taken from Driedonks and 
Tennekes (1984). The latter model describes the relation between entrainment 
and turbulent kinetic energy. In this manner we will avoid an undesirable 
number of ad hoc empirical coefficients in the description of entrainment. 
The structure of this chapter is the following. In section 2 we describe the 
general model structure. In section 3 we analyse the momentum budget and derive 
an equation for the radial momentum-integral. In section 1 we analyse the 
energy budget and derive an equation for the turbulence generated by the cloud. 
In section 5 we compare the model with experimental data. In section 6 we 
discuss the model properties. Section 7 gives our conclusions. 
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III.2 The general model structure 

In the present model the cloud dimensions are defined by means of its 
radius R and its volume V. The cloud radius is obtained by numerical integra
tion with respect to time of the rate equation: 

dR/dt = Uf (III.2.1) 

The spreading velocity Uf is derived by numerical integration of an equation 
for dUf/dt that we will derive from the radial momentum budget of the cloud in 
section III.3. 

The time rate of change of the cloud volume is modelled as 

dV/dt = TTR2W , (III.2.2) 

where We i s an entrainment veloci ty . We neglect edge entrainment and describe 

We by means of the entrainment model of Driedonks and Tennekes (1984). This 

model reads: 

W = c u t / (c. + Ri.) ( I I I . 2 . 3 ) 
e e t t t 

where ce = 0.2 and cfc = 1.5 are empirical coefficients given by the authors, 

Rifc = g Ap H / p ü t
2 (III.2.4) 

i s a bulk turbulent Richardson number and u i s a bulk turbulent velocity scale 

defined by the t o t a l turbulent k inet ic energy TE in the entraining turbulent 

layer. In the present flow configuration th i s corresponds with the following 

definit ion 

Ü. = (2T_ / "p V)^ ( I I I . 2 . 5 ) 
t Ci 

or 

'E * * P " t 2 T,, = X V p u„ . ( I I I . 2 . 6 ) 

In the present model TE is obtained by numerical integration of an equation for 
dTg/dt which we will derive from the energy budget of the cloud in 
section III.1*. 
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Given the cloud dimensions, R and V, some other important variables can 
be obtained from simple diagnostic equations. The cloud height is defined as: 

H = V/ irR2 . (III.2 .7) 

The average density difference between cloud and air is obtained fr om 

Ap = Ap V / V , (III.2.8) 

where Ap and V are the initial values of Ap and V and where we have used that o o 
the total mass surplus Ap V is a conserved quantity for an isothermal cloud 
(chapter II). The average cloud density is given by 

"p = p + Ap , j (III.2.9) 
3. 

where p is the air density. 
To facilitate the analysis of the cloud dynamics we will use an idealized 

cloud representation. We assume that the cloud is cylindrical and that its 
density is uniform and equal to p. For a real cloud the density distribution 
will not be uniform, so a proper definition of our model variables in terms of 
observable quantities is needed. For the cloud radius this is no problem, 
because for a real cloud the cloud edge is quite sharp and directly observable. 
Its distance from the cloud centre of mass can be compared directly with the 
cloud radius of our model. The cloud height is more of a problem because mixing 
leads to a very diffuse cloud top. This calls for an integral definition of 
cloud height. We will derive such a definition from the mean height <z> of 
dense material in the cloud, which is: 

00 00 
<z> a ƒ ƒ z A p ( z , r ) 2irr dr dz / Ap V . ( I I I . 2 . 1 0 ) 

o o p Ko o 

This "densimetric mean height" can be "observed" by measuring ve r t i ca l prof i les 
of density. I t i s d i rec t ly re la ted to the potent ia l energy of the cloud, which 
i s : 

P„ s ƒ " ƒ* g z Ap(z , r ) 2-irr dr dz = g Ap V <z> . ( I I I . 2 . 1 1 ) 
E o o o o 

Next we define the "cloud height" in our model as: 
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H = 2 <z> . ( I I I .2 .12) 

This def ini t ion can be seen as a "sophisticated" def ini t ion of a box-model 
height. I t has the following proper t ies : 

- I t corresponds exactly with the height of a cylinder with uniform densi ty. 
- I t i s consistent with the height def in i t ion, used by Driedonks and Tennekes 

(1984) and therefore with I I I . 2 . 2 , I I I . 2 . 3 and I I I . 2 . 7 . 
- I t i s an observable quantity for a cloud with a diffuse top. 

- Like <z>, i t i s uniquely and simply re la ted to the potent ia l energy of the 

cloud; namely by: 

PE -■% g Apo VQ H . ( I I I .2 .13) 

Next we consider concentrations. The cloud-averaged concentration by 
volume is 

C = V /V . (III.2.14) 
o 

This is the concentration variable predicted directly by our integral model. 
When this volume- averaged concentration is to be compared with locally 
observed concentrations, spatial concentration variations should be accounted 
for. In the present model we do not resolve radial variations in the vertical 
structure, but we do allow for non-uniform vertical concentration profiles. In 
general the area-averaged concentration C(z) can be described by profiles of 
the type 

C(z)/C - f(z/H) , (III.2.15) 

where z is the height above the surface and f(z/H) a function of the scaled 
height z/H. This function has to satisfy several constraints. 

In the first place the total volume of dense gas should be conserved. 
This implies: 

r f(|) d(|) = 1 . (III.2.16) 
o H H . 

Furthermore t h i s function has to be consistent with the defini t ion of H, which 

gives the constra int : 
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0 A f ) f (f) d(§) -% ( I I I .2 .17) 

Candidates for the scaled concentration prof i les ( I I I .2 .16) are p rof i l es 
of the family 

f(z/H) = A exp [-(Bz/H)S] , ( I I I .2 .18) 

where s is a profile shape factor and where 

A = 2s T(2/s) / Cr(1/s)]2 (III.2.19A) 
and 

B = 2 r(2/s) / r(1/s) . (III.2.19B) 

r is the gamma function. This profile family satisfies the constraints 
(III.2.16) and (III.2.17). Furthermore profiles from this family have been 
observed (Nieuwstadt and Van Ulden, 1978) and can be obtained as solutions of 
the diffusion equation (Chatwin, 1968; Van Ulden, 1978; Hunt and Weber, 1979; 
Van Ulden and Nieuwstadt, 1980). The family includes the uniform profile 
(s = », A = 1, B = 2) the gaussian profile (s = 2, A = 4/ir, B = 2/A) and the 
exponential profile ( s = 1 , A = 2 , B = 2 ) . 

It' should be noted that the present model, being an integral model, can
not solve explicitly for the concentration profile. Our model only computes 
bulk quantities like H and C. The translation of these quantities into concen
tration profiles has to be made with an empirical choice for f(z/H). This will 
be a matter of discussion in section 5. Here we continue with a description of 
the momentum budget and the energy budget of the cloud that have to provide us 
with equations for dUf/dt and dTg/dt. 

III.3 The momentum-integral equation 

The equation of motion in its most general integral-form reads 

^ ;v pu. dv = ♦ ♦ ; v p g. dv ♦ ; v ^ dv . ( n i . 3 . 1 ) 
c c c j 

In th i s equation V c ' i s an arb i t ra ry control volume, that i s allowed to vary 

continuously in time, pu. are the components of the instantaneous momentum 

density, <|>. the flux of momentum into the volume, gj the volume force (in casu 
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the acceleration by gravity) and a., the stress tensor. The equation can be 
derived from equations given by Batchelor (1967, 3.2). We have selected this 
form of the momentum equation, because it is appropriate for the present 
problem of a cloud, that changes both in shape and in volume. 

In this section we use this momentum-integral equation to derive an 
equation for the radial acceleration dllf/dt of the cloud edge. To this end we 
apply the momentum-integral equation to the radial velocity component ur in a 
control volume with boundaries just outside our idealized cylindrical cloud. 
Since gravity works only vertically, the volume force vanishes in the radial 
momentum equation. Moreover in our idealized flow configuration the flux $ of 
radial momentum and the shear stresses are presupposed to be negligible at the 
boundaries of the control volume. So <j> and the off-diagonal components of the 
stress tensor vanish also. Therefore the radial component of the momentum-
integral equation reduces to: 

d rR+ ,H+ _ ^ . rR+ rH+ 3P . . . ,T T T _ _. 
d t o J o J p u r 2 i r r d r d z = V oS 37 2 l r r d r d z ' (HI-3-2) 

In th i s equation R+ and H+ denote that the boundaries of the integrat ion domain 
l i e jus t outide the cloud, u i s the annulus-averaged rad ia l veloci ty and 
P s -o i s the pressure. The le f t hand side of t h i s equation gives the time 
ra te of change of the rad ia l momentum-integral Mr. For the evaluation of t h i s 
integral we need the functional re la t ionship u ( r ) . This i s easi ly obtained 
from the continuity equation as 

ü r ( r ) = rUf/R . ( I I I . 3 . 3 ) 

Using this it follows that 

Mr 5 oSR+ofU+ P* " (r) 2irr dr dz = ~ ̂  V Uf ' (III.3.4) 

Taking the time derivative of this equation and using (III.2.2), (III.2.7), 
(III.2.8) and (III.2.9) we easily find that 

2 _ dU dM 2 W U 
' T ^ d T - V d P - ' T ^ - f - 1 - (III-3-5) 

From the last term in this equation we see that the spreading rate of the cloud 
is reduced by entrainment. This is due to the fact that for a given value of 
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Mr, this momentum-integral is distributed over an increasing mass, which 
corresponds with a decreasing radial velocity. The actual deceleration occurs 
by way of a vertical gradient in the radial shear stress in the cloud. From 

2 
(III.3.5) we see that the average value of this gradient equals - - p W U„/H. 

3 a e f 
Next we proceed with the evaluation of the right hand side of the 

momentum-integral equation (III.3.2), which represents the pressure force that 
determines dMr/dt. For the evaluation of the pressure force it is convenient to 
introduce the pressure disturbance 

n(r,z,t) = P(r,z,t) - Poo(z) , (III.3.6) 

where P<X)(z) is the pressure of the undisturbed ambient fluid at the height z. 
P (z) is presupposed to be independent of r. Therefore we may write the 
momentum-integral equation as: 

dM 
^T - V RV H + 15 2irr dr dz • (III.3.7) 
dt o o 9r 

Integrating the right hand side of this equation with respect to r, we find 
that 

dM 
-nr- = 2TTR ƒ Cn(z,t) - n(R ,z,t)] dz (III.3.8) 
dt o + 

where 
n(z,t) = ~ /R+ iKr.z.t) dz (III.3.9) 

n+ O 

is the radially averaged pressure disturbance in the cloud. In the following we 
will approximate this radially averaged pressure disturbance by its area-
averaged value. 

The area-averaged pressure disturbance n(z,t) is determined by two 
processes: 
- The negative buoyancy of the dense fluid gives rise to an average increase 

IT in the static pressure in the cloud and a corresponding static pressure 
force Fc. 

- Vertical accelerations in and above the cloud produce an average non-hydro
static pressure n in the cloud and a corresponding non-hydrostatic pressure 
force Fy. 

The pressure disturbance n(R+,z,t) at the cloud edge is also due to two 
processes: 
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- The spreading cloud edge intrudes into stagnant ambient fluid. This leads to 
a dynamical pressure n. at the cloud edge and a corresponding dynamical force 
Fd-

- Radial accelerations of the cloud give rise to additional accelerations in 
the ambient fluid and a corresponding acceleration reaction force F=. 

In terms of these pressure forces the momentum-integral equation reads; 

dM /dt = F + F + F + F . (III.3.10) 
r s v d a 

In the following we wil l evaluate the four pressure forces. 
The s t a t i c pressure force Fg i s easi ly determined by using the hydro

s t a t i c re la t ion for the s t a t i c pressure disturbance. This re la t ion reads: 

9 II /3z = - g Ap . ( I I I .3 .11) 
3 

Integrating this equation with respect to z and using that II vanishes for 
s 

z è H we find that 

II = g Ap (H-z) for 0 S z £ H . (III.3.12) 
3 

Therefore the static pressure force is simply given by 

F s 2irR /H Ü dz = TTR g Ap H2 . (III.3.13) 
3 O S 

The evaluation of the non-hydrostatic pressure force Fy is considerably 
more complicated. The area-averaged non-hydrostatic pressure II can be computed 
by applying the vertical component of the momentum-integral equation (III.3.1) 
to a cylindrical control volume between the heights H(t) and z(t). Here z(t) is 
a time varying height such that z(t)/H(t) is fixed in time. For this control 
volume the equation for the vertical momentum-integral reads: 

dM _ 
--Z = *(H) - 4>(z) - z/ gpdz' - TTR2 [P(H) - P(z)] (III.3.14) 

where 
M = 

z(t) M„ 5 „/«VH(t) TR 2 P W dz'(t) (III.3.15) 

is the vertical momentum-integral, w the area-averaged vertical fluid-velocity, 
<j)(H) and <j>(z) the downward fluxes of momentum through the upper and lower 
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boundary of the control volume and P(H) and P(z) the averaged pressure at these 
two boundaries 
pressure P by 
two boundaries. Because the non-hydrostatic pressure II is related to the total 

3P/3z = 311 /3z - gp , (III.3.16) 

the momentum equation (III.3.14) can be written as: 

dM 
~ = <f>(H) - <|>(z) - irR.2 [nv(H) - ny(z)] . (III.3.17) 

For the evaluation of the momentum-integral Mz we need the z dependence of 
w(z). This is easi ly obtained from the continuity equation for the control 
volume as : 

w(z) = z w(H)/H ( I I I .3 .18) 
where 

w(H) = - 2 H Uf/R ( I I I .3 .19) 

i s the area-averaged ve r t i ca l f luid velocity at the cloud top. Using th i s we 
find that the momentum-integral ( I I I .3-15) equals: 

Mz = - (p V Uf H/R) [1 - ( f^y) , 2 ] • ( I I I .3 .20) 

The momentum fluxes <J>(H) and <j)(z) are related to the entrainment of ambient 
fluid. Since the vertical momentum density of the ambient fluid just above the 
cloud top equals p w(H)}the momentum flux <j>(H) equals: 

<))(H) = + TTR2 W p w(H) (III.3.21) 

or with (III.3.21): 

<|>(H) = - 2TTR H p W U. . (III.3.22) 
a e f 

Similarly, because the effective entrainment velocity we(z) at the height z(t) 
equals 

we(z) = zWe/H (III.3.23) 
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i t follows t h a t 

♦ (z) = - 2TTR H p , WQ U_ ( Z / H ) 2 . ( I I I . 3 . 2 1 ) 

The next step is to estimate II (H). This dynamic pressure is obtained from the 
momentum-integral equation in a control volume outside the cloud. It reads: 

d M P _ 
- ^ = - ̂ (H) + Trir ny(H) . (III.3.25) 

Here My is the vertical component of the ambient fluid-impulse or virtual 
momentum. We have used that at a great distance from the cloud the momentum 
flux <(>(<») and the dynamic pressure ir(<») should vanish. My is approximated 
(Batchelor, 1967, 6.6 and 6.8) by: 

where 
M = c p V w(H) (III.3.26) 
v v a 

cy - |jj . ' (HI.3.27) 

Using (III.3.19) we find that 

M = p V U. . (III.3.28) 
. v a f 

Now we are ready to solve for II (z). Adding (III.3-25) and (III.3.17) yields 

d M d M 
VH n (z) = —77^ + —TT1 + <f>(z) . (III.3.29) 

v at at 

Integrating this equation with respect to z and using (III.3.20), (III.3.21») 
and (III.3.28), we obtain after fairly long but straightforward calculations 
that 

F B 2TTR ƒ" n (z) = ( I I I . 3 . 3 0 ) 
V O V 

2 

- » ' . » I ♦ £ ' v <f>2] ^r * • * * 'I'2 r 
- [2pa v f ♦ I ( p ♦ 2pa> v <|)2: ^ . 

Next we evaluate the pressure forces that act on the cloud edge. The 
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dynamical force Fd is parameterized as in chapter II. There we found that the 
vertically integrated dynamic pressure scales as 

o/H+ nd dz ...fc cf pa Uf
2 Hf , (III.3.3D 

where ĉ . is a drag coefficient and Hf a scale depth at the cloud edge 
representing the fact that the depth of the cloud edge may differ somewhat from 
the average cloud depth H. Multiplying (III.3.31) with the circumference of the 
cloud, we obtain the dynamical drag force as: 

Fd = - cf TT R pa Uf
2 Hf . (III.3.32) 

The scale depth Ĥ . can be described in terms of H by using the analysis of 
chapter II. First we write the ratio H^/H as: 

Hf/H = K2/Kf
2 , (III.3.33) 

where 
K = Uf / (g Ap H / p a)^ (III.3.34) 

is a Froude number based on the average cloud depth and 

Kf ■ Uf / (g Ap Hf / p a)^ (III.3.35) 

is the Froude number based on Hf. Thus (III.3.33) is simply an identity. We use 
this identity to write the dynamical force (III.3.32) as: 

F = - c TTR p U 2 H , (III.3.36) 
G 0 3 1 

where 
,2 . „ 2 

s o t 
d 
o, = cf K / ̂  (III.3.37) 

i s a new drag coeff icient . We now assume that the frontal s t ructure of the 
present axisymmetric cloud i s the same as the frontal s t ructure of the 
2-dimensional gravity current which we have discussed in chapter I I . Thus we 
take c f = 0.84 and Kf = 1.15 according to ( I I .3 .48) and ( I I .2 .2) respect ively. 
This y ie lds : 

c , = 0.64 K2 . ( I I I .3 .38) 
d 
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In this equation the Froude number K is a variable, which according to 
(III.3.34) depends on Uf, Ap and H. These are variables which are computed by 
our model. 

The last force which we have to parameterize is the acceleration reaction 
force Fa. We model this force as: 

Fa = d Ma / dt , (III.3.39) 

where Ma i s the radia l v i r tua l momentum of the ambient f lu id . 
Using the arguments given in chapter I I we approximate Ma by: 

M = 2irR H2 p U_ . ( I I I . 3 .40 ) 
» 3, I 

From the time derivative of this equation, we find in a straightforward manner 
that 

dU U 2 W U 
F

a = -2>a
]'-R(W--l-r + -TL) • (111.3.41) 

With this result we have finished our analysis of the pressure forces and we 
are ready for our final momentum equation. 

We will write this in the form of an equation for the acceleration dUf/dt 
of the cloud edge. Using (III.3.5), (III.3.10), (III.3.13), (III.3.30),■ 
(III.3.36) and (HI.3.41), combining terms with dUf/dt, Uf

2/R and WeUf/H 
respectively and dividing by V yields: 

■4 . 4.(8,2] !aV . I , 6H t |(L,2) (H)2] 'Jgr 
dU_ g A pR ~ [cd ~ % "p VR' J R L3 ' WR ' 3vp ""' VR' J H 

f _ai ■_ _a 

3 P H p a R 3 p (R} ( I I I .3 .42) 

In the numerator of t h i s equation we may recognize the following terms: 

g Ap H/R representing the s t a t i c pressure force 

2 c . p U. /R representing the drag force on the cloud edge, and 
Q 3. X 

2 
-z p U_/H representing the radial stress related to entrainment. 
3 3 6 1 
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The other terms containing H/R and (H/R) represent the effect of cloud 
deformation on dU^/dt. 

The denominator gives the inertial terms of the radial momentum in the 
cloud, of the ambient fluid momentum and of the vertical momentum inside the 
cloud respectively. This last term is the major inertial term when 7>7pa is 
large and H/R = 2, as in most of the experiments by Havens and Spicer (1985). 
Therefore "shallow-layer" models are not likely to behave well in the early 
acceleration phase. 

We now continue with an analysis of the energy budget of the cloud. 

III.-U The energy budget 

III.4.1 General energy budget 

In the following we will derive an equation for the time rate of change 
dTE/dt of the turbulent kinetic energy. Our starting point is the conservation 
of total energy in a large control volume containing the cloud and the second
ary flows around it. In the present problem we distinguish between four types 
of energy: the potential energy PE, the kinetic energy of mean radial and 
vertical motions KE, the earlier mentioned turbulent kinetic energy Tg and the 
internal heat Ig. The conservation law reads 

It (PE + KE + T E + V -° ' (HI.4.1) 

Between the various forms of energy four transformation processes take place, 
namely: 
- the production G of mean kinetic energy, at the cost of potential energy, 
- the buoyant destruction B of turbulent energy, which is the conversion of 
turbulent energy into potential energy by entrainment, 

- the shear production S of turbulent energy and 
- the dissipation D of turbulent energy into internal heat. 
This energy system is summarized in figure III.1. 

figure III.1: The energy budget: 
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The equa t ions for t h i s system a r e : 

dP E /d t = -G + B , ( i n . 4 . 2 ) 

dKE /dt = G - S , ( I I I . 4 . 3 ) 

and 
dTE/dt = S - B - D , (III.4.4) 

dIE/dt = D . (III.4.5) 

Since we want to solve for dTE/dt, we have to model S, B and D. We do so as 
follows. In section 4.2 we parameterize PE and KE in terms of the model vari
ables V, R, H, Uff We, Ap and p". Using (III.412) and (III.4.3) we derive 
parameterizations for S and B. In section III.4.3 the dissipation D is modelled 
directly, using the turbulent variables u. and Rij.. In section III.4.4 we 
combine these results to obtain an equation for dTg/dt. 

III.4.2 The shear production S and buoyant destruction B 
! 

As mentioned above S and B will be modelled by using the equations for 
dPg/dt and dK£/dt. The potential energy has been found before (III.2.13) as: 

PE *.% g A P Q VQ H (III.4.6) 

Taking the time derivative of this equation we find that 

dP_/dt -.X g Ap V (dH/dt) . (III.4.7) 
E oo 

Because H = V/irR2, i t fol lows t h a t dH/dt = -2HUf/R + We and t h a t 

dP_/dt = -G + B = - g Ap V U, H/R + % g Ap V W . ( I I I . 4 . 8 ) 
E o o f z o o e 

In t h i s equat ion the f i r s t term on the r i g h t hand s i d e equa l s e x a c t l y -G, while 

the second term equals B. Using the entra inment r e l a t i o n ( I I I . 2 . 3 ) we thus can 

wr i t e 

B -X c e gApQ V Q ïït / (cfc + Ri ) . ( I I I . 4 . 9 ) 
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The mean kinetic energy is parameterized as 

Kg. = X VU f
2 [| p + 4 pa | + | p (|)2] . (III. 4. 10) 

This parameterization is consistent with that of the momentum equation 
(III.3.^2). The first term represents the interior radial component, the second 
the virtual energy outside the cloud and the third the energy of the vertical 
motion in the cloud. Taking the time derivative of all the terms and elimin
ating terms containing dUf/dt by using the momentum equation (III.3.42), we 
find after long and tedious, but straightforward calculations that 

dK^/dt = G - S = 
U f 3

 r1 . . H . . ,H,2, „ V f 2 
g Apo V o Uf H/R - cd pa V — - [- ♦ 2 ̂  ♦ 2 <-) ] P& V - ^ - . 

(III.4.11) 
Here we recognize in the first terra on the right hand side the production G of 
mean kinetic energy. The other terms give the shear production of Tg. The 
meaning of the various terms in the shear production is the following: 

3 c . p V ü. /R is the production at the cloud edge. 

1 2 ■r p V W U„ /H is the production by the interaction of the radial tur-3 a e f 
bulent stress that scales as weUf and the velocity shear 
that scales as U^/H. 

The other terms represent the shear production related to secondary flows. 

III.4.3 The dissipation D 

The dissipation is parameterized in a standard manner as (Tennekes and 
Lumley, 1973, p.20): 

D oc £ V ü 3 / I , (III.4.12) 

where i is a characteristic length scale. We follow Brost and Wyngaard (1978) 
and write for the inverse of this length scale: 

1/X, = 1/1 + 1/JL . (III.4.13) 
g o 
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In this equation £ represents the limit to the size of large eddies due to the 
o 

presence of the ground. In the present problem turbulent eddies are 
predominantly created at a height of 0(H), so we may take 

H . (III.Jl.1i») 

The length scale i. is the so-called buoyancy length scale. This length scale 
represents the reduction of the eddy size and the enhancement of dissipation in 
a stably stratified flow. £. can be estimated by assuming a balance between 

2 2 vertical inertial forces that scale as pa / I. (a is the vertical velocity w b w J 

variance) and buoyant forces that scale as - g JL (3p/3z). This balance gives 

1 - g Ah (3p/3z) 
r - — j r » — • (m.4.15) 
b w 

We multiply the numerator and the denominator of the right hand side of this 
equation by o and obtain: 

I- - ^ ' (III.4.16) 
b v w 

In this equation a %, can be interpreted as a vertical eddy diffusivity and w b 
- g a I. (3p/3z) as a local buoyancy flux. The average value of this flux 

W D 
clearly is 

- g a I. (3p/3z) - B/V , (III.4.17) 
W D 

where B is the total buoyant destruction given by (III.4.9). Next we take the 
3 3 average value of pa proportional to p u. and obtain from (III.4.12)-w t 

(III.4.17) our parameterization of the dissipation as: 
- — 3 p V u 

D - c —— + cK B , (III.4.18) 
n H b 

where cn and c^ are empirical coefficients. In this equation the first term at 
the right hand side gives the dissipation that we would have in the absence of 
stable stratification. The coeffient cn can be estimated as follows. In a 

- 2 
neutral shear flow characterized by a stress p u# the dissipation at a height 
H above the ground equals "p" u„ / KH, where K = 0.4 is the von K#rm#n constant. 

http://III.Jl.1i�
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3 — 3 Since approximately in such a flow u# =■ 0.04 u (Beljaars et al., 1983), we 
find as a first guess: 

c - 0.1 . (III.4.19) 
n 

The last term in the dissipation equation (III.1!.18) represents the 
enhancement of the dissipation by the presence of stable stratification. The 
coefficient c^ can be estimated by looking at stable free shear layers (e.g. 
Nieuwstadt, 1984). For a steady stable layer dTE/dt vanishes and the turbulent 
energy budget reads: 

B + D = S . (III.4.20) 

The relative magnitude of the three terms in this equation can be expressed by 
means of a flux Richardson number Rif which in the present context is defined 
as: 

Rif ■ B/S . (III.4.21) 

When the stable layer approaches neutral stability Rif vanishes, while in very 
stable conditions Ri^ approaches a constant critical value Ri = 0.2 - 0.25. 
Thus in very stable conditions 

B/S - Ri (III.4.22) 
c 

_and because of (III.4.20) 

D = (-1- - 1) B . (III.4.23) 
HI C 

So in very stable steady flow the dissipation is proportional to the buoyant 
destruction. 

In the present problem the flow is quite unsteady. Then we may run into 
problems, because B only depends on the actual state of the turbulence, while 
the shear production S also depends on the state of the mean flow. Since the 
development of the mean flow and that of the turbulence are not normally in 
phase,the closure assumption (III.4.22) is not likely to be valid in the 
present context. 
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On the other hand, like B, the dissipation D depends only on the actual 
state of the turbulence. So (III.4.23) does seem to be a suitable closure 
assumption for very stable unsteady flow. In the present problem the stablity 
is represented by the turbulent bulk Richardson number Rifc as defined by 
(III.2.4). Thus we expect that 

D ■* (-̂ - - 1) B for Ri .-»• ~ . (III.4.24) 
c 

Us ing tis relation, (III.4.9) and (III.4.18) we can solve for cb. The result is 

°b = R T " 1 ' 2 T • CIII.4.25) 
c e 

Taking Ric = 0.25, cn = 0.1 and ce = 0.2 we find that 

cb = 2.0 , (III.4.26) 

which is the value that we will use in our model study. We are now ready to 
complete our model description. 

III.4.1» Final equation for dTE/dt | 

Using the results of the previous sections in (III.4.4) we arrive at the 
following turbulent energy equation: 

d TF U f 3 1 H H ? WP Uf 2 
_ I = C p v — + [ l + 2 - + 2 (~)2] o V -S-L. dt °d pa R L3 R V J pa H 

- c F V ü . 3 / H - X (c +1 ) c g Ap V Ü. / (c . + Ri. ) . ( I I I . 4 . 2 7 ) n v t ^ b e p K o o t t t 

In this equation We and u. are still functions of T£ itself, as defined by 
(III.2.3) and (III.2.6). Thus numerical integration with respect to time is 
needed to solve it. This result completes our model description. 



68 

I I I . 5 Analysis and simulation of s t i l l - a i r experiments 

III.5.1 Experimental characteristics 

In this section we analyse laboratory experiments by Havens and Spicer 
(1985) and Thorney Island trials with low atmospheric turbulence. The 
characteristics of the experiments used from Havens and Spicer are given in 
table III.1. As we see, the initial volumes vary by a factor of 10, while the 
measuring heights used vary by a factor 14. So possible effects of scale and 
measuring height can be investigated. 

Table III.1 

Experiments by Havens and Spicer (1985) 

Ap /p = 3-19 , H /R = 2 Ko a o o 

Symbol used A O o + x 
in figures 

V Cm3] 0.531 0.135 0.535 0.054 0.054 0.054 
o 

z /H 0.007 0.011 0.015 0.015 0.049 0.098 
m o 

From Thorney Island we select the t r i a l s 12 and 34, because these were 
t r i a l s with a low atmospheric turbulence as expressed by i t s density 

t_ = X p (o 2 + o 2 + o 2) (III.5.1) 
E 2 ya u v w 
2 2 2 

where o„ , ov and aw are the variances of the three wind components. We 
approximate this turbulent kinetic energy density by 

tE -X pa (c* u * ) 2 , (III.5.2) 

where u* is the surface friction velocity and 

c« - 3 (III.5.3) 
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Table I I I . 2 Thorney Island Tr ia ls 

T r i a l no . 

Symbol used 
in f i gu re s 

A p o ' P a 

VRo 

V0[m3] 

VHo 

U [m s " 1 ] 

u* [m s~1] 

12 31» 

1.37' 0.83 

1.81 1.95 

1950 2100 

0.032 0.029 

2.6 1.JI 

0.080 0.028 

an empirical coefficient (Beljaars et al., 1983; Puttock, 1987). The friction 
velocity u* can be estimated from the windspeed U^Q at 10 m, the surface 
roughness length zQ and the cloud cover using a procedure by Van Ulden and 
Holtslag (1985). For our calculation we used zero cloud cover, zQ = 0.01 m and 
the observed windspeeds. The resulting u* is given in table 2. This result will 
be used later to estimate the period in which atmospheric turbulence presumably 
has a negligible effect on cloud mixing. The other experimental characteristics 
of the trials 12 and 3*» are also given in table III.2. 

III.5.2 Analysis and simulation of radial spreading 

Havens and Spicer (1985) provide accurate measurements of the cloud 
radius as a function of time. For the Thorney island trials 12 and 31*, no such 
data are available. Thus in this section we only analyse the laboratory data. 
To investigate possible scale effects we non-dimensionalize the data with the 
initial radius RQ and the velocity scale , 
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U ■ / g Ap H /p , o Ko o Ka (III.5.1) 

where HQ is the initial cloud height. 
The time is scaled with 

fco - V U o • 

10000 -

( I I I . 5 .5 ) 

(R/FO2 : 

]—i i 111111 1 i i | i H I , 
1 10 100 1000 

t/tG—► 
figure III.2: Dimensionless cloud area versus dimensionless time. 

Symbols : data from Havens and Spicer (1985) (see table 1) 
Solid line: present model 
R0 initial cloud radius, tQ = R0/UQ; UQ = / g Ap H /p ; Ap 
initial density difference, HQ initial cloud height, p Q air 
density. 



71 

In figure II.2 we give the experimental data on dimensionless cloud area, 
together with our model simulation. As we see there appears to be no scale 
effect in the data and viscous effects do not seem to be present for the time 
interval shown. The performance of the model is quite satisfactory. The time 
delay connected with the initial acceleration is well modeled. The straight 
part of the curve corresponds with 

K = li / (g Ap H/pJ^ = 1.20 . (III.5.6) 

This result agrees very well with the average value K = 1.19 that was observed 
for the low-windspeed trials 8, 9 and 10 at Thorney Island (Brighton et al., 
1985). Thus large scale field data seem to be consistent with the laboratory 
data and with the present model for gravity spreading in still air. 

III.5.3 Analysis and simulation of the mixing process 

In this section we will analyse and simulate area-averaged concentra
tions. For the Thorney Island trials pertinent data are available (Brighton, 
1985; Brighton and Prince, 1986). For the laboratory experiments we have 
computed area averages from the graphs given in the report (Havens and Spicer, 
1985). The contribution to the average of each sensor was weighted according to 
the area for which the sensor is representative. 

The representative area scales with 2ir Rm AR, where Rm is the distance of 
the sensor from the origin and AR the spacing between the sensors. Thus the 
present analysis puts more weight on the outer sensors. For greater times this 
leads to area-averaged concentrations that are only slightly lower than the 
values given by Van Ulden (1986). We further require that at least three 
sensors saw gas and that the cloud did not move too far beyond the outermost 
sensor. This reduces the r.m.s. error of the computed area-averages to about 
10-20% and limits the period of reliable data to the dimensionless time 
interval 30 < t/tQ < 180. This time interval will be included in the analysis. 

The Thorney Island data - which cover a much longer period - can only be 
used in the present analysis, as long as mixing by atmospheric turbulence can 
be neglected. We assume that this is the case when the atmospheric turbulent 
energy density is less than half the turbulent energy density produced by the 
cloud as computed with our model. This is the case in trial 12 for t/tQ < 70 
and in trial 3^ for t/tQ < 170. Thus we include in our analysis only data from 
the Thorney Island trials for dimensionless times smaller than these limits. 
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figure III.3: Observed area-averaged concentration Cm versus dimensionless 
time. Symbols: see table 1 and table 2. 

After this careful data selection, we now proceed with a comparison 
between the various experiments. A representative selection is shown in 
figure III.3. Included are data from Havens and Spicer (1985) for V = 0.531 m3 
and VQ = 0.05*1 nr\ Further we give the data for the Thorney Island trials 12 
and 34. In the figure we see very significant differences between the experi
ments. The question is: what causes the differences? At first sight one might 
think that apparently different mixing processes are involved. There is, how
ever, an alternative and quite exciting interpretation. It may be that the 
measurements depend strongly on the dimensionless measuring height z /H . Let 
us investigate this possibility. 

In figure III.4 we have plotted measured area-averaged concentrations as 
a function of this dimensionless measuring height for t/t <= 60. Apart from 4 
data points taken from figure III.3, we have also plotted data from other 
laboratory experiments including estimates of the area-averaged concentration 
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figure III.il: Observed area-averaged concentration Cm for t/tQ = 60 versus 
dimensionless measuring height z /H . 
z„ "m' observation height; HQ: initial cloud height. 

obtained from sensors put at 0.02 m and 0.04 m. This figure strongly suggests 
that the observed concentrations decrease rapidly with height. The Thorney 
Island data are fairly consistent with the trend observed for the laboratory 
data. Similar figures can be made for different times and a similar behaviour 
is observed. A more complete picture of the concentration profile can be 
obtained by plotting the data for the different times in a scaled form. This is 
done in figure III.5. Measured concentrations Cm have been normalized with 
cloud averaged concentrations Cc as calculated with our model. Similarly the 
measuring height zm is normalized with the calculated cloud height H . The 
result is that all data appear to show a similar decrease with height. In fact 
we have plotted the concentration profile in the similarity co-ordinates 
suggested by eqn. (III.2.15). The data suggest that such a similarity function 
exists, at least for the analysed time interval. 

http://III.il
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figure I I I . 5 : Normalized observed area-averaged concentration c /C versus 
_ m c 

normalized observation height zm/Hc. C is the computed cloud-
averaged concentration and H c the computed cloud-height for the 
values of t/tQ shown in figure III.3. The symbols are explained in table III.1 and table III.2. The curves in the figure are: 
broken line: - exp [ (~) 3 
solid line : 6 exp [- (ijr )*] 

1| ty z 2 broken line: - exp [ (-rr) 3 (gaussian curve) 
if if. _ " 
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For reference purposes we show in the figure the Gaussian p ro f i l e . I t i s 
clear that the concentration prof i le i s not Gaussian. Thus the fair agreement 
which Van Uiden (1987A) found, between concentrations computed with a Gaussian 
prof i le and the data for the experiments with VQ = 0.531 m̂  is for tu i tous . In 
the figure another curve is shown which more or l ess goes through the data . 
This curve i s the s imilar i ty profi le ( I I I .2 .18) with a shape factor s = %. I t 
reads 

C(z)/C = 6 exp [-(12 z/H)*] . ( I I I . 5 . 7 ) 

With showing this curve, we do not imply that it gives a correct description of 
the concentration profile below z/H = 0.1 . In this respect the data are not 
conclusive. The results of the above analysis may be biased by the use of our 
model for calculating H. and C . We think,however, that this bias is weak at 

l- c 
most. The reason is, that the data in figure III.5 show a hyperbolic behaviour 
in the sense that zm Cm/Hc C = 0.2 is approximately constant for the bulk of 
the data. Since H C = V /TTR 2 and since our model predicts the cloud area c c o c 
quite accurately, errors in the entrainment model lead to compensating errors 
in H- and C . Therefore errors in the entrainment model only give rise to a 
shift of the data along the fitted curve and have a minor effect on the analy
sis. In this context it should be noted that the curvature of the vertical 
concentration profile found here is also present in the profile analysis by 
Brighton (1985). This follows from the fact that the latter author found 
negative values of h_ for most of the time (see his section 2.1»). 

Let us take now (III.5.7) as a preliminary estimate of the dimensionless 
concentration profile and use it in our model to predict the concentrations at 
the observation heights of the data given in figure III.3. The result is shown 
in figure III.6. In this figure the model results for trial 12 and 31* approxi
mately coincide and are given by one curve. For the two laboratory experiments 
both model curves are given. We see that the agreement between the model and 
the data is satisfactory. Thus making corrections for the observation height 
removes the discrepancy between the Thorney Island data and the laboratory data 
and also explains the differences between the two laboratory data sets for 
different initial volume. The present analysis indicates that no significant' 
viscous effects are present in the laboratory data as suggested earlier by Van 
Uiden (1987A). 
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figure III.6: Observed and predicted area-averaged concentration Cm versus 
dimensionless time t/tQ. Data as in figure 3. 
Solid line: present model. 

An important preliminary conclusion is that, at least in the low wind 
speed trials at Thorney Island, the observations at 0.1 m are not representa
tive for the volume averaged concentrations and may be very much less than the 
non-observed surface concentrations. If our interpretation is correct, the 
Thorney Island data need a careful reanalysis. For example the cloud heights as 
derived by Brighton (1985) may be significantly too high. The same is true for 
empirical coefficients for side entrainment. Further discussion on this subject 
is given in section III.6. 

So far we have considered area-averaged concentrations. It is also 
interesting to look at concentrations that are measured locally by a specific 
sensor. In the figures III.7 and III.8 we give two typical examples taken from 
the data by Havens and Spicer (1985). The data are from the sensors placed at 
RJU = 2.4 m and F^ = 6.4 m from the cloud centre at a height of Hm = 0.006 m. 
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Also our model results are given. It is seen that the arrival time is well pre
dicted. The modelled concentrations rise instantaneously to the computed area-
averaged concentration at sensor height for the computed time. The measured 
concentrations rise more slowly. The decrease of the concentration with time is 
well modelled. A good impression is obtained of the systematic mixing process 
and the natural concentration fluctuations around it. In general it can be said 
that the performance of the model in predicting local concentrations near the 
surface is satisfactory. 

t 
local 

concentration 

time, seconds 

figure III.7: Local concentration versus time. Broken and dotted line: observed 
by Havens and Spicer (1985) at 2.4 m from the cloud center. 
Solid line: present model. 
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figure III.8: Local concentration versus time. Broken and dotted line: observed 
by Havens and Spicer (1985) at 6.4 m from the cloud center. 
Solid line: present model. 

III.6 Model characteristics and sensitivity analysis 

Now that we have seen that the present model has something to do with 
physical reality, it is worthwhile to give further illustrations on the general 
features of the spreading and mixing process of a dense puff. Also we will ~~ 
investigate the influence on model results of variations in empirical 
coefficients and in initial conditions. 

III.6.1 Model properties for Ap /p = 3.19 and HQ/R = 2 
0 3 \J \J 

The model properties can be illustrated with the behaviour of the scaled 
front velocity or Froude number 

k = U. / (g Ap H / p ) 2 

I 9. 
(III.6.1 ) 
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figure I I I . 9 : Modelled Froude number and Scaled'Entrainment r a t e . 
Solid l ine : Froude number k s u f / / g Ap H / p a . 

Broken l i n e : Scaled Entrainment r a t e a = WeR/2HUf 
e Ap /p o a 3.19; H0/RQ = 2. 

and of the scaled entrainment ra te 

W R / 2 H IK , e f ( I I I . 6 . 2 ) 

where, mathematically speaking," a is identical with the traditional coeffi
cient for edge-entrainment (Van Ulden, 197*0. These dimensionless quantities 
are plotted against the dimensionless time t/tQ in figure III.9. We see that 
the Froude number is not constant. First we see the acceleration from rest 
until the Froude number reaches a maximum value of about 1.6 for t/t = 11 . 
Then the Froude number decreases until it reaches an approximately constant 
value of k = 1.20 for t/t > 100. The entrainment coefficient shows a similar 
behaviour, be it with a time lag At/t = 4. This time lag is due to the fact 
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figure I I I . 1 0 : Modelled time variation of the four components of the energy 
budget. 
Vert ical ax i s : percentage of t o t a l energy. 
Apo/pa = 3.19; H0/R0 = 2. 

that i t takes time to create turbulent energy needed for entrainment. The 
entrainment reaches a maximum of a =1 for t / t Q = 15. Around th i s time the 
cloud height hardly decreases, because the upward velocity of the cloud top due 
to entrainment i s about equal to the slumping motion. For t / t > 100 the 
entrainment coefficient var ies only slowly, but an asymptotic value i s not yet 
reached for t / t Q = 1000. 

The spreading and mixing process can be further i l l u s t r a t e d by looking at 
the energy budget of the cloud. This i s shown in figure I I I . 1 0 . Plotted are the 
potent ia l energy, the kinet ic energy, the turbulent energy and the in terna l 
heat . These four terms of the energy budget are scaled in such a way that their 
sum equals 100$. At the release of the cloud a l l energy i s potent ial energy. In 
the slumping process potent ia l energy i s transformed into kinet ic energy. This 
kinet ic energy leads to the shear production of turbulent energy, which in turn 
i s dissipated into heat and i s used partly to increase the potential energy by 
entrainment. For t / t Q =» 8 the kinet ic energy reaches a maximum of about 75$ of 
the to t a l energy. Then the potent ia l energy has been decreased by almost a 
factor 10. The turbulent energy reaches i t s maximum of about 22$ for t / t 0 = 10. 
For t / t Q = 100 already 90$ of the or iginal energy has been dissipated into 
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heat. In the figure we see clearly the increasing time lag for the production 
of kinetic energy, for the production of turbulent energy and for dissipation. 

10000 

r 1000-

(R/R0)2 : 
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1—i i ( i i i i | 1—i i | i i n 
100 1000 

t/tft—► 

figure III.11: Dimensionless cloud area versus dimensionless time. 
Solid line : standard model. 
Broken line: model with shallow layer approximation. 
Data by Havens and Spicer (1985). See table 1. 
Apo/pa = 3.19; H0/R0 = 2. 
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figure III.12: Cloud-averaged concentration versus dimensionless time. 

Solid line : standard model. 
Broken line: model with shallow layer approximation. 
Apo/pa = 3.19; H0/R0 - 2. 

In section III.3 we have mentioned the role of vertical accelerations and 
added mass in enhancing this time lag. In the momentum equations the terms 
containing H/R and (H/R) account for these deviations from the shallow layer 
approximation. To investigate the effect of these terms we have run the model, 
neglecting these terms in the momentum equation and in the turbulent energy 
equation (111.4.27). The computed results for the cloud area and the cloud 
concentration are shown in the figures III.11 and III.12. In figure III.11 we 
see that the shallow layer approximation leads to a much faster acceleration 
from rest, which is not supported by the measured data. Apparently the non-
hydrostatic correction terms should be included, as they are in the full model, 
at least for releases with a high initial aspect ratio H0/RQ. In figure III.12 
we see that the faster acceleration of the shallow layer model leads to an 
earlier start of the mixing process, as is to be expected. 
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III.6.2 Discussion on empirical coefficients 

In this section we discuss the values of the major empirical coefficients 
used in our model. 

We start with the drag coefficient c' which has been defined by 
(III.3.35). In section III.3 we have deduced that c* = 0.64. This estimate is 
based on direct measurements of the front conditions of steady and unsteady 
gravity currents see chapter II). This value of c' is consistent with the 
experimental data discussed in section III.5. The estimated accuracy of the 
value of c' is 10$. Changes of 10$ in c\ have a very small effect on our model d d 
results. E.g. the computed cloud area decreases no more than 2$, with a 10$ 
increase in c*. Thus c' = 0.64 ±0.06 appears an adequate choice for the drag 
coefficient. 

Next we consider the entrainment coefficient ce as defined in (III.2.3). 
Here we have used ce = 0.2 as proposed by Driedonks and Tennekes (1984). This 
choice is based on experimental data for entraining boundary layers in the 
atmosphere and in the laboratory. Since in the case of a spreading cloud we 
deal with a different flow problem, the value of ce is not as well established 
as that of c'. To investigate the sensitivity of the model to variations in ce 

we have investigated the effect of changes of a factor 2 in ce. In figure 
III. 13 we give the model results for the dimensionless cloud area. We see that 
the effect of changes in ce is quite small. In figure III.14 we give the 
computed cloud-averaged concentration c. As expected, we see a marked effect of 
the variation in ce. 
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figure I I I . 1 3 : Dimensionless cloud area versus dimensionless time. 

Effect of varying the entrainment coefficient c . 
Solid l i ne : standard model: c ö = 0.2. 
Ap o / p a = 3 .19 ; H 0 / R 0 = 2 . 

figure I I I . 14 : Cloud-averaged concentration versus dimensionless time. 
(on next page) Effect of varying the entrainment coefficient c 0 . 

Solid l i n e : standard model: Q = 0.2. 
Ap /p yo Ka 3.19; H0/R0 
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To relate this effect to measured data is not a straightforward task, 
because the volume cloud-averaged concentration is not a directly observed 
quantity. Furthermore the limited information on area-averaged concentration 
profiles, available for the experiments by Havens and Spicer (1985) and at 
Thorney Island, do not allow an accurate indirect estimate of the cloud-
averaged concentration. Instead we will use the preliminary similarity profile 
(III.5.7) for estimating the area-averaged concentration at a given measuring 
height. In figure III.15 we give the results for the experiment by Havens and 
Spicer (1985) with VQ = 0.531 m3, Ap /p = 3.19 and HQ/R0 = 2 for the measuring 
height zm = 0.006 m (see also figure III.6). As we see in figure III.15 the 
effect of changes in ce on the computed area-averaged concentration at a given 
height is very small. The reason for this is that changes in ÏÏ are accompanied 
by similar changes in Hc. This affects the scaled measuring height zm/Hc and 
the profile correction (III.5.7) in such a way that a change in C is more or 
less compensated by the change in the profile correction (see also the dis
cussion in section III.5). This is also true for the other available measuring 
heights. For "true" ground-concentrations (zm =0) this is not the case, but 
unfortunately such data are not available. The drawback of this is that with 
the available data the "correct" value of ce cannot be pinned down accurately. 
With the present information we estimate that ce is "known" within a factor 
of 2. Greater deviations from the standard value ce = 0.2 lead to 
significantchanges in the computed cloud area which are inconsistent with the 
experimental data on the cloud area. 

The last evaluation concerns our dissipation model and in particular the 
numerical coefficients cn and cb which have been defined in (III.1.13) and 
i_III.J_.J_6.).JWe_haye_r_un the model with cn and ob taken atjialf and̂  twicejtheir 
standard value. This corresponds with dividing or multiplying the standard 
dissipation rate by a factor of 2. In terms of the critical Richarson number 
Ric defined in (III.4.22) this corresponds with Ric = 0.4 and Ric = 0.14 
respectively. In the figures III.16 and III.17 we give the model results. 
Changing the dissipation has a moderate effect on the cloud area. The effect on 
the cloud-averaged concentration is very pronounced. For t/tQ > 300 it is more 
than a factor 2. The effect is small for the area-averaged concentrations at 
the measuring heights of the experiments discussed previously, for reasons 
given before. The available data on the cloud area indicate an incertainty of 
about a factor of 2 in the dissipation rate. Similarly the incertainty in the 
"true" cloud-averaged concentrations and in the "true" cloud height is about a 
factor of 2. 

http://i_III.J_.J_6
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figure 111.16: Dimensionless cloud area versus dimensionless time. 
Effect of varying the diss ipat ion r a t e . 
Solid l i ne : standard model. 
Apo/pa = 3.19; H0/R0 = 2. 
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figure I I I . 1 7 : Cloud-averaged concentration versus dimensionless time. 
Effect of varying the dissipat ion r a t e . 
Solid l i ne : standard model. 
ApQ/pa = 3.19; H0/R0 = 2. 

I I I . 6 . 3 Discussion on i n i t i a l conditions 

In th i s section we present model r e su l t s for various i n i t i a l conditions. 
In figure I I I .18 we show the computed cloud area for H0/RQ = 2 and for varying 
i n i t i a l density Ap /p . We see a marked effect on the i n i t i a l accelerat ion, but J Ko Ka ' 
f o r ^ t / t 0 > 20 the cloud area becomes independent of the i n i t i a l density. In 
figure I I I .19 we give the cloud area for Ap /p =3 .19 and for"varying i n i t i a l " 

O cl 

aspect-ratio HQ/R0. Here we see a pronounced effect on the initial accelera
tion, which lasts till about t/tQ = MO. The results shown in the latter two 
figures can be qualitatively understood by looking at the momentum equation 
(III.3.3D at the time t/tQ = 0 when Uf = 0. Then (III.3.3D can be written in 
the following dimensionless form: 

r
 d(VV n 

d ( t / t 0 ) J t 0 
0 

1 
o Ap H „ Ap H 

a o a o 

(III.6.3) 
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figure II I .18: Dimensionless cloud area versus dimensionless time. 
Effect of varying the in i t ia l density difference Ap /p ; 

VRo 2. 

In this equation we see directly that the initial dimensionless accelera
tion depends on Ap /p and H0/R0. It is clear that the Boussinesq approximation 
and the shallow layer assumption are not valid. The initial acceleration 
reaches a maximum value of 3/2 when Ap /p << 1 and H0/RQ << 1 . 
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Next we consider the effect of the initial conditions on the cloud con
centration. In figure III.20 we show the effect of cloud density. We see that 
the mixing process starts earlier for smaller initial density. This is due to 
the more rapid initial acceleration. For larger times we see higher concentra
tions for lower initial density. This can be explained by the higher dissipa
tion that occurs for smaller densities when t/tQ =10. In figure III.21 we show 
the results on cloud concentration for various initial aspect ratios. We see a 
moderate effect for t/t0 < 100. 

Finally we consider the combined effect of lowering the initial value of 
both Ap /p and tin/Rn. In figure III.22 we show the model results for the cloud o a o o " 
area, lowering both Ap /p and H /R leads to a significantly more rapid 
acceleration (in terms of t/tQ). The interpretation is easy, when (III.6.3) is 
considered. It should be noted that the curve for (R/RQ) approaches a simi
larity solution when both Ap /p and HQ/R0 vanish. This solution is given by: 

with 
(R/R ) 2 = 2k t/t (111.6.1») 

o » O 

k = 1.17. (III.6.5) 

The solution is valid for t/tQ > 1. 
Next we consider the cloud concentration in figure III.23. Here we see 

that the effect of the initial conditions is present both in the early accel
eration phase and for t/tQ > 100. Again we see that when Ap /p and H0/RQ both 
vanish the curve for c approaches a similarity solution. This solution can be 
represented by 

c = (t/t ) 0,it1 for t/t > 1 . (III.6.6) 
o o 

A similar slope is found for other initial conditions for large times. This 
slope is significantly less negative than the slope - 0.70 found by Brighton 
(1985). The present study indicates that the high entrainment rate that corre
sponds with a slope - 0.7 leads to a reduction in the growth of the cloud area 
that is inconsistent with the available data for the cloud area. 
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figure III.22: Dimensionless cloud area versus dimensionless time. 
Effect of varying both the initial density difference and the 
initial aspect ratio. 
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figure III.23: Cloud-averaged concentration versus dimensionless time. 
Effect of varying both the initial density difference and the 
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III.7 Conclusions 

We have presented a dynamical integral model for the spreading and mixing 
of a dense cloud in still air. The model is fully non-hydrostatic and non-
Boussinesq. The numerical coefficients in the model have been estimated inde
pendently from the experiments that have been simulated in this chapter. 

The model describes satisfactorily the radial gravity spreading observed 
in the laboratory and is consistent with availablê^fieTcTöata"for- low-windspeed-
conditions. 

The model gives predictions for the cloud height and the volume-averaged 
concentration. Also a preliminary similarity profile for the vertical concen
tration distribution has been deduced from the experiments analysed in this 
chapter. The model predictions in combination with this similarity profile give 
a satisfactory simulation of observed concentrations. This indicates that con
centrations in dense clouds decrease rapidly with height near the surface and 
more slowly higher up in the cloud. The Gaussian profile does not seem to be a 
proper approximation to vertical concentration profiles. 

The present analysis shows that most of the laboratory data by Havens and 
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Spicer (1985) are consistent with the field data obtained at Thorney Island 
during weather conditions with low atmospheric turbulence and low windspeeds. 
The laboratory runs with VQ > 0.054 m3, Ap /p = 3.19 and HQ/R0 = 2 show no 
scale effects in the analysed time interval. 

We have shown that it is essential to include non-hydrostatic and non-
Boussinesq terms in the model equations in order to obtain acceptable results 
for small times (t/tQ < 20). For large times these terms have little or no 
effect on the model results. For small values of Ap /p and H0/R0 the model 
results approach a similarity solution for t/tQ > 1 with an asymptotic Froude 
number k = 1.17 and an equivalent edge-entrainment coefficient a = 0.41. The 
latter value implies a much lower entrainment rate and therefore much higher 
concentrations than assumed in previous studies. 
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Chapter IV 
REFLECTIONS ON THE CONSTRUCTION OF A COMPREHENSIVE MODEL FOR DENSE CLOUD 
DISPERSION 

IV.1 Introduction 

Since generally wind and turbulence are present in the atmosphere, a 
dense cloud will not stay in the quasi-uncoupled phase that has been described 
in chapter III. Sooner or later a transition will take place to the coupled 
phase, the mixed phase and the passive phase. So a comprehensive model has to 
deal with these latter phases also. To construct a comprehensive model, 
knowledge is required of both the density driven flow phenomena and the trans
port and diffusion processes due to the atmospheric flow. In their purest form 
the latter processes are present in the passive phase. In the passive phase the 
cloud particles just follow the atmospheric flow, without disturbing it. Thus a 
good approach is to describe passive dispersion first, and then try to combine 
the dense gas effects and the passive dispersion processes to model the 
intermediate phases. 

IV.2 Basic processes in passive cloud dispersion 

The basic processes that determine the dispersion of a passive cloud are 
the following. In the first place a passive cloud is advected by the mean wind. 
Because usually the windspeed increases with height, the advection velocity of 
the cloud will increase as the cloud depth increases. Furthermore this advec
tion velocity will be higher for cloud particles, that happen to be in the top 
of the cloud, than the advection velocity for particles that are temporarily in 
the lower part of the cloud. Thus we expect that the concentration distribution 
of the cloud is skewed in the sense that the top of the cloud is further down
wind than its bottom. When also the wind direction changes with height, which 
is normally the case in the bulk of the atmospheric boundary layer, an even 
more complicated stretching mechanism takes place. 

In the second, place the cloud as a whole is displaced by large horizontal 
eddies. Large means here: larger than the horizontal scales of the cloud. This 
leads to a meandering cloud motion relative to the advection by the mean wind 
and to an inherent uncertainty in the predictability of the position of an 
individual cloud. This is an absolute diffusion process that requires knowledge 
of the Lagrangian statistics of single particle motion. 

In the third place the cloud is subject to diffusion by small scale 
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eddies, both horizontally and vertically. We may expect that this process leads 
tö smooth average concentration distributions, with turbulent concentration 
fluctuations relative to these average distributions. Diffusion by small scale 
eddies is called relative diffusion and requires knowledge of the statistics of 
two-particle diffusion. 

Of particular importance is the interaction between windshear and verti
cal diffusion. Windshear creates variance in the direction of the wind in the 
form of a skewed distribution. Vertical diffusion destroys this variance and 
tries to re-establish a homogeneous horizontal distribution. In this process 
the shear-produced skewness is transformed into diffusive variance in the wind 
direction. The actual skewness of the concentration distribution is determined 
by the magnitude of the windshear and by the magnitude of vertical diffusion. 
In general we may expect, that in stable atmospheric conditions the cloud is 
very skewed, because windshear is large and vertical diffusion small. In un
stable conditions the opposite is true. Windshear is small and vertical diffu
sion is large, which will limit the skewness in these conditions. 

As we see, the dispersion of a passive cloud is determined by complicated 
processes. It is therefore no wonder, that in the literature not a single model 
has been reported, that deals with all these processes in a satisfactory 
manner. 

What do we call satisfactory? Let us try to formulate this and also 
discuss some relevant literature. A first requirement is that the dispersion 
model is based on an adequate characterization of the state of the atmosphere 
and in particular of the atmospheric boundary layer. This implies a proper 
description of the wind profile and of the characteristics of turbulence in 
terms of observable parameters. The problems involved with the characterization 
of the atmospheric boundary layer are discussed in some detail by Van Ulden and 
Holtslag (1985) and by Gryning et al. (1987). It appears that the scaling of 
the boundary layer in terms of similarity parameters forms an adequate basis 
for the description of dispersion in general. Therefore such a basis is 
strongly recommended as the starting point for a dispersion model for a passive 
puff. 

Next we require that the dispersion model itself rests on a firm basis. A 
suitable basis is the continuity equation in a differential form (Csanady, 
1973; p. 85). From this equation statistical information on dispersion can be 
obtained from ensemble averaging over a large number of hypothetical puff 
experiments. By applying ensemble averaging in fixed and cloud following co
ordinates a proper distinction can be made between absolute and relative diffu
sion (Csanady, 1973: p. 87). In this manner a diffusion equation can be derived 
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that describes the combined effects of windshear and relative diffusion. Many 
modelers do not make the distinction between absolute and relative diffusion. 
E.g. Chatwin (1968) and Wheatley (1987) use diffusion equations that presuppose 
a hypothetical atmosphere, in which no large horizontal eddies exist, but this 
is not cleary mentioned in these papers. Apart from this shortcoming these 
papers form a suitable basis for the analysis of the puff-dispersion problem. 

Chatwin (1968) describes in detail the interaction between windshear and 
vertical diffusion for the neutral atmospheric surface layer. Using the method 
of integral moments by Aris (1956) and by Saffman (1962) he arrives at exact 
analytical results, which not only have theoretical, but also great practical 
value. The reason for this is that no experimental information seems to be 
available on this particular interaction process. Mikkelsen et al. (1982, 198-4) 
extend these ideas to a diabatic surface layer, specified in terms of Monin-
Obukhov similarity parameters. However, in these papers the treatment of the 
shear effect is not very convincing. 

Wheatley (1987) includes the shear effect in a plausible, but approximate 
manner. Wheatley does not retrieve the exact results by Chatwin (1968) for the 
neutral case. Nevertheless Wheatley's model has great merits, because it makes 
the problem manageable for the general diabatic case. An advantage of this 
model is, that it is formulated in terms of rate equations for the vertical and 
horizontal scales of the cloud and for the skewness of the concentration 
distribution. These rate equations give the relation between the development of 
the concentration distribution and observable parameters like the friction 
velocity u* and the Obukhov length. In principle this makes it possible to 
combine Wheatley's model with our dense gas model, which is also formulated in 
terms of rate equations for the scales of the cloud in terms of observable 
parameters. 

A few problems still have to be solved. In the first place Wheatley's 
model should be modified as to match the exact results by Chatwin (1968) for 
the neutral case. In the second place Wheatley's rate equations contain 
integrals that have to be evaluated numerically. The model would be easier to 
handle, when these integrals were replaced by analytical approximations of the 
type proposed by van Ulden (1978) and by van Ulden and Nieuwstadt (1980). 
Finally absolute and relative horizontal diffusion deserve more attention. A 
recent discussion is given e.g. in Mikkelsen et al. (1987). In this paper many 
other references are given. 

In all we can say that a satisfactory treatment of the dispersion of a 
passive puff is not yet available, but seems to be within reach. 
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IV.3 Modeling the intermediate phases 

We now continue our discussion with some remarks on the problems of 
modeling the intermediate phases. I t concerns the modeling of the following 
processes: advection by the mean wind, ve r t i ca l mixing, gravity spreading, 
s t re tching by windshear, r e l a t i ve horizontal diffusion and meandering. We will 
discuss these processes in th is order. 

Advection 

Initially the center of mass of a dense cloud does not move. When an 
ambient wind is present a transfer of momentum to the cloud takes place, which 
sets the cloud into motion in the direction of the mean wind. The cloud accel
erates until - in the passive phase - the cloud travels at the same speed as a 
passive cloud with the same depth. The modeling of this process is in a very 
rudimentary state, not the least because of uncertainties in the actual rate of 
vertical mixing (see also chapter III). Crude attempts to estimate the rate of 
momentum transfer have been made by Wheatly and Prince (1987) and by Puttock 
(1987). These attempts are too much of an ad-hoc character to be satisfactory. 

Vertical mixing 
To describe vertical mixing, the combined effects of cloud-generated 

turbulence and buoyancy, and atmospheric turbulence and buoyancy have to be 
modeled. Our dense gas model is a good starting point, because it gives the 
required information on cloud generated turbulence and buoyancy. In principle 
our turbulent energy budget can be extended to include source and sink terms 
related to atmospheric turbulence. How to do this is not completely clear. 
Another possibility is to extend our entrainment model with atmospheric turbu
lence and stability terms. However, this procedure is not straightforward. 
Nevertheless these two possibilities are probably preferable over a very simple 
model in which cloud-generated entrainment and atmospheric entrainment are just 
added as such. Of course simple models can be adjusted, as to fit data in a 
limited range of conditions as shown e.g. by Wheatley et al. (1986). The 
applicability of such models to a wider range of circumstances is doubtful. 
Thus also here research remains to be done. 

Gravity spreading 
As shown in chapter III the rate of gravity spreading is affected by 

vertical mixing, which produces a radial shear that reduces the rate of 
spreading. When vertical mixing is enhanced by atmospheric turbulence, also the 
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reduction of gravity spreading will be enhanced. So far no box-model seems to 
include this feature. In our dynamic box-model this feature is automatically 
incorporated, when the effect of atmospheric turbulence is included in the 
entrainment model. Thus modeling this process does not seem to offer problems, 
provided a dynamic box-model is used. 

The effect of windshear 
Modeling the effect of windshear is already a problem in the relatively 

simple passive phase. In the coupled phase we expect even greater difficulties. 
The precise form of the velocity profile in the cloud is not known and neither 
is the local rate of vertical mixing. Nevertheless a crude model can be thought 
of, which includes among other features the effect of the variation of the 
translational cloud speed. Some discussion on this problem can be found in 
Chatwin (1984). Here clearly a lot of work is to be done. 

Relative horizontal diffusion 
The description of horizontal diffusion is necessarily restricted to a 

semi-empirical approximation of horizontal variances. In principle these 
variances can be added to the variances due to gravity spreading and windshear. 
This addition then gives the horizontal scales of the cloud. Possibilities for 
an addition procedure have been described by Wheatley and Webber (1984). 

Meandering 
As long as a dense cloud is not fully coupled to the atmospheric flow, it 

will not fully follow the meandering motion due to large eddies. In principle 
this can be modelled by considering the inertia of the cloud and by repre
senting the action of large eddies by a meandering force on the cloud. On the 
other hand this is probably more an academic question then a process that 
really has to be included in a comprehensive model. 

IV.1 Concluding remarks 

We have discussed a number of problems involved with the construction of 
a satisfactory comprehensive model. Interested readers can find more 
information in the literature, e.g. in Colenbrander (1980), Hunt et al. (1984), 
Wheatly and Webber (1984), Havens and Spicer (1985), Chatwin (1985) and Puttock 
(1987). Such papers support our conclusion, that there are certainly perspec
tives for the construction of a satisfactory comprehensive model, but that much 
work remains to be done. 
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