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Abstract

A combinatorial proof of Wigner’s Semicircle Law for the Gaussian Unitary Ensemble (GUE)
is presented in this report. The distribution of eigenvalues of different samples of general Wigner
matrices is shown to converge to the semicircle distribution, with the aid of histograms created in
Python. The type of convergence that is shown is that of the averaged moments of the eigenvalue
distribution of sample GUE matrices to the moments of the semicircle distribution, as the size of the
matrices grow large. This is done by using a method known as the ‘method of moments’. The concepts
of random matrices, Catalan numbers, mixed moments of standard Gaussian random variables, (non-
crossing) pairings, Wick’s formula and permutation cycles are introduced in this method. The aim of
this report is to provide a detailed proof of Wigner’s Semicircle Law in expectation, understandable
for bachelor level mathematics students.
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1 Introduction

1.1 Random matrix theory in general

First, what are random matrices? Random matrices, basically, have random variables corresponding
to some probability distribution as elements. A random matrix can be thought of as an object that
can be used to model uncertain, hard-to quantify information. Random matrices have applications in a
big variety of fields within mathematics. The first prominent instance in which random matrices were
used explicitly was in the work by John Wishart in 1928. He used random matrices to estimate sample
covariance matrices in order to statistically analyze large samples. Then, in 1950, Eugene Wigner and
other physicists looked at random matrices in the context of particle interactions. He used random
matrices in order to model energy levels of the nuclei of heavy atoms. His work is considered to be the
starting point of random matrix theory. Now, among many other applications, random matrices are of
great significance in for example signal processing and information theory by quantifying noise and serve
as testers in numerical linear algebra by validating the performance of algorithms.

1.2 Aim

In his work on random matrices, Wigner introduced a theorem which is referred to as Wigner’s Semicircle
Law (WSL). Roughly, the theorem states that the distribution of eigenvalues of a certain type of N ×N
random matrix converges weakly in probability to the semicircle distribution when N grows. There
exist many variations on this theorem, stating different classes of random matrices and different types of
convergence. Therefore many different types of proofs of Wigner’s Semicircle Law have been constructed.
Some involve analytic tools, others use combinatorial tools. This report will focus on a combinatorial
proof of the theorem, using the ‘method of moments’. Wigner’s Semicircle Law will be proven for the
matrices in the Gaussian Unitary Ensemble, with all its elements distributed according to the Gaussian
distribution, showing convergence in average of the probability measures.
The existing proof of Wigner’s Semicircle Law of this kind is not suitable to read for the average student
equipped with bachelor level knowledge in mathematics, because deductions are made that are not trivial
to them. The aim of this report is to provide a detailed combinatorics-based proof of Wigner’s Semicircle
Law using deductions understandable at bachelor level. Existing proofs were studied in order to do so.
[Anderson et al., 2009][Speicher, 2020][Wolf, 2021]

1.3 Outline

First, a foundation for Wigner’s Semicircle Law will be set. In this part, Wigner matrices and a dis-
tribution for their eigenvalues are introduced. The way the eigenvalues are distributed is then analyzed
by plotting them in histograms for a variety of sizes of the Wigner matrix and a variety of different
conditions for the elements. It is then shown using the histograms that, as the size of such matrices grow,
the distribution of the eigenvalues converges to the semicircle distribution. Then, the type of Wigner
matrix for which the convergence will be proven is introduced, followed by how to correctly describe
such convergence mathematically. Finally the type of convergence that will be used to prove Wigner’s
Semicircle Law is given and the theorem itself is stated. After the foundation is set and the theorem
is introduced, a brief overview of the course of the proof is given. Then the basis of the proof, which
includes various propositions, lemmas and theorems, are presented in a structured way provided with
explanatory examples. Finally, with the aid of the basis that was laid, Wigner’s Semicircle Law is proven.

2 Wigner’s Semicircle Law

2.1 Random matrices, ESD and the semicircle distribution

As mentioned, a random matrix is a matrix whose elements are random variables corresponding to
some probability distribution. A random matrix may also be constructed using different probability
distributions for different elements of the matrix. There are types of random matrices with certain
specifications which are so commonly used, they get their own name. One of those random matrices
is called the Wigner random matrix. A Wigner random matrix is a square (complex) matrix which is
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equal to its conjugate transpose (a Hermitian matrix), whose elements on the diagonal are identically
independently distributed (i.i.d) and whose elements above the diagonal are i.i.d as well. See the definition
below. Here, the expectation is denoted by E and the variance is denoted by Var.

Definition 2.1 (Wigner random matrix). Let WN = (wij)1≤i,j≤N be a N ×N matrix where the wij ’s
are (complex) random variables corresponding to a certain distribution such that:

[1] For all i, j: E(wij) = 0

[2] For all i = j: wij ’s are independently identically distributed

[3] For all i < j: wij ’s are independently identically distributed and Var(wij) = 1

[4] For all i, j: wij = wji (WN is Hermitian)

Then WN is a Wigner random matrix.

Remark 2.1.1. In Wigner’s Semicircle Law, the Wigner matrix is scaled by 1√
N

and redefined as

W̄N = 1√
N
WN . To explain why particularly this precise scaling is used, more information is needed.

Therefore, the reason will be given later on in the report in Remark 3.5.1.

Remark 2.1.2. The distribution from which the diagonal elements are drawn may be different from the
distribution from which the off-diagonal elements are drawn.

Remark 2.1.3. For i 6= j, the wij ’s are complex random variables of the form Z = X+Y i, where X and
Y are distributed according to some, but the same, distribution. By property [4], the random variables
wii must be real, since wii = wii must hold. From now on, whenever wij for i 6= j is said to correspond
to a distribution, it is meant that its real and imaginary part correspond that distribution.

Remark 2.1.4. Note that in this report, there is interchangeably talked about elements being random
variables corresponding to a certain distribution, and elements drawn from a distribution. When spoken
about the first, the random variable has not taken on a value yet. Whereas spoken about the latter, some
value has been given to it by drawing according to the mentioned distribution.

As eigenvalues of a matrix give valuable information about a system that is being observed, it can be
interesting to look at the behaviour of the eigenvalues of the matrix W̄N . A great tool for doing so is
the Empirical Spectral Distribution (ESD). The ESD is a statistical measure used in the field of random
matrix theory to describe the distribution of eigenvalues of a matrix. Below follows its definition.

Definition 2.2 (Empirical Spectral Distribution (ESD)). Let AN be an N ×N Hermitian matrix and
let λ1(AN ) ≤ λ2(AN ) ≤ · · · ≤ λN (AN ) be the ordered real eigenvalues of AN , counting multiplicity. For
i = 1, 2, . . . , N let δ be the Dirac delta function given by:

δλi(AN )(x) =


1 ; x = λi(AN )

0 ; x 6= λi(AN ).

Then the Empiral Spectral Distribution of the eigenvalues of AN is the measure µANwith density:

σAN (x) :=
1

N

N∑
i=1

δλi(AN )(x).

.

The ESD of W̄N can be computed in a graphical form like a histogram as follows. Divide a domain
I ⊂ R into any desired amount of intervals I1, I2, . . . , Ij ∈ I. The ESD counts the amount of eigenvalues
of W̄N that have a value within a certain interval Ij , using the indicator function δλi(W̄N ). The ESD then
normalizes this count by dividing it by the total number of eigenvalues N of the matrix. The result can
be portrayed in the form of a histogram. The Ij ’s are the columns of the histogram and the normalized
count, or in other words the probability an eigenvalue lies within the bounds of Ij , as the column height.
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Let the scaled Wigner matrix W̄N be as in Definition 2.1. Then W̄N is an N ×N Hermitian matrix,
so it has N real eigenvalues. Since W̄N has random variables as its elements, each eigenvalue of WN

is random too. In spite of this randomness, some sort of structure seems to occur when plotting the
eigenvalues of a random matrix of the form of W̄N . Take for example W̄50, where all elements of the
Wigner random matrix are drawn from the standard (complex) Gaussian distribution N (0, 1). Below, a
representation of the distribution of eigenvalues of three samples of such random matrices is shown. All
figures in this report are made in Python. The code for creating these figures can be found in Appendix
A.

Figure 1: ESD histogram of a
sample of Wigner matrix W̄50,
where the wii’s and wij ’s are
drawn from N (0, 1).

Figure 2: ESD histogram of a
sample of Wigner matrix W̄50,
where the wii’s and wij ’s are
drawn from N (0, 1).

Figure 3: ESD histogram of a
sample of Wigner matrix W̄50,
where the wii’s and wij ’s are
drawn from N (0, 1).

When comparing figures 1, 2 and 3 already some sort of a pattern can be detected. Every time a
Wigner matrix W̄50 is generated and the eigenvalues are computed, the probability that the eigenvalues
lie around −2 and 2 seems to be systematically low. The highest probabilities of an eigenvalue existing
within an interval shift between −1.5 and 1.5. An even more consistent pattern becomes visible when
the size N of the scaled Wigner matrix is gradually increased. Now, the ESD of three samples of Wigner
matrices of size N = 150 is compared.

Figure 4: ESD histogram of a
sample of Wigner matrix W̄150,
where the wii’s and wij ’s are
drawn from N (0, 1).

Figure 5: ESD histogram of a
sample of Wigner matrix W̄150,
where the wii’s and wij ’s are
drawn from N (0, 1).

Figure 6: ESD histogram of a
sample of Wigner matrix W̄150,
where the wii’s and wij ’s are
drawn from N (0, 1).

Each time a W̄150 is generated, the corresponding eigenvalue distributions look even more similar to
each other than the W̄50 case. With some outliers, an increase in probability of the eigenvalues existing
within a certain interval can be seen from both −2 to 0 and 2 to 0. What happens when the size of the
sample matrices are significantly increased to, for example, N = 1500?
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Figure 7: ESD histogram of a
sample of Wigner matrix W̄1500,
where the wii’s and wij ’s are
drawn from N (0, 1).

Figure 8: ESD histogram of a
sample of Wigner matrix W̄1500,
where the wii’s and wij ’s are
drawn from N (0, 1).

Figure 9: ESD histogram of a
sample of Wigner matrix W̄1500,
where the wii’s and wij ’s are
drawn from N (0, 1).

In figures 7, 8 and 9 barely any difference between the distribution of the eigenvalues is noticeable.
A distinct shape occured in all them. Probabilities of eigenvalues appearing around −2 and 2 being the
lowest, and going up with a descending increase towards 0. The shape to which the histograms of the
ESD seem to converge towards to as N increases, is actually a deterministic distribution called Wigner’s
semicircle distribution.

Definition 2.3 (The Wigner semicircle distribution). The Wigner semicircle distribution in Wigner’s
Semicircle Law is the measure µsc, with density:

σsc(x) =


1

2π

√
4− x2 ; − 2 ≤ x ≤ 2

0 ; |x| > 2.

Remark 2.3.1. The general Wigner semicircle distribution is actually a measure with density:

σR(x) :=
2

πR2

√
R2 − x2,

for −R ≤ x ≤ R and σR(x) = 0 when |x| > R. In Wigner’s Semicircle Law, the distribution with R = 2
is used.

σsc is better described as a semi-ellipse, with values between −2 and 2 and a maximum at 1
π .

Figure 10: Wigner’s semicircle distribution density function σSC .

As N increases, the eigenvalue distribution seems to get closer to Wigner’s semicircle distribution. If
again, a scaled Wigner random matrix where all elements of the Wigner random matrix are drawn from
the standard (complex) Gaussian distribution N (0, 1) is generated, and a dramatically bigger value for
N is chosen, this presumption becomes almost undeniable (it still remains to be proven). See figure 11
below.
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Figure 11: ESD histogram of a sample of Wigner matrix W̄3000, where the wii’s and wij ’s are drawn from
N (0, 1), plotted against Wigner’s semicircle distribution.

Up till now, only eigenvalue distributions of Wigner matrices have been shown where all the elements
have been drawn from the standard (complex) Gaussian distribution. The way the Wigner matrix is
defined in Definition 2.1, choosing other distributions for the elements of W̄N should work too. As long
as the mean of all the random variables is equal to 0 and the variance of the off-diagonal random variables
is 1. As mentioned before, the Wigner matrix may be constructed using different distributions for the
diagonal and off-diagonal elements as well. In the figures below, some results of the eigenvalue distribution
where different distributions for the elements of W̄3000 are used, are shown.

Figure 12: ESD histogram of a
sample of Wigner matrix W̄1500,
where the wii’s and wij ’s are
drawn from the Laplace distribu-
tion.

Figure 13: ESD histogram of a
sample of Wigner matrix W̄1500,
where the wii’s and wij ’s are
drawn from the logistic distribu-
tion.

Figure 14: ESD histogram of a
sample of Wigner matrix W̄1500,
where the wii’s are drawn from
the Laplace distribution and wij ’s
are drawn from the logistic distri-
bution.

This is a remarkable result, since it turns out this convergence takes place regardless of which distribu-
tion is used on the entries of the Wigner matrix. That is very powerful, because even though the matrix is
random, with random entries and therefore random eigenvalues, there is immense structure behind them.
The eigenvalues may be random, but the group of them arrange themselves in a predictable pattern.
The fundamental result that when the size of an N ×N Wigner matrix W̄N increases, the measure µW̄N

of that matrix will approach the semicircle measure µsc is known as Wigner’s Semicircle Law. The law
yields an universal structure; it does not depend on the distribution of the entries of the matrix.

In this report, this convergence will be proven for a specific type of random matrix. This type of
matrix belongs to the Gaussian Unitary Ensemble (GUE). The matrix is a Wigner random matrix like
in Definition 2.1, where the elements on the diagonal are distributed following the standard Gaussian
distribution N (0, 1). The non-diagonal elements are distributed according to what will be referred to as
the standard complex Gaussian distribution CN (0, 1). Below its definition, followed by the definition of
a GUE matrix.

Definition 2.4. Let X,Y ∈ N (0, 1) be real standard Gaussian random variables. A standard complex
Gaussian random variable Z ∈ CN (0, 1) is of the form:

Z =
X + iY√

2
.
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Remark 2.4.1. The division of X+ iY by
√

2 ensures the variance of Z being one, and therefore ensures
that Z is a complex standard Gaussian random variable.

Definition 2.5 (Gaussian Unitary Ensemble matrix). Let WN = (wij)1≤i,j≤N be a N ×N matrix where
the wij ’s are random variables such that:

[1] wij = wji (WN is Hermitian)

[2] For all i ≤ j: wij ’s are independently identically distributed

[3] For all i < j: wij ∈ CN (0, 1)

[4] For all i = j: wij ∈ N (0, 1)

Then WN is a random matrix in the GUE.

With the scaled matrix W̄N = 1√
N
WN , where WN as in Definition 2.5, will be worked with from now on.

2.2 Types of convergence

How can the convergence observed in the previous section be described mathematically? As N goes to
infinity, it is seen that the normalized number of eigenvalues within some interval [s, t] ∈ R approaches
the semicircle distribution.

Figure 15: Convergence of the normalized amount of eigenvalues within an interval [s, t] to the semicircle
distribution at interval [s, t] as N grows.

The convergence in figure 15 can be described mathematically as follows. For all intervals [s, t] ∈ R and
for all characteristic functions f = 1[s,t]:

1

N

N∑
i=1

f(λi(W̄N ))
N→∞−−−−→

∫ ∞
−∞

f(x) dµsc(x). (1)

The above convergence is difficult to prove since it is required to know the eigenvalues, which are random.
So how can (1) be proven? Instead of looking at characteristic functions f(x) = 1[s,t](x), the convergence

can first be proven for continuous functions f(x) = xk for all k = 1, 2, . . .:

1

N

N∑
i=1

λi(W̄N )k
N→∞−−−−→

∫ ∞
−∞

xk dµsc(x). (2)

It turns out by more theoretical results that the convergence in (2) is the same as the convergence in (1).
In this report, those theoretical results will not be addressed. The limit in (2) is actually a convergence
of moments of the Empirical Spectral Distribution to the moments of the semicircle distribution. To
understand this, the definition of the k-th order moments of a measure is given below.

Definition 2.6 (k-th order moment). Let X be a random variable with density σ(x) corresponding to
measure µ. The k-th order central moment of X about its mean E(X) = αX with respect to µ is defined
as

mµ,k(x) := E[(X − αX)k] =

∫ ∞
−∞

(x− αX)k dµ =

∫ ∞
−∞

(x− αX)kσ(x) dx.
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Since the semicircle distribution has its mean at 0, it is clear that the expression for the k-th order
moment of the semicircle distribution is exactly the expression where the limit converges to in (2):

mµsc,k(x) :=

∫ ∞
−∞

(x)k dµsc.

Now, to see that the expression 1
N

∑N
i=1 λi(W̄N )k in (2) is actually the k-th order moment of the Empirical

Spectral Distribution, a little more explanation is needed. The mean of the ESD for the matrix described
in Definition 2.5 is set at 0 as well, since the results indicated so as N grows. Using Definition 2.6, this
is the k-th order moment of the Empirical Spectral measure:

mµW̄N ,k
(x) :=

∫ ∞
−∞

xk dµW̄N
=

∫ ∞
−∞

xkσW̄N
(x) dx.

Integrating over all x ∈ R, the integral only has non-zero values when x coincides with one of the N
eigenvalues of W̄N , because of the indicator function δλi(W̄N ) in σW̄N

(x). So the integral becomes the

following finite sum, taking into account that the probability of λi(W̄N ) is equal to an x is 1
N by the

Empirical Spectral measure:

mµW̄N ,k
(x) :=

∫ ∞
−∞

xkσW̄N
(x) dx

= λk1(W̄N ) σsc(λ1(W̄N ))︸ ︷︷ ︸
= 1
N

+λk2(W̄N ) σsc(λ2(W̄N ))︸ ︷︷ ︸
= 1
N

+ · · ·+ λkN(W̄N ) σsc(λN(W̄N ))︸ ︷︷ ︸
= 1
N

. (3)

So:

mµW̄N ,k
(x) =

1

N

N∑
i=1

λi(W̄N )k. (4)

So the convergence in (2) indeed describes the convergence of the moments of the Empirical Spectral
Distribution to the moments of the semicircle distribution when N goes to infinity:

mµW̄N ,k
N→∞−−−−→ mµsc,k. (5)

The proof of this convergence can be split into two problems.

(1) Proof convergence in average: E(mµW̄N ,k
)→ mµsc,k.

(2) Proof that deviation from the average will become small as N →∞.

First a weaker form of convergence is shown; convergence in averaged sense. There are infinite possible
outcomes when generating a matrix of the form W̄N like in Definition 2.5. In theory, in step (1) there
is averaged over all the possibilities. This means summing over all possible matrices of the form W̄N ,
taking the sum of the k-th order moments of the ESD’s of these matrices and dividing by the amount
of possible outcomes, yielding averaged moments of the ESD. Then, in the second step, it will have to
be shown that as N increases, the gap between the averaged moments and the ’typical’ moments will
become small, and the desired convergence in (5) is proven. With ’typical’, it is meant that the outlyers,
which will always be far from the average, will not be accounted for.

This report will focus on the first problem, giving only a brief overview of how to do the latter at the
end. Below follows the theorem, a form of Wigner’s Semicircle Law, which will be proven.

Theorem 2.1 (Wigner’s Semicircle Law). Let W̄N = 1√
N
WN be a scaled GUE matrix. Let mµW̄N ,k

be

the k-th order moment of the Empirical Spectral Distribution of W̄N and let mµsc,k be the k-th order
moment of the semicircle distribution. Then, for all k = 1, 2, . . ., the moments of the Empirical Spectral
Distribution converge in average to the moments of the semicircle distribution, when N grows:

lim
N→∞

E(mµW̄N ,k
) = mµsc,k.
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3 Proof of Wigner’s Semicircle Law

3.1 Overview

A global overview of the main aspects of the proof will be given before beginning the mathematical
proof. First, the moments of the semicircle distribution are calculated. For this, the Catalan numbers
are introduced. The odd moments turn out to be 0 and the even moments are shown to coincide with
the Catalan numbers. Then, the moments of the Empirical Spectral Distribution of W̄N are shown to
represent the normalized trace of W̄ k

N . Therefore, the initial convergence that needs to be proven is now
split into two convergences. The limit of the expectation of the normalized trace of W̄ k

N needs to go to 0 for
odd k and needs to go to the Catalan numbers for even k, when N is send to infinity. Next, the averaged
moments of the ESD are rewritten several times. Starting with the expression that is the expectation of
the normalized trace of W̄ k

N , which is shown to represent the mixed moments of the elements of W̄N . To
be able to work with mixed moments of complex standard Gaussian random variables, moments of real
standard Gaussians, the concept of pairings and mixed moments of real standard Gaussians are linked
to each other. It will turn out that mixed moments of complex Gaussians can be expressed by summing
over pairings and taking the product over the second moments, which are known. This expression for
the mixed moments is introduced as Wick’s formula. Pairings are then interpreted as permutations, and
the final expression for the averaged moments of the ESD of W̄N is obtained. This expression requires
the count of cycles of some combined permutation. When the limit of this expression is taken, the k-th
order moments of the ESD turn out to coincide with the number of non-crossing pairings of a set of k
elements. The odd moments are therefore concluded to be 0. In the last step of the proof, it is shown
that the amount of non-crossing pairings that can be made from a set of an even number of elements,
match the Catalan numbers. Therefore, the even moments converge to the even moments of the semicircle
distribution and the proof is concluded.

3.2 The moments of the semicircle distribution

The first step of proving Wigner’s theorem is determining the moments of the semicircle distribution.
In order to do so, the concept of Catalan numbers is needed. The Catalan numbers are a sequence of
numbers in N.

Definition 3.1 (Catalan numbers). For k = 0, 1, 2, . . . the k-th Catalan number is defined by the following
formula containing a binomial coefficient:

Ck :=

(
2k
k

)
k + 1

=
(2k)!

(k + 1)!k!
,

where 0! = 1 is set and C0 = 1. The first Catalan numbers are 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, . . ..

Lemma 3.1. The Catalan numbers satisfy the following recurrence relations:

[1] Ck = 4(2k−1)
2k+2 Ck−1

[2] Ck =
∑k
l=1 Cl−1Ck−l.

Proof. The first recurrence relation [1] of the Catalan number sequence can be found as follows:

Ck =
(2k)!

(k + 1)!k!
=

(2k)(2k − 1)(2k − 2)!

(k + 1)(k)(k − 1)!k!
=

(2k)(2k − 1)

(k + 1)(k)

(2(k − 1))!

k!(k − 1)!

=
(2k)(2k − 1)

(k + 1)(k)
Ck−1 =

2(2k − 1)

k + 1
Ck−1 =

4(2k − 1)

2k + 2
Ck−1.

The proof of the second recurrence relation [2] can be derived from the proof of the first recurrence
relation [Z., ].
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The Catalan numbers occur in a fair amount of problems in combinatorial mathematics. For example,
they count polygon triangulations Tn (the amount of ways to cut an (n + 2)-polygon into n triangles
using n− 1 non-crossing lines between vertices of a polygon), such that Tn = Cn. Catalan numbers are
also of great importance in proving Wigner’s Law, as they turn out to coincide with the even moments
of the semicircle distribution. The remaining uneven moments of the semicircle distribution turn out to
be zero.

Proposition 3.2. For k = 1, 2, . . ., let mµsc,2k be the even moments of the semicircle distribution and
let mµsc,2k+1 be the uneven moments. Then:

i) mµsc,2k = Ck,

ii) mµsc,2k+1 = 0.

Proof. To proof Proposition 3.2 i) it suffices to show that the even moments of the semicircle distribution
and the Catalan numbers share the same starting value for k = 1 and the same recurrence relation.
That is mµsc,2 = C1 and by Lemma 3.1[1] the even moments of the semicircle distribution should satisfy

mµsc,2k = 4(2k−1)
2k+2 mµsc,2k−2. The first condition is easily checked:

mµsc,2 =

∫ ∞
−∞

x2σsc(x) dx =

∫ ∞
−∞

x2 1

2π

√
4− x21|x|≤2 dx =

1

2π

∫ 2

−2

x2
√

4− x2 dx = 1.

Now it will be checked whether the even moments of the semicircle distribution share the same recurrence
relation with the Catalan numbers. Use Definition 2.6 for the even moments of the semicircle distribution:

mµsc,2k :=

∫ ∞
−∞

x2kσsc(x) dx =
1

2π

∫ 2

−2

x2k
√

4− x2 dx.

Substituting x by x = 2sin(θ) and dx = 2cos(θ)dθ gives:

mµsc,2k =

∫ π
2

−π2

1

2π
22k sin2k (θ)

√
4− 4 sin2 (θ) 2 cos (θ) dθ

=

∫ π
2

−π2

1

2π
22k sin2k (θ)

√
4 cos2 (θ) 2 cos (θ) dθ

=
2 · 22k

2π

∫ π
2

−π2
sin2k (θ)2 cos (θ) cos (θ) dθ

∗∗
=

2 · 22k

π

∫ π
2

−π2
sin2k (θ) cos2 (θ) dθ

=
2 · 22k

π

∫ π
2

−π2
sin2k (θ)(1− sin2 (θ)) dθ

=
2 · 22k

π

∫ π
2

−π2
sin2k (θ) dθ − 2 · 22k

π

∫ π
2

−π2
sin2k (θ) sin2 (θ) dθ

=
2 · 22k

π

∫ π
2

−π2
sin2k (θ) dθ − 2 · 22k

π

∫ π
2

−π2
sin2k+1 (θ) sin (θ) dθ

I.P.
=

2 · 22k

π

∫ π
2

−π2
sin2k (θ) dθ − 2 · 22k

π

[
[− sin2k+1 (θ) cos (θ)]

π
2

−π2

+

∫ π
2

−π2
(2k + 1) sin2k (θ) cos (θ) cos (θ) dθ

]
=

2 · 22k

π

∫ π
2

−π2
sin2k (θ) dθ − (2k + 1)

2 · 22k

π

∫ π
2

−π2
sin2k (θ) cos2 (θ)ḋθ

=
2 · 22k

π

∫ π
2

−π2
sin2k (θ) dθ − (2k + 1)mµsc,2k,
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where integration by parts is used at (I.P.) and where the last equality was deduced by (∗∗). So the
following equality was found:

mµsc,2k =
2 · 22k

π

∫ π
2

−π2
sin2k (θ) dθ − (2k + 1)mµsc,2k,

and rewriting gives:

mµsc,2k
∗
=

2 · 22k

π(2k + 2)

∫ π
2

−π2
sin2k (θ) dθ.

For deducing a recurrence relation of the even moments two different expressions of m2k−2 will be used:

(1) mµsc,2k−2 = 2·22k−2

π(2k−2+2)

∫ π
2

−π2
sin2k−2 (θ) dθ = 22k

π4k

∫ π
2

−π2
sin2k−2 (θ) dθ,

(2) mµsc,2k−2 = 2·22k−2

π

∫ π
2

−π2
sin2k−2 (θ) cos2 (θ) dθ = 22k

2π

∫ π
2

−π2
sin2k−2 (θ) cos2 (θ) dθ.

Expression (1) was deduced by (*) and expression (2) was deduced by (**), which can both be found in
the previous calculations. Now, a recurrence relation for the even moments of the semicircle distribution
can be determined as follows:

mµsc,2k =
2 · 22k

π(2k + 2)

∫ π
2

−π2
sin2k (θ) dθ =

2 · 22k

π(2k + 2)

∫ π
2

−π2
sin2k−2 (θ) sin2 (θ) dθ

=
2 · 22k

π(2k + 2)

∫ π
2

−π2
sin2k−2 (θ)(1− cos2 (θ)) dθ

=
2 · 22k

π(2k + 2)

∫ π
2

−π2
sin2k−2 (θ) dθ − 2 · 22k

π(2k + 2)

∫ π
2

−π2
sin2k−2 (θ) cos2 (θ) dθ

=
2

1
2 + 1

2k

22k

4kπ

∫ π
2

−π2
sin2k−2 (θ) dθ − 2

k + 1

22k

2π

∫ π
2

−π2
sin2k−2 (θ) cos2 (θ) dθ

(1),(2)
=

2
1
2 + 1

2k

mµsc,2k−2 −
2

k + 1
mµsc,2k−2 =

4(2k − 1)

2k + 2
mµsc,2k−2.

So mµsc,2k = 4(2k−1)
2k+2 mµsc,2k−2 and by Lemma 3.11 the recurrence relation of the even moments of the

semicircle distribution is the same as the recurrence relation of the Catalan numbers. Now there may be
concluded that mµsc,2k = Ck; the even moments of the semicircle distribution coincide with the Catalan
numbers. To proof 3.2 ii), use Definition 2.6 for the uneven moments of the semicircle distribution:

mµsc,2k+1 :=

∫ ∞
−∞

x2k+1σsc(x) dx =
1

2π

∫ 2

−2

x2k+1
√

4− x2 dx.

One can easily check that h(x) = x2k+1
√

4− x2 is an odd function. So by asymmetry, mµsc,2k+1 = 0.
This concludes the proof.

3.3 The moments of the Empirical Spectral Distribution

Now, the moments of the Empirical Spectral measure µW̄N
will be rewritten. The moments mµW̄N ,k

were

shown in Equation 3 to be expressed in terms of the eigenvalues λi(W̄N ) of the GUE Wigner matrix.
However, since these are random, they are not useful to work with further. It is therefore more practical
to express the k-th moment of the empirical density measure in terms of W̄N , of which more properties
are known. To do this, some linear algebra is needed.

Definition 3.2 (Hermitian (self-adjoint) matrix). A matrix A is Hermitian (or self-adjoint) if:

[1] A is a complex square matrix,

[2] A = A∗, where A∗ is the conjugate transpose of A.
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The Wigner random matrix W̄N is a Hermitian (or self-adjoint) matrix, since it is a N ×N complex
square matrix with the property wij = wji ([4] in Definition 2.5). Hermitian matrices are known to be
diagonalizable. So W̄N can be unitarily diagonalized such that W̄N = UDU−1, where

(1) U is a unitary matrix; a complex square matrix such that its conjugate transpose U∗ is also its
inverse; U∗ = U−1,

(2) D is a diagonal matrix with the eigenvalues of W̄N in the diagonal;

D =



λ1(W̄N )

λ2(W̄N ) 0
. . .

0 . . .

λN(W̄N )


.

Doing so for W̄ k
N yields the following expression:

W̄ k
N = (UDU∗)k = UD

= I︷︸︸︷
U∗U DU∗ · · ·UDU∗︸ ︷︷ ︸

k times

= UDkU∗

and therefore the trace of W̄ k
N becomes the expression that is needed:

Tr(W̄ k
N ) = Tr(UDkU∗) = Tr(U∗UDk) = Tr(Dk) =

N∑
i=1

λi(W̄N )k,

where Tr(ABC) = Tr(CAB) is used for square matrices A,B,C of the same size.[Fraleigh et al., 1990]
Consequently, for the k-th order moment of the Empirical Spectral Distribution becomes:

mµW̄N ,k
=

1

N

N∑
i=1

λi(W̄N )k =
1

N
Tr(W̄ k

N ). (6)

Taking into account what was found for the moments of the semicircle distribution and what was
found after redefining the moments of the ESD of W̄N , the limit in Theorem 2.1 that needs to be proven
becomes:

lim
N→∞

E
( 1

N
Tr(W̄ 2k

N )
)

= Ck, (7)

lim
N→∞

E
( 1

N
Tr(W̄ 2k+1

N )
)

= 0. (8)

3.4 Wick’s Formula

Up until now, it was found that in order to proof Wigner’s Semicircle Law in Theorem 2.1, the limits in
(7) and (8) need to be proven. To do so, the term E( 1

N Tr(W̄
k
N )) for all k needs to be examined further

first. Since W̄ k
N = 1√

N
kW

k
N we can simplify the term in the following way:

E(
1

N
Tr(W̄ k

N )) =
1

N

1
√
N
k
E(Tr(W k

N )).

The trace of a N ×N matrix AN to some power has the following identity.

Lemma 3.3. Let AN = (aij)
N
i,j=1 be a square matrix. Then,

Tr(AkN ) =

N∑
i1,i2,...,ik=1

ai1i2 · ai2i3 · · . . . aiki1 .
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Lemma 3.3 says that the trace of a matrix to the power k is the sum of a particular product over all
possible Nk combinations of ij ’s with 1 ≤ j ≤ k and 1 ≤ i1, i2, · · · , ik ≤ N . This can be made more clear
in an example.

Example 3.1 (The trace of a matrix A2
3). Let A3 be the following 3× 3 matrix:

A3 =

 a11 a12 a13

a21 a22 a23

a31 a32 a33


There are 32 = 9 possible combinations of 1 ≤ i1, i2 ≤ 3, namely

(i1, i2) = (1, 1), (1, 2), (2, 1), (1, 3), (3, 1), (2, 2)(2, 3), (3, 2), (3, 3),

so the trace of A2
3 becomes:

Tr(A2
3) =

3∑
i1,i2=1

ai1i2ai2i1 =(ai1i2ai2i1)i1=1,i2=1 + (ai1i2ai2i1)i1=1,i2=2 + (ai1i2ai2i1)i1=2,i2=1+

(ai1i2ai2i1)i1=1,i2=3 + (ai1i2ai2i1)i1=3,i2=1 + (ai1i2ai2i1)i1=2,i2=2+

(ai1i2ai2i1)i1=2,i2=3 + (ai1i2ai2i1)i1=3,i2=2 + (ai1i2ai2i1)i1=3,i2=3.

That is:

Tr(A2
3) =

3∑
i1,i2=1

ai1i2ai2i1 =a11a11 + a12a21 + a21a12+

a13a31 + a31a13 + a22a22+

a23a32 + a32a23 + a33a33.

Note that this is exactly the expression one would obtain for the trace of A2, when calculating A2 by
hand and summing the diagonal elements.

So the expectation of the trace of the N ×N Wigner matrix WN = (wij)
N
i,j=1 can be rewritten by using

the identity in Lemma 3.3 and taking the expectation within the sum:

E(
1

N
Tr(W̄ k

N )) =
1

N

1
√
N
k

N∑
i1,i2,...,ik=1

E(wi1i2 · wi2i3 · . . . wiki1). (9)

Now, what does the expression E(wi1i2 · wi2i3 · · . . . wiki1) within the sum mean? For the sake of under-
standing this term, an investigation of what that expression might look like when taking the trace of W̄N

to the power of k = 8 will be done in the example below.

Example 3.2 (A term of E( 1
N Tr(W̄

8
N ))). Let the 8-th moment of the ESD of W̄N with some N ≥ 9 be:

E(
1

N
Tr(W̄ 8

N )) =
1

N

1
√
N

8

N∑
i1,i2,...,i8=1

E(wi1i2 · wi2i3 · wi3i4 · wi4i5 · wi5i6 · wi6i7 · wi7i8 · wi8i1).

Take for example the following combination of ij ’s:

(i1, i2, i3, i4, i5, i6, i7, i8) = (1, 1, 1, 7, 9, 7, 9, 1).

Then the term corresponding to that combination of ij ’s in the above sum is:

E(w11 · w11 · w17 · w79 · w97 · w79 · w91 · w11) = E(w3
11 · w1

17 · w2
79 · w1

97 · w1
91).

Remembering that each wij is a (complex) standard Gaussian random variable, it is seen by example 3.2
that the sum in (9) becomes a sum of mixed moments. In the example, the term shows the third moment
of the random variable w11, the first moment of the random variables w17, w97 and w91 and the second
moment of the random variable w79. Therefore, the moments of (complex) standard Gaussian random
variables are needed. First, the moments of only one real Gaussian random variable will be looked at.
After that, how to calculate mixed moments of multiple real Gaussian random variables will be explained
and finally mixed moments of multiple complex Gaussian random variables will become clear.
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Definition 3.3. A real standard Gaussian random variable X, X ∼ N (0, 1) has the following probability
density function:

σG(t) =
1√
2π
e
−t2

2 .

It turns out that the k-th order moments of a real standard Gaussian random variable are positive integers
that count all possible pairings of a set of k natural numbers. This will be shown by first calculating the
moments of the real standard Gaussian random variables, then counting all pairings of a set of k elements
and comparing the results.

The k-th order moment of a real standard Gaussian random variable, mG,k, is:

mG,k =
1√
2π

∫ ∞
−∞

tke
−t2

2 dt.

Proposition 3.4. The k-th order moments of a real standard Gaussian random variable X ∼ N (0, 1)
are:

mG,k =


(k − 1)!! ; k even

0 ; k odd.

Here, the double factorial for even k is the product (k − 1)!! = (k − 1)(k − 3) · · · (1).

Proof. First, the odd moments will be checked. The odd moments of a real standard Gaussian random
variable are:

mG,2k+1 =
1√
2π

∫ ∞
−∞

t2k+1e
−t2

2 dt.

One can easily check that h(x) = t2k+1e
−t2

2 is an odd function. In the same way that was shown in
the proof of the odd semicircle distribution moments, it can be concluded that all odd moments of real
standard Gaussian random variables are 0 due to symmetry.
Now, for the even moments. The even moments of a real standard Gaussian random variable are:

mG,2k =
1√
2π

∫ ∞
−∞

t2ke
−t2

2 dt =
1√
2π

∫ ∞
−∞

t2k−1te
−t2

2 dt.

Using integration by parts: ∫
u dv =

[
uv
]
−
∫
v du,

with u = t2k−1, du = (2k − 1)t2k−2dt, dv = te
−t2

2 dt and v = −e−t
2

2 the desired result is acquired:

mG,2k =
1√
2π

∫ ∞
−∞

t2k−1te
−t2

2 dt
I.P.
=

1√
2π

( [
− t2k−1e

−t2
2

]︸ ︷︷ ︸
=0 by symmetry

∞
−∞ −

∫ ∞
∞

(2k − 1)t2k−2 · −e
−t2

2 dt
)

= (2k − 1)
1√
2π

∫ ∞
∞

t2k−2e
−t2

2 dt

= (2k − 1)mG,2k−2 = (2k − 1)(2k − 3)mG,2k−4

= (2k − 1)(2k − 3)(2k − 5) · · · (2k − (2k − 3))mG,2

= (2k − 1)(2k − 3)(2k − 5) · · · (3)(1)

= (2k − 1)!!.

Where the second moment of the standard Gaussian distribution is equal to its variance, and therefore
mG,2 = 1. This concludes the proof.

From here, the combinatorial aspects of the proof of Wigner’s Semicircle Law in Theorem 2.1 will be
introduced. As mentioned, the moments of the Gaussian distribution turn out to count the number of
ways to create a pairing of the elements of a set containing k elements. The definition of a pairing and a
small example can be found below.
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Definition 3.4 (Pairing). Denote for n ∈ N the set [n]:= {1, 2, . . . , n}. A pairing Π of [n] is a collection
of disjoint subsets (or pairs) of [n], Π = V1, V2, . . . , Vk, such that for all i = 1, 2, . . . , k:

[1] Vi ⊆ [n]

[2] #Vi = 2

[3] For i 6= j: Vi
⋂
Vj = ∅

[4]
⋃k
i=1 Vi = [n]

The set of all pairings of [n] is denoted by:

P2(n) := {Π : Π is a pairing of [n]}.

Remark 3.4.1. The pairs Vi of a pairing are unordered.

Example 3.3. Let n = 4. Then [4] = {1, 2, 3, 4} and all possible pairings of [4] are: Π1 = {{1, 2}, {3, 4}},
Π2 = {{1, 3}, {2, 4}} and Π3 = {{1, 4}, {2, 3}}. See below for a schematic representation of this.

1 2 3 4

Π1

Π2

Π3

The set of all pairings of [4] is therefore:

P2(4) = {Π1,Π2,Π3} = {{{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, {{1, 4}, {2, 3}}}.

Here, #P2(4) = 3.

In the following proposition is stated what was said about the moments of a Gaussian random variable
before.

Proposition 3.5. For k = 1, 2, . . . let P2(k) be the set of all pairings of [k] and let mG,k be the k-th
order moment of the real standard Gaussian distribution. Then:

i) mG,2k = #P2(2k),

ii) mG,2k+1 = #P2(2k + 1) = 0.

Proof. To proof Proposition 3.5, by Proposition 3.4 it suffices to show that #P2(2k) = (2k − 1)!! and
#P2(2k + 1) = 0. For all k, count the elements of #P2(k) recursively in the following way. There are
k − 1 possible pairs for the pair with 1 as its first element. After choosing the second element of the
pair {1, ·}, there are (k− 2) elements left to make create the rest of the pairing. The number of different
pairings of (k − 2) elements is #P2(k − 2). This generates the following equality:

#P2(k) = (k − 1)#P2(k − 2).

Now for the remaining (k − 2) elements, again pick a different element that wasn’t picked for the first
or second element of the first pairing, and make it the first element of the second pairing. There can be
(k − 3) different pairs created after the first element of that pair is picked. Again, from the remaining
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(k − 4) elements should be counted how many pairings can be made, that is #P2(k − 4), Iterating this
gives:

#P2(k) = (k − 1)#P2(k − 2) = (k − 1)(k − 3)#P2(k − 4) = (k − 1)(k − 3)(k − 5)#P2(k − 6)

=


(k − 1)(k − 3) . . .#P2(2) ; k even

(k − 1)(k − 3) . . .#P2(1) ; k odd

=


(k − 1)(k − 3) . . . (1) ; k even

(k − 1)(k − 3) . . . (0) ; k odd

=


(k − 1)!! ; k even

0 ; k odd.

So indeed mG,2k = #P2(2k) and mG,2k+1 = #P2(2k + 1) by Proposition 3.4.

Remember the objective is to prove the two limits in (7) and (8), which together represent the
convergence of the averaged k-th order moment of the ESD of W̄N to the k-th order moment of the
semicircle distribution:

lim
N→∞

mµW̄N ,2k
= lim
N→∞

E
( 1

N
Tr(W̄ 2k

N )
)

= Ck = mµsc,2k,

lim
N→∞

mµW̄N ,2k+1
= lim
N→∞

E
( 1

N
Tr(W̄ 2k+1

N )
)

= 0 = mµsc,2k+1.

Recall equation (9):

E(
1

N
Tr(W̄ k

N )) =
1

N

1
√
N
k

N∑
i1,i2,...,ik=1

E(wi1i2 · wi2i3 · . . . · wiki1),

where the wij ’s are the elements of the unscaled GUE matrix WN . Example 3.2 gave an insight that
the term E(wi1i2 · wi2i3 · . . . · wiki1) within the sum is actually a representation of mixed moments of
independent standard complex Gaussian random variables. For the averaged k-th moment of the ESD of
W̄N any amount up to k of independent complex Gaussian random variables with orders up to k might
appear in that term of the sum. In order to be able to work with this, first mixed moments of real
standard Gaussian random variables will be analyzed, using Proposition 3.5.

3.4.1 Mixed moments of real Gaussians

Let X1, X2, . . . , Xp be independent real standard Gaussian random variables with some finite order
moment, respectively k1, k2, . . . , kp. Then, by Proposition 3.4:

E(Xk1
1 Xk2

2 . . . Xkp
p ) = E(Xk1

1 )E(Xk2
2 ) . . .E(Xkp

p ) = #P2(k1)#P2(k2) . . .#P2(kp).

This indicates that the mixed moments can be rewritten as counting the pairings that only contain
pairs obtained from X1’s in #P2(k1) different ways, obtained from X2’s in #P2(k2) different ways, and
so on. Pairings with pairs that contain for example one X3 element and one X7 element are not counted.
This concept is explained in the example below.

Example 3.4. Let X1, X2 and X3 be real independent standard Gaussian random variables. Let
x1, x2, . . . , x10 represent elements that are distributed in the following way: x1, x2, x3, x4 = X1, x5, x6, x7,
x8 = X2 and x9, x10 = X3. Then:

E(x1 · x2 · x3 · x4 · x5 · x6 · x7 · x8 · x9 · x10) = E(X1X1X1X1X2X2X2X2X3X3),
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and the pairings of {X1, X1, X1, X1, X2, X2, X2, X2, X3, X3} that only pair the X1’s, the X2’s and the
X3’s among themselves should be counted in order to calculate E(x1 ·x2 ·x3 ·x4 ·x5 ·x6 ·x7 ·x8 ·x9 ·x10).
See below for a schematic representation of those pairings.

X1 X1 X1 X1 X2 X2 X2 X2 X3 X3

Π1

Π2

Π3

Π4

Π5

Π6

Π7

Π8

Π9

So:

E(x1 · x2 · x3 · x4 · x5 · x6 · x7 · x8 · x9 · x10) = E(X4
1X

4
2X

2
3 ) = #P2(4)#P2(4)#P2(2) = 3 · 3 · 1 = 9.

The next problem is how, for each term of the sum in equation (9), can be made sure pairings are
counted that only pair Xj ’s among themselves? This is solved in the following way. First, all possible
pairings of the elements within the expected value are made. Then, for each pairing is checked whether
they contain pairs that are allowed. To verify whether a pair is allowed, the following analytical tool
is used. For two independent real standard Gaussian random variables xi and xj the first and second
moments are known. This gives the following information of a pair {xi, xj}:

E(xixj) =


E(x2

i ) = 1 ; xi = xj

E(xixj) = E(xi)E(xj) = 0 ; xi 6= xj .

(10)

So by summing over all possible pairings, and for every pairing multiplying the results of the expected
value of the two elements of all pairs within that pairing, one can count the pairings that only connect
the Xj ’s among themselves. This way, if there is one pair containing elements from two different Xj ’s,
the product for that specific pairing will yield 0 and the pairing will not be included in the count. This
formula for counting mixed moments for real independent standard Gaussian random variables is called
Wick’s formula.

Theorem 3.6 (Wick’s formula for real Gaussians). Let X1, X2, . . . , Xp be real independent standard
Gaussian random variables and let x1, x2, . . . , xn ∈ {X1, X2, . . . , Xp}. Then Wick’s formula states that
mixed moments of n elements can be calculated using second moments:

E(x1 · x2 · . . . · xn) =
∑

Π∈P2(n)

∏
(i,j)∈Π

E(xixj),
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where for 1 ≤ s, t ≤ p

E(xixj) =


1 ; xi, xj ∈ Xs

0 ; xi ∈ Xs, xj ∈ Xt for s 6= t.

3.4.2 Mixed moments of complex Gaussians

Up until now, a way to calculate mixed moments of real Gaussian random variables has been obtained.
The goal was to do this for the elements of the GUE matrix WN in equation (9), which are complex
Gaussian random variables. Note that the xj ’s in Wick’s formula can be replaced by complex zj ’s because
of its multi-linear structure. In Wick’s formula in Theorem 3.6, when a pair {zi, zj} gives a contribution
needs to be determined. To do so, let Z be a standard complex Gaussian random variables as in Definition
2.4:

Z =
X + iY√

2
,

and

Z̄ =
X − iY√

2
.

Then the first moments of Z and Z̄ are:

E(Z) =
E(X + iY )√

2
=

E(X) + iE(Y )√
2

=
0 + i0√

2
= 0,

E(Z̄) =
E(X − iY )√

2
=

E(X)− iE(Y )√
2

=
0− i0√

2
= 0.

The second moments of Z and Z̄ are:

E(Z2) = E(
X2 + iXY + iY X + i2Y 2

2
) =

1

2

(
E(X2)︸ ︷︷ ︸

=1

−E(Y 2)︸ ︷︷ ︸
=1

+i(E(XY )︸ ︷︷ ︸
=0

+E(Y X)︸ ︷︷ ︸
=0

)
)

= 0,

E(Z̄2) = E(
X2 − iXY − iY X + i2Y 2

2
) =

1

2

(
E(X2)︸ ︷︷ ︸

=1

−E(Y 2)︸ ︷︷ ︸
=1

−i(E(XY )︸ ︷︷ ︸
=0

+E(Y X)︸ ︷︷ ︸
=0

)
)

= 0,

E(ZZ̄) = E(
X2 − iXY + iY X − i2Y 2

2
) =

1

2

(
E(X2)︸ ︷︷ ︸

=1

+E(Y 2)︸ ︷︷ ︸
=1

−i(E(XY )︸ ︷︷ ︸
=0

−E(Y X)︸ ︷︷ ︸
=0

)
)

= 1.

Hence, for zi, zj ∈ {Z, Z̄} the pair {zi, zj} will only give contribution 1 when zi ∈ Z and zj ∈ Z̄, or when
zi ∈ Z̄ and zj ∈ Z. Wick’s formula for real Gaussians can now be rewritten for the complex case.

Theorem 3.7 (Wick’s formula for complex Gaussians). Let Z1, Z2, . . . , Zp be complex independent stan-
dard Gaussian random variables and let z1, z2, . . . , zn ∈ {Z1, Z̄1, Z2, Z̄2, . . . , Zp, Z̄p}. Then Wick’s formula
states that mixed moments of n elements can be calculated using second moments:

E(z1 · z2 · . . . · zn) =
∑

Π∈P2(n)

∏
(i,j)∈Π

E(zizj),

where for 1 ≤ s ≤ p

E(zizj) =


1 ; zi ∈ Zs, zj ∈ Z̄s or zi ∈ Z̄s, zj ∈ Zs

0 ; otherwise.

A combinatorical expression has been established for mixed moments of complex independent standard
Gaussian random variables. This can now be applied to the mixed moments of elements of the matrix
WN , which is needed to be able to work with equation (9).
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3.5 Counting cycles

In this section, equation (9) is further analyzed. According to Wick’s formula for complex Gaussians, the
equation can be rewritten in the following way:

E(
1

N
Tr(W̄ k

N )) =
1

N

1
√
N
k

N∑
i1,i2,...,ik=1

E(wi1i2 · wi2i3 · . . . · wiki1)

=
1

N

1
√
N
k

N∑
i1,i2,...,ik=1

∑
Π∈P2(k)

∏
(a,b)∈Π

E(wiaia+1wibib+1
).

In Wick’s formula for complex Gaussians is established that the second moment for standard complex
Gaussian random variables only gives a contribution 1, when the two elements of a pair belong to each
others conjugate distributions. Since the matrix WN is Hermitian and therefore wij = w̄ji, the elements
that belong to each others conjugate distribution are located in the mirrored positions from the diagonal.
Also for elements on the diagonal wii = w̄ii is true. So when does the term E(wiaia+1

wibib+1
) give a

contribution unequal to 0 in both cases for elements in mirrored positions from the diagonal and for
elements on the diagonal? When ia = ib+1 and ia+1 = ib. Introduce the following function in order to
summarize this in a clear way:

δxy =


1 ; x = y

0 ; x 6= y.

So E(wiaia+1
wibib+1

) only gives contribution 1 when E(wiaia+1
wibib+1

) = δiaib+1
δia+1ib . Applying the

above to equation (9) gives:

E(
1

N
Tr(W̄ k

N )) =
1

N

1
√
N
k

N∑
i1,i2,...,ik=1

∑
Π∈P2(k)

∏
(a,b)∈Π

E(wiaia+1wibib+1
)

=
1

N

1
√
N
k

N∑
i1,i2,...,ik=1

∑
Π∈P2(k)

∏
(a,b)∈Π

δiaib+1
δia+1ib .

Here, (a, b) ∈ Π is a more perspicuous expression for iterating over all pairs {wiaia+1
, wibib+1

} in a pairing
Π. The two finite sums can be switched, yielding:

E(
1

N
Tr(W̄ k

N )) =
1

N

1
√
N
k

∑
Π∈P2(k)

N∑
i1,i2,...,ik=1

∏
(a,b)∈Π

δiaib+1
δia+1ib . (11)

So instead of first summing over all possible ways to assign the ij ’s in {i1, i2, . . . ik} to a number from
1 to N and then make pairings of the resulting wi1i2wi2i3 · · ·wiki1 , the finite sums are switched. Now k
positions are set, all possible pairings are made for those positions. Then, the positions are filled with all
the possible elements wi1i2wi2i3 · · ·wiki1 , where the {i1, i2, . . . , ik} are assigned a number from 1 to N .
An example on how in practise can be worked with the new obtained equation is given below.

Example 3.5. Examine E( 1
N Tr(W̄

k
N )) for N = 3 and k = 4:

E(
1

3
Tr(W̄ 4

3 )) =
1

3

1
√

3
4

3∑
i1,i2,i3,i4=1

E(wi1i2 · wi2i3 · wi3i4 · wi4i1)

=
1

3

1
√

3
4

∑
Π∈P2(4)

3∑
i1,i2,i3,i4=1

∏
(a,b)∈Π

δiaib+1
δia+1ib .

First, 4 positions are set and all possible pairings for those positions are made.
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wi1i2 wi2i3 wi3i4 wi4i1

Π1

Π2

Π3

There are 34 = 81 possible ways to assign i1, i2, i3, i4 to a number from 1 to 3. Below a short representation
is given:

{i1, i2, i3, i4} ={1, 1, 1, 1}, {1, 1, 1, 2}, {1, 1, 2, 1}, {1, 2, 1, 1},
{2, 1, 1, 1}, {1, 1, 2, 2}, . . . , {1, 2, 3, 2}, . . . , {2, 2, 2, 3},
{2, 2, 3, 2}, {2, 3, 2, 2}, {3, 2, 2, 2}, . . . , {3, 3, 3, 3}.

Each of these assigned sets are applied to wi1i2wi2i3wi3i4wi4i1 , and the resulting wij ’s are placed on
the 4 positions in the schematic above. Then pairings of the elements are made accordingly. Now,
let the focus be on one of the assigned sets {i1, i2, i3, i4} = {1, 2, 3, 2}. Applying Wick’s formula to
E(wi1i2wi2i3wi3i4wi4i1) = E(w12w23w32w21) gives:

E(w12w23w32w21) =
∑

Π∈P2(4)

∏
(a,b)∈Π

δiaib+1
δia+1ib .

So for each Π1,Π2 and Π3, the pairs within are checked whether they are an allowed pairing.

Π1 = {{wi1i2 , wi2i3}, {wi3i4 , wi4i1}} = {{w12, w23}, {w32, w21}}
Π2 = {{wi1i2 , wi3i4}, {wi2i3 , wi4i1}} = {{w12, w32}, {w23, w21}}
Π3 = {{wi1i2 , wi4i1}, {wi2i3 , wi3i4}} = {{w12, w21}, {w23, w32}}

It can already be seen that pairing Π3 is the only pairing with pairs that contain elements of the matrix
WN on the mirrored positions. So this is the only pairing that will give a contribution. Wick’s formula
should come to the same conclusion:

E(w12w23w32w21) =
∏

(a,b)∈Π1

δiaib+1
δia+1ib +

∏
(a,b)∈Π2

δiaib+1
δia+1ib +

∏
(a,b)∈Π3

δiaib+1
δia+1ib

= δi1i3δi2i2 · δi3i1δi4i4 + δi1i4δi2i3 · δi2i1δi3i4 + δi1i1δi2i4 · δi2i4δi3i3
= δ13δ22 · δ31δ22 + δ12δ23 · δ21δ32 + δ11δ22 · δ22δ33

= 0 · 1 · 0 · 1 + 0 · 0 · 0 · 0 + 1 · 1 · 1 · 1 = 1.

Indeed, also by Wick’s formula the number of allowed pairings for the particular case {i1, i2, i3, i4} =
{1, 2, 3, 2} is 1.

From here, some algebraic tools are introduced to rewrite the equation in (11) further. Let the pairing
Π be looked at as a permutation in the symmetric group Sk of k elements, in which the pairs (a, b) ∈ Π
become cycles (ab) of the permutation that send a to b and b to a. Furthermore, let γ = (12 . . . k) ∈ Sk
be the permutation which represents a shift by 1 modulo k. Then, since Π(a) = b and γ(a) = a + 1 in
the condition δiaib+1

δia+1ib , ib+1 = iΠ(a)+1 = iγ(Π(a)). Similarly, ia+1 = iγ(Π(b)). So the product in (11)
can be changed to a product over one variable:

E(
1

N
Tr(W̄ k

N )) =
1

N

1
√
N
k

∑
Π∈P2(k)

N∑
i1,i2,...,ik=1

k∏
a=1

δiaiγ(Π(a))
. (12)

An example on how in practise can be worked with the new change in the equation is given below.
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Example 3.6. Examine E( 1
N Tr(W̄

k
N )) for N = 3 and k = 4:

E(
1

3
Tr(W̄ 4

3 )) =
1

3

1
√

3
4

3∑
i1,i2,i3,i4=1

E(wi1i2 · wi2i3 · wi3i4 · wi4i1)

=
1

3

1
√

3
4

∑
Π∈P2(4)

3∑
i1,i2,i3,i4=1

4∏
a=1

δiaiγ(Π(a))
.

Recall example 3.5 and again, focus on the assigned set {i1, i2, i3, i4} = {1, 2, 3, 2}. First the γΠ’s for the
three different pairings Π1,Π2,Π3 ∈ P2(4) need to be generated. Remember the pairings Π1,Π2,Π3:

Π1 = {{wi1i2 , wi2i3}, {wi3i4 , wi4i1}},
Π2 = {{wi1i2 , wi3i4}, {wi2i3 , wi4i1}},
Π3 = {{wi1i2 , wi4i1}, {wi2i3 , wi3i4}}.

For γ = (1234) and for pairs (a, b) = {wiaia+1
, wibib+1

}, the following permutations arise:

Π1 = (12)(34) =⇒ γΠ1 = (13)(2)(4),

Π2 = (13)(24) =⇒ γΠ2 = (1432),

Π3 = (14)(23) =⇒ γΠ3 = (1)(24)(3).

Applying the new obtained equation to the specific case where {i1, i2, i3, i4} = {1, 2, 3, 2} like in example
3.5 gives:

E(w12w23w32w21) =
∑

Π∈P2(4)

4∏
a=1

δiaiγ(Π(a))

=

4∏
a=1

δiaiγ(Π1(a))
+

4∏
a=1

δiaiγ(Π2(a))

4∏
a=1

δiaiγ(Π3(a))

= δi1i3δi2i2δi3i1δi4i4 + δi1i4δi2i1δi3i2δi4i3 + δi1i1δi2i4δi3i3δi4i2

= δ13δ22δ31δ22 + δ12δ21δ32δ23 + δ11δ22δ33δ22

= 0 · 1 · 0 · 1 + 0 · 0 · 0 · 0 + 1 · 1 · 1 · 1
= 1.

Analyzing equation (12) more closely, it can be observed that the product
∏k
a=1 δiaiγ(Π(a))

6= 0 when
the function i : [k] → [N ] is constant under the cycles of γΠ. Read ia for a ∈ [k] as a function i of a.
When generating iγΠ(a) ∈ [N ], ia and iγΠ(a) are only the same in [N ] = 1, 2, . . . , N when ia is constant

under the cycles of γΠ. This yields a constraint on the sum
∑N
i1,i2,...,ik=1, because the ia’s must be

constant on each cycle. So there remain #γΠ free variables for which each can obtain N different values.
So equation (12) becomes:

E(
1

N
Tr(W̄ k

N )) =
1

N

1
√
N
k

∑
Π∈P2(k)

N#γΠ. (13)

Example 3.7. For N = 3 and k = 4, recall from example 3.6 the permutations and their amount of
cycles:

γΠ1 = (13)(2)(4) =⇒ #γΠ1 = 3,

γΠ2 = (1432) =⇒ #γΠ2 = 1,

γΠ3 = (1)(24)(3) =⇒ #γΠ3 = 3.

Then
∑3
i1,i2,i3,i4=1

∏4
a=1 δiaiγ(Π(a))

only gives a contribution for those i1, i2, i3, i4 that are constant under
the cycles of γΠ. So for all a = 1, 2, 3, 4:
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Π1 : δiaiγ(Π1(a))
= 1 ⇐⇒ {i1, i2, i3, i4} = {1, 1, 1, 1}, {1, 2, 1, 2}, . . . , {3, 2, 3, 2}, {3, 3, 3, 3}︸ ︷︷ ︸

N#γΠ1=32=9

Π2 : δiaiγ(Π2(a))
= 1 ⇐⇒ {i1, i2, i3, i4} = {1, 1, 1, 1}, {2, 2, 2, 2}, {3, 3, 3, 3}︸ ︷︷ ︸

N#γΠ2=31=3

Π3 : δiaiγ(Π3(a))
= 1 ⇐⇒ {i1, i2, i3, i4} = {1, 1, 1, 1}, {1, 2, 1, 2}, . . . , {1, 2, 3, 2}, . . . , {3, 3, 3, 3}.︸ ︷︷ ︸

N#γΠ3=33=27

Therefore:∑
Π∈P2(4)

3∑
i1,i2,i3,i4=1

4∏
a=1

δiaiγ(Π(a))
=

∑
Π∈P2(4)

3#γΠ = 3#γΠ1 + 3#γΠ2 + 3#γΠ3 = 27 + 3 + 27 = 57.

So, the averaged k-th order moments of the ESD of W̄N can be rewritten by identifying pairings as
permutations and counting cycles like in equation (13).

Theorem 3.8. Let W̄N be a GUE matrix. Let the permutation γ ∈ Sk be γ = (12 . . . k) and let the
permutation Π ∈ Sk consist of 2-cycles containing the elements of pairs of pairings Π ∈ P2(k). Then the
averaged k-th order moment of the ESD of W̄N is:

E(
1

N
Tr(W̄ k

N )) =
∑

Π∈P2(k)

N#(γπ)− k2−1.

Example 3.8. Investigate the averaged 4-th order moment of the ESD of W̄N . According to Theorem
3.8:

E(
1

N
Tr(W̄ 4

N )) =
∑

Π∈P2(4)

N#γΠ−3.

By example 3.3 #P2(4) = 3 and for all 3 pairings by example 3.6 #γΠ1 = 2, #γΠ2 = 1 and #γΠ3 = 3
So:

E(
1

N
Tr(W̄ 4

N )) =
∑

Π∈P2(4)

N#γΠ−3 = N#γΠ1−3 +N#γΠ2−3 +N#γΠ3−3

= N3−3 +N3−3 +N1−3 = 2 +
1

N2

N→∞−−−−→ 2 = C2.

So indeed:

E
( 1

N
Tr(W̄ 2k

N )
) N→∞−−−−→ Ck, for k = 2.

The expression for the averaged k-th order moments of the ESD of W̄N has now been reduced to an
identity in which only the amount of cycles of the combined permutation γΠ, where Π is a pairing of k
elements interpreted as a permuation, is needed. Now the question remains; what pairings yield a non
N -term in the sum in Theorem 3.8? The answer is the non-crossing pairings. This will be proven in the
next section.

3.6 Non-crossing pairings

Intuitively, the definition of a non-crossing pairing is of course a pairing in which the pair lines do not
cross each other. In example 3.4 it is clear that the pairings Π1,Π3,Π7 and Π9 are non-crossing pairings.
Below follows a more exact definition of non-crossing pairings.

Definition 3.5 (Non-crossing pairing). Let k be even. A pairing Π ∈ P2(k) is non-crossing if there are
no pairs {a, c}, {b, d} ∈ Π where 1 ≤ a < b < c < d ≤ k. Denote:

NC2(k) := {Π ∈ P2(k) : Π is non-crossing} ⊆ P2(k).

A pairing Π ∈ P2(k) such that Π /∈ NC2(k) is called a crossing pairing.
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Note that for even k, all non-crossing pairings in NC2(k) have the property that the pair containing
element 1 is of the form {1, 2s}, where s is even. If this was not the case and the pair {1, 2s} exists for
an odd s, the number of elements between 1 and 2s would also be odd, which would force one of the
elements between 1 and 2s to have to pair outside the elements from 1 to 2s, resulting in a crossing. So
the pair containing element 1 must be of the form {1, 2s} with s even. The remaining pairs can then
only pair within {2, . . . , 2s − 1} or {2s + 1, k}. For the those remaining pairs the same fact holds. This
yields an iterative structure for the build up of non-crossing pairings, resulting that at least one pair in
a non-crossing pairing must be of the form {i, i + 1} for 1 ≤ i ≤ k − 1. Now let a non-crossing pairing
being broken down in the following way. There has been concluded that any non-crossing pairing must
at least have one pair {i, i+ 1} consisting of neighboring elements. If this pair is removed, a non-crossing
pairing of k − 2 elements remain. The same can be said for the remaining non-crossing pairing. Pairs
containing neighboring elements can keep being removed from the remaining non-crossing pairing, until
the empty set remains. This is not the case for crossing pairings. Below follows an example.

Example 3.9. Let k = 6 and consider the following non-crossing pairing Π = {{1, 4}, {2, 3}, {5, 6}} ∈
NC2(6). In this case there are two neighboring pairs in the initial pairing. Remove pair {5, 6}. The
remaining non-crossing pairing becomes Π = {{1, 4}, {2, 3}} ∈ NC2(4). Remove again a neighboring pair.
This time, the only option is pair {2, 3}. The remaining non-crossing pairing becomes Π = {{1, 2}} ∈
NC2(2). Note that by removing a neighboring pair, the nodes get re-ordered from 1, such that neighboring
pairs keep appearing. The final pair {1, 2} can now be removed, resulting in the empty set. See the
schematic representation below.

1 2 3 4 5 6

-{5, 6}

1 2 3 4

-{2, 3}

1 2
-{1, 2} ∅

Now consider a crossing pairing Π = {{1, 2}, {3, 5}, {4, 6}} ∈ NC2(6). Remove the pair {1, 2} resulting
in Π = {{1, 3}, {2, 4}} ∈ NC2(4). Now, a pairing without any pairs that consists of neighboring elements
is left, and there can not be iterated further to get to the empty set. See the schematic representation
below.

1 2 3 4 5 6

-{1, 2}

1 2 3 4
No further iterations

possible

In example 3.8 a small glimpse of the fact that only non-crossing pairings yield non N -terms in the
sum of Theorem 3.8. These are the only terms of importance, because when N is send to infinity, only
these terms remain. If this fact is proven, and it can also be shown that the number of non-crossing
pairings of a set [2k] are the same as the Catalan numbers, #NC2(2k) = Ck, the proof of Wigner’s
Semicircle Law in Theorem 2.1 is concluded.

Proposition 3.9. Let k be even. Let the permutation γ ∈ Sk be γ = (12 . . . k) and let the permutation
Π ∈ Sk consist of 2-cycles containing the elements of pairs of pairings Π ∈ P2(k). Then:

i) #γΠ− k
2 − 1 ≤ 0 for all Π ∈ P2(k),

ii) #γΠ− k
2 − 1 = 0 ⇐⇒ Π ∈ NC2(k).

Proof. First the following claim is proven.
Claim: For all Π ∈ P2(k) : {i, i+ 1} ∈ Π ⇐⇒ γΠ contains the cycles (i+ 1) and (i, i+ 2, . . .).
Proof: Let Π ∈ P2(k) and {i, i + 1} ∈ Π. Then Π is a permutation containing the cycle (i i + 1) and
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i + 1
Π−→ i

γ−→ i + 1. Indeed γΠ(i + 1) = (i + 1) and therefore (i + 1) is a cycle in γΠ. Furthermore,

i
Π−→ i + 1

γ−→ i + 2, so γΠ(i) = (i + 2) and therefore (i, i + 2, . . .) is a cycle in γΠ. Now for the reverse.
Let γΠ contain the cycles (i+ 1) and (i, i+ 2, . . .). Then γΠ(i+ 1) = (i+ 1) and (i+ 1) is a fixed point

of γΠ. So γΠ(i+ 1) = (i+ 1)
γ−1

−−→ Π(i+ 1) = γ−1(i+ 1) =⇒ Π(i+ 1) = i. Indeed {i, i+ 1} ∈ Π, which
concludes the proof of the claim.
First ‘ii) ⇐= ’ is shown. Let Π ∈ NC2(k) for even k. Then there exists a pair {i, i + 1} ∈ Π, which
can be removed. Doing so, by the previous claim, yields in removal of the cycle (i + 1) in γΠ and in
removal of the element i in the cycle (i, i + 2, . . .). The number of elements k is reduced by 2 and the
result is a non-crossing pairing in NC2(k − 2) which again contains a pair of the kind {i, i + 1}. After
k
2 − 1 iterations of removal of pairs of neighboring element, there are k − 2(k2 − 1) = 2 elements left.

Since the remaining 2 elements are neighbors, by the claim, there are 2 cycles left after k
2 − 1 iterations,

namely (i) and (i + 1). Again by the claim, per iteration one cycle was removed from the cycles of γΠ.
So #γΠ = 2 + 1(k2 − 1) = k

2 + 1.

Secondly ‘ii) =⇒ ’ is shown by proof by contradiction. Let #γΠ− k
2 − 1 = 0. Suppose Π /∈ NC2(k) is a

crossing pairing. Remove all pairs of neighbors until it cannot be done anymore. Since Π is crossing, this
can only be done k

2 −x amount of times for x > 1, since removing pairs of neighbors does not result in the

empty set. After removal of pairs of neighbors, by the claim, for the resulting pairing Π̃ the permutation
γΠ̃ does not have any fixed points. So each cycle in γΠ̃ has at least 2 elements. So #γΠ̃ ≤ x, which
means #γΠ = #γΠ̃ + 1(k2 − x) ≤ x+ k

2 − x = k
2 . However, #γΠ− k

2 − 1 = 0 so there has been reached
a contraction. Therefore Π ∈ NC2(k).
Now for the proof of i). By ‘ii) ⇐= ’ for Π ∈ NC2(k) ⊆ P2(k), #γΠ − k

2 − 1 = 0 and by ‘ii) =⇒ ’ for

Π /∈ NC2(k), #γΠ ≤ k
2 ≤

k
2 + 1. So for all Π ∈ P2(k): #γΠ− k

2 − 1 ≤ 0.

Remark 3.5.1. Because of the results of Proposition 3.9 and Theorem 3.8, it becomes clear why the
Wigner matrices need to be scaled by 1√

N
. Without the scaling 1√

N
, there would not be any N -terms

with a power 0 in the sum and only terms with a power bigger than 0. Therefore, the limit would blow
up if N is send to infinity in Theorem 2.1. So scaling the Wigner matrices by 1√

N
is of great importance

in order for the the convergence in Wigner’s Semicircle Law to happen.

3.7 Proof of Wigner’s Semicircle Law for GUE matrices

Now, almost all the tools are acquired to prove the main Theorem 2.1. Recall what needed to be proven
in Wigner’s Semicircle Law:

lim
N→∞

E(mµW̄N ,k
) = mµsc,k.

By Equation 6 and Theorem 3.8, the following expression for the averaged k-th order moments the ESD
of W̄N was obtained:

E(mµW̄N ,k
) =

∑
Π∈P2(k)

N#(γπ)− k2−1.

By Proposition 3.2, the following expressions for the k-th order moments of the semicircle was proven:

mµsc,2k+1 = 0,

mµsc,2k = Ck.

Here Ck denotes the k-th Catalan number. Let k be odd. In Proposition 3.5 it was proven that #P2(2k+
1) = 0. Consequently, E(mµW̄N ,2k+1) = 0 and for odd k Theorem 2.1 is true:

lim
N→∞

E(mµW̄N ,2k+1) = 0 = mµsc,2k+1.

29



Let k be even. In Proposition 3.9 it was shown that for a non-crossing pairing Π ∈ NC2(2k), #γΠ −
2k
2 − 1 = 0 and for all other pairings Π /∈ NC2(2k), #γΠ− 2k

2 − 1 ≤ 0. Therefore:

lim
N→∞

E(mµW̄N ,2k
) = lim

N→∞

∑
Π∈P2(2k)

N#(γπ)− 2k
2 −1 =

∑
Π∈P2(2k)

lim
N→∞

N#(γπ)− 2k
2 −1

=
∑

Π∈NC2(2k)

lim
N→∞

N#(γπ)− 2k
2 −1 +

∑
Π/∈NC2(2k)

lim
N→∞

N#(γπ)− 2k
2 −1

=
∑

Π∈NC2(2k)

1 +
∑

Π/∈NC2(2k)

0

=
∑

Π∈NC2(2k)

1

= #NC2(2k).

It remains to be proven that #NC2(2k) = Ck. It suffices to show that #NC2(2k) and Ck share the
same recurrence relation and the same starting value. The sequences #NC2(2k) and Ck indeed share the
same starting value for k = 1: #NC2(2) = 1 = C1. Furthermore, by Proposition 3.1[2], Ck satisfies the
following recurrence relation:

Ck =

k∑
l=1

Cl−1Ck−l.

To show this, let Π ∈ NC2(2k). Remember that for a non-crossing pairing Π the pair containing element
1 must be of the form {1, 2l}. Let Π

′ ∈ NC2(2l−2) and Π
′′ ∈ NC2(2k−2l). Then for every l = 1, 2, . . . , k,

Π can be split in the following way:
Π = {1, 2l} ∪Π

′
∪Π

′′
.

So #NC2(2k) satisfies the following recurrence relation:

#NC2(2k) =

k∑
l=1

#NC2(2l − 2))#NC2(2k − 2l))

=

k∑
l=1

#NC2(2(l − 1))#NC2(2(k − l)).

It follows that #NC2(2k) = Ck. As a result, also the averaged even moments of the ESD of W̄N converge
to the even moments of the semicircle distribution:

lim
N→∞

E(mµW̄N ,2k
) = Ck = mµsc,2k.

Hence, for all k:
lim
N→∞

E(mµW̄N ,k
) = mµsc,k.

This concludes the proof of Wigner’s Semicircle Law for GUE matrices.
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