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Abstract

Barge container transport faces significant capacity management challenges due to no-show
uncertainty and arrival time deviations, leading to underutilized capacity on barges. This research
investigates the application of overbooking strategies in barge transportation to address these
challenges and provides decision support for managing uncertainty in barge operations. A
discrete-event simulation model was developed using Arena software to evaluate different
acceptance strategies, allocation methods, and overbooking rates under varying no-show
conditions. The study reveals that overbooking effectiveness is highly dependent on the allocation
strategies effectiveness and the no-show rates. With poor allocation strategies the penalties
incurred from overbooking increases significantly. At lower no-show rates, overbooking provides
limited benefits with disproportionately high trucking increase, while at higher rates, overbooking
restores capacity utilization while incurring less trucking. The trade-off analysis establishes a
framework to find opportunity cost thresholds for accepting additional orders, enabling operators
to evaluate economic viability based on their competitive position. This research extends
overbooking theory from traditional service industries to barge transportation and provides a
framework for capacity management in barge container transport with overbooking, offering
practical decision support tools for terminal operators to improve profits.
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1. Introduction

Intermodal transportation represents a logistics approach where cargo moves through multiple
modes of transport within standardized containers, enabling transitions between maritime, rail,
road, and inland waterway networks (Hanssen et al. 2014). This integrated system forms the
backbone of global supply chains, characterized by complex nodal interactions at transfer points
such as maritime terminals, inland container depots, and rail hubs (Rozic et al. 2016). The
efficiency of these transfer points significantly impacts the performance of the entire transportation
network. Intermodal terminals function as critical capacity-constrained resources where multiple
transport modes converge, necessitating coordination mechanisms to maximize throughput and
minimize congestion (Bektas et al. 2007).

Barge transportation presents complex capacity management challenges due to the distinct
operational characteristics of inland waterway systems (Behdani et al. 2016). Barge operators
face problems in level of utilization decreases influenced by no-shows, late shipments, and transit
times creating substantial uncertainty in planning barges and accepting and assigning shipments
to barge services (Gumuskaya et al. 2020). Terminals serving barge traffic must therefore develop
planning strategies that account for these inherent system variabilities while maintaining
operational efficiency (Notteboom et al. 2021). Traditional static planning approaches fail to
address the dynamic nature of container arrivals, delays, and no-shows that characterize real-
world barge operations.

Overbooking strategies in passenger and hospitality sectors address similar no-show risks
through probabilistic booking limits to improve capacity utilization. Van Ryzin et al. (1999)
formalized the foundational revenue-management framework that balances expected denial costs
against marginal booking benefits in transportation, while Subramanian et al. (1999) extended
this to multiple fare classes and Gupta and Denton (2008) applied overbooking principles to
healthcare with obligated versus discretionary customers. In freight transport, Feng et al. (2015)
developed a dynamic programming model for decision support in railway freight overbooking,
demonstrating improved capacity utilization and revenue compared to first-come-first-served
methods. Wu (2019) extended this work using a simulation by studying the trade-off of booking in
extended periods. In container logistics, Wang et al. (2019) examined slot allocation strategies
for already-accepted orders in container terminals, focusing on how overbooking can optimize
berth allocation when cancellation and no-show behavior create unused capacity. The
combination of uncertainty and dynamism in barge terminals creates a complex planning
environment that requires adaptive decision-making capabilities (Gumuskaya et al. 2020).
Dynamism emerges from the continuous evolution of these uncertain conditions, where new
information becomes available throughout the operational horizon. Traditional static models treat
these factors as fixed parameters, failing to capture the interactive effects between uncertain
events and dynamic system responses.

This research addresses the capacity management challenge faced by barge terminals operating
under uncertainty and dynamism. Barge terminals must make sequential accept/reject decisions
for incoming container orders without complete knowledge of future demand, while managing
other sources of unknown information in a dynamic environment. Unlike traditional overbooking



contexts where excess demand results in service denial, barge terminals possess a unique
operational flexibility through truck transport substitution (Behdani et al. 2016), where, when barge
capacity is exceeded, containers can be shipped via more expensive truck alternatives, ensuring
continuous service delivery but at higher costs. The sequential nature of booking decisions
creates a trade-off where operators must balance capacity utilization, order accommodation, and
trucking usage while serving demand. This context requires decision support tools for determining
overbooking strategies and explores the trade-offs between unused barge capacity due to no-
shows, increased trucking reliance from capacity exceedance, and rejected orders. This thesis
will develop a discrete-event simulation to examine the performance of overbooking strategies
under uncertainty and dynamism. The model will replicate booking arrivals, cancellations, arrival
time deviations, and container arrival assignments, while incorporating different booking
strategies to analyze their performance under various conditions.

The remainder of this thesis is organized as follows. Section 2 reviews the literature on
overbooking and container on barge. Section 3 details the problem setting. Section 4 defines the
methodology being used. Section 5 the computational experiments done in the simulation, and
Section 6 and 7 present the conclusion and discussion.



2. Literature Review

In this section, we provide an overview of available literature on overbooking. We first define
overbooking and review how overbooking has been studied in literature. Then we further review
the literature on overbooking for container transport. Lastly, we review the literature that
researches the container on barge problem.

2.1 Application Cases of Overbooking

Overbooking is an operational strategy that has been adopted in several industries to mitigate the
inefficiencies associated with uncertain demand (Gallego et al. 2019). At its core, overbooking is
based on the idea that not all customers who make a reservation ultimately utilize the service. By
accepting reservations more than the actual physical capacity, service providers can improve
overall utilization rates. Van Ryzin et al. (1999) were among the first to develop a formal
framework for revenue management that includes overbooking decisions on yield management.
Their approach relies on probabilistic models that estimate no-show and cancellation rates, with
the fundamental principle being to equate the expected marginal cost of additional bookings
(calculated by considering the cost of compensating customers who are denied service) with the
expected marginal benefit of increased occupancy. This cost-benefit analysis framework is
essential in setting an overbooking limit that maximizes revenue while keeping the risk of service
disruption at an acceptable level. This thesis builds on their cost-benefit analysis framework and
applies it to the problem in hand where excess demand triggers service substitution through truck
transport rather than service denial, creating different trade-off dynamics where customers
maintain service delivery but at higher operational costs. In comparison, the thesis will also
examine a third trade-off metric in the analysis which is the rejection of a customer for booking.

In both airline and healthcare industries, the overbooking process is analyzed by statistical
analysis and the use of probabilistic models. A consistent finding across the literature is that
overbooking strategies can succeed based on the costs for compensation of service denial,
benefit from increased occupancy and the opportunity cost of denying booking; and booking
beyond overbooking limits can yield diminishing returns due to the increasing probability of service
denial and the associated penalties. The competitive pressures in such sectors also drive firms
to adjust their overbooking thresholds based on market conditions. For example, if customer
loyalty and market share are at risk, firms may choose to increase their overbooking levels, even
at the expense of some revenue, to maintain long-term competitiveness (Van Ryzin et al., 1999,
Fard et al. 2019).

2.2 Container Terminals (Intermodal) and overbooking

Wang et al. (2019) focus on slot allocation strategies for already-accepted orders in container
terminals, examining how overbooking can be applied to optimize berth allocation when
cancellation and no-show behavior create unused capacity. Their work addresses reallocating
slots among orders that have already been confirmed, developing strategies to maximize
utilization when some bookings fail to materialize. Our research examines the earlier stage of this



process, the initial acceptance decision when orders first arrive at the terminal, before they enter
the slot allocation phase that Wang et al. address.

Feng et al. (2015) produced the only research conducted in this phase and developed a dynamic
model for railway freight overbooking to improve revenue in the Chinese railway freight industry.
The authors formulated a Markov decision process (MDP) model with an overbooking limit level
as the control policy. Their model considers a train with capacity C and an overbooking pad D
that represents the maximum bookings allowed for different classes. The reservation process is
divided into multiple decision periods, with customers able to cancel bookings before departure
or become no-shows. Their approach establishes the foundation for overbooking decisions on
freight transport by demonstrating how acceptance and rejection decisions can be evaluated
through a sequential decision-making process. They compare their MDP approach to the existing
first come first serve (FCFS) methods without overbooking used in the industry to verify the
effectiveness of overbooking decision processes, showing that overbooking policies improve
capacity utilization and revenue. However, their dynamic programming approach requires six
nested loops making it computationally burdensome for real-world problems, even when
considering the acceptance and rejection decisions of a single train with no deviations, immediate
order arrivals, and a single stage reservation. The authors acknowledge that expanding their
model to include multiple reservation stages would significantly increase the complexity of data
collection, analysis, and parameter estimation, limiting practical applicability (Feng et al., 2015).

The thesis of Wu (2019) builds on Feng's work by using simulation to address overbooking in
inland freight transport systems when dealing with increased system complexity. Unlike Feng's
single-day approach, Wu considers multiple stages of barge departures to observe general
system performance over extended periods to analyze overbooking strategies, allowing analysis
of how booking decisions accumulate and interact across multiple departure cycles. Her approach
uses simulation to handle multiple stochastic variables including possible deviations, and to
capture long-term system dynamicity that emerges from repeated interactions between booking
decisions and uncertain realizations (Wu 2019). Wu's approach maintains Feng's structure where
once an order is accepted it becomes immediately available in the system without estimated
arrival times, and the due dates of the order are set to the next available barge in the period. Her
research also establishes that overbooking can increase utilization and profit for barges, though
resulting in higher usage of trucks. However, a shortcoming of her study is that she uses a FCFS
approach as orders that arrive in the system are immediately available and their due date is to
the next available barge. Our methodology follows Wu's simulation approach but extends her
operational framework by incorporating temporal uncertainty through estimated arrival times that
may deviate from schedules, and orders are not directly available in the system. Additionally, we
introduce varying order sizes rather than using single TEU per order and implement stochastic
due date assignments rather than orders being automatically due for the next available barge.



2.3 Container on Barge

Studies that have employed planning in real-time such as van Riessen et al. (2016), and Mes and
lacob (2016) disregard the possibility of no-shows or delays happening in a stochastic manner.
Van Riessen et al. (2016) developed decision trees for instantaneous allocation of incoming
orders to suitable services without the need for continuous planning updates, creating a decision
support system that is implementable in current container transportation practice. The authors
specifically note that earlier proposed centralized methods can find optimal solutions for
intermodal inland transportation problems in retrospect but are not suitable when information
becomes gradually available. Their approach addresses the gradual information availability
problem by creating decision rules for immediate allocation decisions, but assumes all incoming
orders are accepted and focuses on service allocation rather than acceptance decisions. This
study similarly addresses gradual information availability but focuses on the acceptance decision
rather than allocation decision, incorporating no-show and cancellation uncertainties that van
Riessen et al. do not consider. We make allocation less constraining to improve utilization as an
order allocated to a certain barge slot can change its allocated barge based on feasibility. Rivera
and Mes (2017) use probabilistic knowledge about future freights in their multi-period optimization
approach, but their method also optimizes orders that are already known in the system. Their
approach operates under the binding constraint that all orders arriving to the system must be
served, focusing on freight selection and routing decisions rather than initial acceptance
decisions. While they address uncertainty in freight availability, they do not consider no-show
behavior or cancellation uncertainty from already-accepted orders. Both dynamic and
deterministic studies operate under the binding constraint that all orders arriving to the system
must be served.

Gumuskaya et al. (2020) developed a 2-stage stochastic MIP for dynamic barge planning
addressing uncertainty in container arrival times and possible deviations. Their work focuses on
uncertainty and dynamism that leads to limited information availability during planning. They
employ arrival time deviation distributions to model the uncertainty between estimated and actual
container arrival times, which reflects real-world operational challenges in barge planning. The
simulation methodology used in this thesis also employs the same arrival time distributions
employed in their study. Their method evaluates long-term performance over one year by solving
the stochastic program at the end of each week for optimal allocation decisions, then simulating
the orders in the upcoming week to demonstrate the dynamism of actual operational conditions.
Their results show that uncertainty has an impact of up to 53% and dynamism up to 20% on total
costs, highlighting the significant role of uncertain conditions in barge operations.

As we discussed in sections 2.1, and 2.2, existing overbooking literature has primarily focused on
service industries with capacity constraints that result in service denial. Wu (2019) addressed that
in intermodal terminals, service substitution is possible rather than service denial with a change
of mode in transport. The performance of overbooking strategies in logistics environments with
service substitution capabilities represents still an underexplored area of academic inquiry.
Container terminals can maintain continuous service delivery even when barge capacity is
exceeded by redirecting containers to truck transport (Behdani et al. 2016). Literature consistently
incorporates trucking as a penalty cost in optimization models for slot allocation, as trucking costs



are relatively higher than operating costs of a barge (Fazi et al. 2015, Behdani et al. 2016, Zweers
et al. 2019, Gumuskaya et al. 2020). This study leverages this service substitution capability to
examine how acceptance decision timing affects the trade-off between barge utilization and
trucking.

This operational flexibility creates distinct planning dynamics compared to traditional service
industries. When terminals reach capacity limits, operators can accommodate excess demand by
loading containers onto trucks, ensuring uninterrupted service delivery to customers. This
capability alters the planning problem under uncertainty, as the penalty for exceeding barge
capacity is not service denial but rather increased operational costs through trucking penalties.
Unlike traditional overbooking scenarios where capacity exceedance results in customer denial,
this operational flexibility enables exploration of overbooking decisions that balance capacity
utilization with penalty cost management.

2.4 Literature Summary

Service industries have established cost-benefit analysis as the foundation for overbooking
decisions, balancing expected denial costs against marginal booking benefits (Van Ryzin et al.
1999). Customer heterogeneity significantly affects overbooking effectiveness, whether through
fare class differentiation (Subramanian et al. 1999), contractual versus spot market customers
(Levin et al. 2012) or obligated versus discretionary service requirements (Gupta and Denton
2008). These studies demonstrate that optimal overbooking levels exist, with diminishing returns
beyond certain thresholds due to increasing denial costs.

The problem studied in this thesis is most similar to Feng et al. (2015) and Wu’s (2019) studies,
which address freight overbooking through sequential acceptance and rejection decisions under
no-show uncertainty. Feng et al. established the foundation using MDP formulation for railway
operations, developing a model for acceptance and rejection decision processes to determine
optimal overbooking levels and demonstrating that overbooking policies improve capacity
utilization and revenue. However, their approach focuses on single-day operations with immediate
order arrivals and single-stage reservations. Wu (2019) extended this by using simulation to
address increased system complexity, considering multiple barge departure stages and capturing
long-term system dynamicity through repeated interactions between booking decisions and
uncertain realizations. Unlike Feng's MDP approach, the developed simulation aims to capture
the dynamicity of the system over time as booking decisions accumulate across multiple
departure cycles, which would be computationally too burdensome to model in an MDP. This
thesis builds on Wu's simulation approach but incorporates temporal uncertainty through
estimated arrival times that may deviate from schedules, varying order sizes rather than single
TEU per order, and stochastic due date assignments similar to the Gumuskaya et al. (2020) study
rather than orders being automatically due for the next available barge. It also touches on one of
the future research recommendations Wu (2019) has for the simulation methodology by enabling
splitting an orders’ containers into different transport modes.

Container-on-barge research fails to address no-show uncertainty and operates under the
assumption that all incoming orders are automatically accepted. This constraint prevents



investigation of overbooking strategies despite barge terminals possessing unique operational
characteristics that make overbooking particularly viable. As mentioned in the literature review, in
traditional service industries overbooking leads to service denial, but barge terminals can maintain
continuous service delivery through truck transport substitution. Literature acknowledges trucking
as a penalty cost mechanism as a trade-off for directing service with trucking instead of barges
(Fazi et al. 2015, Behdani et al. 2016, Zweers et al. 2019, Gumuskaya et al. 2020), creating
different trade-off dynamics between capacity utilization and operational costs rather than service
denial scenarios.

Building on the problem foundations established by Wu (2019) and Feng et al. (2015) and
incorporating the arrival time deviation uncertainty studied by Gumuskaya et al. (2020), this thesis
examines how overbooking strategies can be studied in barge terminals given their unique service
substitution capabilities. The research investigates the main features and trade-offs of
overbooking strategies in barge transport, develops a discrete event simulation to capture system
dynamicity with random orders and varying due dates, and analyzes how overbooking affects
terminal performance under no-show, cancellation, and arrival time deviation uncertainty.

The table compares the most relevant studies in terms of their approach to uncertainty modeling,
order processing assumptions, analytical scope, decision-making capabilities, and
methodological frameworks. The comparison shows how each study addresses uncertainty
factors, whether orders become immediately available in the system or have estimated arrival
times, the time horizon of their analysis, whether they incorporate acceptance/rejection decisions,
and their chosen modeling approach.

Study Uncertainty Order Analysis Accept/ Modeling
Factor Availability Period Reject Approach
Once in System Decision
Fengetal. | No-show Immediate Single day MDP
(2015) probabilities availability
Wu (2019) No-show Immediate Multiple Simulation
probabilities, availability periods
Arrival time
deviations
Gumuskaya | Arrival time Estimated arrival | Multiple X Stochastic MIP
et al. (2020) | deviations times periods + Simulation
This study No-show Estimated arrival | Multiple Simulation
probabilities, times Periods
arrival time
deviations

Table 2.4: Comparison of similar studies



2.5 Research Questions

Based on the literature review and identified research gaps, this research examines overbooking
strategies in barge terminals with the following research questions

Main Research Question

How to develop a decision support system that supports understanding overbooking strategies
and the management of no-shows and delays in an inland container transport system?

Sub-Research Questions

SRQ1: What are the main features of a booking system to manage orders and its dynamics in a
barge transport system? What are the main trade-offs?

SRQ2: What methodology can better capture the dynamicity of the system with stochastic
parameters?

SRQ3: Do overbooking strategies affect barge terminal performance under no/show, cancellation
and arrival time deviation uncertainty?



3. Problem Setting

3.1 Problem Description

The problem considers an inland barge terminal in the Netherlands that operates 24/7 under
conditions of inherent uncertainty. Container orders arrive continuously throughout real-time,
each carrying specific requirements for pickup timing, delivery deadlines, and capacity needs.
The system must process these orders sequentially, making acceptance and scheduling
decisions without complete information about future order arrivals or the ultimate realization of
orders that have already been accepted. This creates a dynamic environment where each
decision influences the system's capacity to accommodate subsequent orders.

When a container order arrives at the system, the operator faces a binary accept or reject decision
based on current capacity. This decision must be made with incomplete information, as the
operator cannot know with certainty when future orders will arrive, whether accepted orders will
materialize, or if orders will arrive at their estimated times. Accepted orders enter the system with
estimated arrival times and due date requirements, and different TEU sizes. Upon order arrival,
the system evaluates available capacity against existing booking commitments. Orders that pass
the initial capacity assessment are accepted and assigned to departure schedules based on their
due date requirements.

The barge departures operate on a fixed schedule with predetermined departure times throughout
each operational day. Barges have limited capacity and depart according to this schedule
regardless of their loading level. When a barge approaches its departure time, all orders that have
physically arrived at the terminal are available for loading. The system must decide which
containers to load onto the departing barge within its capacity constraints. Containers not selected
for barge transport with due date constraints are forced to be shipped by truck, and it is possible
to split an order with more than 1 TEU between a barge and a truck if needed. The barge departs
according to its fixed schedule once loading decisions are made.

Orders that have been accepted into the system progress through multiple stages where
uncertainties resolve in a specific sequence. As each order approaches its estimated arrival time,
the system first learns whether the actual arrival will deviate from the original estimate, revealing
any timing adjustments that must be incorporated into capacity planning. These arrival time
deviations may require schedule modifications and capacity reallocation across different
departure windows. Once the system reaches the order's actual arrival time, it then discovers
whether the order will materialize or become a no-show, resolving the demand realization
uncertainty that has been carried since acceptance. Orders that successfully materialize and
arrive at the terminal enter the holding queue and become available for loading decisions to the
barge. If an order cannot be loaded into the barge before its due date, due to the barge being
over capacitated, then itis forced to be trucked so that the order can be served before its deadline.
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Figure 3.1: Flowchart describing the process for all orders




3.2 Performance Measurement

Different metrics are used to evaluate systems operational efficiency. The 3 metrics discussed
here are identified from the literature of overbooking strategies and container on barge problems.
Barge capacity utilization measures the percentage of available barge capacity that is used during
each departure throughout the operational period, calculated as the ratio of loaded containers to
total barge capacity. Order rejection rate tracks the proportion of incoming orders that cannot be
accommodated within the system's capacity constraints and are therefore declined. Trucked
containers measure the number of containers that are shipped via truck rather than barge.

Metric Formula Unit

Barge Capacity (Total Loaded TEU to barge / %

Utilization per Total Available Barge Capacity)

period x 100

Order Rejection (Rejected Orders / Total Orders) | %
Rate x 100

Trucked Total TEU transported by Truck | TEU
Containers

Table 3.2: Performance Metrics

3.3 Model Assumptions

The model development requires several assumptions that simplify the complexity of barge
container transport and terminal operations while preserving the dynamics necessary for
meaningful analysis. Operational assumptions establish the basic framework within which the
system operates, including the presumption that barges operate according to predetermined
schedules with consistent and reliable departure times (Gumuskaya et al. 2020, Fazi et al. 2015,
Zweers et al. 2019, Wu 2019). Another operational assumption involves the immediate availability
of truck transport alternatives when barge capacity is exceeded (Behdani et al. 2016, Wu 2019,
Gumuskaya et al. 2020). This assumption is used in different models in literature based on that
truck transport typically offers greater flexibility and availability than barge services, allowing
operators to maintain service commitments even when barge capacity is fully utilized.

The model also assumes that all accepted orders that arrive must ultimately be served before its
due date, either through barge transport or truck alternatives, reflecting the service commitment
inherent in accepting customer orders. All container units are treated as homogeneous revenue
generators regardless of their characteristics. For the homogenous revenue assumption, we



additionally assume customers that place orders intend their container to be transported by barge
and generate revenue accordingly. The last cost assumption is that the revenue of an order is
lost if the order is a no/show or cancellation. Physical loading constraints are simplified to pure
capacity limits, ignoring stowage requirements, and finally when the due date of orders deviates,
orders are assigned a new due date so that an order never arrives at the terminal after its due
date which would force trucking. The final destinations of orders are not considered, so any set
of available orders that fit the barge capacity can be loaded into the barge. Finally, the information
of a no-show happening to an order is revealed at the time of the ETA to the operator.



4. Methodology

This section presents the detailed design and implementation of the discrete-event simulation
model developed to analyze overbooking in barge container transport. The model translates the
problem setting from Section 3 into a functioning simulation using Arena software, incorporating
the modules used in Arena, decision logic, and parameters identified in the problem setting. This
section will also explore parts of SRQ 1 and 2 defined in section 2.5, identifying the main features
to consider for booking systems in barge terminals, explaining the main trade-offs caused by
employing different strategies, and how a discrete event simulation can capture the dynamicity of
the system.

4.1 Simulation Design

This study examines how overbooking strategies can be applied in barge container transport
systems to address no-show and arrival time uncertainty while managing the trade-offs between
capacity utilization, order rejection, and truck substitution costs. Discrete event simulation (DES)
allows the study of and experimentation with complex systems, helps in gaining knowledge that
could lead to system improvement, and enables evaluation of different circumstances by changing
inputs and observing resultant outputs (Sharma, 2015). According to literature studies on DES,
benefits of analysis through simulation include obtaining better understanding of systems through
detailed observation over long periods, studying effects of policy changes, experimenting with
new situations about which only weak information is available, and identifying driving variables
that performance measures are most sensitive to (Maria, 1997). Additionally, discrete event
simulation is suitable for exploring and comparing strategies in complex systems under inherent
uncertainty (Neagoe, 2021). For these reasons, discrete event simulation is employed in this
study to evaluate different overbooking strategies under no-show and arrival time deviation
uncertainty. Analytical or mathematical models were not chosen given the high dynamicity and
the interplay between too many different random variables which would have made the model too
complex.

The model evaluates system performance across varying overbooking rates, no-show rates, and
different allocation and order acceptance strategies. Using a simulation to model enables
exploration of these interactions over extended periods. The simulation tracks orders from
booking requests through acceptance decisions, arrival time realizations, no-show
determinations, and final allocations to barge or truck transport. The structure of the simulation
and the employed rules to evaluate will be further explained in section 4.2.

4.1.1 Arena Software

Arena is used as a simulation and modeling platform that allows users to build detailed simulation
models, run experimental scenarios, and produce analysis reports. The software has become
widely adopted in supply chain and logistics sectors because of its ability to model complex
operational systems and assess different strategic and tactical decisions (Rockwell, 2019).
Arena's discrete-event simulation environment provides the flexibility to represent sequential



decision-making processes, stochastic system behaviors, and dynamic scenarios that
characterize real-world logistics operations. The software's modular approach for decisions and
processes allows for the construction of models that can capture the temporal dependencies with
clearly defined strategies, making it suitable for analyzing problems under uncertainty.

4.1.2 Arena Modules

Different Arena modules that are used in the building of the model will be explained in this section
to ensure the reader can understand the technical background of the simulation, if they wish to
create a similar model in the future with the same software. The create module generates order
arrivals by producing entities at specified intervals and quantities. Upon creation, orders are
processed through assign modules that establish order attributes including estimated time of
arrival, due date, and TEU amount. The Assign modules also perform calculations throughout the
simulation for updating capacity and maintaining accurate tracking of container counts. The
booking acceptance logic is implemented through Decide modules that function as conditional
statements within the simulation flow. The Decide modules operate like an if statement in
traditional programing and are also used to handle schedule adjustment logic and barge capacity
assessment when an order needs to be shipped. The hold modules are used to represent the
temporal aspects of order processing by holding entities inactive until the conditions to process
them are met. The Search and Remove module is used to select orders by searching orders in
the simulation that meet specific criteria and removing them to redirect them for a different
process. This module enables the selection of orders that we intend to process. The clone module
is used to split orders into container level for order allocation, and finally the batch module is used
to represent a barge where container level entities are stored until barge departure.



4.2 Conceptual Model

The simulation models the decision-making process that barge operators face when managing
container bookings. The operator makes two distinct types of decisions: first, whether to accept
or reject incoming orders, and second, how to allocate arrived containers to available transport
capacity when barges prepare for departure. Figure 4.2 shows the IDEFO diagram of the
conceptual model.

pverbooking limits

Booking strategy
Slot occupancy

!

Rejected orders
Incoming crdirs Order _9‘
Acceptance
—»
Phase
1
Slot occupancy Due date changes
Arrival dewatmni Travel and No-shows
Information
e Revelation Phase
2
Allocation strategy Priority rules
Container fransport by bir%e
Allocation

Phase

lransport by truck

Barge fruck

Performance feedback

Table 4.2: IDEFO0 Diagram of the conceptual model
4.2.1 Order Acceptance Phase

Orders arrive at random intervals throughout the simulation period with varying characteristics.
Each order has three attributes known to the operator at the time of the acceptance decision:
estimated time of arrival (ETA), due date, and TEU size.

These attributes are assigned to each order using probability distributions in the simulation. The
operator must make the acceptance decision based on the information from these attributes plus
the current state of the occupancy of barge slots. When making acceptance decisions, operators
can employ different strategic approaches ranging from conservative to aggressive booking and
increased overbooking rates. Conservative strategies accept orders only when ample capacity
exists, minimizing the risk of future capacity conflicts. Aggressive strategies accept more orders



despite potential future complications, aiming to maximize capacity utilization and order
acceptance at the cost of increased trucking possibility.

Two specific dimensions are tested in the acceptance phase. The first dimension involves
overbooking limits: Operators can set capacity limits for departure slots either at more
conservative levels or at higher levels compared to the barge capacity (or at none if the operator
does not intend to overbook any slots). Higher overbooking limits allow acceptance of more
orders, providing protection against no-shows but creating risk of capacity exceedance. Lower
overbooking limits protects the operator from more trucking usage but risks having less barge
utilization and rejects more orders. The second strategic dimension involves flexibility in slot
assignment when accepting orders. The conservative acceptance strategy is more selective,
initially allocating each order only to its originally requested departure slot, as determined by the
order’s due date. For example, if a customer requests a shipment on Tuesday’s first barge, the
order is either accepted into that barge slot (if capacity is available) or rejected outright. Even if
an earlier Monday slot has unused space and the order would arrive in time, it is not considered.
By contrast, the aggressive acceptance strategy is less selective, allowing orders to be
reassigned into earlier departure slots with available capacity, provided that the order’s estimated
arrival time makes such an allocation feasible. For example, a customer requesting Tuesday’s
departure could instead be initially accepted into Monday’s departure if the shipment is expected
to arrive at the terminal before Monday. This broader acceptance rule enables the operator to
smooth outimbalances in slot demand, fill underutilized departures, and ultimately accept a larger
volume of orders overall. The tradeoff is that it introduces exposure to uncertainty: if the order is
subject to deviation, it may have to be shifted back into its original Tuesday slot, which could now
be filled by other orders. Such reassignments create risks of capacity exceedance or additional
trucking.

When an order is accepted, the operator commits capacity from the appropriate departure slot
based on the order's TEU size. This slot assignment is not final, as orders can be reassigned to
different departure slots during later phases to improve capacity utilization or accommodate arrival
deviations.

4.2.2 Travel and Information Revelation Phase

After acceptance, orders begin traveling to the terminal. During this phase, additional information
about each order is revealed that may require adjustment of the original capacity assignments.
First, arrival time deviations are assigned using the probability distributions studied from the
Gumuskaya et al. (2020) study. These deviations represent the difference between estimated and
actual arrival times, creating scheduling uncertainty that can disrupt planned capacity allocation.
When arrival time deviations occur, the operator may be forced to reassign orders to different
departure slots to maintain feasibility. If an order's new arrival time makes its original departure
slot infeasible to accomodate, the order is moved to the earliest feasible slot. In cases when there
are no feasible slots available, the reassignment may force orders into slots that are already at
capacity, creating capacity exceedance in the departure slot.



The final piece of information revealed is whether the order materializes or becomes a no-show.
The no-show rate is a predefined parameter in the system that determines the percentage of an
accepted order materializing. When orders become no-shows, their allocated capacity is freed up

in the assigned departure slots, potentially creating unused capacity if no other orders can utilize
the released space.

Information About Order | Description When Revealed

TEU Size Number of containers in the order At booking request

Estimated Time of Arrival Projected arrival time at terminal At booking request

(ETA)

Due Date Deadline for order departure At booking request

Arrival Time Deviation Difference between estimated and During order travel
actual arrival phase

No-show Status Whether order materializes or cancels At scheduled arrival

time

Table 4.2: Information About Orders Revelation Throughout the Simulation

4.2.3 Container Allocation Phase

When orders successfully arrive at the terminal, they enter the allocation phase where operators
must assign arrived containers to specific transport modes. The simulation maintains the
constraint from section 3.3 that all arrived orders must depart before their due dates, either by
barge or truck transport. Every time a barge is set for departure, urgent orders are prioritized first
by the simulation. An urgent order is classified as an order which, if it does not depart with the
next available barge, will miss its due date. Since these orders will be trucked if not loaded on the
barge, they are allocated to the barge first. If the amount of TEU that are urgent exceeds the
capacity of the barge due to extensive booking or deviations, then the excess TEU above barge
capacity are forced into trucking.



If the barge capacity does not fill up when all urgent orders are loaded, the operator needs to
employ a strategy to fill up the unutilized spots on the barge. The operator can employ different
allocation strategies for non-urgent orders. The simplest form of allocation strategy is first-come-
first-served, which allocates orders based on their arrival sequence at the terminal. The other
possible strategies that can be implemented by the operator include loading orders that are
closest to their due date but not urgent, loading the smallest orders first to maximize the number
of orders loaded in the barge, and loading the largest orders first to get rid of high TEU orders
initially. All allocation strategies are compared to assess their performance using the performance
metrics identified in section 3.2 to determine how these different strategies operate under different
uncertainty conditions and overbooking strategies.

4.3 Model Validation and Verification

Due to the limited resources available in this study, model verification using real-world data
comparison was not feasible. For the verification of the model, the model was built step by step,
and each segment of the model was tested after construction with the supervisors. Additionally,
single orders are created and tracked through the entire model to test the operation of the
simulation. All testing of the different stages is performed under the same set of conditions. The
model's face validity is established through supervisors’ review and comparison with container on
barge problems described in the literature. It is important to acknowledge that this validation
occurs within the assumptions of the defined problem setting. The effectiveness of different
strategies that are tested in the model is contingent upon these problem characteristics, and
alternative decision-making approaches may prove more effective under different operational
contexts or problem configurations. This represents a limitation of the study, as strategy
effectiveness cannot be generalized beyond the scope of the modeled system without further
validation under different problem settings, however the approaches used in this study serve as
a baseline and can be tested or changed on specific problem-settings that can be constructed in
other studies. Two extreme cases are tested to further validate the model. Additional validation of
system behavior can be observed on Section 5 as well during the sensitivity analysis.

Validation Test 1: Perfect information

To validate the model's capacity tracking and order acceptance logic, the system was tested
under perfect information conditions with 0% no-shows, no arrival time deviations, and no
overbooking. Under these conditions, barge departure slots can never be over capacitated, and
all excess demand should result in order rejections rather than truck transport. The test was
conducted for both acceptance strategies using the first-come-first-served allocation strategy to
verify their operational logic and provide baseline comparison. As we discussed in the previous
section, the conservative acceptance strategy allocates orders only to their requested departure
slots based on due dates, while the aggressive acceptance strategy allows orders to be allocated
to earlier departure slots with available capacity when their original slots are full.



Acceptance Strategy Barge Utilization Order Rejection TEU
Rate Trucked
Conservative 91.87% 27.92% 0
Acceptance
Aggressive Acceptance | 95.96% 23.75% 0

Table 4.3.1: Perfect Information Baseline Validation Results

The results validate the model behavior under perfect information conditions. Both strategies
achieve zero trucking, verifying that the capacity tracking system prevents over capacitation when
no uncertainty exists. The performance difference between strategies shows that when orders
can be allocated to earlier available slots, the system achieves better capacity utilization (95.96%
vs 91.87%) and lower rejection rates (23.75% vs 27.92%) demonstrating that allocating orders to
empty slots with earlier due dates improves both utilization and order accommodation without
more trucking penalties when no operational uncertainties interfere with the allocation process.

Validation Test 2: Reduced Capacity

To validate that the model responds correctly to capacity constraints, the system was tested by
reducing barge capacity to 10 TEU per departure while maintaining perfect information conditions
(0% no-shows, no arrival time deviations, no overbooking). This test confirms that the model's
acceptance logic correctly adjusts to different capacity levels and that performance metrics
respond proportionally to capacity changes.

The test was conducted using both acceptance strategies with first-come-first-served allocation
to isolate the impact of capacity reduction on system performance.

Acceptance Strategy Barge Utilization Order Rejection TEU
Rate Trucked
Conservative 99.55% 67.31% 0
Acceptance
Aggressive Acceptance | 99.72% 66.86% 0

Table 4.3.2: Perfect Information Low-Capacity Barge Validation Results

Both strategies achieve zero trucking as expected under perfect information, showing that
capacity tracking prevents over capacitation regardless of capacity levels. The substantially
higher rejection rates demonstrate that the model correctly responds to reduced capacity by



rejecting more orders. We can also observe that utilization and the rejection rate are much closer
for both strategies as it is very likely to fill up all the departure slots with the incoming orders.



5. Computational Experiments

5.0 Numerical Section

This section presents the parameters used in the discrete-event simulation model that were
previously explained in the problem setting but were not numericized. These parameters are
derived from established literature, industry data sets, and assumptions from previous container
on barge studies. We use a barge capacity of 28 TEU for this study to the Fazi et al. (study). The
capacity that can be accommodated is set at 27 TEU per vessel, based on an industry dataset
that indicates that these 28 TEU capacity barges typically can carry a maximum of 27 TEU of
containers due to stowage constraints, thus a 27 TEU capacity is also applied in this study. The
daily departure schedule consists of 2 scheduled departures, consistent with the acquired dataset
on the operations of 28 TEU barges and reflecting typical barge schedules in the Netherlands.
Truck transport is assumed to have unlimited capacity and instant availability due to it being much
more flexible than a barge (Gumuskaya et al. 2020, Behdani et al. 2016, F. Nab 2018 ). The
availability can be seen in the Fazi et al. (2015) study as they set the travel time for trucks to 4.5
hours, while the travel time by barge is 22 hours on the same leg. Finally, the arrival time deviation
is fixed to the distribution DISC(0.4, 0, 0.7, 1, 0.9, 2, 1.0, 3) days based on the Gumuskaya et al.
(2020) study.

5.1 Results Compared to other strategies

To evaluate the effectiveness of different operational strategies, this study implements a
comparative analysis that tests multiple strategy combinations under identical simulation
conditions. This approach compares to the study of Feng et al. (2015) where they compare their
developed MDP results to a FCFS strategy. The comparative analysis examines different
strategies through the two primary decision components discussed in the methodology: order
acceptance strategies and order allocation strategies. The acceptance component comparison
evaluates the aggressive acceptance strategy against the conservative acceptance strategy. The
allocation component comparison evaluates the maximum order count loading strategy, FCFS
loading, largest order first loading, and earliest due date loading strategies to assess the impact
of different capacity utilization approaches. Each strategy combination operates under identical
system conditions including the same no-show probability, arrival time deviations, and
overbooking rate configurations. Performance comparison focuses on the established metrics to
assess how different strategies impact operational outcomes.



5.1.1 0 no-show uncertainty and no overbooking

The following table presents the first experimental scenarios tested. All experiments utilize
identical parameters: 0% no-show rate, 0% overbooking, DISC(0.4,0,0.7,1,0.9,2,1.0,3) arrival

time deviations.

Experiment Acceptance Strategy Loading Strategy
Test 1 Aggressive Acceptance Maximum Order Count Loading
Test 2 Aggressive Acceptance FCFS Loading
Test 3 Aggressive Acceptance Largest Orders First Loading
Test 4 Aggressive Acceptance Earliest Due Date Orders Loading
Test 5 Conservative Acceptance | Maximum Order Count Loading
Test 6 Conservative Acceptance | FCFS loading
Test 7 Conservative Acceptance | Largest Order First Loading
Test 8 Conservative Acceptance | Earliest Due Date Orders Loading

Table 5.1.1.1: Table of experiments to compare the performance of different strategies

The table below provides the results of the different experiments under the given parameter

specifications
Experiment | Acceptance Loading Barge Avg. TEU | Order Rejection
Strategy Strategy Utilization (%) | Trucked Rate (%)
Test 1 Aggressive Maximum 93.24 382.00 25.92
Acceptance Order Count
Loading




Test 2 Aggressive FCFS Loading | 90.12 632.25 26.12
Acceptance

Test 3 Aggressive Largest Order | 88.01 742.45 27.40
Acceptance Loading

Test 4 Aggressive Earliest Due 91.36 534.20 26.07
Acceptance Date Loading

Test 5 Conservative | Maximum 88.73 273.75 30.25
Acceptance Order Count

Loading

Test 6 Conservative | FCFS Loading | 87.16 404.10 30.88
Acceptance

Test 7 Conservative | Largest Order | 86.07 424 .15 30.87
Acceptance Loading

Test 8 Conservative | Earliest Due 87.85 288.75 30.36
Acceptance Date Loading

Table 5.1.1.2: Results Table of Experiments to Compare the Performance of Different Strategies

Out of the aggressive acceptance strategies, the maximum order count loading performs the best
with the highest barge utilization (93.24%), the least TEU trucked (382.00), and the lowest order
rejection rate (25.92%). As expected, compared to the conservative acceptance strategy, the
aggressive acceptance strategy performs much better on barge utilization and order rejection rate
metrics than the conservative acceptance strategy but performs worse on trucking usage.
Between the loading strategies tested, the maximum order count loading performs much better
on trucking and utilization than other loading strategies on both aggressive and conservative
acceptance. This could possibly mean that having fewer orders in the queue of orders waiting for
allocation to the barge creates more flexibility for future allocation of orders. An interesting remark
comes from the comparison between the FCFS loading and the largest order loading on both
conservative and aggressive acceptance strategies. We can observe that the FCFS loading
performs better in both trucking and utilization than the largest orders first loading. On aggressive
acceptance, FCFS (Test 2) achieves 90.12% utilization with 632.25 TEU trucked while largest
order first (Test 3) achieves only 88.01% utilization with 742.45 TEU trucked. Similarly, on
conservative acceptance, FCFS (Test 6) achieves 87.16% utilization with 404.10 TEU trucked
while largest order first (Test 7) achieves 86.07% utilization with 424.15 TEU trucked. This is in
line with the simulation performing much better when we use maximum order count loading for
allocation, as it can be observed that trying to allocate the larger orders first creates complications



for further allocation while allocating smaller orders first to decrease the number of orders in the
queue creates flexibility. The earliest due date loading performs at closer levels to the maximum
order count loading when the conservative acceptance strategy is applied. Under conservative
acceptance, earliest due date loading (Test 8) achieves 87.85% utilization with only 288.75 TEU
trucked compared to maximum order count (Test 5) with 88.73% utilization and 273.75 TEU
trucked, performing similarly in trucking and slightly worse on utilization. However, under
aggressive acceptance strategy, maximum order count loading performs much better, with Test
1 achieving 93.24% utilization and 382 TEU trucked compared to earliest due date loading (Test
4) with 91.36% utilization and 534.20 TEU trucked. The differences in performance between
loading strategies are much more pronounced under aggressive acceptance compared to
conservative acceptance, as aggressive acceptance amplifies the impact of loading strategy
choices and increases the importance of loading decisions. Under conservative acceptance, the
loading strategies perform closer to each other.

Barge Utilization (%) Average TEU Trucked

Lilization (%)
TEU Trucked

Figures 5.1.1.1-2-3: Barge Strategy Performance Analysis Graph
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Figure 5.1.1.4: Color Schemes of performance graphs

5.1.2 10% no-show uncertainty and 10% overbooking

Since this study aims to investigate overbooking strategies to manage no-shows and delays, we
conduct another comparison test under an intuitive 10% no-show uncertainty and 10%
overbooking scenario. This configuration represents a more realistic hypothetical scenario where
terminals face moderate no-show levels and employ corresponding overbooking strategies to
maintain capacity utilization.

Experiment | Acceptance Loading Barge Avg. TEU Order
Strategy Strategy Utilization (%) | Trucked Rejection
Rate (%)
Test 1 Aggressive Maximum 91.11 485.35 19.06
Acceptance Order Count
Loading
Test 2 Aggressive FCFS Loading | 88.83 680.50 19.62
Acceptance




Test 3 Aggressive Largest Order | 86.99 813.00 20.93
Acceptance Loading

Test 4 Aggressive Earliest Due 89.75 598.20 20.35
Acceptance Date Loading

Test 5 Conservative | Maximum 87.04 228.10 25.26
Acceptance Order Count

Loading

Test 6 Conservative | FCFS Loading | 85.53 378.60 25.17
Acceptance

Test 7 Conservative | Largest Order | 84.73 408.90 25.41
Acceptance Loading

Test 8 Conservative | Earliest Due 86.15 247.75 25.55
Acceptance Date Loading

Table 5.1.2.1: Results Table of experiments to compare the performance of the strategies with no-show and overbooking

Introduction of 10% no-show uncertainty and 10% overbooking shows that aggressive
acceptance continues to achieve higher barge utilization and lower order rejection rates across
all loading strategies, though the more aggressive acceptance strategy results in increased
average trucked TEU as more orders are processed through the system. When overbooking and
no-shows are part of the system, we observe that the penalties for trucking increase in aggressive
acceptance even when utilization is dropping compared to the 0% no-show scenario.

We see similar trends regarding the performance of different order loading methods as maximum
order count loading performs the best and largest order loading performs the worst again. This
reinforces the finding that prioritizing larger orders first creates allocation complications that
persist even when uncertainty and overbooking are introduced. We can also see that when
overbooking and no-shows are introduced, the order rejection rates decrease compared to the
previous configuration of 0% no-show and no overbooking. The uncertainty and overbooking
conditions change the performance differences between aggressive and conservative
acceptance strategies, making the choice of acceptance strategy more critical for terminal
performance under realistic operational constraints.

The comparison between scenarios reveals that aggressive acceptance performs better under
perfect information conditions than when uncertainty and overbooking are introduced. When no-
show uncertainty enters the system and overbooking is applied as a countermeasure, the two
acceptance strategies present distinct trade-offs as seen in figure 5.1.2. The arrows show the



comparison between the scenarios with no uncertainty, and scenarios with uncertainty and
overbooking on different strategies.
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Figure 5.1.2: Performance Comparison change between scenarios: Barge Utilization vs TEU Trucked



5.2 Different No-show Uncertainty and Overbooking Rates

The comparative analysis on section 5.1 showed that maximum order count loading performs
better than FCFS loading, largest order first loading, and earliest due date loading under both
aggressive and conservative acceptance strategies. This pattern holds across different
uncertainty conditions. Since maximum order count loading consistently outperforms the
alternatives on the performance metrics, all further experiments regarding different will use this
loading strategy. This allows focus on other aspects of the system without retesting allocation
methods.

To examine performance across different conditions we use the parameters overbooking rate,
and no-show rate, as changing them does have a direct effect on our performance metrics where
we can make a trade-off analysis. Overbooking rates range from 0 to 20% in 0.05 increments
(0%, 5%, 10%, 15%, 20%). The 5% increment size allows examination of performance changes
while maintaining a manageable number of experimental conditions. No-show rates span from
0% to 20% in 5% increments (0%, 5%, 10%, 15%, 20%), covering the range from perfect demand
realization to high uncertainty conditions.

Table 5.2: Experimental Parameters

Parameter Level1 | Level 2 | Level 3 | Level 4 | Level 5
Overbooking Rate | 0% 5% 10% 15% 20%
No-Show Rate 0% 5% 10% 15% 20%

We additionally test the two proposed acceptance strategies with the different overbooking and
no-show rates, as they create different trade-offs in different overbooking rate and no-show rate
configurations

Acceptance strategy

Aggressive Acceptance

Conservative Acceptance




5.2.1 No-show Impact Without Overbooking

This section examines how introducing no-show uncertainty affects system performance when no
compensating strategies are employed. By maintaining the no overbooking strategy while
introducing progressive no-show rates, the analysis isolates the impact of no-shows on the
performance metrics.

The following tables presents the performance of aggressive and conservative acceptance with
maximum order count loading across different no-show rates with 0% overbooking:

Table 5.2.1.1: Aggressive Acceptance Strategy Performance

No-Show Barge Utilization (%) Avg. TEU Order Rejection Rate (%)
Rate Trucked
0% 93.24 382.00 25.92
5% 90.88 285.30 25.51
10% 87.92 212.45 24.93
15% 84.26 150.25 24 .54
20% 79.07 112.20 23.93

Table 5.2.1.2: Conservative Acceptance Strategy Performance

No-Show Barge Utilization (%) Avg. TEU Order Rejection Rate (%)
Rate Trucked
0% 88.73 273.75 30.25
5% 86.42 165.40 30.28
10% 83.31 100.80 30.11




15% 79.28 60.60 30.16

20% 73.79 39.30 30.02

From 0% to 20% no-shows, the first trade-off pattern can be observed when no-shows are
introduced to the system. On both conservative acceptance and aggressive acceptance
strategies, there is a drop in utilization but also a drop in trucked TEU. This simultaneous decline
in both metrics represents the impact of uncertainty on the trade-off between performance
metrics. Since arrival time deviation is a part of the system that causes trucking, having some no-
shows in the system creates a degree of flexibility to the operator that causes less trucking but
decreases utilization. The no-shows free up departure slots that were previously reserved,

allowing the system to accommodate customers who experience arrival time deviations without
resorting to trucking alternatives.
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Figure 5.2.1.1: Decrease on Barge Utilization When No-show Rate Increases
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Figure 5.2.1.2: Decrease on Trucked TEU When No-show Rate Increases

As shown in Figures 5.2.1.1 and 5.2.1.2, the utilization decrease becomes exponential while the
decrease in trucking becomes logarithmic as no-show rates increase. This relationship indicates
that system performance gets exponentially worse when no-shows increase in the system without
overbooking as a counter measure on both acceptance methods. From both the figures we can
observe that the gap between performance on both acceptance strategies on different no-show
uncertainty remains similar. This observation shows that both the strategies respond to no-show
uncertainty without overbooking similarly.

Regarding the order rejection rate performance metric, seen in Figure 5.2.1.3, on the aggressive
acceptance strategy the order rejection rate drops slightly, from 25.92% to 23.93%, as no-show
uncertainty is increased while there is no significant change in order rejection rates on the
conservative acceptance strategy. This indicates that the aggressive acceptance strategy can fill
the gaps in departure slots caused by no-shows by accepting more orders while conservative
acceptance can’t. This is the only metric where we see a difference on the trend between the two
strategies.
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5.3 Sensitivity Test of Overbooking Performance Across No-Show Levels

This section examines how overbooking strategies can address the capacity losses and
inefficiencies identified in the previous analysis. By testing different overbooking rates (5%,
10%,15%, 20%) across each no-show scenario (5%, 10%,15%, 20%), the analysis evaluates the
effectiveness of overbooking as a recovery mechanism. The focus is on determining whether
overbooking can restore the capacity losses caused by no-shows and decrease the percentage
of order rejections and at what operational cost in terms of increased trucking dependency.

Table 5.3.1: Conservative Acceptance Performance Across Overbooking Rates

No Overbooking | 5% Rate | 10% Rate | 15% Rate | 20% Rate
5% No-Shows
Barge Capacity 90.88% 91.78% 92.65% 93.52% 94.22%
Utilization
Trucked TEU (Avg.) 285.30 444 .45 657.35 905.60 1291.30
Rejection Rate 25.51% 22.9% 20.08% 18.53% 17.05%




10% No-Shows

Barge Capacity 87.92% 89.03% 90.11% 90.93% 91.89%

Utilization

Trucked TEU (Avg.) 212.45 300.05 485.35 602.85 860.85

Rejection Rate 24.93% 22.23% 19.06% 18.04% 16.67%

15% No-Shows

Barge Capacity 84.26% 86.21% 87.87% 89.50% 90.52%

Utilization

Trucked TEU (Avg.) 150.25 199.20 274.05 400.55 550.70

Rejection Rate 24 .54% 21.76% 18.71% 17.76% 16.44%

20% No-Shows

Barge Capacity 79.07% 81.24% 83.52% 86.67% 88.47%

Utilization

Trucked TEU (Avg.) 112.20 146.30 200.95 260.25 346.86

Rejection Rate 23.93% 21.28% 18.29% 17.22% 15.57%
Table 5.3.2: Conservative Acceptance Performance Across Overbooking Rates

No Overbooking | 5% Rate | 10% Rate | 15% Rate | 20% Rate

5% No-Shows

Barge Capacity 86.42% 87.39% 88.32% 89.03% 89.66%

Utilization

Trucked TEU (Avg.) 165.40 227.20 325.95 449.35 560.20

Rejection Rate 30.28% 27.63% 25.22% 22.78% 20.91%




10% No-Shows

Barge Capacity 83.31% 85.38% 87.04% 88.09% 88.72%
Utilization

Trucked TEU (Avg.) 100.80 160.75 228.10 275.20 360.85
Rejection Rate 30.11% 27.42% 25.26% 22.70% 20.72%

15% No-Shows

Barge Capacity 79.28% 81.85% 84.31% 86.52% 87.79%
Utilization

Trucked TEU (Avg.) 60.60 94 .25 137.95 172.40 219.35
Rejection Rate 30.16% 27.04% 25.13% 22.49% 20.73%

20% No-Shows

Barge Capacity 73.79% 77.01% 80.27% 82.76% 85.12%
Utilization

Trucked TEU (Avg.) 39.30 51.65 72.50 99.95 120.30
Rejection Rate 30.02% 26.99% 25.06% 22.26% 20.24%

As seen in Figure 5.3.1, both overbooking strategies reveal trade-offs between capacity utilization
and trucking requirements that vary in effectiveness depending on no-show rates. At lower no-
show rates, overbooking produces disproportionately high trucking increases relative to capacity
gains, while higher no-show rates yield more favorable returns for each overbooking increment.
The comparative analysis between assignment strategies shows that while the aggressive
strategy exhibits greater sensitivity to trucking volume increases when overbooking rates rise,
both strategies demonstrate comparable capacity recovery potential.
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Figure 5.3.1.1: Comparison Graph Between Utilization and Trucking for Each No-Show and Overbooking Increment

Figure 5.3.1.2 and Figure 5.3.1.3 show the change in order rejection rate as we increment the
overbooking rates and no-show rates. Rejection rates decrease as overbooking rates rise for both
strategies across all no-show scenarios. As no-show rates increase in the aggressive strategy,
we see a decrease in order rejection rates across all overbooking increments. However, in the
conservative strategy we do not see significant change as the lines become more linear as no-
show rate increments. The performance gap between strategies narrows at higher overbooking
levels.



28 P WA
.......................................... "
.—_\_.______.__—_\__—. LR E LR Sk e L LR LR - s=srsssrenansateaieceaas &

'—_—_

1 e L S
'\.\.\‘ * N — T
”— .

3 20 1 P
Aggressive Strategy Conservative Strategy
@ —— 0% Overbooking PR 0% Overbooking
@ —— 5% Overbooking A seerer 5% Overbooking
@ —— 10% Overbooking s 10% Overbooking
15% Overbooking 15% Overbooking
@ —— 20% Overbooking A e 20% Overbooking

Figure 5.3.1.2 and Figure 5.3.1.3: Order Rejection Rate on Each No-show rate when Overbooking increments

5.4 Trade-off Analysis

This section aims to investigate the trade-off for overbooking while using different overbooking
rates and strategies. Determining the exact break-even point for barges is a significant challenge,
as it depends heavily on various operational factors including transportation distance, route
complexity, and market conditions. We could not obtain a specific number for the break-even
utilization from literature. However, from the industry dataset obtained, we observed that the 28
TEU capacity barge was utilized at least 50% on all transportation legs. This empirical observation
forms the basis for using 50% as the break-even barge utilization point in this analysis.

The cost structure assumptions are derived from the Fazi et al. (2015) study as they use the same
28 TEU barge for their case study. In their study, a barge requires approximately 22 hours for a
round trip, with an assumed operational cost of €80 per hour, resulting in a total barge trip cost of
€1,760. In the case study it is estimated that €330 is required for a truck to complete a round trip,
with trucks averaging 4.5 hours to cover the same distance, which aligns with trucking's inherent
flexibility compared to barge transport. While these values cannot be confirmed with real-world
data, they are consistent with the literature used in this study and provide sensible and tangible
results for the trade-off analysis.

Table 5.4.1 shows the values used for costs to conduct the analysis.

Parameter Value Source

Barge cost €1,760 (Fazietal., 2015)

Truck cost per TEU €330 (Fazi et al., 2015)




Break-even point for 50%

barge utilization

Observed minimum utilization from industry dataset
for the 28 TEU Barge

Table 5.4.1: Cost Assumptions for Analysis

The following tables present the financial outcomes of different overbooking strategies under
varying no-show conditions. The analysis examines the profit of each rate and strategy to
understand the trade-offs between aggressive and conservative booking approaches. Each table
highlights the best strategy for each no-show scenario (marked in bold) and highlights the cell
which provides the best overbooking rate and acceptance strategy combination for a no-show

scenario.

Table 5.4.2: Aggressive Acceptance Net Profit (EUR)

No-Show No 5% Rate | 10% 15% 20%
Rate Overbooking Rate Rate Rate
0% No- €482,759 N/A N/A N/A N/A
Shows
5% No- €481,441 €441,594 | €383,587 | €313,914 | €196,489
Shows
10% No- €463,805 €450,526 | €404,583 | €377,354 | €305,731
Shows
15% No- €432,798 €444,101 | €442,773 | €423,979 | €388,791
Shows
20% No- €372,280 €391,580 | €405,648 | €430,431 | €427,194
Shows

Table 5.4.3: Conservative Acceptance Net Profit (EUR)
No-Show No Overbooking | 5% Rate 10% 15% 20%
Rate Rate Rate Rate
0% No- €454,981 N/A N/A N/A N/A
Shows
5% No- €458,212 €451,475 | €431,982 | €401,257 | €373,547
Shows
10% No- €435,741 €445,103 | €446,250 | €445,491 | €426,097
Shows
15% No- €392,264 €417,345 | €437,561 | €457,310 | €459,698
Shows




20% No- €321,994 €363,256 | €402,277 | €428,277 | €454,791
Shows

Table 5.4.3: Strategy Comparison (Aggressive-Conservative)

No-Show No 5% Rate | 10% 15% 20% Rate
Rate Overbooking Rate Rate

0% No- +€27,778 N/A N/A N/A N/A
Shows

5% No- +€23,229 €-9,881 €-48,395 | €-87,343 | €-177,058
Shows

10% No- +€28,064 €+5423 €-41,667 | €-68,137 | €-120,366
Shows

15% No- +€40,534 €+26,755 | €+5,212 €-33,331 | €-70,907
Shows

20% No- +€50,286 €+28,324 | €+3,371 €+2,154 €-27,597
Shows

Positive values = Aggressive strategy outperforms, Negative values = Conservative strategy
outperforms

As no-show rates increase across the system, the effectiveness of overbooking strategies
changes. With low no-show rates, both booking strategies perform best without any overbooking,
indicating that the uncertainty on arrival time deviations off-sets the benefits of overbooking.
However, as no-show rates rise, both strategies begin to profit more from overbooking. A clear
threshold is seen where overbooking transitions from reducing profits, to improving them at 10%
no-show rates at the conservative acceptance strategy, and at 15% no-show rates at the
aggressive acceptance strategy. The aggressive strategy achieves higher peak profits under
stable conditions but shows more variable performance as overbooking increases, while the
conservative strategy trades outperforms the aggressive approach in high no-show rates.

Beyond profit considerations, we must also account for the broader business impact of rejecting
customer orders. Order rejections carry hidden costs including lost future revenue, damaged
customer relationships, and competitive disadvantage. To address this, the next trade-off analysis
quantifies the question: "What is the opportunity cost of accepting additional orders to justify the
expense of overbooking?" This approach enables decision-makers to evaluate overbooking
strategies not just on immediate financial returns. The threshold values represent the minimum
opportunity cost per rejected order that would make overbooking financially viable. The following
results show the calculation of the acceptance opportunity cost threshold.



Table 5.4.4: Aggressive Acceptance, Acceptance Opportunity Cost Threshold

No-Show 5% Rate 10% Rate 15% Rate 20% Rate
Rate

5% No- €636 €751 €1,000 €1,403
Shows

10% No- €205 €420 €523 €797
Shows

15% No- Profitable* Profitable* €54 €226
Shows

20% No- Profitable* Profitable* Profitable* Profitable*
Shows

Table 5.4.5: Conservative Acceptance, Acceptance Opportunity Cost Threshold

No-Show 5% Rate 10% Rate 15% Rate 20% Rate
Rate

5% No- €106 €216 €316 €376
Shows

10% No- Profitable* Profitable* Profitable* €43
Shows

15% No- Profitable* Profitable* Profitable* Profitable*
Shows

20% No- Profitable* Profitable* Profitable* Profitable*
Shows

*Profitable = Overbooking increases both profit and reduces rejections

Observed in tables 5.4.4 and 5.4.5, the aggressive strategy requires much higher opportunity cost
thresholds to justify overbooking at lower no-show rates, indicating that overbooking is only
economically rational when opportunity costs for orders are extremely high. The conservative
strategy shows different threshold patterns, with much lower break-even costs required to justify
overbooking. The threshold patterns demonstrate that strategy selection should account for the
terminal's ability to quantify opportunity costs. Terminals with high customer values or strong
competitive pressures may find overbooking justified at less profits. The analysis provides a
quantitative framework for matching overbooking policies to both operational conditions and

revenue management.







6. Discussion
6.1 Discussion of Results

Experimental results with different allocation strategies demonstrated that allocation strategy
performance has a significant impact on the effectiveness of overbooking strategies. Maximum
order count loading strategy consistently outperformed FCFS, largest orders first, and earliest
due date strategies across all tested conditions, showing superior performance in both barge
utilization and reduced trucking usage. This finding indicates that if a terminal believes it is
performing poorly in allocation, it is important for the terminal to improve its allocation methods
first before implementing overbooking, and to use a conservative acceptance strategy. The
superior performance of maximum order count loading suggests that reducing the number of
orders in the terminal queue creates operational flexibility that proves more valuable than other
allocation priorities.

Two methods for accepting more orders were tested: the aggressive acceptance strategy and the
conservative acceptance strategy. As discussed in section 4.2, the aggressive acceptance
strategy allows orders to be reassigned into earlier departure slots with available capacity,
provided that the order's estimated arrival time makes such allocation feasible. The conservative
acceptance strategy is more selective, initially allocating each order only to its originally requested
departure slot as determined by the order's due date. Both strategies were tested on different
overbooking and no-show rates. At lower no-show rates, overbooking produces
disproportionately high trucking increases relative to capacity gains, while higher no-show rates
yield more favorable returns for each overbooking increment. The comparative analysis between
assignment strategies shows that, while the aggressive strategy exhibits greater sensitivity to
trucking volume increases when overbooking rates rise, both strategies demonstrate comparable
capacity recovery potential. This demonstrates that if the operator believes uncertainty is very
high, they can implement higher overbooking rates with less exposure to trucking risk, which
makes the experimentation of overbooking decisions less risky in a terminal setting.

The trade-off analysis showed that different strategies perform better under different uncertainty
conditions. The conservative strategy yielded more profits at higher no-show rates when
combined with higher overbooking rates, while the aggressive strategy performed best at low no-
show rates without requiring increased overbooking rates. In lower uncertainty conditions, instead
of overbooking slots, terminals can accept orders to earlier feasible slots using the aggressive
acceptance strategy to achieve better returns. With the aggressive acceptance strategy, until 15%
no-show rate, no overbooking is still the best strategy. However, after 15% no-show levels,
overbooking performs better than no overbooking. With the conservative acceptance strategy, at
5% no-show rate, no overbooking is the best performing strategy, while after 10%, overbooking
becomes a viable strategy. Overbooking not being viable at 5% no-show rates on both strategies
is most likely due to arrival time deviations causing more trucking when order materialization is
high.



Analysis of the opportunity costs for accepting orders revealed that the economic viability of
overbooking strategies depends on both the overbooking and no-show rates, and the terminal's
ability to quantify opportunity costs of accepting additional orders. The aggressive acceptance
strategy required much higher opportunity cost thresholds to justify overbooking at lower no-show
rates. The conservative strategy showed different threshold patterns, with lower opportunity costs
required to justify overbooking. At higher no-show rates, both strategies showed scenarios where
overbooking increases both profit and reduces rejections, making it inherently profitable without
requiring opportunity cost calculations. The opportunity cost thresholds calculation provides a
framework for decision-makers to evaluate whether overbooking for lower profits is justified given
their specific

6.2 Answering the Research Questions
6.2.1 Sub-Research Question 1

What are the main features of a booking system to manage orders and its dynamics in a
barge transport system? What are the main trade-offs?

Sub research question 1 can be answered by the computational experiments in section 5 and the
explanations in section 4. The main features of a booking system to manage orders and its
dynamics in a barge transport system is the order acceptance and order allocation decisions.
These two go hand in hand, as if the allocation strategy of the terminal is poor then this limits the
performance of the implemented acceptance strategy as well. The dynamics of the problem are
the no-show uncertainty, arrival time deviations and the different order characteristic parameters
such as the due date, ETA, and TEU amount of the order.

The main trade-offs are between capacity utilization, order rejection rate and trucking. Depending
on the costs that the terminals assign to these, they can use the framework for calculation and
strategies for overbooking identified in this study.

6.2.2 Sub-Research Question 2

What methodology can better capture the dynamicity of the system with stochastic
parameters?

Sub research question 2 can be answered by the literature study done in section 2, and section
4. Discrete event simulation is a methodology that can effectively capture the dynamicity of the
system with stochastic parameters. The barge container transport system involves multiple
interacting stochastic processes including random order arrivals, arrival time deviations, and no-
show behavior that occur over time. These processes create temporal dependencies where
earlier decisions influence the system state and capacity available for subsequent orders.
Discrete event simulation enables the modeling of these interactions by allowing orders to
progress through different stages of the system while uncertainties resolve progressively. The
methodology can handle the sequential nature of booking decisions where operators must make



accept/reject choices with incomplete information about future demand and order realization.
Additionally, simulation allows for experimentation with different operational policies and
strategies under varying uncertainty conditions without the computational constraints that
analytical approaches face.

6.2.3 Sub-Research Question 3

Do overbooking strategies affect barge terminal performance under no-show, cancellation
and arrival time deviation uncertainty?

Sub research question 3 can be answered by the findings in section 5. Overbooking strategies
affect performance in a barge terminal, and it is highly dependent on no-show rates and arrival
time deviations. The performance metrics identified are the capacity utilization of the barge, use
of trucking, and the rejection rate of orders. The results demonstrate that overbooking
effectiveness varies significantly based on the level of uncertainty present in the system. At low
no-show rates, overbooking provides limited benefits and can result in disproportionately high
trucking relative to capacity gains. However, as no-show rates increase, overbooking becomes
increasingly effective at restoring capacity utilization that would otherwise be lost due to no-
shows. Different strategies on the allocation of orders to barges also influences the terminal
performance.

6.2.4 Main Research Question

How to develop a decision support system that supports understanding overbooking
strategies and the management of no-shows and delays in an inland container transport
system?

The main research question can be answered by integrating the findings from the three sub-
research questions. Based on SRQ1, a decision support system must incorporate both order
acceptance and allocation decision components while accounting for the key trade-offs between
capacity utilization, order rejection rates, and trucking. The system needs to handle the dynamics
of no-show uncertainty, arrival time deviations, and varying order characteristics.

From SRQ2, discrete event simulation provides an appropriate methodological foundation for
such a decision support system, as it can effectively capture the stochastic and dynamic nature
of barge container transport operations. The simulation approach enables experimentation with
different strategies and policies while providing detailed system observation over extended
periods.

From SRQ3, overbooking strategies significantly impact terminal performance, but their
effectiveness depends highly on the uncertainty levels. Therefore, the decision support system
must provide capability to evaluate different overbooking strategies under various no-show and
delay scenarios to determine approaches for specific operational conditions.



6.3 Limitations

This study contains several limitations that affect the applicability of the findings. The simulation
model assumes all containers generate the same revenue and treats all customers equally, while
real operations involve different customer types with varying pricing and service requirements.
The model assumes all containers go to the same destination, ignoring the routing constraints
and network effects that exist in actual barge operations serving multiple destinations. The cost
assumptions are based on literature rather than real world data. The study also does not consider
the change in demand when an order is rejected, as it is possible that a rejected customer might
be less likely to return. The study focuses on a single terminal and examines only specific
overbooking rates and performance metrics, potentially missing other effective strategies or
important operational factors. Moreover because of the entity limit of the student version of Arena,
there were limitations on the level of sensitivity analysis that could be conducted.

However, despite these limitations, the study provides valuable insights into the trade-offs and
decision-making processes in barge container transport overbooking. The simulation framework
demonstrates the effectiveness of different strategies under varying uncertainty conditions and
establishes a foundation for understanding capacity management in barge transportation.

6.4 Recommendations for Future Research

Future research can extend the model to include different customer types with varying
characteristics such as customer priorities, and customer specific no-show behavior. This would
enable more realistic overbooking strategies that account for customer differences. The model
can be expanded to include multiple terminals and routes to understand how overbooking
decisions affect network performance.

The integration of cost modeling into overbooking strategies represents an important step for
practical implementation of overbooking. Future research could develop detailed cost structures
that incorporate all relevant elements including barge costs, truck transport, specific container
revenue, competitive positioning impacts, and other operational costs for a specific case study.
This would enable precise economic impact of overbooking strategies tailored to specific
operational contexts.



7. Conclusion

This research investigated the application of overbooking strategies in barge container transport
to address capacity management challenges under no-show uncertainty and arrival time
deviations. Through the development of a discrete-event simulation model and literature review,
the study answers the main research question of how to develop a decision support system for
understanding overbooking strategies and managing no-shows and delays in barge transport.
The research identifies that booking systems in barge transport are characterized by two critical
decision components: order acceptance and allocation strategies, which must be made
sequentially under incomplete information while managing the dynamics of no-show uncertainty,
arrival time deviations, and varying order characteristics. The main trade-offs involve balancing
capacity utilization against order rejection rates and trucking, with the balance depending on the
specific cost structure and operational context of each terminal. Discrete-event simulation proves
to be an effective methodology for capturing the stochastic and dynamic nature of barge container
transport systems, enabling experimentation with different strategies under varying uncertainty
conditions without the computational complexity faced by analytical approaches.

The study demonstrates that overbooking strategies significantly affect barge terminal
performance, with effectiveness highly dependent on the level of uncertainty present in the
system. At low no-show rates, overbooking provides limited benefits and can result in
disproportionately high trucking, while at higher no-show rates, overbooking becomes
increasingly effective at restoring capacity utilization. Trade-off analysis between the different
allocation strategies reveals that maximum order count loading consistently outperforms
alternative allocation strategies, suggesting that better performance can be achieved through
higher order processing. The trade-off analysis uses a framework that enables operators to
evaluate the economic viability of overbooking based on their specific opportunity cost for
accepting an order.

This research contributes to the container on barge literature by extending overbooking theory
from traditional service industries to freight transportation contexts where service substitution
rather than service denial characterizes capacity exceedance. The study provides the framework
for evaluating overbooking strategies in barge container transport, addressing a gap in the
literature on capacity management for barge transportation. Additionally it provides barge
operators a framework to assess the viability of overbooking. While the study contains limitations
related to model assumptions, data availability, and scope, it establishes the principles for
overbooking in barge transport and provides a foundation for future research. Future research
should focus on extending the model to incorporate customer heterogeneity, network effects, and
cost structures, which would enhance the practical applicability of overbooking strategies and
contribute to broader understanding of capacity management under uncertainty in barge
transport.
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