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SUMMARY

A preliminary study is made of the theoretical gain
in power output obtained with a fully ducted land=type windmill
18 campared with the standard unshrouded type windmill, The
design of the internal and external ducting is discussed
together with its effects on the overall performance of the
windmill, The differences in the aerodynamic design of the
blades for the ducted and unshrouded windmills are considered
and attention is drawn to the importance of the use of the
correct induced (or interference) velocities, A brief review
is included of recent Japanese theoretical and experimental
studies on ducted windmills,

The gain in performance is shown to be due to (a) a
reduction in the tip loss and (b) the effect of the increased
axial velocity through the windmill by controlled diffusion
of the slipstream, The gain is shown to depend critically
on the internal frictional losses, the diffuser expansion ratio
downstream of the windmill and the external shape of the duct
at exit and less on the inlet contraction ratio, It is found
that with suitable design of ducting the gain in power output
should be at least 65 per cent, as compared with the ideal
power output of an unshrouded windmill, if both the ducted
and unshrouded windmills are of the same diameter, Since the
disc loadings of the ducted windmill are very much lower than
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those of the unshrouded windmill, and the risk of high gust
loading will be less, it is suggested that the simplification
in the design of the windmill will partly offset the increased
cost due to the windmill ductinge
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CP = E————-—VgﬂRz power coefficient
2 o %
CP' maximum power coefficient of unshrouded windmill
C = C.;L + CD
x sin @ cos @
J S T
v cos @ sin @
" D Ql'ag
e energy loss coefficient
E energy loss in slipstream
ED profile drag energy loss
: 4 disc loading of windmill
F axial (drag) force on windmill
h1 ,h2 non=dimensional coefficients
H total head, pitch of vortex sheets
AEH loss of total head
I»L, Bessel functions (Ié(z) = o/c'iz)
k pressure drop coefficient, mass coefficient
K rate of flow of kinetic energy, circulation function
KO,K1 Bessell functions
L 1lift
. m integer, factor in drag integral
n area ratio
’ P pressure
FAYS) mean pressure drop across windmill
e power
q resultant velocity
Q torque
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performance factor, (r,0,z ocylindrical coordinates)

radius of windmill fairing

outside radius of windmill blades

element of length, non-dimensional parameter
cross-secticnal area

time

-r2locity components

axial component of velocity in slipstream or wake
volume, velocity ratio

axial component of velocity

wind velocity

velocity of rigid helicoidal vortex sheet

w, =w
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W

X

T
K.

resultant velocity

velocity ratio, radius ratio

force

velocity ratio, (r,6,z cylindrical coordinates)
blade incidence

no lift angle

velocity increment ratio due to duct

efficiency

blade angle,(r,@,z cylindrical coordinates)
angle

circulation function

reciprocal of diffuser expansion ratio, !2.r/V§
density

solidity
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=

- velocity potential, relative flow angle

circulation

i,
]

non~-dimensional parameter

=

angular velocity

2
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Suffixes
152,53 denote sections of the duct
n,t denote normal and tangential respectively

primes denote conditions just downstream of the windmill

bar denotes a ratio.

3+ Introduction

This paper has been prepared at the suggestion of
lr, Golding of the Electrical Research Association following
on some preliminary work done by one of the authors, It is
intended to be only a preliminary paper outlining the gains
in performance obtained with a ducted windmill over an un=-
shrouded windmill, as well as the limits imposed on the
ducting and the design of the blades.

It is known, from the simple momentum theory of the
windmill, that for an unshrouded windmill the maximum power
output is only 59,3 per cent of the available kinetic energy
of the wind per unit time crossing an area equal to that
swept out by the blades, (In practice due to aerodynamic
losses this figure is reduced to zbout 4O per cent), Since
the action of the windmill in cbsorbing power from the wind
is to reduce the kinetic energy of the oir passing through it,
it follows that only part of the availible wind upstream of
the windmill actually flows through the windmill disce. This
energy, which is lost to the windmill, smounts to 40 per cent
of the available energy,

Various methods for increasing the power output from
windmills have been discussed by Betz!, These include the use
of mlti-stage windmills and a cambined propellor and windmill
in which the power to drive the propellor is provided by the
windmill, The propellor induces a higher axial velocity
through the windmill disc and thereby increases its power output,
Although the ducted, or axial flow, fan has been discussed by
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many authors since 1920 the ducted windmill has received
little attention. The first reference, known to the authors,
to the gain in power associated with the ducted over the
unshrouded windmill, is due to Vezzani~s A more complete
account of the performance of ducted windmills is due to
Samuki” in which for the first time experimental results arﬁ
givens Some further measurements are described by Iwasaki
who also discusses the detailed aerodynamic design of
unshrouded and shrouded windmills. Independently one of
the present authors? recently drew attention to the gain in
power output obtained with the fully ducted windmill,

Tne ducted windmill, consisting of an entry cone, or
contraction, followed by a diffuser with the windmill operating
in the throat section, obtains its increased power output
from two independent effects, These are (a) a reduction in
the tip loss and (b) a higher axial velocity through the wind-
mill disc obtained by controlled dirfusion of the slipstreams
The gein in performance due to (a) can only be found from a
complete analysis of the acrodynamic design of the windmill,
The experimental and theoretical work of Twasaki®* show however
that this gain in power ocutput can amount to as much as 30
per cent of the power of the unshrouded windmill,* Sarmiki 's3
experiments cn ducted windmills of 1,2,3,4 and 6 blades over
a range of blade settings were performed with a windmill
mounted between entry and exit cones having diameters 1,3 and
11 respectively greater than the windmill diameter, The gain
in power output was greatest for a 2-blader and least for a
6~blader although in the former case the unshrouded power
output was so small that the blades were probably stalled.

The effect of (b) can, at least qualitatively, be found from
an application of one-dimensional flow theory when the internal
and external duct losses are included, The gain in power
output with suiteble duct design is found to be very much
larger than in the former case and can amount to as much as

90 per cent of the power of the unshrouded windmill, (In
practical installations, however, it seems unlikely that

the total power output of a ducted windmill will exceed twice
that of an unshroudsd windnill of the same diasmeter). The
experiments of Sarmkid show that with relatively crude ducting
and no effective slipstreanm diffusion the increase in power
output is sbout 86 per cent for a two-blader windmill and
somewhat less for windmills having lerger mumbers of blades,
although for the two~blader most of the gain in power arose
from an unstalling of the blades,

= The experiments, due to Iwaseki, were done with a shroud
ring of length equal to about one third of the windmill
diemeter. The tests were done at relatively large blade angles
and consequently the power outputs were well below the maximum,.
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The aerodynamic design of the blades of the fully
ducted windmill is not as simple as in the case of either the
unshrouded windmill or the axial flow fan, In the latter
cases the disc loading and the power output can be calculated
on the basis of lifting line theory, once the induced, or
interference, velocities due to the vortex sheets in the slip-
stream, are known, These can be calculated from Goldstein'sb
theory and the work of Lock and Yeatman/, Kramer®, Kawadad,

_ MoriyalO, Theordorsen'!, abel? and Tekeyamal3, In the case

v of the fully ducted windmill the induced velocities are a

: function of the ducting around the tips of the windmill blades,
the diffuser and conditions in the slipstream far downstream

o of the winwnill and its surrounding duct, A simple analysis
easily demonstrates how important a correct evaluation of the
induced velocities is in the aerodynamic design of a ducted
windmill.

Part I of this paper deals with the performance of
the ducted windmill and its comparison with that of the
unshrouded windmill on the basis of simple one-dimensional
theory. Part II, on the other hand, discusses the comparative
performances of ducted and unshrouded windmills using the vortex
theory of windmills,

PART T

One~dimensional flow theory

4, Analysis

In the simple aerodynamic theory of windmills, the
windmill is assumed to have an infinite number of blades, so
hat it effectively becomes a circular actuator disc over
- which the axial farce is uniformly distributed., The rotation
of the slipstream is neglected and the axial component of the
velocity must be the same on both sides of the disc in order
to satisfy continuity of flow, There is, however, a discon-
timuity in the pressure as the air flows across the disc,
It is assumed that the velocity across any plene perpendicular
to the windmill axis is uniform and steady and the flow in-
3 compressible, Ve will first find the power output fram an
unshrouded windmill and then secondly compare its power
output with that of a ducted windmill of the type shown in

figure 1,
La,. The unshrouded windmill“"

The axial force, power output and efficiercycan
be obtained from an application of Bernoulli's equation and
the laws of conservation of mass and momentum to the control
surface ABCDEF (see figure 2), Since the rates of mass flow

T
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across sections '0', '2', '3' must be equal we have

VOSO = V282 = V3S3 oooo.-oc‘ool(1)

where V is the axial velocity and S 1is the cross-sectional
area normal to the windmill axis, Since the flows upstream
and downstream of the disc are irrotational we may separately
apply Bernoulli's equation to the motion in these two regions.
Therefore the total head, H, in these two regions is
respectively,

'z
o

and H3

Since the pressure p3 far downstream must equal

V> = py + 3V )

!

n
el
o+

PRI

B o

p§+%PV§=p3+%pV§j

P,» ‘the pressure difference across the actuator disc is

py=p) = b0 (V- v§) PRSI ¢

and the axial (drag) force F acting on the windmill disc,

of area S,, is

/ 2

/v

F= (pz-pz')sz = %PSZVi q\“ - ;g) aolona-ooooo(ll-)
O

If we apply the momentum equation to the control
surface ABCDEF it can be shown that
F=X+Dp, (so--SB)erv2 S, (VO-VB)
where X is the integral of the pressure forces acting on

the curved boundaries ABC and DEF due to the fluid
outside the slipstream, It can be shown that

X

- po (SO - SB) o.o.o..toooﬁ(s)
and then

F

PVZSZ (VO & v}) -oo-coooo-oo(s)

It follows from equations (4) and (6) that

V. +V
V2 = —0—2——2 o..oo-oo-obo(?)
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fV o+ V0N
o F = P (\—9—5——2l) 82 (Vb o V3) o.oo.ocaococ(ha)
4

V_o+ V0N
where p (-9—-2-—2 ) S2 is the rate of mass flow through the

windmill disc end (v, - Vj) is the difference between the
velocities of flow far upstream and far downstream.

The decrease of kinetic energy of the fluid in the
slipstream per unit time is

'V 4+ V)
x=p(252) 5, (2-v2)
(V°+V§\j

2 75

00000-0-0000(8)

which equals the work done by the fluid on the windmill, P,

If we define the power coefficient, Cps as the

ratio of the work done by the fluid on the windmill, to the
rate of flow of kinetic energy, far upstream of the windmill,
through an area equal to that swept out by the blades, then

000000000000(9)

c = e—tm—
4 2 9
%1(Rtp \.70

(This is the general expression for the windmill ppwer
coefficient and is independent of the mumber of blades and the
size of windmill boss). If we assume that S, = 'nR% vhere

R, is the outside radius of the windmill then

t
P i (147, ) ¢ _Vé_
= - —F= (-3)

Q

.000.000000.(10)

pS,V0  dps,v)

The maximun power coefficient Cp (V3/Vo) is obtained when

Ty s = '15
6 000000003000(11)
giving Cp = %7 = 04593
max
The disc loading, = s corresponding to maximum
;Psgvg

power is
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f =M = 2 o.o.oc.oooo.(jz)

(14757

although the disc loading itself is a maximum when Vj/vo =0
a.rld f = L]-.
It should be noted that the definition of disc

loading f dis different from that of the axial forge (drag)
cocfficient Cp = F/4xB2VS , Thus when S, = *R%

F t
v ~
2 i
CF = (\1 V§/VO/ 0.....00.."(13)
and at maximum power
(CF) = 8/9 .OQ.Q.Q.‘...(JIII')
Cp
max

be The ducted windmill

(i) Prictional losses neglected

Iet us consider the performance of a windmill mounted
in a duct having a cylindrical external profile (see figure 3).
Since the flow is frictionless the only losses are those in
the windmill slipstream,

As the air flows through the duct its pressure is
decreased by Z\p across the windmill, The axial force, F,
on the windmill is given by

F = 52 /:\p o.ccooooccao(1)

where 82 is the windmill disc area.

If we apply the momentum theorem to the control surface ABCD
we can show that

F = . pSZVZ (VO o VC‘G) - D ooooo-oooo-o(z)

where D is the drag on the duct due to the internal and
external flows,

If we next apply the momentum theorem to the flow inside the
slipstream it can be shown that

P = PSZVZ (VO - “éﬁ) L AP (S1 - SZ) 00000-000-00(3)
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Equations (1) and (3) together give
A_p S = pS (v ﬁ-') ooco.ooooooo(zl-)
and equations (2) and (3) show that the duct drag

AP (31 - 82) 0000000000.0(5)

This simple expression for the duct drag arises from
the fact that its extermal profile is cylindricals Equation
(5) is not true for external profiles other than cylindrical
and in any case it is only truefor inviscid flow.

If we apply Bernoulli's equation to the flow upstream
and downstream of the windmill we get

HO = PO + '%'pV§ ] zpvz )
} ..l.........(6)
and Hy =pj+ %Pvg = p, + —;— S

These equations show that
e -t - — e .
,‘.p = p2 p2 = HO H1 = 2P(V§ Yi) o.oooo.o(?)

which together with equation (4) leads to

V2 = -zl (vo ; V‘.’X)\ 000500000000(8)
o 4
or alternatively
3} G
v vo i V:'.x.r S1 - S2 Vo i V?O 8 )
2 = 5 + SZ 5 oooooooo-o( a

The first term on the right hand side gives the contribution to

V2 due to the windmill slipstream and the second term is the

contribution due to the duct.

The work done on the ducted windmill by the air is,
using equation (8) for V

o9
V + T/:x
P=F V2 = APSQVQ = APS1 ( 5 000-0000(9)




or the power output for a given value of /\p is proportional
to the rate of volume flow through the windmill disc.

Now for an unshrouded windmill of disc area S the
power output is

V + 71
P = ZLP S <—Q_2“ﬁ> 300000000009(10)
Hence the power outoat from a ducted windmill, where
the external prcfile is cylindrieal, is equivalent to that
from an unshrouded windmill, having (a) a disc area equel to
the dist inlet (exit) area, and (b) the same pressure drop as
the ducted wihdmill,

When the external profile of the windmill duct is
not cylindrical (figure 4) equations (1) and (2) still hold,
but the duct drag, D, is given by

)

gc
D = ! pasS = p 4ds oooonono.oo.(11)

where 'E' and 'I' denote the external and internal surfaces
of the duct respectively. Since the flow is one dimensional
the velocities inside the duct upstream of the windmill will
be equal to those at the corresponding section dovmstreame
Due to the pressure drop /A p across the windmill, the con=-
tribution to the internal drag, between the inlet and the
section downstream of the windmill having the same area as the
inlet, is equal to {’j;p(S,l - 82). Between this section and

the exit the external and internal pressure diffeerence changes
from /\p at the area S, to zero at S,. Hence a mean

1 3
value for this part of the dra; contribution is

(S; = §,)
Op ——l-z-—i— s Where m is less than unity, and the

total drag becomes therefore, )
(mS, = S

1
D =4p (s - 8,) +£}p——2—

2 .....".....(12)

Since F = Ap S, we have, after some rearrangement

2
m + S1/S
1 + D/F == 58 /3 ooooaoouoooo(12a)
273

mS, + S
and D is only positive when —és——l > 24
Vo
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From equation (2) with the value of D fram (12)
we find that
fm S, + S\

pszvz (VO - Yf’) = I:}P {‘_-25_—1’} 00000.00.00.(13)

But from equation (7)

ﬁ‘.P = %P (VO - Y;\) (VO + E() 000000000000(124-)

and therefore

N
. (m83+S1) (VO+VY)
2% 758 \" 2

’.....‘.0...(15)
2

or alternatively

V. +V, [mS, +8, =25)Y /V_ +V
v = fo) _')(..+( 3 1 2) i o }G) .3000(158')

2 2 282 / \ 2

~

Since the power output is still given by

P:FV2

we find that when V, is substituted from equation (15)

(mS, +8,) [V _+7V,
SO = AP }2 ] 02 - 0.000...000.(16)

Thus(the equi;'alent unshrouded windmill must have a disc area
mS, + S

of —-‘3——2—-—1— » It should be pointed out, however, that this
result is only very approximate and depends on the expression
obtained for the duct drag (equation (12). However, in
practicel applications the use of the factor m is simpler than
say expressing the fairing drag in terms of the maximum velocity
on the external profile,

From equations (16) and (14) the power output can
also be written as

mS S,)
T2 e E-E-_-lBL—L (VO -+ '\é}) (Vﬁ - ‘é,) ooooooo.oooo(17)

and the power coefficient, Cps in terms of the windmill

swept area; = Ri, and the upstream velocity, Vo is




S / S N\
2 2 2
Co = 4 v© = {4 V —— | “.""“."(18)
i /mS., +S i mS., +S,\ /
g__;%?__l> \ (..é;__;ljl
Where She = 1r.R2 d v -—V—2
g = g Bl SVt

In the following section the importance of the
expansion ratio, 1/u = SB/SZ’ and the pressure coefficient

D, =D
at exit, C = —=2 ,
B v

between these parameters and the terms used above will now be
found,

are demonstrated, The connection

Since the external and internal pressures at exit
are equal it follows that

V2

2 2

C = ...'...‘_ - ¥ U ...o.oooo-oo(19)
P)+ Vf)

But from equation (14)
;A‘% — (1 - '-"'E \ 1—- -— f ............(20)
15y ‘\ / v2
2PVo o’

and hence from equations (19) and (20)
sz =1 = (}J.2V2 + C ) coc-oooo.ooo(21)
Py

From equation (2) the disc loading

, V., G
O e PP ) T
f = 4 v2 -— v “1 V ,) 2 .....0..0'..(22)
2pVy Sy " ee ¥
D
-h C e ———
where D 1 v2 ”
2P Yq P2

If we substitute for Y;/Vb from equation (20) then

¢ 2V
V2f + CD — N .( ‘ ) 000000000000(23)




=1 6=

F— =i

2V, - ‘ 2 |
1 - / o {
where v < = v i1 . T 000000000003(2)4-)
+V 2
o pu fv
2v‘ -/p2v2+0 LLJ
= = oooooo..ocoo(zli-a)
1~ (v )
4
In terms of the drag coefficients, CD’ equation (12) becomes
mS_ +3
C + fV2 = f\f2 _L,,i 000000000000(25)
D 2b2

and therefore on comparing equations (2 3) and (25) it follows

that I
! /2
mS, + S m+ S,/3 1 -
3 1 173 _ ..J veu(26)

€95 2 1 - (p%v%sC )
Py

which after some rearrangement leads to

g |
. h /“vmpl**‘ . | veseesassana(27)

1-p.2v2-C

Py,

A knowledge of the value of m enables the disc area of the
equivalent windmill to be determined,

2

wn
N

A very simple result arises when S1 = SB' In this

case equations (5) and (12) show that m = 1, and solving
equation (27) for v gives

2+ /1430
v o= (- oootoooo..oo(28)
3p
Thus if CP is negative it cammot be more negative than - -;-
3
and not greater than zero (see below), These conditions

refer to meximum and zero power respectively., The fact that
values of CP more negative than = 1/3 are not permissible

Iy
is a rather surprising but nevertheless a very important ded-
uction, Similar restrictions exist on the values of p and v,
From equations (20) and (8)




=

V. O

vj' o \/1 L ﬁz = 2|J.V -1 o-oo‘-a.oooo(29)
or f‘v2 = LH.J.V (1 .- VlJ-) ..0..0.0-...(30)

and p, and v must lie in the restricted range given by

1 . 1 : T

M <v <p for positive values of f and Vw .
Then m #Z1 the general fornmlae, replacing equation

(30) and (28) are respectively

{ l
I !
SO = =2 -1 eni(GU)
v |
(m + 8,/8;) et ~
3
/, 2 \
" Poa!
- -‘.‘ 1 i C j 1 ; - 1‘
m 51 753 P), \m+S1/SBW “
-~ S — E\g \ ~ 000(32)
u g . q - 1'1'

Similarly the equation for the power coefficient
found from equation (18) is
; of 2
(16 = (m+S,/S
‘m+S1/83\5 {‘ ( 1/ 3)
CN=RE ] - 2
P \' o j i Ian—u‘_m“___ﬁ___‘w“é /
Lk =V 16+(1=C_ ) (meS, /S,) |
o P4 3 ¥

o y
} L - .,_/16+(1-Cp4)(m+81/sj)
]

5 00..00.-0..0(33)
16 = (m+S1/Sj)

Thus for positive values of f and v

m + 5,/8 n+ 8,/
e s Sl
by 2m
and —CP< L 5
b {{_b
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To these relations we must add the condition for
positive drag (equation 12a) viz. 1&- + 8,/8,> 2, although this

will always be satisfied no matter what values are used for
L oand S 1'/82.

Although all these relations are modified to some
extent when friction effevts are included nevertheless they
represent useful limiting values in preliminary design studies.

The important results obtained from this section are
as follows,=

(1) The interdependence of the windmill power output and
the fairing drag.

(2) The power output is proportional to the rate of
volume flow through the windmill disc for a given
disc loading,

(3) The velocity through the windmill disc is equal to the
slipstream and the duct contributions.

4b. (continued). The ducted windmill

(ii) Flow with frictional losses included (see figure L)

The flow far upstream, of velocity Voo enters the
duct inlet, of area S 42 with the velocity V1. The flow is

accelerated in the contraction and flows past the windmill of
disc area 82 with the velocity V.. The pressure discontinuity

across the windmill actuator disc is equal to Py = pé « The
velocity decreases along the diffuser and leaves the exit, of
392 with the velocity VS. The velocity further

decreases downstream of the exit since the pressure p3 at

area S

the duct exit is less than the uniform stream pressure Pge
The velocity reaches a final value V  far downstream of the
duct exite,

In the external flow arcund the duct it will be
assumed that ocutside the duct boundary layer the total head is
constant and equal to its value far upstream. It will be
assumed that at the duct exit the pressure P, is constant

across the boundary layer and equal to the value p3 inside
the ducte In general P), - will be less than P,e
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Inside the duct we will assume that the total head
loss in the boundary layer arising from the friction force at
the wall is distributed over the compleste duct cross-section
i.es camplete mixing at each section is assumed. If Cp is

the local skin friction coefficient acting on the element of
surface of the duct of length ds and perimeter =D then the
total-head loss, AH, between two sections of the duct is

given by
i |
T D
GH=p3 | oV g as .
 9h 1
V,'S1
where from continuity V = = o 1 CF is the mean
coefficient of skin friction in the duct between sections 1
and 2 then
§s2 /a X 5
AY : S L C : { D_“ a/ _s__>
= P ]
3 Vs B, \Ps L2
where V, and D, are the velocity and diameter respectively

9 1
at the section 1.

The following lcsses will be included,

QH1 the mean total head loss at entry

L\H2 the mean total head loss in the contraction section
including the losses across guide vanes and fan
fairings

AHB the mean total head loss in the diffuser,

If we apply Bernoulli's equation to the flow inside
the slipstream and the duct we obtain

2

2pVy +AH,

P4 = %Pvf =Py %Pvg + At
- 2

by + BV, = B} + B9V, + 41

D) + %pvﬁ = Py + %pV‘; +{Hy

— 2k
Ho =Py t vag

i

o,
iy

+

P (. ©

b O

-

But the loss in total head across the windmill AH?'
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is found from the axial (drag) force on the windmill

By = SZ (P2 — pz') = 82 Lli\HQ’ 000000000000(2)
: A

and f = —;['1—"' = "‘—I-'I—z— ...o..li....(})
WSV, v,

Prom equation (1) it can be shown that

-

%P(Vi _ V‘i) S Rp=p o AH, + AR}

=1
but since Pz = P) and writing
- v v
Py ?PV?) "2 % Yo
then o
N [H,
(f + }.12)'\7'2 =1 - CP - Z::V21 ooocooooolo'(li-)
Lo ZpV,
If further we put
AH,
h1 =1 = Cp - 5
booozpVy
TN LH
and h2 = pz + Héz + 2
sV L V2
2PYo EP¥n
then equation (4) becomes
: 2 _ 4
(f + h2) v = ;11 000009000000(5)
1’. h1 -
-] —d
ana v =y 7 4 h -o..ooo.oooo(6)
2z
The power output * from the windmill is
P:FV2 .l....'..‘.‘(?)

= This expression for power output is only true when the drag
on the blades and the losses in the slipstream are neglected.
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and the power coefficient CP in terms of the windmill swept
area 'n;Ri and the upstream velocity Vo is

e
C - . 000.00000000(8)
15
LR
If 8, = T\Ri then fram equations (3), (7) and (8)
CP = fv3 o.oooo-ooolc(9)

and from equation (5)

P -

CP-— f v = (h1v hzvj) ooo-coooocao(9a)
If the intermal duct friction is neglected

!:‘H‘l = ./.\H2 = L\H3 = O then the power coefficient can be

written CP s Where
ideal

By LG -CPzJ = uZVj e el 10}

which equals the power coefficient obtained from equation (21)
in the previous section.

Both equations (9a) and (10) show very clearly that
large power coefficients will be obtained when Cp is negative,
p is very small and v is very large, although b these
variables are not independent,

For fixed values of h1 and h2 the mexdimum power

coefficient is obtained when

VN

V% 3, SRR T
e n N 32
o~ 2 (s )
(i =g /2 e evEasisvsng i)
’CP j g,z \__ B
\ “ideals 33/ "




and £ = 2 \
at C'P 1’12 ,"
max i 000100003000(13)
! : 2 :
(£, ) = 2p° |
\:Ldeal at CP \\
max Wi

It can be seen that the entry contraction ratio
S1/S2 only affects the performance insofar as it affects the

losses /\H, and /\H, and the pressure coefficient Cp
The factors of greatest importance are the expansion ratiol’
of the diffuser, ﬁ- , the diffuser loss, AHy, and the

pressure coefficient, CP .

L

A measure of the gain in power output from the
ducted windmill over the unshrouded windmill is the ratio of
their respective power coefficients, Thus if both windmills

have the same swept area, T\.Ri, and the unshrouded windmill
is operating at its maximum output power coefficient CI" then

the performance factor r is given by

[ :
r = _C.E - -f% fv} .;oooooooooo(1ll-)

When in addition the ducted windmill is operating
under maximum power conditions we find from equation (412) that

c . 3/2
E /3 h,\ 1
Igz.x = \'_41')) / hg 000000000000(15)
/
~ or using the values of h1 and hz
e i
. H 2
c i2 4-c, - A, ,g
Cl?ax == :.l'. > PLF -ZPV /'} 000000.00000(15a)
P (pz LA O N
LN W W)
(C \ iz i 3/2
and \ Pigeal/ max _1 i A Cpla.} (16)
v Cé = u L l‘. B [ EEE R R RS A KN )
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The limit of usefulness of the ducted windmill can
be taken when CP/CI" equals unity. Thus with no internal

losses and CP = 0 the minimum value of the expansion ratio
3
ﬁ- s corresponding to (CP. ) /C]f:, , is, fraom equation (16)
ideal'max
1
L" = 1054 o-ooooooooco(17)

In addition, from equation (13), it can be shown that
the corresponding maximum value of the disc loading is

’Kfideal} = 0.84 0'0'00000000(18)
fat CP
max

These results show, when internal duct losses are
neglected, that the ducted windmill hes a greater output than
the unshrouded windmill when the externmal pressure coefficient,
Cp ,» 18 negative or zero, and the expansion ratio of the

diffuser, El- s 1is greater than 1.54, Also the disc loading

is reduced from 2 to less than 0,84 when the windmill is
operating under meximum power conditions. Thus when internal
losses are neglected, the gain in power, with the ducted
windmill, is proportional to the diffuser expansion ratio and
similarly the disc loading is inversely proportional to the
square of the diffuser expansion ratios

(iii) Tip clearance of the ducted windmill

Since the action of a windmill is to create a
pressure drop across it, similar to the action of a gauze, it
is important to consider what effect the clearance between the
blades and the duct has on the reduction of mass flow through
the windmill and the power output.

Assume that the windmill of disc area S is uniformly
loaded and is placed in a duct of area S, (figure 5 ;e The
velocity and pressure are respectively Vo’ Py far upstream
and V3, Py
outsides Frictional losses will be neglected throughout.

If we apply Bernoulli's equation to the flow inside and outside
the slipstream then

far dovmstream in the slipstream and V2 s Py

HO = PO + —12_PV§ = p2 =+ %‘Pvg 000000..0..-(1)
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and H1 = p2 + %pv%

where Ho is the total head upstream of the windmill and
outside the slipstream and H1 is the total head downstream
of the windmill,.

If /\p is the uniform pressure drop across the
windmill then

Ap = H = H1 = %p (Vg - V§) oooo'oo...o.(z)

o

and the axial farce, F, on the windmill is given by

Hi APS 00000-003000(3)

If we apply the momentum theorem to the control
surface ABCD (figure 5 ) then it can be shown that

T = %32 (Vi - Vg) + pS3 (Vg - V‘;) PRPINPSORR | %, |

From continuity it follows that

SZVO - Sjv3 = (52 - SZ))VZ 500000005000(5)
S Vo =V
o 2 0

gn.vn.ng —si = “ET'V— ..ooooooooon(é)

e Ap =k then equations (2) and (4) can be
5oV

written respectively
Vg (3 V§ + k v(2) .o.cooc-c-.l(.?)
2 , "

and —l =1 -k §—+ 1 - 2'2) 0.0.0..0..00(8)
vi {\.32 S

Pram equation (6), (7) and (8) we obtain
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fr VA
-9 —k i1+
V. -V 1-(V."(1 kl1+S/’>
V2 - V—5 /'Vo\2 esevsecee
2k (-——
\ 3/
V2 vo
If we put n:s—; X == 3 z = - then
2 3 3
equations (7) and (9) become
X2 = 1 +k 22 c.o-‘ocooooa(10)
x -z ¢ (1 = k = kn)
and x_,] 2 .ooo.ooooooo(11)
2kz

On elimination of x between equations (10) and (11)

we obtain for z
aZLF"'b Z3+ CZZ+dZ+e = 0 ooooovco-'oo(12)
2 2 1
where a= = h{ (1-n)“ = 2k(14n) + 1__' s d=-4
= 4 L1 - k(1+njl. - = 3
= 2k(14n) = 2
When the value of N is near unity the solution of
2
equation (2) is
v
A =.\Tq =1 + L 1:_11_. oo-ooo.ooooo(13)
3 2 14k
V2
and x =g~ can be found from equation (10).
3
If V is the mean axial velocity through the
windmill disc the power output, P, dis equal to
= ooo--oo-ooov(1l§-)
V -V \ S
where = V / =€
2 S
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Vhen the value of -g— is near unity the power
2

output coefficient, using equation (13) for z, is

Cp= T lw;": (x-1) ( - )“5)

1D
2PVOSZ 1+k\-1

For an ideal windmill i.,e, one having no tip clearance, n=1
and CP = k, Thus the loss in power due to tip

ideal

clearance expressed as a ratio is

B :
5 N ] - _&Iﬁk_ ..0-03001000(16)

Cp o j— )
ideal 2{’7’1+k-15

For moderate tip clearances the loss in power is
less than 1 per cent and hence the neglect of tip clearance
in the previous calculations is Jjustified,

Les Calculated results and discussion

The optimm performance of ducted windmills having
diffuser expansion ratios, 1/u, of 2,3,4 and 5 and internal
total head loss coefficients of 0, 0410, 0,15, 0,20 and 0,25
have been computed for values of duct exit pressure coefficient
C of 0, =0,1, =0.2 and =0.3, The entry loss

Py, AH,
coefficient
ZPV2

will be its value in nearly all well designed duct systems.
These results shown in tables 1,2,3 and 4 have been compared
with the optimum performance of an unshrouded windmill, The
results are plotted in figures 6,7,8,2 and 10.

has been made zero throughout, since this

Inspection of figurcs 5,7,0,9,10 shows that the
performance factor r depends ciitically on the value of the
pressure coefficient, Cp s at exit, Thus the power output

L
of a ducted windmill will be increased significantly if the
diffuser outlet is placed in the lee of an obstacle or by
providing a flow augmentor as shown in figure 1.

If we assume that a duct of good aerodynamic design
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has an internal loss coefficient of 0¢15, then with Cp = = 0415

5
and a diffuser expansion ratio of 3.5, figure 8 shows that
the ducted windmill gives an output power 65 per cent greater
than that of the ideal unshrouded windmill, If the diffuser
wxpansion ratio is increased to 5.0 the gain in the output
power would reach 85 per cent but it is questionable whether
the increased cost of the longer duct would justify this gain
in performance,

Another important advantage of the ducted windmill
over the unshrouded windmill is the reduction in disc loadings:
This is clearly seen on inspection of tables 1b and 1c. For
instance with a diffuser expansion ratio of 3.5 the disc
loading of the ducted windmill is only 25 per cent of that of
the free windmill case. This effect will considerably
simplify the design of the ducted windmill and will result in
a reduction of the blade cost which will partly offset the
cost of the ducting, It is interesting to note that the
Reynolds number, based on the windmill chord, will be of
similer order in the two cases, since although the axial
velocity will be increased, the blade chord can be reduced
due to the smaller disc loading of the ducted windmill.

In addition to the reduction in disc loading the
gust loads on the blades of the ducted windmill will be much
smaller than for the unshrouded windmill, This is because
the contraction cone ahead of the windmill will tend to
improve the uniformity of flow across the windmill and to
reduce any unsteadiness in the flow, In order to take
maximum advantage of this effect, the contractlon ratio should
be at least 1.5,
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PART IT

The gencralised momentim theory of windmills

— e

S

ba, The unshrouded windmill

In the one-dimensional or simple momentum theory
discussed in paragraph 4 the effect of the finite number of
blades has been neglected, and it has been assumed that the
induced velocity in the windmill slipstream is axial and uni=-
form over any normal cross-section of the slipstream. In the
generalised momentum theory, both the axial and rotational
components of the induced velocity, arising from the vortex
sheets shed from each of the windmill blades, are included
as well as their variation over the slipstream and with time,
The calculation of the induced velocities will be left to the
section below on the vortex theory of windmills but in the
present paragraph expressions will be cbtained for the mean
values of axial (drag) force and power output in terms of the
mean axial velocity far downstream of the windmill, Although
the major effects of the finite number of blades are included
their drag is neglected,

If we assume that our windmill is designed to have
a minimum energy loss it follows from the work of Betz that the
vortex sheects shed from each blade move backwards as solid
helicoidal screw surfaces having constant pitch, Far dowmstream
of the windmill these vortex sheets will be of a constant
diameter, greater than that of the windmill owing to the slip=-
stream expansion.

The laws of conservation of mass, momentum and
energy will be applicd to the control surface ABCD (see figure
11) in order to find the mean axial force, torque, and power
output from the windmill, An element of the surface AD,
far upstream, will be denoted by dSo where the velocity and

pressure are Vo and Py respectively, Similarly, far
downstream, the clement of the surface BC will be denoted
- by das o vhere the axial component of the velocity and pressure

are u, and P, respectively., The windmill, which is

1
rotating with an angular velocity {) , has B blades which

are equispaced and straight, It is assumed to have no hub,
fairings or guide vanes, The axial force on the windmill
is F and the axial force, due to the pressure of the
external flow on the curved boundaries of the slipstream,
will be denoted by X
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If we therefore equate the rates of flow of momentum
acrcss the control surface ABCD with the pressure forces on
the boundary and the internal body forces we can show that
(sece figure 11) =

Fe

2
=y pu1VO~pu1)dSm

ISR

F=X4+ pO(SO - SO(;‘) # (p

&

o

But from an analysis of the flow outside the windmill slip-
stream it can be shovm that

X

1

pO (SOO-SO) Qn.onoa.uoou(Z)

giving §

1
-

=
1

2
(pO - p1 + Pu1vo - Pu1) dsm --oo.oo-o.-'(j)

Since we arc assuming that the vortex shects are
moving through the fluid as solid heclicoidal surfaces the
induced motion, far downstream, can be derived in terms of the
velocity potential @ (div @ = q) satisfying the boundary
conditions of no flow across the vortex sheets and no flow,
relative to the shects, at infinity., Hence (po - p,‘) can

be found in terms of the induced velocity components from
Bernoulli's equation for the unstecady flow of an incompressible

Ehvids Thus 5
p g P4
po-p1 = at + 2 .......l....(lk)

where @ is the velocity potential at a point r, 6, z
(cylindrical polar coordinates) due to the axial movement
of the solid helicoidal surfacecs through the fluid with the
velocity W, s and P, is the pressure in the fluid at

infinity., Now because the vortex sheets are moving with the
velocity Wi in the direction of the negative z=-axis it

can be shown that

¢=¢ (Z+VVot, r, 6) .00000000000(5)
. 1. _H ;
If W, =352 Y =739 2 Y, =3, then equation
(4) becomes, following Theordorsen ' | .
2
P 9
P, = Py = pW U+~ vevesesesses(6)
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2 2 2 2
where qu = ur+u0+uz

and equation (3) becomcs, since u, =V_+u, ,
\i

p(}?!qﬂ -uz-u (V -W) d S, e

Since is a function of time we must integrate
equation (7) with respect to time in order to find the mean
vaiue of the axial force. But since ¢ is a function of
z + Wot an integration with respect to t may be replaced

by an integration with respect to z. The resultant volume
integral can be taken over an infinite cross-section normal
to the z axis and a distance along the z~-axis equal to the
distance between successive vortex sheets, This distance is
equal to H/B where H is the pitch of each vortex sheet
and B dis the number of bladcs., Hence the mecan value of
the axial (drag) force is

B Il | } qf 2

_pB A - -

F = H s? l §2 uz uz (VO WO) dV ...ooooa.(B)
vl e

where dv is the element of volume,

Now Theordorscn has shown that the separate integrals
on the right hand side of equation (8) can be written in terms
of the integral of the circulation taken over the vortex sheets
in the slipstream of radius R If the c:chulatlon at rachus
r is denoted by [ (x) vhare x = r/R

w_H K(x)
r' —— then we can write

—~
al

~
|

B
ET j u 4dv = = LA k=« R A
H Z
B | 2 2
ﬁ ’ q_1 av = W k= R ( ..ouooot0ooo(9)
u
0
-5) uzdv= er'}\‘.R
H Z o]
Y
where k = Zj K(x) x dx

If we substitute equations (9) into (8) then
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al, vz 2 - CF = 2k Wo _1 WO 3 g kﬂ 2 oooo-oc.ooo-(10)
QP 07th | e i t

where w. = w_ /V
o o/ o’

Similarly it can be shown that the mean energy
loss, E, in the windmill slipstream can be written

R2

C-,_a = ﬁ'f =821 %2 'é"'g-\f ﬂ ooooooooctc.(11)
L e 2 (0] : k o 2
LpV2nRT R}

But the power output, P, is equal to £LQ = (FVO-E) , Wwhere

Q is the cutput torque and L2 is the angular velocity of

the windmill, Hence the power coefficient CP is given by
IR ST (4-w) (1 -S% E‘i‘? (12)
o y 3 g = 'WO -WO "kWo 2 essses
BV Ry Ry

Equations (10) to (12) can be compared with the
corresponding expressions obtained from the one-dimensional
. 2 )
theory. These are, if S, = 7R, , and [ (see
section 4a)

CF = 2Wo -2—)

_ =2 Yo
C = W -é— 00000-000000(13)

and they are similar to the previous equations when
B, 1="o/p

k=1 and e/k = 3. For an infinite

= . s
Ri 1= L
Vo - v
number of blades when —= is small k =e =1 and
LL Ry

therefore since e/k = % is not the limiting value we camnot

expect that the optimum performance, found fram the simple

theory, will be equal to that found from the more exact theory.

Theordorsen calls k the mass coefficient, and
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interprets it as the ratio of the mean rearward velocity, taken
over the entire slipstream cross-section, to the rearward

velocity Woe Both k and e are functions of B and

V =w
2 S and their values can be obtained from the tebles given

R
L

in rgfference 4

’ Before equations (10) to (12) can be used to predict
the performance of a windmill the slipstrcam expansion must be
: found. From the simple theory we find that
Rzn 1 =W /2 »
"’5‘ = O..t.ooococ.(14)
Ry 1, =-w
[V d O

o1+ %0/2 for small W_ s

A better approximation is duc to Theordorsen who
shows that from first order calculations of the radial velocities
in the slipstream,

\T)

=5 1
RS, i (1-7)U-5°s )

R (/)((-))

o1+ w (- s/2) for small W
olk

o

) X K(x)coszﬂf dx
{
where 5 = —= is the average value of

J‘1 x K(x) dx

cos2¢ weighted by the factor x K(x),

v (1 - w_/2)
and g = o] 2 O/ is the angle of
. _',,LRO x
- V- W,
the relative flow at the windmill, Vhen ———— is small
-Q'Roo

k 2

become equal, at least for small values .of Ffo. For approximate

(.9 - ..S_) A 0.5, and s 1,0, and then equations (14) and (15)
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calculations s can be put equal to the mean value of cosZ¢

over the woke (i.e., approximately the value of cosz¢ ot %° = 0.50)

or
SN—-—-L—_ .000..-.....(16)
= W_\-2
1+ - 1 - —9-)
2 2
“o
SR
where v = t
o] V0 ¢

Since the power output, P, is a function of the
number of blades, B, the ratio of the peripheral speed to
the wind velocity, Bos ad W  no simple relation, in

general, exists for its maximum value, However when V o/‘QRt

is very small k and e have values near unity and if we
use the approximate value of the slipstream expansion ratio
(equation (14) ) then it can be shown that the maximum power
output occurs when

\-';'O =N Ogh22
giving CP = 0.385 ooo-o-ou-ooo(17)
max ‘
and CF 4 0.14.214,.
(at Cp )
max

The corresponding valucs obtained from the simple
theory are,

F]O = 2/3
CP = 16/27 = O°593 .ocoooooo¢..(18)
max
at CP
max

However when we use the more correct expression for
R{i /RS from equation (15) we sec that R /R, tends to infinity
) - 1 : - X -
when W = m> (ieee when u, 1is large w_ = 2/3)e The

power cocfficient C_, does not reach a maximum for a value of

1=
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\-:J'o <\ 2/3, when equation (15) is used for (_13_\20 in equation
R
(12), but tends to infinity with Rw/Rt. o1 appears

therefore that equation (15) is not satisfactory when the slip-
strean expansion is large and it must be expected that the
calculation of the radial velocities according to a second
order theory would lead to a modified formula for R oG/Rt .

In practice an instability must arise for some valué of ;"o
less than unity. In view of this instability in the operation

of the windmill the values of ﬁo and CP given by equation
max

(17) moy more nearly represent the limiting conditions obtainable

in practice,.

So far we have found the maximum power conditions in
terms of W but it is more important to state how the power
output depends on the ratio .ﬂ_Rt/VO for a given fixed pitch

windmill, If we consider the blade 1lift loading at a radius
of 0,75 Ry, say, as representative of the overall blade

loading we can relate Fvo to p, and 0, the blade angle at
tidis radius., From the vortex theory of windmills the
following relation exists, for the ideal windmill, between the
local blade angle, 6, and the local 1lift loading e

2K(x) W (1 = ¥,) sin’g
o C, = cravael19)

o -
- W, o) cosf
(1 - v.'O/Z) 1 = 5= cos ]

where 0

Zg-a
b ao(¢ -0-a)
and tan & = Vs (1-";0/2)
—Q—Rt b4
g is the angle of relative flow, @ is the angle of incidence,
a, is the blade no-lift angle, a, is the 1lif't curve slope

and o is the blade solidity. If suitable values are chosen

for o, a, W, and @ it con be shown from equation (19) that
the blade incidence, a, increases from its no-1lift value at
;}o = 0 to its maximum value at about ’:‘\'ro = 0,42 and falls again




to its no-lift angle when ;Vo = 1.0,

=35

This indicates that

the approximate relation for the slipstream expansion given by

equation ( 114.), which leads to a maximum power output coefficient,

CP’ at ;vo = 0442, may be more representative than equation (1 5)

for large values of FVO .

For small values of Vo/‘ﬂRt , K(x) at x = 0,75 is

approximately equal to unity.
tanf=sin@=¢ and cos 4 =1

If further we assume that

we find after some rearrangement that

then, from equation (19),

=2 _ = B
wO -Wo P1 * = 0 0--.-.......(20)
where P1 =1 + % “o (o- ao)
0475

3
Hd

when

2 %“o (G ao)

]

3u |
!1 - (0+a) —J
0.75 1. 0.75

Real values of ;vo can only bc obtained from equation (20)

| L% by (7 80)g 95 - 1].

Y0:75%

For both small and large

when w_ = 1.
o

of w_ <1

-1 2
60.75 ‘7/ tan ('3—[;) - ao

2
Fu (08)

i

a relation which is independent of the blade solidity.

Equations (21) and (22) represent the onset of instability and

correspond to the critical values of W, noted above,

At the other end of the range zero power output is
This occurs when

obtained when x}'}o = O,

(o]

T %"- cot (6+ao)

0475

_{, o‘ao\
0" 32 15

@ equation (19) shows that C

It follows, from equation (19), that for values

L=

(21)

0

PR

S e eneel2b)

When Mo = O equation (23) shows that the maximum valuc of ©




is given by

(60 ) = 900 b aO ol.c.u-ocooo(zl}-)
max 0.75 o
The limits imposed on ’E'o and 6 above, for large
values of ;';o’ correspond very closely to the limit of stable
operation observed experimentally by Iwasakih' for windmills of
less than 4 blades having values of © less than 20°,
It should be noted that in the determination of the

ebove results {ihe drag cn the blades has been neglected, It
is therefore prcoable that for large values of W, some of

these relotions will need modification, In order to find the
reduction in power output due to the energy lost in overcoming
the (profile) dreg of the blades we must add to the energy
loss E the amount ED where

R
E ¢ o 3
1 12 2 = 12 Y Be C... ('\"’-") dr ...-........(25)
Vo (i) AR

D o

where ¢ is the blade chord
W is the resultant velocity

CD is profile drag coefficient,

Since the resultant velocity,

;v.o 2
VO 1 - 5 Ccos ¢
W o= - (see section 6) and the
sin @

1ift coefficient, Cp, can be found from equation (19) we cgn

rewrite (25) as follows

E, . 2 §0(1-v'vo)k A

= 000000000000(26)
By ol
3oV, (RS ) Yo
v cD\-’rz
} x K(x) a——) d
1J0 ; Mo
where Z& = - v
J x K(x) dx
(@]
and TJ = W/VO .
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The power coefficient corrected for blade profile drag becomes

R
Cp = 2k v’vo (1-%30) (R—T)Z Q - %%) -é—z PESIREIER (-7

Since /\ is the average value of (CDWZ/CL x) weighted
by the factor x K(x) we can find an approximate value for it
by putting it equal to its value at x° = 0,50, or

2 ;VO 2
£ @) - -—-)

;A_
L‘to
o :
where o is the value of -6— at x = ——,
X L V2
Ro
If finally we substitute for _l';‘— from equation (14)
T
then for values of w?v"o below about 0475, and large i,
c.
P D 2
W (1-W ) C (2+“o)
- 0 € = L
Chr=2kw -] ] ==
4 o} © k o ) — e
( -39 o, (1-27)
......'.‘...(29)

It follows that for normal values of CD/CL’ say
about 40, the drag correction to the power coefficient for
moderate disc loadings is less than 5 per cent and it changes
the value of VVO , corresponding to maximum power coefficient,
by less than 2 per cent,

Although these results have been obtained for an

unshrouded windmill it will be shown below that very similar
relations also exist for the ducted windmill,




5be The ducted windmill

(1) Discussion

In section (4) sbove the performance of the ducted
windmill has been obtained on the assumption that the flow is
one~dimensional throughout and the number of blades is infinite.
Although in section (4b) the frictional losses in the duct
have becen included no account was taken of the energy losses
in the slipstream due to the rearward movement of the helical
vortex sheets shed from each blade of the windmill, In addi-
tion although the interdependence of the windmill and its
fairing were noted and allowed for approximately no attempt
was made to determine a correct formulation of the problem,

Iet us assume in this section that we are considering
the perforueance of an ideal windmill, that is one in which the
vortex shects shed from the blades move rearward far downstream
as solid helicoidal surfaces, mounted in a duct of arbitrary
cross-sections It is then possible to calculate the axial
force, energy loss and power output in terms of Wy o the

axial displacement velocity of the vortex sheets far downstream,
and the fairing (or duct) drag.

(ii) Flow through the duct

If we neglect the rotational effects in the windmill
slipstream and assumec that the axial velocity far downstream
is uniform over the slipstream, then it is permissible to
replace the windmill by a gauze, having a pressure drop equal
to that created by the windmill (figure 12§. |

The calculation of the internal and external pressure
distribution over the duct alone in an inviscid flow can be
performed by the mecthod of singularities in which the duct is
replaced by a suitable distribution and strength of sources,
sinks and vortices, Alternatively for a given distribution
of singularities, or prescribed internal and external velocity
distributions the shape of the duct can be calculated.

Then the gouze is present in the duct the method of
calculation is similar but is complicated by the vortex sheet
boundary dovnstream of the duct exit between the slipstream
and the free stream, The flow inside the slipstream is at
a lower total head than the flow outside but the pressure
across the vortex shect is constant. A discontinuity must
therefore arise in the tangential velocities on each side of
the vortex sheet, The main difficulty in the calculation
is that the shape and strength of the vortex sheets arc not
knowvn initially but can only be determined when the calculation
is complete,
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The standard method of calculation is to replace
the vortex sheet by a solid boundary across which a pressure
drop acts, equal to that across the gauze., The gauze is
then removed and the complete flow, internal and external,
is then homogenous  since the flow is at constant total head
everywherc, The shape of the vortex sheet and the velocity
distribution around the complete duct can be found by an
iterative method,” Finally the velocity distribution across
the plane of the windmill can be determined.

The viscous effects on the pressure distribution
around the duct can be determined from a calculation of the
boundary layer displacement thickness using the first approxi-
mation to the pressurec distribution, The above calculation
for the pressure distribution must then be repeated for the
new 'effective' duct shape. Thus finally the duct drag can
be determined as a sum of the tangential stress and normal
pressure components together with the velocity distribution
across the plane of the windmill,

Naturally in some cases it would be better to find
the drag of the duct, housing the gauze, experimentally,
although in all cases the theorctical calculations will show
clearly what shape of duct is nccessary to avoid separation
of the boundary layer especially close to the duct exit.

It should be noted that very little experimental information
is available on the performence of ducted intakes of the type
required for the ducted windmill, It is thereforc important
that a combined theoretical and experimental prograrme should
be drawn up to investigate the most suitable external and
internal profiles to suit the performance of high efficicncy
ducted windmills,

(iii) Performance of the ducted windmill

It will be assumed that the neglect of the rotational
components of the velocity in the glipstrcam in calculating
the drag and velocity distribution in the plane of the windmill
produces ncgligible errors in the values of these quantities,

# It can be recadily shown, according to inviscid flow theory,
that for ducts having a finite trailing edge anglc a stagnation
point of the internal flow, but not of the external flow, must
exist at the trailing edge in order to satisfy the condition
of constant pressure across the vortex sheet springing from the
trailing edge. In consequence there will exist, close to the
duct exit, a region of large positive pressure gradient which,
in the real flow, might tend to cause separation of the
internal flow,
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It will be assumed also that the velocity distribution
through the windmill disc is equal to the sum of the slip-
strean and duct cffects calculated separately, The value
of the duct velocity obtained in section (ii) is based on
the slipstream velocity being uniform, Thus if Vz(x) is

the velocity in the plane of the windmill, when the uniform
velocities in the slipstrcam are V and  Vpey respectively,

far upstream and downstream then thb contribution to V2 due

to the duct is
i { V + Vx,,)
6\/2( x) = V2(x) - \ 5] The additional

contribution to V2(x) duc to the motion of the helicoidal

vortex shects inside the duct vortex shects far downstreeam
of the duct exit will be discussed below,

The axial force on a ducted windmill, in which the
effects of friction are included, can be found from an
_ application of the momentum equation to the three regions
shown in figure 13,

Iet BCD and BFE represent the displacement of
the boundaries of the duct and its wake to allow for the
effects of the boundary layer.

In region I outside the duct

iy
(] - - - 2
pO (Sw SC) ; p ds =30 .00-.‘¢o.00.(1)
A=B=C=D
In region II the total drag force on the duct,
including friction is
i ' 3
) = (j) P dS + P u(vo"'u)ds 000000000(2)
i -
BD-BE wake

Lol , -
D (8- 5,

In region III the axial force on the windmill is

».

p(S—S)+ L(p-p1)+puVu)]dS+jpdS
\~B~F=F
~B(3)
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Thus fram (1) and (3)

]
F =f_po— + pu, (V) u1) J pds +p, (8] -sw)

BE.BD .'..........{l")

and fran (2) and (4)

F'I-D, = 5 - + pu V -u —l das eecssccncnene
,J !}30 Py Fe4 ( o) 12__ XK (5)
where =
3\ i
1 D - _ _ ~ I
D' =D pj u(VOu)dS_J p ds - p_ (soa %O)
wake BD-BE

The duct drag force can be calculated, as explained
above, by replacing the vortex sheet FE by a solid boundary
when the windmill is removed., It is assumed that the pressure
drop, A p, across the windmill is uniform across the plane
of the windmill, Thus when the windmill is removed the vartex
sheets CD and EF can only be similarly placed when a pressure
difference [\ p is applied across them., Since the flow
inside and outside the duct is then homogenous, the velocity
and pressure distribution inside and outside the duct bound-
aries can be calculated. Allowance can be made for boundary
layer effects and in particular their effect on the duct
pressure distribution and the effective duct area, Sqo’
downstream., The duct drag can then be obtained, ¢

far

The integral on the right hand side of equation (5)
is identical with that for the unshrouded windmill, if we assume
that far downstream of the windmill the vortex sheets are
moving as rigid surfaces., Therefore from equation (10) of
section 5a

— R
B+ + D! = i &2
2 = ZkVT h."ﬁfo ('Q"F'E‘ﬂ _2—' .l..l.....ll(6)

tp VxR

<€|O=‘:

where w_ = and V_ = w_  is the axial velocity of the

(o]

windmill helical vortex sheets far downstream

and Rt is the outer radius of the windmill,

It should be noted that the values of ¢ and k will be
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different from their values for the unshrouded windmill due
to the presence of the vortex sheets in the bounding wake,
However no calculations of their values in this case are at
present available although presumably they could be obtained
by the experimental potential flow tank method suggested by
Theordorsen,

Thus for a given value of the axial force, F, the
pressure drag D' and the effective radius of the slipstream,
R _,» can be found.

The power output, P, from the windmill can be
obtained by equating it to the difference between the kinetic
energies of the fluid far upstream and far downstream of the
windmill less the work done by the pressures on the bounding
surfaces of the given control circuit,

Thus in the notation of section 5a,

P = (§ lfo =D, 3 *ép- (Vi - qz) u, das_ e el

where u = V_ +u
1 o} 2
q2 = uﬁ + ug + (VO + uz)2
_ 2
But PPy = PW U, + Py /2
where q_f = ui + ug + ui

and if allowance for q, q, as functions of time are made then

M |
PR h
P = = e = wa
Cp= T3 =2kW, (I59) (1 =LF) = ceverceneses(9)
—2-pVO7th Rt

which is identical with equation (12) of section 5a. The
correction for the drag of the blades is found from equation

(26) of scction 5a. The value of Roo/Rt is found from the

duct calculations described above or approximately from
continuity, If the mean velocity increment in the plane of
the windmill due to the external duct is 6V2 then approximately
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If we put k=e =1 and assume § = 8V2/VO is
independent of w'i'»ro the maximum value of CP occurs when

2
;f; = 3+28 = /} t 66 t 46 .ono.'ocoooo<12)
o
3
As an example if & = 2, ;’o = 0,48 andCP = 1,38

These gains in power output are of the same order of magnitude
as those calculated from one-dimensional theory and therefore
Justify to some extent the conclusions based on those results.

It must be stressed at this stage that CP can
only be determined vhen F, D', w  and R, /R, satisfy

equation (6), Thus cquation (6) is a compatability condition
for these variables,

The experimental results obtained from ducted fans
in streamlined fairings might at first sight be considered
useful data in connection with the design of ducted windmills
and so assist in formulating the accuracy of the above
theoretical results, However due to differences in duct geometry
and pressure gradients downstrcam of the windmill, the existing
data can only be used qualitatively but if anything seem to
confirm rather than contradict the above predictions.

6. The vortex theory of windmills

In section 5 the performance of the windmill has
been analysed from a description of the vortex sheets, far
dovmstream of the windnill, shed from its blades, In this
way it was found unnecessary to specify the flow in the
vicinity of the blades and the detailed blade geometrye.
However in making the assumption that the vortex sheets far
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dowvnstream are moving rearward as rigid helicoidal surfaces

a certain distribution of circulation along the blades is
implieds This in turn fixes the blade chord and blade pitch
angle as functions of radius, but this blade geometry is found
to be unsuitable for most practical applications. However
small changes in blade gecmetry from the ideal have been shown
not to affect materially the description of the vortex wake

far downstream, Hence the vortex sheets in the form of rigid
helicoidal surfaces represents a good approximation to the
vortex woke of a windmill of arbitrary designe It should be
pointed out, however, that the assumption that the vartex sheets
are in the form of rigid helicoidal surfaces is not essential
end zn adequate theory can be built up in which helical
vortices of arbitrary strength are shed from each blade elecment,
The former asgumption is, however, best suited to practical
applicatiorns,

‘ The theory, as discussed below, is equivalent to
the 1lifting line theory of aecrofoils and will be adequate when
the aspect ratio and the distance between adjacent blades are
larges For blades of small aspect ratio lifting surface
theory will be necessary , It is not enwvisaged, for the case
of rcrofoils of conventional désipm;. that such elaboration of
the theory will prove necessary, '

If the windmill rotates with angular velocity £) in
a uniform flow of velocity V_ the lift on the elements of
cach blade is a function of tRe local blade incidence i.c. the
angle between the blade chord line and the resultant velocity.
This 1ift must be associated with the circulation around the
blade clement. But the circulation will vary from the tip
to the root of the blades and hence trailing vortices will
spring from the blades and pass downstrcam in helical paths
(see figure 1))s In general the changes in circulation
along the blade will be greatest near the tips and the roots
and hence in these regions there will be strong concentrations
of vorticity. The induced velocities from the helical
vortices, in the slipstream downstream of the windmill, must
be evaluated in order that the true resultant velocity of the
fluid relative to the blades, and hence the truc angle of
incidence, can be obtained, With this velocity and incidence
at cach blade elemcnt and with the aid of the two-dimensional
characteristics of the blede section, the lift and drag
forces on the clement can be found (sec figure 15). Since in
general the induced velocities are periodic in character, the
1ift and drag forces on the blade element are functions of
time, In this section only the mcan values with respect to
time of the induced velocities will be considered.
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6(a) The unshrouded windmill

Since the axial component of the induced velocitics
is in the opposite direction to that of the wind far upstreom
(see figure 15) the slipstream downstream of the windmill must
suffer an expansion, Thus the helical vortices springing
from the blades of the vortices must increase in diameter as
they move downstrecam, Ve assume that, for purposes of
calculation only, far downstream of the windmill the vortex
sheets do not roll up but contime to move away from the wind-
mill in a regular manncr., On the assumption that the vortex
sheets arc of constant diameter far downstream of the windmill,
the induced velocity at a given radius due to these moving
vortex sheets can be calculated and hence the induced velocity
at the corresponding radius in the plane of the blades can be
found. In practice the expansion of the vortex elements in
the slipstream can usually be neglected, The induced
velocities are then calculated for a helical vartex of strength -
-dT™ at radius r, having a pitch angle @' = tan~1 (VO-WO/.Qr),
where (VO-WO) is the axial velocity of the vortex element.
relative to the windmill, (The value of w_, which is only

independent of radius when the vortex moves as part of a rigid
helicoidal surface, can, to a first approximation, be estimated
with reasonable accuracy from the simple momentum theory
formula for axial force or power)e, When Wy is large,

however, errors in the calculations of the induced velocity
distribution in the plane of the blades will arise if the
expansion of the vortex elements is neglected., This effect
will be discussed in section 6b below,

If P'(x',y',z') is a point on the vortex of
strength «d ’_' then the velocity induced d2q at the point
P(r,0,0) in the plane of the windmill, due to the element of
length ds of the vortex at P' is by Biot-Savart's law

al’ sin¥as

2
dq =-l{-7( R2 c-oo.o'ooooo(1)

where R = PP! and ¥ is the angle between PP' and ds.
Tlhen we integrate over s from O to 7, over all vortex

sheets, and along the length of each blade and find the
components of the induced velocity e and Ww " perpendicular

and parallel respectively to the resultant velocity we have
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A further increment in induced velocity arises from the flow
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field around the boss, This can be estimated by the method
described in section 5b(ii).

L and W, are the components of the induced velocity in

the plane of the windmill due to the trailing vortices and act

normal to and in line with, respectively the velocity W',

n . TN
e N ?
! AR
e bOG ﬁ Zvo
“w o EL . 5 :
2 w«,u-‘ -
e " 1
r’\% ‘A. ‘x’ & W 1

/V =w
g = ton”! (-—0—2 pitch angle of vortex far
Ly downstream

2wn resultant induced velocity far downstream
normal to W'

resultant induced velocity in plane of windmill
(approximately normal to W).

In general no great loss in accuracy results if L (see

1
figure 1 ) is assumed to act normal to the resultant velocity
We From the sketch above it can be seen that with the

above approximation
v, - WO/2 W

W = -—EJ-;IT +§2 sinﬁ .oo-'oooo-oc(ZJ)

The angle of incidence, a, of the blade at radius r is
given by (see figure 1 )

a = ¢“ G ooooooo-o-oo(lﬁ-)
where @ is the relative flow angle
and 6 is the blade pitch angle relative to the plane

of rotation.
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The 1lift force per unit radius, L, acting on the blade at

radius r is given by

L = 4pW o ¢, = pl (v) W) cnsokssssensiD)
where CL = a.o (a = ao) 0...........(6)
ags ag two dimensional 1ift curve slope and the
no-1ift angle of the aerofoil section
c local blade chord
WeC
L
or, .!'l(r) = T 0..0.000-00'(7)

Equations (2) to (7) inclusive define an integral
equation which can best be solved by a method of successive
approximation,

In the design of airscrews Lock and Yeatman7 have

used, in place of equation (2), the corresponding values of
L determined by Goldstein for the ideal airscrew. They

tabulate a circulation function, /(_ s as a function of
sin & , r/RO, B, where /{ is defined from the relation
o ao(Qf -0 = ao)

W1 = .Q.oaoooo-on(B)

L sin g

where o = ]—2377“3- is the blade solidity.

In place of equation (8) Theordorsen' ' has found

a relation between oC, and v?o y ¥, B, and VO—WO/n D

which can be written

= - . 2
o0, = o (o) K@) S L.L.09)

) ___..)
where K(x) = nx)

I o ?

27rv (V - ) is tabulated in reference 11.




-l

and

K(X) (1-Wo/2) - }'C (x)

5 = = corresponds to the
cos“d (1 = Wo)

function tabulated by Lock and Yeatman?.

When W and @ have been found for each radius
the 1lift.and drag forces can be calculated and by resolution
the torque, Q, and axial force, F, can be obtained (see

figure 14)
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where x:r/Rt; o = Be/2nr 17JO=WO/VO

A more convenient expression for the power output
coefficient can be found as follows. If the overall blade

solidity, o s is given by
R
+
Ri Be dr

ot e e e ....I.......(15)

- 2 2
ﬂ(Rt-Ri)

and using the relations above for Cy and tan § then

equation (414) becomes
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From the experimental results of Iwasakil" the
{IR
empirical relation between C,, ——% , & and C
o L
(o] 0.75
J-Q.R 2
is CP':('.}:JL: ( vV t> & CL oooo-uoooooo(18)
(o] 0-75

where the factor 0,25 represents the approximate value of the
integral on the right hand side of equation (17).

The difference in the performance of slow and fast
running windmills can easily be demonstrated from the relations
above,

The slow running windmill has a low value of o =QR{VO

(say 1 to 2) and a high solidity (large mumber of blades). The
fast running windmill has a value of Ho (between 3 and 6) and
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a low solidity (small number of blades), The overall solidity
o in the former case is usually about 1,0 and 0,2 in the latter,
Thus for a slow running windmill pi G is about 1 whereas for
a fast ruming windmill p> G is sbout 2, On the other hand
the torque is proportional to o 0 « Therefore the slow
running windmill having values of by O equal to about 1

has greater values than the fast running windmill whose value
of o is about 0.6, This shows clearly why the slow
running windmill is favoured in cases of light or variable

winde

6be The ducted windmill

In section 5b the performance of the ducted windmill
has been obtained from a considecration of the movement of the
helical vortex sheets far downstream and the induced flow in
the plone of the windmill imparted by the duct. In finding
the local lift and drag forces acting on the blades the duct
and the helical vortex sheet induced velocities must first
be determined in the plane of the blades.

When the duct is of constant diameter and infinitely
long the effect of the duct is to prevent the normal expansion
of the slipstream downstream of the windmill, As a result
the induced velocities in the plane of the blades arising from
the vortex sheets downstream of the windmill are different from
those of the unshrouded windmill due to this 'image effect’'s
The induced velocities far downstream superimposed on the
uniform axial velocity will cause a variation of the axial
velocity across the duct, This variation is in general quite
significent and cannot justifiably be neglected.

For a duct of arbitrary shape the induced velocity,
due to the duct alone, can be calculated by the method
described in scction 5b(ii). The method proposed for the
calculation of the induced velocity in the plane of the blades
due to the helical vortex sheets downstream of the windmill,
follows from the fact that the induced velocities, in the plane
of the windmill, are relatively insensitive to variations in
the radius of the vortex elements far downstream. Thus
although in the actual flow the vortex sheets must expand in
diameter, together with their images in the boundary wall
and the vortex sheets springingfrom the duct exit, it will
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be assumed that they are of constant diameter operating inside
a constant diameter duct infinitely long. The calculation
of the induced velocities from the helical vortex sheets from
a windmill mounted in a duct of arbitrary shape is therefore,
to a first approximation, identical with that for a duct of
constant diameter,

The question now arises as to what pitch of the
helical vortex elements should be useds When W the axial

displacement velocity of the vortex element, is small compared
with VO this question is easily answered, It has been
shown in section 5 that the overall performance of an un-
shrouded windmill deprends only on conditions in the ultimate
slipstrean., Thus in the calculation of the induced velocities
between the vortex sheets far downstream of the windmill the
pitch of the vortex sheets must be based on Vo - W, the

axial displacement velocity of the vortex elements relative
to the windmill, Since W, is assumed small compared with

VO the diameter of the vortex elements far downstream are

only slightly greater than the corresponding elements at the
plane of the blades, In this case the induced velocity at
a given radius in the plane of the blades is very nearly
equal to half the calculated induced velocity, at the same
radius far downstream, in terms of the pitch of the vortex
sheets based on Vo - This clearly is the value to take

in the case of a ducted windmill when the duct is one of
constant diameter,

When W is not small compared with V0 the vortex

element expands as it moves downstream and in consequence its
pitch changes due to both the change in diameter and the axial
displacement velocity of the vortex element. If the induced
velocities in the plane of the blades are evaluated using the
Biot=Savart law allowing for this variation in diameter, it
can be shown, qualitatively, that the final result, as stated
ebove, is relatively insensitive to variations in the radius
of the vortex elements fer downstream,

Thus in any approximate evaluation of the induced
velocities in the plane of the blades for large values of Vs

the pitch of the vortex sheets just downstream of the windmill
should be used, In the case of the ducted windmill the pitch
of the vortex sheets should therefore be based on the axial
velocity, V2, see section 5b,

In order to reduce the losses in the slipstream it
may prove advantageous to use guide vanes downstream of the

N |
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windmill at the entrance to the diffuser, It is unlikely
that any great increase in power output will result from this
cause since any gain in overall efficiency will be partly
offset by the increased drag and by increased diffuser losses,

(i) Constant diameter duct

If V_ is the axial velocity of the uniform flow
far upstream of the windmill, which is rotating with the
angular velocity, £ s ‘then the elements of the B Dblades
at a radius, r , will each shed helical vortices, of pltch
angle ﬂ = tan (V C/_D_r), into the main flow., The
strength of these vortices will be -d r‘, where =-dl is
the change in circulation around the blade element between
radius r and r + dr, The equivalent induced velocity

in the plane of the blades can be calculated using the Biot-
Savart law and integrating over the complete length of the
vortex as discussed in section 6a above, However since the
helical vortices are moving inside a duct the images of the
vortices outside the duct must also be considered in order .
to satisfy the boundary condition of zero normel (or radial)
velocity at the duct boundary. A more direct method is to
find a solution of the potential equation satisfying the
appropriate boundery conditions,

In either case the components of the induced
velocityls13 in the plane of the windmill are

(r)-l!;%,—/%— M(u) + %—‘{iﬂ—% } u'm I} (Bm u')
(o]
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where W and w, are the components of the induced velocity

perpendicular and parallel to the resultant velocity/ Vg + %2,

L1R,
and bo = » Where Rt is the blade tip radius
¢
S1Ry
By = —-V—O— s Where Rd is the duct radius.

Approximations to these expressions have been given

by Iwasakil", where only the first term in the asymptotic
expansions of the Bessel. functions has been retained,

It should be noted that the axial velocity component
far downstream of the windmill is not equal to vV, but is
V, - w,, where w Ar2w sec ff  (ten g, = VO/-QI‘). Clearly
W, is not constant with radius and must vary in magnitude

and sign in order to satisfy the continuity relation., This
feature has been neglected by most writers on the performance
of axial flow windmills (or fans), Its neglect is only
Justified when the blade circulation is so adjusted that the
magnitude of the radial velocity in the plane of the windmill,
is very smaoll,

In some cases a better approximation to L is
required., This can be obtained from the first approximation
to Wo(r), on the assumption that the local pitch angle of
the vortex far downstream is tan | (Vo-wo/ﬂr) in place of
tan-1(Vo/ﬂr). Thus Wn(I‘) can be determined from equation
(1) with u =Ilr/V0—wo(r) .

The procedure for finding the blade 1lift and drag,
and hence the output power from the windmill, is identical
with that described in section 6a above, It can easily be
shown, however, that one important result of the windmill
operating inside a duct is that the circulation, and therefore
the 1ift, do not fall off so rapidly towards tﬁe tip as in
the case of the unshrouded windmill, Iwasaki™ has shown that
the theoretical gain in power due to this cause alone can be
as much as 15 per cent and experiments have confirmed this,
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(i1) Duct of varioble diameter

As stated above it will be assumed, in the calculation
of the induced velocity distribution in the plane of the windmill
duc to the trailing helical vortex sheets, that the outside
diameter of the sheets is equal to the outside diameter of the
windmill and the vortex sheet diameter far downstream is equal
to the duct diameter in the plane of the windmill, It is
assumed that the axial velocity distribution across the plane
of the windmill, due to the venturi effect of the duct, has
been calculated, say, by the method discussed in section 5b(ii).

Thus the local velocity relative to the rotating
blades has the components J)r + w_ sin g' and V_ - W cos [ "+8V,,
see figure 16, and the resultant velocity, W, and the relative
flow angle, @, both as functions of :r'/RO can be determined
once W, is known,

The angle of incidence of the blades, e, is given
by

a = ¢ - 6 ooooo-o-coou(z)

where tan @ = (V_=w_cos ¢'+6V2) / (.Qr+wnsin @') and the

local circulation, r', in terms of the 1ift coefficient, CL’
is

WeC
) L W
r.z —_E_‘ — EE a(¢ -0 - ao) oooo-oaoo-oo(B)
where ¢ is the chord

a is the 1lift curve slope
and a, is the no-1lift angle,
Equations (1) and (3) form an integral equation in

terms of w _(r) which rust be solved by a suitable approximate
nunerical method,




7« Discussion

Detailed calculations of the performance of ducted
windmills based on vortex theory have not been given in this
report since at this stage in the investigation concrete
proposals for the most satisfactory geometries of the duct
and blades have not yet been formulated, The vortex theory

- of ducted windmills has been presented in order to check
qualitatively the conclusions obtained from simple one-
dimensional theory and to form the basis for further

. theoretical and experimental studies,

The conclusions reached in section 4c that the
power output of a ducted windmill can be arranged to be at
least 65 per cent greater than that of an ideal unshrouded
windmill of similar geometry appears, if anything, to be on
the low side, although this figure corresponds to power 3
outputs greater than that obtained experimentally by Samuki

and Iwasak14 with fairly crude duct geometries. In both the
latter experiments the gains in power output obtained with
ducted windmills have been largely due to reduction in tip
losses and blade unstalling and little or no effect from
controlled diffusion. The evidence to date is not conclusive
as to the relative merits of long diffusers having large
expansion ratios and high duct losses and short ducts having
small losses, In section 4¢ the numerical calculations show
the need for high values of the diffuser expansion ratio and
large negative pressure coefficients at the duct exit but no
attempt has been made to find the corresponding internal and
external duct profiles of the duct and to investigate whether
or not the estimated losses are corrects The reason for
this is that little detailed information is available on the
flow of air through diffusers having free exits in which the
velocity external to the diffuser flow is considerably
greater than the mean internal velocity downstream of the
exit, Under such conditions the 'diffuser efficiency' or
pressure recovery is likely to be greater than in the case
where the external velocity is zero., In addition the action
of the windmill is to speed up the flow near the walls of the
. duct at the expense of the flow near the centre, Experiments
by Coller!® with a windmill mounted inside a wind tunnel
diffuser have shown an apprecisble improvement in the velocity
> distribution in the diffuser, although naturally in these
experiments the upstream velocity was not uniform and there=-
fore represent different conditions from those discussed here.

It can be assumed, on the basis of present knowledge,
that, unless future experimental results prove to the contrary,
the most suitable form of duct will consist of an entry and
exit cone shaped to form an annular duct of'strcamlined sections
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in which the exit to throat area ratio is about 3,5 and the
inlet area is made not greater than the exit area, The loss
in performance with ducts of crude aerodynamic shape can only
be determined from experiment.,

In the structural design of ducts having large
inlet and exit area ratios the duct must withstand not only
the drag forces but also the inward radial forces, corres=
ponding to the 1lift on an aerofoil, The latter forces have
not been discussed in the text above although they can be
immediately derived from a knowledge of the pressure dis=
tribution over the duct which, incidentally, is required in
the calculation of the drag force. It has been stated in
the text that this drag force is not equal to the drag of
the duct when the windmill is removed. This is because the
lower pressure behind the windmill acts on the walls of the
duct and produces an extra drag. Although the duct develops
a radial force the induced drag is zero since no trailing
vortices are shed in a symmetrical flow.15 When the duct is
inclined at an angle to wind a real lifting force and pitching
or yawing moment develop and, because there are now trailing
vortices, an induced drag. It is probable that the magnitude
of this pitching or yawing moment will play a very important
part in the design of the supporting structure for a ducted
windmill, The effect of duct incidence on the magnitude of
the induced velocity in the plane of the windmill is quite
small and Muttrayl/ has found that it is apprecisbly constant
over an incidence range of + 10°,

It was also shown from the calculations of section
Lo that the ducted windmill disc loading is, as a result of
the increased axial velocity, lower than in the case of the
corresponding unshrouded windmill, Since, in addition,
the tip losses will be reduced and gust effects lessened the
overall mechanical design of the ducted windmill should
prove simpler than its unshrouded counterpart, and would
therefore tend to offset the additional cost of the diffuser
and ducting, The increased steadiness in the flow through
the plane of the ducted windmill, as a result of thc contrac-
tion effect of the inlet cone, will cause the rotational
speed to be steadier than in the case of the unshrouded wind-
mill, This should present some simplification to the speed
control prgblem., From the experimental results of Iwasaki
and Sa.n_l.l.k:'\.3 a two or three bladed windmill appears to be best
suited for operation inside a duct, The values of.QRt/V s

corresponding to maximum power output are in the range 3.1
to 3.7

In order to confirm the above predictions and to
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optimise the geometrical layout from the conflicting points

of view of cost and aerodynamic efficiency it is suggested
that a wind tunnel testing programme should be undertaken,

The models could be tested at a Reynolds mumber of about
1/5th full scale and because of this scale effect would give
slightly pessimistic results., Extrapolation to full scale
could be done using existing data on the variation of diffuser
efficiencies and skin friction effects with Reynolds number.

Ganze screens of various mesh sizes and gauges
would be used in the plane of the windmill to represent any
desired value of disc loading, Only one contraction section
with a contraction ratio of about 1.5, as suggested by the
calculations above, would need to be made, A range of
diffusers, having different expansion ratios and cone angles,
various external body shapes, and ekctor arrangements could
all be tested in turn, The results cbtained from such an
experimental programme would be a valuable contribution to
the understanding of the ducted windmill prcblem.

After the completion of this experimental programme
the path would then be clear to commence the detailed design
of a windmill, by the methods discussed above, suitable for
high performence operation inside the optimum duct. In the
meantime . the methods can be applied to the experimental
results of Sanuki3 and a canparison made between theory and
experiment, It is expected that as a result of these cal-
culations simple numerical methods will be evolved for the
performance of ducted windmills similar to those used at
present in the design of axial flow fans, It should be
noted, however, that a method in which the variation of the
axial induced velocity with radius is neglected is unlikely
to yield reliable results for the performance in this case.

Conclusions

1e The performance and design of ducted windmills
using one dimensional theory, including the effects of
friction and the external flow over the duct, are presented.

2s The results of the one dimensional theory are
compared with more elaborate methods based on the vortex
theory of windmills and the aerodynamic performance of
ducted bodies.

3 The aerodynamic loading on the blades is discussed
and the differences in the induced velocity components between
ducted and unshrouded windmills noted.

'—ﬁ
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Lo Calculations based on the one dimensional theory
show that gains in power output of at least 65 per cent of the
maximum power output of the ideal unshrouded windmill can be
obtained when the windmill is shrouded with a duct of suitable
geometry, The importance of the diffuser expansion ratio
and the negative pressure coefficient at the duct outlet on
the power output are discussed.

5 The reduced disc loading and slight alleviation

of gustiness on the blades with the ducted windmill will, it

is suggested, partly offset the cost of the duct and supporting
structures The increased steadiness in the rotational speed
of the windmill is an important factor in favour of the ducted
windmill,

6o In view of the lack of experimental data on ducted
bodies of the type required for high performance operation
of ducted windmills a secries of suitable wind tunnel
experiments is suggested, In these no windmill would be
used but its place taken by gauzes of different porosities
giving pressure drops equal to the windmill disc loading.
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Table 1, 2, 3 and 4.,
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Ducted Windmill Performance

Table 1a
=t DH, + Ax
: :
B—I- —2‘sz
Diffuser Expansion Ratio
1/ 2 31 4| 5 55 4
h, 0435 | 0421 | 0,16 | 041k 8, - m
c 0465 | O, 0496 {140 2
B 5 104841049 7] ny=0d+p
thax . r = Performance Factor
r=g 3 1610 | 1442 | 1,62 | 1.81 ‘ } )
Pbax (\at thax,
L 0,35 | 0,21 | 0416 |0u14| L= £ Ducted
V2 (fat CP )
v = V; 0498 | 1,26 | 1,45 | 1.61 max / oo
= Disc loading ratio
v = Velocity ratio
Table 1b [& A
+ L1H
Cp, =0 oy = 015
& Epvg
1/u 2 3 L 5
h2 OO | 0426 10421 | 0419
C 0461 | 0476 | 0,84 0,89
max
T3 105 IR 28 BN SR ET56)
L 0,40 | 0,26 | 0,21 | 0,15
0491 Telh | 1,261 1,30
Table 1c /_\Hg . AH3
c, =0 . V2 = 0,20
b zp 2
1/ 2 3 4 5
h2 Oli5 | 0631 ] 0,26 | 0424
(6 0,57 | 0,69 | 0,76 ] 0,79
max
r 0497 | 117 ] 14281 1,33
L 0,45 | 0,31 0,26§ 0,20
v 0486 | 1404 | 14141 1419
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Toble 1d AH, + AH
c. =0 -—55?7—75—~1 = 0.25
lp é‘pV2
1/u 2 3 L 5
h, 0450 | 0436 | 0431 | 0429
CP 0e55 | 0464 | 0,69 | 0471
max
r 0493 | 1409 |1.17 | 1.24
L 0,50 | 0,36 {0.31 | 0.29
v 0482 | 0496 | 1.0k | 1,06
Table 2a
S AH, + ZlHz
C = = 0,10 HZ =010
g 1ov2
QP 2
1/p 2 3 L 5 Note: Values.of h, and
T 1427 | 1463 |1.86 | 2,08| L are unchanged from their
v 1,03 | 1.33 1,52 1,70 | values with C;, = 0O above.
L
Table 2b A A
i, + /\H
Cp, == 0,10 —Hz-——z = 0,15
P 1 V2
+ 2PVp
1/u 2 3 4 5
r 1419 | 1,47 | 1.64] 1.73
v 0496 | 1419] 1432 1441
Table 2c A A
—_— + AH
Cp == 0,10 Bhtos = 0,20
b 2oV
1/p 2 3 I 5
T 1.11 1035 | 4481 1,53
v 0¢91 | 1.09 [ 1.201} 1.25
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AH, + FAN:!
C, == 010 —Hf———l = 0.25
4 fPVS
1/ 2 3 4 5
r 1,07 | 1426 11435 | 1.40
v 0,86 1R ORI IS OO RIS i
Table 52,
[LHQ + [lHé
C - 0.20 = 001
Pl LoV
2o
1/u 2 3 L 5
N 1 oLt devslg 1 Bl Pl
v 1607 | 1438|159 ] 1476
Jable 5b
AH2 + AH_5
C, ==0s20 ——F—== 0415
2P 2
1/u 2 3 4 2
r 1le 55 1468 [1486 | 1,97
v 1,00 | 1.25 |1.38] 1.47
Table 3c A A
+ AAH
C, == 0,20 Eh+oh = 0.20
4 LV
1/u 2 3 L 5
3 g 1.28 1.53 1.68 1.7LI~
v 0094 1.14 1.25 1030




Table 3d
AH2 + AH
C. == 0,20 it i’ = 0425
p 4 sl
4 ngz
1/u 2 3 b | 5
5 1422 | 1,43 ] 1,53 | 1,58
v 0,90 1,051 114 { 1,16
Teble 4a
AP12 + AH
Cp = = 0430 maty I = 0,10
A 1pV2
2PVy
1/u 2 3 L | 5
b 5] 1.6% 1 2,101 2,40 12,68
v 1.16 1ol | 14651 1484
Table L4b A
+ OH
C, == 0.30 A+ 88 0.15
4 $ov5
1/u 2 3 L 5
i dR53 1590 12102322
v ' 1.04 1.30 1024-1!- 1053
Table 4c
AH2 + An
C = « 0,30 —-——1—————1 =20s20
L Epvg
1/ 2 3 L 5
g 1.4&- 1.73 1090 1097




AH + An
G, ==0.30 —2—r2 =0.25
" —gpvﬁ
1/u 2 3 L 3
r 1538 11,61 11,73 1178
f v 0093 1010 1'1() 1.21
Table
C
A + AH P
—H—Z—Ti =0  Values of r = g
,rpvz 'Pmax
S
N
N 2 50 u| 5
0 130 | 1,95 | 2,60 | 3.25
=0,1 1450 | 2,26 | 3,00 | 3,76
-002 1-71 2-56 301-6-2 4-27
-0.3 1.92 2.88 3‘82-[- 4.81
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FIG. 4. DIAGRAM OF THE DUCTED WINDMILL
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FIG. Il. DIAGRAM OF THE FLOW -PAST
AN UNSHROUDED WINDMILL
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