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Abstract 

Barge container transport faces significant capacity management challenges due to no-show 

uncertainty and arrival time deviations, leading to underutilized capacity on barges. This research 

investigates the application of overbooking strategies in barge transportation to address these 

challenges and provides decision support for managing uncertainty in barge operations. A 

discrete-event simulation model was developed using Arena software to evaluate different 

acceptance strategies, allocation methods, and overbooking rates under varying no-show 

conditions. The study reveals that overbooking effectiveness is highly dependent on the allocation 

strategies effectiveness and the no-show rates. With poor allocation strategies the penalties 

incurred from overbooking increases significantly. At lower no-show rates, overbooking provides 

limited benefits with disproportionately high trucking increase, while at higher rates, overbooking 

restores capacity utilization while incurring less trucking. The trade-off analysis establishes a 

framework to find opportunity cost thresholds for accepting additional orders, enabling operators 

to evaluate economic viability based on their competitive position. This research extends 

overbooking theory from traditional service industries to barge transportation and provides a 

framework for capacity management in barge container transport with overbooking, offering 

practical decision support tools for terminal operators to improve profits. 
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1. Introduction 

Intermodal transportation represents a logistics approach where cargo moves through multiple 

modes of transport within standardized containers, enabling transitions between maritime, rail, 

road, and inland waterway networks (Hanssen et al. 2014). This integrated system forms the 

backbone of global supply chains, characterized by complex nodal interactions at transfer points 

such as maritime terminals, inland container depots, and rail hubs (Rozic et al. 2016). The 

efficiency of these transfer points significantly impacts the performance of the entire transportation 

network. Intermodal terminals function as critical capacity-constrained resources where multiple 

transport modes converge, necessitating coordination mechanisms to maximize throughput and 

minimize congestion (Bektas et al. 2007). 

Barge transportation presents complex capacity management challenges due to the distinct 

operational characteristics of inland waterway systems (Behdani et al. 2016). Barge operators 

face problems in level of utilization decreases influenced by no-shows, late shipments, and transit 

times creating substantial uncertainty in planning barges and accepting and assigning shipments 

to barge services (Gumuskaya et al. 2020). Terminals serving barge traffic must therefore develop 

planning strategies that account for these inherent system variabilities while maintaining 

operational efficiency (Notteboom et al. 2021). Traditional static planning approaches fail to 

address the dynamic nature of container arrivals, delays, and no-shows that characterize real-

world barge operations. 

Overbooking strategies in passenger and hospitality sectors address similar no-show risks 

through probabilistic booking limits to improve capacity utilization. Van Ryzin et al. (1999) 

formalized the foundational revenue-management framework that balances expected denial costs 

against marginal booking benefits in transportation, while Subramanian et al. (1999) extended 

this to multiple fare classes and Gupta and Denton (2008) applied overbooking principles to 

healthcare with obligated versus discretionary customers. In freight transport, Feng et al. (2015) 

developed a dynamic programming model for decision support in railway freight overbooking, 

demonstrating improved capacity utilization and revenue compared to first-come-first-served 

methods. Wu (2019) extended this work using a simulation by studying the trade-off of booking in 

extended periods. In container logistics, Wang et al. (2019) examined slot allocation strategies 

for already-accepted orders in container terminals, focusing on how overbooking can optimize 

berth allocation when cancellation and no-show behavior create unused capacity. The 

combination of uncertainty and dynamism in barge terminals creates a complex planning 

environment that requires adaptive decision-making capabilities (Gumuskaya et al. 2020). 

Dynamism emerges from the continuous evolution of these uncertain conditions, where new 

information becomes available throughout the operational horizon. Traditional static models treat 

these factors as fixed parameters, failing to capture the interactive effects between uncertain 

events and dynamic system responses.  

This research addresses the capacity management challenge faced by barge terminals operating 

under uncertainty and dynamism. Barge terminals must make sequential accept/reject decisions 

for incoming container orders without complete knowledge of future demand, while managing 

other sources of unknown information in a dynamic environment. Unlike traditional overbooking 



 

 

contexts where excess demand results in service denial, barge terminals possess a unique 

operational flexibility through truck transport substitution (Behdani et al. 2016), where, when barge 

capacity is exceeded, containers can be shipped via more expensive truck alternatives, ensuring 

continuous service delivery but at higher costs. The sequential nature of booking decisions 

creates a trade-off where operators must balance capacity utilization, order accommodation, and 

trucking usage while serving demand. This context requires decision support tools for determining 

overbooking strategies and explores the trade-offs between unused barge capacity due to no-

shows, increased trucking reliance from capacity exceedance, and rejected orders. This thesis 

will develop a discrete-event simulation to examine the performance of overbooking strategies 

under uncertainty and dynamism. The model will replicate booking arrivals, cancellations, arrival 

time deviations, and container arrival assignments, while incorporating different booking 

strategies to analyze their performance under various conditions.  

The remainder of this thesis is organized as follows. Section 2 reviews the literature on 

overbooking and container on barge. Section 3 details the problem setting. Section 4 defines the 

methodology being used. Section 5 the computational experiments done in the simulation, and 

Section 6 and 7 present the conclusion and discussion. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

2. Literature Review 

In this section, we provide an overview of available literature on overbooking. We first define 

overbooking and review how overbooking has been studied in literature. Then we further review 

the literature on overbooking for container transport. Lastly, we review the literature that 

researches the container on barge problem. 

2.1 Application Cases of Overbooking  

Overbooking is an operational strategy that has been adopted in several industries to mitigate the 

inefficiencies associated with uncertain demand (Gallego et al. 2019). At its core, overbooking is 

based on the idea that not all customers who make a reservation ultimately utilize the service. By 

accepting reservations more than the actual physical capacity, service providers can improve 

overall utilization rates. Van Ryzin et al. (1999) were among the first to develop a formal 

framework for revenue management that includes overbooking decisions on yield management. 

Their approach relies on probabilistic models that estimate no-show and cancellation rates, with 

the fundamental principle being to equate the expected marginal cost of additional bookings 

(calculated by considering the cost of compensating customers who are denied service) with the 

expected marginal benefit of increased occupancy. This cost-benefit analysis framework is 

essential in setting an overbooking limit that maximizes revenue while keeping the risk of service 

disruption at an acceptable level. This thesis builds on their cost-benefit analysis framework and 

applies it to the problem in hand where excess demand triggers service substitution through truck 

transport rather than service denial, creating different trade-off dynamics where customers 

maintain service delivery but at higher operational costs. In comparison, the thesis will also 

examine a third trade-off metric in the analysis which is the rejection of a customer for booking. 

In both airline and healthcare industries, the overbooking process is analyzed by statistical 

analysis and the use of probabilistic models. A consistent finding across the literature is that 

overbooking strategies can succeed based on the costs for compensation of service denial, 

benefit from increased occupancy and the opportunity cost of denying booking; and booking 

beyond overbooking limits can yield diminishing returns due to the increasing probability of service 

denial and the associated penalties. The competitive pressures in such sectors also drive firms 

to adjust their overbooking thresholds based on market conditions. For example, if customer 

loyalty and market share are at risk, firms may choose to increase their overbooking levels, even 

at the expense of some revenue, to maintain long-term competitiveness (Van Ryzin et al., 1999, 

Fard et al. 2019).  

2.2 Container Terminals (Intermodal) and overbooking 

Wang et al. (2019) focus on slot allocation strategies for already-accepted orders in container 

terminals, examining how overbooking can be applied to optimize berth allocation when 

cancellation and no-show behavior create unused capacity. Their work addresses reallocating 

slots among orders that have already been confirmed, developing strategies to maximize 

utilization when some bookings fail to materialize. Our research examines the earlier stage of this 



 

 

process, the initial acceptance decision when orders first arrive at the terminal, before they enter 

the slot allocation phase that Wang et al. address. 

Feng et al. (2015) produced the only research conducted in this phase and developed a dynamic 

model for railway freight overbooking to improve revenue in the Chinese railway freight industry. 

The authors formulated a Markov decision process (MDP) model with an overbooking limit level 

as the control policy. Their model considers a train with capacity C and an overbooking pad D 

that represents the maximum bookings allowed for different classes. The reservation process is 

divided into multiple decision periods, with customers able to cancel bookings before departure 

or become no-shows. Their approach establishes the foundation for overbooking decisions on 

freight transport by demonstrating how acceptance and rejection decisions can be evaluated 

through a sequential decision-making process. They compare their MDP approach to the existing 

first come first serve (FCFS) methods without overbooking used in the industry to verify the 

effectiveness of overbooking decision processes, showing that overbooking policies improve 

capacity utilization and revenue. However, their dynamic programming approach requires six 

nested loops making it computationally burdensome for real-world problems, even when 

considering the acceptance and rejection decisions of a single train with no deviations, immediate 

order arrivals, and a single stage reservation. The authors acknowledge that expanding their 

model to include multiple reservation stages would significantly increase the complexity of data 

collection, analysis, and parameter estimation, limiting practical applicability (Feng et al., 2015). 

The thesis of Wu (2019) builds on Feng's work by using simulation to address overbooking in 

inland freight transport systems when dealing with increased system complexity. Unlike Feng's 

single-day approach, Wu considers multiple stages of barge departures to observe general 

system performance over extended periods to analyze overbooking strategies, allowing analysis 

of how booking decisions accumulate and interact across multiple departure cycles. Her approach 

uses simulation to handle multiple stochastic variables including possible deviations, and to 

capture long-term system dynamicity that emerges from repeated interactions between booking 

decisions and uncertain realizations (Wu 2019). Wu's approach maintains Feng's structure where 

once an order is accepted it becomes immediately available in the system without estimated 

arrival times, and the due dates of the order are set to the next available barge in the period. Her 

research also establishes that overbooking can increase utilization and profit for barges, though 

resulting in higher usage of trucks. However, a shortcoming of her study is that she uses a FCFS 

approach as orders that arrive in the system are immediately available and their due date is to 

the next available barge. Our methodology follows Wu's simulation approach but extends her 

operational framework by incorporating temporal uncertainty through estimated arrival times that 

may deviate from schedules, and orders are not directly available in the system. Additionally, we 

introduce varying order sizes rather than using single TEU per order and implement stochastic 

due date assignments rather than orders being automatically due for the next available barge.  

 

 

 



 

 

2.3 Container on Barge 

Studies that have employed planning in real-time such as van Riessen et al. (2016), and Mes and 

Iacob (2016) disregard the possibility of no-shows or delays happening in a stochastic manner. 

Van Riessen et al. (2016) developed decision trees for instantaneous allocation of incoming 

orders to suitable services without the need for continuous planning updates, creating a decision 

support system that is implementable in current container transportation practice. The authors 

specifically note that earlier proposed centralized methods can find optimal solutions for 

intermodal inland transportation problems in retrospect but are not suitable when information 

becomes gradually available. Their approach addresses the gradual information availability 

problem by creating decision rules for immediate allocation decisions, but assumes all incoming 

orders are accepted and focuses on service allocation rather than acceptance decisions. This 

study similarly addresses gradual information availability but focuses on the acceptance decision 

rather than allocation decision, incorporating no-show and cancellation uncertainties that van 

Riessen et al. do not consider. We make allocation less constraining to improve utilization as an 

order allocated to a certain barge slot can change its allocated barge based on feasibility. Rivera 

and Mes (2017) use probabilistic knowledge about future freights in their multi-period optimization 

approach, but their method also optimizes orders that are already known in the system. Their 

approach operates under the binding constraint that all orders arriving to the system must be 

served, focusing on freight selection and routing decisions rather than initial acceptance 

decisions. While they address uncertainty in freight availability, they do not consider no-show 

behavior or cancellation uncertainty from already-accepted orders. Both dynamic and 

deterministic studies operate under the binding constraint that all orders arriving to the system 

must be served. 

Gumuskaya et al. (2020) developed a 2-stage stochastic MIP for dynamic barge planning 

addressing uncertainty in container arrival times and possible deviations. Their work focuses on 

uncertainty and dynamism that leads to limited information availability during planning. They 

employ arrival time deviation distributions to model the uncertainty between estimated and actual 

container arrival times, which reflects real-world operational challenges in barge planning. The 

simulation methodology used in this thesis also employs the same arrival time distributions 

employed in their study. Their method evaluates long-term performance over one year by solving 

the stochastic program at the end of each week for optimal allocation decisions, then simulating 

the orders in the upcoming week to demonstrate the dynamism of actual operational conditions. 

Their results show that uncertainty has an impact of up to 53% and dynamism up to 20% on total 

costs, highlighting the significant role of uncertain conditions in barge operations. 

As we discussed in sections 2.1, and 2.2, existing overbooking literature has primarily focused on 

service industries with capacity constraints that result in service denial. Wu (2019) addressed that 

in intermodal terminals, service substitution is possible rather than service denial with a change 

of mode in transport. The performance of overbooking strategies in logistics environments with 

service substitution capabilities represents still an underexplored area of academic inquiry. 

Container terminals can maintain continuous service delivery even when barge capacity is 

exceeded by redirecting containers to truck transport (Behdani et al. 2016). Literature consistently 

incorporates trucking as a penalty cost in optimization models for slot allocation, as trucking costs 



 

 

are relatively higher than operating costs of a barge (Fazi et al. 2015, Behdani et al. 2016, Zweers 

et al. 2019, Gumuskaya et al. 2020). This study leverages this service substitution capability to 

examine how acceptance decision timing affects the trade-off between barge utilization and 

trucking. 

This operational flexibility creates distinct planning dynamics compared to traditional service 

industries. When terminals reach capacity limits, operators can accommodate excess demand by 

loading containers onto trucks, ensuring uninterrupted service delivery to customers. This 

capability alters the planning problem under uncertainty, as the penalty for exceeding barge 

capacity is not service denial but rather increased operational costs through trucking penalties. 

Unlike traditional overbooking scenarios where capacity exceedance results in customer denial, 

this operational flexibility enables exploration of overbooking decisions that balance capacity 

utilization with penalty cost management. 

2.4 Literature Summary 

Service industries have established cost-benefit analysis as the foundation for overbooking 

decisions, balancing expected denial costs against marginal booking benefits (Van Ryzin et al. 

1999). Customer heterogeneity significantly affects overbooking effectiveness, whether through 

fare class differentiation (Subramanian et al. 1999), contractual versus spot market customers 

(Levin et al. 2012) or obligated versus discretionary service requirements (Gupta and Denton 

2008). These studies demonstrate that optimal overbooking levels exist, with diminishing returns 

beyond certain thresholds due to increasing denial costs. 

The problem studied in this thesis is most similar to Feng et al. (2015) and Wu’s (2019) studies, 

which address freight overbooking through sequential acceptance and rejection decisions under 

no-show uncertainty. Feng et al. established the foundation using MDP formulation for railway 

operations, developing a model for acceptance and rejection decision processes to determine 

optimal overbooking levels and demonstrating that overbooking policies improve capacity 

utilization and revenue. However, their approach focuses on single-day operations with immediate 

order arrivals and single-stage reservations. Wu (2019) extended this by using simulation to 

address increased system complexity, considering multiple barge departure stages and capturing 

long-term system dynamicity through repeated interactions between booking decisions and 

uncertain realizations. Unlike Feng's MDP approach, the developed simulation aims to capture 

the dynamicity of the system over time as booking decisions accumulate across multiple 

departure cycles, which would be computationally too burdensome to model in an MDP. This 

thesis builds on Wu's simulation approach but incorporates temporal uncertainty through 

estimated arrival times that may deviate from schedules, varying order sizes rather than single 

TEU per order, and stochastic due date assignments similar to the Gumuskaya et al. (2020) study 

rather than orders being automatically due for the next available barge. It also touches on one of 

the future research recommendations Wu (2019) has for the simulation methodology by enabling 

splitting an orders’ containers into different transport modes. 

Container-on-barge research fails to address no-show uncertainty and operates under the 

assumption that all incoming orders are automatically accepted. This constraint prevents 



 

 

investigation of overbooking strategies despite barge terminals possessing unique operational 

characteristics that make overbooking particularly viable. As mentioned in the literature review, in 

traditional service industries overbooking leads to service denial, but barge terminals can maintain 

continuous service delivery through truck transport substitution. Literature acknowledges trucking 

as a penalty cost mechanism as a trade-off for directing service with trucking instead of barges 

(Fazi et al. 2015, Behdani et al. 2016, Zweers et al. 2019, Gumuskaya et al. 2020), creating 

different trade-off dynamics between capacity utilization and operational costs rather than service 

denial scenarios. 

Building on the problem foundations established by Wu (2019) and Feng et al. (2015) and 

incorporating the arrival time deviation uncertainty studied by Gumuskaya et al. (2020), this thesis 

examines how overbooking strategies can be studied in barge terminals given their unique service 

substitution capabilities. The research investigates the main features and trade-offs of 

overbooking strategies in barge transport, develops a discrete event simulation to capture system 

dynamicity with random orders and varying due dates, and analyzes how overbooking affects 

terminal performance under no-show, cancellation, and arrival time deviation uncertainty.  

The table compares the most relevant studies in terms of their approach to uncertainty modeling, 

order processing assumptions, analytical scope, decision-making capabilities, and 

methodological frameworks. The comparison shows how each study addresses uncertainty 

factors, whether orders become immediately available in the system or have estimated arrival 

times, the time horizon of their analysis, whether they incorporate acceptance/rejection decisions, 

and their chosen modeling approach. 

Study Uncertainty 
Factor 

Order 
Availability 

Once in System 

Analysis 
Period 

Accept/ 
Reject 

Decision 

Modeling 
Approach 

Feng et al. 
(2015) 

No-show 
probabilities 

Immediate 
availability 

Single day     MDP 

Wu (2019) No-show 
probabilities, 
Arrival time 
deviations 

Immediate 
availability 

Multiple 
periods 

    Simulation 

Gumuskaya 
et al. (2020) 

Arrival time 
deviations 

Estimated arrival 
times 

Multiple 
periods 

   Stochastic MIP 
+ Simulation 

This study No-show 
probabilities, 
arrival time 
deviations 

Estimated arrival 
times 

Multiple 
Periods 

    Simulation  

Table 2.4: Comparison of similar studies 



 

 

 

2.5 Research Questions 

Based on the literature review and identified research gaps, this research examines overbooking 

strategies in barge terminals with the following research questions 

Main Research Question  

How to develop a decision support system that supports understanding overbooking strategies 

and the management of no-shows and delays in an inland container transport system? 

Sub-Research Questions  

SRQ1: What are the main features of a booking system to manage orders and its dynamics in a 

barge transport system? What are the main trade-offs? 

SRQ2: What methodology can better capture the dynamicity of the system with stochastic 

parameters? 

SRQ3: Do overbooking strategies affect barge terminal performance under no/show, cancellation 

and arrival time deviation uncertainty? 

 

 

 

 

 

 

 

 



 

 

3. Problem Setting 

3.1 Problem Description  

The problem considers an inland barge terminal in the Netherlands that operates 24/7 under 

conditions of inherent uncertainty. Container orders arrive continuously throughout real-time, 

each carrying specific requirements for pickup timing, delivery deadlines, and capacity needs. 

The system must process these orders sequentially, making acceptance and scheduling 

decisions without complete information about future order arrivals or the ultimate realization of 

orders that have already been accepted. This creates a dynamic environment where each 

decision influences the system's capacity to accommodate subsequent orders. 

When a container order arrives at the system, the operator faces a binary accept or reject decision 

based on current capacity. This decision must be made with incomplete information, as the 

operator cannot know with certainty when future orders will arrive, whether accepted orders will 

materialize, or if orders will arrive at their estimated times. Accepted orders enter the system with 

estimated arrival times and due date requirements, and different TEU sizes. Upon order arrival, 

the system evaluates available capacity against existing booking commitments. Orders that pass 

the initial capacity assessment are accepted and assigned to departure schedules based on their 

due date requirements. 

The barge departures operate on a fixed schedule with predetermined departure times throughout 

each operational day. Barges have limited capacity and depart according to this schedule 

regardless of their loading level. When a barge approaches its departure time, all orders that have 

physically arrived at the terminal are available for loading. The system must decide which 

containers to load onto the departing barge within its capacity constraints. Containers not selected 

for barge transport with due date constraints are forced to be shipped by truck, and it is possible 

to split an order with more than 1 TEU between a barge and a truck if needed. The barge departs 

according to its fixed schedule once loading decisions are made.  

Orders that have been accepted into the system progress through multiple stages where 

uncertainties resolve in a specific sequence. As each order approaches its estimated arrival time, 

the system first learns whether the actual arrival will deviate from the original estimate, revealing 

any timing adjustments that must be incorporated into capacity planning. These arrival time 

deviations may require schedule modifications and capacity reallocation across different 

departure windows. Once the system reaches the order's actual arrival time, it then discovers 

whether the order will materialize or become a no-show, resolving the demand realization 

uncertainty that has been carried since acceptance. Orders that successfully materialize and 

arrive at the terminal enter the holding queue and become available for loading decisions to the 

barge. If an order cannot be loaded into the barge before its due date, due to the barge being 

over capacitated, then it is forced to be trucked so that the order can be served before its deadline. 

 



 

 

 

Figure 3.1: Flowchart describing the process for all orders 

 

 



 

 

3.2 Performance Measurement 

Different metrics are used to evaluate systems operational efficiency. The 3 metrics discussed 

here are identified from the literature of overbooking strategies and container on barge problems. 

Barge capacity utilization measures the percentage of available barge capacity that is used during 

each departure throughout the operational period, calculated as the ratio of loaded containers to 

total barge capacity. Order rejection rate tracks the proportion of incoming orders that cannot be 

accommodated within the system's capacity constraints and are therefore declined. Trucked 

containers measure the number of containers that are shipped via truck rather than barge. 

 

Metric Formula Unit 

Barge Capacity 
Utilization per 
period 

(Total Loaded TEU to barge / 
Total Available Barge Capacity) 
× 100 

% 

Order Rejection 
Rate 

(Rejected Orders / Total Orders) 
× 100 

% 

Trucked 
Containers 

Total TEU transported by Truck TEU 

Table 3.2: Performance Metrics 

3.3 Model Assumptions 

The model development requires several assumptions that simplify the complexity of barge 

container transport and terminal operations while preserving the dynamics necessary for 

meaningful analysis. Operational assumptions establish the basic framework within which the 

system operates, including the presumption that barges operate according to predetermined 

schedules with consistent and reliable departure times (Gumuskaya et al. 2020, Fazi et al. 2015, 

Zweers et al. 2019, Wu 2019). Another operational assumption involves the immediate availability 

of truck transport alternatives when barge capacity is exceeded (Behdani et al. 2016, Wu 2019, 

Gumuskaya et al. 2020). This assumption is used in different models in literature based on that 

truck transport typically offers greater flexibility and availability than barge services, allowing 

operators to maintain service commitments even when barge capacity is fully utilized.  

The model also assumes that all accepted orders that arrive must ultimately be served before its 

due date, either through barge transport or truck alternatives, reflecting the service commitment 

inherent in accepting customer orders.  All container units are treated as homogeneous revenue 

generators regardless of their characteristics. For the homogenous revenue assumption, we 



 

 

additionally assume customers that place orders intend their container to be transported by barge 

and generate revenue accordingly. The last cost assumption is that the revenue of an order is 

lost if the order is a no/show or cancellation. Physical loading constraints are simplified to pure 

capacity limits, ignoring stowage requirements, and finally when the due date of orders deviates, 

orders are assigned a new due date so that an order never arrives at the terminal after its due 

date which would force trucking. The final destinations of orders are not considered, so any set 

of available orders that fit the barge capacity can be loaded into the barge. Finally, the information 

of a no-show happening to an order is revealed at the time of the ETA to the operator.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

4. Methodology 

This section presents the detailed design and implementation of the discrete-event simulation 

model developed to analyze overbooking in barge container transport. The model translates the 

problem setting from Section 3 into a functioning simulation using Arena software, incorporating 

the modules used in Arena, decision logic, and parameters identified in the problem setting. This 

section will also explore parts of SRQ 1 and 2 defined in section 2.5, identifying the main features 

to consider for booking systems in barge terminals, explaining the main trade-offs caused by 

employing different strategies, and how a discrete event simulation can capture the dynamicity of 

the system. 

4.1 Simulation Design 

This study examines how overbooking strategies can be applied in barge container transport 

systems to address no-show and arrival time uncertainty while managing the trade-offs between 

capacity utilization, order rejection, and truck substitution costs. Discrete event simulation (DES) 

allows the study of and experimentation with complex systems, helps in gaining knowledge that 

could lead to system improvement, and enables evaluation of different circumstances by changing 

inputs and observing resultant outputs (Sharma, 2015). According to literature studies on DES, 

benefits of analysis through simulation include obtaining better understanding of systems through 

detailed observation over long periods, studying effects of policy changes, experimenting with 

new situations about which only weak information is available, and identifying driving variables 

that performance measures are most sensitive to (Maria, 1997). Additionally, discrete event 

simulation is suitable for exploring and comparing strategies in complex systems under inherent 

uncertainty (Neagoe, 2021). For these reasons, discrete event simulation is employed in this 

study to evaluate different overbooking strategies under no-show and arrival time deviation 

uncertainty. Analytical or mathematical models were not chosen given the high dynamicity and 

the interplay between too many different random variables which would have made the model too 

complex. 

The model evaluates system performance across varying overbooking rates, no-show rates, and 

different allocation and order acceptance strategies. Using a simulation to model enables 

exploration of these interactions over extended periods. The simulation tracks orders from 

booking requests through acceptance decisions, arrival time realizations, no-show 

determinations, and final allocations to barge or truck transport. The structure of the simulation 

and the employed rules to evaluate will be further explained in section 4.2. 

4.1.1 Arena Software  

Arena is used as a simulation and modeling platform that allows users to build detailed simulation 

models, run experimental scenarios, and produce analysis reports. The software has become 

widely adopted in supply chain and logistics sectors because of its ability to model complex 

operational systems and assess different strategic and tactical decisions (Rockwell, 2019). 

Arena's discrete-event simulation environment provides the flexibility to represent sequential 



 

 

decision-making processes, stochastic system behaviors, and dynamic scenarios that 

characterize real-world logistics operations. The software's modular approach for decisions and 

processes allows for the construction of models that can capture the temporal dependencies with 

clearly defined strategies, making it suitable for analyzing problems under uncertainty. 

4.1.2 Arena Modules 

Different Arena modules that are used in the building of the model will be explained in this section 

to ensure the reader can understand the technical background of the simulation, if they wish to 

create a similar model in the future with the same software. The create module generates order 

arrivals by producing entities at specified intervals and quantities. Upon creation, orders are 

processed through assign modules that establish order attributes including estimated time of 

arrival, due date, and TEU amount. The Assign modules also perform calculations throughout the 

simulation for updating capacity and maintaining accurate tracking of container counts. The 

booking acceptance logic is implemented through Decide modules that function as conditional 

statements within the simulation flow. The Decide modules operate like an if statement in 

traditional programing and are also used to handle schedule adjustment logic and barge capacity 

assessment when an order needs to be shipped. The hold modules are used to represent the 

temporal aspects of order processing by holding entities inactive until the conditions to process 

them are met. The Search and Remove module is used to select orders by searching orders in 

the simulation that meet specific criteria and removing them to redirect them for a different 

process. This module enables the selection of orders that we intend to process. The clone module 

is used to split orders into container level for order allocation, and finally the batch module is used 

to represent a barge where container level entities are stored until barge departure.  

 

 

 

 

 

 

 

 

 



 

 

4.2 Conceptual Model 

The simulation models the decision-making process that barge operators face when managing 

container bookings. The operator makes two distinct types of decisions: first, whether to accept 

or reject incoming orders, and second, how to allocate arrived containers to available transport 

capacity when barges prepare for departure. Figure 4.2 shows the IDEF0 diagram of the 

conceptual model. 

 

Table 4.2: IDEF0 Diagram of the conceptual model 

4.2.1 Order Acceptance Phase 

Orders arrive at random intervals throughout the simulation period with varying characteristics. 

Each order has three attributes known to the operator at the time of the acceptance decision: 

estimated time of arrival (ETA), due date, and TEU size.  

These attributes are assigned to each order using probability distributions in the simulation. The 

operator must make the acceptance decision based on the information from these attributes plus 

the current state of the occupancy of barge slots. When making acceptance decisions, operators 

can employ different strategic approaches ranging from conservative to aggressive booking and 

increased overbooking rates. Conservative strategies accept orders only when ample capacity 

exists, minimizing the risk of future capacity conflicts. Aggressive strategies accept more orders 



 

 

despite potential future complications, aiming to maximize capacity utilization and order 

acceptance at the cost of increased trucking possibility. 

Two specific dimensions are tested in the acceptance phase. The first dimension involves 

overbooking limits: Operators can set capacity limits for departure slots either at more 

conservative levels or at higher levels compared to the barge capacity (or at none if the operator 

does not intend to overbook any slots). Higher overbooking limits allow acceptance of more 

orders, providing protection against no-shows but creating risk of capacity exceedance. Lower 

overbooking limits protects the operator from more trucking usage but risks having less barge 

utilization and rejects more orders. The second strategic dimension involves flexibility in slot 

assignment when accepting orders. The conservative acceptance strategy is more selective, 

initially allocating each order only to its originally requested departure slot, as determined by the 

order’s due date. For example, if a customer requests a shipment on Tuesday’s first barge, the 

order is either accepted into that barge slot (if capacity is available) or rejected outright. Even if 

an earlier Monday slot has unused space and the order would arrive in time, it is not considered. 

By contrast, the aggressive acceptance strategy is less selective, allowing orders to be 

reassigned into earlier departure slots with available capacity, provided that the order’s estimated 

arrival time makes such an allocation feasible. For example, a customer requesting Tuesday’s 

departure could instead be initially accepted into Monday’s departure if the shipment is expected 

to arrive at the terminal before Monday. This broader acceptance rule enables the operator to 

smooth out imbalances in slot demand, fill underutilized departures, and ultimately accept a larger 

volume of orders overall. The tradeoff is that it introduces exposure to uncertainty: if the order is 

subject to deviation, it may have to be shifted back into its original Tuesday slot, which could now 

be filled by other orders. Such reassignments create risks of capacity exceedance or additional 

trucking. 

When an order is accepted, the operator commits capacity from the appropriate departure slot 

based on the order's TEU size. This slot assignment is not final, as orders can be reassigned to 

different departure slots during later phases to improve capacity utilization or accommodate arrival 

deviations. 

4.2.2 Travel and Information Revelation Phase 

After acceptance, orders begin traveling to the terminal. During this phase, additional information 

about each order is revealed that may require adjustment of the original capacity assignments. 

First, arrival time deviations are assigned using the probability distributions studied from the 

Gumuskaya et al. (2020) study. These deviations represent the difference between estimated and 

actual arrival times, creating scheduling uncertainty that can disrupt planned capacity allocation. 

When arrival time deviations occur, the operator may be forced to reassign orders to different 

departure slots to maintain feasibility. If an order's new arrival time makes its original departure 

slot infeasible to accomodate, the order is moved to the earliest feasible slot. In cases when there 

are no feasible slots available, the reassignment may force orders into slots that are already at 

capacity, creating capacity exceedance in the departure slot. 



 

 

The final piece of information revealed is whether the order materializes or becomes a no-show. 

The no-show rate is a predefined parameter in the system that determines the percentage of an 

accepted order materializing. When orders become no-shows, their allocated capacity is freed up 

in the assigned departure slots, potentially creating unused capacity if no other orders can utilize 

the released space. 

 

Information About Order Description When Revealed 

TEU Size Number of containers in the order At booking request 

Estimated Time of Arrival 
(ETA) 

Projected arrival time at terminal At booking request 

Due Date Deadline for order departure At booking request 

Arrival Time Deviation Difference between estimated and 
actual arrival 

During order travel 
phase 

No-show Status Whether order materializes or cancels At scheduled arrival 
time 

Table 4.2: Information About Orders Revelation Throughout the Simulation 

 

4.2.3 Container Allocation Phase 

When orders successfully arrive at the terminal, they enter the allocation phase where operators 

must assign arrived containers to specific transport modes. The simulation maintains the 

constraint from section 3.3 that all arrived orders must depart before their due dates, either by 

barge or truck transport. Every time a barge is set for departure, urgent orders are prioritized first 

by the simulation. An urgent order is classified as an order which, if it does not depart with the 

next available barge, will miss its due date. Since these orders will be trucked if not loaded on the 

barge, they are allocated to the barge first. If the amount of TEU that are urgent exceeds the 

capacity of the barge due to extensive booking or deviations, then the excess TEU above barge 

capacity are forced into trucking. 



 

 

If the barge capacity does not fill up when all urgent orders are loaded, the operator needs to 

employ a strategy to fill up the unutilized spots on the barge. The operator can employ different 

allocation strategies for non-urgent orders. The simplest form of allocation strategy is first-come-

first-served, which allocates orders based on their arrival sequence at the terminal. The other 

possible strategies that can be implemented by the operator include loading orders that are 

closest to their due date but not urgent, loading the smallest orders first to maximize the number 

of orders loaded in the barge, and loading the largest orders first to get rid of high TEU orders 

initially. All allocation strategies are compared to assess their performance using the performance 

metrics identified in section 3.2 to determine how these different strategies operate under different 

uncertainty conditions and overbooking strategies. 

 

4.3 Model Validation and Verification 

Due to the limited resources available in this study, model verification using real-world data 

comparison was not feasible. For the verification of the model, the model was built step by step, 

and each segment of the model was tested after construction with the supervisors. Additionally, 

single orders are created and tracked through the entire model to test the operation of the 

simulation. All testing of the different stages is performed under the same set of conditions. The 

model's face validity is established through supervisors’ review and comparison with container on 

barge problems described in the literature. It is important to acknowledge that this validation 

occurs within the assumptions of the defined problem setting. The effectiveness of different 

strategies that are tested in the model is contingent upon these problem characteristics, and 

alternative decision-making approaches may prove more effective under different operational 

contexts or problem configurations. This represents a limitation of the study, as strategy 

effectiveness cannot be generalized beyond the scope of the modeled system without further 

validation under different problem settings, however the approaches used in this study serve as 

a baseline and can be tested or changed on specific problem-settings that can be constructed in 

other studies. Two extreme cases are tested to further validate the model. Additional validation of 

system behavior can be observed on Section 5 as well during the sensitivity analysis. 

Validation Test 1: Perfect information 

To validate the model's capacity tracking and order acceptance logic, the system was tested 

under perfect information conditions with 0% no-shows, no arrival time deviations, and no 

overbooking. Under these conditions, barge departure slots can never be over capacitated, and 

all excess demand should result in order rejections rather than truck transport. The test was 

conducted for both acceptance strategies using the first-come-first-served allocation strategy to 

verify their operational logic and provide baseline comparison. As we discussed in the previous 

section, the conservative acceptance strategy allocates orders only to their requested departure 

slots based on due dates, while the aggressive acceptance strategy allows orders to be allocated 

to earlier departure slots with available capacity when their original slots are full. 



 

 

Acceptance Strategy Barge Utilization Order Rejection 

Rate 

TEU 

Trucked 

Conservative 
Acceptance 

91.87% 27.92% 0 

Aggressive Acceptance 95.96% 23.75% 0 

Table 4.3.1: Perfect Information Baseline Validation Results 

The results validate the model behavior under perfect information conditions. Both strategies 

achieve zero trucking, verifying that the capacity tracking system prevents over capacitation when 

no uncertainty exists. The performance difference between strategies shows that when orders 

can be allocated to earlier available slots, the system achieves better capacity utilization (95.96% 

vs 91.87%) and lower rejection rates (23.75% vs 27.92%) demonstrating that allocating orders to 

empty slots with earlier due dates improves both utilization and order accommodation without 

more trucking penalties when no operational uncertainties interfere with the allocation process. 

Validation Test 2: Reduced Capacity  

To validate that the model responds correctly to capacity constraints, the system was tested by 

reducing barge capacity to 10 TEU per departure while maintaining perfect information conditions 

(0% no-shows, no arrival time deviations, no overbooking). This test confirms that the model's 

acceptance logic correctly adjusts to different capacity levels and that performance metrics 

respond proportionally to capacity changes. 

The test was conducted using both acceptance strategies with first-come-first-served allocation 

to isolate the impact of capacity reduction on system performance. 

Acceptance Strategy Barge Utilization Order Rejection 

Rate 

TEU 

Trucked 

Conservative 
Acceptance 

99.55% 67.31% 0 

Aggressive Acceptance 99.72% 66.86% 0 

Table 4.3.2: Perfect Information Low-Capacity Barge Validation Results 

Both strategies achieve zero trucking as expected under perfect information, showing that 

capacity tracking prevents over capacitation regardless of capacity levels. The substantially 

higher rejection rates demonstrate that the model correctly responds to reduced capacity by 



 

 

rejecting more orders. We can also observe that utilization and the rejection rate are much closer 

for both strategies as it is very likely to fill up all the departure slots with the incoming orders.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

5. Computational Experiments 

5.0 Numerical Section 

This section presents the parameters used in the discrete-event simulation model that were 

previously explained in the problem setting but were not numericized. These parameters are 

derived from established literature, industry data sets, and assumptions from previous container 

on barge studies. We use a barge capacity of 28 TEU for this study to the Fazi et al. (study). The 

capacity that can be accommodated is set at 27 TEU per vessel, based on an industry dataset 

that indicates that these 28 TEU capacity barges typically can carry a maximum of 27 TEU of 

containers due to stowage constraints, thus a 27 TEU capacity is also applied in this study. The 

daily departure schedule consists of 2 scheduled departures, consistent with the acquired dataset 

on the operations of 28 TEU barges and reflecting typical barge schedules in the Netherlands. 

Truck transport is assumed to have unlimited capacity and instant availability due to it being much 

more flexible than a barge (Gumuskaya et al. 2020, Behdani et al. 2016, F. Nab 2018 ). The 

availability can be seen in the Fazi et al. (2015) study as they set the travel time for trucks to 4.5 

hours, while the travel time by barge is 22 hours on the same leg. Finally, the arrival time deviation 

is fixed to the distribution DISC(0.4, 0, 0.7, 1, 0.9, 2, 1.0, 3) days based on the Gumuskaya et al. 

(2020) study. 

 

5.1 Results Compared to other strategies 

To evaluate the effectiveness of different operational strategies, this study implements a 

comparative analysis that tests multiple strategy combinations under identical simulation 

conditions. This approach compares to the study of Feng et al. (2015) where they compare their 

developed MDP results to a FCFS strategy. The comparative analysis examines different 

strategies through the two primary decision components discussed in the methodology: order 

acceptance strategies and order allocation strategies. The acceptance component comparison 

evaluates the aggressive acceptance strategy against the conservative acceptance strategy. The 

allocation component comparison evaluates the maximum order count loading strategy, FCFS 

loading, largest order first loading, and earliest due date loading strategies to assess the impact 

of different capacity utilization approaches. Each strategy combination operates under identical 

system conditions including the same no-show probability, arrival time deviations, and 

overbooking rate configurations. Performance comparison focuses on the established metrics to 

assess how different strategies impact operational outcomes. 

 

 

 

 



 

 

5.1.1 0 no-show uncertainty and no overbooking 

The following table presents the first experimental scenarios tested. All experiments utilize 

identical parameters: 0% no-show rate, 0% overbooking, DISC(0.4,0,0.7,1,0.9,2,1.0,3) arrival 

time deviations. 

Experiment Acceptance Strategy Loading Strategy 

Test 1 Aggressive Acceptance Maximum Order Count Loading 

Test 2 Aggressive Acceptance FCFS Loading 

Test 3 Aggressive Acceptance Largest Orders First Loading 

Test 4 Aggressive Acceptance Earliest Due Date Orders Loading 

Test 5 Conservative Acceptance Maximum Order Count Loading 

Test 6 Conservative Acceptance FCFS loading 

Test 7 Conservative Acceptance Largest Order First Loading 

Test 8 Conservative Acceptance Earliest Due Date Orders Loading 
 

Table 5.1.1.1: Table of experiments to compare the performance of different strategies 

The table below provides the results of the different experiments under the given parameter 

specifications 

 

Experiment Acceptance 

Strategy 

Loading 

Strategy 

Barge 

Utilization (%) 

Avg. TEU 

Trucked 

Order Rejection 

Rate (%) 

Test 1 Aggressive 
Acceptance 

Maximum 
Order Count 
Loading 

93.24 382.00 25.92 



 

 

Test 2 Aggressive 
Acceptance 

FCFS Loading 90.12 632.25 26.12 

Test 3 Aggressive 
Acceptance 

Largest Order 
Loading 

88.01 742.45 27.40 

Test 4 Aggressive 
Acceptance 

Earliest Due 
Date Loading 

91.36 534.20 26.07 

Test 5 Conservative 
Acceptance 

Maximum 
Order Count 
Loading 

88.73 273.75 30.25 

Test 6 Conservative 
Acceptance 

FCFS Loading 87.16 404.10 30.88 

Test 7 Conservative 
Acceptance 

Largest Order 
Loading 

86.07 424.15 30.87 

Test 8 Conservative 
Acceptance 

Earliest Due 
Date Loading 

87.85 288.75 30.36 

Table 5.1.1.2: Results Table of Experiments to Compare the Performance of Different Strategies 

 

Out of the aggressive acceptance strategies, the maximum order count loading performs the best 

with the highest barge utilization (93.24%), the least TEU trucked (382.00), and the lowest order 

rejection rate (25.92%). As expected, compared to the conservative acceptance strategy, the 

aggressive acceptance strategy performs much better on barge utilization and order rejection rate 

metrics than the conservative acceptance strategy but performs worse on trucking usage. 

Between the loading strategies tested, the maximum order count loading performs much better 

on trucking and utilization than other loading strategies on both aggressive and conservative 

acceptance. This could possibly mean that having fewer orders in the queue of orders waiting for 

allocation to the barge creates more flexibility for future allocation of orders. An interesting remark 

comes from the comparison between the FCFS loading and the largest order loading on both 

conservative and aggressive acceptance strategies. We can observe that the FCFS loading 

performs better in both trucking and utilization than the largest orders first loading. On aggressive 

acceptance, FCFS (Test 2) achieves 90.12% utilization with 632.25 TEU trucked while largest 

order first (Test 3) achieves only 88.01% utilization with 742.45 TEU trucked. Similarly, on 

conservative acceptance, FCFS (Test 6) achieves 87.16% utilization with 404.10 TEU trucked 

while largest order first (Test 7) achieves 86.07% utilization with 424.15 TEU trucked. This is in 

line with the simulation performing much better when we use maximum order count loading for 

allocation, as it can be observed that trying to allocate the larger orders first creates complications 



 

 

for further allocation while allocating smaller orders first to decrease the number of orders in the 

queue creates flexibility. The earliest due date loading performs at closer levels to the maximum 

order count loading when the conservative acceptance strategy is applied. Under conservative 

acceptance, earliest due date loading (Test 8) achieves 87.85% utilization with only 288.75 TEU 

trucked compared to maximum order count (Test 5) with 88.73% utilization and 273.75 TEU 

trucked, performing similarly in trucking and slightly worse on utilization. However, under 

aggressive acceptance strategy, maximum order count loading performs much better, with Test 

1 achieving 93.24% utilization and 382 TEU trucked compared to earliest due date loading (Test 

4) with 91.36% utilization and 534.20 TEU trucked. The differences in performance between 

loading strategies are much more pronounced under aggressive acceptance compared to 

conservative acceptance, as aggressive acceptance amplifies the impact of loading strategy 

choices and increases the importance of loading decisions. Under conservative acceptance, the 

loading strategies perform closer to each other. 

 

Figures 5.1.1.1-2-3: Barge Strategy Performance Analysis Graph 

 



 

 

 Figure 5.1.1.4: Color Schemes of performance graphs 

 

       

5.1.2 10% no-show uncertainty and 10% overbooking 

Since this study aims to investigate overbooking strategies to manage no-shows and delays, we 

conduct another comparison test under an intuitive 10% no-show uncertainty and 10% 

overbooking scenario. This configuration represents a more realistic hypothetical scenario where 

terminals face moderate no-show levels and employ corresponding overbooking strategies to 

maintain capacity utilization. 

 

Experiment Acceptance 

Strategy 

Loading 

Strategy 

Barge 

Utilization (%) 

Avg. TEU 

Trucked 

Order 

Rejection 

Rate (%) 

Test 1 Aggressive 
Acceptance 

Maximum 
Order Count 
Loading 

91.11 485.35 19.06 

Test 2 Aggressive 
Acceptance 

FCFS Loading 88.83 680.50 19.62 



 

 

Test 3 Aggressive 
Acceptance 

Largest Order 
Loading 

86.99 813.00 20.93 

Test 4 Aggressive 
Acceptance 

Earliest Due 
Date Loading 

89.75 598.20 20.35 

Test 5 Conservative 
Acceptance 

Maximum 
Order Count 
Loading 

87.04 228.10 25.26 

Test 6 Conservative 
Acceptance 

FCFS Loading 85.53 378.60 25.17 

Test 7 Conservative 
Acceptance 

Largest Order 
Loading 

84.73 408.90 25.41 

Test 8 Conservative 
Acceptance 

Earliest Due 
Date Loading 

86.15 247.75 25.55 

 

Table 5.1.2.1: Results Table of experiments to compare the performance of the strategies with no-show and overbooking 

Introduction of 10% no-show uncertainty and 10% overbooking shows that aggressive 

acceptance continues to achieve higher barge utilization and lower order rejection rates across 

all loading strategies, though the more aggressive acceptance strategy results in increased 

average trucked TEU as more orders are processed through the system. When overbooking and 

no-shows are part of the system, we observe that the penalties for trucking increase in aggressive 

acceptance even when utilization is dropping compared to the 0% no-show scenario.  

We see similar trends regarding the performance of different order loading methods as maximum 

order count loading performs the best and largest order loading performs the worst again. This 

reinforces the finding that prioritizing larger orders first creates allocation complications that 

persist even when uncertainty and overbooking are introduced. We can also see that when 

overbooking and no-shows are introduced, the order rejection rates decrease compared to the 

previous configuration of 0% no-show and no overbooking. The uncertainty and overbooking 

conditions change the performance differences between aggressive and conservative 

acceptance strategies, making the choice of acceptance strategy more critical for terminal 

performance under realistic operational constraints.  

The comparison between scenarios reveals that aggressive acceptance performs better under 

perfect information conditions than when uncertainty and overbooking are introduced. When no-

show uncertainty enters the system and overbooking is applied as a countermeasure, the two 

acceptance strategies present distinct trade-offs as seen in figure 5.1.2. The arrows show the 



 

 

comparison between the scenarios with no uncertainty, and scenarios with uncertainty and 

overbooking on different strategies. 

 

.   

 

Figure 5.1.2: Performance Comparison change between scenarios: Barge Utilization vs TEU Trucked 

 

 



 

 

5.2 Different No-show Uncertainty and Overbooking Rates 

The comparative analysis on section 5.1 showed that maximum order count loading performs 

better than FCFS loading, largest order first loading, and earliest due date loading under both 

aggressive and conservative acceptance strategies. This pattern holds across different 

uncertainty conditions. Since maximum order count loading consistently outperforms the 

alternatives on the performance metrics, all further experiments regarding different will use this 

loading strategy. This allows focus on other aspects of the system without retesting allocation 

methods. 

To examine performance across different conditions we use the parameters overbooking rate, 

and no-show rate, as changing them does have a direct effect on our performance metrics where 

we can make a trade-off analysis. Overbooking rates range from 0 to 20% in 0.05 increments 

(0%, 5%, 10%, 15%, 20%). The 5% increment size allows examination of performance changes 

while maintaining a manageable number of experimental conditions. No-show rates span from 

0% to 20% in 5% increments (0%, 5%, 10%, 15%, 20%), covering the range from perfect demand 

realization to high uncertainty conditions.  

Table 5.2: Experimental Parameters 

Parameter Level 1 Level 2 Level 3 Level 4 Level 5 

Overbooking Rate 0% 5% 10% 15% 20% 

No-Show Rate 0% 5% 10% 15% 20% 

We additionally test the two proposed acceptance strategies with the different overbooking and 

no-show rates, as they create different trade-offs in different overbooking rate and no-show rate 

configurations 

Acceptance strategy 

Aggressive Acceptance 

Conservative Acceptance 



 

 

5.2.1 No-show Impact Without Overbooking 

This section examines how introducing no-show uncertainty affects system performance when no 

compensating strategies are employed. By maintaining the no overbooking strategy while 

introducing progressive no-show rates, the analysis isolates the impact of no-shows on the 

performance metrics. 

The following tables presents the performance of aggressive and conservative acceptance with 

maximum order count loading across different no-show rates with 0% overbooking: 

Table 5.2.1.1: Aggressive Acceptance Strategy Performance 

No-Show 

Rate 

Barge Utilization (%) Avg. TEU 

Trucked 

Order Rejection Rate (%) 

0% 93.24 382.00 25.92 

5% 90.88 285.30 25.51 

10% 87.92 212.45 24.93 

15% 84.26 150.25 24.54 

20% 79.07 112.20 23.93 

Table 5.2.1.2: Conservative Acceptance Strategy Performance 

No-Show 

Rate 

Barge Utilization (%) Avg. TEU 

Trucked 

Order Rejection Rate (%) 

0% 88.73 273.75 30.25 

5% 86.42 165.40 30.28 

10% 83.31 100.80 30.11 



 

 

15% 79.28 60.60 30.16 

20% 73.79 39.30 30.02 

From 0% to 20% no-shows, the first trade-off pattern can be observed when no-shows are 

introduced to the system. On both conservative acceptance and aggressive acceptance 

strategies, there is a drop in utilization but also a drop in trucked TEU. This simultaneous decline 

in both metrics represents the impact of uncertainty on the trade-off between performance 

metrics. Since arrival time deviation is a part of the system that causes trucking, having some no-

shows in the system creates a degree of flexibility to the operator that causes less trucking but 

decreases utilization. The no-shows free up departure slots that were previously reserved, 

allowing the system to accommodate customers who experience arrival time deviations without 

resorting to trucking alternatives.  

  

Figure 5.2.1.1: Decrease on Barge Utilization When No-show Rate Increases 

 



 

 

 

Figure 5.2.1.2: Decrease on Trucked TEU When No-show Rate Increases 

As shown in Figures 5.2.1.1 and 5.2.1.2, the utilization decrease becomes exponential while the 

decrease in trucking becomes logarithmic as no-show rates increase. This relationship indicates 

that system performance gets exponentially worse when no-shows increase in the system without 

overbooking as a counter measure on both acceptance methods. From both the figures we can 

observe that the gap between performance on both acceptance strategies on different no-show 

uncertainty remains similar. This observation shows that both the strategies respond to no-show 

uncertainty without overbooking similarly. 

Regarding the order rejection rate performance metric, seen in Figure 5.2.1.3, on the aggressive 

acceptance strategy the order rejection rate drops slightly, from 25.92% to 23.93%, as no-show 

uncertainty is increased while there is no significant change in order rejection rates on the 

conservative acceptance strategy. This indicates that the aggressive acceptance strategy can fill 

the gaps in departure slots caused by no-shows by accepting more orders while conservative 

acceptance can’t. This is the only metric where we see a difference on the trend between the two 

strategies. 

 



 

 

 

Figure 5.2.1.3: Change in Order Rejection Rate When No-show Rate Increases 

 

5.3 Sensitivity Test of Overbooking Performance Across No-Show Levels  

This section examines how overbooking strategies can address the capacity losses and 

inefficiencies identified in the previous analysis. By testing different overbooking rates (5%, 

10%,15%, 20%) across each no-show scenario (5%, 10%,15%, 20%), the analysis evaluates the 

effectiveness of overbooking as a recovery mechanism. The focus is on determining whether 

overbooking can restore the capacity losses caused by no-shows and decrease the percentage 

of order rejections and at what operational cost in terms of increased trucking dependency. 

 

Table 5.3.1: Conservative Acceptance Performance Across Overbooking Rates 

 No Overbooking 5% Rate 10% Rate 15% Rate 20% Rate 

5% No-Shows      

Barge Capacity 
Utilization 

90.88% 91.78% 92.65% 93.52% 94.22% 

Trucked TEU (Avg.) 285.30 444.45 657.35 905.60 1291.30 

Rejection Rate 25.51% 22.9% 20.08% 18.53% 17.05% 



 

 

10% No-Shows      

Barge Capacity 
Utilization 

87.92% 89.03% 90.11% 90.93% 91.89% 

Trucked TEU (Avg.) 212.45 300.05 485.35 602.85 860.85 

Rejection Rate 24.93% 22.23% 19.06% 18.04% 16.67% 

15% No-Shows      

Barge Capacity 
Utilization 

84.26% 86.21% 87.87% 89.50% 90.52% 

Trucked TEU (Avg.) 150.25 199.20 274.05 400.55 550.70 

Rejection Rate 24.54% 21.76% 18.71% 17.76% 16.44% 

20% No-Shows      

Barge Capacity 
Utilization 

79.07% 81.24% 83.52% 86.67% 88.47% 

Trucked TEU (Avg.) 112.20 146.30 200.95 260.25 346.86 

Rejection Rate 23.93% 21.28% 18.29% 17.22% 15.57% 

Table 5.3.2: Conservative Acceptance Performance Across Overbooking Rates 

 No Overbooking 5% Rate 10% Rate 15% Rate 20% Rate 

5% No-Shows      

Barge Capacity 
Utilization 

86.42% 87.39% 88.32% 89.03% 89.66% 

Trucked TEU (Avg.) 165.40 227.20 325.95 449.35 560.20 

Rejection Rate 30.28% 27.63% 25.22% 22.78% 20.91% 



 

 

10% No-Shows      

Barge Capacity 
Utilization 

83.31% 85.38% 87.04% 88.09% 88.72% 

Trucked TEU (Avg.) 100.80 160.75 228.10 275.20 360.85 

Rejection Rate 30.11% 27.42% 25.26% 22.70% 20.72% 

15% No-Shows      

Barge Capacity 
Utilization 

79.28% 81.85% 84.31% 86.52% 87.79% 

Trucked TEU (Avg.) 60.60 94.25 137.95 172.40 219.35 

Rejection Rate 30.16% 27.04% 25.13% 22.49% 20.73% 

20% No-Shows      

Barge Capacity 
Utilization 

73.79% 77.01% 80.27% 82.76% 85.12% 

Trucked TEU (Avg.) 39.30 51.65 72.50 99.95 120.30 

Rejection Rate 30.02% 26.99% 25.06% 22.26% 20.24% 

As seen in Figure 5.3.1, both overbooking strategies reveal trade-offs between capacity utilization 

and trucking requirements that vary in effectiveness depending on no-show rates. At lower no-

show rates, overbooking produces disproportionately high trucking increases relative to capacity 

gains, while higher no-show rates yield more favorable returns for each overbooking increment. 

The comparative analysis between assignment strategies shows that while the aggressive 

strategy exhibits greater sensitivity to trucking volume increases when overbooking rates rise, 

both strategies demonstrate comparable capacity recovery potential.  



 

 

 

 

Figure 5.3.1.1: Comparison Graph Between Utilization and Trucking for Each No-Show and Overbooking Increment 

Figure 5.3.1.2 and Figure 5.3.1.3 show the change in order rejection rate as we increment the 

overbooking rates and no-show rates. Rejection rates decrease as overbooking rates rise for both 

strategies across all no-show scenarios. As no-show rates increase in the aggressive strategy, 

we see a decrease in order rejection rates across all overbooking increments. However, in the 

conservative strategy we do not see significant change as the lines become more linear as no-

show rate increments. The performance gap between strategies narrows at higher overbooking 

levels. 



 

 

 

 

Figure 5.3.1.2 and Figure 5.3.1.3: Order Rejection Rate on Each No-show rate when Overbooking increments 

5.4 Trade-off Analysis 

This section aims to investigate the trade-off for overbooking while using different overbooking 

rates and strategies. Determining the exact break-even point for barges is a significant challenge, 

as it depends heavily on various operational factors including transportation distance, route 

complexity, and market conditions. We could not obtain a specific number for the break-even 

utilization from literature. However, from the industry dataset obtained, we observed that the 28 

TEU capacity barge was utilized at least 50% on all transportation legs. This empirical observation 

forms the basis for using 50% as the break-even barge utilization point in this analysis.  

The cost structure assumptions are derived from the Fazi et al. (2015) study as they use the same 

28 TEU barge for their case study. In their study, a barge requires approximately 22 hours for a 

round trip, with an assumed operational cost of €80 per hour, resulting in a total barge trip cost of 

€1,760. In the case study it is estimated that €330 is required for a truck to complete a round trip, 

with trucks averaging 4.5 hours to cover the same distance, which aligns with trucking's inherent 

flexibility compared to barge transport. While these values cannot be confirmed with real-world 

data, they are consistent with the literature used in this study and provide sensible and tangible 

results for the trade-off analysis. 

Table 5.4.1 shows the values used for costs to conduct the analysis. 

Parameter Value Source 

Barge cost €1,760 (Fazi et al., 2015) 

Truck cost per TEU €330 (Fazi et al., 2015) 



 

 

Break-even point for 
barge utilization 

50% Observed minimum utilization from industry dataset 
for the 28 TEU Barge 

Table 5.4.1: Cost Assumptions for Analysis 

The following tables present the financial outcomes of different overbooking strategies under 

varying no-show conditions. The analysis examines the profit of each rate and strategy to 

understand the trade-offs between aggressive and conservative booking approaches. Each table 

highlights the best strategy for each no-show scenario (marked in bold) and highlights the cell 

which provides the best overbooking rate and acceptance strategy combination for a no-show 

scenario. 

Table 5.4.2: Aggressive Acceptance Net Profit (EUR) 

No-Show 
Rate 

No 
Overbooking 

5% Rate 10% 
Rate 

15% 
Rate 

20% 
Rate 

0% No-
Shows 

€482,759 N/A N/A N/A N/A 

5% No-
Shows 

€481,441 €441,594 €383,587 €313,914 €196,489 

10% No-
Shows 

€463,805 €450,526 €404,583 €377,354 €305,731 

15% No-
Shows 

€432,798 €444,101 €442,773 €423,979 €388,791 

20% No-
Shows 

€372,280 €391,580 €405,648 €430,431 €427,194 

Table 5.4.3: Conservative Acceptance Net Profit (EUR) 

No-Show 
Rate 

No Overbooking 5% Rate 10% 
Rate 

15% 
Rate 

20% 
Rate 

0% No-
Shows 

€454,981 N/A N/A N/A N/A 

5% No-
Shows 

€458,212 €451,475 €431,982 €401,257 €373,547 

10% No-
Shows 

€435,741 €445,103 €446,250 €445,491 €426,097 

15% No-
Shows 

€392,264 €417,345 €437,561 €457,310 €459,698 



 

 

20% No-
Shows 

€321,994 €363,256 €402,277 €428,277 €454,791 

Table 5.4.3: Strategy Comparison (Aggressive-Conservative) 

No-Show 
Rate 

No 
Overbooking 

5% Rate 10% 
Rate 

15% 
Rate 

20% Rate 

0% No-
Shows 

+€27,778 N/A N/A N/A N/A 

5% No-
Shows 

+€23,229 €-9,881 €-48,395 €-87,343 €-177,058 

10% No-
Shows 

+€28,064 €+5,423 €-41,667 €-68,137 €-120,366 

15% No-
Shows 

+€40,534 €+26,755 €+5,212 €-33,331 €-70,907 

20% No-
Shows 

+€50,286 €+28,324 €+3,371 €+2,154 €-27,597 

Positive values = Aggressive strategy outperforms, Negative values = Conservative strategy 

outperforms 

As no-show rates increase across the system, the effectiveness of overbooking strategies 

changes. With low no-show rates, both booking strategies perform best without any overbooking, 

indicating that the uncertainty on arrival time deviations off-sets the benefits of overbooking. 

However, as no-show rates rise, both strategies begin to profit more from overbooking. A clear 

threshold is seen where overbooking transitions from reducing profits, to improving them at 10% 

no-show rates at the conservative acceptance strategy, and at 15% no-show rates at the 

aggressive acceptance strategy. The aggressive strategy achieves higher peak profits under 

stable conditions but shows more variable performance as overbooking increases, while the 

conservative strategy trades outperforms the aggressive approach in high no-show rates.  

Beyond profit considerations, we must also account for the broader business impact of rejecting 

customer orders. Order rejections carry hidden costs including lost future revenue, damaged 

customer relationships, and competitive disadvantage. To address this, the next trade-off analysis 

quantifies the question: "What is the opportunity cost of accepting additional orders to justify the 

expense of overbooking?" This approach enables decision-makers to evaluate overbooking 

strategies not just on immediate financial returns. The threshold values represent the minimum 

opportunity cost per rejected order that would make overbooking financially viable. The following 

results show the calculation of the acceptance opportunity cost threshold. 

 



 

 

Table 5.4.4: Aggressive Acceptance, Acceptance Opportunity Cost Threshold 

No-Show 
Rate 

5% Rate 10% Rate 15% Rate 20% Rate 

5% No-
Shows 

€636 €751 €1,000 €1,403 

10% No-
Shows 

€205 €420 €523 €797 

15% No-
Shows 

Profitable* Profitable* €54 €226 

20% No-
Shows 

Profitable* Profitable* Profitable* Profitable* 

Table 5.4.5: Conservative Acceptance, Acceptance Opportunity Cost Threshold 

No-Show 
Rate 

5% Rate 10% Rate 15% Rate 20% Rate 

5% No-
Shows 

€106 €216 €316 €376 

10% No-
Shows 

Profitable* Profitable* Profitable* €43 

15% No-
Shows 

Profitable* Profitable* Profitable* Profitable* 

20% No-
Shows 

Profitable* Profitable* Profitable* Profitable* 

*Profitable = Overbooking increases both profit and reduces rejections  

 

Observed in tables 5.4.4 and 5.4.5, the aggressive strategy requires much higher opportunity cost 

thresholds to justify overbooking at lower no-show rates, indicating that overbooking is only 

economically rational when opportunity costs for orders are extremely high. The conservative 

strategy shows different threshold patterns, with much lower break-even costs required to justify 

overbooking. The threshold patterns demonstrate that strategy selection should account for the 

terminal's ability to quantify opportunity costs. Terminals with high customer values or strong 

competitive pressures may find overbooking justified at less profits. The analysis provides a 

quantitative framework for matching overbooking policies to both operational conditions and 

revenue management. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

6. Discussion 

 

6.1 Discussion of Results 

 

Experimental results with different allocation strategies demonstrated that allocation strategy 

performance has a significant impact on the effectiveness of overbooking strategies. Maximum 

order count loading strategy consistently outperformed FCFS, largest orders first, and earliest 

due date strategies across all tested conditions, showing superior performance in both barge 

utilization and reduced trucking usage. This finding indicates that if a terminal believes it is 

performing poorly in allocation, it is important for the terminal to improve its allocation methods 

first before implementing overbooking, and to use a conservative acceptance strategy. The 

superior performance of maximum order count loading suggests that reducing the number of 

orders in the terminal queue creates operational flexibility that proves more valuable than other 

allocation priorities. 

Two methods for accepting more orders were tested: the aggressive acceptance strategy and the 

conservative acceptance strategy. As discussed in section 4.2, the aggressive acceptance 

strategy allows orders to be reassigned into earlier departure slots with available capacity, 

provided that the order's estimated arrival time makes such allocation feasible. The conservative 

acceptance strategy is more selective, initially allocating each order only to its originally requested 

departure slot as determined by the order's due date. Both strategies were tested on different 

overbooking and no-show rates. At lower no-show rates, overbooking produces 

disproportionately high trucking increases relative to capacity gains, while higher no-show rates 

yield more favorable returns for each overbooking increment. The comparative analysis between 

assignment strategies shows that, while the aggressive strategy exhibits greater sensitivity to 

trucking volume increases when overbooking rates rise, both strategies demonstrate comparable 

capacity recovery potential. This demonstrates that if the operator believes uncertainty is very 

high, they can implement higher overbooking rates with less exposure to trucking risk, which 

makes the experimentation of overbooking decisions less risky in a terminal setting. 

The trade-off analysis showed that different strategies perform better under different uncertainty 

conditions. The conservative strategy yielded more profits at higher no-show rates when 

combined with higher overbooking rates, while the aggressive strategy performed best at low no-

show rates without requiring increased overbooking rates. In lower uncertainty conditions, instead 

of overbooking slots, terminals can accept orders to earlier feasible slots using the aggressive 

acceptance strategy to achieve better returns. With the aggressive acceptance strategy, until 15% 

no-show rate, no overbooking is still the best strategy. However, after 15% no-show levels, 

overbooking performs better than no overbooking. With the conservative acceptance strategy, at 

5% no-show rate, no overbooking is the best performing strategy, while after 10%, overbooking 

becomes a viable strategy. Overbooking not being viable at 5% no-show rates on both strategies 

is most likely due to arrival time deviations causing more trucking when order materialization is 

high. 



 

 

Analysis of the opportunity costs for accepting orders revealed that the economic viability of 

overbooking strategies depends on both the overbooking and no-show rates, and the terminal's 

ability to quantify opportunity costs of accepting additional orders. The aggressive acceptance 

strategy required much higher opportunity cost thresholds to justify overbooking at lower no-show 

rates. The conservative strategy showed different threshold patterns, with lower opportunity costs 

required to justify overbooking. At higher no-show rates, both strategies showed scenarios where 

overbooking increases both profit and reduces rejections, making it inherently profitable without 

requiring opportunity cost calculations. The opportunity cost thresholds calculation provides a 

framework for decision-makers to evaluate whether overbooking for lower profits is justified given 

their specific 

 

6.2 Answering the Research Questions 

6.2.1 Sub-Research Question 1 

What are the main features of a booking system to manage orders and its dynamics in a 

barge transport system? What are the main trade-offs? 

Sub research question 1 can be answered by the computational experiments in section 5 and the 

explanations in section 4. The main features of a booking system to manage orders and its 

dynamics in a barge transport system is the order acceptance and order allocation decisions. 

These two go hand in hand, as if the allocation strategy of the terminal is poor then this limits the 

performance of the implemented acceptance strategy as well. The dynamics of the problem are 

the no-show uncertainty, arrival time deviations and the different order characteristic parameters 

such as the due date, ETA, and TEU amount of the order. 

The main trade-offs are between capacity utilization, order rejection rate and trucking. Depending 

on the costs that the terminals assign to these, they can use the framework for calculation and 

strategies for overbooking identified in this study. 

6.2.2 Sub-Research Question 2 

What methodology can better capture the dynamicity of the system with stochastic 

parameters? 

Sub research question 2 can be answered by the literature study done in section 2, and section 

4. Discrete event simulation is a methodology that can effectively capture the dynamicity of the 

system with stochastic parameters. The barge container transport system involves multiple 

interacting stochastic processes including random order arrivals, arrival time deviations, and no-

show behavior that occur over time. These processes create temporal dependencies where 

earlier decisions influence the system state and capacity available for subsequent orders. 

Discrete event simulation enables the modeling of these interactions by allowing orders to 

progress through different stages of the system while uncertainties resolve progressively. The 

methodology can handle the sequential nature of booking decisions where operators must make 



 

 

accept/reject choices with incomplete information about future demand and order realization. 

Additionally, simulation allows for experimentation with different operational policies and 

strategies under varying uncertainty conditions without the computational constraints that 

analytical approaches face. 

6.2.3 Sub-Research Question 3 

Do overbooking strategies affect barge terminal performance under no-show, cancellation 

and arrival time deviation uncertainty? 

Sub research question 3 can be answered by the findings in section 5. Overbooking strategies 

affect performance in a barge terminal, and it is highly dependent on no-show rates and arrival 

time deviations. The performance metrics identified are the capacity utilization of the barge, use 

of trucking, and the rejection rate of orders. The results demonstrate that overbooking 

effectiveness varies significantly based on the level of uncertainty present in the system. At low 

no-show rates, overbooking provides limited benefits and can result in disproportionately high 

trucking relative to capacity gains. However, as no-show rates increase, overbooking becomes 

increasingly effective at restoring capacity utilization that would otherwise be lost due to no-

shows. Different strategies on the allocation of orders to barges also influences the terminal 

performance.  

6.2.4 Main Research Question 

How to develop a decision support system that supports understanding overbooking 

strategies and the management of no-shows and delays in an inland container transport 

system? 

The main research question can be answered by integrating the findings from the three sub-

research questions. Based on SRQ1, a decision support system must incorporate both order 

acceptance and allocation decision components while accounting for the key trade-offs between 

capacity utilization, order rejection rates, and trucking. The system needs to handle the dynamics 

of no-show uncertainty, arrival time deviations, and varying order characteristics. 

From SRQ2, discrete event simulation provides an appropriate methodological foundation for 

such a decision support system, as it can effectively capture the stochastic and dynamic nature 

of barge container transport operations. The simulation approach enables experimentation with 

different strategies and policies while providing detailed system observation over extended 

periods. 

From SRQ3, overbooking strategies significantly impact terminal performance, but their 

effectiveness depends highly on the uncertainty levels. Therefore, the decision support system 

must provide capability to evaluate different overbooking strategies under various no-show and 

delay scenarios to determine approaches for specific operational conditions. 

 



 

 

6.3 Limitations 

This study contains several limitations that affect the applicability of the findings. The simulation 

model assumes all containers generate the same revenue and treats all customers equally, while 

real operations involve different customer types with varying pricing and service requirements. 

The model assumes all containers go to the same destination, ignoring the routing constraints 

and network effects that exist in actual barge operations serving multiple destinations. The cost 

assumptions are based on literature rather than real world data. The study also does not consider 

the change in demand when an order is rejected, as it is possible that a rejected customer might 

be less likely to return. The study focuses on a single terminal and examines only specific 

overbooking rates and performance metrics, potentially missing other effective strategies or 

important operational factors. Moreover because of the entity limit of the student version of Arena, 

there were limitations on the level of sensitivity analysis that could be conducted. 

However, despite these limitations, the study provides valuable insights into the trade-offs and 

decision-making processes in barge container transport overbooking. The simulation framework 

demonstrates the effectiveness of different strategies under varying uncertainty conditions and 

establishes a foundation for understanding capacity management in barge transportation. 

6.4 Recommendations for Future Research 

Future research can extend the model to include different customer types with varying 

characteristics such as customer priorities, and customer specific no-show behavior. This would 

enable more realistic overbooking strategies that account for customer differences. The model 

can be expanded to include multiple terminals and routes to understand how overbooking 

decisions affect network performance.  

The integration of cost modeling into overbooking strategies represents an important step for 

practical implementation of overbooking. Future research could develop detailed cost structures 

that incorporate all relevant elements including barge costs, truck transport, specific container 

revenue, competitive positioning impacts, and other operational costs for a specific case study. 

This would enable precise economic impact of overbooking strategies tailored to specific 

operational contexts.  

 

 

 

 

 

 



 

 

7. Conclusion 

This research investigated the application of overbooking strategies in barge container transport 

to address capacity management challenges under no-show uncertainty and arrival time 

deviations. Through the development of a discrete-event simulation model and literature review, 

the study answers the main research question of how to develop a decision support system for 

understanding overbooking strategies and managing no-shows and delays in barge transport. 

The research identifies that booking systems in barge transport are characterized by two critical 

decision components: order acceptance and allocation strategies, which must be made 

sequentially under incomplete information while managing the dynamics of no-show uncertainty, 

arrival time deviations, and varying order characteristics. The main trade-offs involve balancing 

capacity utilization against order rejection rates and trucking, with the balance depending on the 

specific cost structure and operational context of each terminal. Discrete-event simulation proves 

to be an effective methodology for capturing the stochastic and dynamic nature of barge container 

transport systems, enabling experimentation with different strategies under varying uncertainty 

conditions without the computational complexity faced by analytical approaches. 

The study demonstrates that overbooking strategies significantly affect barge terminal 

performance, with effectiveness highly dependent on the level of uncertainty present in the 

system. At low no-show rates, overbooking provides limited benefits and can result in 

disproportionately high trucking, while at higher no-show rates, overbooking becomes 

increasingly effective at restoring capacity utilization. Trade-off analysis between the different 

allocation strategies reveals that maximum order count loading consistently outperforms 

alternative allocation strategies, suggesting that better performance can be achieved through 

higher order processing. The trade-off analysis uses a framework that enables operators to 

evaluate the economic viability of overbooking based on their specific opportunity cost for 

accepting an order. 

This research contributes to the container on barge literature by extending overbooking theory 

from traditional service industries to freight transportation contexts where service substitution 

rather than service denial characterizes capacity exceedance. The study provides the framework 

for evaluating overbooking strategies in barge container transport, addressing a gap in the 

literature on capacity management for barge transportation. Additionally it provides barge 

operators a framework to assess the viability of overbooking. While the study contains limitations 

related to model assumptions, data availability, and scope, it establishes the principles for 

overbooking in barge transport and provides a foundation for future research. Future research 

should focus on extending the model to incorporate customer heterogeneity, network effects, and 

cost structures, which would enhance the practical applicability of overbooking strategies and 

contribute to broader understanding of capacity management under uncertainty in barge 

transport.  
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