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iv 0. Preface

I n front of you is the report for my master thesis project as part of the MSc
programme Applied Mathematics at Delft University of Technology. Research for

it started in June of 2018. The project finished at the start of May 2019 with a final
presentation. This thesis project has been done with the assistance of Dr. J.W. van
der Woude, who I had frequent meetings with during the research in order to stay
up-to-date with the progress.

Before officially starting, we discussed a few possible options for topics that could
be interesting to work with. In the end, it was decided that the best option would
be to focus on the analysis of gas pipe networks by using methods similar to the
ones known for electric networks. The idea originated from the desire to find better
methods for computations within large networks. This would be done with the use
of incidence matrices and other network properties, in a similar way as A. van der
Schaft described in his article about the methods for resistive networks[1]. Therefore,
the first few weeks were spent on the exploration of these incidence matrices and
getting used to the general knowledge about graphs again.

A second work that was influential for this project was the MSc report by S.
Maring which served as inspiration for which topics we could build upon[2]. Ad-
ditionally, we applied a MatLab programme that we newly created to a network
shown in that report.

It was followed by the first main research topic, which was to find a way to
simplify parts of a gas transport network by reducing them to a single pipe. This is
done similarly to how a configuration of multiple resistors within a resistive network
can be reduced to fewer resistors. The resistance of the single resistor is then fully
dependent on the resistances of the multiple resistors, as is the case for series or
parallel connections for example. As such, the goal was to find a similar connection
between the constant values in a configuration and the constant for the equivalent
situation with fewer pipes.

The second part of the research consisted of translating a theorem in the afore-
mentioned article of A. van der Schaft from the resistive network to gas pipe net-
works. A MatLab script would be created in order to apply said theorem for practical
cases where a specific set of known values is used as input.

Lastly, the created MatLab script would be extended beyond just the gas pipes
to also include valves and compressors, as these are also key parts in a gas transport
network.
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2 1. Introduction

I n the current times, gas remains an important source of energy for both industrial
use and daily use in many homes. As a result, development and improvement of

gas transport remains relevant as well. This research project aims to do precisely
that with extensive use of the network structures.

This report will focus on three research questions, which are spread out over
several chapters. Below is briefly described what kind of information each chapter
contains and where these research questions are being covered.

First off, chapter 2 will give an introduction to the main definitions and network
properties that have been applied for the research and are of importance for the
terminology in the rest of this report. Additionally, this chapter discusses a set
of particular network properties. These are Kirchoff’s Circuit Laws as known for
resistive networks[3] and will be translated to gas transport networks.

The following three chapters will discuss different components within a gas trans-
port network: chapters 3, 4 and 5 respectively contain information about gas pipes,
valves and compressors. These components will be related to similar parts within
an electric network and have the relations between pressure loss and flow given as
equations. Chapter 3 will discuss two potential equations for pipe segments, whereas
chapters 4 and 5 respectively contain the details on two types of valves plus the mix-
ing station, and two types of compressors. These three chapters combined contain
the information for the first research question:

What are the best ways to describe the relations between pressure loss
and volumetric flow for different types of components in a gas transport
network?

Next, chapter 6 discusses ways to reduce certain connections within a gas pipe
network to a single pipe segment, those being series and parallel connections. The
constant values of all pipes in the configuration will be related to the one in the single
pipe segment in a similar way to the methods for resistive networks. Additionally,
this chapter contains some words about the ∆/Y transforms in resistive networks
and gas pipe networks. This chapter contains the information for the second research
question:

What are the methods for finding the relation between the constant values
in a configuration of multiple pipe segments and the constant values for
a reduced and equivalent configuration?

Chapter 7 will first describe a theorem from the article by A. van der Schaft[1].
It guarantees the uniqueness of all values in a resistive network when a specific set
of values is given. A similar conclusion will be drawn for the gas pipe networks,
although with different methods than the ones used in the article. Additionally,
this chapter contains information about the algorithm that was created in order to
apply the theorem to practical cases via numerical methods. Eventually, this will
also be expanded beyond just the pipe segments and also include potential valves
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and compressors. The result of this is a toolbox that can be used to find all values
in a gas transport network. This chapter contains the information for the third
research question:

How can the uniqueness theorem be applied for practical gas transport
cases with the help of numerical methods?

Finally, chapter 8 discusses the conclusions that can be drawn from the research
topics. Afterwards, chapter 9 has some words about the potential inaccuracies that
could exist with the used methods and what could have been done better.
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6 2. Network Properties & Definitions

I n this chapter, some of the basics of networks will be discussed. This will start
with some definitions for graphs and some of the important variables that will be

used in the report. After that comes an explanation of incidence matrix, which is
eventually followed by theory on Kirchoff’s Circuit Laws.

2.1. Definitions

T he first step is to give some recurring basic definitions and notations regarding
networks. Let G = (V,A) be the directed graph used to represent a network.

V is the set of m vertices, whereas A defines a set of n arcs. Each arc serves as the
connection between two vertices and will represent a particular component in the
network. Vertices will be notated as vi, whereas an arc in the direction from vi to
vj will usually be written as ai,j . An arc with reverse orientation is aj,i. Meanwhile,
a self-loop on vertex vi is notated as ai,i, but will see little to no use in this report.
A figure of the representation of a connection is shown in figure 2.1.

vi vj
ai,j

Figure 2.1: Arc within a graph.

A term that will be recurring in this report is the boundary vertex. Within a
subgraph, such a vertex is one that has external influence from the rest of the full
graph. The vector containing the labels of boundary vertices is notated as b. The
actual set of boundary sets uses the notation VB and the remaining internal vertices
uses VI .

The vertices and arcs in the graph will also have some properties defined on them.
In electric networks, the electric potentials are written as ψi, i ∈ {1, . . . ,m} and
will be defined on the corresponding vertices with the same i. The loss in potential
is known as the voltage, which is defined on an arc from vi to vj with the notation
Ui,j = ψi − ψj . Also defined on arcs are the internal currents, which are notated as
Ii,j on arc ai,j . Another current that exists on some vertices within a subgraph is
the external one, which is the current that is going into the network via boundary
vertices. If vertex vi has such a current, it will be notated as IEi. Note that only
the i changes depending on the vertex. If any of the currents is negative, it means
that it is going in the direction opposite of the arc orientation. Additionally, when
vertices vi and vj are not connected via a single arc, the current Ii,j = 0. IEi is
defined as equal to zero when the corresponding vector vi has no external influence.

Lastly, the arcs usually also contain a certain constant. These have the property
that they are the same positive number, regardless of the arc orientation. In other
words, a constant with index i, j has the same value as the one with index j, i. In a
resistor network for example, the resistance is defined on an arc ai,j and is notated
as Ri,j = Rj,i. The situation is visualised in figure 2.2.
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ψi ψj
Ri,j , Ii,j

Figure 2.2: Arc within an electric network which contains a resistor component.

As for gas transport networks, pressures take the role of electric potentials.
Pressure pi is defined on the corresponding vertex vi, i ∈ {1, . . . ,m}. The pressure
loss is written as ∆pi,j = pi − pj and is defined on the arc between vi and vj . The
volumetric flow is also defined for arcs and is written as Qi,j on arc ai,j . Similar to
electric networks, there also exists an external flow aside from this internal flow. Like
the external currents, the external flow is defined on boundary vertices and is dented
by QEi. Once again, only the i changes in this notation. Any negative volumetric
flow implies that it is going in the direction opposite of the arc orientation.

Depending on the type of component that the arc represents, there is usually
also a positive constant defined on it, just like the resistance in electric networks.
The constants for the respective components will be discussed in detail in chapters
3, 4 and 5. The symmetry property also applies for these: a constant with index i, j
is equal to one with index j, i. An arc from a gas transport network is visualised in
figure 2.3. The constant that is used here as an example is αi,j .

pi pj
αi,j , Qi,j

Figure 2.3: Arc within an electric network which contains a resistor component.

2.2. Graph Representations

I n order to perform numerical analysis of graphs, there needs to be a way to
implement it in the computer. Fortunately, there are several options for this. For

this report though, two methods will be detailed. The first of these is by separating
the source and terminal vertices of arcs. All the labels/indices of the source vertices
are put in a vector s, whereas the ones for the terminal vertices are in a vector t.
Naturally, it is important to be consistent with the arc order in these vectors. The
jth elements of both s and t need to be used for the same arc.

To show an example, suppose that the directed graph consists of vertices V =
{v1, v2, v3, v4} and arcs A = {a1,2, a1,3, a2,3, a2,4, a3,4, a4,1}. The situation is visu-
alised in figure 2.4.
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v1

v2

v3

v4

Figure 2.4: Example of a directed graph with 4 vertices and 6 arcs.

With this set of arcs, the resulting vectors for source and terminal vertices are
s = (1, 1, 2, 2, 3, 4)> and t = (2, 3, 3, 4, 4, 1)>. This will eventually the method used
to define graphs in the computer.

The second method for describing graphs is with the use of incidence matrices
in a similar way as done in the article by A. van der Schaft[1], usually notated as a
matrix B. It is an m×n matrix constructed in such a way that each row represents
a vertex, while each column represents an arc. Also suppose for this explanation
that they are labelled 1, . . . ,m and 1, . . . , n respectively. All matrix elements are
either −1, 0 or 1, depending on the role of the vertices on the arcs:

• If vertex i is a source vertex for arc j, then element Bi,j = −1;

• If vertex i is not connected to arc j, then element Bi,j = 0;

• If vertex i is a terminal vertex for arc j, then element Bi,j = 1.

As an example, representing the graph in figure 2.4 this way gives matrix 2.1.
The rows represent v1, v2, v3 and v4 in that order and the columns use the same
arc order as the s and t vectors.

B =


−1 −1 0 0 0 1
1 0 −1 −1 0 0
0 1 1 0 −1 0
0 0 0 1 1 −1

 (2.1)

The incidence matrix has a couple of convenient properties. First, because every
arc is connected to only one source and one terminal vertex, each column of B has
at most one −1 and one 1 element. This also means that the sum of all rows gives
a row that exclusively contains 0 elements.

An application of the incidence matrix is that it can be used to create a vector
with pressure losses. Suppose that p is a vector of length m containing the pressures
on all vertices in the graph. The product −B>p then gives the desired vector with
pressure losses. Note that the ordering of the pressures in p need to correspond
with the row order.

This will once again be shown with the example in figure 2.4 and its incidence
matrix B as defined above and pressure vector p = (p1, p2, p3, p4)>. −B>p is
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expanded in equation 2.2. The last vector has all the pressure losses on each arc
and will also be notated as ∆p.

−B>p =


1 −1 0 0
1 0 −1 0
0 1 −1 0
0 1 0 −1
0 0 1 −1
−1 0 0 1



p1
p2
p3
p4

 =


p1 − p2
p1 − p3
p2 − p3
p2 − p4
p3 − p4
p4 − p1

 =


∆p1,2
∆p1,3
∆p2,3
∆p2,4
∆p3,4
∆p4,1

 (2.2)

Of course, the same applies for electric networks, where −B>ψ gives the vector
U of voltages over each arc.

Another property of the incidence matrix is that each row shows how many arcs
are oriented towards and away from the corresponding vertices:

• The amount of −1 entries in a single row shows how many arcs are oriented
away from the vertex;

• The amount of 1 entries in a single row shows how many arcs are oriented
towards the vertex.

Later on, it will be important to separate B into two parts. One part contains
the rows of B that correspond with boundary vertices while the other takes the rows
that correspond with internal vertices. The former will be called BB and the latter
BI . For example, if v1 and v4 are boundary vertices in figure 2.4, then BB and BI
are the matrices 2.3 and 2.4 respectively.

BB =
[
−1 −1 0 0 0 1
0 0 0 1 1 −1

]
(2.3)

BI =
[
1 0 −1 −1 0 0
0 1 1 0 −1 0

]
(2.4)

Now recall that −B>ψ and −B>p respectively give the vectors with voltages U
and pressure losses ∆p. These equations can be separated into internal and external
(boundary) parts, as shown in expressions 2.5 and 2.6.

U = −B>ψ = −B>I ψI −B>BψB (2.5)

∆p = −B>p = −B>I pI −B>BpB (2.6)

Here, ψI and pI are respectively the vectors with potentials and pressures on
the internal vertices. Meanwhile, ψB and pB represent the vectors with potentials
and pressures on the boundary vertices.

For the earlier example with pressures, this is shown with expression 2.7
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B>I pI +B>BpB =


1 0
0 1
−1 1
−1 0
0 −1
0 0


[
p2
p3

]
+


−1 0
−1 0
0 0
0 1
0 1
1 −1


[
p1
p4

]

=


p2
p3

p3 − p2
−p2
−p3

0

+


−p1
−p1

0
p4
p4

p1 − p4

 =


p2 − p1
p3 − p1
p3 − p2
p4 − p2
p4 − p3
p1 − p4


= −∆p = B>p

(2.7)

2.3. Kirchoff’s Circuit Laws

K irchoff’s Circuit Laws are two important theorems for electric networks. These
are known as the Current Law and the Voltage Law[3].

First, for the Current Law, consider a vertex vj ∈ V . The set A+
j contains all

the arcs oriented towards vj , whereas A−j contains all arcs oriented away from vj .
All arcs in A+

j are of the form ai,j and the ones in A−j are of the form aj,i. Only
the i is variable depending on the labelling used in the sets of arcs. Similarly, I+

j

represents the total current going into vj and I−j represents the total current exiting
vj . Naturally, I+

j corresponds to A+
j and I−j to A−j . The Current Law then states

that I+
j = I−j or equivalently I+

j − I
−
j = 0.

Now remember that a current exiting a vertex is the same as a negative current
entering the vertex. Therefore, consider all currents to be their variant which enters
vj and let them be labelled as Ik, k ∈ {1, . . . ,#A+

j +#A−j }. The total current going
into vj (including negative currents) is the sum of all individual Ik values and is,
according to the Current Law, equal to zero. This rule is shown in equation 2.8.

#A+
j

+#A−
j∑

k=1
Ik = 0. (2.8)

Since this rule says that the total ingoing current for any vertex is equal to zero,
the two properties in system 2.9 will follow.

BBI = −IE
BII = 0

(2.9)
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Here, I is the vector of size n containing the currents on each arc. The same
order as the one for the columns of B is used. Meanwhile, IE is the vector of size
m with its entries being the external ingoing flows on each boundary vertex.

Kirchoff’s Current Law also applies to gas transport networks, in which the
volumetric flows take the role of the currents. Therefore, let vj , A+

j and A−j be the
same as in the electric network. However, I+

j , I
−
j and Ik now change to Q+

j , Q
−
j

and Qk in this case, but the process remains the same. Eventually, when the rule
is applied for the gas transport network, equation 2.10 follows.

#A+
j

+#A−
j∑

k=1
Qk = 0. (2.10)

Translating property 2.9 to the gas transport case requires a vector Q containing
the volumetric flows. System of equations 2.11 then follows. This time, QE is the
vector with all external flows on the vertices.

BBQ = −QE

BIQ = 0
(2.11)

Next, the Voltage Law states that the sum of all voltages in a cycle is equal to
zero. It is important that all arcs are all oriented in a single direction (clockwise/counter-
clockwise). Just like before, it is easily possible to reverse arcs if necessary. There-
fore, suppose that the cycle contains vertices labelled as {v1, . . . , vk} and arcs
{a1,2, a2,3, . . . , ak−1,k, ak,1}. The voltages in this cycle are {V1,2, V2,3, . . . , Vk−1,k, Vk,1}
and the total sum of these is Vk,1 +

∑k−1
i=1 Vi,i+1. Expanding the voltages in terms

of electric potentials (Vi,j = ψi − ψj) gives equation 2.12.

Vk,1 +
k−1∑
i=1

Vi,i+1 = ψk − ψ1 +
k−1∑
i=1

(ψi − ψi+1) (2.12)

Expanding the sum results in expression 2.13.

(ψk − ψ1) + (ψ1 − ψ2) + · · ·+ (ψk−1 − ψk) (2.13)
Here, the brackets can be moved in such a way that expression 2.14 remains.

Also note that the first ψk term is moved to the back.

(−ψ1 + ψ1) + (−ψ2 + ψ2) + · · ·+ (−ψk + ψk) =
k∑
i=1

(−ψi + ψi) (2.14)

Each part between brackets makes zero and thus the total sum is equal to zero.
This shows the correctness of Kirchoff’s Voltage Law.

Just like for the Current Law, the Voltage Law also has an application for gas
transport networks. The only difference this time is that the pressures on the vertices
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take the role of the electric potentials. Aside from that, the method is exactly the
same, with the eventual result shown in expression 2.15.

(pk − p1) + (p1 − p2) + · · ·+ (pk−1 − pk) =
k∑
i=1

(−pi + pi) = 0 (2.15)
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14 3. Pipe Segments

I n this chapter, the most basic component of a gas pipe network shall be explored,
namely the pipe segment. Its function is to simply move the substance or gas

through the network. As a result of resistance on the inside of the pipe, the flow
within it will usually decrease with increasing distance. Additionally, a pressure
loss exists between the two end-points of the pipe. Some pipes are designed to be
narrower or wider in order to allow less or more flow respectively. However, in this
research it will be assumed that all pipes are uniform over the entire length.

3.1. Electric Analogy

I n an electric network, the pipe segment is analogous to a resistor or a wire, the
latter of which can be considered a resistor component with little or no resistance.

The corresponding equation that relates voltage to current is the well-known Ohm’s
Law[4], shown in equation 3.1.

U = ψi − ψj = RI (3.1)
The variables in the Ohm’s Law equation are defined as follows, with the symbol

between brackets being the unit of the variable:

• U = ψi − ψj [V ] is the difference in potential between the two end points,
more commonly known as the voltage;

• R [Ω] is the resistance of the resistor or wire, usually a constant in simple
electricity networks;

• I [A] is the current on the resistor or wire.

A similar equation of this form will be used for a pipe segment in a gas pipe
network.

3.2. Equations

D epending on the source material, two very similar equations are generally used
in order to describe the relation between the pressure loss and the volumetric

flow on an arc. The first one is more often referred to in literature and is known
as the Darcy-Weisbach equation[5]. The second equation is a variant of it that uses
the difference between squared pressures instead of a regular pressure loss[2]. Both
equations also use a number of variables that are considered to be constant for the
sake of simplicity.

3.2.1. Darcy-Wesibach Equation
The Darcy-Weisbach equation[5] is usually used to describe the relation between the
pressure loss and the flow velocity. This is shown below in equation 3.2.

∆p = fLρ

2d V 2 (3.2)

The variables in the Darcy-Weisbach equation are defined as follows:
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• ∆p = pi−pj [Pa = kg.m−1.s−1] is the total pressure loss on the pipe segment
in the direction of arc ai,j ;

• f is the dimensionless Darcy friction factor;

• L [m] is the length of the pipe segment;

• ρ [kg.m−3] is the density of the substance being moved through the pipe
segment;

• d [m] is the hydraulic diameter of the pipe;

• V [m.s−1] is the average flow velocity within the pipe.

However, in order to be able to properly apply Kirchoff’s Law, the flow velocity
needs to be converted to volumetric flow. This can be done by using the fact that
the volumetric flow Q [m3.s−1] is equal to the product of the area of the cross-
section A [m2] and the average flow velocity, i.e. Q = AV or alternatively V = Q

A .
Furthermore, a perfectly cylindrical pipe segment will be assumed in every case,
which means that the area can be expanded as A = πr2 = 1

4πd
2. Here, r [m] is the

radius and half of the diameter. Therefore, V = 4Q
d2π and thus the Darcy-Weisbach

can be converted to equation 3.3.

∆p = fLρ

2d

(
4Q
d2π

)2
= fLρ

2d
16Q2

d4π2 = 8fLρ
d5π2 Q

2 (3.3)

It is reasonable to assume that the Darcy friction factor, pipe length, density and
diameter do not change over time, so the fraction 8fLρ

d5π2 will be noted as a positive
constant α [kg.m−7]. Hence, the result will be equation 3.4.

∆p = αQ2 (3.4)

Lastly, it should be noted that the possibility of a negative pressure loss with
resulting negative volumetric flow is ignored in this equation. In order to incorporate
this possibility, the factor Q2 will be replaced with Q|Q|. This way, if Q is negative,
the right-hand side will be −αQ2, which corresponds with a negative pressure loss
or a pressure increase in the direction of the arc.

In conclusion, the Darcy-Weisbach equation that will be used for the rest of this
report will be equation 3.5.

∆p = pi − pj = αQ|Q| (3.5)

As an example, consider an arc ai,j with a pipe segment function. Let it have a
constant α = 2 and let the pressures be pi = 28 and pj = 10. Using equation 3.5
gives that Q|Q| = 28−10

2 = 9, so Q = 3.
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3.2.2. Squared Pressures Variant
A slightly more complicated variant of the Darcy-Weisbach equation contains a
difference between squared pressures on the left-hand side, instead of a regular
pressure loss[2]. The form of this variant is shown in equation 3.6.

p2
i − p2

j = α̂Q|Q| (3.6)

As can be seen, the constant in this equation is denoted by α̂. This is done to
indicate that it is different from the constant used in the Darcy-Weisbach equation:
Due to the different unit on the left hand side (Pa2 instead of Pa), the one for α̂
needs to change as well. In order to find this unit, first write down the units of
the known variables. p2

i − p2
j is expressed in (kg.m−1.s−1)2, whereas Q|Q| is still

expressed in (m3.s−1)2. The objective is to find the missing part in equation 3.7.

(kg.m−1.s−1)2 = . . . · (m3.s−1)2 (3.7)

Now the solution is to give the right-hand side an extra factor of (kg.m−4)2 =
kg2.m−8 in order to make the equation valid, meaning that this would be the proper
unit for the constant α̂.

(kg.m−1.s−1)2 = (kg.m−4)2 · (m3.s−1)2 (3.8)
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T he next component to be observed is the valve. Two types will be discussed,
namely the regular valve and the check valve. In the end of the chapter, the

case of a mixing station will be converted to a construction that uses valves.

4.1. Regular Valves

F irst off, the function of the regular valve is to allow any positive or negative
flow whenever it is opened or allow no flow if it is closed. In this research, the

situation of a partially opened valve is ignored. In other words: this component is
completely binary.

4.1.1. Electric Analogy
The regular valve has the same function in a gas pipe network as an on/off switch in
an electric network. The latter also allows any current (flow) only when the switch
is on (open) and nothing when it is off (closed).

4.1.2. Equations
Before finding an equation that properly describes the behaviour of regular valves,
the individual open and closed cases need to be discussed.

Firstly, consider the case that the valve is closed. This simply means that no
substance is being moved from one side to the other. In other words: the flow on the
arc representing the valve is equal to zero. This is true for every possible pressure
loss. Therefore, the equation for the opened valve becomes equation 4.1.

Q = 0 (4.1)

Secondly, consider the case that the valve is opened. Now any amount of sub-
stance can go to the other side of the valve and be moved in the opposite direction.
Therefore, Q ∈ R applies. Additionally, since it is assumed that the valve covers no
significant distance in the network to cause a pressure loss, equation 4.2 is obtained
for an opened valve.

∆p = 0 (4.2)

In the next step, a binary constant β ∈ {0, 1} is introduced. β = 0 will indicate
a closed valve, while β = 1 indicates an opened one. Since an equation that follows
either equation 4.1 or 4.2 is desired, the result will be equation 4.3.

β∆p+ (1− β)Q = 0 (4.3)

Notice that if β = 0, the first β∆p term becomes zero and all that remains is
(1− 0) ·Q = Q = 0. On the other hand, if β = 1, the second term is removed and
1 ·∆p = ∆p = 0 remains.

It should be noted that for a network containing regular valves with a β that
remains constant, there exists an equivalent network in which all such valves are
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removed. If an arc a1,2 in the graph contains a closed valve, simply delete the arc
to remove all flow between the two vertices v1 and v2. Otherwise, if a1,2 contains
an opened valve, the solution is to delete the arc and merge vertices v1 and v2 into
a single vertex with a single pressure. Therefore, no pressure loss exists.

4.2. Check Valves

T he next type is the check valve[6]. Its function is to only allow flow in a single
direction. It serves as a combination of the on and off situations.

4.2.1. Electric Analogy
In electric networks, the check valve can be considered to be analogous to a diode[7].
Just like a check valve, this component also works in such a way that current only
goes one way on the arc in the defined direction of the diode. Current in the direction
opposite of the arc orientation is not possible. Therefore, the current is equal to
zero whenever the voltage is negative, i.e. the potential on the end of the arc is
lower than the one at the start.

4.2.2. Equations
Going by the requirements for open and closed check valves described above, two
sets can be defined. The closed case is active whenever the flow would go backwards
in a regular pipe segment, i.e. when pi < pj for an arc ai,j or ∆p < 0. Q would
then take a value 0. The set covering this case is shown in 4.4.

{(∆p,Q) : ∆p < 0, Q = 0} (4.4)

Meanwhile, the open case is active when there is no pressure loss due to the
assumption that the valve covers no distance. The valve being opened also implies
that any flow can move through it, so ∆p is equal to zero, regardless of the value of
Q. The set covering this case is shown in 4.5.

{(∆p,Q) : ∆p = 0, Q > 0} (4.5)

As for what happens when ∆p > 0, this is a case without real application under
the assumptions. The value of Q will not be defined, although it could perhaps be
argued that due to the extra influence from an impossible pressure loss, the flow
would be infinitely large.

All in all, the goal is to find an equation that closely covers the unity 4.6 of the
described sets.

{(∆p,Q) : ∆p < 0, Q = 0} ∪ {(∆p,Q) : ∆p = 0, Q > 0} (4.6)

For diodes, the Shockley diode equation 4.7 is generally used[8]. It shows an ex-
ponential relation between current and voltage. In addition to the usual definitions,
IS represents the reverse bias saturation, r the ideality factor and UT the thermal
voltage.
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I = IS(e
U

rUT − 1) (4.7)

Under the assumption that IS , r and UT are constant, equation 4.7 can be
simplified to equation 4.8, with constants C1 = IS and C2 = e−rUT .

I = C1(CU2 − 1) (4.8)

Note that in this form, I = 0 only when U = 0 and not when U ≤ 0. Additionally,
I is defined for positive voltages, but it quickly gets large due to the exponential
nature of the equation.

A similar equation has been sought for a check valve. However, it was eventually
decided that euqation 4.9 would be used.

Q = (1 + sgn(∆p))β∆p (4.9)

It works in such a way that two simple linear parts exist, depending on whether
∆p is positive or negative. If ∆p < 0, then its sign sgn(∆p) is equal to −1. This
results in the flow being equal to Q = (1 − 1)β∆p = 0, which means that set 4.4
is covered. Alternatively, when ∆p = 0, the flow also becomes Q = 0. Lastly, if
∆p > 0, then sgn(∆p) = 1 and the flow is equal to (1 + 1)β∆p = 2β∆p.

Because of this, the constant β will be set to a very large number in order to
approach the limit case, which covers set 4.5 as much as possible. It also incorporates
a small pressure loss if a positive flow is being moved through the valve, adding to
the more realistic imperfection.

Some more complicated equations have been sought that would perfectly cover
the union of sets 4.4 and 4.5. Most of these involved very large expressions that
use the sgn and sgn2 functions a lot. Often, if these were turned into a function of
variables ∆p and Q by putting everything to one side and setting it equal to the
function value, the use of sgn would cause the function to be discontinuous in some
places. This caused problems when using them for the numerical analysis, so it was
decided not to used these. However, the best candidate for such a function that
would be fully continuous when put against a third variable is shown in equation
4.10.

f(∆p,Q) = (∆p)2Q2(sgn(Q)− sgn(∆p)) + (∆p)2(−sgn(∆p)− 1) +Q2(sgn(Q)− 1)
(4.10)

The roots of this function are precisely the desired union of 4.4 and 4.5. It is
constructed as the sum of two functions each with a special property. The first part,
(∆p)2Q2(sgn(Q) − sgn(∆p)) is equal to zero on every (∆p,Q) where at least one
of the two equals zero or both are either positive or negative at the same time, i.e.
in quadrants I and III. Secondly, (∆p)2(−sgn(∆p) − 1) + Q2(sgn(Q) − 1) is equal
to zero only when ∆p ≤ 0 and Q ≥ 0 positive. This is particularly important, as
there is no point symmetry in the origin and neither is there symmetry on one of
the axes. As a result, the function has no roots on the positive part of the ∆p axis
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and the negative part of the Q axis. Additionally, there is a strong decline outside
of quadrant II, meaning that the sum together with the first part remains negative
inside quadrant IV and does not cause any new potential roots.

In the end though, it was decided that equation 4.9 would be used for further
computations. This was because it gave slightly better results later on during the
numerical analysis than using the roots of function 4.10. The latter also resulted in
more iterations being required than when the former equation would be used.

4.3. Mixing Station

A n often recurring network component is the mixing station. This is a point where
substances from k separate pipes are mixed together into a new substance that

will get transported further into the network. Additionally, it is important that the
mixed substance can not be transported backwards into the two pipes. Therefore,
consider k + 1 arcs with a single vertex in the middle as shown in figure 4.1.

v1

v2

MIX v3

Figure 4.1: Mixing station setup.

Each arc represents a pipe segment, whereas the vertex is a mixing station.
Since all of the network components in this approach are represented by arcs in
a graph and thus not by vertices, a way needs to be found to convert this vertex
to a construction suitable for the approach in this research. Luckily, this can be
achieved with the use of the aforementioned check valves. As mentioned before, it is
important that the mixed substance does not move backwards. Therefore, the arcs
for separate pipe segments from which the original two substances came from are
each split in two arcs. The first arc is identical to the original arc. The second arc
however has the function of a check valve in the direction of the original arc in order
to keep the substance from moving the opposite way. The arcs containing the check
valves all come together in a single vertex. This construction is visualised in figure
4.2. The black arcs indicate the pipe segments and the red ones the check valves.
The alternative setup follows all the requirements for a mixing station behaviour:
multiple paths still come together in a single vertex and no backwards flow is possible
from the middle vertex into those paths due to the valves. In conclusion, this setup
allows for computations with mixing stations with the methods that only define
segments on arcs and not vertices.
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v1

v2

v3

v4

v5

v6

Figure 4.2: Alternative mixing station setup.
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T he last type of component to be discussed is the compressor[9]. After having
elaborated on the electric analogy, two types of compressor will be looked at.

These are distinguished by the way the pressure is regulated. The first one has the
pressure increased by a fixed amount, whereas the second one puts the pressure on
the end point of the arc to a fixed value.

5.1. Electric Analogy

I n electric networks, the analogy to a compressor is a battery. Similarly to what
a compressor does with a pressure increase, the battery increases the electric

potential. Generally speaking, a battery works in such a way that the difference in
potential is constant instead of the endpoint having a fixed potential. Therefore, it
is more closely related to the fixed pressure increase compressor.

As an example, if the arc is defined in the direction from v1 to v2 with potentials
ψ1 and ψ2, then a 12V battery implies that ψ2 − ψ1 = 12.

5.2. Fixed Pressure Increase

A compressor with a fixed pressure increase works similarly to the usual battery
in the electric network.

Once again, consider an arc with defined direction from v1 to v2. The pressures
on these vertices are respectively p1 and p2. The difference between these pressures
is considered to be a constant.

As a result, the corresponding equation becomes very simple, namely equation
5.1. The γ just represents the value used for the fixed increase.

p2 − p1 = −∆p = γ (5.1)

5.3. Increase To Fixed Pressure

A s mentioned, the alternative is a compressor working in such a way that it
changes the pressure at the end point to a fixed value. In other words, if the

same situation is used as before, p2 will be equal to a constant, regardless of what
the value of p1 is.

The resulting equation 5.2 becomes once again very straight-forward. This time,
the fixed pressure is represented by γ̂.

p2 = γ̂ (5.2)
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I n this chapter, the methods used to reduce a construction of a set of vertices
and arcs will be discussed. In particular, it concerns the series and parallel con-

nections. Each connection will first have the resistor case reduced, followed by a
reduction of the gas pipe case, based on the former.

Of course, for resistor networks, it is assumed for this chapter that each arc
ai,i+1, i ∈ {1, . . . , n − 1} contains a resistor with resistance Ri,i+1. On the vertices
on each end of the arc, there exists a potential ψj , j ∈ {1, n}. The voltage Vi,i+1
is the difference in potential, i.e. ψi − ψi−1. The current Ii,i+1 on the arc can
be calculated by using the aforementioned Ohm’s Law (equation 3.1). The other
important equation used here originates from Kirchoff’s Law.

6.1. Series Connection

T he first structure to be reduced is the series connection[10], which will be defined
as follows. Consider a set of arcs A = {a1,2, . . . , an−1,n} which respectively

serve as the connections between the vertices {(v1, v2), . . . , (vn−1, vn)}. Additionally,
external influence on the structure is only allowed on the boundary vertices v1 and
vn. Therefore, all internal vertices v2, . . . , vn−1 have degree 2. An example of a
series connection with two arcs is shown in figure 6.1.

v1 v2 v3

Figure 6.1: Series connection with two arcs.

Reducing the series connection to a single arc and two vertices in the electricity
networks is done by following the method described below.

Given are the equations for Ohm’s Law (system of equations 6.1) and Kirchoff’s
Law (equations 6.2).

ψ1 − ψ2 = R1,2I1,2

ψ2 − ψ3 = R2,3I2,3

...
ψn−1 − ψn = Rn−1,nIn−1,n

(6.1)

Iin = I1,2 = I2,3 = . . . = In−1,n = Iout (6.2)

The reduced series connection would have a corresponding Ohm’s Law equation
of the form shown in equation 6.3.

ψ1 − ψn = R1,nI1,n (6.3)

This can be achieved by taking the sum of all equations in system 6.1 followed
by the use of Kirchoff’s Law. First, taking the sum results in equation 6.4.
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n−1∑
i=1

(ψi − ψi+1) = ψ1 − ψn =
n−1∑
i=1

Ri,jIi,j (6.4)

Kirchoff’s Law states that Iin = I1,n = Iout, which implies that every current
mentioned in equations 6.2 is also equal to I1,n. Applying this rule gives equation
6.5, which is in the form from equation 6.3.

ψ1 − ψn =
(
n−1∑
i=1

Ri,j

)
I1,n (6.5)

The result will be that the resistor of a reduced series connection has a resistance
equal to the sum of all individual resistances (equation 6.6).

R1,n =
n−1∑
i=1

Ri,j (6.6)

In the context of gas pipe segments, an almost identical method is used to
compute the constant value α1,n for a Darcy-Weisbach equation corresponding to a
series connection with constant values α1,2, α2,3, . . . , αn−1,n.

First, the equations for Ohm’s Law in system 6.1 are replaced with the Darcy-
Weisbach equations for the n − 1 arcs. This step is shown in system of equations
6.7.

p1 − p2 = α1,2Q1,2|Q1,2|
p2 − p3 = α2,3Q2,3|Q2,3|

...
pn−1 − pn = αn−1,nQn−1,n|Qn−1,n|

(6.7)

Additionally, Kirchoff’s Law once again gives equation 6.8.

Qin = Q1,2 = Q2,3 = . . . = Qn−1,n = Qout (6.8)

This time, an equation of form 6.9 is desired.

p1 − pn = α1,nQ1,n|Q1,n| (6.9)

To obtain this, take the sum of all individual Darcy-Weisbach equations as shown
in equation 6.10.

n−1∑
i=1

(pi − pi+1) = p1 − pn =
n−1∑
i=1

αi,jQi,j |Qi,j | (6.10)

Reducing this then returns equation 6.11, which has the right form as described
above with the sum on the place of α1,n.
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p1 − pn =
(
n−1∑
i=1

αi,j

)
Q1,n|Q1,n| (6.11)

Therefore, the conclusion is that C1,n has the following relation to the individual
α-values in the series connection.

α1,n =
n−1∑
i=1

αi,j (6.12)

If, instead of the Darcy-Weisbach equation, the alternative equation with squared
pressures is used, the only change will be that every pj , j ∈ {1, . . . , n} is replaced
with a p2

j , j ∈ {1, . . . , n}. This changes nothing to the result, since
∑n−1
i=1 (p2

i −p2
i+1)

is still equal to p2
1 − p2

n, just like how
∑n−1
i=1 (pi − pi+1) equals p1 − pn.

6.1.1. Example
As an example with Darcy-Weisbach equation (the variant is almost identical),
consider two pipe segments a1,2 and a2,3 placed in a series connection. Let the first
one have a constant value α1,2 = 2 and the second one with α2,3 = 1. In the reduced
series connection, the constant should be α1,3 = 3. The situation is visualised in
figure 6.2. To show this, suppose that the flow through the connection is Q = 2.
The pressure loss from p1 to p2 should be α1,2Q

2 = 2 · 22 = 8. Meanwhile, the
pressure loss from p2 to p3 should be α2,3Q

2 = 1 · 22 = 4. The result of α1,3 = 3
would imply that the total pressure loss from p1 to p3 is 3 · 22 = 12. This is correct,
because the sum of the two pressure losses gives the total loss and is indeed equal
to 8 + 4 = 12.

v1 v2 v3

v1 v3

α1,2 = 2 α2,3 = 1

α1,3 = 3

Figure 6.2: Example of a series connection.

6.2. Parallel Connection

L ess straight-forward is the reduction of the parallel connection[11]. For this
structure, let A = {a1, . . . , an} be the set of parallel arcs that connect vertices

v1 and v2. An example of a parallel connection with two arcs is shown in figure 6.3.

v1 v2

Figure 6.3: Parallel connection with two arcs.
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For resistor networks, each aj ∈ A has a corresponding resistance Rj and poten-
tials ψ1 and ψ2 together give a voltage U = ψ1 − ψ2. Naturally, the voltage is the
same on all parallel arcs. By applying Ohm’s Law, equations 6.13 are obtained for
all j ∈ {1, . . . , n}.

ψ1 − ψ2 = U = RjIj ⇔ Ij = U

Rj
(6.13)

The total current going from v1 to v2 is Iin = I1 +I2 + . . .+In = Iout, as a result
of Kirchoff’s Law. This is precisely the current that will exist on the single arc from
v1 to v2 in the reduced parallel connection. It will be defined as I = I1 +I2 +. . .+In.
The desired Ohm’s Law equation needs to be of the form in equation 6.14.

U = RI ⇔ I = U

R
(6.14)

Using both the definition of I and Ohm’s Law for the individual pipe segments
gives the result in equation 6.15. This is an equation of the desired form, in which
the sum is the resistance for the reduced parallel connection.

I =
n∑
j=1

Ij =
n∑
j=1

U

Rj
= U

n∑
j=1

1
Rj

(6.15)

Therefore, R is related to the individual resistances R1, . . . , Rn according to
expression 6.16.

1
R

=
n∑
j=1

1
Rj

(6.16)

Before going further into the methods for finding the result for the gas pipe net-
works, the Q|Q| factor in the Darcy-Weisbach equation needs to be discussed. Just
like in the resistor network case, the flow (current) Q needs to be expressed in terms
of ∆p, while only the opposite is known at the moment. Therefore, consider the
equation y = x|x|. Expressing x in terms of y has to be done with x = sgn(y)

√
|y|,

as shown in expression 6.17. The function sgn(y) gives the sign of y. It is equal to
−1 if y is negative, 1 if it is positive or 0 only if it is precisely equal to zero.

x|x| = sgn(y)
√
|y||sgn(y)

√
|y|| = sgn(y)

√
|y| · 1 ·

√
|y| = sgn(y)|y| = y (6.17)

This is then applied to the Darcy-Weisbach equation with Q taking the role of
x and ∆p

α taking the role of y. The result is shown in expression 6.18. As per
definition, α is positive, so sgn(α) = 1 and thus sgn(∆p

αj
) = sgn(∆p).

p1 − p2 = ∆p = αjQj |Qj | ⇔ Qj |Qj | =
∆p
αj
⇔

⇔ Qj = sgn(∆p
αj

)

√∣∣∣∣∆pαj
∣∣∣∣ = sgn(∆p)

√
|∆p|
αj

(6.18)
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This time, the desired equation has the form shown in equation 6.19.

p1 − p2 = ∆p = αQ|Q| ⇔ Q|Q| = ∆p
α

(6.19)

Next, equation 6.20 shows the application of Kirchoff’s Law and substitution of
the expression for the individual Qj terms from equation 6.18.

Q =
n∑
j=1

Qj =
n∑
j=1

sgn(∆p)

√
|∆p|
αj

= sgn(∆p)
√
|∆p|

n∑
j=1

1
√
αj

(6.20)

Substituting this last expression in Q|Q| gives equation 6.21.

Q|Q| =

sgn(∆p)
√
|∆p|

n∑
j=1

1
√
αj

∣∣∣∣∣∣sgn(∆p)
√
|∆p|

n∑
j=1

1
√
αj

∣∣∣∣∣∣ (6.21)

This is then further simplified in equation 6.22, the final result of which is of the
desired form.

Q|Q| = sgn(∆p)|∆p|

 n∑
j=1

1
√
αj

2

= ∆p

 n∑
j=1

1
√
αj

2

(6.22)

The squared part is completely in terms of αj values and clearly in the place of
1
α . Thus, the conclusion for the relation between the α from the reduced parallel
connection is that it relates to the individual αj values according to equation 6.23.

1
α

=

 n∑
j=1

1
√
αj

2

(6.23)

Alternatively, this relation can be written like equation 6.24.

1√
α

=
n∑
j=1

1
√
αj

(6.24)

Once again, the method used to find the relation for the squared pressure variant
is almost identical. The role of ∆p remains the same throughout the process, but it
is defined differently as p2

1 − p2
2.

6.2.1. Example
As an example, let p1 = 25, p2 = 9, α1 = 1, α2 = 4. Then the arcs have the
corresponding system of Darcy Weisbach equations as shown in 6.25

25− 9 = 16 = 1 ·Q1|Q1|
25− 9 = 16 = 4 ·Q2|Q2|

(6.25)
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This gives resulting volumetric flows Q1 = 4 and Q2 = 2. Therefore, the total
flow becomes Q = 6.

25− 9 = 16 = C · 6 · |6| = 36α (6.26)

This gives α = 4
9 . If equation 6.23 is correct, it should give the exact same value

for α. This is indeed the case, going by the steps in 6.27: 1
α = 9

4 implies that α = 4
9 .(

1√
1

+ 1√
4

)2
=
(

3
2

)2
= 9

4 = 1
α

(6.27)

The situation is visualised in figure 6.4.

v1 v2

v1 v2

α1 = 1

α2 = 4

α = 4
9

Figure 6.4: Example of a parallel connection.

6.3. ∆/Y Transforms

L astly, some words need to be said about the ∆ and Y constructions and the
transform between them[12], as quite a bit of time was spent on this topic.

In this research, a ∆ construction is a (sub)graph that consists of three vertices,
all with an arc between each other. Every vertex also has external influence. Ignor-
ing arc orientation, this construction is therefore a cycle of length 3 with external
influence on every vertex in the cycle. A visualisation of the construction is shown
in figure 6.5 Also note that if one vertex lacks external influence, the situation is
simply a parallel connection with a series connection on one of the two paths. This
can be reduced by combining the methods for series and parallel connections: first
reduce the series part to a single arc and follow up with reduction of the parallel
part.
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v1

v2

v3

Figure 6.5: ∆ configuration.

As for the Y construction, this is a (sub)graph consisting of four vertices. Three
of these are only connected to the fourth one. Additionally, the three vertices have
external influence, whereas the fourth one does not. This situation is shown in image
6.6.

v1

v2

v3

v4

Figure 6.6: Y configuration.

For resistor networks, it is possible to transform a ∆ construction into an equiv-
alent Y construction and vice versa[12]. This is done while exclusively using the
constant resistance values on each arc. To achieve this, consider three cases. In
each case, it is considered that one of the three vertices has no external input. The
resulting setups will each be reduced to a single resistor.

The method will be shown for the case that v3 has no external input

v1

v2

v3

R1,2 R2,3

R3,1

(a) ∆ configuration.

v1

v2

v3

v4R1

R2

R3

(b) Y configuration.

Figure 6.7: Figures for the case without external input on v3.
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Reducing both the parallel construction in 6.7a and the series connection in 6.7b
to a single arc should give the same resistance.

Using the two methods described in sections 6.1 and 6.2, the reduction of the
∆ situation results in an arc with resistance R = R1,2(R2,3+R3,1)

R1,2+R2,3+R3,1
. Meanwhile, the

method for reducing series connections gives R = R1 +R2 as the resulting resistance
in the Y construction and is set as equal to the previous equation. Repeating this
process for the other two cases with no external input on v1 and v2 gives the system
of three equations in 6.28.

R1,2(R2,3 +R3,1)
R1,2 +R2,3 +R3,1

= R1 +R2

R2,3(R3,1 +R1,2)
R1,2 +R2,3 +R3,1

= R2 +R3

R3,1(R1,2 +R2,3)
R1,2 +R2,3 +R3,1

= R3 +R1

(6.28)

This system of equations can conveniently be written by using vectors and a
matrix as is shown in equation 6.29.

1 1 0
0 1 1
1 0 1

R1
R2
R3

 =


R1,2(R2,3+R3,1)
R1,2+R2,3+R3,1
R2,3(R3,1+R1,2)
R1,2+R2,3+R3,1
R3,1(R1,2+R2,3)
R1,2+R2,3+R3,1

 (6.29)

In order to only have the vector (R1, R2, R3)> remaining on the left-hand side,
both sides need to be multiplied from the left with the inverse of the matrix. This
gives equation 6.30.

R1
R2
R3

 =

1 1 0
0 1 1
1 0 1

−1

R1,2(R2,3+R3,1)
R1,2+R2,3+R3,1
R2,3(R3,1+R1,2)
R1,2+R2,3+R3,1
R3,1(R1,2+R2,3)
R1,2+R2,3+R3,1

 (6.30)

The next step writes out the inverse of the matrix and takes the common factor
of 1

(R1,2+R2,3+R3,1) out of the vector. Additionally, the individual elements from the
vector on the right-hand side are expanded.

R1
R2
R3

 = 1
2

 1 −1 1
1 1 −1
−1 1 1

 1
(R1,2 +R2,3 +R3,1)

R1,2R2,3 +R3,1R1,2
R2,3R3,1 +R1,2R2,3
R3,1R1,2 +R2,3R3,1

 (6.31)

The matrix and vector on the right-hand side can be multiplied in order to give
the much simpler vector shown in equation 6.32.

 1 −1 1
1 1 −1
−1 1 1

R1,2R2,3 +R3,1R1,2
R2,3R3,1 +R1,2R2,3
R3,1R1,2 +R2,3R3,1

 =

2R3,1R1,2
2R1,2R2,3
2R2,3R3,1

 = 2

R3,1R1,2
R1,2R2,3
R2,3R3,1

 (6.32)
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Substituting this in equation 6.31 means that all of it can be reduced to equation
6.33. Note that the factors 1

2 and 2 have cancelled each other out.R1
R2
R3

 = 1
R1,2 +R2,3 +R3,1

R3,1R1,2
R1,2R2,3
R2,3R3,1

 (6.33)

Thus, the individual equations for R1, R2 and R3 are obtained.

R1 = R3,1R1,2

R1,2 +R2,3 +R3,1

R2 = R1,2R2,3

R1,2 +R2,3 +R3,1

R3 = R2,3R3,1

R1,2 +R2,3 +R3,1

(6.34)

Conversely, to transform a Y construction into a ∆ construction, start off by
writing out R1R2, R2R3 and R3R1 by using the expressions in system 6.34. The
result is shown in system 6.35.

R1R2 =
R2

1,2R2,3R3,1

(R1,2 +R2,3 +R3,1)2

R2R3 =
R1,2R

2
2,3R3,1

(R1,2 +R2,3 +R3,1)2

R1R2 =
R1,2R2,3R

2
3,1

(R1,2 +R2,3 +R3,1)2

(6.35)

Once again, add these three equations in order to get equation 6.36.

R1R2 +R2R3 +R3R1 =
R2

1,2R2,3R3,1 +R1,2R
2
2,3R3,1 +R1,2R2,3R

2
3,1

(R1,2 +R2,3 +R3,1)2 (6.36)

Isolate a factor R1,2R2,3R3,1 in the numerator to get equation 6.37.

R1R2 +R2R3 +R3R1 = R1,2R2,3R3,1(R1,2 +R2,3 +R3,1)
(R1,2 +R2,3 +R3,1)2 (6.37)

Now a factor R1,2+R2,3+R3,1 exists in both the numerator and the denominator,
so one can be removed from the fraction.

R1R2 +R2R3 +R3R1 = R1,2R2,3R3,1

R1,2 +R2,3 +R3,1
(6.38)

Conveniently, the right hand side of equation 6.38 is exactly the same as either
R1R2,3, R2R3,1 or R3R1,2. For this step, refer back to system 6.34. Therefore,
equation 6.39 follows.
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R1R2 +R2R3 +R3R1 = R1R2,3 = R2R3,1 = R3R1,2 (6.39)

From this, any of the three resistances in the ∆ configuration can be obtained
by dividing the correct equation by the resistance from the Y configuration, located
on the right hand side. The final results, together with system 6.34, are shown in
6.40. Now the resistances in the ∆ configuration are exclusively expressed in terms
of resistances in the Y configuration and vice versa.

R1 = R3,1R1,2

R1,2 +R2,3 +R3,1
R1,2 = R1R2 +R2R3 +R3R1

R3

R2 = R1,2R2,3

R1,2 +R2,3 +R3,1
R2,3 = R1R2 +R2R3 +R3R1

R1

R3 = R2,3R3,1

R1,2 +R2,3 +R3,1
R3,1 = R1R2 +R2R3 +R3R1

R2

(6.40)

During the research, it was attempted to find similar expressions in a gas pipe
network. Unfortunately though, this did not end up brining any useful results. It
was first attempted to follow the same method under the assumption that it was
allowed to consider the three similar cases. A result for the ∆ → Y transform was
found and would be equation 6.41.

α1
α2
α3

 = 1
2

 1 −1 1
1 1 −1
−1 1 1




α1,2(α2,3+α3,1)
(√α1,2+

√
α2,3+α3,1)2

α2,3(α3,1+α1,2)
(√α2,3+

√
α3,1+α1,2)2

α3,1(α1,2+α2,3)
(√α3,1+

√
α1,2+α2,3)2

 (6.41)

However the reverse transform resulted in expressions that were incredibly dif-
ficult to deal with. Additionally, the non-linearity of the relation between ∆p and
Q seemed to cause inconsistencies whenever the same α values, but different pres-
sures on the vertices or different volumetric flows on the arcs would be used. This
happened, even though the resulting α values in one configuration should be solely
dependent on the α values in the other configuration and not of any pressures or
flows.
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T his chapter focuses on the solvability of practical cases. It will start by discussing
a relevant theorem by A. van der Schaft[1] and translating it to the situation of a

gas pipe network. Afterwards, a programme that was created based on this theorem
will be detailed. It will also be explained how the algorithm can be expanded to
include more components. Lastly, the programme will be applied to an example of
large network.

7.1. Uniqueness Theorem

F or the case of a resistive network, A. van der Schaft discussed theorem 1 the
article mentioned before[1]. Note that the theorem as written here is worded

differently than in the article in order to stay consistent with the terminology. How-
ever, the implications remain the same. Also note that this is only a part of the full
theorem as written in the article.

Theorem 1 Let G = (V,A) be the graph representing a resistive network where
each arc follows Ohm’s Law and suppose that VI and VB are the subsets of V which
respectively contain the internal and boundary vertices. Additionally, let R be a
diagonal matrix containing the resistances on the arcs. Then for any vector ψB
containing the electric potentials on the boundary vertices in VB, there exist unique
vectors ψI , I and IE such that all the equations for Kirchoff’s Current Law and
Ohm’s Law corresponding to the network are satisfied.

As mentioned before, the vectorψI contains the electric potentials on the internal
vertices, I contains the internal currents and IE contains the external currents.
Also remember that the equations for Kirchoff’s Current Law are the ones shown in
system 7.1.

BBI = −IE
BII = 0

(7.1)

As for the system of equations of the form ψi−ψj = Ri,jIi,j according to Ohm’s
Law, those can be written with the use of the incidence matrix B, a diagonal matrix
R and the vectors ψ and I. The system is shown in this form in equation 7.2. Recall
for this from section 2.2 that B>ψ creates a vector U containing the voltages over
each arc.

−B>ψ = −B>I ψI −B>BψB = RI (7.2)

From systems 7.1 and 7.2, two properties can be obtained, those being equations
7.3 and 7.4. Observe that Ohm’s Law is rewritten to I = R−1U and substituted in
the equations for Kirchoff’s Current Law.

BI(R−1B>I ψI +R−1B>BψB) = 0 (7.3)

BB(R−1B>I ψI +R−1B>BψB) = −IE (7.4)



7.1. Uniqueness Theorem

7

39

The relation between IE and ψB can be obtained by finding the expression for ψI
from equation 7.3 and substituting it in equation 7.4. This process gives expression
7.5, followed by equation 7.6.

ψI = −(BIR−1B>I )−1BIR
−1B>BψB (7.5)

IE = BBR
−1(B>B (BIR−1B>I )−1BIGB

>
B +B>B )ψB (7.6)

The matrix LB = BBR
−1(B>B (BIR−1B>I )−1BIGB

>
B + B>B ) then serves as a

linear operator to relate the vectors IE and ψ to each other.

The uniqueness of the variables follows from equations 7.5, 7.6 and 7.2[1]. The
first two respectively give unique ψI and IE vectors when B, R and ψB are known.
Applying Ohm’s Law then results in a unique vector I if it is rewritten to I =
−R−1(B>I ψI +B>BψB) after ψB is found.

In the case of a gas pipe network, theorem 1 would be translated to theorem 2.

Theorem 2 Let G = (V,A) be the graph representing a gas pipe network where each
arc follows a Darcy-Weisbach equation and suppose that VI and VB are the subsets of
V which respectively contain the internal and boundary vertices. Additionally, let α
be a diagonal matrix containing the constant values for each pipe on the arcs. Then
for any vector pB containing the pressures on the boundary vertices in VB, there
exist unique vectors pI , Q and QE such that all the Kirchoff and Darcy-Weisbach
equations corresponding to the network are satisfied.

Unfortunately though, some problems arise when translating the equations to
their gas transport counterparts due to the non-linear nature of the Darcy-Weisbach
equation. System 7.1 can still easily be converted to system 7.7.

BBQ = −QE

BIQ = 0
(7.7)

Writing out the Darcy-Weisbach equation with the incidence matrix requires the
use of the Hadamard product[13], due to the Q|Q| factor. The Hadamard product is
the operator used for element-wise multiplication of matrices or vectors of the same
size and uses the symbol ◦ as shown in equation 7.8.

−B>p = −B>I pI −B>BpB = αQ ◦ |Q| (7.8)

This also means that isolating Q in a similar manner to I = R−1U becomes a
problem. For individual Darcy-Weisbach equations, this is easily possible, as was
done before in equation 6.18. Combining all equations of this type into an expres-
sion with matrices and vectors then requires taking the square root of individual
elements in vectors. The expression would look something like equation 7.9, with the
important property that the notation of the square root indicates an element-wise
square root.
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Q = −sgn(B>I pI +B>BpB)
√
α−1|B>I pI +B>BpB | (7.9)

Substituting this in the second equation from 7.7 would result in equation 7.10.

BI(−sgn(B>I pI +B>BpB)
√
α−1|B>I pI +B>BpB |) = 0 (7.10)

Following one of the later steps for the resistive network would mean that this
equation is used to express pI in terms of pB in order to substitute it in an expression
for QE based on the first equation of 7.7. Unfortunately though, it doesn’t seem
possible to isolate the pI due to the added complexity of equation 7.10.

However, the fact remains that there are precisely as many equations as there
are unknown variables. As for the number of equations, system 7.7 contains m
equations, one for each of the m vertices in V and system 7.8 contains n equations
for each of the n arcs in A. This means that the total amount of equations is m+n.
Meanwhile, the unknown variables are split up between the following:

• pI is a vector of size #VI , the amount of internal vertices;

• Q is a vector of size n;

• QE is a vector of size #VB , the amount of boundary vertices;

Of course, #VI + #VB gives the total amount of vertices m, meaning that the
total amount of unknown variables is m + n and that there are exactly enough
equations for the number of unknown variables. This means that it should be
possible to find a solution for pI , Q and QE , which will be done with the use of
numerical methods. As for the uniqueness of the solution, this is expected, since
the relation between ∆p and Q remains bijective, despite the non-linear behaviour.
Namely, for any arc with given properties, every ∆p-Q combination is unique.

7.2. Numerical Implementation

I n order to apply the theorem to practical cases of gas pipe networks, numerical
methods will be used. The objective is to create an algorithm that shows the

values for the volumetric flows and pressures, given the following input arguments:

• The network structure in the form of a graph G = (V,A);

• The set of boundary vertices VB in order to know what matrices BI and BB
are;

• A vector α containing the constant values for each pipe segment in the net-
work;

• A vector pB containing the pressures on each of the boundary vertices.

The output arguments need to be:



7.2. Numerical Implementation

7

41

• A vector Q containing the internal flows going through the network;

• A vector QE containing the external flows going into the network;

• A vector pI containing the pressures on the internal vertices with which one
can find the pressure losses on each arc.

The output arguments are combined into a single vector x = (Q>I ,Q>E ,p>I )>.

7.2.1. Multivariate Newton-Raphson Method
For this particular problem, finding the values via numerical methods is done with
the use of the multivariate Newton-Raphson method[14]. For a function with a single
variable, the widely known Newton-Raphson method iteratively approaches a root
of the function. Similarly, the multivariate method does the same for a system
of functions which use exactly as many unknown variables as there are functions.
Therefore, all the relevant equations need to be converted to the form f(x) = 0.
Additionally, the method requires initial values for x. The vector containing these
will be called x0.

After these preparations, the iterative steps will follow. For the regular Newton-
Raphson methods with a single function of a single variable, iterative step 7.11
applies.

xi+1 = xi −
f(xi)
f ′(xi)

(7.11)

This is as a result from the desired property 7.12.

0 = f ′(xi)(xi+1 − xi) + f(xi) (7.12)

For the multivariate Newton-Raphson method, the Jacobian will be used in the
place of the regular derivative. Hence, equation 7.12 becomes equation 7.13.

0 = J(xi)(xi+1 − xi) + f(xi) (7.13)

Isolating the vector xi+1 from this under the assumption that the Jacobian is
invertible then results in iterative step 7.14 for the multivariate method.

xi+1 = xi − J−1(xi)f(xi) (7.14)

The iterations will then end if one of the following two conditions is satisfied:

• The norm of xi+1 − xi is below a certain small predetermined value ε > 0,
meaning that the change between iterations sufficiently small;

• The predetermined amount of iterations is reached in order to not let the
programme run for too long.
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The uniqueness of the solution is guaranteed when the Jacobian is invertible in
every iteration and when all vectors with initial values for the unknown variables lead
towards a single outcome. This is the case under normal circumstances, though a
definitive proof hasn’t been worked on. The further details will focus more on finding
the solution, rather than giving much value to the uniqueness of the solution.

7.2.2. Gas Pipe Network
Now this method will be implemented for the gas pipe network. The first step in the
programme is to define the graph structure. The computations will require it to be
in the form of an incidence matrix. Directly defining the incidence matrix will be a
lot of work for large networks, so instead, the MatLab functions digraph, incidence
and full will be used. Beforehand, all vertices are labelled with a number and the
arcs will be defined via input of its source and terminal vertices, as was described
before in section 2.2. To repeat, the digraph function requires two input vectors, s
and t, which are respectively the vectors containing all source and terminal for the
arcs. For example, let s = (1, 2, 3)> and t = (2, 3, 1)>, then G=digraph(s,t) gives
the directed graph G with arcs {a1,2, a2,3, a3,1}. Applying the incidence function
to this then gives the desired incidence matrix. However, this function only provides
a sparse matrix, so full needs to be used in order to turn it into a full matrix B.
The size of this matrix is m × n, i.e. rows and columns equal to the number of
vertices and arcs respectively. Also required is the set of boundary vertices, since
these differ greatly in function from the internal vertices for this method. They
will be stored with their labels in a vector b with k being its length. It is assumed
that the labels are in increasing order. A custom function named sortB(B,b) then
sorts the rows of the incidence matrix in such a way that the ones corresponding to
boundary vertices are on the top. The rows for the internal vertices will be placed
on the bottom. If b = (2, 3)> and B has four rows for instance, then the rows of B
will reordered as (2, 3, 1, 4)>.

Next, the remaining required input arguments need to be defined. These are the
diagonal matrix α and the vector pB . α stores the constant values used in the Darcy-
Weisbach equation for each pipe segment on each diagonal element. Alternatively,
the matrix could be defined by defining a vector α containing the desired diagonal
elements and applying the diag function to it. In fact, this is the method used in
the eventual programme made for this project. Meanwhile, pB stores the pressures
on the boundary vertices. Of course, it is important that these values are stored in
the correct order. The ith component of α needs to correspond to the ith column of
B. The same goes for the order of pB in relation to b.

As mentioned, the unknown variables will be stored in the vectors Q, QE and
pI . Since the Newton-Raphson method requires initial values for each of these, the
vectors will have random entries between 0.5 and 1.5. The reason why a random
entry between those values is chosen and they are not all the same number is to
avoid potential cases where the difference between two values cannot be equal to
zero in later extensions of the programme.

The vectors pB and pI will together be stored in a vector p = (p>B ,p>I )>.
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Additionally, the single vector will be created containing all the unknown variables.
The order used in this case is x = (Q>,Q>E ,p>I )> as mentioned in section 7.2.

The last step of preparation is to define the two values that would eventually end
the algorithm and a vector used as reference in each iteration. The number ε > 0 is
the error margin and is chosen very small. Going below this value means that the
algorithm gave a sufficiently close result. Additionally, i is the largest amount of
iterations for which the algorithm will run. It decreases by one after each iteration
and shows the results at that point once it hits zero. xref is a vector containing
the unknown values as computed in the previous iteration. This means that the
entries will be replaced after each iteration. This is done in order to not have all
the intermediate steps unnecessarily be stored in the memory.

Because the multivariate Newton-Raphson method specifically finds the roots of
functons, the equations 7.7 for Kirchoff’s Circuit Law will have to be changed to
system 7.15.

QE +BBQ = 0
BIQ = 0

(7.15)

This could also be written as equation 7.16, for which Q̂E = (Q>E , 0>)>. Note
that the zero is a vector of size #VI completely filled with zeros. In other words, this
could be considered the external flow vector with the non-existent (zero) external
influence on the internal vertices included. Additionally, B is the incidence matrix
under the assumption that the sortB function has already been applied.

f0(x) = Q̂E +BQ = 0 (7.16)

Meanwhile, the Darcy-Weisbach equations 7.8 will be converted to system 7.17

f1(x) = B>p + αQ ◦ |Q| =
B>I pI +B>BpB + αQ ◦ |Q| = 0

(7.17)
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The general layout of the main programme is shown in the following algorithm.
Input: G, α, pB , b
while ||x− xref || > ε and i > 0 do

f0(sortB(B), (x1+n, . . . ,xn+k)>, (x1, . . . ,xn)>)
f1(sortB(B),α,pB , (x1+n+k, . . . ,xm+n)>, (x1, . . . ,xn)>)
f = (f>0 , f>1 )>
J = ((J0(sortB(B),pB , (x1+n+k, . . . ,xm+n)>))>,

(blkdiag(J1B(α, (x1, . . . ,xn)>)), J1P (k, sort(B)))>)>
xref = x
x = xref − J−1f
i = i− 1

end while
Output: Q, QE , pI
To clarify, (x1, . . . ,xn)> is the part of x used for QI , (x1+n, . . . ,xn+k)> is the

part used for QE and (x1+n+k, . . . ,xm+n)> is used for pI .

As can be seen, the algorithm refers to a number of functions, those being f0, f1,
J0, J1B , J1P in addition to the previously discussed sortB function.

• f0 uses input arguments B, QE and Q and returns f0 = BQ + Q̂E ;

• f1 uses input arguments B, α, pB , pI and Q and returns either f1 = [ ] (a
vector of length zero) if B is zero-dimensional (this will be relevant later) or
f1 = α ◦Q ◦ |Q|+B(p>B ,p>I )>

The Jacobian J is built from several blocks which for now are just J0, J1B and
J1P . J0 is the block making the first m rows of J . The remaining n rows of the
Jacobian will consist of a block diagonal matrix, for now only of a single block, J1,B
on the left and a block J1P on the right. In equation 7.18, a visualisation of the
positioning of the blocks is shown.

J =


d e
| J0 |
b c
d e d e
| J1B | | J1P |
b c b c

 (7.18)

J0 is obtained when the partial derivatives of the Kirchoff equations to the
unknown variables are taken. This results in matrix 7.19.

J0 =
[
∂f0
∂Q1

· · · ∂f0
∂Qn

∂f0
∂QE1

· · · ∂f0
∂QEk

∂f0
∂pI1

· · · ∂f0
∂pI(m−k)

]
(7.19)

Conveniently, this can be converted to matrix 7.20. Differentiating the Kirchoff
equations to Q leaves B, differentiating to QE leaves an identity matrix of size k
only for the equations related to the boundary vertices and differentiating to pI gives
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zeroes, since there are no pressures here. Therefore the parts where the functions
are differentiated to QE and pI will be implemented via a block diagonal matrix
with blocks Ik and 0m−k, where the latter is a square matrix of size m − k filled
with zeroes.

J0 =
[
B blkdiag(Ik, 0m−k)

]
(7.20)

As for the other part of the Jacobian regarding the partial derivatives of the
Darcy-Weisbach equations, this is split up in two blocks.

J1B =
[
∂f1
∂Q1

· · · ∂f1
∂Qn

]
(7.21)

Each Darcy-Weisbach equation is related to exactly one variable of Q, so assum-
ing that B and Q use the same ordering with the arc labels, this results in a diagonal
matrix with elements of the form 2α|Q|, since the derivative d

dx (x|x|) = 2|x|. This
is shown in equation 7.22.

J1B = 2 · diag(α|Q|) (7.22)

The second block J1P contains zeroes for the first k columns, since the Darcy-
Weisbach equations are not influenced by external flows QE . The remaining n− k
columns are the same as the last m−k columns of B>, again under the assumption
that B is sorted properly.

J1P =
[
∂f1
∂QE1

· · · ∂f1
∂QEk

∂f1
∂pI1

· · · ∂f1
∂pI(m−k)

]
(7.23)

In the programme, this can be achieved by simply taking B> and making the
first k columns filled with zeroes with J1P = B>, followed by J1P (:, 1 : k) = 0.

If, for example, the gas pipe network used is represented by the same graph
as the one in figure 2.4, then the Jacobian would become matrix 7.24 under the
assumption that the boundary vertices are v1 and v4. For this example, suppose
that qi,j := αi,j |Qi,j |.

−1 −1 0 0 0 1 1 0 0 0
0 0 0 1 1 −1 0 1 0 0
1 0 −1 −1 0 0 0 0 0 0
0 1 1 0 −1 0 0 0 0 0

2q1,2 0 0 0 0 0 0 0 1 0
0 2q1,3 0 0 0 0 0 0 0 1
0 0 2q2,3 0 0 0 0 0 −1 1
0 0 0 2q2,4 0 0 0 0 −1 0
0 0 0 0 2q3,4 0 0 0 0 −1
0 0 0 0 0 2q4,1 0 0 0 0


(7.24)

In the programme made for this project, all the eventual values of the known
and unknown variables are compiled into two tables: one for all the vertices and
one for all the arcs. The results for this example is shown in figure 7.1. Here, all
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values of α are equal to 1 and the pressures on the boundary vertices v1 and v4 are
respectively p1 = 25 and p4 = 9. VType indicates whether the vertex is an internal
or boundary vertex, EFlow shows the external flow going into each vertex (is equal
to 0 in case of no external influence) and Iflow shows the internal flows going over
each arc. AType becomes relevant in the next subsection and is an indicator for the
three different types of component.

Figure 7.1: Table with results for example network with α-values 1, p1 = 25 and p4 = 9.
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7.2.3. Expansion With Check Valves & Compressors
Now it will be explained how the toolbox can be expanded with the other two
component types: the check valves and the compressors.

The first step is to split the graph G into three sub-graphs G1, G2 and G3:

• G1 is the sub-graph for which the n1 arcs represent pipe segments;

• G2 is the sub-graph for which the n2 arcs represent check valves;

• G3 is the sub-graph for which the n3 arcs represent compressors.

Consequently, the incidence matrix B need to be split into three sub-matrices
B1, B2 and B3 as well which respectively are columns 1, . . . , n1, 1 +n1, . . . , n1 +n2
and 1 + n1 + n2, . . . , n. The dimensions of these sub-matrices are m × n1, m × n2
and m×n3. Therfore, every B in the previous steps exclusively for pipe segments is
replaced by a B1, like in equation 7.25. The equations corresponding to Kirchoff’s
Current Law still use the full matrix B, so these remain unchanged.

f1(x) = B>1 p + αQ1 ◦ |Q1| =
B>1IpI +B>1BpB + αQ1 ◦ |Q1| = 0

(7.25)

Additionally, the vector Q of internal volumetric flows is split up into three parts
Q1, Q2 and Q3 as well, each corresponding to one of the component types.

The equations for the check valves and compressors now need to be put in the
correct forms f(x) = 0. For the check valves, equation 4.9 will first be converted to
a form with vectors and matrices. This is done in equation 7.26. For simplicity, it
is assumed that β is the same large constant for every equation.

Q2 = −β(1− sgn(B>2 p)) ◦ (B>2 p) (7.26)

From this, vector function 7.27 can be obtained for which the root will be found.

f2(x) = Q + β(1− sgn(B>2 p)) ◦ (B>2 p) = 0 (7.27)

As for the compressors, the version with the fixed pressure increase will be used.
Equation 7.28 shows the system of compressor equations with vectors and matrices,
where γ is a vector containing the fixed pressure increases on each arc. Naturally,
it is important that it has the correct value for the cases where a compressor exists
between two boundary vertices for which the pressures are known. Equation 7.29 is
then the function for which the root will be found.

B3p = γ (7.28)

f3 = B3p− γ = 0 (7.29)
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When including these extra component types, the Jacobian will now contain
a large block in the bottom left which has the form of a block diagonal matrix
which contains the partial derivatives to the volumetric flows. Each block is used
for a single type of equation, i.e. block J1B is for equation type 1 (Darcy-Weisbach
equations), block J2B is for type 2 (Check valves) and block J3B is for type 3
(Compressors). All the blocks are also diagonal matrices, due to the equations
for arcs only containing a single and unique volumetric flow. Only the Kirchoff
equations are not represented in this block diagonal matrix. Those have their own
blocks at the top.

In the bottom right are three vertically stacked blocks J1P , J2P and J3P which
contain the all derivatives of respectively f1, f2 and f3 to both the external flows
and the internal pressures.

The new full Jacobian with blocks for the expanded situation is shown in equation
7.30.

J =



d e
| J0 |
b c
d d e e d d e e
| | J1B | 0 | | | J1P | |
| b c | | b c |
| d e | | d e |
| | J2B | | | | J2P | |
| b c | | b c |
| d e | | d e |
| 0 | J3B | | | | J3P | |
b b c c b b c c



(7.30)

Blocks J0, J1B and J1P remain the same as before. Deriving the check valve
equations to each of the individual internal flows gives an identity matrix of size n2
for the block, since every derivative becomes one.

J2B = In2 (7.31)

Because the compressor equations do not contain a variable of internal flow, all
their derivatives to the flows become zero, thus the following applies.

J3B = 0n3 (7.32)

The blocks J2P will contain the partial derivatives of f2 to Q2E and pI . The
ones to Q2E all become zero, since none of these variables exist in the equation.
Differentiating an individual check valve equation to the former pressure in ∆p
gives β(1 + sgn(∆p)), whereas the latter pressure in ∆p gives the negative of it.
Therefore, the part of the incidence matrix with respect to the internal vertices (i.e.
B2I) is important in order to indicate which of these two need to be applied. The
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part for the boundary vertices is of no importance, so the top rows of B2 will be
filled with zeroes in order to implement the partial derivatives to the external flows.
This variant of B2 will be notated as B̂2. Also note that p is the pressure vector
with the pressures on the boundary vertices first and then the ones on the internal
vertices, i.e. p = (p>B ,p>I )>. All in all, block J2P will be built according to equation
7.33.

J2P = diag(1− sgn(B>2 p))βB̂>2 (7.33)

Block J3P becomes fairly simple. Again, there are no influences from external
flows, so the derivatives to those become zero. The derivatives to the internal
pressures are either −1 or +1, depending on whether the vertex has the role of a
source vertex or a terminal vertex. Like with block J2P , only the rows of B3 that
are related to the internal vertices (i.e. B3I) are relevant, so the other rows will be
filled with zeroes to accommodate for the partial derivatives to the external flows.
Similarly to B̂2, this matrix will be called B̂3. Therefore, block J3P will be built
according to equation 7.34.

J3P = B̂>3 (7.34)

In order to incorporate all the new blocks, the previous algorithm be modified
as follows:
Input: G1, G2, G3, α, β, γ, pB , b
while ||x− xref || > ε and i > 0 do

f0(sortB(B), (x1+n, . . . ,xn+k)>, (x1, . . . ,xn)>)
f1(sortB(B1),α,pB , (x1+n+k, . . . ,xm+n)>, (x1, . . . ,xn1)>)
f2(sortB(B2),β,pB , (x1+n+k, . . . ,xm+n)>, (x1+n1 , . . . ,xn1+n2)>)
f3(sortB(B3),γ,pB , (x1+n+k, . . . ,xm+n)>, (x1+n1+n2 , . . . ,xn)>)
f = (f>0 , f>1 , f>2 , f>3 )>
J = (J>0 , (blkdiag(J1B , J2B , J3B), (J>1P , J>2P , J>3P )>)>)>
xref = x
x = xref − J−1f
i = i− 1

end while
Output: Q, QE , pI
Note that the part of what was previously Q in the vector x is now split up be-

tween Q1 = (x1, . . . ,xn1)>, Q2 = (x1+n1 , . . . ,xn1+n2)> and Q3 = (x1+n1+n2 , . . . ,xn)>.

Any potential further additions for components require extra lines for new func-
tions f4, f5, . . ., more square matrices J4B , J5B , . . . in the block diagonal matrix and
more matrices J5P , J6P , . . . to add below J1P , J2P and J3P in the Jacobian. For
example, the other equations from chapters 3, 4 and 5, (e.g. pipe segment with
squared pressures, regular valves or compressors with set pressure on the terminal
vertex) can still be implemented in future research. Of course, all of these addi-
tions need to be properly made according to a correct equation corresponding to
the behaviour of the component.
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7.3. Gasunie Gas Transport Network Example

L astly, the programme will be applied to an example of the Dutch gas tranport
network used by the Gasunie[15]. An schematic image of it is shown in figure

7.2.

Figure 7.2: Gasunie gas transport network[15].

The example that will be looked at is the approximate structure of the main part
of the high pressure grid that is used for the H-gas type, schematically visualised in
figure 7.3[2].

Do note that this section will not go into much detail about the specifics of the
network itself and how everything realistically works in practice. This is merely an
application of the programme on a larger network. It will be assumed that every
arc represents a pipe segment with constant value α = 1. The set of boundary
vertices is assumed to be VB = {v2, v6, v7, v12, v18, v19, v20, v22, v23}, which means
that b = (2, 6, 7, 12, 18, 19, 20, 22, 23)>. They are marked in blue in the visualisation
of the graph. As for the pressures on these vertices, they are randomly generated.
Starting with v2, this will be set to pB1 = p2 = 1000. Every pressure after this in
the list takes a random value between 90% and 100% of the previous one in the list,
so 0.9pB1 ≤ pB2 = p6 ≤ pB1, 0.9pB2 ≤ pB3 = p7 ≤ pB2, etcetera. In other words,
the iterative step pB(i+1) = pBi · (0.9 + 0.1 · rand()) is used for i ∈ {1, . . . , k − 1}.
Here, the function rand() returns a random value between 0 and 1.
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v1 v2

v3 v4

v5 v6

v7 v8

v9

v10 v11

v12 v13 v14 v15

v16

v17 v18

v19 v20 v21

v22 v23

Figure 7.3: Graph of the general structure of the H-gas part of the network.

The result of one of these examples is shown in figure 7.4. Figure 7.4a shows the
values of the variables related to the vertices, whereas figure 7.4b shows the ones
related to the arcs.
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(a) Table with vertex details.
(b) Table with arc details.

Figure 7.4: Tables with variable details for the Gasunie network example.
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T he final conclusions of the research will be given as the answers to the three
questions posed in the introduction in between a summary of what has been

discussed.

The first thing done in the report was to repeat some of the known terminology
and theory about graphs. Additionally, the basic notations used in the rest of the
report are given at this point. This includes notations and definitions for both
electric networks and gas transport networks. Afterwards, two methods for graph
representation were detailed. The first of these was the incidence matrix B which is
filled with −1, 0 or 1 on all the elements, depending on the role a vertex plays on an
arc. The second method was done with the use of two vectors s and t, these being
the vectors respectively containing the source and terminal vertices for all the arcs.
The incidence matrix would mostly be used for computations, whereas the method
with the two vectors is used to define graphs for numerical implementations. Aside
from discussing this familiar theory, Kirchoff’s Circuit Laws are detailed. First was
the Current Law and secondly the Voltage Law. Especially the former would be
used a lot later on in the research.

Three types of components would be discussed in the next few chapters, these
being the regular pipe segments, the valves and the compressors. They would be
compared to their counterparts in the electric networks. This is related to the first
research question that was posed:

What are the best ways to describe the relations between pressure loss
and volumetric flow for different types of components in a gas transport
network?

To answer this question, the three component types are separately considered For
the pipe segments, the counterpart is the wire or the resistor. They follow the Darcy-
Weisbach equation ∆p = αQ|Q|, which has a form very similar to the equation for
Ohm’s Law. Alternatively, a variant with a difference between squared pressures
can be used instead of the ∆p, but this makes computations significantly more
complicated. Secondly, two types of valves are considered. One is the regular valve
which allows any flow when it is opened or no flow when it is closed. The other is
the check valve which only allows gas to move in a single direction. Flow that would
normally go in the opposite direction would therefore be halted, meaning that there
exists no flow on that arc. The corresponding equations are β∆p+ (1−β)Q = 0 for
the regular valve and Q = (1+sgn(∆p))β∆p for the check valves. The counterparts
in the electric network are respectively the on/off switch and the diode. Additionally,
the mixing station was discussed and it was explained how it is a combination of
pipe segments and check valves. Lastly, the compressor was discussed with one type
being a compressor where the terminal vertex on the arc has its pressure set to a
fixed value and the other type being a compressor where the pressure is increased
with a fixed value. The corresponding equation is either pj = γ̂ or ∆p = γ and its
counterpart is the battery.

The next part of the report is fully dedicated to the second research question:
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What are the methods for finding the relation between the constant values
in a configuration of multiple pipe segments and the constant values for
a reduced and equivalent configuration?

The first result for this was regarding the series connection, which goes in a
similar way to the method in the electric network, i.e. the constant in the reduced
configuration is the sum of the constants in the original configuration. Next was the
parallel connection which is slightly different from the method in electric networks.
There exists a relation of 1√

α
being equal to the sum of individual terms 1√

αi
. The

third topic that was discussed here was the ∆/Y transform, although that eventually
did not lead to a similar method for the gas pipe network due to what seemed to
be inconsistencies with the values of the other variables in the network and the
constants still being dependent on them.

The final chapter discussed the uniqueness theorem for resistive networks and
how it translates to the gas pipe network. Even though the proof of the uniqueness
theorem could not be replicated for the gas pipe network, it is still fairly safe to say
that any solution found is a unique one. This lead to the answering of the third
research question:

How can the uniqueness theorem be applied for practical gas transport
cases with the help of numerical methods?

The uniqueness theorem can be applied with the use of the multivariate Newton-
Raphson method. Every equation (Kirchoff, Darcy-Weisbach, Check Valve, Com-
pressor) first needs to be put in the form f(x) = 0 Then the Jacobian is constructed
with a number of blocks related to the equation type and the variable it is differen-
tiated to. An iterative step is then repeated in order to approach the solution for
the vector x containing the unknown variables. In the end, the method is applied
in an example of a large gas transport network.
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L astly, there will be a discussion about a number of things during the project that
did not go as planned, lack accuracy or could be looked at in further research.

First of all, there might be better and more accurate options for the equations
corresponding to the pipe segments or the check valves. For example, the equation
with the squared pressures could potentially give more accurate results, but it is
more difficult to do computations with. As for the check valves, there probably is
a better equation, but the one used in the end turned out to work the best in the
programme. It was attempted to create an equation which more accurately described
the desired behaviour, but this caused the occasional failure when implemented in
the programme. It might be possible to solve this problem, but this would have to
be done during further research. In particular, it might be a good idea to look into
finding an equation that is more closely related to the Shockley diode equation. In
the end, the equation that was used was considered to be sufficiently good in order
to obtain proper results.

Another issue came with the ∆/Y transform. The methods for the resistive
network appeared to not be applicable to the gas pipe network due to inconsistencies
with the values of the other variables. Unfortunately, this took up a lot of time
without getting a satisfying conclusion. Perhaps there exists a solution for this
problem, but it was not possible to find one during this research. It is also possible
that some inaccuracies or errors in the calculations caused the inconsistencies, so it
is strongly suggested to take another look at this at a later point.

Regarding the numerical implementations, there might be methods to reduce the
work time, although the programme already seemed to work quite fast in its current
state. For future research the main focus should be on implementing more equation
types for different components in order to create a more complete toolbox. The
only downside of this is that the programme will be using more and more separate
functions, which means that working with it becomes a lot less convenient and more
complicated.

A final improvement that could have been made was to look more into the
details of the Dutch gas transport network in order to give a more informed and
more realistic example. The current example is far from a legitimate case and right
now the only purpose was to apply the programme to a large network and to see
how well it would work for that. The programme still gave a very quick result, so
in the end, at least this application turned out to be a success.
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