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Abstract

This thesis investigates the conserved Runge–Lenz vector in systems governed by inverse-
square central forces. By analyzing its associated symmetries through the framework of
Lie groups and Lie algebras, we explore its role in both classical and quantum mechanical
settings. In each case a hidden so(4) symmetry is revealed. In the classical regime, this
is mapped to a SO(4) group action. Whilst in the quantum regime, this symmetry is
used to calculate the energy levels of the hydrogen atom. This thesis was written as
part of the Bachelor’s programs in Applied Physics and Applied Mathematics at Delft
University of Technology.
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1 Introduction

Symmetries, not only can they be visually beautiful, they can also be incredibly useful in
mathematics and physics. In physics, when certain conditions are met, symmetries directly
lead to conservation laws through Noether’s theorem [1]. An example of this is the Runge-
Lenz vector, a conserved quantity in the Kepler problem, which also plays an interesting role
in understanding the hydrogen atom in quantum mechanics.
The history of the Runge-Lenz vector is surprisingly convoluted. Although it is named after
Carl Runge and Wilhelm Lenz, its origins can be traced back much earlier. A formulation of
a similar conserved vector appeared in correspondence between Jakob Hermann and Johann
Bernoulli in 1710 [2], and later in Laplace’s Traité de mécanique céleste (1799) [3], which is
why the vector is sometimes referred to as the Laplace-Runge-Lenz vector. William Rowan
Hamilton independently rediscovered the vector in 1845[4]. Runge introduced it as an example
in a book on vector analysis, and Lenz used it when studying the hydrogen atom. Despite
these layered origins, the name “Runge-Lenz vector” persisted.
In 1926, Wolfgang Pauli, a former research assistant of Lenz, used the Runge-Lenz vector
to compute the energy levels of the hydrogen atom without solving Schrödinger’s equation
directly [5]. Later, in 1935, Vladimir Fock offered a complementary approach using Lie
groups [6]. More recently, regularization methods such as those of Moser and Ligon-Schaaf
[7, 8], have deepened our understanding of the symmetries in the Kepler problem. These
approaches have found their way into more recent work as well, including studies connected
to the Birkhoff conjecture [9].
The aim of this thesis is to provide an overview of the symmetry behind the Runge-Lenz
vector in both classical and quantum mechanical settings. In particular, we will show how
certain mathematical tools can be used to describe this symmetry and to compute the energy
levels of the hydrogen atom.
This thesis is structured as follows:

• Chapter 2 begins with a Newtonian formulation of the Kepler problem and introduce
the classical Runge-Lenz vector.

• Chapter 3 reviews the necessary geometric tools, focusing on the Hamiltonian for-
malism and elements of differential geometry need for describing the space where the
Kepler problem lives.

• Chapter 4 develops a general theory of symmetry via Lie groups and Lie algebras.
For classical systems, we also study Poisson algebras. We conclude with an overview
of representation theory and Casimir operators, which we will be using to compute the
energy levels of the hydrogen atom.

• Chapter 5 revisits the classical Kepler problem and describe its symmetry using the
formalism developed in previous chapters, including a discussion of the Moser and
Ligon-Schaaf regularization maps.

• Chapter 6 examines the quantum Kepler problem and compute the hydrogen atom
energy levels using the Casimir operator, analogous to how Pauli did it. At the end we
will also glance at Fock’s method.
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2 The Classical Kepler Problem

The Kepler problem is one of the cornerstones of classical mechanics, describing the motion
of two bodies under the influence of an inverse-square central force. Historically, it emerged
from efforts to understand the motion of planets in the solar system.
In the early 17th century, the German astronomer Johannes Kepler, using the precise obser-
vational data of Tycho Brahe, formulated three empirical laws of planetary motion. These
laws, which describe how planets orbit the Sun, were published between 1609 and 1619[10]:

1. The orbit of a planet is an ellipse with the Sun at one of the foci.

2. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals
of time.

3. The square of the orbital period of a planet is proportional to the cube of the semi-major
axis of its orbit.

Kepler derived these laws without a fundamental theory of dynamics; they were found em-
pirically. A deeper physical understanding came with the work of Isaac Newton.
Later in the 17th century, Newton formulated the law of universal gravitation, which
quantitatively explained the forces underlying Kepler’s laws. According to Newton, every
two masses in the universe attract each other with a force proportional to the product of
their masses and inversely proportional to the square of the distance between them:

F⃗gravity = −Gm1m2

r2
r̂ (1)

Here, G is the gravitational constant, m1 and m2 are the masses of the two interacting bodies,
r is the distance between them, and r̂ is the unit vector pointing from one mass to the other.
The negative sign indicates that the force is attractive.
This gravitational force is an example of an inverse-square law, meaning the force decreases
with the square of the distance between the objects. Another famous inverse-square law is
Coulomb’s law, which describes the electrostatic force between two electric charges:

F⃗electrostatic =
1

4πε0

q1q2
r2

r̂ (2)

In this expression, q1 and q2 are the electric charges, ε0 is the vacuum permittivity, and r̂
again denotes the direction of the force. The electrostatic force can be attractive or repulsive
depending on the signs of the charges.
In the remainder of this chapter, we will study these inverse-square force laws in detail, by
looking at some conserved quantities and finding out the shapes of the orbits of the 2 particle
system.

2.1 Inverse Square Laws

In physics, we often encounter forces governed by the so-called inverse square law. Under
such a law, the force F between two bodies is given by

F = − k

r2
r̂ (3)

where k is a constant, r = |r| is the distance between the bodies, and r̂ = r
|r| is the unit

vector in the direction of r. Two of the most prominent examples of inverse square laws are
Newton’s law of gravitation and Coulomb’s law as discussed earlier. For gravity, we have
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k = Gm1m2, see (1). In the case of the electrostatic (Coulomb) force, we have k = q1q2
4πε0

, as
in (2). Using Newton’s second law in conjunction with (3), the equation of motion becomes:

m
d2r

dt2
= −k r

r3
.

Taking the scalar product of both sides with dr
dt and integrating with respect to time yields

to conservation of energy:

m
d2r

dt2
· dr
dt

= −k r

r3
· dr
dt
,

m

2

∣∣∣∣drdt
∣∣∣∣2 − k

r
= E,

E =
m

2

∣∣∣ṙ2 + r2θ̇2
∣∣∣2 − k

r
. (4)

Where the integration constant E represents the total energy of the system. So since dE
dt = 0

we say that E is conserved, in physics conserved quantities relate to symmetries, in the case
of energy it is related to time invariance of a system. How these symmetries appear will be
discussed in Chapter 5. There are two other conserved quantities that we are interested in,
angular momentum and the Runge-Lenz vector which we will now study.

2.2 Angular Momentum

Angular momentum plays a central role in rotational dynamics and is especially important
in systems with an inverse square force like (3). We begin by defining angular momentum.

Definition 2.1. The angular momentum L of a particle of mass m moving with velocity
v and located at position vector r relative to some origin is defined as:

L = r× p, (5)

where p = mv is the linear momentum of the particle.

We can rewrite L = |L| in polar coordinates:

L = mrθ̇, (6)

and use this to rewrite (4) to:

E =
1

2
mṙ2 +

L2

2mr2
− k

r
.r (7)

Where we have thus created an effective potential given by:

Veff(r) =
L2

2mr2
− k

r
.

We will use this later on when classifying different orbits, but now we will look at a very
important property of angular momentum.

Proposition 2.2. If a particle is subject to the inverse square force such as (3)then its
angular momentum is conserved:1

dL

dt
= 0. (8)

1Angular momentum is conserved for any central force and the proof of this is effectively the same as the
one below, but we do not need this generalization of this result.
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Proof. We compute the time derivative of the angular momentum:

dL

dt
=

d

dt
(r× p).

Using the product rule for derivatives:

dL

dt
=
dr

dt
× p+ r× dp

dt
.

Since p = mdr
dt , we have:

dr

dt
× p =

dr

dt
×m

dr

dt
= 0.

Thus,
dL

dt
= r× dp

dt
.

By Newton’s second law, dp
dt = F. Therefore:

dL

dt
= r× F.

If the force is inverse square force, it has the form:

F = − k

r2
r̂,

where r̂ = r
r is the unit vector in the direction of r. Since r and r̂ are parallel, their cross

product is zero:

r× F = r×
(
− k

r2
r̂

)
= 0.

Therefore,
dL

dt
= 0.

2.3 Runge–Lenz Vector

In addition to angular momentum, another conserved quantity arises in the case of the inverse-
square central force: the Runge–Lenz vector. This vector characterizes the orientation and
shape of planetary orbits in the Kepler problem.

Definition 2.3. The Runge–Lenz vector A for a two body problem subject to an inverse-
square force is defined as:

A = p× L−mk
r

r
, (9)

where p is the linear momentum, L is the angular momentum, r is the position vector, k
is a constant determining the strength of the force and m the reduced mass calculated by
m = m1m2

m1+m2
.

Proposition 2.4 ([11]). For a particle moving under an inverse-square central force, the
Runge–Lenz vector A is conserved:

dA

dt
= 0. (10)
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Proof. Starting from Newton’s second law with the inverse-square force:

mr̈ = − k

r2
r̂,

we take the cross product of both sides with the angular momentum L = r×mṙ:

mr̈× L = − k

r2
r̂× L.

Using the vector triple product identity:

r̂× (r× ṙ) = (r̂ · ṙ)r− (r̂ · r)ṙ,

and the identity r = rr̂, so ṙ = ṙr̂+ r ˙̂r, it follows after simplification that:

r̈× L = k ˙̂r.

Now taking the time derivative of ṙ× L− kr̂:

d

dt
(ṙ× L) = r̈× L = k ˙̂r, and

d

dt
(kr̂) = k ˙̂r,

so:
d

dt
(ṙ× L− kr̂) = 0.

Multiplying by m, obtains:
d

dt
(p× L−mk

r

r
) = 0,

and thus:
dA

dt
= 0.

The conservation of the Runge–Lenz vector can actually be used to derive the shape of the
orbits.

Proposition 2.5 ([11]). Under an inverse-square central force, the orbit of a particle is a
conic section and the trajectory satisfies:

r =
L · L
km

· 1

1 +A cos θ
, (11)

where A = |A| is the magnitude of the Runge–Lenz vector and θ is the angle between A and
r.

Proof. Starting from the definition of the Runge–Lenz vector:

A = p× L−mk
r

r
,

we take the dot product of both sides with r:

A · r = (p× L) · r−mkr.

We now compute (p× L) · r. Using p = mṙ and L = r×mṙ, we have:

(p× L) · r = (mṙ× (r×mṙ)) · r = m2(ṙ× (r× ṙ)) · r.
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Using the vector triple product identity:

ṙ× (r× ṙ) = (ṙ · ṙ)r− (ṙ · r)ṙ,

and taking the dot product with r:

[(ṙ · ṙ)r− (ṙ · r)ṙ] · r = ṙ2r2 − (ṙ · r)2.

Therefore:
(p× L) · r = m2

(
r2ṙ2 − (ṙ · r)2

)
.

On the other hand, the magnitude squared of the angular momentum is:

|L|2 = m2|r× ṙ|2 = m2
(
r2ṙ2 − (ṙ · r)2

)
.

Thus:
(p× L) · r = |L|2,

and plugging this back into our earlier expression:

A · r =
|L|2

m
−mkr.

Solving for r we obtain:

r =
|L|2

km
· 1

1 + A·r
kr

.

Now observe that A · r = Ar cos θ, where θ is the angle between A and r. Substituting:

r =
|L|2

km
· 1

1 +A cos θ
. (12)

This is the polar form of a conic section. For 0 < A < 1, the orbit is an ellipse, A = 1 a
parabola and A > 1 a hyperbola.

From (12) we see that the magnitude of the Runge-Lenz vector is the eccentricity of the
elliptical orbit. And it points to the perihelium, where p = |L|2

km . We can actually relate E to
A by looking at the minimal value of r, at rmin ṙ = 0. We can use this with (4), to lead to :

E =
L2

2mr2min

− k

rmin

and we can derive:

rmin =
|L|2

km
· 1

1 +A
,

as cos θ can be at most 1. Hence substituting and rewriting gives:

E =
k2m

2L2
(A2 − 1)

So we conclude that:

E < 0 : bound elliptical orbit
E = 0 : parabolic escape orbit
E > 0 : hyperbolic unbound orbit

This is visualized in Figure 1.
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Figure 1: Orbital trajectories for different total energy levels are shown above. The solid
ellipse represents a bound elliptical orbit for E < 0. The dashed line shows a parabolic
escape trajectory where the total energy E = 0. The dotted line corresponds to a hyperbolic
trajectory representing an unbound orbit with E > 0. All orbits are centered around a central
mass at the origin (black dot).
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3 Geometry

In this section we will discuss a couple of geometry-related mathematical concepts that we
need to study the symmetries of the Kepler problem and the hydrogen atom. First we will
take a short look at the Hamiltonian formalisms in which we are going to rewrite the Kepler
problem in Chapter 5. Then we will look into the basic concepts of smooth manifolds which we
will need for understanding Lie groups. Finally, we will apply this knowledge in an example
of the unit sphere which we will expand upon in Chapter 4.

3.1 Hamiltonian Mechanics

Besides Newtons formulation of physics there are also other formulations such as the La-
grangian and Hamiltonian formulations. In this section we take a look at the latter. We will
do this using [1] and [12] as our main sources. From the Lagrangian formalism we remember
that for most systems we have L = T − V i.e. the difference of kinetic and potential energy.
The Lagrangian is a function of n generalized coordinates qi and n generalized velocities q̇i.
sometimes time is also a parameter, hence

L(q1, . . . , qn, q̇1, . . . , q̇n, t) = T − V

In Hamiltonian mechanics instead of using generalized velocities we use generalized momenta
defined by:

pi =
∂L
∂q̇i

Definition 3.1. The Hamiltonian H is defined as

H =

n∑
i=1

piq̇i − L, (13)

where qi and pi are the generalized coordinates and momenta. These coordinates together
will be referred to as canonical coordinates.

The 2n-dimensional space these canonical coordinates live in is called the phase space.
From the Hamiltonian we can derive equations of motions, the so called Hamilton’s equations.
These equations are defined as follows:

q̇i =
∂H
∂pi

and ṗi = −∂H
∂qi

for i ∈ 1, . . . , n (14)

One can change from coordinate system to describe your problem, in Hamiltonian mechanics
one has a specific format for coordinate changes in the form of a canonical transformation.

Definition 3.2 ([13]). A canonical transformation is a change of variables from (qi, pi)
to (Qi, Pi) that preserves the canonical form of Hamilton’s equations of motion. That is, the
new variables also satisfy Hamilton’s equations:

Q̇i =
∂H(Q,P, t)

∂Pi
, Ṗi = −∂H(Q,P, t)

∂Qi
, (15)

for some Hamiltonian function H(Q,P, t).

An example of a canonical transformation would be the geometric Fourier transform, given by
(q, p) 7→ (x, y) = (p,−q). We are now going to take a look at some of the basics of differential
geometry that we will use to study phase spaces.

10



3.2 Manifolds

In this section we take a look at the basics of differential geometry, here we will define
smooth manifolds, geodesics and the cotangent bundle. These objects will be used to look at
the geometry of phase spaces with the help of symplectic geometry and we need it to define
Lie groups which are needed to study symmetries. For our study of differential geometry we
follow the book [14] and the reader [15]. The main object we study in differential geometry is a
smooth manifold. To define what a smooth manifold is, we first need to lay some groundwork.
The idea behind a smooth manifold is that we want to define a space that looks locally like
Rn, we will first define a topological manifold which forms the topological backbone we need
for a smooth manifold.

Definition 3.3 ([14]). A topological manifold of dimension n is a topological space M
that satisfies the following conditions:

1. M is a Hausdorff Space, meaning that for every pair of distinct points p, q ∈ M ,
there exist disjoint open subsets U, V ⊆M such that p ∈ U and q ∈ V .

2. M is Second-Countable, meaning there exists a countable basis for the topology of
M .

3. M is locally Euclidean of dimension n, meaning each point of M has a neighborhood
that is homeomorphic to an open subset of Rn.

Now we are going to build the structure needed to elevate this to a smooth manifold, for this
we need to define charts.

Definition 3.4. Let M be a topological n-manifold. A chart on M is a pair (U,φ), where
U is an open subset of M and φ : U → Û is a homeomorphism from U to an open subset
Û = φ(U) ⊆ Rn.

A chart will only map an open subset of a topological manifold to Rn. To check if a topological
manifold locally looks like Rn we are going to need multiple charts.

Definition 3.5. Let M be a topological set and A = {(Uα, φα) : α ∈ A}, with A an index
set. We call A a topological atlas of M if M =

⋃
α∈A Uα. We call A a smooth atlas if all

charts are compatible (as defined below).

For defining compatibility, we look at intersections of charts. Suppose we have two charts
(Uα, φα) and (Uβ, φβ) that have a nonempty intersection Uα ∩ Uβ we wish for the points in
this intersection to have a smooth connection between the charts. We do this by defining the
transition functions καβ = φβφ

−1
α and κβα = φαφ

−1
β on Uα ∩ Uβ . We call charts compatible

when these transition functions are smooth.

Definition 3.6. A smooth manifold is a topological manifold of dimension n with a smooth
atlas A

Obviously Rn is a smooth manifold, but there are many others. In the next section, we will
take a look at the unit sphere as an example. One commonly used method to show that
something is a manifold, is by proving it is an embedded submanifold.

Definition 3.7 ([15], Definition 2.37). Let M be a smooth manifold, then the subset Σ ⊆M
is called a k-dimensional embedded submanifold of M if for every point p ∈ Σ, there exists a
coordinate chart (Uα, φα) around p in M such that
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φα(Uα ∩ Σ) = φα(Uα) ∩ (Rk ⊕ {0}),

where Rk ⊕ {0} ⊆ Rk ⊕ Rn−k is a k-dimensional hyperplane in Rn. A chart with this
property is called a slice chart.

It is sometimes interesting to study if two smooth manifolds are "the same" we call this
diffeomorphic.

Definition 3.8. Let M,N be smooth manifolds then a diffeomorphism ϕ : M → N is a
smooth bijection with a smooth inverse, if such a diffeomorphism exists between M and N
then we call M and N diffeomorphic.

Another really important attribute of a smooth manifold are tangent spaces. For this we will
define the following equivalence class:

Definition 3.9 ([15], Definition 4.2). A tangent vector at p ∈ M is an equivalence class
vp = [γ] of curves through p with respect to the relation ∼p. Two curves γ and λ are
equivalent, γ ∼p λ, if there exists a chart (Uα, ϕα) around p such that their derivatives at
t = 0 in coordinates coincide, i.e.,

d

dt
(ϕα ◦ γ)(t)

∣∣∣∣
t=0

=
d

dt
(ϕα ◦ λ)(t)

∣∣∣∣
t=0

.

This condition is independent of the chosen chart. The set TpM of tangent vectors is called
the tangent space of M at p.

If we take the union of all tangent spaces of a manifold we get the tangent bundle. A
commonly used type of smooth manifold in physics is a Riemannian manifold, this is a
smooth manifold on which we define a metric, a Riemannian metric, which gives us a way to
measure distances.

Definition 3.10 ([15], Definition 9.1). A Riemannian metric g on M is a covariant tensor
field of rank 2 such that for every point p ∈M , the bilinear form gp : TpM × TpM → R is an
inner product

To gain a proper mathematical understanding of a covariant tensor field of rank 2, where
’rank 2’ specifically refers to the presence of two inputs, one is encouraged to read chapter 12
and 13 of [14] for a more in-depth treatment. If we equip a Riemannian metric on a smooth
manifold M we get a Riemannian manifold denoted (M,g). The metric we will be using is the
Euclidean metric which is the metric on Rn that is defined as the inner product. Using this
metric we can find a lot Riemannian manifolds, namely using embedded submanifolds. When
we have that (M, g), a Riemannian manifold, and Σ ⊆M is an embedded submanifold, then
Σ is itself a Riemannian manifold in a natural way. To define a metric from this we will be
using a pullback, which is defined as follows.

Definition 3.11 ([15], Definition 4.20). The pullback along F : M → N of a function
f ∈ C∞(N) is the function F ∗f ∈ C∞(M) defined by F ∗f := f ◦ F .

The metric on Σ is then simply the pullback ι∗g of g along the canonical inclusion ι : Σ ↪→M .
Since ι∗: TσΣ → TσM is injective, this is indeed a Riemannian metric, for a detailed proof
see proposition 9.6 of [15]. With a metric we can define a geodesic which is a curve of unit
speed that is locally the shortest path between the points it connects. Finally we will define
the covector and the cotangent space.
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Definition 3.12. A covector at a point p ∈ M is a linear functional αp : TpM → R,
meaning it maps tangent vectors at p to real numbers in a linear fashion. The cotangent
space at p, denoted T ∗

pM , is the vector space consisting of all covectors at p. It has the same
dimension n as the tangent space TpM .

Again the union of all contangent spaces of a manifold is called the cotangent bundle and
is denoted by T ∗M . We can link this cotangent bundle back to the phase space from Hamil-
tonian mechanics, because the phase space is the cotangent bundle of the configuration space,
here the configuration space is the space spanned by the generalized coordinate qi. There
is actually a whole subfield in differential geometry called symplectic geometry which uses
the language of differential geometry to formulate an even more general form of Hamiltonian
mechanics. Here the central role is taken by the symplectic 2-form which plays the role of
the Hamiltonian form and instead of canonical transformations their exist symplecteomor-
phisms. Sadly we do not have the time to delve deeper into the symplectic geometry, but a
good source for further reading is [16]. We will now apply our gained knowledge to the unit
sphere.

3.3 The Unit Sphere

To apply the concepts discussed in the previous section we will look at the n-dimensional
unit sphere and proof it is a smooth manifold, as well as an embedded submanifold of Rn+1.
In the next chapter we will come back to the unit sphere and define a group action on it,
which we end up using in our final analysis of the Kepler problem.

Definition 3.13. The unit sphere in n-dimensions, denoted by Sn, is the surface of a
n-dimensional ball. We can define this as follows.

Sn =
{
x ∈ Rn+1 | ∥x∥ = 1

}
To create charts we will use the stereographic projection. to explain this projection we will
first define it for S2. You effectively choose a North Pole, in this case we choose to work in
Cartesian coordinates and take the North Pole as N = (0, 0, 1).
If we then take (x, y, z) on the sphere in Cartesian coordinates and (X,Y ) on the plane, the
projection and its inverse are given by the formula [17]:

(X,Y ) =

(
x

1− z
,

y

1− z

)
,

(x, y, z) =

(
2X

1 +X2 + Y 2
,

2Y

1 +X2 + Y 2
,
−1 +X2 + Y 2

1 +X2 + Y 2

)
.

Geometrically what we are doing is for any point x = (x, y, z) ∈ S2 we draw a line through
N and x and the projected coordinates (X,Y ) will be the intersection with the plane of
z = 0, for illustration see Figure 2.
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Figure 2: The geometric process behind the stereographic projection is depicted above. A line
is drawn from the North Pole (N) through a point (x,y,z) on the unit sphere. The intersection
of this line with the projection plane (z=0) defines the projected coordinates (X,Y). The left
diagram serves as a cross-sectional view of the 3D projection depicted on the right.

We can generalize this projection to Sn as follows. We again choose to work with Cartesian
coordinates and define the North Pole as N = (0, 0, . . . , 0, 1) then we can define the projection
as follows:

Xi =
xi

1− xn
∀i ∈ {1, 2, . . . , n, n+ 1}. (16)

For the inverse we first define:

s2 =
n∑

j=1

X2
j =

1 + xn+1

1− xn+1
,

the inverse is given by

xn+1 =
s2 − 1

s2 + 1
and xi =

2Xi

s2 + 1
(i = 1, . . . , n).

Proposition 3.14. Sn is a smooth manifold of dimension n.

Proof. We will leave the proof that Sn is a topological manifold to the reader and instead
focus on constructing a smooth atlas. We will do this by constructing two charts (U1, φ1) and
(U2, φ2). For this we define both a North Pole and a South Pole, with N = (0, 0, . . . , 0, 1)
and S = (0, 0, . . . , 0,−1). Then we will take U1 = Sn\{N} and U2 = Sn\{S} We see that
Sn = U1 ∪U2. Then we take φ1 as the stereographic projection defined above and take φ2 as
a stereographic projection from the South Pole. To show that Sn is indeed a smooth manifold
it remains to show that the transition functions are smooth. We trivially see that both the
stereographic projection and its inverse as defined above are smooth, hence κ12 = φ2φ

−1
1 and

κ21 = φ1φ
−1
2 are smooth.
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We can actually show that Sn is an embedded submanifold of Rn+1. This can be done by
constructing a slice chart from (U1, φ1). We can also use this to find a metric for the unit
sphere by restricting the Euclidean metric, hence we get.

ι∗gEσ (v, w) = v1w1 + · · ·+ vn+1wn+1

With this metric we can now take a look at the geodesics of Sn.These geodesics are also called
great circles. A great circle can be parametrized as follows

X(t) = a cos t+ b sin t,

where a, b ∈ Sn and they are orthogonal:

⟨a, b⟩ = 0.

Later we will be specifically interested in projecting great circles. If we use (16) we get

Xi(t) =
ai cos t+ bi sin t

1− (an cos t+ bn sin t)

Specifically for the great circles of S3 this becomes:

Xi(t) =
ai cos t+ bi sin t

1− (a4 cos t+ b4 sin t)
(17)
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4 Lie Groups, Lie Algebras and Representations

In this chapter, the mathematical framework of Lie groups, Lie algebras and their repre-
sentations is developed. First, Lie groups and Lie algebras are introduced and specifically
the groups SO(n) and SU(n) are examined. These groups, and their associated algebras,
will later be used to describe the symmetries in the Kepler problem. In the last section we
examine representations and the Casimir operator, tools that will be used to calculate the
energy levels of the hydrogen atom.

4.1 Lie Groups

In this section the definition of a Lie Group and some general information about them is
discussed, then we are going to look at some important examples including a study on how
SO(n) acts on the units sphere.

Definition 4.1 ([18], Definition 1.20). A Lie group is a smooth manifold G which is also a
group such that the group product

G×G→ G

and the inverse map G→ G are smooth.

For our purposes we will be interested in a specific subset of Lie groups, the so called matrix
Lie Groups. These are Lie groups that are subgroups of the general linear group.

Definition 4.2 ([18], Definition 1.1). The general linear group over the real numbers,
denoted GL(n;R), is the group of all n× n invertible matrices with real entries. The general
linear group over the complex numbers, denoted GL(n;C), is the group of all n×n invertible
matrices with complex entries.

It is useful to observe that GL(n,K) is an open subset of Kn×n, where K is either R or C.
This follows from the fact that the determinant map

det : Kn×n → K

is a continuous function, and GL(n,K) = det−1(K \ {0}). Since K \ {0} is an open set in
K, the preimage under a continuous map is also open. Therefore, GL(n,K) is open in Kn×n.
We will use this topological property in our proofs later.

Definition 4.3 ([18], Definition 1.4). A matrix Lie group is a subgroup G of GL(n;C)
with the following property: if Am is any sequences of matrices in G, and Am converges 2 to
some matrix A, then either A is in G or A is not invertible.

This Definition is saying that G is a closed subgroup of GL(n;C). We also see that GL(n;C)
itself is a matrix Lie group. One very important property of matrix Lie groups is that every
matrix Lie Group is a Lie group as can be seen in Corollary 3.45 in [18]. Finally, just like with
groups it is really useful to compare Lie groups, to do this we need to define homomorphisms
between them.

Definition 4.4 ([18], Definition 1.18). Let G and H be matrix Lie groups. A map Φ from G
to H is called a Lie group homomorphism if (1) Φ is a group homomorphism and (2) Φ is
continuous. If, in addition, Φ is one-to-one and onto and the inverse map Φ−1 is continuous,
then Φ is called a Lie group isomorphism.

2Here convergence is defined with the Hilbert-Schmidt norm explained in Appendix B
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4.1.1 Important Lie Groups

We will now discuss a few important Lie groups. The first Lie group we will study is the
special orthogonal group.

Definition 4.5. The special orthogonal group SO(n) is defined as:

SO(n) =
{
A ∈ Rn×n | AAT = I, det(A) = 1

}
where AAT = I implies that

⟨a, b⟩ = ⟨Aa,Ab⟩ ∀A ∈ SO(n) and a, b ∈ Rn.

Geometrically speaking SO(n) resembles rotation matrices. We will look more at the geo-
metric interpretation in the next section where we let elements of SO(n) act on great circles
of the unit sphere.

Proposition 4.6. SO(n) is a matrix Lie Group.

Proof. We need to show that SO(n) is a closed subgroup of GL(n;R), since it consists of
real matrices. We will first show that SO(n) is a subgroup of GL(n;R). Let A,B ∈ SO(n).
Then:

(AB)(AB)T = ABBTAT = AIAT = AAT = I,

so AB is orthogonal. Also,

det(AB) = det(A) det(B) = 1 · 1 = 1.

Hence, AB ∈ SO(n). The identity matrix I ∈ SO(n), and for any A ∈ SO(n), its inverse is
AT , and det(AT ) = det(A) = 1, so A−1 ∈ SO(n). Thus, SO(n) is a subgroup of GL(n;R).
We will now show that SO(n) is closed in Rn×n, since GL(n;R) is an open subset of Rn×n,
and SO(n) ⊂ GL(n;R), it follows that SO(n) is closed in GL(n;R) if it is closed in Rn×n.
Define the functions:

f : Rn×n → Rn×n, f(A) = AAT , and g : Rn×n → R, g(A) = det(A).

Both f and g are continuous. Then:

SO(n) = f−1({I}) ∩ g−1({1}),

which is the intersection of preimages of closed sets under continuous functions, hence closed
in Rn×n. To conclude SO(n) is a closed subgroup of GL(n;R), so by definition, it is a matrix
Lie group.

In a similar fashion for the complex matrices we have the special unitary group.

Definition 4.7. The special unitary group SU(n) is defined as:

SU(n) =
{
A ∈ Rn×n | AA† = I, det(A) = 1

}
where AA† = I implies that

⟨a, b⟩ = ⟨Aa,Ab⟩ ∀A ∈ SU(n) and a, b ∈ Rn.
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Here the † means the Hermitian of a matrix i.e. A† = AT . SU(n) is also matrix Lie group,
the proof of this is very similar to the proof of SO(n)
Interestingly enough, there is a relation between SO(3) and SU(2), SU(2) is a double cover
of SO(3), so the exists a 2-to-1 Lie group homomorphism from SU(2) to SO(3), this also
leads to the Pauli spin matrices, for more information see [19]. We have only discussed the
"special" groups, here "special" refers to the det(A) = 1 conditions, if we drop this conditions
we would get the definition of the orthogonal and unitary groups, these are however not of
our interest.

4.1.2 SO(n) and the Unit Sphere

We will now look into what happens if we let elements of the Lie group SO(n) act on great
circles. For this we will first revise what it means for a group to act on a set.

Definition 4.8 ([20], Definition 8.1). Let G be a group, and let X be a set. We say that G
acts on X if for every g ∈ G and every x ∈ X an element g ◦ x ∈ X is given such that

• e ◦ x = x for all x ∈ X.

• (gh) ◦ x = g ◦ (h ◦ x) for all g, h ∈ G and x ∈ X.

If G Acts on X, then the map G×X → X, given by (g, x) 7→ g ◦x, is an action of G on X

Note that this definition is technically a left action, one can also have x ◦ g instead which
would quantify as a right action, we will only consider left actions and drop the left quantifier.
If we now take the set X as the set of great circles defined as

X = {X(t) = a cos t+ b sin t | a, b ∈ Sn, ⟨a, b⟩ = 0}

and let SO(n) act on it as follows,

Q ◦ x = Qa cos t+Qb sin t ∀Q ∈ SO(n), ∀x ∈ X.

Since:

⟨Qa,Qb⟩ = ⟨a, b⟩ = 0,

we have that Q ◦ x ∈ X and by the properties of the matrix vector product we have that
SO(n) acts on X as in the definition. So geometrically speaking the action of an element of
SO(n) acting on an element of X is a rotation of the great circle. We will use see this group
action again at the end of 5.3.
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4.2 Lie Algebras

Besides Lie Groups there is another algebraic cornerstone in Lie theory, namely the Lie
algebra. To define Lie algebras we will first define the matrix exponential. After we define
Lie algebras we will also define the Poisson algebra with which we can define the symmetries
in the phase space. We will also take a look at a couple of important Lie algebras and the
relations between them.

4.2.1 The Matrix Exponential

Before we can study Lie algebras it is necessary to understand the matrix exponential.

Definition 4.9 ([18]). If X is an n× n matrix, we define the exponential of X, denoted eX

or expX, by the usual power series

eX =

∞∑
m=0

Xm

m!
, (18)

where X0 is defined to be the identity matrix I and where Xm is the repeated matrix product
of X with itself.

Proposition 4.10 ([18], Proposition 2.1). The series (18) converges for all X ∈Mn(C) and
eX is a continuous function of X.

Proof. For the proof of this proposition see Appendix B

Proposition 4.11 ([18], Proposition 2.3). Let X and Y be arbitrary n × n matrices. Then
we have the following:

1. e0 = I.

2.
(
eX
)∗

= eX
∗.

3. The matrix exponential eX is invertible, and its inverse is given by

(eX)−1 = e−X .

Theorem 4.12 ([18], Theorem 2.12). For any X ∈Mn(C), we have

det
(
eX
)
= etr(X).

Proof. If X is diagonalizable with eigenvalues λ1, . . . , λn, then eX is diagonalizable with
eigenvalues eλ1 , . . . , eλn . Thus, tr(X) =

∑
j λj and

det(eX) = eλ1 · · · eλn = eλ1+···+λn = etr(X).

If X is not diagonalizable, we can approximate it by matrices that are diagonalizable, see
exercise 4 chapter 2 of [18].
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4.2.2 Lie Algebra

Definition 4.13 ([18], Definition 3.1). A finite-dimensional real or complex Lie algebra is a
finite-dimensional real or complex vector space g, together with a map [·, ·] from g × g into
g, with the following properties:

1. [·, ·] is bilinear.

2. [·, ·] is skew symmetric: [X,Y ] = −[Y,X] for all X,Y ∈ g.

3. The Jacobi identity holds:

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

for all X,Y, Z ∈ g.

Two elements X and Y of a Lie algebra g commute if [X,Y ] = 0. A Lie algebra g is
commutative if [X,Y ] = 0 for all X,Y ∈ g. The map [·, ·] is referred to as the bracket
operation on g. Note also that Condition 2 implies that [X,X] = 0 for all X ∈ g.

Theorem 4.14 ([18], Example 3.3). Let A be an associative algebra and let g be a subspace
of A such that XY −Y X ∈ g for all X,Y ∈ g. Then g is a Lie algebra with bracket operation
given by

[X,Y ] = XY − Y X.

This bracket is also commonly called a commutator.

Proof. Let X,Y, Z ∈ g, and λ ∈ K. Then:

1. Bilinear:

Linearity in the first argument:

[X + Z, Y ] = (X + Z)Y − Y (X + Z) = XY − Y X + ZY − Y Z = [X,Y ] + [Z, Y ]

[λX, Y ] = (λX)Y − Y (λX) = λXY − λY X = λ[X,Y ]

Linearity in the second argument:

[X,Y + Z] = X(Y + Z)− (Y + Z)X = XY − Y X +XZ − ZX = [X,Y ] + [X,Z]

[X,λY ] = X(λY )− (λY )X = λXY − λY X = λ[X,Y ]

Thus, the commutator is bilinear.

2. Skew symmetric:

[X,Y ] = XY − Y X = −(Y X −XY ) = −[Y,X].

3. Jacobi identity:
To prove:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

We start working out each nested term:

[X, [Y, Z]] = X(Y Z − ZY )− (Y Z − ZY )X = XY Z −XZY − Y ZX + ZY X.
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[Y, [Z,X]] = Y (ZX −XZ)− (ZX −XZ)Y = Y ZX − Y XZ − ZXY +XZY.

[Z, [X,Y ]] = Z(XY − Y X)− (XY − Y X)Z = ZXY − ZY X −XY Z + Y XZ.

Adding the three terms:

(XY Z −XZY − Y ZX + ZY X) + (Y ZX − Y XZ − ZXY +XZY )

+ (ZXY − ZY X −XY Z + Y XZ) = 0

Hence the Jacobi identity holds.

To see how different or similar Lie algebras are we can use Lie algebra homomorphisms.

Definition 4.15 ([18], Definition 3.6). If g and h are Lie algebras, then a linear map φ : g → h
is called a Lie algebra homomorphism if

φ([X,Y ]) = [φ(X), φ(Y )]

for all X,Y ∈ g. If, in addition, φ is one-to-one and onto, then φ is called a Lie algebra
isomorphism.

Now for the Lie algebra of a matrix Lie group we will be needing the matrix exponential.

Definition 4.16 ([18], Definition 3.18). Let G be a matrix Lie group. The Lie algebra of G,
denoted g, is the set of all matrices X such that etX is in G for all real numbers t.

Theorem 4.17 ([18], Theorem 3.20). Let G be a matrix Lie group with Lie algebra g. If X
and Y are elements of g, the following results hold.

1. AXA−1 ∈ g for all A ∈ G.

2. sX ∈ g for all real numbers s.

3. X + Y ∈ g.

4. XY − Y X ∈ g.

It follows from Theorem 4.14 and Theorem 4.17 that the Lie algebra of a matrix Lie group
is a real Lie algebra, with bracket given by [X,Y ] = XY − Y X. For X and Y in g, i.e. the
commutator bracket.
In Hamiltonian mechanics we are particularly interested in Poisson algebras, the algebras can
be used to study the symmetries of the phase space.

Definition 4.18 ([21]). A Poisson algebra is a vector space over a field K equipped with
two bilinear products, · and {, }, satisfying the following properties:

1. The product · forms an associative K-algebra.
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2. The product {, }, called the Poisson bracket, forms a Lie algebra.

3. The Poisson bracket acts as a derivation of the associative product ·, so that for any
three elements x, y, and z in the algebra:

{x, y · z} = {x, y} · z + y · {x, z}

also called the Leibnitz rule

In canonical coordinates (qi, pi) in the phase space the Poisson bracket is defined as:

{f, g} =
N∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (19)

Given two functions f(pi, qi, t) and g(pi, qi, t). We will now calculate the fundamental
Poisson brackets. They are defined as:

{qk, ql}qp =
∑
i

(
∂qk
∂qi

∂ql
∂pi

− ∂ql
∂qi

∂qk
∂pi

)
=
∑
i

(δki · 0− 0 · δli) = 0

{pk, pl}qp =
∑
i

(
∂pk
∂qi

∂pl
∂pi

− ∂pl
∂qi

∂pk
∂pi

)
=
∑
i

(0 · δli − δki · 0) = 0

{qk, pl}qp =
∑
i

(
∂qk
∂qi

∂pl
∂pi

− ∂pl
∂qi

∂qk
∂pi

)
=
∑
i

(δki · δli − 0 · 0) = δkl

With this Poisson bracket we can actually build Hamiltonian mechanics up, we will partly
do this with the following useful identity dG

dt = ∂G
∂t + {G,H}. We can for example formulate

the Hamiltonian’s equations using this identity as follows.

q̇k = {qk, H} =
∂H

∂pk

ṗk = {pk, H} = −∂H
∂qk

The Possion bracket is also invariant under canonical transformations, and finally we can give
an alternative condition for constants of motion. Since dG

dt = ∂G
∂t + {G,H}, we have that a

observable G(p, q, t) will be a constant of motion if dG
dt = 0, thus

∂G

∂t
+ {G,H} = 0

That is
∂G

∂t
= {H,G}

Additionally, this leads to the conclusion that when the constant of motion G does not depend
explicitly on time then

{G,H} = 0.
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4.2.3 Examples

In the sections about Lie Groups we discussed the Lie Groups SO(n) and SU(n), Now we
will look at their associated Lie algebras so(n) and su(n).

Proposition 4.19. The Lie Algebra of SO(n) is defined as follows:

so(n) =
{
X ∈Mn(R) | XT = −X

}
Proof. A ∈ SO(n) if AT = A−1 and det(A) = 1 so etX ∈ SO(n) if and only if

(etX)T = (etX)−1 = e−tX

then by Proposition 4.11 we have that (etX)T = etX
T so

etX
T
= e−tX

hence XT = −X. Also because of this trace(X) = 0, we have with Theorem 4.12

det(etX) = et·trace(X) = e0 = 1

Proposition 4.20. The Lie algebra of SU(n) is defined as follows:

su(n) =
{
X ∈Mn(C) | X† = −X

}
The proof is very similar to the proposition 4.19. To better understand the Lie algebra so(n)
we will find a basis, this is useful as we can then define Lie algebra homomorphisms by solely
defining where the basis elements are mapped to.

Proposition 4.21 ([22], CH 12.1). Let n ∈ N. For 1 ≤ a, b ≤ n, define the n × n matrix
Mab by

(Mab)kℓ = − δak δbℓ + δaℓ δbk (k, ℓ = 1, . . . , n).

Then:

1. Each Mab is real and antisymmetric

2. Mba = −Mab, and Maa = 0.

3. The set {Mab : 1 ≤ a < b ≤ n} is a basis of so(n), of dimension 1
2(n

2 − n).

4. Every A ∈ so(n) can be written as

A =
∑

1≤i<j≤n

αij Mij ,

where the real coefficients satisfy αji = −αij and αii = 0.

Proof.

1. By construction,
(Mab)ℓk = −δaℓ δbk + δak δbℓ = −(Mab)kℓ,

so M⊤
ab = −Mab, and all entries are real.
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2. If a = b, then
(Maa)kℓ = −δak δaℓ + δaℓ δak = 0.

Swapping a↔ b gives Mba = −Mab.

3. Since Maa = 0 and Mba = −Mab, the independent generators are those with a < b,
of which there are

(
n
2

)
= 1

2(n
2 − n), That this set is a basis follows from 4.

4. Take αij as the ijth component of A thenA =
∑

i<j αij Mij and using αji = −αij , αii =
0 yields the claimed form.

The Lie Algebras su(2), so(3) and so(4)

Now we will describe the Lie Algebras su(2), so(3) and so(4) in detail.
First for su(2) we have by example 3.27 of [18] that the following elements for a basis for
su(2)

E1 =
1

2

(
i 0
0 −i

)
, E2 =

1

2

(
0 i
i 0

)
, E3 =

1

2

(
0 −1
1 0

)
(20)

If we calculate the commutation relations we see

[Ei, Ej ] = ϵijkEk. (21)

Now, for so(3), we see from Proposition 4.21 that the following matrices form a basis:

A1 =

0 0 0
0 0 −1
0 1 0

 , A2 =

 0 0 1
0 0 0
−1 0 0

 , A3 =

0 −1 0
1 0 0
0 0 0

 .

These matrices satisfy the following commutation relations:

[Ai, Aj ] = ϵijkAk, (22)

where ϵijk is the Levi-Civita symbol (see Appendix A for details). We see from the matching
commutation relations that su(2) and so(3) are isomorphic. Finally, for so(4), we again use
Proposition 4.21 to construct a basis, given by the following six antisymmetric matrices:

A1 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 , A2 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 , A3 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 ,

B1 =


0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0

 , B2 =


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

 , B3 =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 .

These six generators satisfy the following commutation relations:

[Ai, Aj ] = ϵijkAk, [Bi, Bj ] = ϵijkBk, [Ai, Bj ] = ϵijkBk. (23)

Following [23], we introduce a new basis by defining:

Xi =
1

2
(Ai +Bi), Yi =

1

2
(Ai −Bi), for i = 1, 2, 3. (24)
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Using the relations in equation (23), we compute the new commutation relations:

[Xi, Xj ] = ϵijkXk, [Yi, Yj ] = ϵijkYk, [Xi, Yj ] = 0. (25)

This shows that the sets {Xi} and {Yi} each satisfy the so(3) commutation relations inde-
pendently, and they commute with each other. Hence, we conclude that the Lie algebra so(4)
decomposes as a direct sum:

so(4) ∼= so(3)⊕ so(3). (26)

And since so(3) ∼= su(2)
so(4) ∼= su(2)⊕ su(2). (27)
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4.3 Representation Theory

Lie groups and Lie algebras can both be studied through their representations, linear
actions on vector spaces that reflect the structure of the original object. Before we define
what it means to represent a Lie group or Lie algebra, we need to recall some key spaces and
operations. If we take V as a finite complex or real vector space, we can denote its general
linear group with GL(V ) as the group of invertible linear transformations of V. Once a basis
for V is chosen, this group can be identified with the matrix Lie groups GL(n;C) or GL(n;R),
depending on the field over which V is defined. The other space we will define is the space
of all linear operators from V to itself as gl(V ) = End(V ).

[A,B] := AB −BA, for A,B ∈ gl(V ).

4.3.1 Representations of Lie Groups

A representation of a group G provides a way to understand the group in terms of linear
operators. We choose a vector space V and associate each group element with a linear
transformation of V , ensuring that the group’s multiplication corresponds to the composition
of these transformations.

Definition 4.22 ([24, 18]). Let G be a Lie group and V a finite-dimensional complex vector
space. A representation of G on V is a Lie group homomorphism

ρ : G→ GL(V ).

We refer to the triple (G,V, ρ) as a Lie group representation.

4.3.2 Representations of Lie Algebras

Just as groups can act on vector spaces through linear maps, so too can Lie algebras. A
representation of a Lie algebra is a homomorphism into the space of endomorphisms of a
vector space that respects the Lie bracket.

Definition 4.23 ([24]). Let g be a Lie algebra and V a complex vector space. A represen-
tation of g on V is a Lie algebra homomorphism

ρ : g → gl(V ).

We will often refer to a Lie algebra representation by the triple (g, V, ρ), or simply by ρ or
V when the context is clear. Just as with group representations, we can define morphisms
between Lie algebra representations.

Definition 4.24 ([24]). Let (g, V, ρ) and (g, Ṽ , ρ̃) be two representations of the same Lie
algebra g. A linear map T : V → Ṽ is a homomorphism of representations if

T ◦ ρ(X) = ρ̃(X) ◦ T, for all X ∈ g.

If T is bijective, it is an isomorphism of representations, and the two representations are
said to be isomorphic.

Now we will look at irreducible representations that are specifically interesting to us.

Definition 4.25 ([24], Definition 8.6). Suppose g is an arbitrary Lie algebra and (g, V, ρ) is
a Lie algebra representation. A subspace W of V is an invariant subspace for ρ if

ρ(A)w ∈W for every A ∈ g and every w ∈W.
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If W is an invariant subspace for ρ, then the representation ρW : g → gl(W ) defined by

ρW (A) := ρ(A)
∣∣
W

is called a subrepresentation of ρ. If V and {0} are the only invariant subspaces of V , then
we say that (g, V, ρ) is an irreducible representation.

For irreducible representation we have an important Lemma, Shur’s Lemma that discusses
the uniqueness of these representations.

Proposition 4.26 ([24] Proposition 8.4 (Schur’s Lemma)). Suppose (g, V1, ρ1) and (g, V2, ρ2)
are irreducible representations of the Lie algebra g. Suppose that T : V1 → V2 is a homomor-
phism of representations. Then there are only two possible cases:

• The function T is the zero function.

• The representations (g, V1, ρ1) and (g, V2, ρ2) are isomorphic (and T is an isomor-
phism).

4.3.3 Studying the Representation of su(2)

We will start by constructing a family of irreducible representations of the Lie algebra su(2)
by considering subrepresentations of a single representation on P, the space of complex-
coefficient polynomials in two variables. Recall from Recall from 20 that su(2) can be viewed
as a real vector space with basis {E1, E2, E3} and bracket relations:

[Ei, Ej ] = ϵijkEk.

For real numbers c1, c2, c3 ∈ R, define a map U : su(2) → gl(P) by:

U(c1E1 + c2E2 + c3E3) := c1U1 + c2U2 + c3U3. (28)

Define the operators:

U1 =
i

2
(x∂x − y∂y),

U2 =
1

2
(x∂y − y∂x),

U3 =
i

2
(x∂y + y∂x).

Each operator preserves the degree of homogeneous polynomials. For example, acting with
U1 on a degree-n monomial xkyn−k yields:

U1(x
kyn−k) =

i

2

(
kxk−1yn−k − (n− k)xkyn−k−1

)
=
i(2k − n)

2
xkyn−k.

Similarly,

U2(x
kyn−k) =

1

2

(
(n− k)xk+1yn−k−1 − kxk−1yn−k+1

)
,

U3(x
kyn−k) =

i

2

(
(n− k)xk+1yn−k−1 + kxk−1yn−k+1

)
.

Thus, the operators U1,U2,U3 preserve the degree of any monomial. Henceforth These op-
erators Ui preserve the degree of a polynomial and maps any homogeneous polynomial to
another of the same degree. Thus the subspace Pn of homogeneous polynomials of degree n
forms an irreducible representation of su(2). These representations are effectively the only
one as captured in the following Proposition
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Proposition 4.27 ([24], Proposition 8.9). Suppose (su(2), V, ρ) is a finite-dimensional irre-
ducible Lie algebra representation. Set

n := dimV − 1.

Then (su(2), V, ρ) is isomorphic to the representation (su(2),Pn, U).

In other words, the representations U of su(2) as differential operators on homogeneous poly-
nomials in two variables are essentially the only finite-dimensional irreducible representations,
and they are classified by their dimensions. For the proof see [24].

Casimir Operator

We will now introduce the Casimir operator, we will later use this operator directly to cal-
culate the energy levels of the hydrogen atom.

Definition 4.28 ([24], Definition 8.9). Suppose (su(2), V, ρ) is a Lie algebra representation.
The Casimir operator for ρ is the linear transformation C : V → V defined by

C := ρ(E1)
2 + ρ(E2)

2 + ρ(E3)
2.

The Casimir operator is not derived from any specific element of the Lie algebra su(2).
Nonetheless, in the algebra gl(V ) of linear transformations on a vector space V , operations
like squaring and adding linear maps are well-defined. This allows us to define the Casimir
operator once a representation is specified.

A key property of the Casimir operator is that it commutes with all operators in the
image of the representation.

Proposition 4.29 ([24], Proposition 8.10). Suppose (su(2), V, ρ) is a representation and C
is its Casimir operator. Then C commutes with ρ.

Proof. First note that C commutes with ρ(E1):

[C, ρ(E1)] = [ρ(E1)
2 + ρ(E2)

2 + ρ(E3)
2, ρ(E1)]

= ρ(E2)
2ρ(E1)− ρ(E1)ρ(E2)

2 + ρ(E3)
2ρ(E1)− ρ(E1)ρ(E3)

2

= ρ(E2)[ρ(E2), ρ(E1)]− [ρ(E1), ρ(E2)]ρ(E2)

+ ρ(E3)[ρ(E3), ρ(E1)]− [ρ(E1), ρ(E3)]ρ(E3)

= −ρ(E2)ρ(E3)− ρ(E3)ρ(E2) + ρ(E3)ρ(E2) + ρ(E2)ρ(E3)

= 0.

Similarly [C, ρ(E2)] = [C, ρ(E3)] = 0. Because {E1, E2, E3} is a basis for su(2), it follows
that [C, ρ(q)] = 0 for any element q ∈ su(2).

For (su(2), V, ρ) we can actually restrict the values of the Casimir operator as follows:

Proposition 4.30 ([24], Proposition 8.11). Suppose (su(2), V, ρ) is a finite-dimensional ir-
reducible Lie algebra representation. Then the Casimir operator is a scalar multiple of the
identity on V , specifically we can write the Casimir operator as

C = −1

4
(n2 + 2n)I for some n ∈ N
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Proof. First we will proof that the Casimir operator is a scalar multiple of the identity.Since
V is a finite-dimensional complex vector space, C must have at least one eigenvalue λ. Define

W := {v ∈ V : Cv = λv};

i.e, W is the eigenspace corresponding to λ. By Proposition 8.5, this subspace is invariant
under ρ because C commutes with the representation by Proposition 8.10. But because λ is
an eigenvalue for C, the subspace W is not equal to {0}. Hence, since ρ is irreducible, we
conclude by Schur’s Lemma 4.26 that W = V . So Cv = λIv for every v ∈ V . In other words,
C is a scalar multiple of the identity.
Now we can narrow down this scalar multiple by evaluating the Casimir operator C restricted
to Pn for arbitrary n. It suffices to evaluate C on any one element of Pn, say, xn. We find
that

Cxn = −1

4
(n2 + 2n).

Hence on Pn we have
C = −1

4
(n2 + 2n)I.

Thus by Proposition 4.27, each finite-dimensional irreducible representation of su(2) is iso-
morphic to Pn for some n, it follows that the only possible eigenvalue of the Casimir operator
on a finite-dimensional representation is −1

4(n
2 + 2n) for some n.

In physics −1
4(n

2+2n) is often written as −l(l+1) for l an half integer i.e. l = n
2 for n ∈ N.

We are now going to extend the notion of the Casimir operator to so(4). Given that so(4)
is isomorphic to su(2) ⊕ su(2), the representations of these two Lie algebras must be iden-
tical. Hence, classifying the finite-dimensional irreducible representations of su(2)⊕ su(2) is
sufficient for understanding those of so(4).

Proposition 4.31 ([24], Proposition 8.13). Suppose (su(2)⊕su(2), V, ρ) is a finite-dimensional
irreducible representation. Then there exist irreducible representations

(su(2),W1, ρ1) and (su(2),W2, ρ2)

such that the representation (su(2)⊕su(2), V, ρ) is isomorphic to the Lie algebra representation

(su(2)⊕ su(2),W1 ⊗W2, ρ1 ⊗ I + I ⊗ ρ2).

The proof of this proposition can be found in [24], from this we can see that we have two
Casimir operators corresponding to the two su(2) algebras.
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5 Classical Kepler Problem revisited

Now that we have seen the mathematical methods needed to describe symmetries and to find
symmetries in the phase space, we will apply these methods to the Kepler problem, for this
we will first describe the Kepler problem in the Hamiltonian formalism, after which we will
use Poisson bracket to understand the symmetries of the phase space and finally we will use
a canonical transformation to describe the symmetry as a group action of a symmetry group.

5.1 Hamiltonian of the Kepler Problem

The Hamiltonian of the Kepler problem is the sum of the kinetic energy and the potential
energy resulting in (29).

H =
p2

2m
− k

r
(29)

Here we have that p =
√
p21 + p22 + p23 and r =

√
q21 + q22 + q23 with qi, pi our canonical

coordinates. When we calculate the Hamilton’s equations we get

q̇i =
pi
m

ṗi = −kqi
r3

5.2 Poisson Algebra of the Kepler Hamiltonian

We will now look at applying the possion bracket to our phase-space, remember from 2 that
we defined the angular momentum vector L, and the Runge-Lenz vector A for the Kepler
problem as follows:

L = r× p,

A = p× L−mk
r

r
.

We find that the Poisson brackets of the Hamiltonian with L and A vanish:

{H,Li} = 0,

{H,Ai} = 0.

This indicates that both L and A are conserved quantities under the Kepler Hamiltonian.
We now compute the remaining Poisson brackets [25]:

{Li, Lj} = ϵijkLk,

{Li, Aj} = ϵijkAk,

{Ai, Aj} = −2mHϵijkLk.

These relations reveal the underlying symmetry algebra. For bound states (i.e., when H < 0),
we define a rescaled vector:

Ã =
A√

−2mH
, (30)

which satisfies the Poisson brackets:

{Li, Lj} = ϵijkLk,

{Li, Ãj} = ϵijkÃk,

{Ãi, Ãj} = ϵijkLk.

30



Thus, the set {Li, Ãi} satisfies the commutation relations of the Lie algebra so(4). And Li

on its own satisfies the commutation relations of the Lie Algebra so(4). The latter is true for
all spherically symmetric Hamiltonians, but the extra symmetry of the Runge-Lenz vector is
unique to this problem and creates an extra hidden symmetry, we will now try to understand
this symmetry as group action.

5.3 Ligon-Schaaf Regularization

Now that we found that for H < 0 the phase space admits to a so(4) lie algebra caused by the
conservation of the Runge-Lenz vector and Angular momentum. We would like to see if we
can describe the symmetry with a Lie group action of SO(4) on S4 to better our understanding
of the symmetry. We will do this by using a regularization map from T ∗R3 → T ∗(S4 \ {N}).
We will be using [26] as our main source and will only give a global sketch of how to get to this
regularization map and how to use it, at the end will give some sources required for a better
understanding. The first map that was found that does this was the Moser-Regularization.

Proposition 5.1 ([26], Corollary 2.4). The Moser regularization map ΦM : T ∗Rn → T ∗(Sn−
{N}) is defined as the composition of stereographic projection with geometric Fourier trans-
form. It is a symplectomorphism and explicitly given by the formula

(q,p) 7→ ΦM (q,p) = (u,v)

with

u =

(
2p

p2 + 1
,

2p2

p2 + 1
− 1

)
, v =

(
−(p2 + 1)q

2
+ (q · p)p,−q · p

)
Based on this map a more general regularization map was developed by Ligon and Schaaf,

we will only look at the negative energy part of this map, therefore we define:

P− = {(q,p) ∈ T ∗Rn : q ̸= 0, H(q,p) < 0}

T− = {(u,v) ∈ T ∗Sn;u ̸= n, v ̸= 0}

where T ∗Sn = {(u,v) ∈ T ∗Rn+1;u = 1,u · v = 0}.
Then The Ligon–Schaaf regularization map ΦLS : P− → T− is an adaptation of the Moser
regularization and can be defined as follows in the form of a rotation and scaling. That has
the useful property for us that

Φ∗
LSLij = Ãij

And with this property one can prove that there is a SO(4) action on the great circles of S3
as discussed in Section 3.3. Thus, the orbit of a body is the stereographic projection of a
great circle of S3. For a full understanding why this is true, one is referred to the full paper
of [26], for this one needs a bit more background on Delaunay variables, which is explained
in the Appendix C, Hamiltonian Flow explained in [27] and symplectic geometry.
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6 Symmetries of the Hydrogen Atom

In the previous chapter we looked into the symmetries of the classical Kepler problem, now
we will delve into the quantum case. We will study the symmetries of the hydrogen atom.
There are two ways one could do this, the Lie group approach using Fock’s method from
1936, or the Lie algebra approach based on a modern version of Pauli’s method with the
use of the Casimir operator. The one method is not necessarily a lot better than the other,
but we choose to go with Lie algebraic method as it shares some similarities with how we
choose to attack the Kepler problem. After we have seen how this method works we will also
take a short look at Fock’s method. However we will first discuss some quantum mechanical
preliminaries.

6.1 Introduction to Quantum Mechanics

In this section we will give an overview of the basics of quantum mechanics, this overview is
mostly based on [28] and if anything is unclear this is a good source for further reading. In
quantum mechanics we cannot describe a particle as a point particle with a parameterization
of its position, speed, and other properties like in classical mechanics, instead we use the
wavefunction Ψ(r, t) to describe the state of the system. These wave functions live in a
complex Hilbert space; physicists usually call it the Hilbert space.

Definition 6.1 ([29], p. 357). A complex Hilbert space is a complete normed complex
vector space where the norm is induced by an inner product, i.e., ∥u∥ = ⟨u, u⟩1/2.

In three-dimensional space, it’s customary to take H = L2(R3). The way we calculate
the wave function is with the Schrödinger equation:

iℏ
∂

∂t
Ψ(r, t) = − ℏ2

2m
∇2Ψ(r, t) + V (r, t)Ψ(r, t) (31)

Here, ℏ is the reduced Planck constant, ∇ is the gradient, Ψ is the wave function, and V is
the potential energy.
The other important tool in quantum mechanics are operators, we use operators to represent
observables. Operators act on wave functions like linear transformations, below we find a
mathematical definition.

Definition 6.2. Let H be a vector space. An operator in H is a map Q̂ : H → H such that

Q̂(λ|ψ⟩+ µ|ϕ⟩) = λQ̂(|ψ⟩) + µQ̂(|ϕ⟩),

for all λ, µ ∈ K and |ψ⟩, |ϕ⟩ ∈ H, which means that the map is linear. Here, K denotes an
arbitrary field.

We usually denote operators with a hat. If an operator is Hermitian, the operator is observ-
able, that is to say for operator Q̂ we have that ∀f, g ∈ H, ⟨f |Q̂g⟩ = ⟨Q̂f |g⟩. Two of the
most important operators in quantum mechanics are the position and momentum operators.
They are defined as:

R̂x = x, P̂x = −iℏ ∂
∂x

We see that both the position and momentum operators are Hermitian. For operators we
can also use the commutator in a very similar fashion as the Poisson bracket is used. For
example we can calculate commutators between the position and momentum operators.
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[
R̂x, P̂x

]
=
(
R̂xP̂x − P̂xR̂x

)
= R̂xP̂x − P̂xR̂x

= x(−iℏ)∂x − (−iℏ)∂xx
= (−iℏ) (x∂x − ∂xx)

= (−iℏ) (x∂x − x∂x − 1)

= (−iℏ)(−1)

= iℏ.

We also see that: [
R̂y, P̂x

]
= 0 and

[
R̂z, P̂x

]
= 0

Hence we see that [
R̂i, P̂j

]
= iℏδij , (32)

where δij is the Kronecker delta. This commutation relation is also called the canonical
commutation relation. Finally we will take another look at the Schrödinger equation.
First we will write the Schrödinger as follows

iℏ
∂

∂t
Ψ(r, t) = ĤΨ(r, t) (33)

Here the Ĥ is the Hamiltonian operator and is quite similar to the classical Hamiltonian. We
write it as follows:

Ĥ = − ℏ2

2m
∇2 + V (r, t)

We see that it is the sum of the kinetic and potential energy. There is also a time-independent
version of the Schrödinger equation.

Ĥψ = Eψ

This is sometimes called the Schrödinger eigenfunction equation, where E the total energy
is the eigenvalue. The collection of all eigenvalues is called a spectrum, which can both be
discrete as continuous. We will know take a deeper look into the Hydrogen atom.

6.2 Hydrogen Atom

In this section we will take a look at the Hamiltonian of the hydrogen atom and its energy
eigenvalues. The hydrogen consists of an essentially motionless proton of charge e, which we
will choose as our origin and an orbiting electron of charge −e. For this we find that the
force between these two bodies is given by Coulomb’s law.

F =
1

4πε0

e2

r2
r̂

Hence with V = −∇F we get the coulomb potential

V (r) = − 1

4πε0

e2

r

Hence we can write the Hamiltonian operator for the hydrogen atom as
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Ĥ = − ℏ2

2m
∇2 − 1

4πε0

e2

r
(34)

One can solve Schrödinger equation for this Hamiltonian operator in a rather tedious calcu-
lation using separation of variables, for more details one can look at chapter 4 of [28]. From
this one finds for negative energies a discrete spectra of eigenvalues governed by the equation

En = − me4

8ε20h
2

1

n2
≈ −13.6 eV

n2
(35)

Here n ∈ Z>0.This spectrum of energy levels can be measured from the emission spectra,
where the electron falls from one energy level to another, releasing a photon containing the
difference of energy creating an emission spectrum which is also visible below. Rydberg
derived this equation empirically before it was theoretically derived and expanded on by
Bohr.

100 nm 1000 nm 10 000 nm
visible

Hu-αPf-αBr-αPa-αBa-αLy-α

Figure 3: The spectral lines of hydrogen, divided into series, displayed on a logarithmic scale
[30].

6.3 Angular Momentum

Classically we have seen that the angular momentum is defined as L = r × p, see equation
(5). We can still use this formula to derive the angular momentum operators. Using the
operators R̂n = xn and P̂n = −iℏ∂n we get that:

L̂x = yP̂z − zP̂y

L̂y = zP̂x − xP̂z

L̂z = xP̂y − yP̂x

This is allowed since no symmetrization is needed due to the fact that every pair in each term
commute. Substituting P̂n = −iℏ∂n, the explicit differential form of the angular momentum
operators is:

L̂x = −iℏ(y∂z − z∂y)

L̂y = −iℏ(z∂x − x∂z)

L̂z = −iℏ(x∂y − y∂x)

These represent the fundamental angular momentum operators in quantum mechanics. They
obey the commutation relations:

[L̂x, L̂y] = iℏL̂z, [L̂y, L̂z] = iℏL̂x, [L̂z, L̂x] = iℏL̂y.
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Hence we see that the angular momentum operators form a representation of so(3) with the
map ρ(An) = iℏAn, where An a basis element of so(3).
Since the Hamiltonian of the hydrogen atom is spherically symmetric one would inspect that
the Hamiltonian would commute with the angular momentum operators and this is indeed
the case. We have:

Ĥ = − ℏ2

2m
(∂2x + ∂2y + ∂2z )−

1

4πε0

e2√
x2 + y2 + z2

L̂x = −iℏ(y∂z − z∂y).

We will split H in the kinetic energy operator:

T̂ = − ℏ2

2m
(∂2x + ∂2y + ∂2z ).

and the potential energy:

V̂ = − 1

4πε0

e2√
x2 + y2 + z2

, r =
√
x2 + y2 + z2.

Then starting with the kinetic energy:

[T̂ , L̂x] = − ℏ2

2m
(−iℏ)[∂2x + ∂2y + ∂2z , y∂z − z∂y].

Computing individual commutators:

[∂2x, y∂z − z∂y] = 0,

[∂2y , y∂z − z∂y] = 2∂y∂z,

[∂2z , y∂z − z∂y] = −2∂y∂z.

Summing these:
[∂2x + ∂2y + ∂2z , y∂z − z∂y] = 0.

Thus:
[T̂ , L̂x] = 0.

Now for the potential, we have the commutator:

[V̂ , L̂x] = −iℏ[V̂ , y∂z − z∂y].

By linearity:
[V̂ , L̂x] = −iℏ([V, y∂z]− [V̂ , z∂y]).

Evaluating:
[V̂ , y∂z] = −y∂zV̂ , [V̂ , z∂y] = −z∂yV̂ .

Since:

∂zV̂ =
1

4πε0

e2z

r3
, ∂yV̂ =

1

4πε0

e2y

r3
,

we obtain:

[V̂ , L̂x] =
−iℏ
4πε0

(
−y e

2z

r3
+ z

e2y

r3

)
=

−iℏ
4πε0

(0) = 0.

Both the kinetic energy and potential energy terms commute with L̂x, so:

[Ĥ, L̂x] = [T̂ , L̂x] + [V̂ , L̂x] = 0 + 0 = 0.

Same holds for [Ĥ, L̂y] and [Ĥ, L̂z]. Thus we indeed see that the angular momentum operators
commute with Ĥ.
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6.4 The Runge-Lenz Vector and the Hydrogen Atom

Similarly to the classical regime there is more then just the so(3) symmetry of the angular
momentum. In this section we will look into the quantization of the Runge-Lenz vector and
study its related symmetry, we will base this on Chapter 8 of [24] and fill in the missing
details. Classically we had the Runge-Lenz vector A = p×L−mkr̂ as in (9). Sadly, because
[L̂i, P̂j ] ̸= 0, we need to apply symmetrization for the associated quantum mechanical operator
Â, we get 1

2(P̂ × L̂− L̂× P̂ ), hence we get:

Ân =
1

2

[
(P̂ × L̂)n − (L̂× P̂ )n

]
− mk

r
R̂n.

So with k = 1
4πε0

e2 and a normalization factor of 1√
−2mE

we have:

Âx =
−iℏ

2
√
−2mE

(
∂yLz + Lz∂y − ∂zLy − Ly∂z +

1

4πε0

2me2x

iℏr

)
,

Ây =
−iℏ

2
√
−2mE

(
∂zLx + Lx∂z − ∂xLz − Lz∂x +

1

4πε0

2me2y

iℏr

)
,

Âz =
−iℏ

2
√
−2mE

(
∂xLy + Ly∂x − ∂yLx − Lx∂y +

1

4πε0

2me2z

iℏr

)
.

If we now calculate all the relevant commutation relation, a very tedious task, as is done in
Appendix D and the previous section, one gets:

[Ĥ, L̂i] = 0

[Ĥ, Âi] = 0

[L̂i, L̂j ] = iℏϵijkL̂k,

[L̂i, Âj ] = iℏϵijkÂk,

[Âi, Âj ] = iℏϵijkL̂k.

We will now define a Lie Algebra isomorphism as follows:

J+x =
L̂x + Âx

2iℏ
, J−x =

L̂x − Âx

2iℏ
,

J+y =
L̂y + Ây

2iℏ
, J−y =

L̂y − Ây

2iℏ
,

J+z =
L̂z + Âz

2iℏ
, J−z =

L̂z − Âz

2iℏ
.

Then we can calculate all the commutators assuming that E < 0.
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[J+x, J+y] =
−1

4ℏ2
(
[L̂x, L̂y] + [Âx, Ây] + [L̂x, Ây] + [Âx, L̂y]

)
=

1

4iℏ
(2L̂z + 2Âz) = J+z,

[J−x, J−y] =
−1

4ℏ2
(
[L̂x, L̂y] + [Âx, Ây]− [L̂x, Ây]− [Âx, L̂y]

)
=

1

4iℏ
(2L̂z − 2Âz) = J−z,

[J+x, J−x] =
−1

4ℏ2
(
[L̂x, L̂x]− [Âx, Âx] + [Âx, L̂x]− [L̂x, Âx]

)
= 0,

[J+x, J−y] =
−1

4ℏ2
(
[L̂x, L̂y]− [Âx, Ây]− [Âx, L̂y] + [L̂x, Ây]

)
=

1

4iℏ
(L̂z − L̂z − Âz + Âz) = 0.

Similarly, we also have:

[J+y, J+z] = J+x, [J+z, J+x] = J+y,

[J−y, J−z] = J−x, [J−z, J−x] = J−y,

[J+y, J−y] = 0, [J+z, J−z] = 0,

[J+y, J−z] = 0, [J+z, J−x] = 0.

Hence we see that both J+ and J− form a representation of su(2) which are independent of
each other. We also see that the Runge-Lenz operator and angular momentum operator form
a so(4) algebra by the direct sum of the algebras from J+ and J−. Now when we calculate
the Casimir operator of both su(2) algebras we get:

J2
+ = J2

− =
−1

4ℏ2
(
L̂2 + Â2

)
=

1

4

(
1 +

(
1

4πε0

)2 2me4

Eℏ2

)
.

Since Â · L̂ = 0 and L̂ · Â = 0, we will check this and that −1
ℏ2 (L̂

2 + Â2) = 1 +
(

1
4πε0

)2
2me4

Eℏ2

in Appendix D. Now, if we recall from Proposition 4.30 we can write:

(i2 + 2i) = 1 +

(
1

4πε0

)2 2me4

Eℏ2
.

For i a non-negative integer, we can rewrite this to

E = − me4

8ε20h
2

1

n2
, (36)

where n = i+ 1, which is the energy level formula we know and love.

6.5 Fock’s Method

In 1935 Fock showed that the hydrogen atom also adheres the SO(4) symmetry group and
solved the energy level formula for the hydrogen atom that way. Result wise this method is
no better then the Lie algebraic approach but mathematically the so(4) symmetry follows
from Fock’s method, but this does not hold the other way around. An English translation
of his paper is found in chapter 9 of [24], but the main idea is that solution is mapped from
L2(R3) to L2(S3) using the stereographic projection, this is done in the momentum space
using a Fourier transform.
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7 Conclusions and Outlook

In this thesis, we have explored the inherent symmetries of the Kepler problem, examining
both its classical and quantum mechanical formulations. Revealing an so(4) Lie algebra
symmetry in both cases, illustrated through the use of Poisson brackets in the classical
domain and commutators in the quantum domain. This parallel between the classical and
quantum descriptions of the system highlights a shared mathematical framework that bridges
both domains.
Classically, we have shown that the Kepler problem exhibits a rotational symmetry via a
SO(4) Lie group acting on the great circles of a four-dimensional sphere, where its great
circles can be stereographically projected into three dimensions forming elliptical orbits in
the bounded case. Quantum mechanically we derived the energy levels of the hydrogen atom
through the use of Casimir operators. Additionally, we briefly explored Fock’s method where
we have shown that there is also a SO(4) Lie group symmetry.
These insights naturally lead to further inquiry. A notable area for future investigation is
whether a quantized version of the Ligon-Schaaf map exists to bridge the gap from algebra
to group in our quantum mechanical analysis.
A significant omission in our current study are symmetries related to when E ≥ 0 as we have
exclusively focused on the bounded case where E < 0. For systems where E ≥ 0, there also
exists a Lie algebraic symmetry, namely the Lorentz algebra, which we did not cover.
Finally, one could dive deeper into the relationship between the Poisson bracket and the
commutator to better understand the relations between the quantum mechanical Kepler
problem and its classical counterpart.
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Appendix

A Einstein Summation and the Levi-Civita Symbol

The Einstein summation convention is a notational convention which when an index variable
appears twice in a single term and is not otherwise defined, it implies a summation over the
term over all values of the index. So for example

vµ∂µ =

4∑
µ=1

vµ∂µ

Here ∂µ ∈ TpM is a partial differential operator for some manifold M and forms a basis for
the tangent space of M at p. Note that when one uses Greek letters for indices one usually
sums over 4 indices and for Latin letters it is usually 3.
To write determinants and cross products in Einstein notation or to write the components
of, the Levi-Civita symbol was created. In 3 dimensions, the Levi-Civita symbol is defined
by:

εijk =


+1 if (i, j, k) is (1, 2, 3), (2, 3, 1), or (3, 1, 2),

−1 if (i, j, k) is (3, 2, 1), (1, 3, 2), or (2, 1, 3),

0 if i = j, or j = k, or k = i

And generally for the N dimensional case we have:

εa1a2...an =


+1 if (a1, a2, . . . , an) is an even permutation of (1, 2, . . . , n)
−1 if (a1, a2, . . . , an) is an odd permutation of (1, 2, . . . , n)
0 otherwise

For more information about how permutations work see Chapter 4 of [20]. Now with this
Levi-Civita symbol we can write:

(a× b)i = ϵijka
jbk.

B Hilbert-Schmidt Norm and Convergence of the Matrix Exponential

For the definition of a matrix Lie group, we require a notion of convergence for sequences of
matrices. Similarly, for the definition of the matrix exponential, we require convergence of
a series of matrices. To rigorously define these convergences, we equip the space Mn(C) of
n× n complex matrices with a norm. In what follows, we use the Hilbert-Schmidt norm.

Definition 7.1 ([18], Definition 2.2). For any X ∈Mn(C), the Hilbert-Schmidt norm is
defined by

∥X∥ =

 n∑
j,k=1

|Xjk|2
1/2

.

This may also be expressed in a basis-independent way as

∥X∥ = (tr(X∗X))1/2 .

This norm is induced by the Hilbert-Schmidt inner product on Mn(C), defined by

⟨A,B⟩ = tr(A∗B),
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which is conjugate symmetric and linear in the second factor. It satisfies the usual inner
product properties:

∥A∥2 = ⟨A,A⟩ =
n∑

k,l=1

|Akl|2.

The Hilbert-Schmidt norm satisfies the following important inequalities:

∥X + Y ∥ ≤ ∥X∥+ ∥Y ∥, (37)
∥XY ∥ ≤ ∥X∥ · ∥Y ∥, (38)

where the first is the triangle inequality and the second follows from the Cauchy-Schwarz
inequality for the inner product:

|⟨A,B⟩| ≤ ∥A∥ · ∥B∥.

Convergence and continuity of the matrix exponential

The matrix exponential is defined by the power series

eX =

∞∑
m=0

Xm

m!
.

To show that this series converges in the Hilbert–Schmidt norm, we observe using (38) that

∥Xm∥ ≤ ∥X∥m.

Hence,
∞∑

m=0

∥∥∥∥Xm

m!

∥∥∥∥ ≤
∞∑

m=0

∥X∥m

m!
<∞.

This shows that the series converges absolutely with respect to the Hilbert–Schmidt norm.
To show continuity, note that each Xm is a continuous function of X, and the partial sums

SN (X) =

N∑
m=0

Xm

m!

are continuous functions. By the Weierstrass M-test, the convergence is uniform on any
norm-bounded subset of Mn(C). Thus, the exponential map X 7→ eX is continuous on all of
Mn(C).

C Action Angle Coordinates and the Delaunay Variables

One of the more common canonical transformations is the transform to action-angle coor-
dinates. These types of coordinates have certain properties that are useful for perturbative
methods. To transform to these coordinates we use

Ji =
1

2π

∮
pidq

i and θi =
∂

∂Ji

∮
pidq

i (39)

Here Ji refers to the action coordinates and θi to the angle coordinates. These integrals
are over energy contours where H = E, hence we can write the Hamiltonian as a function
just depending on the action coordinate. So H(J1, . . . , Jn), hence we have that Hamilton’s
equations become

θ̇i =
∂H(J1, . . . , Jn)

∂Ji
= ωi(J1, . . . , Jn), J̇i = −∂H(J1, . . . , Jn)

∂θi
= 0, (40)
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where ωi is called the angular frequency. For more information about the theory behind
action-angle coordinates see chapter 10 of [12]. We will now calculate the action angle coor-
dinates of the Kepler problem for this we will rewrite (29) to spherical coordinates

H(r, θ, ϕ, pr, pθ, pϕ) =
1

2m

(
p2r +

p2θ
r2

+
p2ϕ

r2 sin2 θ

)
− k

r
(41)

The action-angle coordinates specifically for the Kepler problem are called Delaunay vari-
ables. We will be mostly interested in the actions. The easiest action is Jϕ, we have

Jϕ =
1

2π

∮
pϕ dϕ =

1

2π
pϕ ·

∮
dϕ = pϕ

For Jθ it is useful to remember that we can write:

L2 = p2θ +
p2ϕ

sin2 θ

Hence, solving for pθ:

pθ = ±

√
L2 −

p2ϕ

sin2 θ

Then, the action variable Jθ is defined as:

Jθ =
1

2π

∮
pθ dθ

Substituting the expression for pθ:

Jθ =
1

2π

∮ √
L2 −

p2ϕ

sin2 θ
dθ

Upon evaluation, this integral yields:

Jθ = L− |pϕ|

Finally, we will calculate Jr. We start by expressing the radial momentum pr from the
Hamiltonian of the Kepler problem:

H =
1

2m
(p2r +

p2θ
r2

+
p2ϕ

r2 sin2 θ
)− k

r
= E

From the angular momentum relations, we know that p2θ +
p2ϕ

sin2 θ
= L2, so we can write:

E =
1

2m
(p2r +

L2

r2
)− k

r

Solving for p2r :

p2r = 2mE +
2mk

r
− L2

r2

Thus, pr is given by:

pr = ±
√
2mE +

2mk

r
− L2

r2

43



The action variable Jr is defined as the integral of pr over a full radial period:

Jr =
1

2π

∮
pr dr =

1

2π

∮ √
2mE +

2mk

r
− L2

r2
dr

The integral evaluates to:

Jr =
mk√
−2mE

− L

This expression is valid for bound elliptical orbits, where the total energy E is negative.
solving for the Hamiltonian.

H ≡ E = − mk2

2(Jr + Jθ + Jϕ)2

Since the Hamiltonian is symmetric w.r.t. the actions, all the frequencies will be the same,
hence we calculate

v =
∂H

∂Jr
=
∂H

∂Jθ
=
∂H

∂Jϕ
=

mk2

(Jr + Jθ + Jϕ)3

We can now perform another canonical transformation to get rid of the degeneracy in the
frequencies:

v1 = vϕ − vθ J1 = Jϕ,

v2 = vθ − vr J2 = Jϕ + Jθ,

v3 = vr J3 = Jϕ + Jθ + Jr.

With these actions we can rewrite the Hamiltonian to the so called Delaunay Hamiltonian.

H = −mk
2

2J2
3

(42)

Where v3 = v is the only nonzero frequency. For a full derivation and discussion with all the
detailed integrals, see Section 10.8 of [12].

D The Tedious Mathematical Details of the Hydrogen Atom

In this appendix we will look at the full mathematical detail of the calculations of the com-
mutators of 6.4. To calculate the relevant commutators we will split the problem such that:

Ân =
−iℏ

2
√
−2mE

(M̂n + K̂n),

where:

M̂x = ∂yL̂z + L̂z∂y − ∂zL̂y − L̂y∂z, K̂x =
1

4πε0

2me2x

iℏr
,

M̂y = ∂zL̂x + L̂x∂z − ∂xL̂z − L̂z∂x, K̂y =
1

4πε0

2me2y

iℏr
,

M̂z = ∂xL̂y + L̂y∂x − ∂yL̂x − L̂x∂y, K̂z =
1

4πε0

2me2z

iℏr
.
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We start with the commutator [Ĥ, Âx].

[Ĥ, Âx] =
−iℏ

2
√
−2mE

(
[Ĥ, M̂x] +

2me2

4πε0iℏ
[Ĥ,

x

r
]

)
=

−iℏ
2
√
−2mE

(
[Ĥ, M̂x] +

2me2

4πε0iℏ
[− ℏ2

2m
∇2 − 1

4πε0

e2

r
,
x

r
]

)
=

−iℏ
2
√
−2mE

(
[Ĥ, M̂x]−

ℏ2

2m

2me2

4πε0iℏ
[∇2,

x

r
]

)
=

−iℏ
2
√
−2mE

(
[Ĥ, ∂yL̂z + L̂z∂y − ∂zL̂y − L̂y∂z]−

ℏe2

4πε0i
[∇2,

x

r
]

)
=

−iℏ
2
√
−2mE

(
[Ĥ, ∂yL̂z] + [Ĥ, L̂z∂y]− [Ĥ, ∂zL̂y]− [Ĥ, L̂y∂z]−

ℏe2

4πε0i
[∇2,

x

r
]

)
=

−iℏ
2
√
−2mE

(
[Ĥ, ∂y]L̂z + ∂y[Ĥ, L̂z] + [Ĥ, L̂z]∂y + L̂z[Ĥ, ∂y]

−[Ĥ, ∂z]L̂y − ∂z[Ĥ, L̂y]− [Ĥ, L̂y]∂z − L̂y[Ĥ, ∂z]−
ℏe2

4πε0i
[∇2,

x

r
]

)
=

−iℏ
2
√
−2mE

(
[Ĥ, ∂y]L̂z + L̂z[Ĥ, ∂y]− [Ĥ, ∂z]L̂y − L̂y[Ĥ, ∂z]−

ℏe2

4πε0i
[∇2,

x

r
]

)
.

We have [Ĥ, ∂y] = [− ℏ2
2m∇2− 1

4πε0
e2

r , ∂y] = [− 1
4πε0

e2

r , ∂y] = − e2

4πε0
[1r , ∂y] = − e2

4πε0
y
r3

, simmilary
[Ĥ, ∂z] = − e2

4πε0
[1r , ∂z] = − e2

4πε0
z
r3

, hence:

[Ĥ, Âx] =
−iℏ

2
√
−2mE

(
− e2

4πε0

(
[
1

r
, ∂y]L̂z + L̂z[

1

r
, ∂y]− [

1

r
, ∂z]L̂y − L̂y[

1

r
, ∂z]

)
− ℏe2

4πε0i
[∇2,

x

r
]

)
=

iℏ
2
√
−2mE

e2

4πε0

(
[
1

r
, ∂y]L̂z + L̂z[

1

r
, ∂y]− [

1

r
, ∂z]L̂y − L̂y[

1

r
, ∂z]− iℏ[∇2,

x

r
]

)
.

Now focusing on the term:[
1

r
, ∂y

]
L̂z + L̂z

[
1

r
, ∂y

]
= −iℏ

([
1

r
, ∂y

]
(x∂y − y∂x) + (x∂y − y∂x)

[
1

r
, ∂y

])
.

Using the Leibniz rule: [x
r
, ∂2y

]
=
[x
r
, ∂y

]
∂y + ∂y

[x
r
, ∂y

]
.

We obtain:

−iℏ
([

1

r
, ∂y

]
(x∂y − y∂x) + (x∂y − y∂x)

[
1

r
, ∂y

])
= −iℏ

([x
r
, ∂2y

]
−
[
1

r
, ∂y

]
y∂x − y∂x

[
1

r
, ∂y

])
.

Similarly, for the z-component:

−
[
1

r
, ∂z

]
L̂y − L̂y

[
1

r
, ∂z

]
= −iℏ

([x
r
, ∂2z

]
−
[
1

r
, ∂z

]
z∂x − z∂x

[
1

r
, ∂z

])
.
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Substituting back into the full expression gives:

[Ĥ, Âx] =
iℏ

2
√
−2mE

e2

4πε0

(
− iℏ

(
[
x

r
, ∂2y ]− [

1

r
, ∂y]y∂x − y∂x[

1

r
, ∂y]

)
− iℏ

(
[
x

r
, ∂2z ]− [

1

r
, ∂z]z∂x − z∂x[

1

r
, ∂z]

)
− iℏ[∇2,

x

r
]

)
=

ℏ2

2
√
−2mE

e2

4πε0

(
[
x

r
, ∂2y ]− [

1

r
, ∂y]y∂x − y∂x[

1

r
, ∂y]

+ [
x

r
, ∂2z ]− [

1

r
, ∂z]z∂x − z∂x[

1

r
, ∂z] + [∇2,

x

r
]

)
=

ℏ2

2
√
−2mE

e2

4πε0

(
[∂2x,

x

r
]− [

1

r
, ∂y]y∂x − y∂x[

1

r
, ∂y]− [

1

r
, ∂z]z∂x − z∂x[

1

r
, ∂z]

)
=

ℏ2

2
√
−2mE

e2

4πε0

(
[∂2x,

x

r
]− y

r3
y∂x − y∂x

y

r3
− z

r3
z∂x − z∂x

z

r3

)
=

ℏ2

2
√
−2mE

e2

4πε0

(
[∂2x,

x

r
] +

y2

r5
(3x− 2r2∂x) +

z2

r5
(3x− 2r2∂x)

)
.

Focusing on [∂2x,
x
r ].

[∂2x,
x

r
] = ∂2x

x

r
− x

r
∂2x = ∂x

(
1

r
− x2

r3
+
x

r
∂x

)
− x

r
∂2x

=
−x
r3

+
1

r
∂x −

2x

r3
+

3x3

r5
− x2

r3
∂x +

1

r
∂x −

x2

r3
∂x +

x

r
∂2x −

x

r
∂2x

= −3x

r3
+

3x3

r5
+

2

r
∂x −

2x2

r3
∂x = 3x

(
x2

r5
− 1

r3

)
+ 2

(
1

r
− x2

r3

)
∂x.

Hence:

[Ĥ, Âx] =
ℏ2

2
√
−2mE

e2

4πε0

(
3x

(
x2

r5
− 1

r3

)
+ 2

(
1

r
− x2

r3

)
∂x +

y2

r5
(3x− 2r2∂x) +

z2

r5
(3x− 2r2∂x)

)
=

ℏ2

2
√
−2mE

e2

4πε0

(
3x

(
x2

r5
+
y2

r5
+
z2

r5
− 1

r3

)
+ 2

(
1

r
− x2

r3
− y2

r3
− z2

r3

)
∂x

)
= 0.

Similarly we get [Ĥ, Ây] = 0 and [Ĥ, Âz] = 0.
We will now look at the commutator of Âx and Ây, this becomes:

[Âx, Ây] =
ℏ2

8mE

(
[M̂x, M̂y] + [M̂x, K̂y] + [K̂x, M̂y] + [K̂x, K̂y]

)
. (43)

Before we are going to attack this problem term by term we will try to simplify our definition
of M̂n, starting with M̂x:

M̂x = ∂yL̂z + L̂z∂y − ∂zL̂y − L̂y∂z.

Computing each term:

∂yL̂z = ∂y (−iℏ(x∂y − y∂x)) = −iℏ
(
x∂2y − ∂y(y∂x)

)
= −iℏ

(
x∂2y − ∂x − y∂y∂x

)
,
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L̂z∂y = −iℏ(x∂y − y∂x)∂y = −iℏ
(
x∂2y − y∂x∂y

)
,

∂zL̂y = ∂z (−iℏ(z∂x − x∂z)) = −iℏ
(
∂x + z∂z∂x − x∂2z

)
,

L̂y∂z = −iℏ(z∂x − x∂z)∂z = −iℏ
(
z∂x∂z − x∂2z

)
.

Combining these:

∂yL̂z + L̂z∂y = −iℏ
(
2x∂2y − ∂x − 2y∂x∂y

)
,

∂zL̂y + L̂y∂z = −iℏ
(
∂x + 2z∂x∂z − 2x∂2z

)
.

Hence:

M̂x = (∂yL̂z + L̂z∂y)− (∂zL̂y + L̂y∂z),

= −iℏ
[
2x(∂2y + ∂2z )− 2y∂x∂y − 2z∂x∂z − 2∂x

]
,

= −2iℏ
[
x(∂2y + ∂2z )− y∂x∂y − z∂x∂z − ∂x

]
.

Similarly:

M̂y = −2iℏ
[
y(∂2z + ∂2x)− z∂y∂z − x∂y∂x − ∂y

]
,

M̂z = −2iℏ
[
z(∂2x + ∂2y)− x∂z∂x − y∂z∂y − ∂z

]
.

Now attacking (43) term by term:

[Mx,My] = −4ℏ2
[
x(∂2y + ∂2z )− y∂x∂y − z∂x∂z − ∂x, y(∂

2
z + ∂2x)− z∂y∂z − x∂y∂x − ∂y

]
,

by linearly splitting:

[Mx,My] = −4ℏ2
(
[x(∂2y + ∂2z ), y(∂

2
z + ∂2x)] + [x(∂2y + ∂2z ),−z∂y∂z]

+ [x(∂2y + ∂2z ),−x∂y∂x] + [x(∂2y + ∂2z ),−∂y]
+ [−y∂x∂y, y(∂2z + ∂2x)] + [−y∂x∂y,−z∂y∂z]
+ [−y∂x∂y,−x∂y∂x] + [−y∂x∂y,−∂y]
+ [−z∂x∂z, y(∂2z + ∂2x)] + [−z∂x∂z,−z∂y∂z]
+ [−z∂x∂z,−x∂y∂x] + [−z∂x∂z,−∂y]
+ [−∂x, y(∂2z + ∂2x)] + [−∂x,−z∂y∂z]

+ [−∂x,−x∂y∂x] + [−∂x,−∂y]
)
.

Calculating each term:
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[x(∂2y + ∂2z ), y(∂
2
z + ∂2x)] = x(∂2y + ∂2z )y(∂

2
x + ∂2y)− y(∂2x + ∂2z )x(∂

2
y + ∂2z ) =

= x∂2yy(∂
2
x + ∂2z )− y∂2xx(∂

2
y + ∂2z ) + xy∂2z (∂

2
x − ∂2y)

= x(2∂y + y∂2y)(∂
2
x + ∂2z )− y(2∂x + x∂2x)(∂

2
y + ∂2z ) + xy∂2z (∂

2
x − ∂2y)

= 2x∂y(∂
2
x + ∂2z )− 2y∂x(∂

2
y + ∂2z ),

[x(∂2y + ∂2z ),−z∂y∂z] = −x∂y(∂2y + ∂2z )z∂z + xz∂y∂z(∂
2
y + ∂2z ) = −x∂y∂2zz∂z + xz∂y∂

3
z

= −x∂y(2∂2z + z∂3z ) + xz∂y∂
3
z = −2x∂y∂

2
z ,

[x(∂2y + ∂2z ),−x∂y∂x] = −x2∂x∂y(∂2y + ∂2z ) + x∂xx∂y(∂
2
y + ∂2z ) = x∂y,

[x(∂2y + ∂2z ),−∂y] = 0,

[−y∂x∂y, y(∂2z + ∂2x)] = −y∂x∂yy(∂2x + ∂2z ) + y2∂x∂y(∂
2
x + ∂2z ) = −y∂x(∂2x + ∂2z ),

[−y∂x∂y,−z∂y∂z] = yz∂x∂
2
y∂z − z∂x∂yy∂y∂z = −z∂x∂y∂z,

[−y∂x∂y,−x∂y∂x] = y∂xx∂x∂
2
y − x∂yy∂

2
x∂y = y∂x∂

2
y − x∂2x∂y,

[−y∂x∂y,−∂y] = y∂x∂
2
y − ∂yy∂x∂y = y∂x∂

2
y − ∂x∂y − y∂x∂

2
y = −∂x∂y,

[−z∂x∂z, y(∂2z + ∂2x)] = −yz∂x∂z(∂2x + ∂2z ) + y∂x(∂
2
x + ∂2z )z∂z = −yz∂x∂3z + y∂x∂

2
zz∂z = 2y∂x∂

2
z ,

[−z∂x∂z,−z∂y∂z] = 0,

[−z∂x∂z,−x∂y∂x] = z∂xx∂x∂y∂z − xz∂2x∂y∂z = z∂x∂y∂z + xz∂2x∂y∂z − xz∂2x∂y∂z = z∂x∂y∂z,

[−z∂x∂z,−∂y] = 0,

[−∂x, y(∂2z + ∂2x)] = −∂xy(∂2x + ∂2z ) + y(∂2x + ∂2z )∂x = y∂x(∂
2
x + ∂2z )− y∂x(∂

2
x + ∂2z ) = 0,

[−∂x,−z∂y∂z] = 0,

[−∂x,−x∂y∂x] = ∂xx∂x∂y − x∂2x∂y = ∂x∂y + x∂2x∂y − x∂2x∂y = ∂x∂y,

[−∂x,−∂y] = 0.

Then filling everything in again:

[M̂x, M̂y] = −4ℏ2
(
2x∂y(∂

2
x + ∂2z )− 2y∂x(∂

2
y + ∂2z )− 2x∂y∂

2
z + x∂y(∂

2
y + ∂2z )

+ 0− y∂x(∂
2
x + ∂2z )− z∂x∂y∂z + y∂x∂

2
y − x∂2x∂y

− ∂x∂y + 2y∂x∂
2
z + 0 + z∂x∂y∂z + 0 + 0 + ∂x∂y + 0

)
.

Simplifying:

[M̂x, M̂y] = −4ℏ2
(
2x∂y(∂

2
x + ∂2z )− 2y∂x(∂

2
y + ∂2z )− 2x∂y∂

2
z + x∂y(∂

2
y + ∂2z )− y∂x(∂

2
x + ∂2z )

+ y∂x∂
2
y − x∂2x∂y + 2y∂x∂

2
z

)
= −4ℏ2

(
x∂y(∂

2
x + ∂2y + ∂2z )− y∂x(∂

2
x + ∂2y + ∂2z )

)
= −4iℏ

(
L̂z(∂

2
x + ∂2y + ∂2z )

)
= −4iℏL̂z∇2.

Due to the circular nature we also have that [M̂y, M̂z] = −4iℏL̂x∇2 and [M̂z, M̂x] = −4iℏL̂y∇2.
Now we will take a look at [M̂x, K̂y] + [K̂x, M̂y], we remind ourself that we defined:

M̂x = −2iℏ
(
x(∂2y + ∂2z )− y∂x∂y − z∂x∂z − ∂x

)
, K̂x =

1

4πε0

2me2x

iℏr
,

M̂y = −2iℏ
(
y(∂2z + ∂2x)− z∂y∂z − x∂y∂x − ∂y

)
, K̂y =

1

4πε0

2me2y

iℏr
,
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M̂z = −2iℏ
(
z(∂2x + ∂2y)− x∂z∂x − y∂z∂y − ∂z

)
, K̂z =

1

4πε0

2me2z

iℏr
.

Hence:

[M̂x, K̂y] + [K̂x, M̂y] = [−2iℏ
(
x(∂2y + ∂2z )− y∂x∂y − z∂x∂z − ∂x

)
,

1

4πε0

2me2y

iℏr
]

+ [
1

4πε0

2me2x

iℏr
,−2iℏ

(
y(∂2z + ∂2x)− z∂y∂z − x∂y∂x − ∂y

)
]

=
−me2

πε0

(
[x(∂2y + ∂2z )− y∂x∂y − z∂x∂z − ∂x,

y√
x2 + y2 + z2

]

+ [
x√

x2 + y2 + z2
, y(∂2z + ∂2x)− z∂y∂z − x∂y∂x − ∂y]

)
To calculate these commutators we will use that with r =

√
x2 + y2 + z2 we have ∂n(r) = xn

r
and ∂n(1r ) =

−xn
r3

. We will know attack each commutator separately. By linearity:

[x(∂2y + ∂2z )− y∂x∂y − z∂x∂z − ∂x,
y

r
] = [x∂2y ,

y

r
] + [x∂2z ,

y

r
]− [y∂x∂y,

y

r
]− [z∂x∂z,

y

r
]− [∂x,

y

r
].

Computing each component separately:

[x∂2y ,
y

r
] = x∂y(

y

r
∂y +

1

r
− y2

r3
)− xy

r
∂2y = x(2(

1

r
− y2

r3
)∂y + 3(

y3

r5
− y

r3
)),

[x∂2z ,
y

r
] = xy∂2z

1

r
− xy

r
∂2z = xy∂z(

1

r
∂z −

z

r3
)− xy

r
∂2z = xy(

3z2

r5
− 1

r3
(1 + 2z∂z)),

[y∂x∂y,
y

r
] = y∂x(

1

r
− y2

r3
+
y

r
∂y)−

y2

r
∂x∂y = y(

3xy2

r5
− 1

r3
(x+ xy∂y + y2∂x) +

1

r
∂x),

[z∂x∂z,
y

r
] = yz∂x∂z

1

r
− yz

r
∂x∂z = yz(∂x(

1

r
∂z −

z

r3
)− 1

r
∂x∂z) = yz(

3xz

r5
− x∂z + z∂x

r3
),

[∂x,
y

r
] = y(∂x

1

r
− 1

r
∂x) = −xy

r3
.

Now the other commutator:

[x
r
, y(∂2z + ∂2x)− z∂y∂z − x∂y∂x − ∂y

]
=
[x
r
, y∂2z

]
+
[x
r
, y∂2x

]
−
[x
r
, z∂y∂z

]
−
[x
r
, x∂y∂x

]
−
[x
r
, ∂y

]
.

Computing these separately:

[x
r
, y∂2z

]
=
xy

r
∂2z − y∂2z

x

r
=
xy

r
∂2z − y∂z(

x

r
∂z −

xz

r3
) = −xy(3z

2

r5
− 1

r3
(1 + 2z∂z)),[x

r
, y∂2x

]
=
xy

r
∂2x − y∂2x

x

r
=
xy

r
∂2x − y∂x(

x

r
∂x +

1

r
− x2

r3
) = −y(2(1

r
− x2

r3
)∂x + 3(

x3

r5
− x

r3
)),[x

r
, z∂y∂z

]
=
xz

r
∂y∂z − xz∂y∂z

1

r
=
xz

r
∂y∂z − xz∂y(

−z
r3

+
1

r
∂z) = −xz(3yz

r5
− y∂z + z∂y

r3
),[x

r
, x∂y∂x

]
=
x2

r
∂y∂x − x∂y∂x

x

r
=
x2

r
∂y∂x − x∂y(

x

r
∂x +

1

r
− x2

r3
) = −x(3x

2y

r5
− 1

r3
(y + xy∂x + x2∂y) +

1

r
∂y),[x

r
, ∂y

]
= x(∂y

1

r
− 1

r
∂y) =

xy

r3
.

Now we will sum the related pairs of commutators:
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[x∂2y ,
y
r ] + [xr , y∂

2
x] = x

(
2
(
1
r −

y2

r3

)
∂y + 3y3

r5

)
− y

(
2
(
1
r −

x2

r3

)
∂x + 3x3

r5

)
,

[x∂2z ,
y
r ] + [xr , y∂

2
z ] = 0,

[y∂x∂y,
y
r ] + [xr , x∂y∂x] = y

(
3xy2

r5
− 1

r3
(xy∂y + y2∂x) +

1
r∂x

)
− x

(
3x2y
r5

− 1
r3
(xy∂x + x2∂y) +

1
r∂y

)
,

[z∂x∂z,
y
r ] + [xr , z∂y∂z] = − 1

r3

(
yz2∂x − xz2∂y

)
,

[∂x,
y
r ] + [xr , ∂y] = 0.

Filling these sums in gives:

[M̂x, K̂y] + [K̂x, M̂y] =
−me2

πε0

(
[x(∂2y + ∂2z )− y∂x∂y − z∂x∂z − ∂x,

y
r ]

+ [xr , y(∂
2
z + ∂2x)− z∂y∂z − x∂y∂x − ∂y]

)
=

−me2

πε0

(
x
(
2
(
1
r −

y2

r3

)
∂y + 3y3

r5

)
− y

(
2
(
1
r −

x2

r3

)
∂x + 3x3

r5

)
− y

(
3xy2

r5
− 1

r3
(xy∂y + y2∂x) +

1
r∂x

)
+ x

(
3x2y
r5

− 1
r3
(xy∂x + x2∂y) +

1
r∂y

)
+ 1

r3

(
yz2∂x − xz2∂y

)
=

−me2

πε0

(
2

r
(x∂y − y∂x) +

2

r3
(
−xy2∂y + x2y∂x

)
+

1

r
(−y∂x + x∂y)− y

(
− 1

r3
(xy∂y + y2∂x)

)
+ x

(
− 1

r3
(xy∂x + x2∂y)

)
+ 1

r3

(
yz2∂x − xz2∂y

)
=

1

4πε0

−8me2

r
(x∂y − y∂x)

=
1

4πε0

8me2

iℏr
L̂z,

via the circularity of the system, we also have [M̂y, K̂z] + [K̂y, M̂z] = 1
4πε0

8me2

iℏr L̂x and
[M̂z, K̂x] + [K̂z, M̂x] = 1

4πε0
8me2

iℏr L̂y. Now it rests us to calculate [K̂x, K̂y], remember we
defined:

K̂x =
1

4πε0

2me2x

iℏr
, K̂y =

1

4πε0

2me2y

iℏr
, K̂z =

1

4πε0

2me2z

iℏr
.

We instantly see that [K̂n, K̂m] = 0 ∀n,m ∈ {x, y, z}, hence we can now finally compute
the commutator of Âx and Ây:

[Âx, Ây] =
ℏ2

8mE

(
[M̂x, M̂y] + [M̂x, K̂y] + [K̂x, M̂y] + [K̂x, K̂y]

)
=

ℏ2

8mE
(−4iℏL̂z∇2 +

1

4πε0

8me2

iℏr
L̂z)

=
−iℏ
E

(
ℏ2

2m
L̂z∇2 +

1

4πε0

e2

r
L̂z) = iℏL̂z.
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Due to the circularity of the system we conclude that:

[Âx, Ây] = iℏL̂z,

[Ây, Âz] = iℏL̂x,

[Âz, Âx] = iℏL̂y.

Now we will look into the commutator of L̂x and Ây. Before we do this we will verify two
identities we will need, namely [L̂x, M̂y] = −iℏM̂z en [L̂n,

1
r ] = 0. starting with the latter,

we will prove it for n = x and due to the cyclic nature of the angular momentum operator
the same proof also holds for the other coordinates.

[L̂x,
1
r ] = [−iℏ(y∂z − z∂y),

1
r ] = −iℏ((y∂z − z∂y)

1
r −

1
r (y∂z − z∂y)) = −iℏ( 1

r3
(yz − zy)) = 0

We will use this in combination with the product rule to show:[
L̂x,

y

r

]
=

[
L̂x,

1

r

]
y +

1

r

[
L̂i, y

]
=

1

r

[
L̂x, y

]
=
iℏz
r
,

and thus also
[
L̂y,

z
r

]
= iℏx

r and
[
L̂z,

x
r

]
= iℏy

r . Now for the first identity:

[L̂x, M̂y] = −2ℏ2[y∂z − z∂y, y(∂
2
z + ∂2x)− z∂y∂z − x∂y∂x − ∂y]

= −2ℏ2([y∂z,−z∂y∂z − x∂y∂x − ∂y]− [z∂y, y(∂
2
z + ∂2x)− z∂y∂z])

= −2ℏ2(−[y∂z, z∂y∂z]− x[y, ∂y]∂x∂z − [y, ∂y]∂z − [z∂y, y∂
2
z ]− z[∂y, y]∂

2
x + [z, z∂z]∂

2
y)

= −2ℏ2(−y∂y∂z + z∂2z + x∂x∂z + ∂z + 2y∂y∂z − z∂2z − z∂2x − z∂2y)

= −2ℏ2(x∂x∂z + ∂z + y∂y∂z − z(∂2x + ∂2y))

= iℏ(−2iℏ
(
z(∂2x + ∂2y)− x∂z∂x − y∂z∂y − ∂z

)
)

= iℏM̂z.

By the circular nature of the problem we then also have [L̂y, M̂z] = iℏM̂x and [L̂z, M̂x] =
iℏM̂y. Now for the final commutator:

[L̂x, Ây] = [L̂x,
−iℏ

2
√
−2mE

(
M̂y +

1

4πε0

2me2y

iℏr

)
]

=
−iℏ

2
√
−2mE

[L̂x, M̂y +
1

4πε0

2me2y

iℏr
]

=
−iℏ

2
√
−2mE

(
[L̂x, M̂y] +

1

4πε0

2me2

iℏ
[L̂x,

y
r ]

)
=

−iℏ
2
√
−2mE

(
(iℏM̂z) +

1

4πε0

2me2

iℏ
(iℏ z

r )

)
= iℏ

−iℏ
2
√
−2mE

(
M̂z +

1

4πε0

2me2z

iℏr

)
= iℏÂz.
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Now due to the circularity we also have [L̂y, Âz] = −iℏÂx and [L̂z, Âx] = −iℏÂy. With a
very similar computation we also get [Âx, L̂y] = iℏÂz , [Ây, L̂z] = iℏÂx and [Âz, L̂x] = iℏÂy.
Now it rests us to show that Ân and L̂n commute to see that the commutation relations
match that of so(4).

[L̂x, Âx] = [L̂x,
−iℏ

2
√
−2mE

(Mx +Kx)]

=
−iℏ

2
√
−2mE

([L̂x,Mx] +
1

4πε0

2me2

iℏ
[L̂x,

x

r
])

=
−iℏ

2
√
−2mE

([L̂x,Mx] +
1

4πε0

2me2

iℏ
([L̂x,

1

r
]x+

1

r
[L̂x, x])

=
−iℏ

2
√
−2mE

([L̂x,Mx])

=
iℏ3√
−2mE

([y∂z − z∂y, x(∂
2
y + ∂2z )− y∂x∂y − z∂x∂z − ∂x])

=
iℏ3√
−2mE

([y∂z − z∂y, x(∂
2
y + ∂2z )− y∂x∂y − z∂x∂z])

=
iℏ3√
−2mE

([y∂z, x∂
2
y − y∂x∂y − z∂x∂z]− [z∂y, x∂

2
z − y∂x∂y − z∂x∂z])

=
iℏ3√
−2mE

(x[y, ∂2y ]∂z − [y, y∂y]∂x∂z − y[∂z, z∂z]∂x − x[z, ∂2z ]∂y + z[∂y, y∂y]∂x + [z, z∂z]∂x∂y)

=
iℏ3√
−2mE

(−2x∂y∂z − y∂x∂z + y∂x∂z + 2x∂z∂y + z∂x∂y − z∂x∂y) = 0

Again due to the circularity of the system we also have that [L̂y, Ây] = 0 and [L̂z, Âz] = 0.
Now we have finally calculated all commutation relations.
Now we still need to check some details. First Â · L̂ = 0, L̂ · Â = 0. With [L̂n, Ân] = 0
showing either is true is sufficient. We will now check Â · L̂ = 0, we will do this by looking
at M̂ · L̂, R̂

r · L̂.

−1

ℏ2
M̂xL̂x =

(
2x∂2y − 2y∂x∂y − 2z∂x∂z + 2x∂2z − 2a∂x

)
(y∂z − z∂y)

= 2
(
xy∂2y∂z − yz∂x∂

2
z

)
+ 2

(
yz∂x∂

2
y − xz∂y∂

2
z

)
+ 4 (z∂x∂y − y∂x∂z) + 2

(
xy∂2z − xz∂3y

)
+
(
2z2∂x∂y∂z − 2y2∂x∂y∂z

)
.

If we calculate the other two products, then the sum of the nth term of each product sums
to zero, for the first term we get for example:(

xy∂2y∂z − yz∂x∂
2
z

)
+
(
yz∂2z∂x − zx∂y∂

2
x

)
+
(
zx∂2x∂y − xy∂z∂

2
y

)
= 0.

Hence:

M̂ · L̂ = M̂xL̂x + M̂yL̂y + M̂zL̂z = 0.
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Now for the second term:

R̂

r
· L̂ =

x√
x2 + y2 + z2

L̂x +
y√

x2 + y2 + z2
L̂y +

z√
x2 + y2 + z2

L̂z

=
−iℏ√

x2 + y2 + z2
(xz∂y − xy∂z + yx∂z − yz∂x + zy∂x − zx∂y) = 0.

Thus by linearity we can conclude that Â · L̂ = 0. Now we still need to check that indeed

L̂2 + Â2 = 1 +
(

1
4πε0

)2
me4

2Eℏ2 .First we look at L̂2,

L̂2 := L̂2
x + L̂2

y + L̂2
z

= −ℏ2((z∂y − y∂z)
2 + (x∂z − z∂x)

2 + (y∂x − x∂y)
2)

= −ℏ2((y2 + z2)∂2x + (x2 + y2)∂2z + (x2 + z2)∂2y)

− 2yz∂y∂z − 2xz∂x∂z − 2xy∂x∂y − 2x∂x − 2y∂y − 2z∂z)

= −ℏ2((x2 + y2 + z2)∇2 − (x∂x + y∂y + z∂z)
2 − (x∂x + y∂y + z∂z)).

Now we will look at Â2 for this we remind ourself that

Âx =
−iℏ

2
√
−2mE

(
M̂x +

1

4πε0

2me2x

iℏr

)
so

Â2 =
ℏ2

8mE

(
M̂ +

1

4πε0

2me2R̂

iℏr

)2

Hence we will first look at M̂2

−1

4ℏ2
M̂2

x =
(
x∂2y − y∂x∂y − z∂x∂z + x∂2z − ∂x

)2
= x2∂4y + y2∂2x∂

2
y + y∂2x∂y + z2∂2x∂

2
z + x∂2z∂x + x2∂4z + ∂2x

− 2xy∂3y − 2x∂x∂
2
y − y∂3y − 2xz∂x∂

2
y∂z − z∂2y∂z + 2x2∂2y∂

2
z

− 2x∂x∂
2
y − ∂2y + 2yz∂2x∂y∂z − 2xy∂x∂y∂

2
z − y∂y∂

2
z + 2y∂2x∂y

− 2xz∂x∂
3
z − z∂3z − 2x∂x∂

2
z + 2z∂2x∂z − 2x∂x∂

2
z − ∂2z

=
(
∂2x − ∂2y − ∂2z

)
+
(
x2∂4y + x2∂4z + y2∂2x∂

2
y + z2∂2x∂

2
z + 2x2∂2y∂

2
x + x2∂4x + y2∂2x∂

2
y + z2∂2x∂

2
z

)
−
(
x2∂4x + y2∂2x∂

2
y + z2∂2x∂

2
z + 2xy∂x∂

3
y + 2xy∂x∂y∂

2
z

)
+ 2xz∂x∂

3
z + z∂3z + y∂y∂

2
z + x∂x∂

2
z

−
(
y∂3y + z∂2y∂z + 2x∂x∂

2
y

)
+
(
2yz∂x∂y∂z − 2xz∂x∂

2
y∂z − 2x∂y∂

2
z + 2y∂2x∂y

)
− 3x∂x∂

2
z + 3z∂2x∂z + x∂2y∂y.

Now in a very similar manner one can calculate M̂2
y and M̂2

z and when we sum these we get.

−1

4ℏ2
M̂2 =

(
−1− L̂2

ℏ2

)
∇
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The second square term is just

−
(
2me2

4πε0ℏ

)2

since the R̂ cancels with the r2 term. Thus we are left with the cross terms. For the x cross
terms we get:

(
M̂x

x√
x2 + y2 + z2

+
x√

x2 + y2 + z2
M̂x

)

=

[
M̂x,

x√
x2 + y2 + z2

]
+ 2

x√
x2 + y2 + z2

M̂x

=
1√

x2 + y2 + z2
[M̂x, x]

+ x

[
M̂x,

1√
x2 + y2 + z2

]
+ 2

x√
x2 + y2 + z2

M̂x,

similar results hold for y and z. We will now calculate the individual terms:

1√
x2 + y2 + z2

(
[M̂x, x] + [M̂y, y] + [M̂z, z]

)
=

2iℏ√
x2 + y2 + z2

(3 + 2x∂x + 2y∂y + 2z∂z),

[
xM̂x + yM̂y + zM̂z,

1√
x2 + y2 + z2

]
=

2iℏ(√
x2 + y2 + z2

)3(x2 + y2 + z2 + x2y∂y + y2∂z + z2x∂x + x2z∂z

+ y2x∂x + z2y∂y − x2∂x − xy∂y − x2∂y − xy2∂y − y2z∂z − xz2∂x

)
=

2iℏ√
x2 + y2 + z2

,

2√
x2 + y2 + z2

(
xM̂x + yM̂y + zM̂z

)
=

4iℏ√
x2 + y2 + z2

(2xy∂x∂y + 2yz∂y∂z + 2xz∂z∂x

−x2∂2y − x2∂2z − y2∂2x − y2∂2z − z2∂2x − z2∂2y + x∂x + y∂y + z∂z
)
.

summing gives:

4iℏ√
x2 + y2 + z2

(1 + 2x∂x + 2y∂y + 2z∂z + 2xy∂x∂y + 2yz∂y∂z

+2xz∂x∂z − x2∂2y − x2∂2z − y2∂2x − y2∂2z − z2∂2x − z2∂2y
)
.

=
4iℏ( L̂2

ℏ2 + 1)√
x2 + y2 + z2

.
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So in total:

L̂2 + Â2 = L̂2 +
ℏ2

8mE

(
4ℏ2

(
1 +

L̂2

ℏ2

)
∇+

1

4πε0

2me2

iℏ
4iℏ( L̂2

ℏ2 + 1)√
x2 + y2 + z2

−
(
2me2

4πε0ℏ

)2
)

= L̂2

(
1 +

ℏ2

2mE
∇+

1

E

e2

4πε0

1√
x2 + y2 + z2

)

+
ℏ2

8mE

(
4ℏ2∇+

1

4πε0

2me2

iℏ
4iℏ√

x2 + y2 + z2
−
(
2me2

4πε0ℏ

)2
)

=
ℏ2

8mE

(
4ℏ2∇+

2me2

4πε0

4√
x2 + y2 + z2

−
(
2me2

4πε0ℏ

)2
)

=
ℏ2

E

(
ℏ2

2m
∇+

e2

4πε0

1√
x2 + y2 + z2

)
− ℏ2

8mE

(
2me2

4πε0ℏ

)2

= −ℏ2 − ℏ2

8mE

(
2me2

4πε0ℏ

)2

.

Hence:
−1

ℏ2
(L̂2 + Â2) = 1 +

ℏ2

2mE

(
2me2

4πε0ℏ

)2

= 1 +

(
1

4πε0

)2 2me4

Eℏ2
.
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